Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 3}{\sqrt{9 - x^{2}}} là:

    Tập xác định D = ( - 3;3) suy ra đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 3^{-}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x - 3}{\sqrt{(3 -
x)(3 + x)}} = \lim_{x ightarrow 3^{-}}\frac{- \sqrt{3 - x}}{\sqrt{3 +
x}} = 0

    Suy ra x = 3 không là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - 3^{+}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x - 3}{\sqrt{(3
- x)(3 + x)}} = \lim_{x ightarrow - 3^{+}}\frac{- \sqrt{3 -
x}}{\sqrt{3 + x}} = - \infty

    Suy ra x = - 3 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có 1 đường tiệm cận.

  • Câu 2: Thông hiểu

    Đồ thị hàm số y = f(x) được biểu diễn trong hình vẽ như sau:

    Tìm tất cả các giá trị thực của tham số m để phương trình \left| f(x) ight| = m có đúng hai nghiệm phân biệt?

    Số nghiệm của phương trình \left| f(x)
ight| = m chính là giao điểm của hai đồ thị \left\{ \begin{matrix}
y = \left| f(x) ight| \\
y = m \\
\end{matrix} ight.

    Minh họa trực quan:

    Vậy để hàm số \left| f(x) ight| =
m có đúng hai nghiệm thì \left\lbrack \begin{matrix}
m > 5 \\
0 < m < 1 \\
\end{matrix} ight..

  • Câu 3: Nhận biết

    Cho hàm số y = \frac{{\sqrt {{x^2} - 4} }}{{x - 1}}. Đồ thị hàm số có mấy đường tiệm cận?

    Tập xác định: D = \left( { - \infty ;2} ight] \cup \left[ {2; + \infty } ight)

    Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.

    \begin{matrix}  \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {{x^2} - 4} }}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|\sqrt {1 - \dfrac{4}{{{x^2}}}} }}{{x\left( {1 - \dfrac{1}{x}} ight)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|}}{x} \hfill \\   = \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

  • Câu 4: Thông hiểu

    Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y= \frac{x - 1}{x + m - 2} nghịch biến trên khoảng (6; + \infty)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số y= \frac{x - 1}{x + m - 2} nghịch biến trên khoảng (6; + \infty)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Vận dụng

    Cho hàm số y = \frac{x + m}{x -
1} thỏa mãn \min_{\lbrack
2;4brack}y = 3. Chọn mệnh đề đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y' = \frac{- 1 - m}{(x -
1)^{2}}. Vì hàm số đơn điệu trên \lbrack 2;4brack nên

    \left[ \begin{gathered}
  \mathop {\min }\limits_{\left[ {2;4} ight]} y = y\left( 2 ight); - 1 - m > 0 \hfill \\
  \mathop {\min }\limits_{\left[ {2;4} ight]} y = y\left( 4 ight); - 1 - m < 0 \hfill \\ 
\end{gathered}  ight.\mathop  \to \limits^{\mathop {\min }\limits_{\left[ {2;4} ight]} y = 3} \left[ \begin{gathered}
  3 = 2 + m;m <  - 1 \hfill \\
  3 = \dfrac{{4 + m}}{3};m >  - 1 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = 1;m < - 1 \\
m = 5;m > - 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 5

    Nếu m = - 1 ightarrow y = 1 Hàm số không có giá trị lớn nhất

    Vậy m > 4

  • Câu 6: Thông hiểu

    Giả sử m là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x} trên khoảng \left( {0; + \infty } ight). Tính giá trị của m.

    Ta có:

    \begin{matrix}  y' = 1 - \dfrac{4}{{{x^2}}} \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tính GTNN của hàm số trên khoảng

    => Giá trị nhỏ nhất của hàm số bằng 4

    => y(2) = 4

    => m = 4

  • Câu 7: Thông hiểu

    Số các giá trị nguyên của tham số m để hàm số y
= \frac{1}{3}x^{3} - x^{2} - 3x + 2m + 7 có giá trị nhỏ nhất trên đoạn \lbrack 2;4brack thuộc khoảng ( - 5;8) là:

    Xét hàm số y = \frac{1}{3}x^{3} - x^{2} -
3x + 2m + 7 trên \lbrack
2;4brack ta có:

    y' = x^{2} - 2x - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}y(2) = - \dfrac{1}{3} + 2m \\y(4) = \dfrac{1}{3} + 2m \\y(3) = - 2 + 2m \\\end{matrix} ight.\  \Rightarrow \min_{\lbrack 2;4brack}y = - 2 + 2m\in ( - 5;8)

    \Leftrightarrow - 5 < - 2 + 2m < 8
\Leftrightarrow - 3 < 2m < 10 \Leftrightarrow - \frac{3}{2} < m
< 5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.

  • Câu 8: Vận dụng cao

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như sau:

    Số cực trị của hàm số

    Hàm số g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) có bao nhiêu điểm cực trị?

    Xét hàm số t\left( x ight) = \frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}, ta có bảng giá trị |t(x)|

    Số cực trị của hàm số

    Ta có: g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) = f\left( {\left| {t\left( x ight)} ight|} ight)

    Hàm số không có đạo hàm tại điểm x =  \pm \sqrt {{e^2} - 1}

    Tại mọi điểm x =  \pm \sqrt {{e^2} - 1} ta có:

    g'\left( x ight) = f'\left( {\left| {t\left( x ight)} ight|} ight).\left( {\left| {t\left( x ight)} ight|} ight)'

    = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \infty ; - \sqrt {{e^2} - 1} } ight) \cup \left( {\sqrt {{e^2} - 1} ; + \infty } ight)} \\   { - \dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \sqrt {{e^2} - 1} ;\sqrt {{e^2} - 1} } ight)} \end{array}} ight.\left( * ight)

    => g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {\left| {t\left( x ight)} ight| = {t_1};\left( {{t_1} < 1} ight){\text{   }}\left( 1 ight)} \\   {\left| {t\left( x ight)} ight| = {t_2};\left( { - 1 < {t_2} < 0} ight){\text{   }}\left( 2 ight)} \\   {\left| {t\left( x ight)} ight| = {t_3};\left( {0 < {t_3} < 1} ight){\text{   }}\left( 3 ight)} \\   {\left| {t\left( x ight)} ight| = {t_4};\left( {{t_4} > 1} ight){\text{   }}\left( 4 ight)} \end{array}} ight.

    Dựa vào bảng giá trị hàm |t| suy ra:

    + Phương trình (1), (2) vô nghiệm

    + Phương trình (3) có 4 nghiệm phân biệt khác 0

    + Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)

    => g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu

    Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm x =  \pm \sqrt {{e^2} - 1}

    Vậy hàm số g(x) có 9 điểm cực trị.

  • Câu 9: Vận dụng

    Cho hàm số bậc ba y = f(x) =\frac{1}{3}x^{3} - (m - 2)x^{2} - 9x + 1 với m là tham số. Gọi x_{1};x_{2} là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức \left| 9x_{1} - 25x_{2} ight|?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số bậc ba y = f(x) =\frac{1}{3}x^{3} - (m - 2)x^{2} - 9x + 1 với m là tham số. Gọi x_{1};x_{2} là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức \left| 9x_{1} - 25x_{2} ight|?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hãy phương trình 2\left| f(x) ight| - 1
= 0 có bao nhiêu nghiệm thuộc khoảng (0; + \infty)?

    Ta có: 2\left| f(x) ight| - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}f(x) = \dfrac{1}{2} \\f(x) = - \dfrac{1}{2} \\\end{matrix} ight.

    Từ đồ thị hàm số ta thấy đường thẳng y =
\frac{1}{2} cắt đồ thị tại hai điểm phân biệt, đường thẳng y = - \frac{1}{2} cắt đồ thị tại 4 điểm phân biệt do đó phương trình f(x) =
\frac{1}{2} có hai nghiệm phân biệt và phương trình f(x) = - \frac{1}{2} có 4 nghiệm phân biệt

    Vậy phương trình 2\left| f(x) ight| - 1
= 0 có tất cả 6 nghiệm thực phân biệt.

  • Câu 11: Nhận biết

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong hình bên.

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Từ đồ thị đã cho ta thấy hàm số nghịch biến trên khoảng (0;2).

  • Câu 12: Vận dụng

    Tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x - 1}{x^{2} - 3x + m} có đúng hai đường tiệm cận?

    Ta có: \lim_{x ightarrow +
\infty}\frac{x - 1}{x^{2} - 3x + m} = \lim_{x ightarrow -
\infty}\frac{x - 1}{x^{2} - 3x + m} = 0

    Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang y = 0. Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.

    Tam thức h(x) = x^{2} - 3x + m\Delta = 9 - 4m

    Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:

    \left[ \begin{gathered}
  \Delta  = 9 - 4m = 0 \hfill \\
  \left\{ \begin{gathered}
  \Delta  = 9 - 4m > 0 \hfill \\
  h\left( 1 ight) = 0 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  \left\{ \begin{gathered}
  m < \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy m \in \left\{ 2;\frac{9}{4}
ight\}.

  • Câu 13: Nhận biết

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)
= \frac{2x - 1}{x + 2} trên đoạn \lbrack 0;2brack. Giá trị biểu thức T = 2m + 4M là:

    Ta có: y' = \frac{5}{(x + 2)^{2}}
> 0;\forall x eq - 2 nên hàm số đồng biến trên \lbrack 0;2brack

    \Rightarrow \left\{ \begin{matrix}\max_{\lbrack 0;2brack}y = f(2) = \dfrac{3}{4} \\\min_{\lbrack 0;2brack}y = f(0) = - \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow T = 2m + 4M = 2.

  • Câu 14: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, đạo hàm y = f'(x) có đồ thị như hình vẽ sau:

    Tìm số điểm cực tiểu của hàm số y =
f(x)?

    Hàm số đạt cực tiểu tại điểm có f'(x) đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.

  • Câu 15: Thông hiểu

    Cho hàm số y = \sqrt {{x^2} - 6x + 5}. Mệnh đề nào sau đây đúng?

    Tập xác định của hàm số là: D = \left( { - \infty ;1} ight] \cup \left[ {5; + \infty } ight)

    Ta có: y' = \frac{{x - 3}}{{\sqrt {{x^2} - 6x + 5} }} > 0,\forall x \in \left( {5; + \infty } ight)

    Vậy hàm số đồng biến trên khoảng (5; +∞)

  • Câu 16: Thông hiểu

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= x^{4} - 5(m - 3)x^{2} + 3m^{2} - 4 đạt cực tiểu tại x = 0 là:

    Ta có: y' = 4x^{3} - 10(m -
3)x

    \Rightarrow y' = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \\x^{2} = \dfrac{10(m - 3)}{4} \\\end{matrix} ight.

    Trường hợp 1: m - 3 > 0
\Leftrightarrow m > 3. Khi đó ta có bảng xét dấu như sau:

    Dựa vào bảng biến thiên ta thấy x =
0 là điểm cực đại nên trường hợp này không thỏa mãn.

    Trường hợp 2: m - 3 \leq 0
\Leftrightarrow m \leq 3 ta có bảng xét dấu như sau:

    Dựa vào bảng biến thiên ta thấy x =
0 là điểm cực tiểu. Vậy m \leq
3 thỏa mãn yêu cầu bài toán.

  • Câu 17: Vận dụng cao

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng

    Cho hàm số y =  - {x^3} + 3{x^2} + 3mx - 1. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)

    Ta có: y' =  - 3{x^2} + 6x + 3m

    Hàm số đã cho nghịch biến trên khoảng (0; +∞)

    =>  y' \leqslant 0,\forall x \in \left( {0; + \infty } ight)

    => m \leqslant {x^2} - 2x = g\left( x ight),\forall x \in \left( {0; + \infty } ight)

    => m \leqslant \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight)

    Xét  g\left( x ight) = {x^2} - 2x;\forall x \in \left( {0; + \infty } ight) ta có:

    \begin{matrix}  g'\left( x ight) = 2x - 2 \hfill \\  g'\left( x ight) = 0 \Rightarrow x = 1 \hfill \\ \end{matrix}

    Ta lại có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to 0} g\left( x ight) = 0} \\   {\mathop {\lim }\limits_{x \to \infty } g\left( x ight) =  + \infty } \\   {g\left( 1 ight) =  - 1} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight) =  - 1 \Rightarrow m \leqslant  - 1

  • Câu 19: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 20: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Quan sát bảng biến thiên, ta có các kết quả sau:

    a) Hàm số đồng biến trên (−∞; 1) nên khẳng định hàm số đồng biến trên (−∞; 2) là sai.

    b) Hàm số nghịch biến trên (1; +∞).

    c) Hàm số có đúng 1 điểm cực trị là x = 1.

    d) Hàm số có đạt cực đại tại x = 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo