Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y = \frac{x - 1}{x^{2} + 2mx +
3m^{2} - m - 1} với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để đồ thị hàm số đã cho có ba đường tiệm cận?

    Ta có: \lim_{x ightarrow \pm \infty}y =
0 suy ra y = 0 là một tiệm cận ngang của đồ thị hàm số.

    Do đó để đồ thị hàm số có ba đường tiệm cận thì đồ thị hàm số phải có hai tiệm cận đứng.

    \Leftrightarrow x^{2} + 2mx + 3m^{2} - m
- 1 = 0 có hai nghiệm phân biệt khác 1

    \Leftrightarrow \left\{ \begin{gathered}
   - 2{m^2} + m + 1 > 0 \hfill \\
  3{m^2} + m e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
   - \frac{1}{2} < m < 1 \hfill \\
  m e 0 \hfill \\
  m e  - \frac{1}{3} \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z} nên không tồn tại giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 2: Thông hiểu

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để hàm số y = \frac{\cos x + m^{2}}{2 - \cos
x} có giá trị lớn nhất trên \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack bằng 1. Số phần tử của tập hợp S:

    Ta có: y = \frac{\cos x + m^{2}}{2 - \cos
x};\forall x \in \left\lbrack - \frac{\pi}{2};\frac{\pi}{3}
ightbrack

    Đặt t = \cos x;(0 \leq t \leq
1)

    Hàm số đã cho trở thành: f(t) = \frac{t +
m^{2}}{2 - t};\forall t \in \lbrack 0;1brack

    Ta có: f'(t) = \frac{2 + m^{2}}{(2 -
t)^{2}} > 0;\forall t \in \lbrack 0;1brack

    \Rightarrow \underset{\left\lbrack -
\frac{\pi}{2};\frac{\pi}{3} ightbrack}{\max y} = f(1) = m^{2} + 1 =
1 \Leftrightarrow m = 0

    Vậy số phần tử của tập hợp S là 1.

  • Câu 3: Thông hiểu

    Hàm số y = f(x) có đạo hàm f'(x) = (x - 1)(x - 2)....(x - 2019), với \forall x\mathbb{\in R}. Hỏi hàm số y = f(x) có bao nhiêu điểm cực tiểu?

    Ta có: f'(x) = 0 \Leftrightarrow (x -
1)(x - 2)....(x - 2019) = 0\Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2 \\
.... \\
x = 2019 \\
\end{matrix} ight.

    Suy ra f'(x) = 02019 nghiệm bội lẻ và hệ số a > 0 nên có 1010 cực tiểu.

  • Câu 4: Nhận biết

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{x^{3}}{3} + 2x^{2} - mx + 2020 đồng biến trên \mathbb{R}?

    Ta có:

    Hàm số y = \frac{x^{3}}{3} + 2x^{2} - mx
+ 2020 đồng biến trên \mathbb{R}

    \Leftrightarrow y' = x^{2} + 4x - m
\geq 0;\forall x\mathbb{\in R}

    Dễ thấy x^{2} + 4x - m \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix}
1 > 0 \\
\Delta' = 4 + m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \leq - 4

    Vậy hàm số đã cho đồng biến trên \mathbb{R} khi m \leq - 4.

  • Câu 5: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng:

    Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng - 2.

  • Câu 6: Nhận biết

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x + 4} bằng:

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x
+ 4} không có tiệm cận đứng.

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 3x + 4}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{3}{x} + \dfrac{4}{x^{2}}} ight) = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho bằng 1.

  • Câu 7: Thông hiểu

    Cho hàm số y = f(x) liên tục trên và có đồ thị như

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số y = f(x) không có đạo hàm tại x = −2 và x = 2. Đúng||Sai

    b) Hàm số y = f(x) có ba điểm cực trị. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số y =
f(x) bằng −2 đạt được tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) không có giá trị lớn nhất. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) liên tục trên và có đồ thị như

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số y = f(x) không có đạo hàm tại x = −2 và x = 2. Đúng||Sai

    b) Hàm số y = f(x) có ba điểm cực trị. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số y =
f(x) bằng −2 đạt được tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) không có giá trị lớn nhất. Sai||Đúng

    a) Đúng: Hàm số y = f(x) không có đạo hàm tại x = −2 và x = 2.

    b) Sai: Hàm số y = f(x) chỉ có một điểm cực trị là x = 0.

    c) Đúng: Giá trị nhỏ nhất của hàm số y =
f(x) bằng −2 đạt được tại x = 0.

    d) Sai: Ta thấy f(x) \leq 2;\forall
x\mathbb{\in R}, và có xảy ra dấu bằng nên hàm số y = f(x) có giá trị lớn nhất.

  • Câu 8: Vận dụng

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 9: Thông hiểu

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Vận dụng cao

    Cho hàm số y = \left| x^{4} - 4x^{3} +
4x^{2} + m ight| với m là tham số. Khi giá trị của m biến thiên thì số điểm cực trị của hàm số có thể là a hoặc b hoặc c. Tính giá trị biểu thức P = a.b.c?

    Đặt g(x) = x^{4} - 4x^{3} + 4x^{2} +
m

    \Rightarrow g'(x) = 4x^{3} - 12x^{2}
+ 8x \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên của g(x) như sau:

    TH1: m \geq 0

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra a = 3

    TH2: - 1 < m < 0

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra b = 7

    TH3: m \leq - 1

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra c = 5

    Vậy P = a.b.c = 105

  • Câu 12: Vận dụng

    Cho hàm số f(x) có đạo hàm trên \mathbb{R} và thỏa mãn f(x) > f'(x) + 1;\forall x\mathbb{\in
R}. Bất phương trình f(x) <
me^{x} + 1 nghiệm đúng với mọi x
\in (0; + \infty) khi và chỉ khi

    Ta có:

    f(x) < me^{x} + 1 \Leftrightarrow
f(x) - 1 < me^{x}

    \Leftrightarrow \frac{f(x) - 1}{e^{x}}
< m.

    Xét hàm số g(x) = \frac{f(x) -
1}{e^{x}}

    g'(x) = \frac{f'(x) -
\left\lbrack f(x) - 1 ightbrack}{e^{x}} < 0;\forall x \in (0; +
\infty)

    Bảng biến thiên

    Vậy bất phương trình f(x) < me^{x} +
1 nghiệm đúng với mọi x \in (0; +
\infty) khi và chỉ khi m \geq f(0)
- 1.

  • Câu 13: Nhận biết

    Tìm giá trị của tham số m để đồ thị hàm số y = x^{4} - (3 - m)x^{2} -
7 đi qua điểm A( -
2;1)?

    Đồ thị hàm số đi qua điểm A( -
2;1) nên ta có:

    1 = ( - 2)^{4} - (3 - m)( - 2)^{2} - 7
\Leftrightarrow m = 1

  • Câu 14: Nhận biết

    Cho hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Xét hàm số f(x) = x^{3} - 3x^{2} + 3x -
4 ta có:

    f'(x) = 3x^{2} - 6x + 3 = 3(x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    \Rightarrow f(x) = x^{3} - 3x^{2} + 3x -
4 đồng biến trên \mathbb{R}.

  • Câu 15: Vận dụng cao

    Một sợi dây kim loại dài 60cm được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một sợi dây kim loại dài 60cm được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Nhận biết

    Cho hàm số f(x) xác định trên tập số thực và có bảng xét dấu của đạo hàm như sau:

    Hàm số có bao nhiêu điểm cực trị?

    Ta có:

    Hàm số xác định trên \mathbb{R} và bảng xét dấu đã cho ta suy ra bảng biến thiên:

    Từ đó suy ra hàm số có bốn điểm cực trị.

  • Câu 17: Vận dụng

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu

    Cho hàm số f(x) = ax^{3} + bx^{2} + cx +
d;(a eq 0) có đồ thị như hình vẽ:

    Tập hợp các giá trị của tham số m để phương trình f(x + m) = m có đúng ba nghiệm phân biệt là:

    Đồ thị hàm số f(x + m) = m có được bằng cách tịnh tiến đồ thị hàm số y =
f(x) sang trái hoặc sang phải theo phương song song với trục hoành |m| đơn vị.

    Suy ra phương trình f(x + m) = m có đúng ba nghiệm phân biệt khi và chỉ khi m
\in ( - 2;2).

  • Câu 19: Thông hiểu

    Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x) =
3x^{3} - 3x^{2};\left( x\mathbb{\in R} ight). Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (1; +∞). Đúng||Sai

    b) Hàm số nghịch biến trên khoảng (−1; 1). Đúng||Sai

    c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng

    d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x) =
3x^{3} - 3x^{2};\left( x\mathbb{\in R} ight). Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (1; +∞). Đúng||Sai

    b) Hàm số nghịch biến trên khoảng (−1; 1). Đúng||Sai

    c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng

    d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai

    Ta có: f'(x) = 0 \Leftrightarrow
3x^{3} - 3x^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên:

    a) Hàm số đồng biến trên khoảng (1; +∞).

    b) Hàm số nghịch biến trên khoảng (−∞; 1) nên nghịch biến trên (−1; 1).

    c) Hàm số có đúng một điểm cực trị.

    d) Hàm số có đúng một điểm cực tiểu x = 1.

  • Câu 20: Thông hiểu

    Cho hàm số y = f(x)f'(x) > 0;\forall x\mathbb{\in R}. Có bao nhiêu giá trị nguyên của x để f(22x) > f\left( x^{2}
ight)?

    Ta có: f'(x) > 0;\forall
x\mathbb{\in R} suy ra hàm số f(x) đồng biến trên \mathbb{R}

    Suy ra f(22x) > f\left( x^{2} ight)
\Leftrightarrow 22x > x^{2} \Leftrightarrow 0 < x <
22

    Vậy có tất cả 21 giá trị nguyên của x.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo