Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề và tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Phát biểu nào sau đây là mệnh đề đúng:

    Mệnh đề P \Rightarrow Q chỉ sai khi P đúng, Q sai.

    2.5 = 10là mệnh đề đúng, Luân Đôn là thủ đô của Hà Lan là mệnh đề sai \Rightarrow2.5 = 10 \Rightarrow Luân Đôn là thủ đô của Hà Lan” là mệnh đề sai.

    7 là số lẻ là mệnh đề đúng,7 chia hết cho 2 là mệnh đề sai \Rightarrow7 là số lẻ \Rightarrow 7 chia hết cho 2” là mệnh đề sai.

    81 là số chính phương là mệnh đề đúng, \sqrt{81} là số nguyên là mệnh đề đúng \Rightarrow81 là số chính phương \Rightarrow \sqrt{81} là số nguyên” là mệnh đề đúng.

    Số 141 chia hết cho 3 là mệnh đề đúng, 141 chia hết cho 9 là mệnh đề sai \Rightarrow “Số 141 chia hết cho 3 \Rightarrow 141 chia hết cho 9” là mệnh đề sai.

    Chọn đáp án 81 là số chính phương \Rightarrow \sqrt{81} là số nguyên.

  • Câu 2: Nhận biết

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 3: Vận dụng

    Cho tập hợp C_{\mathbb{R}}A = \left\lbrack - 3;\sqrt{8}
ight)C_{\mathbb{R}}B = ( -
5;2) \cup \left( \sqrt{3};\sqrt{11} ight). Tập C_{\mathbb{R}}(A \cap B) là:

    C_{\mathbb{R}}A\mathbb{= R}\backslash A
= \left\lbrack - 3;\sqrt{8} ight) \Rightarrow A = ( - \infty; - 3)
\cup \left\lbrack \sqrt{8}; + \infty ight)

    C_{\mathbb{R}}B\mathbb{= R}\backslash B= ( - 5;2) \cup \left( \sqrt{3};\sqrt{11} ight) = \left( - 5;\sqrt{11}ight)\Rightarrow B = ( - \infty; - 5brack \cup \left\lbrack\sqrt{11}; + \infty ight).

    \Rightarrow A \cap B = ( - \infty; -
5brack \cup \left\lbrack \sqrt{11}; + \infty ight)

    \Rightarrow C_{\mathbb{R}}(A \cap
B)\mathbb{= R}\backslash(A \cap B) = \left( - 5;\sqrt{11}
ight).

  • Câu 4: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 5: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 6: Nhận biết

    Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?

     Vì AB = AC nên suy ra ∆ABC cân tại A.

    Vì ∆ABC cân tại A nên suy ra AB = AC.

    Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.

  • Câu 7: Vận dụng cao

    Cho hai tập hợp A = (2a + 3;1 + a)B = (a - 3; - 3 - 2a) với a < - \frac{2}{3}. Tìm a để A \cup B là một khoảng?

    a < - \frac{2}{3} nên 2a + 3 < 1 - aa - 3 < - 3 - 2a, tức là A và B luôn là các khoảng.

    Xét các trường hợp sau:

    Nếu a - 3 \leq 2a + 3 < 1 - a \leq - 3
- 2a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \geq a - 3 \\
1 - a \leq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \geq - 6 \\
a \leq - 4 \\
\end{matrix} ight.

    \Leftrightarrow - 6 \leq a \leq -
4

    Khi đó A \subset B \Rightarrow A \cup B =
B, đương nhiên là một khoảng.

    Nếu 2a + 3 \leq a - 3 < - 3 - 2a \leq
1 - a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \leq a - 3 \\
1 - a \geq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \leq - 6 \\
a \geq - 4\  \\
\end{matrix} ight.\ (ktm)

    Nếu 2a + 3 \leq a - 3 < 1 - a \leq - 3
- 2a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \leq a - 3 \\
a - 3 < 1 - a \\
1 - a \leq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \leq - 6 \\
a < 2 \\
a \leq - 4 \\
\end{matrix} ight.\  \Leftrightarrow a \leq - 6

    Khi đó A \cup B = (2a + 3; - 3 -
2a) là một khoảng.

    Nếu a - 3 \leq 2a + 3 < - 3 - 2a \leq
1 - a

    \Leftrightarrow \left\{ \begin{matrix}
a - 3 \leq 2a + 3 \\
2a + 3 < - 3 - 2a \\
- 3 - 2a \leq 1 - a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \geq - 6 \\
a < - 3 \\
2a \geq - 4 \\
\end{matrix} ight.

    \Leftrightarrow - 4 \leq a < -
\frac{3}{2}

    Khi đó A \cup B = (a - 3;1 - a) là một khoảng. Vậy các giá trị của a thỏa yêu cầu bài toán là a < - \frac{3}{2}.

  • Câu 8: Nhận biết

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 9: Thông hiểu

    Phủ định của mệnh đề “Phương trình x^{2} + bx + c = 0 có 2 nghiệm phân biệt” là mệnh đề nào?

    Phủ định của mệnh đề P là mệnh đề "không phải P".

    Chọn đáp án Phương trình x^{2} + bx + c =
0 không phải có 2 nghiệm phân biệt.

  • Câu 10: Nhận biết

    Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

    Tìm mối quan hệ giữa hai tập hợp

    Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B

    => Vùng tô đậm thể hiện A\setminus B.

  • Câu 11: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 12: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào là sai:

    Ta thấy mệnh đề A ∈ A sai vì giữa hai tập hợp không có quan hệ phụ thuộc.

  • Câu 13: Thông hiểu

    Cho A = \left\{
0;2;4;6 ight\}. Tập A có bao nhiêu tập con có 2 phần tử?

    Tập con có 2 phần tử của A là: \left\{
0;2 ight\};\left\{ 0;4 ight\};\left\{ 0;6 ight\};\left\{ 2;4
ight\};\left\{ 2;6 ight\};\left\{ 4;6 ight\}

    \Rightarrow6 tập con có 2 phần tử.

  • Câu 14: Thông hiểu

    Tập hợp C = (2;+∞) \ [-3;8] bằng tập hợp nào sau đây?

     Ta có: C = (2;+∞) \ [-3;8] = (8;+∞).

  • Câu 15: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Xét mệnh đề −π < −2 ⇔ π^{2} < 4. Ta thấy π^{2} < 4 sai nên mệnh đề này sai.

  • Câu 16: Nhận biết

    Phát biểu lại mệnh đề "Nếu n = 2 thì 2n^{2}+1 là một hợp số".

     Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để 2n^{2}+1 là một hợp số".

  • Câu 17: Thông hiểu

    Cho mệnh đề A:\forall x
\in R,x^{2} - x + 7 < 0”. Mệnh đề phủ định của A là:

    Phủ định của \forall\exists.

    Phủ định của <\geq.

    Mệnh đề phủ định của A: \exists x \in R,x^{2} - \ x + 7 \geq
0.

  • Câu 18: Nhận biết

    Khẳng định nào đúng trong các khẳng định sau:

    Khẳng định đúng: "Nếu A ⊂ BB ⊂ C thì A ⊂ C

  • Câu 19: Nhận biết

    Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là

    Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.

  • Câu 20: Nhận biết

    Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”

    Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo