Tính thể tích
của khối lăng trụ tam giác đều có tất cả các cạnh bằng
?
Xét khối lăng trụ tam giác đều có tất cả các cạnh bằng
.
Tính thể tích
của khối lăng trụ tam giác đều có tất cả các cạnh bằng
?
Xét khối lăng trụ tam giác đều có tất cả các cạnh bằng
.
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Tổng độ dài của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Khối mười hai mặt đều có tất cả 30 cạnh:

Suy ra ta có tổng độ dài tất cả các cạnh bằng .
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Cho khối chóp
có đáy
là hình vuông cạnh
, tam giác
cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy,
. Tính theo
thể tích của khối chóp
.

Gọi là trung điểm của
. Tam giác
cân tại
và có
là trung điểm
nên
. Do
theo giao tuyến
nên
.
Tam giác vuông , có:
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Cho hình chóp tứ giác đều
có đáy
là hình vuông tâm
, cạnh
. Mặt bên tạo với đáy góc
. Gọi
là hình chiếu vuông góc của
trên
. Tính theo
thể tích
của khối tứ diện
.

Gọi là trung điểm
, suy ra
nên
.
Tam giác vuông , có
.
Kẻ nên
.
Tam giác vuông , ta có
Diện tích tam giác .
Vậy .
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng là?
Diện tích 1 mặt của tứ diện đều là diện tích của 1 tam giác đều cạnh a là:
Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng:
Cho hình chóp tam giác đều
. Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Cho hình chóp đều
. Gọi
là trung điểm
,
là điểm đối xứng với
qua
. Mặt phẳng
chia khối chóp
thành hai phần có thể tích lần lượt là
với
. Tính tỉ số
.

Gọi lần lượt là chiều cao và diện tích đáy của khối chóp
. Khi đó
. Nối MN cắt SA tại E, MC cắt AD tại F. Tam giác
có A, N lần lượt là trung điểm của BM và SB.
Suy ra E là trọng tâm tam giác SBM.
Vì tứ giác là hình bình hành nên F là trung điểm MC.
Ta có . Xét tỉ số:
Mặt khác, áp dụng công thức tính thể tích khối chóp là:
Do đó
Suy ra .
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Mặt phẳng đi qua trọng tâm của tứ diện, song song với một mặt phẳng của tứ diện và chia khối tứ diện thành hai phần. Tính tỉ số thể tích (phần bé chia phần lớn) của hai phần đó.

Gọi lần lượt là trung điểm của các cạnh
khi đó
là trọng tâm của tứ diện
. Ta sẽ dựng mặt phẳng qua
song song với
.
Trong mặt phẳng dựng đường thẳng qua
song song với
cắt
lần lượt tại
.
Qua lần lượt kẻ các đường thẳng lần lượt song song với
cắt
lần lượt tại
.
Do là trung điểm của
suy ra
Ta có
Cho lăng trụ đứng
có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.

Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.