Kết luận nào sau đây về tính đơn điệu của hàm số là đúng?
Ta có:
Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)
Kết luận nào sau đây về tính đơn điệu của hàm số là đúng?
Ta có:
Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)
Hàm số đồng biến trên khoảng nào dưới đây?
Tập xác định . Ta có:
Suy ra hàm số đồng biến trên khoảng và
.
Tìm giá trị lớn nhất của hàm số trên khoảng
bằng:
Đặt
Khi đó:
So sánh và
ta thấy GTLN là
Cho hàm số có bảng biến thiên:
Số đường tiệm cận ngang của đồ thị hàm số là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Hàm số nghịch biến trên khoảng nào?
Ta có:
=> Hàm số nghịch biến trên khoảng (2; 3)
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
Ta có:
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng.
Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó?
Hàm trùng phương không nghịch biến trên tập xác định của nó
Với
Hàm số đã cho đồng biến trên từng khoảng xác định
Với
=> Hàm số nghịch biến trên
Tìm giá trị của tham số để hàm số
nghịch biến trên
?
Đặt
hay
Bài toán trở thành tìm m để hàm số đồng biến trên
Tập xác định
Ta có: . Hàm số
đồng biến trên
Vậy đáp án cần tìm là .
Cho hàm số xác định trên
và có bảng xét dấu đạo hàm
như sau:
Hàm số có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu đạo hàm ta thấy hàm số có 1 điểm cực trị.
Có bao nhiêu giá trị nguyên của tham số để phương trình
có ba nghiệm thực phân biệt?
Đặt
Để có ba nghiệm thực phân biệt thì
có ba nghiệm thực phân biệt
thỏa mãn
Ta có:
Ta có: .
Khi đó
Vậy không có giá trị nguyên của tham số m thỏa mãn.
Đồ thị của hàm số có bao nhiêu đường tiệm cận đứng?
Ta có:
Với thì
nên đồ thị hàm số có một tiệm cận đứng là
.
Tìm giá trị của để bất phương trình
có nghiệm trên khoảng
?
Bất phương trình có nghiệm trên khoảng
Với
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta suy ra .
Cho hàm số có đồ thị là đường cong như hình vẽ:
Tìm số nghiệm của phương trình ?
Ta có:
Số nghiệm của phương trình bằng số giao điểm của hàm số và đường thẳng
Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.
Hình vẽ sau đây mô tả đồ thị của hàm số :
Chọn mệnh đề đúng?
Dựa vào đồ thị hàm số ta thấy hàm số đạt cực đại tại
và đạt cực tiểu tại
.
Một chất điểm chuyển động với quy luật . Thời điểm
(giây) tại vận tốc
của chuyển động đạt giá trị lớn nhất là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy vận tốc của chuyển động đạt giá trị lớn nhất bằng khi
.
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Cho hàm số liên tục và có đạo hàm trên
. Biết
. Đồ thị hàm số
như hình vẽ:
Hàm số có bao nhiêu điểm cực trị?
Xét .
Từ đồ thị ta thấy:
Vì hệ số cao nhất của nhỏ hơn 0 nên hệ số cao nhất của
cùng nhỏ hơn 0. Ta có bảng biến thiên:
luôn có đúng 2 nghiệm bội lé.
Số điểm cực trị của hàm số là 5.
Quan sát hình vẽ sau:
Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng là
nên hàm số tương ứng là
.
Tìm tất cả các giá trị thực của tham số để hàm số
đạt cực tiểu tại điểm
?
Ta có:
Điều kiện cần
Điều kiện đủ:
Khi suy ra
là điểm cực đại của hàm số.
Khi suy ra
là điểm cực tiểu của hàm số.
Vậy giá trị m thỏa mãn yêu cầu bài toán là .
Cho hình vẽ là đồ thị hàm số có dạng
Giá trị của biểu thức có thể nhận giá trị nào trong các giá trị sau?
Đồ thị hàm số đi qua điểm =>
Ta có: