Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
=> y = 2 là tiệm cận ngang của đồ thị hàm số
Ta cũng có: => x = 1; x = 32 là tiệm cận đứng của đồ thị hàm số
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
=> y = 2 là tiệm cận ngang của đồ thị hàm số
Ta cũng có: => x = 1; x = 32 là tiệm cận đứng của đồ thị hàm số
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào?
Ta có:
Vậy hàm số nghịch biến trên khoảng
.
Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Tập xác định
Ta có: nên
là tiện cận ngang của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là .
Cho hàm số
,
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số có ba điểm cực trị khi và chỉ
. Đúng||Sai
b) Hàm số có hai điểm cực trị khi
. Sai|| Đúng
c) Hàm số có ba điểm cực trị khi và chỉ
. Sai|| Đúng
d) Hàm số có một điểm cực trị khi . Đúng||Sai
Cho hàm số ,
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số có ba điểm cực trị khi và chỉ . Đúng||Sai
b) Hàm số có hai điểm cực trị khi . Sai|| Đúng
c) Hàm số có ba điểm cực trị khi và chỉ . Sai|| Đúng
d) Hàm số có một điểm cực trị khi . Đúng||Sai
Nếu m = 0 thì hàm số đã cho trở thành.
Đây là hàm số đa thức bậc hai nên có 1 điểm cực trị.
Nếu thì hàm số đã cho là hàm số trùng phương có:
.
Ta có
Hàm số đã cho có ba điểm cực trị khi và chỉ khi phương trình (∗) có hai nghiệm phân biệt khác 0.
Điều kiện tương đương là:
Cho hàm số
có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số
trên
bằng:

Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số trên
bằng
.
Cho hàm số
, đồ thị của hàm số
là đường cong như hình vẽ:

Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Ta có:
trong đó các nghiệm
là nghiệm đơn và
là nghiệm kép.
nên ta có bảng biến thiên của hàm
như sau:
Vậy .
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Xét trên khoảng
ta có bảng biến thiên:
Suy ra mà
nên
Vậy có tất cả giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Tìm tất cả các khoảng đồng biến của hàm số ![]()
Tập xác định
Ta có:
=> Hàm số đồng biến trên (-3; 0)
Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?
Xét hàm số có:
Suy ra hàm số đồng biến trên tập số thực.
Hình vẽ sau đây mô tả đồ thị của hàm số
:

Chọn mệnh đề đúng?
Dựa vào đồ thị hàm số ta thấy hàm số đạt cực đại tại
và đạt cực tiểu tại
.
Tìm giá trị của tham số
để đồ thị hàm số
đi qua điểm
?
Đồ thị hàm số đi qua điểm nên ta có:
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Biết
là giá trị của tham số
để hàm số
có hai điểm cực trị
thỏa mãn
. Tính giá trị biểu thức
?
Xét hàm số
Ta có:
Hàm số có hai điểm cực trị khi và chỉ khi phương trình (*) có hai nghiệm phân biệt:
Khi đó theo định lí Vi – et ta có:
Theo giả thiết:
Tìm tập hợp các giá trị thực của m để đồ thị hàm số
có tiệm cận đứng là:
Điều kiện để đồ thị hàm số có tiệm cận là
Cho hàm số
là một hàm đa thức có bảng xét dấu
như sau:

Số điểm cực trị của hàm số
.
Ta có .
Số điểm cực trị của hàm số bằng hai lần số điểm cực trị dương của hàm số
cộng thêm 1.
Xét hàm số
Bảng xét dấu hàm số :
Hàm số có 2 điểm cực trị dương.
Vậy hàm số có 5 điểm cực trị.
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ bảng biến thiên ta thấy hàm số nghịch biến trên
Suy ra hàm số nghịch biến trên .
Biết đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi có
thuộc khoảng nào sau đây?
Phương trình hoành độ giao điểm là
Xét hàm số
Đồ thị có điểm uốn là
Để đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại
Cho hàm số
có đồ thị như hình vẽ sau:

Khi đó, giá trị lớn nhất của hàm số
trên
là:
Đặt
Cho hàm số
biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Cho hàm số biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?