Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề toán học. Tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tập hợp A = (2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

     Ta có: A = (2;+∞)\cap [-3;8] =(2;8].

  • Câu 2: Nhận biết

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 3: Vận dụng

    Cho số thực a
< 0. Điều kiện cần và đủ để ( -
\infty;a) \cup \left\lbrack \frac{4}{a}; + \infty ight)\mathbb{=
R} là:

    Ta có: ( - \infty;a) \cup \left\lbrack
\frac{4}{a}; + \infty ight)\mathbb{= R \Leftrightarrow}a \geq
\frac{4}{a} \Leftrightarrow a^{2} \leq 4 (vì a < 0 nên khi quy đồng bỏ mẫu dấu bất phương trình bị đổi)

    \Leftrightarrow - 2 \leq a \leq
2

    a < 0 \Rightarrow - 2 \leq a <
0.

  • Câu 4: Thông hiểu

    Tập hợp A=(2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

    Xác định kết quả tập hợp bằng trục số như sau:

    Tìm kết quả của phép toán

    Vậy A=(2;+∞)\cap [-3;8] =(2;8]

  • Câu 5: Vận dụng

    Trong các mệnh đề sau, mệnh đề nào sai?

    Với n = 1\mathbb{\in N} ta có: 1^{2} > 1 là mệnh đề sai

    \Rightarrow Mệnh đề n"" alt=""\forall n\mathbb{\in N},n^{2} > n"" /> là mệnh đề sai.

  • Câu 6: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 7: Nhận biết

    Cho A = {1; 3; 4; 7} và B = {3; 5; 7; 10} . Tập A\ B là:

     Ta có: A\ B = {1; 4}.

  • Câu 8: Nhận biết

    Phát biểu lại mệnh đề "Nếu n = 2 thì 2n^{2}+1 là một hợp số".

     Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để 2n^{2}+1 là một hợp số".

  • Câu 9: Thông hiểu

    Cho mệnh đề A:\forall x
\in R,x^{2} - x + 7 < 0”. Mệnh đề phủ định của A là:

    Phủ định của \forall\exists.

    Phủ định của <\geq.

    Mệnh đề phủ định của A: \exists x \in R,x^{2} - \ x + 7 \geq
0.

  • Câu 10: Thông hiểu

    Tìm mệnh đề phủ định của mệnh đề P:\sqrt{2} \leq 2.

    Mệnh đề phủ định là: \overline{P}:\sqrt{2} > 2.

  • Câu 11: Nhận biết

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 12: Nhận biết

    Tìm phát biểu là mệnh đề.

    Ta có:

    Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

    Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.

  • Câu 13: Nhận biết

    Tập X = \left\{
x\mathbb{\in Z}|2x^{2} - 5x + 2 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2\mathbb{\in Z} \\
x = \frac{1}{2}\mathbb{otin Z} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 2 ight\}.

  • Câu 14: Vận dụng cao

    Tìm điều kiện cần và đủ để hai khoảng ( - \infty;9a)\left( \frac{4}{a}; + \infty ight) là tập rỗng, biết a là số thực âm.

    Điều kiện cần và đủ để hai tập giao khác rỗng là:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\dfrac{4}{a} < 9a} 
\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\dfrac{{4 - 9{a^2}}}{a} < 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  { - \dfrac{2}{3} < a < \dfrac{2}{3}} 
\end{array}} ight. \Leftrightarrow  - \dfrac{2}{3} < a < 0

  • Câu 15: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 16: Thông hiểu

    Xác định tập hợp C = (2;+∞) \setminus  [-3;8] 

    Xác định kết quả tập hợp bằng hình vẽ như sau:

    Xác định tập hợp C

    Vậy C = (2;+∞) \setminus  [-3;8] =(8;+∞)

  • Câu 17: Nhận biết

    Tìm mệnh đề trong các câu sau.

    Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.

    Chọn đáp án Paris là thủ đô của Đức.

  • Câu 18: Thông hiểu

    Trong các tập hợp sau, tập hợp nào bằng nhau:

    • A = \left \{ {0; 2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 12}

    => A = \left \{ {0; 2; 4; 6; 8} ight \}; B = \left \{ {0; 2; 4; 6; 8; 10} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x ⋮ 22< x < 6}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và 1 < x < 5}

    => A = \left \{ {4} ight \} ; B = \left \{ {4} ight \}. Vậy tập hợp A bằng tập hợp B. Đáp án đúng

    • A = \left \{ {2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 10}

    => A = \left \{ {2; 4; 6; 8} ight \}; B =\left \{  {0; 2; 4; 6; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x chia hết cho 3 và x < 12}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và x < 12}

    => A = \left \{{0; 3; 6; 9} ight \}; B =\left \{  {0; 4; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

  • Câu 19: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 20: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp (A\backslash B \cap B) bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B \cap B =
\varnothing.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo