Đề kiểm tra 15 phút Chương 1 Hàm số - Sự biến thiên của hàm số

Mô tả thêm: Bài kiểm tra 15 phút Chương 1 Hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng xét dấu f'(x) như sau:

    Kết luận nào sau đây đúng?

    Dựa vào bảng xét dấu đạo hàm ta thấy: hàm số đạt cực trị tại x = 1;x = 3;x = 4.

    Tại x = 1;x = 4 ta thấy f'(x) đổi dấu từ âm sang dương nên hàm số đạt cực tiểu tại x = 1;x =
4.

    Tại x = 3 ta thấy f'(x) đổi dấu từ dương sang âm nên hàm số đạt cực đại tại x = 3.

  • Câu 2: Nhận biết

    Cho đồ thị hàm số sau:

    Xác định hàm số tương ứng với đồ thị đã cho?

    Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc 4 có hệ số a < 0 nên hàm số tương ứng là y = - x^{4} + 2x^{2} + 2.

  • Câu 3: Thông hiểu

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ sau:

    Khi đó số điểm cực trị của hàm số y =
\left| f(x) ight| là:

    Từ giả thiết ta có đồ thị của hàm số y =
\left| f(x) ight| như sau:

    Vậy hàm số y = \left| f(x)
ight| có ba điểm cực trị.

  • Câu 4: Vận dụng

    Cho hàm số y = f(x) = \left| x^{3} -3x^{2} + m ight| biết m \in\lbrack - 4;4brack. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \left| x^{3} -3x^{2} + m ight| biết m \in\lbrack - 4;4brack. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Vận dụng

    Cho hàm số y = x^{3} + x^{2} - 4 có đồ thị (C). Hỏi có bao nhiêu cặp điểm A;B \in (C) sao cho ba điểm O;A;B thẳng hàng và OA - 2OB = 0 với O là gốc tọa độ?

    Gọi d là đường thẳng đi qua ba điểm O, A, B khi đó d có phương trình y =
k.x

    Khi đó hoành độ của O, A, B là nghiệm của phương trình x^{3} + x^{2} - 4 = kx

    Giả sử A\left( x_{1};kx_{1}
ight),B\left( x_{2};kx_{2} ight) khi đó ta có: \left\{ \begin{matrix}
{x_{1}}^{3} + {x_{1}}^{2} - 4 = kx_{1} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    Do OA - 2OB = 0 nên \overrightarrow{OA} = \pm 2\overrightarrow{OB}
\Rightarrow x_{1} = \pm 2kx_{2}

    TH1: x_{1} = 2kx_{2} \Rightarrow \left\{
\begin{matrix}
8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow 6{x_{2}}^{3} + 2{x_{2}}^{2}
+ 4 = 0 \Rightarrow x_{2} = - 1

    Khi đó A( - 2; - 8),B( - 1; -
4).

    TH2: x_{1} = - 2kx_{2} \Rightarrow
\left\{ \begin{matrix}
- 8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = - 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow - 6{x_{2}}^{3} +
6{x_{2}}^{2} - 12 = 0 \Rightarrow x_{2} = - 1

    Khi đó A(2;8),B( - 1; - 4).

    Vậy có 2 cặp A; B thỏa mãn.

  • Câu 6: Vận dụng

    Giá trị của tham số m để bất phương trình (x - 2 - m)\sqrt{x - 1} \leq m - 4 có nghiệm là:

    Đặt t = \sqrt{x - 1};(t \geq
0)

    Khi đó bất phương trình ban đầu trở thành:

    \left( t^{2} - m - 1 ight).t \leq m - 4
\Leftrightarrow m \geq \frac{t^{3} - t + 4}{t + 1}

    Xét hàm số f(t) = \frac{t^{3} - t + 4}{t
+ 1} trên \lbrack 0; +
\infty)

    Ta có: f'(t) = \frac{2t^{3} + 3t^{2}
- 5}{(t + 1)^{2}} = \frac{(t - 1)\left( 2t^{2} + 5t + 5 ight)}{(t +
1)^{2}}

    f'(t) = 0 \Leftrightarrow t =
1

    Bảng biến thiên của f(t) = \frac{t^{3} -
t + 4}{t + 1};t \in \lbrack 0; + \infty)

    Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì m \geq 2.

  • Câu 7: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = x\left( {x - 1} ight)\left( {x - 2} ight),\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {\frac{{5x}}{{{x^2} + 4}}} ight) đồng biến trên khoảng nào trong các khoảng sau?

    Ta có: f'\left( x ight) = 0 \Leftrightarrow x{\left( {x - 1} ight)^2}\left( {x - 2} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x = 2} \end{array}} ight.

    Ta có: g'\left( x ight) = \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight)

    Cho g’(x) = 0 => \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight) = 0

    Dựa vào f’(x) ta có:

    \left[ {\begin{array}{*{20}{c}}  { - 5{x^2} + 20 = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 1} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 2} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 2} \\   {x = 0} \\   {x = 1} \\   {x = 4} \end{array}} ight.

    Lập bảng xét dấu như sau:

    Xét khoảng đồng biến của hàm số

    Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)

  • Câu 8: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 9: Thông hiểu

    Cho hàm số f(x) có đồ thị như hình vẽ:

    Hàm số y = - 3f(x - 2) nghịch biến trên khoảng nào?

    Ta có: y' = - 3f'(x - 2) < 0
\Leftrightarrow f'(x - 2) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 2 > 2 \\
x - 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x > 4 \\
x < 2 \\
\end{matrix} ight.

    Vậy hàm số y = - 3f(x - 2) nghịch biến trên khoảng ( -
\infty;1).

  • Câu 10: Nhận biết

    Với giá trị nào của tham số m để đồ thị hàm số y = \frac{2x^{2} + 6mx + 4}{mx
+ 2} đi qua điểm A( -
1;4)?

    Thay tọa độ điểm A( - 1;4) vào y = \frac{2x^{2} + 6mx + 4}{mx + 2} ta được:

    4 = \frac{2.( - 1)^{2} + 6m.( - 1) +
4}{m.( - 1) + 2} \Leftrightarrow 2m = - 2 \Leftrightarrow m = -
1

    Vậy giá trị m cần tìm là m = -
1.

  • Câu 11: Thông hiểu

    Cho hàm số y = \frac{2mx + m^{2} + m -
2}{x + m}với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng 1. Tổng các phần tử của tập hợp S bằng:

    Điều kiện x eq - m

    Ta có: y' = \frac{m^{2} - m + 2}{(x +
m)^{2}}. Vì \left\{ \begin{matrix}
a = 1 \\
\Delta_{m} = ( - 1)^{2} - 4.1.2 < 0 \\
\end{matrix} ight. nên m^{2} -
m + 2 > 0;\forall \in m

    \Rightarrow y' > 0;\forall x \in
\lbrack 1;4brack

    Suy ra giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng y(1) = 1
\Leftrightarrow \frac{m^{2} + 3m - 2}{1 + m} = 1

    \Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
m^{2} + 2m - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \left\{ 1; - 3
ight\}

    Kết hợp điều kiện \left\{ \begin{matrix}
x eq - m \\
x \in \lbrack 1;4brack \\
\end{matrix} ight.\  \Rightarrow m = - 3(ktm)

    Vậy S = \left\{ 1 ight\} nên tổng các phần tử thuộc tập S bằng 1.

  • Câu 12: Vận dụng cao

    Cho hàm số f(x) liên tục trên khoảng (0; +∞) thỏa mãn 3x.f\left( x ight) - {x^2}.f'\left( x ight) = 2{f^2}\left( x ight), với f(x) ≠ 0 với ∀x ∈ (0; +∞) và f\left( 1 ight) = \frac{1}{3}. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Tính tổng M + m.

    Ta có:

    \begin{matrix}  3x.f\left( x ight) - {x^2}.f'\left( x ight) = 2{f^2}\left( x ight) \hfill \\   \Rightarrow 3{x^2}f\left( x ight) - {x^3}f'\left( x ight) = 2x{f^2}\left( x ight) \hfill \\   \Rightarrow \dfrac{{3{x^2}f\left( x ight) - {x^3}f'\left( x ight)}}{{{f^2}\left( x ight)}} = 2x \hfill \\   \Rightarrow \left( {\dfrac{{{x^3}}}{{f\left( x ight)}}} ight)' = 2x \Rightarrow \dfrac{{{x^3}}}{{f\left( x ight)}} = {x^2} + C \hfill \\ \end{matrix}

    Thay x = 1 vào ta có: \left\{ {\begin{array}{*{20}{c}}  {\dfrac{1}{{f\left( 1 ight)}} = 1 + C} \\   {f\left( 1 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow C = 2

    \begin{matrix}   \Rightarrow f\left( x ight) = \dfrac{{{x^3}}}{{{x^2} + 2}} \hfill \\  f'\left( x ight) = \dfrac{{{x^4} + 6{x^2}}}{{{{\left( {{x^2} + 2} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \Rightarrow x = 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tính tổng GTLN và GTNN của hàm số

    Khi đó f(x) đồng biến trên [1; 2]

    => \left\{ {\begin{array}{*{20}{c}}  {m = f\left( 1 ight) = \dfrac{1}{3}} \\   {M = f\left( 2 ight) = \dfrac{4}{3}} \end{array}} ight. \Rightarrow m + M = \dfrac{5}{3}

  • Câu 13: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây

    Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng (0;2).

  • Câu 14: Thông hiểu

    Để hàm số y = x^{3} - 3x^{2} + m (với m là tham số) đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x +
m

    Hàm số đạt cực tiểu tại x = 2 \Rightarrow
y'(2) = 0 \Leftrightarrow m = 0

    Khi m = 0 \Rightarrow y' = 3x^{2} -
6x \Rightarrow y'' = 6x - 6

    Ta có: y''(2) = 6.2 - 6 = 6 >
0 suy ra hàm số đạt cực tiểu tại x
= 2

    Vậy m \in ( - 1;1) thì hàm số đạt cực tiểu tại x = 2.

  • Câu 15: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới dây?

    Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên (0;1).

  • Câu 16: Vận dụng

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 17: Vận dụng

    Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v = 10(km/h) thì phần thứ hai bằng 30 nghìn đồng/giờ.

    Xét tính đúng sai của các mệnh đề sau:

    a) Khi vận tốc v = 10(km/h) thì chi phí nguyên liệu cho phần thứ nhất trên 1 km đường sông là 48000 đồng. Đúng||Sai

    b) Hàm số xác định tổng chi phí nguyên liệu trên 1 km đường sông với vận tốc x (km/h)f(x) = \frac{480}{x} +
0,03x^{3}. Sai||Đúng

    c) Khi vận tốc v = 30 (km/h) thì tổng chi phí nguyên liệu trên 1 km đường sông là 43000 đồng. Đúng||Sai

    d) Vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông nhỏ nhất là v=20(km/h). Đúng||Sai

    Đáp án là:

    Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v = 10(km/h) thì phần thứ hai bằng 30 nghìn đồng/giờ.

    Xét tính đúng sai của các mệnh đề sau:

    a) Khi vận tốc v = 10(km/h) thì chi phí nguyên liệu cho phần thứ nhất trên 1 km đường sông là 48000 đồng. Đúng||Sai

    b) Hàm số xác định tổng chi phí nguyên liệu trên 1 km đường sông với vận tốc x (km/h)f(x) = \frac{480}{x} +
0,03x^{3}. Sai||Đúng

    c) Khi vận tốc v = 30 (km/h) thì tổng chi phí nguyên liệu trên 1 km đường sông là 43000 đồng. Đúng||Sai

    d) Vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông nhỏ nhất là v=20(km/h). Đúng||Sai

    a) Đúng: Thời gian tàu chạy quãng đường 1 km là: \frac{1}{10} (giờ)

    Chi phí tiền nhiên liệu cho phần thứ nhất là: \frac{1}{10}.480000 = 48000 (đồng).

    b) Sai: Gọi x (km/h) là vận tốc của tàu, x > 0

    Thời gian tàu chạy quãng đường 1 km là: \frac{1}{x} (giờ)

    Chi phí tiền nhiên liệu cho phần thứ nhất là: \frac{1}{x}.480 = \frac{480}{x} (nghìn đồng)

    Hàm chi phí cho phần thứ hai là p =
k.x^{3} (nghìn đồng/ giờ)

    Khi x = 10 \Rightarrow p = 30 \Rightarrow
k = 0,03 \Rightarrow p = 0,03x^{3} (nghìn đồng/ giờ)

    Do đó chi phí phần 2 để chạy 1 km là: \frac{1}{x}.0,03x^{3} = 0,03x^{2} (nghìn đồng)

    Vậy tổng chi phí f(x) = \frac{480}{x} +
0,03x^{3},

    c) Đúng. Tổng chi phí f(x) =
\frac{480}{x} + 0,03x^{3}

    Thay x = v = 30 ta được f(30) = \frac{480}{30} + 0,03(30)^{3} =
43(nghìn đồng).

    d) Đúng f(x) = \frac{480}{x} + 0,03x^{3}
= \frac{240}{x} + \frac{240}{x} + 0,03x^{2} \geq 3\sqrt[3]{1728} =
36

    Dấu ’’=’’ xảy ra khi x = 20.

  • Câu 18: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 nghịch biến trên \mathbb{R}?

    Ta có: y' = - x^{2} - 4x +
m

    Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi y' \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow - x^{2} - 4x + m \leq
0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\in ( - \infty; - 4brack

    Vậy đáp án cần tìm là m \in ( - \infty; -
4brack.

  • Câu 19: Nhận biết

    Giá trị nhỏ nhất của hàm số f(x) = x^{3}
- 3x + 2 trên đoạn \lbrack -
3;2brack bằng

    Ta có:

    f'(x) = 3x^{2} - 3; f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight..

    \left\{ \begin{matrix}
f( - 3) = - 16 \\
f( - 1) = 4 \\
f(1) = 0 \\
f(3) = 20 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 3;3brack}f(x) = -
16.

  • Câu 20: Vận dụng

    Cho hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên \mathbb{R}. Khi đó hàm số y = f\left( {{x^2} - 2x} ight) có bao nhiêu điểm cực trị?

    Ta có hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên \mathbb{R} nên f’(x) = 0 có ba nghiệm x = -2; x = -1, x = 0

    Đặt  g\left( x ight) = f\left( {{x^2} - 2x} ight) \Rightarrow g'\left( x ight) = \left( {2x - 2} ight)f\left( {{x^2} - 2x} ight)

    Vì f’(x) liên tục trên \mathbb{R} nên g’(x) cũng liên tục trên \mathbb{R}. Do đó những điểm g’(x) có thể đổi dấu thuộc tập các điểm thỏa mãn.

    \left[ {\begin{array}{*{20}{c}}  {2x - 2 = 0} \\   {{x^2} - 2x =  - 2} \\   {{x^2} - 2x =  - 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \\   {x = 2} \end{array}} ight.

    Ba nghiệm trên đều là nghiệm đơn hoặc bội lẻ nên hàm số g(x) có ba điểm cực trị.

     

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Hàm số - Sự biến thiên của hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 51 lượt xem
Sắp xếp theo