Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y = \frac{mx + n}{ax^{2} + bx
+ c} (với m,n,a,b,c\mathbb{\in
R}). Hỏi đồ thị hàm số có tối đa bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Ta có:

    Phương trình ax^{2} + bx + c = 0 có tối đa 2 nghiệm

    Nên đồ thị hàm số có nhiều nhất hai đường tiệm cận đứng.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\ 
\end{gathered}  ight. nên y =
0 là đường tiệm cận ngang.

    Vậy đồ thị hàm số có nhiều nhất 3 đường tiệm cận ngang và tiệm cận đứng.

  • Câu 2: Thông hiểu

    Tính giá trị của tham số m biết rằng giá trị lớn nhất của hàm số y = x + \sqrt{4 - x^{2}} + m3\sqrt{2}?

    Ta có: y = x + \sqrt{4 - x^{2}} +
m có tập xác định D = \lbrack -
2;2brack

    y' = 1 + \frac{- x}{\sqrt{4 -
x^{2}}};\forall x \in ( - 2;2)

    y' = 0 \Leftrightarrow 1 + \frac{-
x}{\sqrt{4 - x^{2}}} = 0 \Leftrightarrow \sqrt{4 - x^{2}} =
x

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
4 - x^{2} = x^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x = \pm \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow x = \sqrt{2}

    Ta có: \left\{ \begin{matrix}
y(2) = 2 + m \\
y( - 2) = 2 + m \\
y\left( \sqrt{2} ight) = 2\sqrt{2} + m \\
\end{matrix} ight. . Theo bài ra ta có: 2\sqrt{2} + m = 3\sqrt{2} \Leftrightarrow m =
\sqrt{2}

    Vậy đáp án cần tìm là m =
\sqrt{2}

  • Câu 3: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Xét hàm g(x) = f\left( x^{2} - 2
ight). Mệnh đề nào dưới đây sai?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 2 ight)

    g'(x) = 0 \Leftrightarrow
2x.f'\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = - 1 \\
x^{2} - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Dựa vào đồ thị ta thấy f'\left( x^{2}
- 2 ight) > 0

    \Leftrightarrow x^{2} - 2 > 2
\Leftrightarrow x^{2} > 4 \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
x > 2 \\
\end{matrix} ight.

    Vậy hàm số g(x) nghịch biến trên ( - 1;0) là sai.

  • Câu 4: Thông hiểu

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Nhận biết

    Cho hàm số y = x^{4} - x^{2} +
6. Xác định số điểm cực trị của hàm số?

    Ta có: y = x^{4} - x^{2} + 6

    a.b = - 1 < 0 nên hàm số đã cho có 3 cực trị.

  • Câu 6: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Từ bảng biến thiên ta thấy hàm số đồng biến trên các khoảng ( - \infty; - 2)(0; + \infty).

    Vậy đáp án cần tìm là (0; +
\infty).

  • Câu 7: Thông hiểu

    Hàm số y = f(x) có bảng biến thiên như sau:

    Phương trình f(x) = m có ba nghiệm thực phân biệt khi và chỉ khi:

    Số nghiệm của phương trình f(x) =
m bằng số giao điểm của hai đồ thị hàm số \left\{ \begin{matrix}
y = f(x) \\
y = m \\
\end{matrix} ight..

    Dựa vào bảng biến thiên ta có phương trình f(x) = m có ba nghiệm thực phân biệt khi và chỉ khi - 2 < m < 2.

  • Câu 8: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên khoảng (1; + \infty)?

    Ta có:

    y = - x^{3} + x - 1 sai vì 2 < 3 nhưng f(2) = - 7 > f(3) = - 25

    y = \frac{3 - x}{x + 1} sai vì 2 < 3 nhưng f(2) = \frac{1}{3} > f(3) = - 0

    y = \frac{x - 2}{2x - 3} sai vì 1,1 < 2 nhưng f(1,1) = \frac{9}{8} > f(2) = 0

    y = x^{4} - x^{2} + 3 đúng vì y' = 4x^{3} - 2x = 2x\left( 2x^{2} - 1
ight) > 0;\forall x > 1 nên hàm số y = x^{4} - x^{2} + 3 đồng biến trên khoảng (1; + \infty).

  • Câu 9: Thông hiểu

    Cho các hàm số sau: y = x^{2} + 1;y =
\left( 2x^{2} - 1 ight)^{2};y = (2x - 1)\sqrt[3]{x^{2}};y =
\frac{x}{x^{2} + 1}. Có bao nhiêu hàm số có đúng một điểm cực trị?

    Ta có:

    y = x^{2} + 1y' = 2x \Rightarrow y' = 0 \Leftrightarrow
x = 0y' đổi dấu khi x qua nghiệm đó nên hàm số có đúng 1 điểm cực trị.

    y = \left( 2x^{2} - 1
ight)^{2}y' = 2\left(
2x^{2} - 1 ight).4x \Rightarrow y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm \frac{1}{\sqrt{2}} \\
\end{matrix} ight.y' đổi dấu khi x qua các nghiệm đó nên hàm số có 3 điểm cực trị.

    y = (2x - 1)\sqrt[3]{x^{2}} \Rightarrow
y' = 2\sqrt[3]{x^{2}} + \frac{2(2x - 1)}{3\sqrt[3]{x}} = \frac{10x -
2}{3\sqrt[3]{x}}

    \Rightarrow y' = 0 \Leftrightarrow x
= \frac{1}{5}; y’ không xác định khi x = 0 và y’ đổi dấu khi x qua 0;\frac{1}{5} nên hàm số có hai điểm cực trị.

    y = \frac{x}{x^{2} + 1} \Rightarrow
y' = \frac{1 - x^{2}}{\left( x^{2} + 1 ight)^{2}} = 0
\Leftrightarrow x = \pm 1 và y’ đổi dấu khi x qua các nghiệm đó nên hàm số có hai điểm cực trị.

    Vậy chỉ có một hàm số có đúng một cực trị.

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack - 1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack?

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 11: Nhận biết

    Một đường tiệm cận đứng của đồ thị hàm số y = \frac{x^{2} + 4x + 3}{(x - 2)\left( x^{2} - 1
ight)} là:

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{x^{2} + 4x + 3}{(x - 2)\left( x^{2} - 1 ight)}
= \lim_{x ightarrow 1^{+}}\frac{x + 3}{(x - 2)(x - 1)} = -
\infty

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{x^{2} + 4x + 3}{(x - 2)\left( x^{2} - 1 ight)}
= \lim_{x ightarrow 2^{+}}\frac{x + 3}{(x - 2)(x - 1)} = +
\infty

    Vậy một đường tiệm cận đứng của đồ thị hàm số là x = 1.

  • Câu 12: Vận dụng

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 13: Vận dụng cao

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng

    Cho hàm số y = f(x) có đạo hàm. Biết f(x) có đạo hàm f’(x) và hàm số y = f’(x) có đồ thị như hình vẽ:

    Điểm cực đại của hàm số

    Hàm số g(x) = f(x - 1) đạt cực đại tại điểm nào dưới đây?

    Cách 1: Ta có:

    \begin{matrix}  g'\left( x ight) = f'\left( {x - 1} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x - 1 = 1} \\   {x - 1 = 3} \\   {x - 1 = 5} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2} \\   {x = 4} \\   {x = 6} \end{array}} ight. \hfill \\ \end{matrix}

    \begin{matrix}  g'\left( x ight) = f'\left( {x - 1} ight) > 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {1 < x - 1 < 3} \\   {x - 1 > 5} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2 < x < 4} \\   {x > 6} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy chọn đáp án B

    Cách 2: Đồ thị hàm số g’(x) = f’(x – 1) là phép tịnh tiến đồ thị hàm số y = f’(x) theo phương trục hoành sang bên phải 1 đơn vị. Ta có hình vẽ minh họa:

    Điểm cực đại của hàm số

    Đồ thị hàm số g’(x) = f’(x – 1) cắt trục hoành tạo các điểm có hoành độ x = 2, x = 4, x = 6 và giá trị hàm số g’(x) đổi dấu từ dương sang âm khi qua điểm x = 4

    Chọn B

  • Câu 15: Thông hiểu

    Cho đồ thị hàm số y = f(x):

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f(x) + 2m - 1 = 0 có ba nghiệm phân biệt?

    Ta có: f(x) + 2m - 1 = 0 \Leftrightarrow
f(x) = 1 - 2m

    Để phương trình có ba nghiệm ta phải có -
2 < 1 - 2m < 2 \Leftrightarrow - \frac{1}{2} < m <
\frac{3}{2}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 16: Thông hiểu

    Tìm m để hàm số y = \frac{2x - 1}{x + m} đồng biến trên khoảng ( - \infty; - 5)?

    Điều kiện xác định: x eq -
m

    Ta có: y' = \frac{2m + 1}{(x +
m)^{2}}

    Hàm số y = \frac{2x - 1}{x + m} đồng biến trên ( - \infty; - 5) khi và chỉ khi \left\{ \begin{matrix}
y' > 0;\forall x \in ( - \infty; - 5) \\
x eq - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}2m + 1 > 0 \\m otin ( - \infty; - 5) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{2} \\- m \geq - 5 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{2} \\m \leq 5 \\\end{matrix} ight.

    \Leftrightarrow m \in \left( -
\frac{1}{2};5 ightbrack

    Vậy đáp án cần tìm là m \in \left( -
\frac{1}{2};5 ightbrack

  • Câu 17: Nhận biết

    Cho hàm số f(x) xác định, liên tục trên tập số thực và đồ thị của hàm số f'(x) là đường cong như hình vẽ bên dưới.

    Khẳng định nào sau đây là khẳng định đúng?

    Từ đồ thị của hàm số f'(x) ta có:

    f'(x) \leq 0;\forall x \in ( -
\infty; - 3) \cup ( - 2; + \infty)

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0; + \infty).

  • Câu 18: Nhận biết

    Đồ thị hàm số nào sau đây nhận điểm A(1;3) làm tâm đối xứng?

    Đồ thị hàm số y = \frac{3x + 4}{x -
1} có tiệm cận đứng là đường thẳng x = 1 và tiệm cận ngang là y = 3 suy ra giao điểm của hai đường tiệm cận là (1;3)

    Vậy điểm A(1;3) là tâm đối xứng của đồ thị hàm số y = \frac{3x + 4}{x -
1}.

  • Câu 19: Vận dụng cao

    Cho hàm số f(x) liên tục và có đạo hàm trên \mathbb{R}. Biết f(0) > 0. Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = \left| f(x) - \frac{x^{2}}{2}
ight| có bao nhiêu điểm cực trị?

    Xét g(x) = f(x) - \frac{x^{2}}{2}
\Rightarrow g'(x) = f'(x) - x.

    Từ đồ thị ta thấy: g'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Vì hệ số cao nhất của f(x) nhỏ hơn 0 nên hệ số cao nhất của g(x) cùng nhỏ hơn 0. Ta có bảng biến thiên:

    \Rightarrow g( x )=0 luôn có đúng 2 nghiệm bội lé.

    Số điểm cực trị của hàm số y = \left|
f(x) - \frac{x^{2}}{2} ight| là 5.

  • Câu 20: Vận dụng

    Xác định giá trị nhỏ nhất của biểu thức P = 4\left( {{m^2} + {n^2}} ight) - m - n, biết y = {\left( {x + m} ight)^3} + {\left( {x + n} ight)^3} - {x^3} với m,n là tham số và hàm số đồng biến trên \left( { - \infty ; + \infty } ight).

    Ta có:

    \begin{matrix}  y' = 3{\left( {x + m} ight)^2} + 3{\left( {x + n} ight)^2} - 3{x^2} \hfill \\   = 3\left[ {{x^2} + 2\left( {m + n} ight)x + {m^2} + {n^2}} ight] \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên \mathbb{R}

    \begin{matrix} y' \geqslant 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \Delta ' = {\left( {m + n} ight)^2} - {m^2} - {n^2} \leqslant 0 \hfill \\   \Rightarrow mn \leqslant 0 \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  P = 4\left( {{m^2} + {n^2}} ight) - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 8mn - \left( {m + n} ight) \hfill \\   \geqslant 4{\left( {m + n} ight)^2} - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 2.2\left( {m + n} ight).\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} \hfill \\   = {\left[ {2\left( {m + n} ight) - \dfrac{1}{4}} ight]^2} - \dfrac{1}{{16}} \geqslant  - \dfrac{1}{{16}} \hfill \\   \Rightarrow {P_{\min }} =  - \dfrac{1}{{16}} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo