Đề kiểm tra 15 phút Chương 1 Khối đa diện

Mô tả thêm: Bài kiểm tra 15 phút Khối đa diện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 2: Thông hiểu

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

  • Câu 3: Vận dụng cao

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

    Đáp án: 40538432

    Đáp án là:

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

    Đáp án: 40538432

    Hình vẽ minh họa:

    Mô hình hoá chân tháp bằng cụt chóp tứ giác đều ABCD.A′B′C′D′ với O, O′ là tâm của hai đáy.

    Vậy AB = 5,A'B' = 2,CC' =
3.

    ABCD là hình vuông

    \Rightarrow AC = \sqrt{AB^{2} + BC^{2}}
= 5\sqrt{2} \Rightarrow CO = \frac{1}{2}AC =
\frac{5\sqrt{2}}{2}

    A^{'}B^{'}C^{'}D^{'} là hình vuông

    \Rightarrow A^{'}C^{'} =
\sqrt{A^{'}{B^{'}}^{2} + B^{'}{C^{'}}^{2}} = 2\sqrt{2}
\Rightarrow C^{'}O^{'} = \frac{1}{2}A^{'}C^{'} =
\sqrt{2}

    Kẻ C^{'}H\bot OC\ \ (H \in
OC)

    OHC^{'}O^{'} là hình chữ nhật

    \Rightarrow OH = O^{'}C^{'} =
\sqrt{2},OO^{'} = C^{'}H \Rightarrow CH = OC - OH =
\frac{3\sqrt{2}}{2}

    \Delta CC^{'}H vuông tại H

    \Rightarrow C^{'}H = \sqrt{CC^{'2}- CH^{2}} = \frac{3\sqrt{2}}{2} \Rightarrow OO^{'} = C^{'}H =\frac{3\sqrt{2}}{2}

    Diện tích đáy lớn là:

    S = AB^{2} = 5^{2}
= 25\left( m^{2} ight)

    Diện tích đáy bé là:

    S^{'} =
A^{'}B^{'2} = 2^{2} = 4\left( m^{2} ight)

    Thể tích hình chóp cụt là:

    V = \frac{1}{3}h\left( S +
\sqrt{SS^{'}} + S^{'} ight) =
\frac{1}{3}.\frac{3\sqrt{2}}{2}(25 + \sqrt{25.4} + 4) =
\frac{39\sqrt{2}}{2}\left( m^{3} ight)

    Số tiền để mua bê tông tươi làm chân tháp là: \frac{39\sqrt{2}}{2}.1470000 \approx
40538432 (đồng).

  • Câu 4: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên (SAB)(SAD) cùng vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.

     

    Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra SA \bot \left( {ABCD} ight). Do đó chiều cao khối chóp là SA = a\sqrt {15}.

    Diện tích hình chữ nhật ABCD là {S_{ABCD}} = AB.BC = 2{a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{2{a^3}\sqrt {15} }}{3}

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

  • Câu 7: Vận dụng cao

    Cho tứ diện có thể tích bằng V. Gọi V' là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số \frac{{V'}}{V}.

     

    Xét khối  tứ diện và các điểm được kí hiệu như hình vẽ trên, ta có:

    \frac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}} = \frac{1}{8} \Rightarrow {V_{S.A'B'C'}} = \frac{V}{8}

    Tương tự \,{V_{A.A'MP}} = {V_{B.B'MN}} = {V_{C.C'NP}} = \frac{V}{8}.

    Do đó \,\,V' = {V_{S.ABC}} - \left( {{V_{S.A'B'C'}} + {V_{A.A'MP}} + {V_{B.B'MN}} + {V_{C.C'NP}}} ight)

    = \,\,V - \left( {\frac{V}{8} + \frac{V}{8} + \frac{V}{8} + \frac{V}{8}} ight) = \frac{V}{2}\,\, \Rightarrow \,\,\frac{{V'}}{V} = \frac{1}{2}.

  • Câu 8: Vận dụng

    Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng là?

    Diện tích 1 mặt của tứ diện đều là diện tích của 1 tam giác đều cạnh a là: \frac{{{a^2}\sqrt 3 }}{4}

    Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng: 4.\frac{{{a^2}\sqrt 3 }}{4} ={a^2}\sqrt 3

  • Câu 9: Vận dụng

    Cho khối đa diện đều loại \{ 3; 4 \}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?

     Khối đa diện đều loại \{ 3; 4 \} là khối bát diện đều.

    Mỗi đỉnh là đỉnh chung của 4 mặt.

    Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng 60^∘⋅4=240^∘.

  • Câu 10: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 11: Nhận biết

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Đáp án là:

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Tính thể tích

    Xét tam giác , có: A{B^2} + A{C^2} = {6^2} + {8^2} = {10^2} = B{C^2}

    Suy ra tam giác vuông tại A

    \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.AC = 24.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = 32

  • Câu 12: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 13: Vận dụng

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

  • Câu 14: Nhận biết

    Vật thể nào trong các vật thể sau không phải là khối đa diện?

    Vì đáp án đã vi phạm tính chất sau: 

    Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác

  • Câu 15: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 16: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 17: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông tâm O, cạnh 2a. Mặt bên tạo với đáy góc 60^0. Gọi K là hình chiếu vuông góc của O trên SD. Tính theo a thể tích V của khối tứ diện DKAC.

     

    Gọi M là trung điểm CD, suy ra OM \bot CD nên

    {60^0} = \widehat {\left( {SCD} ight),\left( {ABCD} ight)} = \widehat {SM,OM} = \widehat {SMO}.

    Tam giác vuông SOM, có SO = OM.\tan \widehat {SMO} = a\sqrt 3.

    Kẻ KH \bot OD \Rightarrow KH\parallel SO nên KH \bot \left( {ABCD} ight)

    Tam giác vuông SOD, ta có \frac{{KH}}{{SO}} = \frac{{DK}}{{DS}} = \frac{{D{O^2}}}{{D{S^2}}}

    = \frac{{O{D^2}}}{{S{O^2} + O{D^2}}} = \frac{2}{5}\xrightarrow{{}}KH = \frac{2}{5}SO = \frac{{2a\sqrt 3 }}{5}

    Diện tích tam giác {S_{\Delta ADC}} = \frac{1}{2}AD.DC = 2{a^2}.

    Vậy {V_{DKAC}} = \frac{1}{3}{S_{\Delta ADC}}.KH = \frac{{4{a^3}\sqrt 3 }}{{15}}.

  • Câu 18: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 19: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 20: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Khối đa diện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo