Đề kiểm tra 15 phút Chương 1 Khối đa diện

Mô tả thêm: Bài kiểm tra 15 phút Khối đa diện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình lăng trụ ABC.A'B'C'có đáy là tam giác đều cạnh có độ dài bằng 2. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Góc tạo bởi cạnh bên AA' với mặt đáy là 45^0. Tính thể tích khối trụ  ABC.A'B'C'.

    3 || Ba || ba || V=3

    Đáp án là:

    Cho hình lăng trụ ABC.A'B'C'có đáy là tam giác đều cạnh có độ dài bằng 2. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Góc tạo bởi cạnh bên AA' với mặt đáy là 45^0. Tính thể tích khối trụ  ABC.A'B'C'.

    3 || Ba || ba || V=3

     

    Tam giác đều ABC cạnh bằng 2 nên AH = \sqrt 3.

    A'H \bot \left( {ABC} ight) nên hình chiếu vuông góc của AA' trên mặt đáy (ABC) là AH. 

    Do đó {45^0} = \widehat {AA',\left( {ABC} ight)} = \widehat {AA',AH} = \widehat {A'AH}.

    Suy ra tam giác A'HA vuông cân tại H nên A'H = HA = \sqrt 3.

    Diện tích tam giác đều ABC là {S_{\Delta ABC}} = \sqrt 3.

    Vậy V = {S_{\Delta ABC}}.A'H = 3.

  • Câu 2: Vận dụng

    Số mặt phẳng đối xứng của hình tứ diện đều là:

    Các mặt phẳng đối xứng của hình tứ diện đều là các mặt phẳng chứa một cạnh và qua trung điểm cạnh đối diện.

    Mp đối xứng trong tứ diện đều

    Vậy hình tứ diện đều có 6 mặt phẳng đối xứng.

  • Câu 3: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 4: Nhận biết

    Vật thể nào trong các vật thể sau không phải là khối đa diện?

    Vì đáp án đã vi phạm tính chất sau: 

    Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác

  • Câu 5: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 6: Vận dụng cao

    Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất {V_{\min }} của khối tứ diện SAMN.

    Gọi E là trung điểm của BC.

    Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

    Theo định lí Talet, ta có:

    \left\{ \begin{gathered}  \frac{{AB}}{{AM}} = \frac{{AP}}{{AG}} \hfill \\  \frac{{AC}}{{AN}} = \frac{{AQ}}{{AG}} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{AP}}{{AG}} + \frac{{AQ}}{{AG}} = \frac{{AP + AQ}}{{AG}}

    Mặt khác \Delta BPE = \Delta CQE\xrightarrow{{}}PE = QE\,

    \Rightarrow \,\,AP + AQ = \left( {AE - PE} ight) + \left( {AE + QE} ight) = 2AE

    Do đó \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{2AE}}{{AG}} = 2.\frac{3}{2} = 3 \Rightarrow \frac{1}{{AM}} + \frac{1}{{AN}} = 3.

    Đặt \left\{ \begin{gathered}  AM = x \hfill \\  AN = y \hfill \\ \end{gathered}  ight. \Rightarrow \frac{1}{x} + \frac{1}{y} = 3

    SABC là tứ diện đều \Rightarrow \,\,SG \bot \left( {ABC} ight)  và SG = \frac{{\sqrt 2 }}{{\sqrt 3 }}

    Do đó   {V_{SAMN}} = \frac{1}{3}{S_{\Delta AMN}}.SG

    = \frac{1}{3}\left( {\frac{1}{2}AM.AN\sin {{60}^0}} ight).SG

    = \frac{{\sqrt 2 }}{{12}}AM.AN = \frac{{\sqrt 2 }}{{12}}xy

    Ta có 3 = \frac{1}{x} + \frac{1}{y} \geqslant \frac{2}{{\sqrt {xy} }}

    \Leftrightarrow \sqrt {xy}  \geqslant \frac{2}{3} \Leftrightarrow xy \geqslant \frac{4}{9}

    \Rightarrow {V_{\min }} = \frac{{\sqrt 2 }}{{27}}

  • Câu 7: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 8: Vận dụng cao

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều. Cạnh đáy dưới dài 5 m, cạnh đáy trên dài 2 m, cạnh bên dài 3 m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1 470 000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị chục nghìn.

    Đáp án: 4054 (chục nghìn)

    Đáp án là:

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều. Cạnh đáy dưới dài 5 m, cạnh đáy trên dài 2 m, cạnh bên dài 3 m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1 470 000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị chục nghìn.

    Đáp án: 4054 (chục nghìn)

    Hình vẽ minh họa

    Mô hình hóa chân tháp của bài toán bằng khối chóp cụt tứ giác đều ABCD.A^{'}B^{'}C^{'}D^{'}, với O,O^{'} lần lượt là tâm của hai đáy ABCDA^{'}B^{'}C^{'}D^{'}.

    Như vậy ta có:

    ABCD là hình vuông cạnh 5 có diện tích S_{ABCD} = 5^{2} =
25;

    A^{'}B^{'}C^{'}D^{'} là hình vuông cạnh 2 có diện tích S_{A^{'}B^{'}C^{'}D^{'}} = 2^{2} =
4;

    Các cạnh bên A^{'}A,B^{'}B,C^{'}C,D^{'}D có độ dài bằng 3;

    {OO}^{'} vuông góc với ( ABCD ) và ( \left. \ A^{'}B^{'}C^{'}D^{'}
ight).

    Do ABCD là hình vuông nên \widehat{ABC} =90^{\circ}, do đó tam giác ABC vuông tại B.

    Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:

    AC^{2} = AB^{2} + BC^{2} = 5^{2} + 5^{2}= 50

    Suy ra AC = 5\sqrt{2}.
    Do đó CO = \frac{AC}{2} =\frac{5\sqrt{2}}{2} (do 0 là tâm hình vuông ABCD ).

    Do A^{'}B^{'}C^{'}D^{'} là hình vuông nên \widehat{A^{'}B^{'}C^{'}} =
90^{\circ}, do đó tam giác A^{'}B^{'}C^{'} vuông tại B^{'}.

    Áp dụng định lí Pythagore trong tam giác A^{'}B^{'}C^{'} vuông tại B^{'} có:

    A^{'}C^{'2} = A^{'}B^{'2}
+ B^{'}C^{'2} = 2^{2} + 2^{2} = 8.

    Suy ra A^{'}C^{'} =
2\sqrt{2}.

    Do đó C^{'}O^{'} =
\frac{A^{'}C^{'}}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2} (do O^{'} là tâm hình vuông A^{'}B^{'}C^{'}D^{'} ).

    Dễ thấy: (ABCD) \cap \left(
A^{'}C^{'}CA ight) = AC; \left( A^{'}B^{'}C^{'}D^{'}
ight) \cap \left( A^{'}C^{'}CA ight) =
A^{'}C^{'}.

    Mà ( ABCD ) // ( \left. \ A^{'}B^{'}C^{'}D^{'}
ight).

    Suy ra AC//A^{'}C^{'} hay A^{'}C^{'}CA là hình thang.

    Xét hình thang A^{'}C^{'}CA, kẻ C^{'}H\bot AC(H \in AC).

    00^{'}\bot(ABCD)AC \subset (ABCD) nên 00^{'}\bot AC.

    Do đó C^{'}H//{OO}^{'} (cùng vuông góc với AC).

    O^{'}C^{'}//OH (do A^{'}C^{'}//AC )

    Suy ra O^{'}C^{'}HO là hình bình hành.

    Do đó: 0O^{'} = C^{'}HOH = C^{'}O^{'} =
\sqrt{2}.

    Suy ra HC = OC - OH = \frac{5\sqrt{2}}{2}
- \sqrt{2} = \frac{3\sqrt{2}}{2}.

    Áp dụng định lí Pythagore trong tam giác C^{'}HC vuông tại H( do \left.
\ C^{'}H\bot AC ight) có:

    C^{'}C^{2} = C^{'}H^{2} +
{HC}^{2}

    Suy ra C^{'}H = \sqrt{C^{'}C^{2}
- HC^{2}} = \sqrt{3^{2} - \left( \frac{3\sqrt{2}}{2} ight)^{2}} =
\frac{3\sqrt{2}}{2}.

    Do đó OO^{'} = C^{'}H =
\frac{3\sqrt{2}}{2}.

    Thể tích khối chóp cụt tứ giác đều ABCD.A^{'}B^{'}C^{'}D^{'} với chiều cao OO^{'} =
\frac{3\sqrt{2}}{2} và diện tích hai đáy S_{ABCD} = 25, S_{A'B'C'D'} =4 là:

    V_{ABCD \cdot A^{'}B^{'}C^{'}D^{'}} = \frac{1}{3} \cdot\frac{3\sqrt{2}}{2}(25 + \sqrt{25.4} + 4) = \frac{39\sqrt{2}}{2}\left({m}^{3} ight)

    Như vậy ta có thể tích của chân tháp đã cho bằng \frac{39\sqrt{2}}{2}\left( {m}^{3}ight).

    Vi chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng /m^{3} nên số tiền để mua bê tông tươi làm chân tháp là:

    \frac{39\sqrt{2}}{2}.1470000 \approx40538432 (đồng)

    Vậy số tiền để mua bê tông tươi làm chân tháp khoảng 40538432 đồng.

  • Câu 9: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 10: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 12: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 13: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 14: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 15: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 16: Nhận biết

    Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là 10{\text{c}}{{\text{m}}^2},\,\,20{\text{c}}{{\text{m}}^2},\,\,32{\text{c}}{{\text{m}}^2}. Tính thể tích V của hình hộp chữ nhật đã cho.

     

    Xét hình hộp chữ nhật ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật.

    Theo bài ra, ta có \left\{ \begin{gathered}  {S_{ABCD}} = 10\,{\text{c}}{{\text{m}}^{\text{2}}} \hfill \\  {S_{ABB'A'}} = 20\,{\text{c}}{{\text{m}}^2} \hfill \\  {S_{ADD'A'}} = 30\,{\text{c}}{{\text{m}}^2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  AB.AD = 10 \hfill \\  AB.AA' = 20 \hfill \\  AA'.AD = 32 \hfill \\ \end{gathered}  ight.

    Nhân vế theo vế, ta được {\left( {AA'.AB.AD} ight)^2} = 6400 \Rightarrow AA'.AB.AD = 80.

    Vậy  {V_{ABCD.A'B'C'D'}} = AA'.AB.AD = 80\,{\text{c}}{{\text{m}}^{\text{3}}}.

  • Câu 17: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 18: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 19: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 20: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Khối đa diện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo