Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề và tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm mệnh đề chứa biến.

    x + 2 = 11.” là mệnh đề chứa biến.

  • Câu 2: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 3: Thông hiểu

    Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?

     Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là kết luận của định lí.

  • Câu 4: Nhận biết

    Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

    Tìm mối quan hệ giữa hai tập hợp

    Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B

    => Vùng tô đậm thể hiện A\setminus B.

  • Câu 5: Nhận biết

    Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:

    Ta có: \mathbf{7}\mathbb{\in N}\mathbf{.}

  • Câu 6: Nhận biết

    Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là

    Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.

  • Câu 7: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào bằng tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2):

    Ta có: 

    Tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2) là tập hợp [2; +∞).

    Vậy tập hợp M=D

  • Câu 8: Thông hiểu

    Số tập hợp con có 2 phần tử của tập hợp A = \left\{ {1,2,3,4,5,6} ight\} là:

    Các tập hợp con của tập hợp A là: \left\{ {1;2} ight\},\left\{ {1;3} ight\},\left\{ {1;4} ight\},\left\{ {1;5} ight\}, \left\{ {1;6} ight\},\left\{ {2;3} ight\},\left\{ {2;4} ight\},\left\{ {2;5} ight\}, \left\{ {4;5} ight\},\left\{ {4;{\text{ }}6} ight\},\left\{ {5;{\text{ }}6} ight\} ,\left\{ {2;6} ight\},\left\{ {3;4} ight\},\left\{ {3;5} ight\},\left\{ {3;6} ight\}.

    Có tất cả 15 tập con của tập hợp A.

  • Câu 9: Thông hiểu

    Cách biểu diễn nào sau đây đúng cho tập số [‒5; 5]

    Ta có:

    Dấu “[” và “]” kí hiệu cho nửa đoạn trên trục số.

    Biểu diễn tập [‒5; 5] trên trục số đúng là:

    Biểu diễn tập hợp

  • Câu 10: Vận dụng

    Cho A = \left\{
x\mathbb{\in R}:x^{2} - 7x + 6 = 0 ight\}B = \left\{ x\mathbb{\in R}:|x| < 4
ight\}. Khi đó:

    Ta có: x^{2} - 7x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 6 \\
\end{matrix} ight.\  \Rightarrow A = \left\{ 1;6
ight\}.

    |x| < 4 \Rightarrow - 4 < x < 4
\Rightarrow B = ( - 4;4).

    Ta có: A\backslash B = \left\{ 6 ight\}
\subset A.

  • Câu 11: Thông hiểu

    Cho mệnh đề A:\forall x
\in R,x^{2} - x + 7 < 0”. Mệnh đề phủ định của A là:

    Phủ định của \forall\exists.

    Phủ định của <\geq.

    Mệnh đề phủ định của A: \exists x \in R,x^{2} - \ x + 7 \geq
0.

  • Câu 12: Vận dụng

    Cho n là số tự nhiên, mệnh đề nào sau đây đúng?

    Với n\mathbb{\in N} thì n(n + 1) là hai số tự nhiên liên tiếp \Rightarrow n(n + 1) là số chẵn\Rightarrow n(n + 1) \vdots
2

    Với n\mathbb{\in N} thì n(n + 1)(n + 2) là ba số tự nhiên liên tiếp \Rightarrow trong 3 số n,n + 1,n + 2 có 1 số chia hết cho 3.

    \Rightarrow n(n + 1)(n + 2) \vdots
3

    \Rightarrow \left\{ \begin{matrix}
n(n + 1)(n + 2) \vdots 3 \\
n(n + 1)(n + 2) \vdots 2 \\
\end{matrix} ight.

    \Rightarrow n(n + 1)(n + 2) \vdots
6.

    Chọn đáp án \forall n,n(n + 1)(n +
2)là số chia hết cho 6.

  • Câu 13: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 14: Nhận biết

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 15: Thông hiểu

    Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:

    Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.

    Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.

    Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.

  • Câu 16: Vận dụng cao

    Tìm tất cả các giá trị thực âm của tham số m để hai khoảng ( - \infty;2m)\left( \frac{2}{m}; + \infty ight) có khoảng giao khác rỗng.

    Với m < 0 thì \frac{2}{m} luôn có nghĩa. 

    Giao của hai tập đã cho khác rỗng khi hai tập hợp này có phần tử chung 

    \Leftrightarrow 2m > \frac{2}{m}
\Leftrightarrow 2m^{2} < 2 (vì m < 0) \Leftrightarrow 2(m - 1)(m + 1) <
0

    m < 0 nên ta xét các trường hợp sau

    Nếu m < - 1 thì m + 1 < 0,m - 1 < 0 = > 2(m - 1)(m + 1)
> 0

    Vậy m < - 1 không thỏa yêu cầu bài toán.

    Nếu −1 < m < 0 thì m + 1 > 0,m -
1 < 0 \Rightarrow 2(m - 1)(m +
1) < 0

    Vậy giá trị cần tìm của m là - 1 < m
< 0.

  • Câu 17: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 18: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 19: Nhận biết

    Cho hai mệnh đề A: “∀ x ∈ R: x^{2} – 1 ≠ 0” và B: “∃ n ∈ Z: n = n^{2}”. Xét tính đúng, sai của hai mệnh đề A và B.

     Với mệnh đề A, thay x=1 \Rightarrow 1^2-1=0 nên A sai.

    Với mệnh đề B, thay n=0 \Rightarrow 0^2=0 nên B đúng.

  • Câu 20: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp (A\backslash B \cap B) bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B \cap B =
\varnothing.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo