Giá trị nhỏ nhất của hàm số
trên
là:
Ta có: nên hàm đồng biến trên
Do đó
Giá trị nhỏ nhất của hàm số
trên
là:
Ta có: nên hàm đồng biến trên
Do đó
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho là:
Quan sát bảng biến thiên nhận thấy giá trị cực tiểu của hàm số đã cho là .
Cho hàm số
liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:

Hàm số
nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho đồ thị hàm số
như hình vẽ:

Hàm số
đồng biến trên khoảng:
Ta có:
Nên suy ra hàm số cũng đồng biến trên .
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

Đáp án: 16 km
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 16 km
Đặt , với
Ta có:
Nhận định ngắn nhất khi
nhỏ nhất ( vì
không đổi).
Xét hàm số
.
Cho
Bảng biến thiên
Vậy
Khi đó
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Sai||Đúng
b) Đạo hàm của hàm số là
. Đúng||Sai
c) Giá trị lớn nhất của hàm số trên
là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên
là
. Đúng||Sai
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
Tập xác định của hàm số là .
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Ta có:
Khi đó
Ta có:
Biết đường tiệm cận xiên của đồ thị hàm số
cắt trục hoành và trục tung theo thứ tự tại hai điểm
. Khi đó diện tích tam giác
bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)
Đáp án: 0,25
Biết đường tiệm cận xiên của đồ thị hàm số cắt trục hoành và trục tung theo thứ tự tại hai điểm
. Khi đó diện tích tam giác
bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)
Đáp án: 0,25
Ta có
.
Do đó tiện cận xiên của đồ thị hàm số đã cho là .
Tiệm cận xiên của đồ thị hàm số cắt trục hoành, trục tung lần lượt là .
Xét tam giác vuông tại
, có:
=> Diện tích của tam giác là
Hình dưới đây là đồ thị của hàm số nào?

Từ đồ thị, ta thấy hàm số có tiệm cận đứng x = 1.
Khi đó loại các hàm số và
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 1 và cắt trục hoành tại điểm có hoành độ bằng 2 nên đáp án cần tìm là: .
Cho hàm số y = f(x) có đạo hàm liên tục trên
. Đồ thị hàm số y f’(x) như hình vẽ bên:

Số điểm cực trị của hàm số y = f(x) + 2x là:
Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:
Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị
Từ đó ta có bảng xét dấu như sau:

Vậy hàm số đã cho có đúng một cực trị
Cho hàm số
có đồ thị của đạo hàm f’(x) như hình vẽ:

Biết rằng e > n. Số điểm cực trị của hàm số
bằng bao nhiêu?
Cho hàm số có đồ thị của đạo hàm f’(x) như hình vẽ:

Biết rằng e > n. Số điểm cực trị của hàm số bằng bao nhiêu?
Cho hình vẽ là đồ thị hàm số
. Hỏi hàm số
đồng biến trên khoảng nào dưới đây?

Từ đồ thị ta có bảng xét dấu
như sau:
Vậy hàm số đồng biến trên khoảng
Tìm giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên đoạn
bằng
?
Xét hàm số trên đoạn
ta có:
Phương trình
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị của tham số
để hàm số đạt cực đại tại
?
Ta có:
Điều kiện cần: Hàm số đã cho có đạo hàm tại
Do đó hàm số đạt cực đại tại
Điều kiện đủ:
Với hàm số trở thành
Ta có:
Do đó hàm số không có cực trị.
Với hàm số trở thành
Ta có:
Bảng biến thiên
Suy ra hàm số đạt cực đại tại suy ra
thỏa mãn.
Vậy có duy nhất một giá trị của m thỏa mãn yêu cầu.
Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng
nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi
thì phần thứ hai bằng
nghìn đồng/giờ.
Xét tính đúng sai của các mệnh đề sau:
a) Khi vận tốc
thì chi phí nguyên liệu cho phần thứ nhất trên
đường sông là
đồng. Đúng||Sai
b) Hàm số xác định tổng chi phí nguyên liệu trên
đường sông với vận tốc
là
. Sai||Đúng
c) Khi vận tốc
thì tổng chi phí nguyên liệu trên
đường sông là
đồng. Đúng||Sai
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên
đường sông nhỏ nhất là
. Đúng||Sai
Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi
thì phần thứ hai bằng
nghìn đồng/giờ.
Xét tính đúng sai của các mệnh đề sau:
a) Khi vận tốc thì chi phí nguyên liệu cho phần thứ nhất trên
đường sông là
đồng. Đúng||Sai
b) Hàm số xác định tổng chi phí nguyên liệu trên đường sông với vận tốc
là
. Sai||Đúng
c) Khi vận tốc thì tổng chi phí nguyên liệu trên
đường sông là
đồng. Đúng||Sai
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên đường sông nhỏ nhất là
. Đúng||Sai
a) Đúng: Thời gian tàu chạy quãng đường 1 km là: (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: (đồng).
b) Sai: Gọi x (km/h) là vận tốc của tàu, x > 0
Thời gian tàu chạy quãng đường 1 km là: (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: (nghìn đồng)
Hàm chi phí cho phần thứ hai là (nghìn đồng/ giờ)
Khi (nghìn đồng/ giờ)
Do đó chi phí phần 2 để chạy 1 km là: (nghìn đồng)
Vậy tổng chi phí ,
c) Đúng. Tổng chi phí
Thay ta được
(nghìn đồng).
d) Đúng
Dấu ’’=’’ xảy ra khi x = 20.
Xác định giá trị thực của tham số
để hàm số
đồng biến trên khoảng
?
Tập xác định
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là .
Tìm tập hợp các giá trị thực của m để đồ thị hàm số
có tiệm cận đứng là:
Điều kiện để đồ thị hàm số có tiệm cận là
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
Ta có: suy ra tiệm cận ngang của đồ thị hàm số
là
.
Lại có suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy có tất cả 3 đường tiệm cận.
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

Đồ thị hàm số bậc 4 có hệ số cắt trục tung tại điểm có tung độ lớn hơn
nên hàm số cần tìm là
.
Cho hàm số
có đồ thị
và đường thẳng
. Tất cả các giá trị của tham số
để
cắt
tại bốn điểm phân biệt?
Ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy đồ thị hàm số cắt đường thẳng
tại
điểm phân biệt
.
Xác định hàm số nghịch biến trên
?
Xét hàm số ta có:
Nên hàm số nghịch biến trên
.