Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề toán học. Tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Mệnh đề nào sau đây là mệnh đề tương đương?

    Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.

  • Câu 2: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 3: Thông hiểu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Mệnh đề được viết lại bằng kí hiệu: \forall x \in R,\ x.1 = x.

  • Câu 4: Nhận biết

    Tìm mệnh đề chứa biến.

    x + 2 = 11.” là mệnh đề chứa biến.

  • Câu 5: Nhận biết

    Khẳng định nào đúng trong các khẳng định sau:

    Khẳng định đúng: "Nếu A ⊂ BB ⊂ C thì A ⊂ C

  • Câu 6: Vận dụng

    Cho n là số tự nhiên, mệnh đề nào sau đây đúng?

    Với n\mathbb{\in N} thì n(n + 1) là hai số tự nhiên liên tiếp \Rightarrow n(n + 1) là số chẵn\Rightarrow n(n + 1) \vdots
2

    Với n\mathbb{\in N} thì n(n + 1)(n + 2) là ba số tự nhiên liên tiếp \Rightarrow trong 3 số n,n + 1,n + 2 có 1 số chia hết cho 3.

    \Rightarrow n(n + 1)(n + 2) \vdots
3

    \Rightarrow \left\{ \begin{matrix}
n(n + 1)(n + 2) \vdots 3 \\
n(n + 1)(n + 2) \vdots 2 \\
\end{matrix} ight.

    \Rightarrow n(n + 1)(n + 2) \vdots
6.

    Chọn đáp án \forall n,n(n + 1)(n +
2)là số chia hết cho 6.

  • Câu 7: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

  • Câu 8: Nhận biết

    Cho tập hợp A =
\left\{ 2;4;6;9 ight\}B =
\left\{ 1;2;3;4 ight\}. Tập hợp A\backslash B bằng tập nào sau đây?

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B.

    \Rightarrow A\backslash B = \left\{ 6;9
ight\}.

  • Câu 9: Nhận biết

    Cho A = {1; 3; 4; 7} và B = {3; 5; 7; 10} . Tập A\ B là:

     Ta có: A\ B = {1; 4}.

  • Câu 10: Nhận biết

    Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

    Tìm mối quan hệ giữa hai tập hợp

    Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B

    => Vùng tô đậm thể hiện A\setminus B.

  • Câu 11: Thông hiểu

    Xác định A ∩ B trong trường hợp sau:

    \begin{matrix}  A = \left\{ {(x;y)|x,y \in \mathbb{R},3x - y = 7} ight\} \hfill \\  B = \left\{ {(x;y)|x,y \in \mathbb{R},x - y = 1} ight\} \hfill \\ \end{matrix}

    Tập hợp A ∩ B là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {3x - y = 7} \\   {x - y = 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 3} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow \left( {x;y} ight) = \left( {3;2} ight) \hfill \\ \end{matrix}

    Vậy A \cap B = \left\{ {\left( {3;2} ight)} ight\}

  • Câu 12: Vận dụng

    Cho A = \left\{
x\mathbb{\in R}:x^{2} - 7x + 6 = 0 ight\}B = \left\{ x\mathbb{\in R}:|x| < 4
ight\}. Khi đó:

    Ta có: x^{2} - 7x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 6 \\
\end{matrix} ight.\  \Rightarrow A = \left\{ 1;6
ight\}.

    |x| < 4 \Rightarrow - 4 < x < 4
\Rightarrow B = ( - 4;4).

    Ta có: A\backslash B = \left\{ 6 ight\}
\subset A.

  • Câu 13: Nhận biết

    Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là

    Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.

  • Câu 14: Thông hiểu

    Xác định tập hợp C = (2;+∞) \setminus  [-3;8] 

    Xác định kết quả tập hợp bằng hình vẽ như sau:

    Xác định tập hợp C

    Vậy C = (2;+∞) \setminus  [-3;8] =(8;+∞)

  • Câu 15: Vận dụng cao

    Cho tập hợp A =\left\{ x\in\mathbb{ R}|x^{2} + x - m = 0 ight\}, B = \left\{ x\in\mathbb{ R}|x^{2} - mx + 1 = 0ight\}, (m là tham số thực). Tìm tất cả các giá trị của tham số m để A \cap B
eq \varnothing.

    A \cap B eq \varnothing nên tồn tại a \in A \cap B. Khi đó:

    \left\{ \begin{matrix}
a^{2} + a - m = 0 \\
a^{2} - ma + 1 = 0 \\
\end{matrix} ight.

    \Rightarrow (1 + m)a - (1 + m) =
0

    \Rightarrow \left\lbrack \begin{matrix}
m = - 1 \\
a = 1 \\
\end{matrix} ight.

    Nếu m = - 1 thử lại thấy B eq \varnothing nên không thỏa mãn.

    Nếu a = 1 thay vào tập A tìm được m
= 2. Thử lại khi m = 2 thấy A \cap B = \left\{ 1
ight\}.

    Vậy m = 2.

  • Câu 16: Thông hiểu

    Tập hợp A =
\left\{ 1,2,3,4,5,6 ight\} có bao nhiêu tập hợp con gồm 2 phần tử:

    Tập A gồm 6 phần tử.

    Mỗi phần tử ghép với 1 phần tử còn lại ta được 1 tập con của A2 phần tử.

    Số tập con của A2 phần tử bằng: \frac{6.5}{2} = 15.

  • Câu 17: Thông hiểu

    Cho C_{R}A = ( -\infty;2) \cup \lbrack 6; + \infty)C_{R}B = \lbrack 5;9). Tập hợp X = A \cap B

    A = \lbrack 2;6),B = ( - \infty;5) \cup\lbrack 9; + \infty).

    Suy ra X = A \cap B = \lbrack2;5).

  • Câu 18: Nhận biết

    Tìm đáp án không phải mệnh đề trong các câu sau.

    Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.

  • Câu 19: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 20: Thông hiểu

    Cho A là tập hợp các số tự nhiên chẵn không lớn hơn 12,B = \{ n \in \mathbb{N} \mid n \leq
6\}, C = \{ n \in \mathbb{N} \mid 4
\leq n \leq 12\}. Mệnh đề nào sau đây là đúng?

    Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:

    A \cap (B \cup C) = A

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo