Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Trong các mệnh đề sau, mệnh đề nào sai?
Xét mệnh đề . Ta thấy
sai nên mệnh đề này sai.
Trong các mệnh đề sau mệnh đề nào:
Với nhưng
không chia hết cho
Chọn đáp án
Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B
=> Vùng tô đậm thể hiện .
Có bao nhiêu mệnh đề trong các câu sau?
Số nguyên dương là số tự nhiên khác 0.
Bạn hãy cố gắng, nhất định bạn sẽ thành công.
Tổng các góc của một tam giác là ![]()
Cố lên, sắp đến nơi rồi!
Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là ” là mệnh đề.
Cho
. Tập A có bao nhiêu tập con có 2 phần tử?
Tập con có phần tử của
là:
có
tập con có
phần tử.
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Cho
là tập hợp các số tự nhiên chẵn không lớn hơn
,
. Mệnh đề nào sau đây là đúng?
Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:
Trong các mệnh đề sau, mệnh đề nào là sai:
Ta thấy mệnh đề sai vì giữa hai tập hợp không có quan hệ phụ thuộc.
Mệnh đề nào sau đây là đúng?
nhưng
sai.
nhưng
sai.
nhưng
sai.
Lớp
có
học sinh giỏi Toán,
học sinh giỏi Lý,
học sinh giỏi Hóa,
học sinh giỏi cả Toán và Lý,
học sinh giỏi cả Toán và Hóa,
học sinh giỏi cả Lý và Hóa,
học sinh giỏi cả
môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp
là:
Ta dùng biểu đồ Ven để giải

Nhìn vào biểu đồ, số học sinh giỏi ít nhất trong
môn là:
Tập
bằng tập nào sau đây?
Ta có:
Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.
Phủ định của mệnh đề P là mệnh đề “không phải P"
Chọn đáp án Vịt không phải là một loài chim.
Xác định tập hợp
bằng cách liệt kê các phần tử.
Ta có: .
Lớp 10A có 7 học sinh thích Táo, 5 học sinh thích Cam, 6 học sinh thích Mận, 3 học sinh thích Táo và Cam, 4 học sinh thích cả Táo và Mận, 2 học sinh thích cả Cam và Mân, 1 học sinh thích cả ba loại quả. Số học sinh thích ít nhất một loại quả (Táo hoặc Cam hoặc Mận) của lớp 10A là
Vẽ biểu đồ Ven biểu diễn mối liên hệ giữa các tập hợp thích Táo, Cam, Mận.
Gọi là số phần tử của mỗi tập hợp thành phần như hình vẽ:
Theo giả thiết ta có:
Cũng theo giả thiết ta có:
Vậy số học sinh thích ít nhất một tong ba loại quả là
Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?
Trong định lí ta nói: " là điều kiện cần để có
". Khi đó P là kết luận của định lí.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Tìm phát biểu không phải mệnh đề.
“Buồn ngủ quá!” là mệnh đề.
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"