Đề kiểm tra 15 phút Chương 1 Khối đa diện

Mô tả thêm: Bài kiểm tra 15 phút Khối đa diện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 2: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 3: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 4: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 5: Vận dụng cao

    Cho tứ diện có thể tích bằng V. Gọi V' là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số \frac{{V'}}{V}.

     

    Xét khối  tứ diện và các điểm được kí hiệu như hình vẽ trên, ta có:

    \frac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}} = \frac{1}{8} \Rightarrow {V_{S.A'B'C'}} = \frac{V}{8}

    Tương tự \,{V_{A.A'MP}} = {V_{B.B'MN}} = {V_{C.C'NP}} = \frac{V}{8}.

    Do đó \,\,V' = {V_{S.ABC}} - \left( {{V_{S.A'B'C'}} + {V_{A.A'MP}} + {V_{B.B'MN}} + {V_{C.C'NP}}} ight)

    = \,\,V - \left( {\frac{V}{8} + \frac{V}{8} + \frac{V}{8} + \frac{V}{8}} ight) = \frac{V}{2}\,\, \Rightarrow \,\,\frac{{V'}}{V} = \frac{1}{2}.

  • Câu 6: Thông hiểu

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

  • Câu 7: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 8: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 9: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 10: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 11: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 12: Vận dụng

    Gọi {n_1},{m{ }}{n_2},{m{ }}{n_3} lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng? 

    Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).

    Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).

    Khối lập phương có 9 trục đối xứng

    (Loại 1: đi qua tâm của các mặt đối diện ;

    Loại 2: đi qua trung điểm các cặp cạnh đối diện).

  • Câu 13: Vận dụng

    Cho tứ diện ABCD có thể tích V. Gọi V' là thể tích của khối tứ diện có các đỉnh là trọng tâm của các mặt của khối tứ diện ABCD. Tính tỉ số \frac{{V'}}{V}.

     

    Gọi M là trung điểm AC; E và F lần lượt là trọng tâm của tam giác ABC, ACD.

    Trong tam giác MBD có EF = \frac{1}{3}BD.

    Tương tự ta có các cạnh còn lại của tứ diện mới sinh ra bằng \frac{1}{3} cạnh của tứ diện ban đầu.

    Do đó \frac{{V'}}{V} = {\left( {\frac{1}{3}} ight)^3} = \frac{1}{{27}}.

  • Câu 14: Vận dụng cao

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều. Cạnh đáy dưới dài 5 m, cạnh đáy trên dài 2 m, cạnh bên dài 3 m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1 470 000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị chục nghìn.

    Đáp án: 4054 (chục nghìn)

    Đáp án là:

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều. Cạnh đáy dưới dài 5 m, cạnh đáy trên dài 2 m, cạnh bên dài 3 m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1 470 000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị chục nghìn.

    Đáp án: 4054 (chục nghìn)

    Hình vẽ minh họa

    Mô hình hóa chân tháp của bài toán bằng khối chóp cụt tứ giác đều ABCD.A^{'}B^{'}C^{'}D^{'}, với O,O^{'} lần lượt là tâm của hai đáy ABCDA^{'}B^{'}C^{'}D^{'}.

    Như vậy ta có:

    ABCD là hình vuông cạnh 5 có diện tích S_{ABCD} = 5^{2} =
25;

    A^{'}B^{'}C^{'}D^{'} là hình vuông cạnh 2 có diện tích S_{A^{'}B^{'}C^{'}D^{'}} = 2^{2} =
4;

    Các cạnh bên A^{'}A,B^{'}B,C^{'}C,D^{'}D có độ dài bằng 3;

    {OO}^{'} vuông góc với ( ABCD ) và ( \left. \ A^{'}B^{'}C^{'}D^{'}
ight).

    Do ABCD là hình vuông nên \widehat{ABC} =90^{\circ}, do đó tam giác ABC vuông tại B.

    Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:

    AC^{2} = AB^{2} + BC^{2} = 5^{2} + 5^{2}= 50

    Suy ra AC = 5\sqrt{2}.
    Do đó CO = \frac{AC}{2} =\frac{5\sqrt{2}}{2} (do 0 là tâm hình vuông ABCD ).

    Do A^{'}B^{'}C^{'}D^{'} là hình vuông nên \widehat{A^{'}B^{'}C^{'}} =
90^{\circ}, do đó tam giác A^{'}B^{'}C^{'} vuông tại B^{'}.

    Áp dụng định lí Pythagore trong tam giác A^{'}B^{'}C^{'} vuông tại B^{'} có:

    A^{'}C^{'2} = A^{'}B^{'2}
+ B^{'}C^{'2} = 2^{2} + 2^{2} = 8.

    Suy ra A^{'}C^{'} =
2\sqrt{2}.

    Do đó C^{'}O^{'} =
\frac{A^{'}C^{'}}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2} (do O^{'} là tâm hình vuông A^{'}B^{'}C^{'}D^{'} ).

    Dễ thấy: (ABCD) \cap \left(
A^{'}C^{'}CA ight) = AC; \left( A^{'}B^{'}C^{'}D^{'}
ight) \cap \left( A^{'}C^{'}CA ight) =
A^{'}C^{'}.

    Mà ( ABCD ) // ( \left. \ A^{'}B^{'}C^{'}D^{'}
ight).

    Suy ra AC//A^{'}C^{'} hay A^{'}C^{'}CA là hình thang.

    Xét hình thang A^{'}C^{'}CA, kẻ C^{'}H\bot AC(H \in AC).

    00^{'}\bot(ABCD)AC \subset (ABCD) nên 00^{'}\bot AC.

    Do đó C^{'}H//{OO}^{'} (cùng vuông góc với AC).

    O^{'}C^{'}//OH (do A^{'}C^{'}//AC )

    Suy ra O^{'}C^{'}HO là hình bình hành.

    Do đó: 0O^{'} = C^{'}HOH = C^{'}O^{'} =
\sqrt{2}.

    Suy ra HC = OC - OH = \frac{5\sqrt{2}}{2}
- \sqrt{2} = \frac{3\sqrt{2}}{2}.

    Áp dụng định lí Pythagore trong tam giác C^{'}HC vuông tại H( do \left.
\ C^{'}H\bot AC ight) có:

    C^{'}C^{2} = C^{'}H^{2} +
{HC}^{2}

    Suy ra C^{'}H = \sqrt{C^{'}C^{2}
- HC^{2}} = \sqrt{3^{2} - \left( \frac{3\sqrt{2}}{2} ight)^{2}} =
\frac{3\sqrt{2}}{2}.

    Do đó OO^{'} = C^{'}H =
\frac{3\sqrt{2}}{2}.

    Thể tích khối chóp cụt tứ giác đều ABCD.A^{'}B^{'}C^{'}D^{'} với chiều cao OO^{'} =
\frac{3\sqrt{2}}{2} và diện tích hai đáy S_{ABCD} = 25, S_{A'B'C'D'} =4 là:

    V_{ABCD \cdot A^{'}B^{'}C^{'}D^{'}} = \frac{1}{3} \cdot\frac{3\sqrt{2}}{2}(25 + \sqrt{25.4} + 4) = \frac{39\sqrt{2}}{2}\left({m}^{3} ight)

    Như vậy ta có thể tích của chân tháp đã cho bằng \frac{39\sqrt{2}}{2}\left( {m}^{3}ight).

    Vi chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng /m^{3} nên số tiền để mua bê tông tươi làm chân tháp là:

    \frac{39\sqrt{2}}{2}.1470000 \approx40538432 (đồng)

    Vậy số tiền để mua bê tông tươi làm chân tháp khoảng 40538432 đồng.

  • Câu 15: Vận dụng

    Cho khối đa diện đều loại \{ 3; 4 \}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?

     Khối đa diện đều loại \{ 3; 4 \} là khối bát diện đều.

    Mỗi đỉnh là đỉnh chung của 4 mặt.

    Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng 60^∘⋅4=240^∘.

  • Câu 16: Nhận biết

    Cho hình chóp tam giác đều S.ABC. Mặt bên SBC là tam giác gì?

    Hình chóp tam giác đều có các mặt bên là các tam giác cân.

  • Câu 17: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 18: Nhận biết

    Cho lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác với AB = a,AC = 2a,\widehat {BAC} = {120^0},AA' = 2a\sqrt 5. Tính thể tích Vcủa khối lăng trụ đã cho.

     

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{{{a^2}\sqrt 3 }}{2}.

    Vậy thể tích khối lăng trụ {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = {a^3}\sqrt {15}

  • Câu 19: Nhận biết

    Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là 10{\text{c}}{{\text{m}}^2},\,\,20{\text{c}}{{\text{m}}^2},\,\,32{\text{c}}{{\text{m}}^2}. Tính thể tích V của hình hộp chữ nhật đã cho.

     

    Xét hình hộp chữ nhật ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật.

    Theo bài ra, ta có \left\{ \begin{gathered}  {S_{ABCD}} = 10\,{\text{c}}{{\text{m}}^{\text{2}}} \hfill \\  {S_{ABB'A'}} = 20\,{\text{c}}{{\text{m}}^2} \hfill \\  {S_{ADD'A'}} = 30\,{\text{c}}{{\text{m}}^2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  AB.AD = 10 \hfill \\  AB.AA' = 20 \hfill \\  AA'.AD = 32 \hfill \\ \end{gathered}  ight.

    Nhân vế theo vế, ta được {\left( {AA'.AB.AD} ight)^2} = 6400 \Rightarrow AA'.AB.AD = 80.

    Vậy  {V_{ABCD.A'B'C'D'}} = AA'.AB.AD = 80\,{\text{c}}{{\text{m}}^{\text{3}}}.

  • Câu 20: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Khối đa diện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo