Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề toán học. Tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Kí hiệu C_{U}A có nghĩa là gì?

    Cho hai tập hợp AU. Nếu A là tập con của U thì hiệu U\setminus A gọi là phần bù của A trong U, kí hiệu {C_U}A.

  • Câu 2: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

  • Câu 3: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp B\backslash A bằng

    Tập hợp B\backslash A gồm những phần tử thuộc B nhưng không thuộc A

    \Rightarrow B\backslash A = \left\{ 5;6
ight\}.

  • Câu 4: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Xét mệnh đề −π < −2 ⇔ π^{2} < 4. Ta thấy π^{2} < 4 sai nên mệnh đề này sai.

  • Câu 5: Nhận biết

    Cho biết x là một phần tử của tập hợp A, xét các mệnh đề sau:

    (I) x \in A.

    (II) \left\{ x ight\} \in
A.

    (III) x \subset A.

    (IV) \left\{ x ight\} \subset
A.

    Trong các mệnh đề sau, mệnh đề nào là đúng:

    I đúng.

    II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.

    III sai vì 1 phần tử thì không thể là con của 1 tập hợp.

    IV đúng.

  • Câu 6: Thông hiểu

    Xác định M = A ∪ B trong trường hợp A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 10}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.

    Liệt kê các phần tử ta có:

    A = \left \{ {0; 4; 8} ight \}

    B = \left \{ {0; 3; 6; 9} ight \}

    Vậy M = A ∪ B = \left \{ {0; 3; 4; 6; 8; 9} ight \}.

  • Câu 7: Thông hiểu

    Xác định tập hợp sau đây trên trục số: C = \left( {7;12} ight] \cap \left( { - \infty ;9} ight]:

    Xác định tập hợp trên trục số như sau:

    Xác định tập hợp trên trục số

  • Câu 8: Thông hiểu

    Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.

    Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:

    Đặt P: “Quyển vở này của Nam”, Q: “Quyển vở này có 118 trang”

    Theo đề bài, P đúng, Q đúng nên \overline{P} sai, \overline{Q} sai.

    Mệnh đề P \Rightarrow Q chỉ sai khi P đúng Q sai.

    Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.

  • Câu 9: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Hôm nay trời đẹp quá!

    Trung Quốc là nước đông dân nhất thế giới.

    Năm 2018 là năm nhuận.

    Câu “Hôm nay trời đẹp quá!” không phải là mệnh đề. Các câu còn lại đều là mệnh đề.

  • Câu 10: Vận dụng

    Cho n là số tự nhiên, mệnh đề nào sau đây đúng?

    Với n\mathbb{\in N} thì n(n + 1) là hai số tự nhiên liên tiếp \Rightarrow n(n + 1) là số chẵn\Rightarrow n(n + 1) \vdots
2

    Với n\mathbb{\in N} thì n(n + 1)(n + 2) là ba số tự nhiên liên tiếp \Rightarrow trong 3 số n,n + 1,n + 2 có 1 số chia hết cho 3.

    \Rightarrow n(n + 1)(n + 2) \vdots
3

    \Rightarrow \left\{ \begin{matrix}
n(n + 1)(n + 2) \vdots 3 \\
n(n + 1)(n + 2) \vdots 2 \\
\end{matrix} ight.

    \Rightarrow n(n + 1)(n + 2) \vdots
6.

    Chọn đáp án \forall n,n(n + 1)(n +
2)là số chia hết cho 6.

  • Câu 11: Thông hiểu

    Cho tập X =
\left\{ 2,3,4 ight\}. Tập X có bao nhiêu tập hợp con?

    Tập X3 phần tử \Rightarrow số tập con của X bằng: 2^{3}
= 8.

  • Câu 12: Nhận biết

    Tìm mệnh đề trong các câu sau.

    Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.

    Chọn đáp án Paris là thủ đô của Đức.

  • Câu 13: Thông hiểu

    Tập hợp A =
\left\{ 1,2,3,4,5,6 ight\} có bao nhiêu tập hợp con gồm 2 phần tử:

    Tập A gồm 6 phần tử.

    Mỗi phần tử ghép với 1 phần tử còn lại ta được 1 tập con của A2 phần tử.

    Số tập con của A2 phần tử bằng: \frac{6.5}{2} = 15.

  • Câu 14: Vận dụng

    Cho A = \lbrack
1;4brack,B = (2;6),C = (1;2). Tìm A \cap B \cap C.

    Vậy A \cap B \cap C =
\varnothing.

  • Câu 15: Vận dụng cao

    Lớp 10A có 7 học sinh thích Táo, 5 học sinh thích Cam, 6 học sinh thích Mận, 3 học sinh thích Táo và Cam, 4 học sinh thích cả Táo và Mận, 2 học sinh thích cả Cam và Mân, 1 học sinh thích cả ba loại quả. Số học sinh thích ít nhất một loại quả (Táo hoặc Cam hoặc Mận) của lớp 10A là

    Vẽ biểu đồ Ven biểu diễn mối liên hệ giữa các tập hợp thích Táo, Cam, Mận.

    Gọi a,b,c,x,y,z,m là số phần tử của mỗi tập hợp thành phần như hình vẽ:

    Theo giả thiết ta có: \left\{
\begin{matrix}
x + m = 3 \\
y + m = 2 \\
z + m = 4 \\
m = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
z = 3 \\
m = 1 \\
\end{matrix} ight.

    Cũng theo giả thiết ta có: \left\{
\begin{matrix}
a + x + z + m = 7 \\
b + x + y + m = 5 \\
c + y + z + m = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.

    Vậy số học sinh thích ít nhất một tong ba loại quả là

    a + b + c + x + y + z + m =
10

  • Câu 16: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 17: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Ở đây đẹp quá!

    Phương trình x^{2} - 9x + 2 = 0 vô nghiệm.

    16 không là số nguyên tố.

    Số \pi có lớn hơn 3 hay không?

    Câu “Phương trình x^{2} - 9x + 2 =
0 vô nghiệm.” và “16 không là số nguyên tố.” là mệnh đề.

  • Câu 18: Nhận biết

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 19: Nhận biết

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 20: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo