Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề và tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 2: Thông hiểu

    Tìm mệnh đề phủ định của mệnh đề P:\sqrt{2} \leq 2.

    Mệnh đề phủ định là: \overline{P}:\sqrt{2} > 2.

  • Câu 3: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Chăm chỉ lên nhé!

    (2) Số 20 chia hết cho 6.

    (3) Số 7 là số nguyên tố.

    (4) Số 3 là một số chẵn.

    Câu (1) là câu cảm thán nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow3 câu là mệnh đề.

  • Câu 4: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào bằng tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2):

    Ta có: 

    Tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2) là tập hợp [2; +∞).

    Vậy tập hợp M=D

  • Câu 5: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 6: Nhận biết

    Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

    Tìm mối quan hệ giữa hai tập hợp

    Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B

    => Vùng tô đậm thể hiện A\setminus B.

  • Câu 7: Nhận biết

    Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”

    Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.

  • Câu 8: Vận dụng

    Mệnh đề nào sau đây có mệnh đề phủ định là mệnh đề đúng:

    Ta có: mệnh đề "\exists x\mathbb{\in
Q}:x^{2} = 2" là mệnh đề sai vì x^{2} = 2 \Leftrightarrow x = \pm
\sqrt{2}\mathbb{otin Q} nên không có bất kì giá trị x\mathbb{\in Q} nào thỏa mãn x^{2} = 2. Vì mệnh đề "\exists x\mathbb{\in Q}:x^{2} =
2" là mệnh đề sai nên mệnh đề phủ định của nó là mệnh đề đúng.

    \Rightarrow Chọn đáp án \exists x\mathbb{\in Q}:x^{2} = 2.

  • Câu 9: Thông hiểu

    Tập hợp A=(2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

    Xác định kết quả tập hợp bằng trục số như sau:

    Tìm kết quả của phép toán

    Vậy A=(2;+∞)\cap [-3;8] =(2;8]

  • Câu 10: Nhận biết

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 11: Nhận biết

    Cho A = {a, b}. Số tập con của A là:

     Ta có: Số tập hợp con của tập có n phần tử là 2^n. Do đó số tập con của A là 2^2=4.

  • Câu 12: Nhận biết

    Tìm phát biểu là mệnh đề.

    Ta có:

    Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

    Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.

  • Câu 13: Nhận biết

    Tìm đáp án không phải mệnh đề trong các câu sau.

    Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.

  • Câu 14: Thông hiểu

    Cho mệnh đề A:\forall x
\in R,x^{2} - x + 7 < 0”. Mệnh đề phủ định của A là:

    Phủ định của \forall\exists.

    Phủ định của <\geq.

    Mệnh đề phủ định của A: \exists x \in R,x^{2} - \ x + 7 \geq
0.

  • Câu 15: Vận dụng cao

    Lớp 10A có 7 học sinh thích Táo, 5 học sinh thích Cam, 6 học sinh thích Mận, 3 học sinh thích Táo và Cam, 4 học sinh thích cả Táo và Mận, 2 học sinh thích cả Cam và Mân, 1 học sinh thích cả ba loại quả. Số học sinh thích ít nhất một loại quả (Táo hoặc Cam hoặc Mận) của lớp 10A là

    Vẽ biểu đồ Ven biểu diễn mối liên hệ giữa các tập hợp thích Táo, Cam, Mận.

    Gọi a,b,c,x,y,z,m là số phần tử của mỗi tập hợp thành phần như hình vẽ:

    Theo giả thiết ta có: \left\{
\begin{matrix}
x + m = 3 \\
y + m = 2 \\
z + m = 4 \\
m = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
z = 3 \\
m = 1 \\
\end{matrix} ight.

    Cũng theo giả thiết ta có: \left\{
\begin{matrix}
a + x + z + m = 7 \\
b + x + y + m = 5 \\
c + y + z + m = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.

    Vậy số học sinh thích ít nhất một tong ba loại quả là

    a + b + c + x + y + z + m =
10

  • Câu 16: Thông hiểu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Mệnh đề được viết lại bằng kí hiệu: \forall x \in R,\ x.1 = x.

  • Câu 17: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

  • Câu 18: Thông hiểu

    Tập X = \left\{
x\mathbb{\in N}|(x + 1)\left( x^{2} - x - 12 ight) = 0
ight\} bằng tập nào sau đây?

    \left( \mathbf{x +}\mathbf{1}
ight)\left( \mathbf{x}^{\mathbf{2}}\mathbf{- x -}\mathbf{12}
ight)\mathbf{=}\mathbf{0}\mathbf{\Leftrightarrow}\left\lbrack
\begin{matrix}
\mathbf{x = -}\mathbf{1}\mathbb{otin N} \\
\mathbf{x = -}\mathbf{3}\mathbb{otin N} \\
\mathbf{x =}\mathbf{4}\mathbb{\in N} \\
\end{matrix} ight.\ \mathbf{\Rightarrow X =}\left\{ \mathbf{4}
ight\}\mathbf{.}

  • Câu 19: Nhận biết

    Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?

     Vì AB = AC nên suy ra ∆ABC cân tại A.

    Vì ∆ABC cân tại A nên suy ra AB = AC.

    Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.

  • Câu 20: Vận dụng

    Cho hai tập hợp A = \left\{ x\mathbb{\in R}:x + 3 < 4 + 2x
ight\}B = \left\{
x\mathbb{\in R};5x - 3 < 4x - 1 ight\}. Tìm tất cả các số tự nhiên thuộc cả hai tập AB.

    x + 3 < 4 + 2x \Leftrightarrow x >
- 1 \Rightarrow A = ( - 1; + \infty).

    5x - 3 < 4x - 1 \Leftrightarrow x <
2 \Rightarrow B = ( - \infty;2).

    \Rightarrow A \cap B = ( - 1;2) \Rightarrow Có hai số tự nhiên thuộc cả hai tập AB01.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo