Tìm giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên đoạn
bằng
?
Xét hàm số trên đoạn
ta có:
Phương trình
Tìm giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên đoạn
bằng
?
Xét hàm số trên đoạn
ta có:
Phương trình
Xác định giá trị nhỏ nhất của biểu thức
, biết
với
là tham số và hàm số đồng biến trên
.
Ta có:
Hàm số đã cho đồng biến trên
Ta lại có:
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Biết
là giá trị của tham số
để hàm số
có hai điểm cực trị
thỏa mãn
. Tính giá trị biểu thức
?
Xét hàm số
Ta có:
Hàm số có hai điểm cực trị khi và chỉ khi phương trình (*) có hai nghiệm phân biệt:
Khi đó theo định lí Vi – et ta có:
Theo giả thiết:
Cho hàm số
. Trên đoạn
hàm số có giá trị nhỏ nhất là
. Tìm giá trị của
?
Ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra .
Vậy là giá trị cần tìm.
Số các giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có: . Hàm số nghịch biến trên khoảng
khi
Vì
Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số có đồ thị hàm số như hình vẽ.

Chọn khẳng định đúng trong các khẳng định dưới đây?
Dựa vào đồ thị hàm số ta thấy:
=> Hệ số a < 0 => Loại đáp án C và D
Đồ thị hàm số đi qua điểm =>
Hàm số có ba cực trị => ab < 0
Do a < 0 => b > 0
Đồ thị hàm số đi qua điểm có tọa độ =>
Cho hàm số
với
là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Cho hàm số với
là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Tất cả các giá trị của tham số
để đồ thị hàm số
có duy nhất một đường tiệm cận là:
Ta có: nên đồ thị hàm số luôn có một đường tiệm cận ngang là
.
Vậy để đồ thị hàm số có duy nhất một đường tiệm cận thì đồ thị hàm số không có đường tiệm cận đứng, hay phương trình
vô nghiệm
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Vì nên đồ thị hàm số luôn nghịch biến trên các khoảng
.
Vậy mệnh đề sai là: "Hàm số đồng biến trên ".
Cho hàm số
có bảng biến thiên như hình vẽ.

Tính giá trị của biểu thức ![]()
Ta có:
Mặt khác
Cho hàm số bậc bốn có đồ thị như hình vẽ dưới đây:

Số điểm cực trị của hàm số
là:
Ta có:
Cho hàm số bậc ba
có đồ thị như hình vẽ dưới đây.

Đồ thị hàm số
có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.
Đặt khi đó
thì
Khi đó
=> y = 0 là tiệm cận ngang của đồ thị hàm số g(x)
Mặt khác
=> Đồ thị hàm số g(x) có ba đường tiệm cận đứng.
Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên mỗi khoảng và
.
Cho hàm số y = f(x) có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Dựa vào bảng biến thiên ta có:
=> y = 0 là một tiệm cận ngang
=> y = 5 là một tiệm cận ngang
=> x = 1 là một tiệm cận đứng
Vậy đồ thị hàm số có tổng số đường tiệm cận là 3 đường
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
, trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Xét ta có:
Mặt khác
Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

Quan sát đồ thị hàm số ta thấy:
Hàm số có dạng hàm số bậc bốn trùng phương:
=> Loại đáp án B
Đồ thị có nhánh cuối của đồ thị đi lên
=> Hệ số a > 0
=> Loại đáp án A
Đồ thị hàm số cắt trục tung tại điểm O
=> c = 0
=> Loại đáp án C
Giá trị nhỏ nhất của hàm số
trên
là:
Ta có: nên hàm đồng biến trên
Do đó
Cho hàm số
có đồ thị như hình vẽ:

Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào đồ thị của hàm số ta thấy giá trị cực tiểu của hàm số bằng -2.
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .