Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề toán học. Tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 2: Nhận biết

    Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.

    Phủ định của mệnh đề P là mệnh đề “không phải P"

    Chọn đáp án Vịt không phải là một loài chim.

  • Câu 3: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào bằng tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2):

    Ta có: 

    Tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2) là tập hợp [2; +∞).

    Vậy tập hợp M=D

  • Câu 4: Vận dụng

    Phát biểu nào sau đây là mệnh đề đúng:

    Mệnh đề P \Rightarrow Q chỉ sai khi P đúng, Q sai.

    2.5 = 10là mệnh đề đúng, Luân Đôn là thủ đô của Hà Lan là mệnh đề sai \Rightarrow2.5 = 10 \Rightarrow Luân Đôn là thủ đô của Hà Lan” là mệnh đề sai.

    7 là số lẻ là mệnh đề đúng,7 chia hết cho 2 là mệnh đề sai \Rightarrow7 là số lẻ \Rightarrow 7 chia hết cho 2” là mệnh đề sai.

    81 là số chính phương là mệnh đề đúng, \sqrt{81} là số nguyên là mệnh đề đúng \Rightarrow81 là số chính phương \Rightarrow \sqrt{81} là số nguyên” là mệnh đề đúng.

    Số 141 chia hết cho 3 là mệnh đề đúng, 141 chia hết cho 9 là mệnh đề sai \Rightarrow “Số 141 chia hết cho 3 \Rightarrow 141 chia hết cho 9” là mệnh đề sai.

    Chọn đáp án 81 là số chính phương \Rightarrow \sqrt{81} là số nguyên.

  • Câu 5: Thông hiểu

    Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:

    Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.

    Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.

    Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.

  • Câu 6: Nhận biết

    Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?

     Nếu A và B là tập hợp hữu hạn thì  n\left( {A \cup B} ight) = n\left( A ight) + n\left( B ight) - n\left( {A \cap B} ight)

  • Câu 7: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

  • Câu 8: Nhận biết

    Trong các câu sau, câu nào không phải là mệnh đề toán học?

     Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.

  • Câu 9: Thông hiểu

    Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?

     Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là kết luận của định lí.

  • Câu 10: Vận dụng

    Cho tập hợp C_{\mathbb{R}}A = \left\lbrack - 3;\sqrt{8}
ight)C_{\mathbb{R}}B = ( -
5;2) \cup \left( \sqrt{3};\sqrt{11} ight). Tập C_{\mathbb{R}}(A \cap B) là:

    C_{\mathbb{R}}A\mathbb{= R}\backslash A
= \left\lbrack - 3;\sqrt{8} ight) \Rightarrow A = ( - \infty; - 3)
\cup \left\lbrack \sqrt{8}; + \infty ight)

    C_{\mathbb{R}}B\mathbb{= R}\backslash B= ( - 5;2) \cup \left( \sqrt{3};\sqrt{11} ight) = \left( - 5;\sqrt{11}ight)\Rightarrow B = ( - \infty; - 5brack \cup \left\lbrack\sqrt{11}; + \infty ight).

    \Rightarrow A \cap B = ( - \infty; -
5brack \cup \left\lbrack \sqrt{11}; + \infty ight)

    \Rightarrow C_{\mathbb{R}}(A \cap
B)\mathbb{= R}\backslash(A \cap B) = \left( - 5;\sqrt{11}
ight).

  • Câu 11: Vận dụng cao

    Cho hai tập hợp khác rỗng A = (m - 1;4brackB = ( - 2;2m + 2)với m\mathbb{\in R}. Tìm m để A \cap B
eq \varnothing.

    \Leftrightarrow \left\{ \begin{matrix}
m - 1 < 4 \\
2m + 2 > - 2 \\
\end{matrix} ight.\  \Leftrightarrow - 2 < m < 5(*)

    Ta có A \cap B = \varnothing
\Leftrightarrow 2m + 2 \leq m - 1 \Leftrightarrow m \leq - 3\
(**)

    Từ (*) và (**) suy ra A \cap B eq
\varnothing \Leftrightarrow - 2 < m < 5.

  • Câu 12: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

  • Câu 13: Thông hiểu

    Cho A = \left\{
0;2;4;6 ight\}. Tập A có bao nhiêu tập con có 2 phần tử?

    Tập con có 2 phần tử của A là: \left\{
0;2 ight\};\left\{ 0;4 ight\};\left\{ 0;6 ight\};\left\{ 2;4
ight\};\left\{ 2;6 ight\};\left\{ 4;6 ight\}

    \Rightarrow6 tập con có 2 phần tử.

  • Câu 14: Thông hiểu

    Số tập hợp con có 2 phần tử của tập hợp A = \left\{ {1,2,3,4,5,6} ight\} là:

    Các tập hợp con của tập hợp A là: \left\{ {1;2} ight\},\left\{ {1;3} ight\},\left\{ {1;4} ight\},\left\{ {1;5} ight\}, \left\{ {1;6} ight\},\left\{ {2;3} ight\},\left\{ {2;4} ight\},\left\{ {2;5} ight\}, \left\{ {4;5} ight\},\left\{ {4;{\text{ }}6} ight\},\left\{ {5;{\text{ }}6} ight\} ,\left\{ {2;6} ight\},\left\{ {3;4} ight\},\left\{ {3;5} ight\},\left\{ {3;6} ight\}.

    Có tất cả 15 tập con của tập hợp A.

  • Câu 15: Nhận biết

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 16: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 17: Thông hiểu

    Trong các tập hợp sau, tập hợp nào bằng nhau:

    • A = \left \{ {0; 2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 12}

    => A = \left \{ {0; 2; 4; 6; 8} ight \}; B = \left \{ {0; 2; 4; 6; 8; 10} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x ⋮ 22< x < 6}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và 1 < x < 5}

    => A = \left \{ {4} ight \} ; B = \left \{ {4} ight \}. Vậy tập hợp A bằng tập hợp B. Đáp án đúng

    • A = \left \{ {2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 10}

    => A = \left \{ {2; 4; 6; 8} ight \}; B =\left \{  {0; 2; 4; 6; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x chia hết cho 3 và x < 12}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và x < 12}

    => A = \left \{{0; 3; 6; 9} ight \}; B =\left \{  {0; 4; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

  • Câu 18: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 19: Nhận biết

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 20: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Chăm chỉ lên nhé!

    (2) Số 20 chia hết cho 6.

    (3) Số 7 là số nguyên tố.

    (4) Số 3 là một số chẵn.

    Câu (1) là câu cảm thán nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow3 câu là mệnh đề.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo