Đề kiểm tra 15 phút Chương 1 Khối đa diện

Mô tả thêm: Bài kiểm tra 15 phút Khối đa diện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a?

     

    Xét khối lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a.

  • Câu 2: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 3: Vận dụng cao

    Cho hình chóp S.ABCD có thể tích bằng V, đáy ABCD là hình vuông; SA \bot \left( {ABCD} ight)SC hợp với đáy một góc bằng 30^0. Mặt phẳng (P) đi qua A và vuông góc với SC, cắt các cạnh SB,SC,SD lần lượt tại E,F,K. Tính thể tích khối chóp S.AEFK

    V/10 || V phần 10

    Đáp án là:

    Cho hình chóp S.ABCD có thể tích bằng V, đáy ABCD là hình vuông; SA \bot \left( {ABCD} ight)SC hợp với đáy một góc bằng 30^0. Mặt phẳng (P) đi qua A và vuông góc với SC, cắt các cạnh SB,SC,SD lần lượt tại E,F,K. Tính thể tích khối chóp S.AEFK

    V/10 || V phần 10

     

    Ta có \frac{{SB}}{{SE}} = \frac{{S{B^2}}}{{S{A^2}}}. Tương tự \frac{{SD}}{{SK}} = \frac{{S{D^2}}}{{S{A^2}}} nên \frac{{SB}}{{SE}} = \frac{{SD}}{{SK}}.

    \frac{{SC}}{{SF}} = \frac{{S{C^2}}}{{S{A^2}}} = 4 (do \Delta SCA vuông tại A, \,\widehat {\,SCA} = {30^0}) nên ta có:

    \frac{{SC}}{{SF}} + 1 = \frac{{SB}}{{SE}} + \frac{{SD}}{{SK}} = 5 \Rightarrow \frac{{SB}}{{SE}} = \frac{{SD}}{{SK}} = \frac{5}{2}

    Xét tỉ số thể tích, ta được:

    \frac{{{V_{S.AEFK}}}}{{{V_{S.ABCD}}}} = \frac{{10}}{{4.1.4.\dfrac{5}{2}.\dfrac{5}{2}}} = \frac{1}{{10}}

    \Rightarrow {V_{S.AEFK}} = \frac{{{V_{S.ABCD}}}}{{10}} = \frac{V}{{10}}

     

  • Câu 4: Vận dụng

    Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?

    Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.

    Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3Đ =2C.

  • Câu 5: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 6: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 8: Vận dụng cao

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều. Cạnh đáy dưới dài 5 m, cạnh đáy trên dài 2 m, cạnh bên dài 3 m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1 470 000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị chục nghìn.

    Đáp án: 4054 (chục nghìn)

    Đáp án là:

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều. Cạnh đáy dưới dài 5 m, cạnh đáy trên dài 2 m, cạnh bên dài 3 m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1 470 000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị chục nghìn.

    Đáp án: 4054 (chục nghìn)

    Hình vẽ minh họa

    Mô hình hóa chân tháp của bài toán bằng khối chóp cụt tứ giác đều ABCD.A^{'}B^{'}C^{'}D^{'}, với O,O^{'} lần lượt là tâm của hai đáy ABCDA^{'}B^{'}C^{'}D^{'}.

    Như vậy ta có:

    ABCD là hình vuông cạnh 5 có diện tích S_{ABCD} = 5^{2} =
25;

    A^{'}B^{'}C^{'}D^{'} là hình vuông cạnh 2 có diện tích S_{A^{'}B^{'}C^{'}D^{'}} = 2^{2} =
4;

    Các cạnh bên A^{'}A,B^{'}B,C^{'}C,D^{'}D có độ dài bằng 3;

    {OO}^{'} vuông góc với ( ABCD ) và ( \left. \ A^{'}B^{'}C^{'}D^{'}
ight).

    Do ABCD là hình vuông nên \widehat{ABC} =90^{\circ}, do đó tam giác ABC vuông tại B.

    Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:

    AC^{2} = AB^{2} + BC^{2} = 5^{2} + 5^{2}= 50

    Suy ra AC = 5\sqrt{2}.
    Do đó CO = \frac{AC}{2} =\frac{5\sqrt{2}}{2} (do 0 là tâm hình vuông ABCD ).

    Do A^{'}B^{'}C^{'}D^{'} là hình vuông nên \widehat{A^{'}B^{'}C^{'}} =
90^{\circ}, do đó tam giác A^{'}B^{'}C^{'} vuông tại B^{'}.

    Áp dụng định lí Pythagore trong tam giác A^{'}B^{'}C^{'} vuông tại B^{'} có:

    A^{'}C^{'2} = A^{'}B^{'2}
+ B^{'}C^{'2} = 2^{2} + 2^{2} = 8.

    Suy ra A^{'}C^{'} =
2\sqrt{2}.

    Do đó C^{'}O^{'} =
\frac{A^{'}C^{'}}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2} (do O^{'} là tâm hình vuông A^{'}B^{'}C^{'}D^{'} ).

    Dễ thấy: (ABCD) \cap \left(
A^{'}C^{'}CA ight) = AC; \left( A^{'}B^{'}C^{'}D^{'}
ight) \cap \left( A^{'}C^{'}CA ight) =
A^{'}C^{'}.

    Mà ( ABCD ) // ( \left. \ A^{'}B^{'}C^{'}D^{'}
ight).

    Suy ra AC//A^{'}C^{'} hay A^{'}C^{'}CA là hình thang.

    Xét hình thang A^{'}C^{'}CA, kẻ C^{'}H\bot AC(H \in AC).

    00^{'}\bot(ABCD)AC \subset (ABCD) nên 00^{'}\bot AC.

    Do đó C^{'}H//{OO}^{'} (cùng vuông góc với AC).

    O^{'}C^{'}//OH (do A^{'}C^{'}//AC )

    Suy ra O^{'}C^{'}HO là hình bình hành.

    Do đó: 0O^{'} = C^{'}HOH = C^{'}O^{'} =
\sqrt{2}.

    Suy ra HC = OC - OH = \frac{5\sqrt{2}}{2}
- \sqrt{2} = \frac{3\sqrt{2}}{2}.

    Áp dụng định lí Pythagore trong tam giác C^{'}HC vuông tại H( do \left.
\ C^{'}H\bot AC ight) có:

    C^{'}C^{2} = C^{'}H^{2} +
{HC}^{2}

    Suy ra C^{'}H = \sqrt{C^{'}C^{2}
- HC^{2}} = \sqrt{3^{2} - \left( \frac{3\sqrt{2}}{2} ight)^{2}} =
\frac{3\sqrt{2}}{2}.

    Do đó OO^{'} = C^{'}H =
\frac{3\sqrt{2}}{2}.

    Thể tích khối chóp cụt tứ giác đều ABCD.A^{'}B^{'}C^{'}D^{'} với chiều cao OO^{'} =
\frac{3\sqrt{2}}{2} và diện tích hai đáy S_{ABCD} = 25, S_{A'B'C'D'} =4 là:

    V_{ABCD \cdot A^{'}B^{'}C^{'}D^{'}} = \frac{1}{3} \cdot\frac{3\sqrt{2}}{2}(25 + \sqrt{25.4} + 4) = \frac{39\sqrt{2}}{2}\left({m}^{3} ight)

    Như vậy ta có thể tích của chân tháp đã cho bằng \frac{39\sqrt{2}}{2}\left( {m}^{3}ight).

    Vi chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng /m^{3} nên số tiền để mua bê tông tươi làm chân tháp là:

    \frac{39\sqrt{2}}{2}.1470000 \approx40538432 (đồng)

    Vậy số tiền để mua bê tông tươi làm chân tháp khoảng 40538432 đồng.

  • Câu 9: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 10: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=SB, SC=SD\left( {SAB} ight) \bot \left( {SCD} ight). Tổng diện tích hai tam giác SABSCD bằng \frac{{7{a^2}}}{{10}}. Tính thể tích V của khối chóp  S.ABCD?

     

    Gọi M, N lần lượt là trung điểm của ABCD.

    Tam giác SAB cân tại S suy ra SM \bot AB \Rightarrow SM \bot d với d = \left( {SAB} ight) \cap \left( {SCD} ight).

    \left( {SAB} ight) \bot \left( {SCD} ight) suy ra SM \bot \left( {SCD} ight) \Rightarrow SM \bot SN\left( {SMN} ight) \bot \left( {ABCD} ight)

    Kẻ SH \bot MN\xrightarrow{{}}SH \bot \left( {ABCD} ight).

    Ta có {S_{\Delta SAB}} + {S_{\Delta SCD}} = \frac{{7{a^2}}}{{10}}

    \Leftrightarrow \frac{1}{2}AB.SM + \frac{1}{2}CD.SN = \frac{{7{a^2}}}{{10}}\xrightarrow{{}}SM + SN = \frac{{7a}}{5}.

    Tam giác SMN vuông tại S nên S{M^2} + S{N^2} = M{N^2} = {a^2}

    Giải hệ:

    \left\{ \begin{gathered}  SM + SN = \frac{{7a}}{5} \hfill \\  S{M^2} + S{N^2} = {a^2} \hfill \\ \end{gathered}  ight.  \Leftrightarrow SM = \frac{{3a}}{5}{\text{ }} hoặc  SN = \frac{{4a}}{5}

    \xrightarrow{{}}SH = \frac{{SM.SN}}{{MN}} = \frac{{12a}}{{25}}

    Vậy thể tích khối chóp V_{S.ABCD} = \frac{1}{3}.{S_{ABCD}}.SH = \frac{{4{a^3}}}{{25}}.

  • Câu 12: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 13: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 14: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 15: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 16: Nhận biết

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 17: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 18: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 19: Vận dụng

    Số mặt phẳng đối xứng của hình tứ diện đều là:

    Các mặt phẳng đối xứng của hình tứ diện đều là các mặt phẳng chứa một cạnh và qua trung điểm cạnh đối diện.

    Mp đối xứng trong tứ diện đều

    Vậy hình tứ diện đều có 6 mặt phẳng đối xứng.

  • Câu 20: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB=a, BC = a\sqrt 3. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích V của khối chóp S.ABC.

     

    Gọi H là trung điểm của AB, suy ra SH \bot AB.

    Do \left( {SAB} ight) \bot \left( {ABC} ight) theo giao tuyến AB nên SH \bot (ABC).

    Tam giác SAB là đều cạnh AB=a  nên SH = \frac{{a\sqrt 3 }}{2}.

    Tam giác vuông ABC, có AC = \sqrt {B{C^2} - A{B^2}}  = a\sqrt 2.

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{{{a^2}\sqrt 2 }}{2}.

    Vậy {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{{{a^3}\sqrt 6 }}{{12}}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Khối đa diện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo