Cho biết và điểm
. Gọi
là điểm bất kì thuộc
. Khoảng cách
nhỏ nhất là:
Vì thuộc
=>
Xét hàm số ta có:
Cho biết và điểm
. Gọi
là điểm bất kì thuộc
. Khoảng cách
nhỏ nhất là:
Vì thuộc
=>
Xét hàm số ta có:
Cho hàm số có đạo hàm trên
và
biết
. Khẳng định nào sau đây có thể xảy ra.
Do nên hàm số
nghịch biến trên
.
Khi đó ta có:
sai
sai
sai
Do đó, đúng.
Cho hàm số . Số nghiệm thực phân biệt của phương trình
là:
Ta có:
Đồ thị của hàm số được minh họa bằng hình vẽ sau:
Từ đồ thị ta suy ra
Phương trình (*) có 3 nghiệm thực
Phương trình (**) có 2 nghiệm thực
Đường cong trong hình vẽ dưới đây là của hàm số nào?
Đường tiệm cận ngang:
Đường tiệm cận đứng:
Giá trị lớn nhất của hàm số trên đoạn
là:
Ta có:
Cho hình vẽ:
Đường trong trong hình vẽ là đồ thị của hàm số nào?
Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho hàm số có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Từ đồ thị, ta thấy hàm số đồng biến trên các khoảng và
.
Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.
Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:
Từ bảng biến thiên ta có:
Mặt khác f(-4) > f(8) => thì
Vậy
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
a) Sai
Ta có .
.
Vậy phương trình có hai nghiệm.
b) Đúng
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số đồng biến trên các khoảng
.
Ta có nên hàm số
đồng biến trên khoảng
.
c) Đúng
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực trị.
d) Sai
Ta có:
.
.
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực đại.
Cho x, y, z là ba số thực thuộc đoạn [1; 9] và . Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
(đúng do
)
Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1
Áp dụng bất đẳng thức trên ta có:
Đặt . Xét hàm số
trên đoạn [1; 3]
Do
Ta có bảng biến thiên
Suy ra khi và chỉ khi
Hàm số đạt cực đại tại
Tập xác định:
Ta có:
Ta có bảng biến thiên
Vậy hàm số đạt cực tiểu tại và
.
Đồ thị hàm số có bao nhiêu tiệm cận đứng?
Ta có:
Lại có: suy ra
là tiệm cận đứng của đồ thị hàm số
Vậy hàm số đã cho có 1 tiệm cận đứng.
Hàm số có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực trị?
Ta có:
Bảng biến thiên
Từ bảng biến thiên của hàm số ta thấy hàm số
có đúng một cực trị.
Cho hàm số có đạo hàm trên
và thỏa mãn
. Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Ta có:
.
Xét hàm số có
Bảng biến thiên
Vậy bất phương trình nghiệm đúng với mọi
khi và chỉ khi
.
Cho hàm số bậc ba có đồ thị như hình vẽ sau:
Khi đó số điểm cực trị của hàm số là:
Từ giả thiết ta có đồ thị của hàm số như sau:
Vậy hàm số có ba điểm cực trị.
Tập hợp tất cả các giá trị của tham số để đồ thị hàm số
có đúng hai đường tiệm cận?
Ta có:
Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang . Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.
Tam thức có
Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:
Vậy .
Xác định hàm số nghịch biến trên ?
Xét hàm số ta có:
Nên hàm số nghịch biến trên
.
Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?
Ta có hàm số y = ax, y = logax đồng biến trên tập xác định nếu a > 0
Do đó hàm số y = log3x đồng biến trên (1; +∞)
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Đặt với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Đặt với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số có
. Hàm số
đồng biến trên khoảng nào dưới đây?
Xét dấu f’(x) như sau:
Ta có:
Chọn ta có:
=> là khoảng âm
Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:
Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)