Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{1 + \sqrt{x + 1}}{x^{2} - 2x -
m} có đúng hai tiệm cận đứng?

    Điều kiện xác định x \geq -
1

    1 + \sqrt{x + 1} > 0;\forall x \geq
- 1 nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình x^{2} - 2x = m\ \ (*) phải có hai nghiệm phân biệt lớn hơn -
1.

    Xét hàm số f(x) = x^{2} - 2x trên \lbrack - 1; + \infty) có:

    f'(x) = 2x - 2 = 0 \Rightarrow x =
1

    Bảng biến thiên

    Phương trình (*) có hai nghiệm phân biệt lớn hơn - 1 khi - 1
< m \leq 3.

    Vậy đáp án cần tìm là m \in ( -
1;3brack.

  • Câu 2: Thông hiểu

    Biết giá trị lớn nhất của hàm số y = -
2x^{3} + 3x^{2} + m trên đoạn \lbrack 0;2brack bằng 5. Tìm giá trị của tham số m?

    Ta có: y' = - 6x^{2} + 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên ta có:

    \max_{\lbrack 0;2brack}f(x) = 5
\Leftrightarrow f(1) = 5 \Leftrightarrow m + 1 = 5 \Leftrightarrow m =
4

  • Câu 3: Nhận biết

    Đồ thị của hàm số nào tương ứng với đồ thị trong hình vẽ sau:

    Đồ thị hàm số ứng với hàm số nào

     Dựa vào đồ thị hàm số ta thấy

    Đồ thị hàm số cắt trục tung tại điểm \left( {0;d} ight)

    => d > 0 => Loại đáp án  y = {x^3} - 4x - 1

    Mặt khác \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0 => Loại đáp án y =  - {x^3} + 4x + 2

    Hàm số đạt cực trị tại hai điểm {x_1};{x_2}, dựa vào hình vẽ ta thấy {x_1};{x_2} trái dấu

    => Loại đáp án y = {x^3} + 3{x^2} + 1

    Vậy đáp án là y = {x^3} - 4x + 1

  • Câu 4: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số nghiệm thực của phương trình 2f(x) -
11 = 0

    Kí hiệu bảng biến thiên như sau:

    Ta có: 2f(x) - 11 = 0 \Leftrightarrow
f(x) = \frac{11}{2}

    Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = \frac{11}{2}.

    Dựa vào bảng biến thiên, ta thấy đồ thị hàm số y = f(x) cắt đường thẳng y = \frac{11}{2} tại 2 điểm phân biệt.

    Vậy phương trình 2f(x) - 11 = 0 có 2 nghiệm phân biệt.

  • Câu 5: Thông hiểu

    Biết đường tiệm cận xiên của đồ thị hàm số y = \frac{2x^{2} + x}{x + 1} cắt trục hoành và trục tung theo thứ tự tại hai điểm A,\ B. Khi đó diện tích tam giác OAB bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)

    Đáp án: 0,25

    Đáp án là:

    Biết đường tiệm cận xiên của đồ thị hàm số y = \frac{2x^{2} + x}{x + 1} cắt trục hoành và trục tung theo thứ tự tại hai điểm A,\ B. Khi đó diện tích tam giác OAB bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)

    Đáp án: 0,25

    Ta có

    y = \frac{2x^{2} + x}{x + 1} =
\frac{2x^{2} + 2x - x - 1 + 1}{x + 1}

    = \frac{2x(x + 1) - (x + 1) + 1}{x + 1} =
2x - 1 + \frac{1}{x + 1}.

    Do đó tiện cận xiên của đồ thị hàm số đã cho là y = 2x - 1.

    Tiệm cận xiên của đồ thị hàm số cắt trục hoành, trục tung lần lượt là A\left( \frac{1}{2};0 ight)\ ,B(0; -
1).

    Xét tam giác OAB vuông tại O, có:

    OA = \frac{1}{2};\ OB = 1

    => Diện tích của tam giác OAB

    S_{OAB} = \frac{1}{2}OA.OB =
\frac{1}{2}.\frac{1}{2}.1 = \frac{1}{4} = 0,25

  • Câu 6: Thông hiểu

    Có bao nhiêu số nguyên m thỏa mãn điều kiện hàm số y = 2x^{3} + 9mx^{2} + 12m^{2}x + m - 2 đồng biến trên khoảng ( - \infty; +
\infty)?

    Ta có:

    y' = 6x^{2} + 18mx +
12m^{2}. Hàm số đồng biến trên khoảng ( - \infty; + \infty) \Leftrightarrow y' \leq 0;\forall x\mathbb{\in
R}

    \Leftrightarrow x^{2} + 3mx + 2m^{2}
\leq 0

    \Leftrightarrow \Delta \leq 0
\Leftrightarrow m^{2} \leq 0 \Leftrightarrow m = 0

    Vậy có duy nhất một số nguyên m thỏa mãn điều kiện hàm số y = 2x^{3} + 9mx^{2} + 12m^{2}x + m - 2 đồng biến trên khoảng ( - \infty; +
\infty).

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

    Số điểm cực đại của hàm số y =
f(x) là:

    Dựa vào bảng biến thiên ta thấy, hàm số y
= f(x) đạt cực đại tại x = -
2 nên hàm số đã cho có 1 điểm cực đại.

  • Câu 8: Thông hiểu

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Đáp án là:

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Ta có:

    V(x) = (12 - 2x)^{2}.x \Leftrightarrow
V(x) = 4x^{3} - 48x^{2} + 144x

    \max V(x) = 128 tại x = 2\ dm

  • Câu 9: Vận dụng cao

    Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên:

    Số đường tiệm cận ngang của đồ thị hàm số y = f(x) là:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 5 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 3 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang y = - 3;y = 5.

  • Câu 11: Thông hiểu

    Cho hàm số y = - x^{3} + 3x^{2} -
1. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có 2 cực trị. Đúng||Sai

    b) Điểm cực đại của hàm số là x = 2. Đúng||Sai

    c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng

    d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng

    Đáp án là:

    Cho hàm số y = - x^{3} + 3x^{2} -
1. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có 2 cực trị. Đúng||Sai

    b) Điểm cực đại của hàm số là x = 2. Đúng||Sai

    c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng

    d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng

    Hàm số y = - x^{3} + 3x^{2} - 1 có đồ thị như sau:

    a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.

    b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.

    c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.

    d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên

  • Câu 12: Vận dụng cao

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Vận dụng

    Cho hàm số bậc ba y = f(x) =\frac{1}{3}x^{3} - (m - 2)x^{2} - 9x + 1 với m là tham số. Gọi x_{1};x_{2} là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức \left| 9x_{1} - 25x_{2} ight|?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số bậc ba y = f(x) =\frac{1}{3}x^{3} - (m - 2)x^{2} - 9x + 1 với m là tham số. Gọi x_{1};x_{2} là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức \left| 9x_{1} - 25x_{2} ight|?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Nhận biết

    Cho hàm số f(x) = x^{3} + 3x^{2} + x -
1. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack lần lượt là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 6x + 1\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{- 3 - \sqrt{6}}{3} \\x = \dfrac{- 3 + \sqrt{6}}{3} \\\end{matrix} ight.

    Khi đó: y( - 1) = 0;y\left( \frac{- 3 +
\sqrt{6}}{3} ight) = - \frac{4\sqrt{6}}{9};y(2) = 21

    \Rightarrow \left\{ \begin{gathered}
  \mathop {\max }\limits_{\left[ { - 1;2} ight]} y = y\left( 2 ight) = 21 \hfill \\
  \mathop {\min }\limits_{\left[ { - 1;2} ight]} y = y\left( {\frac{{ - 3 + \sqrt 6 }}{3}} ight) =  - \frac{{4\sqrt 6 }}{9} \hfill \\ 
\end{gathered}  ight.

  • Câu 15: Nhận biết

    Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?

    Xét hàm số y = x^{3} + x có: y' = 3x^{2} + 1 > 0;\forall
x\mathbb{\in R}

    Suy ra hàm số y = x^{3} + x đồng biến trên tập số thực.

  • Câu 16: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Quan sát bảng biến thiên, ta có các kết quả sau:

    a) Hàm số đồng biến trên (−∞; 1) nên khẳng định hàm số đồng biến trên (−∞; 2) là sai.

    b) Hàm số nghịch biến trên (1; +∞).

    c) Hàm số có đúng 1 điểm cực trị là x = 1.

    d) Hàm số có đạt cực đại tại x = 1.

  • Câu 17: Vận dụng

    Cho hàm số y =
f(x) có bảng biến thiên như hình vẽ:

    Hàm số g(x) = f\left( 2x^{2} -
\frac{5}{2}x - \frac{3}{2} ight) nghịch biến trong khoảng nào dưới đây?

    Ta có:

    g'(x) = \left( 4x - \frac{5}{2}
ight).f'\left( 2x^{2} - \frac{5}{2}x - \frac{3}{2}
ight)

    Xét g'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}4x - \dfrac{5}{2} = 0 \\f'\left( 2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5}{8} \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = - 2 \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = 3 \\\end{matrix} ight.\  \Leftrightarrow x \in \left\{ -1;\dfrac{1}{4};\dfrac{5}{8};1;\dfrac{9}{4} ight\}

    Ta có bảng xét dấu:

    g'(0) = - \frac{5}{2}.f'\left( -
\frac{3}{2} ight) > 0 \Rightarrow g'(x) > 0;\forall x \in
\left( - 1;\frac{1}{4} ight)

    Vậy đáp án cần tìm là \left(
1;\frac{5}{4} ight).

  • Câu 18: Thông hiểu

    Cho hàm số y = \frac{{{x^2} + 3}}{{x - 1}}. Khẳng định nào sau đây đúng?

    Tập xác định D = \mathbb{R}\backslash \left\{ 1 ight\}

    \begin{matrix}  y' = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\  y' = 0 \Leftrightarrow {x^2} - 2x - 3 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 3} \end{array}} ight. \hfill \\  y'' = \frac{8}{{{{\left( {x - 1} ight)}^3}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( { - 1} ight) =  - 1 < 0} \\   {y''\left( 3 ight) = 1 > 0} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( { - 1} ight) =  - 2} \\   {{y_{CT}} = y\left( 3 ight) = 3} \end{array}} ight. \Rightarrow {y_{CD}} < {y_{CT}} \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Cho hàm số y =
f(3 - 2x) có bảng xét dấu như sau:

    Hỏi hàm số y = f(x) nghịch biến trên các khoảng nào dưới đây?

    Ta có:

    y' = f'(3 - 2x) = - 2f'(3 -
2x)

    f'( - 1) = f'(3) = f'(5) =
0

    f'(x) = k(x - 5)(x - 3)(x -
1)

    Xét x = 3 \Rightarrow y' = - 2f'(
- 3) > 0

    \Rightarrow f'( - 3) <
0

    Bảng xét dấu y = f'(x) là:

    Căn cứ vào bảng xét dấu ta thấy

    Hàm số y = f(x) nghịch biến trên khoảng (3;5).

  • Câu 20: Vận dụng

    Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là 5000000 đồng một khách cho 30 khách. Từ khách thứ 31, cứ thêm một khách, giá của tour lại được giảm a nghìn (a là số nguyên dương). Số khách thêm của tour không quá 15 người. Biết rằng nếu nhận thêm từ 1 đến 8 khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của a.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là 5000000 đồng một khách cho 30 khách. Từ khách thứ 31, cứ thêm một khách, giá của tour lại được giảm a nghìn (a là số nguyên dương). Số khách thêm của tour không quá 15 người. Biết rằng nếu nhận thêm từ 1 đến 8 khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của a.

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo