Đề kiểm tra 15 phút Chương 1 Khối đa diện

Mô tả thêm: Bài kiểm tra 15 phút Khối đa diện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

  • Câu 2: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi MN lần lượt là trung điểm của các cạnh ABAD; H là giao điểm của CNDM. Biết SH vuông góc với mặt phẳng (ABCD)SH =a \sqrt 3. Tính thể tích khối chóp S.CDNM.

     

    Theo giả thiết, ta có SH = a\sqrt 3.

    Diện tích tứ giác:

    {S_{CDNM}} = {S_{ABCD}} - {S_{\Delta AMN}} - {S_{\Delta BMC}}

    = A{B^2} - \frac{1}{2}AM.AN - \frac{1}{2}BM.BC = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}

    Vậy  {V_{S.CDNM}} = \frac{1}{3}{S_{CDNM}}.SH = \frac{{5{a^3}\sqrt 3 }}{{24}}.

  • Câu 4: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 5: Nhận biết

    Cho các hình sau:Tìm hình không phải đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0,S_1,...\;,S_n sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt S_i,\;S_{i+1} nào (0\leq i\leq n-1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 6: Vận dụng

    Gọi {n_1},{m{ }}{n_2},{m{ }}{n_3} lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng? 

    Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).

    Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).

    Khối lập phương có 9 trục đối xứng

    (Loại 1: đi qua tâm của các mặt đối diện ;

    Loại 2: đi qua trung điểm các cặp cạnh đối diện).

  • Câu 7: Nhận biết

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 8: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 9: Vận dụng cao

    Độ dốc của mái nhà (mặt sân, con đường thẳng…) là tang của góc tạo bởi mái nhà (mặt sân, con đường thẳng…) đó với mặt phẳng nằm ngang. Cho biết kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp tứ giác đều, biết rằng diện tích để lát tất cả các mặt của kim tự tháp bằng 80300 m2 và độ dốc của mặt bên kim tự tháp bằng \frac{49}{45}. Tính chiều cao của kim tự tháp. (Làm tròn đến hàng đơn vị)

    Đáp án: 196

    Đáp án là:

    Độ dốc của mái nhà (mặt sân, con đường thẳng…) là tang của góc tạo bởi mái nhà (mặt sân, con đường thẳng…) đó với mặt phẳng nằm ngang. Cho biết kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp tứ giác đều, biết rằng diện tích để lát tất cả các mặt của kim tự tháp bằng 80300 m2 và độ dốc của mặt bên kim tự tháp bằng \frac{49}{45}. Tính chiều cao của kim tự tháp. (Làm tròn đến hàng đơn vị)

    Đáp án: 196

    Hình vẽ minh họa

    Mô hình hoá kim tự tháp bằng chóp tứ giác đều S.ABCD với O là tâm của đáy.

    Kẻ OM\bot BC.

    Ta có góc tạo bởi mặt bên và mặt đáy của kim tự tháp là góc \widehat{SMO}

    \Rightarrow \tan\widehat{SMO} =
\frac{49}{45} = \frac{SO}{OM}

    Đặt \left\{ \begin{matrix}
SO = 49x \\
OM = 45x \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
SM = \sqrt{SO^{2} + OM^{2}} = \sqrt{4426}x \\
AB = 2OM = 90x \\
\end{matrix} ight.

    Diện tích tất cả các mặt của kim tự tháp là

    S = 4S_{\Delta SBC} +
S_{ABCD}

    \Leftrightarrow 4.\frac{1}{2}SM.BC +
AB^{2} = 80300

    \Leftrightarrow 2x\sqrt{4426}.90x +
(90x)^{2} = 80300

    \Rightarrow SO = 49x \approx
196m

  • Câu 10: Vận dụng cao

    Mặt phẳng đi qua trọng tâm của tứ diện, song song với một mặt phẳng của tứ diện và chia khối tứ diện thành hai phần. Tính tỉ số thể tích (phần bé chia phần lớn) của hai phần đó. 

     

    Gọi E,{\text{ }}F,{\text{ }}I lần lượt là trung điểm của các cạnh AC,{\text{ }}BD,{\text{ }}EF khi đó I là trọng tâm của tứ diện ABCD. Ta sẽ dựng mặt phẳng qua I song song với (BCD).

    Trong mặt phẳng (EBD) dựng đường thẳng qua I song song với BD cắt FB,{\text{ }}FD lần lượt tại M, N.

    Qua M, N lần lượt kẻ các đường thẳng lần lượt song song với BC,{\text{ }}CD cắt AB,{\text{ }}AC,{\text{ }}AD lần lượt tại P,{\text{ }}Q,{\text{ }}J.

    Do Q là trung điểm của EC \Rightarrow \frac{{AQ}}{{AC}} = \frac{3}{4}, suy ra \frac{{AP}}{{AB}} = \frac{{AJ}}{{AD}} = \frac{{AQ}}{{AC}} = \frac{3}{4}.

    Ta có \frac{{{V_{A.PQJ}}}}{{{V_{A.BCD}}}} = \frac{{AP}}{{AB}}.\frac{{AQ}}{{AC}}.\frac{{AJ}}{{AD}} = \frac{3}{4}.\frac{3}{4}.\frac{3}{4} = \frac{{27}}{{64}}

    \Rightarrow \frac{{{V_{A.PQJ}}}}{{{V_{PQJBCD}}}} = \frac{{27}}{{37}}

  • Câu 11: Vận dụng

    Cho hình lăng trụ tam giác ABC có đáy ABC là tam giác vuông cân tại A, cạnh AC = 2\sqrt 2. Biết AC' tạo với mặt phẳng (ABC) một góc 60^0AC'=4. Tính thể tích V của khối đa diện ABCB'C'

     

    Gọi H là hình chiếu của C' trên mặt phẳng (ABC).

    Suy ra AH là hình chiếu của AC' trên mặt phẳng (ABC).

    Do đó {60^0} = \widehat {AC',\left( {ABC} ight)} = \widehat {\left( {AC',AH} ight)} = \widehat {HAC'}

    Tam giác vuông AHC', có  C'H = AC'.\sin \widehat {HAC'} = 2\sqrt 3

    Thể tích khối lăng trụ {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.C'H = 8\sqrt 3

    Suy ra thể tích cần tính là:

     {V_{ABCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}} = \frac{{16\sqrt 3 }}{3}.

  • Câu 12: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 13: Nhận biết

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, SA=2a. Tính theo a thể tích của khối chóp S.ABCD.

     

    Gọi I là trung điểm của AB. Tam giác SAB cân tại S và có I là trung điểm AB nên SI \bot AB. Do (SAB) \bot (ABCD) theo giao tuyến AB nên SI \bot (ABCD).

    Tam giác vuông SIA, có:

    SI = \sqrt {S{A^2} - I{A^2}}  = \sqrt {S{A^2} - {{\left( {\frac{{AB}}{2}} ight)}^2}}  = \frac{{a\sqrt {15} }}{2}

  • Câu 14: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 15: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 16: Nhận biết

    Trong các hình dưới đây hình nào không phải khối đa diện lồi?

     

    Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.

  • Câu 17: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 18: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 19: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 20: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Khối đa diện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo