Số điểm cực trị của hàm số là?
Xét hàm số
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2
=> Hàm số có 5 điểm cực trị
Số điểm cực trị của hàm số là?
Xét hàm số
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2
=> Hàm số có 5 điểm cực trị
Cho hàm số có
. Có bao nhiêu giá trị nguyên của
để
?
Ta có: suy ra hàm số
đồng biến trên
Suy ra
Vậy có tất cả 21 giá trị nguyên của .
Cho hàm số . Hãy chọn khẳng định đúng?
Tập xác định
Ta có: nên hàm số đồng biến trên các khoảng
và
.
Đồ thị hàm số là hình nào trong 4 hình dưới đây?
Ta có:
Khi đó .
Do đó, chọn đáp án là: Hình 2
Cho hàm số liên tục trên
và có đạo hàm
với mọi
. Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Cho hàm số liên tục trên
và có đạo hàm
với mọi
. Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Cho hàm số bậc ba có đồ thị là đường cong như hình vẽ:
Có bao nhiêu giá trị nguyên của tham số để hàm số
có đúng ba điểm cực trị?
Cho hàm số bậc ba có đồ thị là đường cong như hình vẽ:
Có bao nhiêu giá trị nguyên của tham số để hàm số
có đúng ba điểm cực trị?
Số tiệm cận của đồ thị hàm số là:
Ta có:
Suy ra là tiệm cận ngang.
suy ra
là tiệm cận đứng.
suy ra
là tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Số đường tiệm cận của đồ thị hàm số là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Cho hàm số . Trên đoạn
hàm số có giá trị nhỏ nhất là
. Tìm giá trị của
?
Ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra .
Vậy là giá trị cần tìm.
Cho hàm số với
là tham số. Gọi
là tập hợp các số nguyên
để hàm số đã cho nghịch biến trên khoảng
. Xác định số phần tử của tập hợp
?
Xét là hàm hằng nên hàm số không nghịch biến. Vậy
không thỏa mãn.
Xét
Tập xác định
Để hàm số nghịch biến trên khoảng khi và chỉ khi
Mà nên
Vậy tập hợp S có tất cả 9 giá trị.
Biết rằng đồ thị hàm số có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng
. Hỏi có bao nhiêu giá trị của tham số
thỏa mãn yêu cầu?
Biết rằng đồ thị hàm số có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng
. Hỏi có bao nhiêu giá trị của tham số
thỏa mãn yêu cầu?
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Từ bảng biến thiên ta có:
suy ra đồ thị hàm số có tiệm cận ngang
suy ra đồ thị hàm số có tiệm cận đứng
Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng và tiệm cận ngang
”.
Cho hàm số . Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)
Ta có:
Hàm số đã cho nghịch biến trên khoảng (0; +∞)
=>
=>
=>
Xét ta có:
Ta lại có:
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có bảng xét dấu:
Từ bảng xét dấu trên ta có hàm số đồng biến trên
.
Quan sát hình vẽ sau:
Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng là
nên hàm số tương ứng là
.
Cho hàm số có bảng biến thiên như sau:
Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.
Từ bảng biến thiên ta có: .
Cho hàm số có đồ thị như hình vẽ:
Tập hợp các giá trị của tham số để phương trình
có đúng ba nghiệm phân biệt là:
Đồ thị hàm số có được bằng cách tịnh tiến đồ thị hàm số
sang trái hoặc sang phải theo phương song song với trục hoành
đơn vị.
Suy ra phương trình có đúng ba nghiệm phân biệt khi và chỉ khi
.
Giá trị trị lớn nhất của hàm số trên đoạn
bằng
Ta có .
Do đó ,
,
.
Vậy
Tìm giá trị của để bất phương trình
có nghiệm trên khoảng
?
Bất phương trình có nghiệm trên khoảng
Với
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta suy ra .
Cho hàm số với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.