Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Mệnh đề và tập hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho A là tập hợp các số tự nhiên chẵn không lớn hơn 12,B = \{ n \in \mathbb{N} \mid n \leq
6\}, C = \{ n \in \mathbb{N} \mid 4
\leq n \leq 12\}. Mệnh đề nào sau đây là đúng?

    Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:

    A \cap (B \cup C) = A

  • Câu 2: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

  • Câu 3: Thông hiểu

    Cho C_{R}A = ( -\infty;2) \cup \lbrack 6; + \infty)C_{R}B = \lbrack 5;9). Tập hợp X = A \cap B

    A = \lbrack 2;6),B = ( - \infty;5) \cup\lbrack 9; + \infty).

    Suy ra X = A \cap B = \lbrack2;5).

  • Câu 4: Vận dụng

    Cho hai tập hợp: X = \left\{ n\mathbb{\in N}| ight.\ n là bội của 46\}và Y= \left\{ n\mathbb{\in N}| ight. n là bội số của 12}

    Trong các mệnh đề nào sau đây, mệnh đề nào là sai?

    n là bội của 46
\Rightarrow n là số tự nhiên chia hết cho 46

    \Rightarrow n chia hết cho 12.

    \Rightarrow X = Tập hợp các số tự nhiên chia hết cho 12.

    n là bội của 12 \Rightarrow n chia hết cho 12.

    \Rightarrow Y = Tập hợp các số tự nhiên chia hết cho 12.

    X = Y \Rightarrow đáp án sai là \exists n:n \in Xn otin Y.

  • Câu 5: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 6: Nhận biết

    Cho tập hợp A =
\left\{ 2;4;6;9 ight\}B =
\left\{ 1;2;3;4 ight\}. Tập hợp A\backslash B bằng tập nào sau đây?

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B.

    \Rightarrow A\backslash B = \left\{ 6;9
ight\}.

  • Câu 7: Thông hiểu

    Cho A = \left\{
x\mathbb{\in R}:x^{2} - 7x + 6 = 0 ight\}B = \left\{ x\mathbb{\in R}:|x| < 4
ight\}. Khi đó:

    x^{2} - 7x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 6 \\
\end{matrix} ight.\  \Rightarrow A = \left\{ 1;6
ight\}.

    |x| < 4 \Rightarrow - 4 < x < 4
\Rightarrow B = ( - 4;4).

    Ta có: A\backslash B = \left\{ 6 ight\}
\subset A.

  • Câu 8: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Số nguyên dương là số tự nhiên khác 0.

    Bạn hãy cố gắng, nhất định bạn sẽ thành công.

    Tổng các góc của một tam giác là 180{^\circ}.

    Cố lên, sắp đến nơi rồi!

    Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là 180{^\circ}.” là mệnh đề.

  • Câu 9: Nhận biết

    Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?

     Nếu A và B là tập hợp hữu hạn thì  n\left( {A \cup B} ight) = n\left( A ight) + n\left( B ight) - n\left( {A \cap B} ight)

  • Câu 10: Nhận biết

    Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?

    Khi mệnh đề P ⇒ Q là định lí, ta nói: P là giả thiết, Q là kết luận của định lí

    Từ đó ta suy ra: Giả thiết của định lí là a < b

  • Câu 11: Thông hiểu

    Tập X có bao nhiêu tập hợp con, biết X có 3 phần tử ?

    Tập X3 phần tử \Rightarrow số tập con của X bằng: 2^{3}
= 8.

  • Câu 12: Nhận biết

    Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:

    Các ước dương của 12 là: 1; 2; 3; 4; 6; 12

    => Cách viết tập hợp đúng là: A = \left \{ 1; 2; 3; 4; 6; 12ight \}

  • Câu 13: Nhận biết

    Cho A = {a, b}. Số tập con của A là:

     Ta có: Số tập hợp con của tập có n phần tử là 2^n. Do đó số tập con của A là 2^2=4.

  • Câu 14: Vận dụng cao

    Tìm điều kiện cần và đủ để hai khoảng ( - \infty;9a)\left( \frac{4}{a}; + \infty ight) là tập rỗng, biết a là số thực âm.

    Điều kiện cần và đủ để hai tập giao khác rỗng là:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\dfrac{4}{a} < 9a} 
\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\dfrac{{4 - 9{a^2}}}{a} < 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  { - \dfrac{2}{3} < a < \dfrac{2}{3}} 
\end{array}} ight. \Leftrightarrow  - \dfrac{2}{3} < a < 0

  • Câu 15: Nhận biết

    Mệnh đề nào sau đây là mệnh đề tương đương?

    Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.

  • Câu 16: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 17: Thông hiểu

    Tìm mệnh đề phủ định của mệnh đề P:\sqrt{2} \leq 2.

    Mệnh đề phủ định là: \overline{P}:\sqrt{2} > 2.

  • Câu 18: Nhận biết

    Với giá trị thực nào của x mệnh đề chứa biến P(x):2x^{2} - 1 < 0 là mệnh đề đúng?

    Thay x = 0 vào P(x) ta được - 1 < 0 là mệnh đề đúng.

  • Câu 19: Vận dụng

    Trong các mệnh đề sau mệnh đề nào:

    Với n = 3\mathbb{\in N \Rightarrow}n^{2}
\vdots 9 nhưng n không chia hết cho 9.

    Chọn đáp án \forall n\mathbb{\in N},n^{2}
\vdots 9 \Rightarrow n \vdots 9.

  • Câu 20: Nhận biết

    Tìm mệnh đề chứa biến.

    x + 2 = 11.” là mệnh đề chứa biến.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề và tập hợp CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 25 lượt xem
Sắp xếp theo