Hàm số
nghịch biến trên khoảng:
Tập xác định
Ta có:
Vậy hàm số nghịch biến trên khoảng
Hàm số
nghịch biến trên khoảng:
Tập xác định
Ta có:
Vậy hàm số nghịch biến trên khoảng
Cho hàm số
có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Điều kiện xác định của hàm số là
Từ bảng biến thiên ta có:
Tập xác định
Ta có:
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận đứng
.
suy ra đồ thị hàm số có tiệm cận đứng
.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là
.
Cho hàm số
có bảng biến thiên như sau:

Có bao nhiêu giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm phân biệt thì
Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:

Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Cho hàm số
có đồ thị như hình vẽ sau:

Khi đó, giá trị lớn nhất của hàm số
trên
là:
Đặt
Cho hàm số y = f(x) có đạo hàm f’(x) = x2 + 1,
. Mệnh đề nào dưới đây đúng?
Ta có:
f’(x) = x2 + 1 > 0,
=> Hàm số đống biến trên khoảng (-∞; +∞)
Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số
trên tập
. Tính giá trị H của m.M
Tập xác định của hàm số y là:
Ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta được:
Cho hàm số f(x) liên tục trên khoảng (0; +∞) thỏa mãn
, với f(x) ≠ 0 với ∀x ∈ (0; +∞) và
. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Tính tổng M + m.
Ta có:
Thay x = 1 vào ta có:
Ta có bảng biến thiên

Khi đó f(x) đồng biến trên [1; 2]
=>
Xác định tâm đối xứng của đồ thị hàm số
?
Ta có:
suy ra tiệm cận ngang là
suy ra tiệm cận đứng là
Tâm đối xứng của đồ thị hàm số là .
Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

Khẳng định nào dưới đây sai?
Quan sát đồ thị hàm số ta có:
Đáp án A sai vì hàm số không nghịch biến trên
Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2
Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.
Đáp án D đúng vì
Cho hàm số
xác định trên
, liên tục trên các khoảng xác định và có bảng biến thiên như sau:

Tìm tập hợp các giá trị của tham số
để phương trình
có ba nghiệm phân biệt?
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số
và đường thẳng
Dựa vào bảng biến thiên ta suy ra để phương trình đã cho có ba nghiệm phân biệt thì .
Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Tập xác định
Ta có: nên
là tiện cận ngang của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là .
Tìm các giá trị của tham số
để hàm số
có ba điểm cực trị
;
thỏa mãn
?
Tập xác định
Ta có:
Để hàm số có ba cực trị thì
Suy ra ;
Vậy đáp án đúng là
Cho hàm số
có đạo hàm
. Số điểm cực trị của hàm số đã cho là:
Ta có:
Ta có bảng xét dấu:
Vậy hàm số đã cho có một điểm cực trị.
Hàm số
có bao nhiêu điểm cực trị?
Ta có:
Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.
Cho hàm số
luôn nghịch biến trên
. Tập nghiệm của bất phương trình
là:
Vì hàm số luôn nghịch biến trên
nên ta có:
Vậy tập nghiệm của bất phương trình là
Cho hàm số
có đạo hàm trên
là
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có: . Lập bảng xét dấu như sau:
Suy ra hàm số đồng biến trên khoảng
Hàm số
liên tục trên đoạn
và có bảng biến thiên như sau.

Gọi
và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a)
Sai|| Đúng
b)
Sai|| Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Hàm số liên tục trên đoạn
và có bảng biến thiên như sau.
Gọi và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a) Sai|| Đúng
b) Sai|| Đúng
c) Đúng||Sai
d) Đúng||Sai
Dựa vào bảng biến thiên trên ta có:
Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)
Ta có: . Theo yêu cầu bài toán ta có:
=>
Xét hàm số
Ta có bảng biến thiên như sau:

Vậy
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?