Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề và tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 2: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Chăm chỉ lên nhé!

    (2) Số 20 chia hết cho 6.

    (3) Số 7 là số nguyên tố.

    (4) Số 3 là một số chẵn.

    Câu (1) là câu cảm thán nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow3 câu là mệnh đề.

  • Câu 3: Nhận biết

    Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?

    Khi mệnh đề P ⇒ Q là định lí, ta nói: P là giả thiết, Q là kết luận của định lí

    Từ đó ta suy ra: Giả thiết của định lí là a < b

  • Câu 4: Vận dụng cao

    Cho tập hợp A =
(0; + \infty)B = \left\{x\in\mathbb{ R}|mx^{2} - 4x + m - 3 = 0 ight\}, với m là tham số. Tìm m để B có đúng hai tập con và B \subset A?

    B có đúng hai tập con và B \subset A khi và chỉ khi phương trình mx^{2} - 4x + m - 3 = 0 (1) có đúng một nghiệm dương.

    Trường hợp 1. m = 0, phương trình (1) trở thành - 4x - 3 = 0
\Leftrightarrow x = - \frac{3}{4}

    Do đó m = 0 không thỏa đề bài.

    Trường hợp 2. m eq 0, khi đó phương trình (1) có đúng một nghiệm dương khi và chỉ khi

    \left\{ \begin{matrix}\Delta' = 0 \\S > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4 - m(m - 3) = 0 \\\dfrac{4}{m} > 0 \\\end{matrix} ight.

    \Leftrightarrow m = 4

    Vậy m = 4 là giá trị duy nhất thỏa mãn yêu cầu đề bài.

  • Câu 5: Nhận biết

    Cho tập hợp A =
\left\{ 2;4;6;9 ight\}B =
\left\{ 1;2;3;4 ight\}. Tập hợp A\backslash B bằng tập nào sau đây?

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B.

    \Rightarrow A\backslash B = \left\{ 6;9
ight\}.

  • Câu 6: Thông hiểu

    Cách biểu diễn nào sau đây đúng cho tập số [‒5; 5]

    Ta có:

    Dấu “[” và “]” kí hiệu cho nửa đoạn trên trục số.

    Biểu diễn tập [‒5; 5] trên trục số đúng là:

    Biểu diễn tập hợp

  • Câu 7: Nhận biết

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 8: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào bằng tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2):

    Ta có: 

    Tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2) là tập hợp [2; +∞).

    Vậy tập hợp M=D

  • Câu 9: Nhận biết

    Tìm đáp án không phải mệnh đề trong các câu sau.

    Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.

  • Câu 10: Nhận biết

    Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.

    Phủ định của mệnh đề P là mệnh đề “không phải P"

    Chọn đáp án Vịt không phải là một loài chim.

  • Câu 11: Nhận biết

    Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:

    Ta có: \mathbf{7}\mathbb{\in N}\mathbf{.}

  • Câu 12: Vận dụng

    Cho A = \left\{
x|\left( 2x - x^{2} ight)\left( 2x^{2} - 3x - 2 ight) = 0
ight\}B = \left\{
n\mathbb{\in N}*|3 < n^{2} < 30 ight\}. Khi đó, A \cap B bằng:

    Ta có: \left( 2x - x^{2} ight)\left(2x^{2} - 3x - 2 ight) = 0\Leftrightarrow \left\lbrack \begin{matrix}2x - x^{2} = 0 \\2x^{2} - 3x - 2 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = 2 \\x = - \frac{1}{2} \\\end{matrix} ight.

    \Rightarrow A = \left\{ - \frac{1}{2};0;2
ight\}

    \left\{ \begin{matrix}
n\mathbb{\in N}* \\
3 < n^{2} < 30 \\
\end{matrix} ight. \mathbf{\Leftrightarrow}\left\{ \begin{matrix}
n\mathbb{\in N}* \\
\sqrt{3} < n < \sqrt{30} \\
\end{matrix} ight.\ \mathbf{\Rightarrow}B = \left\{ 2;3;4;5
ight\}.

    \Rightarrow A \cap B = \left\{ 2
ight\}.

  • Câu 13: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 14: Vận dụng

    Mệnh đề nào sau đây có mệnh đề phủ định là mệnh đề đúng:

    Ta có: mệnh đề "\exists x\mathbb{\in
Q}:x^{2} = 2" là mệnh đề sai vì x^{2} = 2 \Leftrightarrow x = \pm
\sqrt{2}\mathbb{otin Q} nên không có bất kì giá trị x\mathbb{\in Q} nào thỏa mãn x^{2} = 2. Vì mệnh đề "\exists x\mathbb{\in Q}:x^{2} =
2" là mệnh đề sai nên mệnh đề phủ định của nó là mệnh đề đúng.

    \Rightarrow Chọn đáp án \exists x\mathbb{\in Q}:x^{2} = 2.

  • Câu 15: Nhận biết

    Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?

     Vì AB = AC nên suy ra ∆ABC cân tại A.

    Vì ∆ABC cân tại A nên suy ra AB = AC.

    Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.

  • Câu 16: Thông hiểu

    Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

    Chọn khẳng định đúng

     Tập hợp A biểu thị trên trục số là nửa khoảng A = [-2;3)

  • Câu 17: Thông hiểu

    Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:

    Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.

    Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.

    Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.

  • Câu 18: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

  • Câu 19: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 20: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo