Cho hàm số
có bảng biến thiên như sau:

Hàm số
nghịch biến trên khoảng nào dưới dây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên .
Cho hàm số
có bảng biến thiên như sau:

Hàm số
nghịch biến trên khoảng nào dưới dây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên .
Cho hàm số
là một hàm đa thức có bảng xét dấu
như sau:

Số điểm cực trị của hàm số
.
Ta có .
Số điểm cực trị của hàm số bằng hai lần số điểm cực trị dương của hàm số
cộng thêm 1.
Xét hàm số
Bảng xét dấu hàm số :
Hàm số có 2 điểm cực trị dương.
Vậy hàm số có 5 điểm cực trị.
Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng
.
Hình dưới đây là đồ thị của hàm số nào?

Từ đồ thị, ta thấy hàm số có tiệm cận đứng x = 1.
Khi đó loại các hàm số và
Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 1 và cắt trục hoành tại điểm có hoành độ bằng 2 nên đáp án cần tìm là: .
Cho hàm số
với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Tìm tất cả các giá trị thực của tham số
để giá trị nhỏ nhất của hàm số
trên
bằng
?
Ta có:
Xét
Mà và
Khi đó
Theo đề bài ra ta có:
Vậy đáp án cần tìm là .
Một chất điểm chuyển động với vận tốc được cho bởi công thức
với
(giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?
Ta có: với
.
(thỏa mãn).
Bảng biến thiên
Dựa vào bảng biến thiên, tại thời điểm giây thì vận tốc của chất điểm là lớn nhất.
Hỏi đồ thị hàm số
có tất cả bao nhiêu đường tiệm cận?
Tập xác định
Ta có:
Suy ra là tiệm cận ngang của đồ thị hàm số.
Suy ra hàm số không có tiệm cận đứng
Vậy hàm số có 1 đường tiệm cận.
Xác định giá trị của a để hàm số
nghịch biến trên trục số.
Ta có:
Hàm số nghịch biến trên
Khoảng cách giữa hai điểm cực trị của đồ thị hàm số
là
Ta có:
⇒ Khoảng cách giữa hai điểm cực trị là .
Cho hàm số
. Hãy chọn khẳng định đúng?
Tập xác định
Ta có: nên hàm số đồng biến trên các khoảng
và
.
Cho hàm số
. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Gọi
là tập hợp các giá trị thực của tham số
để hàm số
nghịch biến trên một đoạn có độ dài bằng
. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp
bằng:
Ta có:
Gọi là nghiệm của phương trình (*) ta có bảng biến thiên:
Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt thỏa mãn
(*) có hai nghiệm phân biệt
Suy ra
Vậy tổng tất cả các phần tử của tập S bằng 8.
Cho hàm số y = f(x) có đạo hàm
. Số điểm cực trị của hàm số đã cho bằng
Ta có:
=> Hàm số có 3 điểm cực trị
Một sợi dây kim loại dài
được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Một sợi dây kim loại dài được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Cho hàm số
. Giá trị lớn nhất của hàm số trên đoạn
bằng bao nhiêu?
Ta có: Hàm số đã cho xác định và liên túc trên đoạn
Suy ra hàm số đồng biến trên
Vậy .
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

Đồ thị hàm số là hàm số bậc với
.
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:

Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Cho hàm số
có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số
có bảng biến thiên như hình vẽ:

a) Phương trình
có 3 nghiệm. Đúng||Sai
b) Phương trình
có 1 nghiệm. Đúng||Sai
c) Phương trình
vô nghiệm. Sai||Đúng
d) Phương trình
có 2 nghiệm. Đúng||Sai
Cho hàm số có bảng biến thiên như hình vẽ:
a) Phương trình có 3 nghiệm. Đúng||Sai
b) Phương trình có 1 nghiệm. Đúng||Sai
c) Phương trình vô nghiệm. Sai||Đúng
d) Phương trình có 2 nghiệm. Đúng||Sai
a) Ta có .
Dựa vào bảng biến thiên, ta có phương trình f(x) = 0 có 3 nghiệm.
b) Ta có
Dựa vào bảng biến thiên, ta có phương trình f(x) = 2 có 1 nghiệm.
c) Ta có .
Dựa vào bảng biến thiên, ta có phương trình f(x) = −4 có 1 nghiệm.
d) Ta có.
Dựa vào bảng biến thiên, ta có phương trình f(x) = −3 có 2 nghiệm.