Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận ngang là đường thẳng
.
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận ngang là đường thẳng
.
Gọi
lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Gọi lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Biết rằng giá trị nhỏ nhất của hàm số
trên đoạn
bằng
. mệnh đề nào sau đây đúng?
Ta có:
Suy ra hàm số luôn nghịch biến trên các khoảng và
Vì hàm số có giá trị nhỏ nhất trên đoạn nên
Hàm số có giá trị nhỏ nhất trên đoạn bằng
nên suy ra
Điều kiện của tham số
để hàm số
nghịch biến trên từng khoảng xác định là:
Xét hàm số ta có:
Tập xác định
Ta có:
Hàm số nghịch biến trên từng khoảng xác định
Vậy đáp án cần tìm là .
Hàm số nào sau đây đồng biến trên
?
Ta có hàm số có cơ số
nên đồng biến trên
.
Ngoài ra các hàm số ;
;
không thể đồng biến hoặc nghịch biến trên
.
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số nghịch biến trên một khoảng có độ dài bằng
. Tính tổng các phần tử của tập hợp
?
Ta có:
Dễ thấy nếu suy ra hàm số đồng biến trên
nên trường hợp này không thỏa mãn
Theo yêu cầu bài toán
Vậy tổng tất cả các phần tử của tập S bằng -2.
Cho hàm số
có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận ngang của đồ thị hàm số đã cho?

Từ đồ thị suy ra đồ thị hàm số đã cho có đường tiệm cận ngang là .
Giá trị của tham số m để đồ thị hàm số
có đường tiệm cận ngang
là:
Điều kiện để đồ thị hàm số có tiệm cận là:
luôn đúng với
Phương trình đường tiệm cận ngang là nên ta có
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm
cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).

Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình
. Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).
Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình . Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Tìm giá trị lớn nhất của hàm số
trên
?
Ta có:
Cho hàm số
có đồ thị như hình vẽ:

Tìm số điểm cực trị của hàm số
trên khoảng
?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng biến thiên suy ra hàm số có hai cực trị trên khoảng
.
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta thấy hàm số đã cho là hàm trùng phương với
nên đây là trường hợp hàm số có ba điểm cực trị.
Cho hàm số
với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d)
. Đúng||Sai
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d) . Đúng||Sai
Ta có:
Do hàm số đạt cực đại tại x = 3 nên
Với .
Bảng xét dấu y’ như sau:
Với
Bảng xét dấu y’ như sau:
Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3
Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số
trên đoạn [0; 4] bằng -1?
Ta có:
Với ta được hàm số f(x) đồng biến trên khoảng (0; 4)
=>
Theo bài ra ta có:
Kết hợp với điều kiện => m = -3 là giá trị cần tìm
Vậy có 1 giá trị của tham số m thỏa mãn yêu bài toán đề bài.
Tìm hàm số luôn đồng biến trên từng khoảng xác định?
Xét hàm số
Tập xác định . Ta có:
Vậy hàm số đồng biến trên các khoảng .
Có bao nhiêu giá trị nguyên dương của tham số
để hàm số
có
điểm cực trị?
Tập xác định
Ta có:
Xét phương trình
Xét hàm số trên
ta có:
và
Ta có bảng biến thiên của như sau:
Hàm số đã cho có 5 điểm cực trị khi và chỉ khi tổng số nghiệm bội lẻ của và số điểm tới hạn của
là 5 điểm. Do đó ta cần có các trường hợp sau:
TH1: Phương trình (*) có hai nghiệm phân biệt khác
trong trường hợp này có 26 số nguyên dương.
TH2: Phương trình (*) có 3 nghiệm trong đó có một nghiệm kép trùng với một trong các nghiệm
trường hợp này có một số nguyên dương.
Vậy có tất cả 27 số nguyên dương thỏa mãn yêu cầu bài toán.
Giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy .
Đồ thị được cho dưới đây là đồ thị của hàm số nào?

Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng
Cho hàm số
có bảng xét dấu của đạo hàm như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Hàm số đã cho đồng biến trên
Cho hàm số
có đồ thị
và đường thẳng
. Tất cả các giá trị của tham số
để
cắt
tại bốn điểm phân biệt?
Ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy đồ thị hàm số cắt đường thẳng
tại
điểm phân biệt
.