Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Hàm số f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} có bao nhiêu điểm cực trị?

    Ta có:

    \begin{matrix}  f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} = {\left( {1 + x} ight)^{2019}} \hfill \\   \Rightarrow f'\left( x ight) = 2019.{\left( {1 + x} ight)^{2018}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow x =  - 1 \hfill \\ \end{matrix}

    Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.

  • Câu 2: Thông hiểu

    Đồ thị hàm số y = \frac{\sqrt{1 -
x^{2}}}{x^{2} + 2x} có bao nhiêu đường tiệm cận?

    Tập xác định D = \lbrack -
1;1brack\backslash\left\{ 0 ight\}

    Vì tập xác định của hàm số không chứa -
\infty+ \infty nên đồ thị hàm số không có đường tiệm cận ngang.

    Lại có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  + \infty  \hfill \\ 
\end{gathered}  ight.. Vậy đồ thị hàm số có 1 đường tiệm cận đứng x = 0.

  • Câu 3: Nhận biết

    Cho đồ thị hàm số y = f(x) có đồ thị như hình sau:

    Đồ thị hàm số trên có đường tiệm cận đứng là:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = - 1.

  • Câu 4: Thông hiểu

    Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 đồng biến trên tập số thực?

    Ta có: y' = x^{2} - 4m +
4

    Hàm số y = \frac{1}{3}x^{3} - 2mx^{2} +
4x - 5 đồng biến trên \mathbb{R}

    y' \geq 0;\forall x \Leftrightarrow
x^{2} - 4m + 4 \geq 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 > 0 \\
\Delta' = 4m^{2} - 4 \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 1 \leq m \leq 1

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1 ight\}

    Vậy số giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán là 3.

  • Câu 5: Vận dụng cao

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu

    Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}} trên tập D = \left( { - \infty ; - 1} ight] \cup \left[ {1;\frac{3}{2}} ight]. Tính giá trị H của m.M

    Tập xác định của hàm số y là: \left( { - \infty ; - 1} ight] \cup \left( {1; + \infty } ight]\backslash \left\{ 2 ight\}

    Ta có:

    \begin{matrix}  y' = \dfrac{{\dfrac{{x\left( {x - 2} ight)}}{{\sqrt {{x^2} - 1} }} - \sqrt {{x^2} - 1} }}{{{{\left( {x - 2} ight)}^2}}} = \dfrac{{ - 2x + 1}}{{\sqrt {{x^2} - 1} {{\left( {x - 2} ight)}^2}}} \hfill \\  y' = 0 \Rightarrow x = \dfrac{1}{2} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tìm GTLN, GTNN của hàm số

    Từ bảng biến thiên ta được:

    M = 0,m =  - \sqrt 5  \Rightarrow H = m.M = 0

  • Câu 7: Vận dụng

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Cho hàm số y = f(x) thỏa mãn f'(x) = x^{2}(x - 1);\forall
x\mathbb{\in R}. Mệnh đề nào sau đây đúng?

    Từ biểu thức của f'(x) ta có bảng xét dấu như sau:

    Dễ thấy hàm số đạt cực tiểu tại x =
1 nên mệnh đề “y = f(x) đạt cực tiểu tại x = 1” đúng và mệnh đề “y = f(x) đạt cực tiểu tại x = 0” sai.

    Hàm số có đúng một điểm cực trị nên mệnh đề “y = f(x) không có cực trị” sai và “y = f(x) có hai điểm cực trị” sai.

  • Câu 9: Thông hiểu

    Cho đồ thị hàm số có đồ thị như hình vẽ:

    Chọn khẳng định đúng

    Chọn khẳng định đúng?

    Đồ thị hàm số có tiệm cận đứng là: x = \frac{{ - d}}{c} và tiệm cận ngang là y = \frac{a}{c} ta có:

    => \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{ - d}}{c} > 0} \\   {\dfrac{a}{c} > 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {cd < 0} \\   {ac > 0} \end{array}} ight.

    Đồ thị hàm số cắt Ox tại \left( {\frac{{ - b}}{a};0} ight), cắt Oy tại \left( {0;\frac{b}{d}} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{ - b}}{a} > 0} \\   {\dfrac{b}{d} > 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {ab < 0} \\   {bd > 0} \end{array}} ight.

    Với a > 0 \Rightarrow b < 0;c > 0;d < 0

    Với a < 0 \Rightarrow b > 0;c < 0;d > 0

  • Câu 10: Nhận biết

    Chọn hàm số đồng biến trên \mathbb{R}?

    Xét hàm số y = 2x^{3} + 3x + 1 ta có:

    y' = 6x^{2} + 3 > 0;\forall
x\mathbb{\in R}

    Vậy hàm số y = 2x^{3} + 3x + 1 đồng biến trên \mathbb{R}.

  • Câu 11: Vận dụng cao

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Hàm số y = 2{x^4} - 4 đồng biến trên khoảng

    Ta có y’ = 8x => y’ = 0 => x = 0

    => y’ > 0 => x > 0

    => y’ < 0 => x < 0

    Vậy hàm số đồng biến trên khoảng \left( {0; + \infty } ight)

  • Câu 13: Thông hiểu

    Tìm tất cả các giá trị của tham số m để đường thẳng y = my =
- x^{3} + 6x^{2} tại ba điểm phân biệt?

    Ta có: y = - x^{3} + 6x^{2} \Rightarrow
y' = - 3x^{2} + 12x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Để đường thẳng y = - x^{3} +
6x^{2}y = m tại ba điểm phân biệt thì 0 < m <
32.

  • Câu 14: Nhận biết

    Giá trị lớn nhất của hàm số y = - x^{4} +
2x^{2} + 1 trên đoạn \lbrack -
2;5brack bằng:

    Ta có: y' = - 4x^{3} + 4x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 1 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}y( - 2) = - 5 \\y( - 1) = y(1) = 2 \\y(0) = 1 \\y(5) = - 574 \\\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;5brack}y =y(1) = 2

  • Câu 15: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định hàm số y = f(x)?

    Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba

    \lim_{x ightarrow + \infty}f(x) = +
\infty nên đáp án là y = x^{3} -
3x^{2} + 1.

  • Câu 16: Nhận biết

    Hàm số y = 2{x^3} - {x^2} + 5 có cực đại là:

    Ta có:

    \begin{matrix}  y' = 6{x^2} - 2x \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \dfrac{1}{3}} \end{array}} ight. \hfill \\  y'' = 12x - 2 \Rightarrow y''\left( 0 ight) =  - 2 < 0 \hfill \\ \end{matrix}

    => x = 0 là điểm cực đại của hàm số

  • Câu 17: Vận dụng

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 18: Thông hiểu

    Sự ảnh hưởng khi sử dụng một loại thuốc với cá thể X được một nhà sinh học mô tả bởi hàm số P(t) = \frac{t + 1}{t^{2} + t + 4}, trong đó P(t) là số lượng cá thể sau t giờ sử dụng thuốc. Vào thời điểm nào thì số lượng cá thể X bắt đầu giảm?

    Xét P(t) = \frac{t + 1}{t^{2} + t +
4} ta có: P'(t) = \frac{- t^{2}
- 2t + 3}{\left( t^{2} + t + 4 ight)^{2}} = \frac{(t - 1)( - t -
3)}{\left( t^{2} + t + 4 ight)^{2}}

    P'(t) = 0 \Leftrightarrow \frac{(t -
1)( - t - 3)}{\left( t^{2} + t + 4 ight)^{2}} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = - 3 \\
t = 1 \\
\end{matrix} ight.

    Ta thấy hàm số đạt cực đại tại t =
1P'(t) < 0;\forall t \in
(1; + \infty) nên sau 1 giờ thì cá thể bắt đầu giảm.

  • Câu 19: Vận dụng

    Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

    Đáp án: 2400 m2

    Đáp án là:

    Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

    Đáp án: 2400 m2

    Xét hình chữ nhật ABCD như hình vẽ, và đặtv AB = x (x > 0)

    Khi đó BC = 240 – 3x > 0 ⇒ x < 80.

    Diện tích của hình chữ nhật ABCD là S = x.(240 – 3x ) = 240x – 3x2

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x) với 0 < x < 80.

    Xét f(x) = 240x – 3x2 ⇒ f’(x) = 240 – 6x , f’(x) = 0 ⟺ x = 40.

    Do f’’(x) = - 6 < 0, ∀ x∈ (0; 80)

    Do đó maxS = \max_{x \in (0;80)}f(x) =
f(40) = 4800 \Leftrightarrow x = 40

    Vậy diện tích lớn nhất có thể bao quanh là 4800m2 .

  • Câu 20: Thông hiểu

    Cho hàm số f(x) có bảng xét dấu đạo hàm như hình vẽ:

    Hàm số y = f\left( 1 - x^{2}
ight) nghịch biến trên khoảng:

    Ta có: y' = - 2xf'\left( 1 -
x^{2} ight)

    y' = 0 \Leftrightarrow -
2xf'\left( 1 - x^{2} ight) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
- 2x = 0 \\
f'\left( 1 - x^{2} ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
1 - x^{2} = - 3 \\
1 - x^{2} = - 2 \\
1 - x^{2} = 0 \\
1 - x^{2} = 1 \\
1 - x^{2} = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 2 \\
x = \pm \sqrt{3} \\
x = \pm 1 \\
\end{matrix} ight.. Khi đó ta có bảng biến thiên:

    Hàm số y = f\left( 1 - x^{2}
ight) nghịch biến trên khoảng \left( \sqrt{3};2 ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo