Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Cho hình chóp
có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Cho hình chóp đều
. Gọi
là trung điểm
,
là điểm đối xứng với
qua
. Mặt phẳng
chia khối chóp
thành hai phần có thể tích lần lượt là
với
. Tính tỉ số
.

Gọi lần lượt là chiều cao và diện tích đáy của khối chóp
. Khi đó
. Nối MN cắt SA tại E, MC cắt AD tại F. Tam giác
có A, N lần lượt là trung điểm của BM và SB.
Suy ra E là trọng tâm tam giác SBM.
Vì tứ giác là hình bình hành nên F là trung điểm MC.
Ta có . Xét tỉ số:
Mặt khác, áp dụng công thức tính thể tích khối chóp là:
Do đó
Suy ra .
Cho hình lăng trụ đứng
có đáy là hình vuông cạnh
. Tính thể tích
của khối lăng trụ đã cho theo
, biết
.

Do là lăng trụ đứng nên
.
Xét tam giác vuông , ta có
.
Diện tích hình vuông là
.
Vậy
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:

Khối đa diện đều loại là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Độ dốc của mái nhà (mặt sân, con đường thẳng…) là tang của góc tạo bởi mái nhà (mặt sân, con đường thẳng…) đó với mặt phẳng nằm ngang. Cho biết kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp tứ giác đều, biết rằng diện tích để lát tất cả các mặt của kim tự tháp bằng 80300 m2 và độ dốc của mặt bên kim tự tháp bằng
. Tính chiều cao của kim tự tháp. (Làm tròn đến hàng đơn vị)

Đáp án: 196
Độ dốc của mái nhà (mặt sân, con đường thẳng…) là tang của góc tạo bởi mái nhà (mặt sân, con đường thẳng…) đó với mặt phẳng nằm ngang. Cho biết kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp tứ giác đều, biết rằng diện tích để lát tất cả các mặt của kim tự tháp bằng 80300 m2 và độ dốc của mặt bên kim tự tháp bằng . Tính chiều cao của kim tự tháp. (Làm tròn đến hàng đơn vị)
Đáp án: 196
Hình vẽ minh họa
Mô hình hoá kim tự tháp bằng chóp tứ giác đều S.ABCD với O là tâm của đáy.
Kẻ .
Ta có góc tạo bởi mặt bên và mặt đáy của kim tự tháp là góc
Đặt
Diện tích tất cả các mặt của kim tự tháp là
Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?
Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).
Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

Cho hình chóp
có
và
. Tính thể tích
của khối chóp
.

Gọi là trung điểm của
Ta có đều
Tam giác , có
Tam giác , có
Tam giác , có
Ta có vuông tại
.
Từ (1) và (2) , ta có
Diện tích tam giác
Vậy thể tích khối chop .
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Cho các hình sau: 
Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho trùng với trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:
