Cho hàm số
. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên
?
Ta có:
Để hàm số đã cho nghịch biến trên
Do nên có tất cả 5 giá trị của m thỏa mãn điều kiện.
Cho hàm số
. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên
?
Ta có:
Để hàm số đã cho nghịch biến trên
Do nên có tất cả 5 giá trị của m thỏa mãn điều kiện.
Biết rằng có hai giá trị
của tham số
để đường thẳng
và đồ thị hàm số
có đúng một điểm chung. Khẳng định nào sau đây đúng?
Phương trình hoành độ giao điểm
Đường thẳng và đồ thị hàm số
có một điểm chung khi phương trình (*) có 1 nghiệm duy nhất
Vậy .
Cho hàm số
. Trên đoạn
hàm số có giá trị nhỏ nhất là
. Tìm giá trị của
?
Ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra .
Vậy là giá trị cần tìm.
Hàm số
có đạo hàm và liên tục trên
. Hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Hàm số nghịch biến
với
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số
có đồ thị như hình vẽ.

Đồ thị hàm số đã cho có đường tiệm cận ngang bằng:
Dựa vào đồ thị hàm số ta có: .
Do đó, đồ thị hàm số có đường tiệm cận ngang là
.
Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số .
Vậy hàm số cần tìm là .
Sự ảnh hưởng khi sử dụng một loại thuốc với cá thể
được một nhà sinh học mô tả bởi hàm số
, trong đó
là số lượng cá thể sau
giờ sử dụng thuốc. Vào thời điểm nào thì số lượng cá thể
bắt đầu giảm?
Xét ta có:
Ta thấy hàm số đạt cực đại tại và
nên sau
giờ thì cá thể bắt đầu giảm.
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có: ta có bảng xét dấu như sau:
Vậy hàm số đồng biến trên khoảng .
Cho đồ thị hàm số
. Giả sử
có khoảng cách đến đường thẳng
nhỏ nhất. Chọn khẳng định đúng?
Ta có:
Khoảng cách từ M đến đường thẳng (d) bằng:
Xét hàm số
Ta có bảng biến thiên
Vậy giá trị nhỏ nhất của hàm số tại
Vậy
Cho hàm số
có bảng xét dấu của đạo hàm
như sau:

Hàm số
có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.
Cho hàm số
liên tục trên
và có bảng xét dấu của
như sau:

Số điểm cực tiểu của hàm số đã cho là
Đạo hàm đổi dấu từ âm sang dương hai lần qua các điểm
và
nên hàm số đã cho có hai điểm cực tiểu.
Cho hàm số
có đạo hàm trên
và thỏa mãn
. Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Ta có:
.
Xét hàm số có
Bảng biến thiên
Vậy bất phương trình nghiệm đúng với mọi
khi và chỉ khi
.
Các dân tộc ít người phân bố chủ yếu ở khu vực nào của Trung Quốc?
Đường tiệm cận xiên của đồ thị hàm số
là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Số đường tiệm cận ngang của đồ thị hàm số
bằng:
Ta có:
suy ra
là một tiệm cận ngang của đồ thị hàm số.
suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy tổng số đường tiệm cận ngang của đồ thị hàm số đã cho bằng 2.
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Cho hàm số
có đồ thị của đạo hàm f’(x) như hình vẽ:

Biết rằng e > n. Số điểm cực trị của hàm số
bằng bao nhiêu?
Cho hàm số có đồ thị của đạo hàm f’(x) như hình vẽ:

Biết rằng e > n. Số điểm cực trị của hàm số bằng bao nhiêu?
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay vào
ta được:
Vậy thuộc đồ thị hàm số
.
Hàm số
liên tục trên đoạn
và có bảng biến thiên như sau.

Gọi
và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a)
Sai|| Đúng
b)
Sai|| Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Hàm số liên tục trên đoạn
và có bảng biến thiên như sau.
Gọi và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a) Sai|| Đúng
b) Sai|| Đúng
c) Đúng||Sai
d) Đúng||Sai
Dựa vào bảng biến thiên trên ta có: