Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Cho
và
. Khi đó,
bằng:
Ta có:
.
Tìm phát biểu không phải mệnh đề.
“Buồn ngủ quá!” là mệnh đề.
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Tập
bằng tập nào sau đây?
Ta có:
Tập hợp C = (2;+∞) \ [-3;8] bằng tập hợp nào sau đây?
Ta có: C = (2;+∞) \ [-3;8] = (8;+∞).
Tập hợp
bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Cho ba mệnh đề:
“số
chia hết cho
và chia hết cho
”
Q: “ Số
chia hết cho
”
R: “ Số
là số nguyên tố ”
Hãy tìm mệnh đề sai trong các mệnh đề dưới đây:
đúng,
sai,
đúng.
đúng,
đúng nên
đúng,
đúng,
đúng nên
đúng,
đúng.
đúng,
đúng nên
đúng.
đúng,
đúng nên
đúng,
đúng,
sai nên
sai.
Chọn đáp án .
Cho hai tập hợp
,
. Tìm tất cả các giá trị của tham số
để
.
Ta có:
Do đó để
Xác định
trong trường hợp
{
,
và
}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.
Liệt kê các phần tử ta có:
Vậy .
Phủ định của mệnh đề "
là số vô tỷ" là mệnh đề nào sau đây?
Phủ định của mệnh đề P là mệnh đề “không phải P".
Chọn đáp án không là số vô tỷ.
Với giá trị thực nào của
mệnh đề chứa biến
là mệnh đề đúng?
Thay vào
ta được
là mệnh đề đúng.
Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?
Nếu A và B là tập hợp hữu hạn thì
Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:
Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.
Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.
Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.
Tìm đáp án không phải mệnh đề trong các câu sau.
Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp
.
Ta có: .
Cho hai mệnh đề A: “∀ x ∈ R:
” và B: “∃ n ∈ Z:
”. Xét tính đúng, sai của hai mệnh đề A và B.
Với mệnh đề A, thay nên A sai.
Với mệnh đề B, thay nên B đúng.
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Kí hiệu nào sau đây dùng để viết đúng mệnh đề “
không phải là số hữu tỉ”
Ta có: