Đề kiểm tra 15 phút Chương 1 Khối đa diện

Mô tả thêm: Bài kiểm tra 15 phút Khối đa diện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 2: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 3: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 4: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 5: Nhận biết

    Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ đã cho theo a, biết A'B=3a.

     

    Do ABCD.A'B'C'D'là lăng trụ đứng nên AA' \bot AB.

    Xét tam giác vuông A'AB, ta có A'A = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 5.

    Diện tích hình vuông ABCD{S_{ABCD}} = A{B^2} = 4{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'A = 4\sqrt 5 {a^3}

  • Câu 6: Vận dụng

    Cho khối đa diện đều loại \{ 3; 4 \}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?

     Khối đa diện đều loại \{ 3; 4 \} là khối bát diện đều.

    Mỗi đỉnh là đỉnh chung của 4 mặt.

    Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng 60^∘⋅4=240^∘.

  • Câu 7: Nhận biết

    Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là 10{\text{c}}{{\text{m}}^2},\,\,20{\text{c}}{{\text{m}}^2},\,\,32{\text{c}}{{\text{m}}^2}. Tính thể tích V của hình hộp chữ nhật đã cho.

     

    Xét hình hộp chữ nhật ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật.

    Theo bài ra, ta có \left\{ \begin{gathered}  {S_{ABCD}} = 10\,{\text{c}}{{\text{m}}^{\text{2}}} \hfill \\  {S_{ABB'A'}} = 20\,{\text{c}}{{\text{m}}^2} \hfill \\  {S_{ADD'A'}} = 30\,{\text{c}}{{\text{m}}^2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  AB.AD = 10 \hfill \\  AB.AA' = 20 \hfill \\  AA'.AD = 32 \hfill \\ \end{gathered}  ight.

    Nhân vế theo vế, ta được {\left( {AA'.AB.AD} ight)^2} = 6400 \Rightarrow AA'.AB.AD = 80.

    Vậy  {V_{ABCD.A'B'C'D'}} = AA'.AB.AD = 80\,{\text{c}}{{\text{m}}^{\text{3}}}.

  • Câu 8: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi MN lần lượt là trung điểm của các cạnh ABAD; H là giao điểm của CNDM. Biết SH vuông góc với mặt phẳng (ABCD)SH =a \sqrt 3. Tính thể tích khối chóp S.CDNM.

     

    Theo giả thiết, ta có SH = a\sqrt 3.

    Diện tích tứ giác:

    {S_{CDNM}} = {S_{ABCD}} - {S_{\Delta AMN}} - {S_{\Delta BMC}}

    = A{B^2} - \frac{1}{2}AM.AN - \frac{1}{2}BM.BC = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}

    Vậy  {V_{S.CDNM}} = \frac{1}{3}{S_{CDNM}}.SH = \frac{{5{a^3}\sqrt 3 }}{{24}}.

  • Câu 10: Vận dụng cao

    Cho hình hộp chữ nhật có đường chéo d = \sqrt {21}. Độ dài ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân có công bội q=2. Thể tích của khối hộp chữ nhật là?

    Xét hình hộp chữ nhật ABCD.A'B'C'D'có độ dài kích thước ba cạnh lần lượt là AA' = a,\,\,AB = b,\,\,AD = c và có đường chéo AC'.

    Theo bài ra, ta có a, b, c lập thành cấp số nhân có công bội q=2. Suy ra:

    \left\{ \begin{gathered}  b = 2a \hfill \\  c = 4a \hfill \\ \end{gathered}  ight.

    Mặt khác, độ dài đường chéo AC' = \sqrt {21}

    \Rightarrow A{A'^2} + A{B^2} + A{D^2} = 21\Leftrightarrow {a^2} + {b^2} + {c^2} = 21

    Ta có hệ:

    \left\{ \begin{gathered}  c = 2b = 4a \hfill \\  {a^2} + {b^2} + {c^2} = 21 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  c = 2b = 4a \hfill \\  {a^2} + {\left( {2a} ight)^2} + {\left( {4a} ight)^2} = 21 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  c = 2b = 4a \hfill \\  21{a^2} = 21 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = 1 \hfill \\  b = 2 \hfill \\  c = 4 \hfill \\ \end{gathered}  ight.

    Vậy thể tích khối hộp chữ nhật ABCD.A'B'C'D'là:

    {V_{ABCD.A'B'C'D'}} = AA'.AB.AD = abc = 8

  • Câu 11: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'có thể tích bằng 60 \,\text{cm}^3, các điểm M, N, P lần lượt thuộc các cạnh AA',BB',CC' sao cho AM = 2MA',BN = 3NB',CP = 4PC'. Thể tích của khối đa diện BC.MNP là bao nhiêu? (Đơn vị: cm^3)

    31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối

    Đáp án là:

    Cho khối lăng trụ ABC.A'B'C'có thể tích bằng 60 \,\text{cm}^3, các điểm M, N, P lần lượt thuộc các cạnh AA',BB',CC' sao cho AM = 2MA',BN = 3NB',CP = 4PC'. Thể tích của khối đa diện BC.MNP là bao nhiêu? (Đơn vị: cm^3)

    31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối

     

    Ta có   MA = 2MA' \Rightarrow \frac{{AM}}{{AA'}} = \frac{2}{3};

               BN = 3NB' \Rightarrow \frac{{BN}}{{BB'}} = \frac{3}{4};

               CP = 4PC' \Rightarrow \frac{{CP}}{{CC'}} = \frac{4}{5}

    Nên \dfrac{{{V_{ABCMNP}}}}{{{V_{ABCA'B'C'}}}} = \frac{{\dfrac{2}{3} + \dfrac{3}{4} + \dfrac{4}{5}}}{3} = \dfrac{{133}}{{180}} \Rightarrow {V_{ABCMNP}} = \dfrac{{133}}{{180}}.60 = \dfrac{{133}}{3}

    Mà  {V_{M.ABC}} = \frac{1}{3}d\left( {M;\left( {ABC} ight)} ight).{S_{ABC}}

         = \frac{1}{3}.\frac{2}{3}d\left( {A';\left( {ABC} ight)} ight).{S_{ABC}} = \frac{2}{9}.{V_{ABC.A'B'C'}} = \frac{{40}}{3}.

    Vậy {V_{BCMNP}} = \frac{{133}}{3} - \frac{{40}}{3} = 31\left( {c{m^3}} ight).

  • Câu 12: Vận dụng

    Tính thể tích V của một khối lăng trụ biết đáy có diện tích S = 10\,{\text{c}}{{\text{m}}^2}, cạnh bên tạo với mặt phẳng đáy một góc 60^0và độ dài cạnh bên bằng 10 cm.

     

    Xét khối lăng trụ ABC.A'B'C'có đáy là tam giác ABC.

    Gọi H là hình chiếu của A' trên mặt phẳng (ABC) \Rightarrow A'H \bot \left( {ABC} ight).

    Suy ra AH là hình chiếu của AA' trên mặt phẳng (ABC).

    Do đó {60^0} = \,\,\widehat {AA',\left( {ABC} ight)} = \widehat {\left( {AA',AH} ight)} = \widehat {A'AH}

    Tam giác A'AH vuông tại H, có A'H = AA'.\sin \widehat {A'AH} = 5\sqrt 3.

    Vậy V = {S_{\Delta ABC}}.A'H = 50\sqrt 3 \,{\text{c}}{{\text{m}}^3}.

  • Câu 13: Thông hiểu

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

  • Câu 14: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 15: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 16: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 17: Nhận biết

    Cho các hình sau:Tìm hình không phải đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0,S_1,...\;,S_n sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt S_i,\;S_{i+1} nào (0\leq i\leq n-1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 18: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 19: Vận dụng

    Một hình hộp đứng có đáy là hình thoi (không phải là hình vuông) có bao nhiêu mặt phẳng đối xứng?

    Hình hộp đứng có đáy là hình thoi (không phải là hình chữ nhật) có 3 mặt phẳng đối xứng bao gồm:

    Hình hộp đứng

    - Hai mặt phẳng chứa đường chéo của đáy và vuông góc với đáy.

    - Một mặt phẳng là mặt phẳng trung trực của cạnh bên.

  • Câu 20: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Khối đa diện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo