Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình vẽ:

    Đồ thị trong hình đã cho là đồ thị của hàm số nào?

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a > 0 và đồ thị hàm số đi qua điểm (2; - 3) nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là y = x^{3} -3x^{2} + 1.

  • Câu 2: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đạt cực tiểu tại điểm

    Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm x = 0.

  • Câu 3: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Toạ độ điểm cực đại của đồ thị hàm số đã cho là:

    Dựa vào đồ thị hàm số đã cho, tọa độ điểm cực đại của đồ thị hàm số có tọa độ (1;3).

  • Câu 4: Vận dụng cao

    Cho hàm số f(x) = x^{3} - (2m - 1)x^{2} +
(2 - m)x + 2 với m là tham số. Tìm điều kiện của tham số m để hàm số y = f\left( |x| ight)5 cực trị?

    Nhận thấy rằng nếu x_{0} là điểm cực trị dương của hàm số y = f(x) thì x_{0}; - x_{0} là điểm cực trị của hàm số y = f\left( |x|
ight)

    Lại thấy vì đồ thị hàm số y = f\left( |x|
ight) nhận trục tung làm trục đối xứng mà f(x) là hàm đa thức bậc ba nên x = 0 luôn là một điểm cực trị của hàm số y = f\left( |x| ight).

    Khi đó để hàm số y = f\left( |x|
ight) có 5 điểm cực trị thì hàm số f(x) = x^{3} - (2m - 1)x^{2} + (2 - m)x +
2 có hai cực trị dương phân biệt.

    Suy ra phương trình f'(x) = 3x^{2} -
2(2m - 1)x + 2 - m = 0 có hai nghiệm dương phân biệt:

    \Leftrightarrow \left\{ \begin{gathered}
  \Delta ' > 0 \hfill \\
  S > 0 \hfill \\
  P > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {\left( {2m - 1} ight)^2} - 3\left( {2 - m} ight) > 0 \hfill \\
  \frac{{2m - 1}}{3} > 0 \hfill \\
  2 - m > 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
  4{m^2} - m - 5 > 0 \hfill \\
  m > \frac{1}{2} \hfill \\
  m < 2 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{5}{4} < m < 2

    Vậy đáp án cần tìm là \frac{5}{4} < m
< 2.

  • Câu 5: Nhận biết

    Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

    Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số a > 0.

    Vậy hàm số cần tìm là y = x^{4} - x^{2} -
1.

  • Câu 6: Nhận biết

    Giá trị lớn nhất của hàm số y = - x^{4} +
2x^{2} + 1 trên đoạn \lbrack -
2;5brack bằng:

    Ta có: y' = - 4x^{3} + 4x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 1 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}y( - 2) = - 5 \\y( - 1) = y(1) = 2 \\y(0) = 1 \\y(5) = - 574 \\\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;5brack}y =y(1) = 2

  • Câu 7: Vận dụng

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= x^{3} + 2x^{2} + (m + 1)x - m^{2} đồng biến trên khoảng ( - \infty; + \infty) là:

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi y' = 3x^{2} + 4x + m + 1
\geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 3 > 0 \\
\Delta' = 2^{2} - 3(m + 1) \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{1}{3}

    Vậy m \in \left( \frac{1}{3}; + \infty
ight) là giá trị cần tìm.

  • Câu 9: Thông hiểu

    Cho các hàm số sau:

    y = \frac{\sin x}{x};y =\frac{\sqrt{x^{2} + x + 1}}{x};y = \frac{\sqrt{1 - x}}{x + 1};y = x + 1+ \sqrt{x^{2} - 1}

    Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?

    Ta có:

    y = \frac{\sin x}{x}\lim_{x ightarrow \infty}\frac{\sin x}{x} =
0 nên có 1 tiệm cận ngang là y =
0.

    y = \frac{\sqrt{x^{2} + x +
1}}{x}\lim_{x ightarrow +
\infty}\frac{\sqrt{x^{2} + x + 1}}{x} = 1;\lim_{x ightarrow -
\infty}\frac{\sqrt{x^{2} + x + 1}}{x} = - 1 nên có 2 tiệm cận ngang là y = 1;y = - 1.

    y = \frac{\sqrt{1 - x}}{x + 1}\lim_{x ightarrow -
\infty}\frac{\sqrt{1 - x}}{x + 1} = 0 nên có 1 tiệm cận ngang là y = 0.

    y = x + 1 + \sqrt{x^{2} - 1}\lim_{x ightarrow - \infty}\left( x + 1 +
\sqrt{x^{2} - 1} ight) = 1 nên có 1 tiệm cận ngang là y = 1.

    Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.

  • Câu 10: Thông hiểu

    Cho hàm số y = f(x) = \frac{ax^{2} + bx +
c}{mx + n} với a eq 0;\ m eq
0, có đồ thị là đường cong như hình vẽ bên dưới.

    Với m = 1 thì giá trị S = a + b + c là bao nhiêu?

    Đáp án: 7

    Đáp án là:

    Cho hàm số y = f(x) = \frac{ax^{2} + bx +
c}{mx + n} với a eq 0;\ m eq
0, có đồ thị là đường cong như hình vẽ bên dưới.

    Với m = 1 thì giá trị S = a + b + c là bao nhiêu?

    Đáp án: 7

    Với m = 1, ta có y = f(x) = \frac{ax^{2} + bx + c}{x +
n}.

    Đồ thị hàm số có tiệm cận đứng là x = -
2 nên n = 2.

    Khi đó f(x) = \frac{ax^{2} + bx + c}{x +
2}.

    Thực hiện phép chia đa thức lấy tử chia mẫu ta được thương là ax + b - 2a, nên đồ thị hàm số có đường tiệm cận xiên là y = ax + b - 2a, mặt khác nhìn vào đồ thị ta thấy đồ thị hàm số có đường tiệm cận xiên là y = x + 1.

    Nên ta có phương trình:

    ax + b - 2a = x + 1 \Rightarrow \left\{
\begin{matrix}
a = 1 \\
b - 2a = 1 \\
\end{matrix} ight. hay \left\{
\begin{matrix}
a = 1 \\
b = 3 \\
\end{matrix} ight..

    Khi đó f(x) = \frac{x^{2} + 3x + c}{x +
2}.

    Vì đồ thị hàm số đi qua điểm ( - 3; -
3) nên ta được c = 3.

    Suy ra f(x) = \frac{x^{2} + 3x + 3}{x +
2}.

    Vậy S = 1 + 3 + 3 = 7.

  • Câu 11: Nhận biết

    Cho hàm số f(x) xác định, liên tục trên tập số thực và đồ thị của hàm số f'(x) là đường cong như hình vẽ bên dưới.

    Khẳng định nào sau đây là khẳng định đúng?

    Từ đồ thị của hàm số f'(x) ta có:

    f'(x) \leq 0;\forall x \in ( -
\infty; - 3) \cup ( - 2; + \infty)

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0; + \infty).

  • Câu 12: Nhận biết

    Cho hàm số y = f(x) có đồ thị như sau:

    Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:

    Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là x = 1 và đường tiệm cận ngang là y = 1.

  • Câu 13: Thông hiểu

    Cho hàm số y = f(x) luôn nghịch biến trên \mathbb{R}. Tập nghiệm của bất phương trình f\left( \frac{1}{x}
ight) > f(1) là:

    Vì hàm số y = f(x) luôn nghịch biến trên \mathbb{R} nên ta có:

    f\left( \frac{1}{x} ight) > f(1)
\Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x < 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x > 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Rightarrow x \in ( - \infty;0) \cup (1; +
\infty)

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty;0) \cup (1; + \infty)

  • Câu 14: Thông hiểu

    Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?

    Dựa vào dấu của hệ số a < 0;b >
0 nên hàm số y = - x^{4} + x^{2} +
3 có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.

  • Câu 15: Thông hiểu

    Mỗi đợt xuất khẩu gạo của tỉnh A kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ t được xác định bởi công thức: s(t) = - t^{3} + 27t^{2} + 262144 (tấn) với 1 \leq t \leq 60;t \in\mathbb{N}^{*}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Số lượng gạo xuất khẩu của tỉnh A ngày thứ 12 là 264304 (tấn).Đúng||Sai

    b) Ngày thứ 30 của tỉnh A có lượng gạo xuất khẩu cao nhất. Sai||Đúng

    c) Ngày thứ 1 của tỉnh A có lượng gạo xuất khẩu thấp nhất. Sai||Đúng

    d) Ngày thứ 60 của tỉnh A có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.

    Đáp án là:

    Mỗi đợt xuất khẩu gạo của tỉnh A kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ t được xác định bởi công thức: s(t) = - t^{3} + 27t^{2} + 262144 (tấn) với 1 \leq t \leq 60;t \in\mathbb{N}^{*}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Số lượng gạo xuất khẩu của tỉnh A ngày thứ 12 là 264304 (tấn).Đúng||Sai

    b) Ngày thứ 30 của tỉnh A có lượng gạo xuất khẩu cao nhất. Sai||Đúng

    c) Ngày thứ 1 của tỉnh A có lượng gạo xuất khẩu thấp nhất. Sai||Đúng

    d) Ngày thứ 60 của tỉnh A có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.

    a) Đúng. s(20)=264304

    b) Sai.

    Ta có s^{'}(t) = - 3t^{2} +54t;s^{'}(t) = 0 \Leftrightarrow - 3t^{2} + 54t = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 0 \\t = 18 \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy ngày thứ 18 của tỉnh A có lượng gạo xuất khẩu cao nhất là 265060.

    c) Sai. Ta có ngày thứ 60 tinh A có lượng gạo xuất khẩu thấp nhất là 143344.

    d) Đúng. Ta có ngày thứ 60 tỉnh A có lượng gạo xuất khẩu thấp nhất là 143344.

  • Câu 16: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình vẽ như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên (0;1).

  • Câu 17: Thông hiểu

    Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}} trên tập D = \left( { - \infty ; - 1} ight] \cup \left[ {1;\frac{3}{2}} ight]. Tính giá trị H của m.M

    Tập xác định của hàm số y là: \left( { - \infty ; - 1} ight] \cup \left( {1; + \infty } ight]\backslash \left\{ 2 ight\}

    Ta có:

    \begin{matrix}  y' = \dfrac{{\dfrac{{x\left( {x - 2} ight)}}{{\sqrt {{x^2} - 1} }} - \sqrt {{x^2} - 1} }}{{{{\left( {x - 2} ight)}^2}}} = \dfrac{{ - 2x + 1}}{{\sqrt {{x^2} - 1} {{\left( {x - 2} ight)}^2}}} \hfill \\  y' = 0 \Rightarrow x = \dfrac{1}{2} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tìm GTLN, GTNN của hàm số

    Từ bảng biến thiên ta được:

    M = 0,m =  - \sqrt 5  \Rightarrow H = m.M = 0

  • Câu 18: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ -
1 ight\} có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow + \infty}y = -
2 suy ra đồ thị hàm số có tiệm cận ngang y = - 2

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị hàm số có tiệm cận đứng x = - 1

    Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng x = - 1 và tiệm cận ngang y = - 2”.

  • Câu 19: Vận dụng

    Cho hàm số f\left( x ight) = {x^3} - 3x + 1. Số nghiệm thực phân biệt của phương trình f\left( {f\left( x ight)} ight) = f\left( 2 ight) là:

    Ta có: f\left( {f\left( x ight)} ight) = f\left( 2 ight) = 3

    Đồ thị của hàm số f\left( x ight) = {x^3} - 3x + 1 được minh họa bằng hình vẽ sau:

    Số nghiệm thực phân biệt của phương trình

    Từ đồ thị ta suy ra

    f\left( {f\left( x ight)} ight) = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2} \\   {f\left( x ight) =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 2} \\   {{x^3} - 3x + 1 =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 0\left( * ight)} \\   {{x^3} - 3x + 2 = 0\left( {**} ight)} \end{array}} ight.

    Phương trình (*) có 3 nghiệm thực

    Phương trình (**) có 2 nghiệm thực

  • Câu 20: Vận dụng

    Cho hàm số y =
f(3 - 2x) có bảng xét dấu đạo hàm như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

    Xét hàm số y = f(3 - 2x) ta có: y' = - 2f'(3 - 2x)

    y' = 0 \Leftrightarrow - 2f'(3 -
2x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
3 - 2x = 5 \\
3 - 2x = 3 \\
3 - 2x = 1 \\
\end{matrix} ight.

    \Rightarrow y' > 0
\Leftrightarrow - 2.f'(3 - 2x) > 0

    \Leftrightarrow f'(3 - 2x) < 0
\Leftrightarrow \left\lbrack \begin{matrix}
- 1 < x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
3 < 3 - 2x < 5 \\
3 - 2x < 1 \\
\end{matrix} ight.

    Đặt 3 - 2x = t \Rightarrow f'(t) <
0 \Leftrightarrow \left\lbrack \begin{matrix}
3 < t < 5 \\
t < 1 \\
\end{matrix} ight.

    Xét hàm số y = f(x)y' = f'(x). Hàm số nghịch biến khi y' < 0 \Leftrightarrow f'(x)
< 0 \Leftrightarrow \left\lbrack \begin{matrix}
3 < x < 5 \\
x < 1 \\
\end{matrix} ight.

    Vậy hàm số y = f(x) nghịch biến trên khoảng (3;5).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo