Cho hàm số
với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vậy đáp án cần tìm là .
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vậy đáp án cần tìm là .
Cho hàm số
có đạo hàm
. Mệnh đề nào sau đây đúng?
Xét ta có bảng xét dấu
như sau:
Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng , hàm số đồng biến trên khoảng
.
Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số
?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên đoạn
?
Theo yêu cầu bài toán ta có:
Để hàm số đồng biến trên đoạn
Đặt
Vậy là đáp án cần tìm.
Hàm số nào dưới dây nghịch biến trên khoảng
?
Xét hàm số có
nên hàm số
nghịch biến trên khoảng
.
Cho hàm số
có: ![]()
![]()
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số
có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số
có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số
không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số
không có tiệm cận đứng. Sai|| Đúng
Cho hàm số có:
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số không có tiệm cận đứng. Sai|| Đúng
a) Do nên
là đường tiệm cận ngang của đồ thị hàm số. (*)
b) Do nên
là đường tiệm cận đứng của đồ thị hàm số. (**)
c) Từ (*) suy ra khẳng định này sai.
d) Từ (**) suy ra khẳng định này sai.
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ
là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Điều kiện .
Ta có ,
,
.
Bảng biến thiên:
Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ .
Đáp số: .
Cho hàm số
với
là tham số. Tìm các giá trị nguyên dương tham số
không vượt quá
để hàm số đã cho có ba điểm cực trị?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi
Mà không vượt quá
nên
suy ra có
giá trị thỏa mãn yêu cầu.
Số điểm cực trị của hàm số
là?
Xét hàm số
Ta có:
Ta có bảng biến thiên:

Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2
=> Hàm số có 5 điểm cực trị
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Gọi
là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số
xác định trên R và có đồ thị hàm số
là đường cong như hình vẽ:

Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.
a) Hàm số
nghịch biến trên khoảng
. Sai||Đúng
b) Hàm số
nghịch biến trên khoảng
. Đúng||Sai
c) Hàm số
đạt cực đại tại
. Đúng||Sai
d) Hàm số
đạt cực tiểu tại
. Sai||Đúng
Cho hàm số xác định trên R và có đồ thị hàm số
là đường cong như hình vẽ:
Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.
a) Hàm số nghịch biến trên khoảng
. Sai||Đúng
b) Hàm số nghịch biến trên khoảng
. Đúng||Sai
c) Hàm số đạt cực đại tại
. Đúng||Sai
d) Hàm số đạt cực tiểu tại
. Sai||Đúng
Từ đồ thị hàm số , ta có bảng biến thiên
a) Từ bảng biến thiên hàm số đồng biến trên khoảng (−1; 0) và nghịch biến trên khoảng (0; 1).
b) Từ bảng biến thiên ta thấy hàm số y = f(x) nghịch biến trên (0; 2).
c) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực đại tại x = 0.
d) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực tiểu tại x = −2 và x = 2.
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.
Ta có:
Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình có hai nghiệm phân biệt thỏa mãn
Hàm số
đạt cực tiểu tại điểm
Ta có: có tập xác định
=> Hàm số đạt cực tiểu tại điểm x = 1
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
.
Suy ra hàm số tương ứng với đồ thị đã cho là .
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là
. Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là . Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Cho hàm số bậc bốn y = f(x) có đồ thị (C1) và hàm số y = f’(x) có đồ thị (C2) như hình vẽ bên. Số điểm cực trị của đồ thị hàm số
trên khoảng
là:

Ta có:

Xét
Từ đồ thị ta được:
Phương trình có nghiệm đơn
Phương trình có 2 nghiệm đơn và 1 nghiệm bội chẵn (x = 0)
Phương trình có 1 nghiệm đơn.
Vậy g’(x) = 0 có 8 nghiệm đơn nên hàm số g(x) có 8 điểm cực trị.
Cho hàm số
. Tìm khẳng định đúng?
Ta có:
. Ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu ta suy ra hàm số nghịch biến trên khoảng .
Cho hàm số
có bảng xét dấu đạo hàm như hình vẽ:

Hàm số
nghịch biến trên khoảng:
Ta có:
. Khi đó ta có bảng biến thiên:
Hàm số nghịch biến trên khoảng
.
Giá trị trị lớn nhất của hàm số
trên đoạn
bằng
Ta có .
Do đó ,
,
.
Vậy
Cho hàm số
.
a) Đạo hàm của hàm số đã cho là
. Đúng||Sai
b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi
. Đúng||Sai
c) Bảng biến thiên của hàm số đã cho như sau:
Sai||Đúng
d) Đồ thị của hàm số đã cho là đường cong trong hình sau:
Đúng||Sai
Cho hàm số .
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi . Đúng||Sai
c) Bảng biến thiên của hàm số đã cho như sau:
Sai||Đúng
d) Đồ thị của hàm số đã cho là đường cong trong hình sau:
Đúng||Sai
Ta có: ,
nên đạo hàm của hàm số đã cho nhận giá trị âm với mọi
.
Bảng biến thiên:
Hàm số đã cho nghịch biến trên các khoảng và
.
Đồ thị của hàm số có tiệm cận đứng , tiệm cận ngang
, nhận điểm
là giao điểm của hai đường tiệm cận làm tâm đối xứng.
Đồ thị hàm số cắt trục tại điểm
và đi qua điểm có tọa độ
.