Cho hàm số y = f(x) có bảng biến thiên như sau:

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Số đường tiệm cận ngang: 1
Số đường tiệm cận đứng: 1
Tổng số đường tiệm cận ngang và tiệm cận đứng: 2.
Cho hàm số y = f(x) có bảng biến thiên như sau:

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Số đường tiệm cận ngang: 1
Số đường tiệm cận đứng: 1
Tổng số đường tiệm cận ngang và tiệm cận đứng: 2.
Cho hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên khoảng
Xét hàm số ta có:
Suy ra hàm số nghịch biến trên khoảng
.
Cho hàm số
xác định và liên tục trên
và có bảng biến thiên như hình vẽ:

Tìm giá trị của tham số thực
để phương trình
có ít nhất hai nghiệm thực phân biệt?
Phương trình có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng
cắt đồ thị hàm số
tại ít nhất hai điểm phân biệt
Có bao nhiêu giá trị nguyên của tham số
để giá trị lớn nhất của hàm số
nhỏ hơn
?
Ta có:
Phương trình có nghiệm khi
Xét phương trình có
Suy ra phương trình luôn có hai nghiệm phân biệt. Do đó:
Suy ra . Theo yêu cầu bài toán ta có:
Mà suy ra
Vậy có tất cả 5 giá trị nguyên của tham số m thỏa mãn.
Giá trị lớn nhất của hàm số
trên khoảng (0; 3)
Tập xác định
Xét hàm số trên khoảng (0;3)
Ta có:
Ta có bảng biến thiên:

Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2
Cho hàm số
có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số
với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.
Cho hàm số
với
là tham số. Tìm tập hợp tất cả các giá trị của tham số
để hàm số đã cho đạt cực tiểu tại
?
Tập xác định .
Ta có: . Để hàm số đạt cực tiểu tại
thì
vậy tập hợp tất cả các giá trị của tham số m thỏa mãn yêu cầu bài toán là .
Có bao nhiêu số thực dương
để giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số trên đoạn
bằng
thì
.
Khi đó
Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.
Cho hàm số
. Giả sử
là tổng bình phương các giá trị của tham số
để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng
. Tính giá trị
? (Kết quả làm tròn đến chữ số thập phân thứ ba).
Cho hàm số . Giả sử
là tổng bình phương các giá trị của tham số
để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng
. Tính giá trị
? (Kết quả làm tròn đến chữ số thập phân thứ ba).
Giá trị lớn nhất của hàm số
trên đoạn
là:
Ta có:
Cho hàm số
có đồ thị như hình vẽ:

Tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đó?
Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là và đường tiệm cận ngang là
Cho hàm số
liên tục trên và có đồ thị như

Xét tính đúng sai của các khẳng định sau:
a) Hàm số
không có đạo hàm tại x = −2 và x = 2. Đúng||Sai
b) Hàm số
có ba điểm cực trị. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số
bằng −2 đạt được tại x = 0. Đúng||Sai
d) Hàm số
không có giá trị lớn nhất. Sai||Đúng
Cho hàm số liên tục trên và có đồ thị như
Xét tính đúng sai của các khẳng định sau:
a) Hàm số không có đạo hàm tại x = −2 và x = 2. Đúng||Sai
b) Hàm số có ba điểm cực trị. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số bằng −2 đạt được tại x = 0. Đúng||Sai
d) Hàm số không có giá trị lớn nhất. Sai||Đúng
a) Đúng: Hàm số không có đạo hàm tại x = −2 và x = 2.
b) Sai: Hàm số chỉ có một điểm cực trị là x = 0.
c) Đúng: Giá trị nhỏ nhất của hàm số bằng −2 đạt được tại x = 0.
d) Sai: Ta thấy , và có xảy ra dấu bằng nên hàm số
có giá trị lớn nhất.
Cho hàm số
. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)
Ta có:
Hàm số đã cho nghịch biến trên khoảng (0; +∞)
=>
=>
=>
Xét ta có:
Ta lại có:
Cho hàm số
. Mệnh đề nào dưới dây là đúng?
Tập xác định của hàm số
Ta có:
Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
Cho hàm số
có đạo hàm
. Mệnh đề nào sau đây đúng?
Xét ta có bảng xét dấu
như sau:
Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng , hàm số đồng biến trên khoảng
.
Cho hàm số
có đạo hàm
. Hàm số
có bao nhiêu điểm cực đại?
Từ giả thiết ta có bảng biến thiên của hàm số f(x)

Ta có:
g(x) = f(3 – x)
=> g’(x) = -f’(3 – x)
Từ bảng biến thiên của hàm số f(x) ta có:
=> Ta có bảng biến thiên của hàm số g(x) là:

Từ bảng biến thiên ta nhận thấy hàm số g(x) có một điểm cực đại.
Cho hàm số
có đạo hàm
. Tìm số điểm cực đại của hàm số đã cho.
Ta có:
Ta có bảng xét dấu:
Suy ra hàm số có một điểm cực đại.
Tính tổng tất cả các nghiệm của phương trình
là:
Xét hàm số
Nên hàm số đồng biến trên
Phương trình có dạng
Vậy tổng tất cả các nghiệm bằng .
Đồ thị hàm số nào dưới đây có dạng như hình vẽ?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.