Cho hình vẽ:
Đồ thị trong hình đã cho là đồ thị của hàm số nào?
Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
và đồ thị hàm số đi qua điểm
nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là
.
Cho hình vẽ:
Đồ thị trong hình đã cho là đồ thị của hàm số nào?
Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
và đồ thị hàm số đi qua điểm
nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là
.
Cho hàm số có bảng biến thiên như sau:
Hàm số đạt cực tiểu tại điểm
Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm .
Cho hàm số có đồ thị như hình vẽ. Toạ độ điểm cực đại của đồ thị hàm số đã cho là:
Dựa vào đồ thị hàm số đã cho, tọa độ điểm cực đại của đồ thị hàm số có tọa độ .
Cho hàm số với
là tham số. Tìm điều kiện của tham số
để hàm số
có
cực trị?
Nhận thấy rằng nếu là điểm cực trị dương của hàm số
thì
là điểm cực trị của hàm số
Lại thấy vì đồ thị hàm số nhận trục tung làm trục đối xứng mà
là hàm đa thức bậc ba nên
luôn là một điểm cực trị của hàm số
.
Khi đó để hàm số có 5 điểm cực trị thì hàm số
có hai cực trị dương phân biệt.
Suy ra phương trình có hai nghiệm dương phân biệt:
Vậy đáp án cần tìm là .
Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?
Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số .
Vậy hàm số cần tìm là .
Giá trị lớn nhất của hàm số trên đoạn
bằng:
Ta có:
Khi đó
Cho hàm số có đồ thị như hình vẽ sau:
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Tính giá trị của biểu thức
?
Cho hàm số có đồ thị như hình vẽ sau:
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Tính giá trị của biểu thức
?
Tập hợp tất cả các giá trị của tham số để hàm số
đồng biến trên khoảng
là:
Hàm số đồng biến trên khi và chỉ khi
Vậy là giá trị cần tìm.
Cho các hàm số sau:
Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?
Ta có:
có
nên có 1 tiệm cận ngang là
.
có
nên có 2 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.
Cho hàm số với
, có đồ thị là đường cong như hình vẽ bên dưới.
Với thì giá trị
là bao nhiêu?
Đáp án: 7
Cho hàm số với
, có đồ thị là đường cong như hình vẽ bên dưới.
Với thì giá trị
là bao nhiêu?
Đáp án: 7
Với , ta có
.
Đồ thị hàm số có tiệm cận đứng là nên
.
Khi đó .
Thực hiện phép chia đa thức lấy tử chia mẫu ta được thương là , nên đồ thị hàm số có đường tiệm cận xiên là
, mặt khác nhìn vào đồ thị ta thấy đồ thị hàm số có đường tiệm cận xiên là
.
Nên ta có phương trình:
hay
.
Khi đó .
Vì đồ thị hàm số đi qua điểm nên ta được
.
Suy ra .
Vậy .
Cho hàm số xác định, liên tục trên tập số thực và đồ thị của hàm số
là đường cong như hình vẽ bên dưới.
Khẳng định nào sau đây là khẳng định đúng?
Từ đồ thị của hàm số ta có:
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số có đồ thị như sau:
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:
Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là và đường tiệm cận ngang là
.
Cho hàm số luôn nghịch biến trên
. Tập nghiệm của bất phương trình
là:
Vì hàm số luôn nghịch biến trên
nên ta có:
Vậy tập nghiệm của bất phương trình là
Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?
Dựa vào dấu của hệ số nên hàm số
có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.
Mỗi đợt xuất khẩu gạo của tỉnh kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ
được xác định bởi công thức:
(tấn) với
. Xét tính đúng sai của các khẳng định dưới đây?
a) Số lượng gạo xuất khẩu của tỉnh ngày thứ 12 là 264304 (tấn).Đúng||Sai
b) Ngày thứ 30 của tỉnh có lượng gạo xuất khẩu cao nhất. Sai||Đúng
c) Ngày thứ 1 của tỉnh có lượng gạo xuất khẩu thấp nhất. Sai||Đúng
d) Ngày thứ 60 của tỉnh có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.
Mỗi đợt xuất khẩu gạo của tỉnh kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ
được xác định bởi công thức:
(tấn) với
. Xét tính đúng sai của các khẳng định dưới đây?
a) Số lượng gạo xuất khẩu của tỉnh ngày thứ 12 là 264304 (tấn).Đúng||Sai
b) Ngày thứ 30 của tỉnh có lượng gạo xuất khẩu cao nhất. Sai||Đúng
c) Ngày thứ 1 của tỉnh có lượng gạo xuất khẩu thấp nhất. Sai||Đúng
d) Ngày thứ 60 của tỉnh có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.
a) Đúng.
b) Sai.
Ta có
Bảng biến thiên:
Vậy ngày thứ 18 của tỉnh có lượng gạo xuất khẩu cao nhất là 265060.
c) Sai. Ta có ngày thứ 60 tinh có lượng gạo xuất khẩu thấp nhất là 143344.
d) Đúng. Ta có ngày thứ 60 tỉnh có lượng gạo xuất khẩu thấp nhất là 143344.
Cho hàm số có đồ thị như hình vẽ như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên .
Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số trên tập
. Tính giá trị H của m.M
Tập xác định của hàm số y là:
Ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên ta được:
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Từ bảng biến thiên ta có:
suy ra đồ thị hàm số có tiệm cận ngang
suy ra đồ thị hàm số có tiệm cận đứng
Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng và tiệm cận ngang
”.
Cho hàm số . Số nghiệm thực phân biệt của phương trình
là:
Ta có:
Đồ thị của hàm số được minh họa bằng hình vẽ sau:
Từ đồ thị ta suy ra
Phương trình (*) có 3 nghiệm thực
Phương trình (**) có 2 nghiệm thực
Cho hàm số có bảng xét dấu đạo hàm như sau:
Hàm số nghịch biến trên khoảng nào dưới đây?
Xét hàm số ta có:
Đặt
Xét hàm số có
. Hàm số nghịch biến khi
Vậy hàm số nghịch biến trên khoảng
.