Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Cho mệnh đề
“
”. Mệnh đề phủ định của
là:
Phủ định của là
.
Phủ định của là
.
Mệnh đề phủ định của :
.
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Cho
Tập nào sau đây bằng tập ![]()
Tập hợp gồm những phần tử vừa thuộc
vừa thuộc
Kí hiệu nào sau đây dùng để viết đúng mệnh đề “
không phải là số hữu tỉ”
Ta có:
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?
Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.
Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?
Nếu A và B là tập hợp hữu hạn thì
Cho hai tập hợp
và
Tìm tất cả các số tự nhiên thuộc cả hai tập
và ![]()
Có hai số tự nhiên thuộc cả hai tập
và
là
và
Xác định tập hợp
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Xác định tập hợp
bằng cách liệt kê các phần tử.
Ta có: .
Tập
bằng tập nào sau đây?
Ta có:
Cho hai tập hợp
. Tìm giá trị của a để
.
Để khi và chỉ khi
.
Vậy là giá trị cần tìm.
Với giá trị thực nào của
mệnh đề chứa biến
là mệnh đề đúng?
Thay vào
ta được
là mệnh đề đúng.
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Chăm chỉ lên nhé!
(2) Số 20 chia hết cho 6.
(3) Số
là số nguyên tố.
(4) Số
là một số chẵn.
Câu (1) là câu cảm thán nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"
Trong các mệnh đề sau mệnh đề nào:
Với nhưng
không chia hết cho
Chọn đáp án
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau:
Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:
Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.
Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.
Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.
Lớp 10A có 7 học sinh thích Táo, 5 học sinh thích Cam, 6 học sinh thích Mận, 3 học sinh thích Táo và Cam, 4 học sinh thích cả Táo và Mận, 2 học sinh thích cả Cam và Mân, 1 học sinh thích cả ba loại quả. Số học sinh thích ít nhất một loại quả (Táo hoặc Cam hoặc Mận) của lớp 10A là
Vẽ biểu đồ Ven biểu diễn mối liên hệ giữa các tập hợp thích Táo, Cam, Mận.
Gọi là số phần tử của mỗi tập hợp thành phần như hình vẽ:
Theo giả thiết ta có:
Cũng theo giả thiết ta có:
Vậy số học sinh thích ít nhất một tong ba loại quả là
Cho
là tập hợp các số tự nhiên chẵn không lớn hơn
,
. Mệnh đề nào sau đây là đúng?
Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là: