Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề toán học. Tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

    Tìm mối quan hệ giữa hai tập hợp

    Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B

    => Vùng tô đậm thể hiện A\setminus B.

  • Câu 2: Thông hiểu

    Xác định A ∩ B trong trường hợp sau:

    \begin{matrix}  A = \left\{ {(x;y)|x,y \in \mathbb{R},3x - y = 7} ight\} \hfill \\  B = \left\{ {(x;y)|x,y \in \mathbb{R},x - y = 1} ight\} \hfill \\ \end{matrix}

    Tập hợp A ∩ B là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {3x - y = 7} \\   {x - y = 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 3} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow \left( {x;y} ight) = \left( {3;2} ight) \hfill \\ \end{matrix}

    Vậy A \cap B = \left\{ {\left( {3;2} ight)} ight\}

  • Câu 3: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

  • Câu 4: Nhận biết

    Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:

    Các ước dương của 12 là: 1; 2; 3; 4; 6; 12

    => Cách viết tập hợp đúng là: A = \left \{ 1; 2; 3; 4; 6; 12ight \}

  • Câu 5: Nhận biết

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 6: Thông hiểu

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm giá trị của a để A
\cap B = \lbrack - 2;5brack.

    Để A \cap B = \lbrack -
2;5brack khi và chỉ khi \left\{
\begin{matrix}
a > - 3 \\
a = - 2 \\
\end{matrix} \Leftrightarrow a = - 2 ight..

    Vậy a = - 2 là giá trị cần tìm.

  • Câu 7: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 8: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 9: Nhận biết

    Tìm mệnh đề trong các câu sau.

    Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.

    Chọn đáp án Paris là thủ đô của Đức.

  • Câu 10: Thông hiểu

    Tập X có bao nhiêu tập hợp con, biết X có 3 phần tử ?

    Tập X3 phần tử \Rightarrow số tập con của X bằng: 2^{3}
= 8.

  • Câu 11: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 12: Nhận biết

    Tìm phát biểu không phải mệnh đề.

    Buồn ngủ quá!” là mệnh đề.

  • Câu 13: Nhận biết

    Mệnh đề nào sau đây là đúng?

    x = 3 \in (2;3brack nhưng x = 3 otin (2;3) \Rightarrow A sai.

    x = 2 \in \lbrack 2;3brack nhưng x = 2 otin (2;3brack \Rightarrow
C sai.

    x = 3 \in \lbrack 2;3brack nhưng x = 3 otin \lbrack 2;3) \Rightarrow
D sai.

  • Câu 14: Vận dụng cao

    Cho hai tập hợp A = (2a + 3;1 + a)B = (a - 3; - 3 - 2a) với a < - \frac{2}{3}. Tìm a để A \cup B là một khoảng?

    a < - \frac{2}{3} nên 2a + 3 < 1 - aa - 3 < - 3 - 2a, tức là A và B luôn là các khoảng.

    Xét các trường hợp sau:

    Nếu a - 3 \leq 2a + 3 < 1 - a \leq - 3
- 2a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \geq a - 3 \\
1 - a \leq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \geq - 6 \\
a \leq - 4 \\
\end{matrix} ight.

    \Leftrightarrow - 6 \leq a \leq -
4

    Khi đó A \subset B \Rightarrow A \cup B =
B, đương nhiên là một khoảng.

    Nếu 2a + 3 \leq a - 3 < - 3 - 2a \leq
1 - a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \leq a - 3 \\
1 - a \geq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \leq - 6 \\
a \geq - 4\  \\
\end{matrix} ight.\ (ktm)

    Nếu 2a + 3 \leq a - 3 < 1 - a \leq - 3
- 2a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \leq a - 3 \\
a - 3 < 1 - a \\
1 - a \leq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \leq - 6 \\
a < 2 \\
a \leq - 4 \\
\end{matrix} ight.\  \Leftrightarrow a \leq - 6

    Khi đó A \cup B = (2a + 3; - 3 -
2a) là một khoảng.

    Nếu a - 3 \leq 2a + 3 < - 3 - 2a \leq
1 - a

    \Leftrightarrow \left\{ \begin{matrix}
a - 3 \leq 2a + 3 \\
2a + 3 < - 3 - 2a \\
- 3 - 2a \leq 1 - a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \geq - 6 \\
a < - 3 \\
2a \geq - 4 \\
\end{matrix} ight.

    \Leftrightarrow - 4 \leq a < -
\frac{3}{2}

    Khi đó A \cup B = (a - 3;1 - a) là một khoảng. Vậy các giá trị của a thỏa yêu cầu bài toán là a < - \frac{3}{2}.

  • Câu 15: Vận dụng

    Cho A = \lbrack- 4;7brackB = ( - \infty; -2) \cup (3; + \infty). Khi đó, A\cap B là:

    Vậy A \cap B = \lbrack - 4; - 2) \cup(3;7brack.

  • Câu 16: Vận dụng

    Nếu cả hai mệnh đề P ⇒ Q và Q ⇒ P đều sai thì ta suy ra điều gì?

    Ta có:

    Mệnh đề P ⇔ Q đúng khi cả hai mệnh đề P ⇒ QQ ⇒ P cùng đúng hoặc cùng sai. (Hay P ⇔ Q đúng khi cả hai mệnh đề PQ cùng đúng hoặc cùng sai).

  • Câu 17: Nhận biết

    Cho A = {a, b}. Số tập con của A là:

     Ta có: Số tập hợp con của tập có n phần tử là 2^n. Do đó số tập con của A là 2^2=4.

  • Câu 18: Nhận biết

    Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?

     Vì AB = AC nên suy ra ∆ABC cân tại A.

    Vì ∆ABC cân tại A nên suy ra AB = AC.

    Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.

  • Câu 19: Thông hiểu

    Phủ định của mệnh đề  "\sqrt3 là số vô tỷ" là mệnh đề nào sau đây?

    Phủ định của mệnh đề P là mệnh đề “không phải P".

    Chọn đáp án \sqrt{3} không là số vô tỷ.

  • Câu 20: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 20}

    Ta liệt kê các phần tử của tập A: A = \left \{ {0; 4; 8; 12; 16} ight \}.

    Như vậy chỉ có phương án \left \{ {0; 1; 2; 3; 4} ight \} là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo