Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề và tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho mệnh đề A:\forall x
\in R,x^{2} - x + 7 < 0”. Mệnh đề phủ định của A là:

    Phủ định của \forall\exists.

    Phủ định của <\geq.

    Mệnh đề phủ định của A: \exists x \in R,x^{2} - \ x + 7 \geq
0.

  • Câu 2: Nhận biết

    Tìm mệnh đề trong các câu sau.

    Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.

    Chọn đáp án Paris là thủ đô của Đức.

  • Câu 3: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Số nguyên dương là số tự nhiên khác 0.

    Bạn hãy cố gắng, nhất định bạn sẽ thành công.

    Tổng các góc của một tam giác là 180{^\circ}.

    Cố lên, sắp đến nơi rồi!

    Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là 180{^\circ}.” là mệnh đề.

  • Câu 4: Vận dụng

    Cho A = \lbrack- 4;7brackB = ( - \infty; -2) \cup (3; + \infty). Khi đó, A\cap B là:

    Vậy A \cap B = \lbrack - 4; - 2) \cup(3;7brack.

  • Câu 5: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 6: Nhận biết

    Cho hai mệnh đề A: “∀ x ∈ R: x^{2} – 1 ≠ 0” và B: “∃ n ∈ Z: n = n^{2}”. Xét tính đúng, sai của hai mệnh đề A và B.

     Với mệnh đề A, thay x=1 \Rightarrow 1^2-1=0 nên A sai.

    Với mệnh đề B, thay n=0 \Rightarrow 0^2=0 nên B đúng.

  • Câu 7: Thông hiểu

    Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.

    Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:

    Đặt P: “Quyển vở này của Nam”, Q: “Quyển vở này có 118 trang”

    Theo đề bài, P đúng, Q đúng nên \overline{P} sai, \overline{Q} sai.

    Mệnh đề P \Rightarrow Q chỉ sai khi P đúng Q sai.

    Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.

  • Câu 8: Nhận biết

    Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là

    Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.

  • Câu 9: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 10: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 11: Thông hiểu

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm giá trị của a để A
\cap B = \lbrack - 2;5brack.

    Để A \cap B = \lbrack -
2;5brack khi và chỉ khi \left\{
\begin{matrix}
a > - 3 \\
a = - 2 \\
\end{matrix} \Leftrightarrow a = - 2 ight..

    Vậy a = - 2 là giá trị cần tìm.

  • Câu 12: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 20}

    Ta liệt kê các phần tử của tập A: A = \left \{ {0; 4; 8; 12; 16} ight \}.

    Như vậy chỉ có phương án \left \{ {0; 1; 2; 3; 4} ight \} là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.

  • Câu 13: Nhận biết

    Khẳng định nào đúng trong các khẳng định sau:

    Khẳng định đúng: "Nếu A ⊂ BB ⊂ C thì A ⊂ C

  • Câu 14: Vận dụng cao

    Cho tập hợp khác rỗng \left\lbrack m - 1;\frac{m + 3}{2}
ightbrackB = ( - \infty -
3) \cup \lbrack 3; + \infty). Tập hợp các giá trị thực của tham số m để A \cap B eq
\varnothing

    Để A \cap B eq \varnothing thì điều kiện là: \left\{ \begin{gathered}
  m - 1 < \dfrac{{m + 3}}{2} \hfill \\
  \left[ {\begin{array}{*{20}{c}}
  {m - 1 <  - 3} \\ 
  {\dfrac{{m + 3}}{2} \geqslant 3} 
\end{array}} ight. \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {m < 5} \\ 
  {\left[ {\begin{array}{*{20}{c}}
  {m <  - 2} \\ 
  {m \geqslant 3} 
\end{array}} ight.} 
\end{array}} ight.

    Vậy m \in ( - \infty; - 2) \cup \lbrack
3;5) thỏa mãn điều kiện.

  • Câu 15: Vận dụng

    Cho x là số thực mệnh đề nào sau đây đúng?

    Với x = 10 \Rightarrow x^{2} = 100 >
5 nhưng - \sqrt{5} < 10 <
\sqrt{5} là mệnh đề sai \Rightarrow mệnh đề \forall x\mathbb{\in R},x^{2} > 5 \Rightarrow -
\sqrt{5} < x < \sqrt{5} sai.

    Với x = - 10 \Rightarrow x^{2} = 100 >
5 nhưng - 10 > \pm
\sqrt{5} là mệnh đề sai \Rightarrow mệnh đề \forall x\mathbb{\in R},x^{2} > 5 \Rightarrow x
> \pm \sqrt{5} sai.

    Với x = 3 \Rightarrow x^{2} = 9 >
5 nhưng 3 \geq 5 \vee 3 \leq -
5 là mệnh đề sai \Rightarrow mệnh đề \forall x\mathbb{\in R},x^{2} > 5 \Rightarrow x
\geq 5 \vee x \leq - 5 sai.

    Chọn đáp án \forall x\mathbb{\in R},x^{2}
> 5 \Rightarrow x > \sqrt{5} \vee x < - \sqrt{5}.

  • Câu 16: Nhận biết

    Cho A = {a, b}. Số tập con của A là:

     Ta có: Số tập hợp con của tập có n phần tử là 2^n. Do đó số tập con của A là 2^2=4.

  • Câu 17: Thông hiểu

    Tập hợp A =
\left\{ 1,2,3,4,5,6 ight\} có bao nhiêu tập hợp con gồm 2 phần tử:

    Tập A gồm 6 phần tử.

    Mỗi phần tử ghép với 1 phần tử còn lại ta được 1 tập con của A2 phần tử.

    Số tập con của A2 phần tử bằng: \frac{6.5}{2} = 15.

  • Câu 18: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 19: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp B\backslash A bằng

    Tập hợp B\backslash A gồm những phần tử thuộc B nhưng không thuộc A

    \Rightarrow B\backslash A = \left\{ 5;6
ight\}.

  • Câu 20: Nhận biết

    Với giá trị thực nào của x mệnh đề chứa biến P(x):2x^{2} - 1 < 0 là mệnh đề đúng?

    Thay x = 0 vào P(x) ta được - 1 < 0 là mệnh đề đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 30 lượt xem
Sắp xếp theo