Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y =
\frac{mx + 7m - 6}{x + m} với m là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho nghịch biến trên từng khoảng xác định?

    Ta có: y' = \frac{m^{2} - 7m + 6}{(x
+ m)^{2}};\forall x eq - m

    Để hàm số nghịch biến trên từng khoảng xác định thì y' < 0;\forall x eq - m

    \Leftrightarrow m^{2} - 7m + 6 < 0
\Leftrightarrow 1 < m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3;4;5 ight\}

    Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 2: Thông hiểu

    Đồ thị hàm số y = \frac{\left( m^{2} - 3m
ight)x - 1}{x - 2} có đường tiệm cận ngang qua điểm A(1; - 2) khi:

    Để đồ thị hàm số y = \frac{\left( m^{2} -
3m ight)x - 1}{x - 2} có đường tiệm cận ngang là y = m^{2} - 3m

    Đường tiệm cận ngang đi qua A(1; -
2) nên ta có:

    m^{2} - 3m = - 2 \Leftrightarrow m^{2} -
3m + 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight.

    Vậy đáp án đúng là \left\lbrack
\begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 3: Vận dụng

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 4: Thông hiểu

    Cho hàm số y = f(x)xác định trên R và có đồ thị hàm số y = f'(x) là đường cong như hình vẽ:

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Hàm số y = f(x) nghịch biến trên khoảng (−1; 1). Sai||Đúng

    b) Hàm số y = f(x) nghịch biến trên khoảng (0; 2). Đúng||Sai

    c) Hàm số y = f(x) đạt cực đại tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) đạt cực tiểu tại x = 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x)xác định trên R và có đồ thị hàm số y = f'(x) là đường cong như hình vẽ:

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Hàm số y = f(x) nghịch biến trên khoảng (−1; 1). Sai||Đúng

    b) Hàm số y = f(x) nghịch biến trên khoảng (0; 2). Đúng||Sai

    c) Hàm số y = f(x) đạt cực đại tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) đạt cực tiểu tại x = 1. Sai||Đúng

    Từ đồ thị hàm số y = f'(x), ta có bảng biến thiên

    a) Từ bảng biến thiên hàm số đồng biến trên khoảng (−1; 0) và nghịch biến trên khoảng (0; 1).

    b) Từ bảng biến thiên ta thấy hàm số y = f(x) nghịch biến trên (0; 2).

    c) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực đại tại x = 0.

    d) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực tiểu tại x = −2 và x = 2.

  • Câu 5: Thông hiểu

    Hàm số y =
\frac{x - m^{2}}{x - 4} đồng biến trên các khoảng ( - \infty;4)(4; + \infty) khi nào?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 4 ight\}

    Ta có: y' = \frac{- 4 + m^{2}}{(x -
4)^{2}}. Để hàm số đồng biến trên từng khoảng xác định thì y' > 0;\forall x \in D

    \Leftrightarrow - 4 + m^{2} > 0
\Leftrightarrow - 2 < m < 2

    Vậy hàm số y = \frac{x - m^{2}}{x -
4} đồng biến trên các khoảng ( -
\infty;4)(4; + \infty) khi m \in ( - 2;2).

  • Câu 6: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ.

    a) Hàm số nghịch biến trên khoảng (0;2). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
2. Đúng||Sai

    c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng ( - 1;0). Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 0. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ.

    a) Hàm số nghịch biến trên khoảng (0;2). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
2. Đúng||Sai

    c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng ( - 1;0). Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 0. Sai||Đúng

    Theo hình vẽ, hàm số nghịch biến trên khoảng (0\ ;\ 2) và đạt cực tiểu tại điểm x_{o} = 2.

    Vì hàm số đồng biến trên khoảng ( - 1\ \
;\ 0) nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó.

    Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1\ ;\ 0brack bằng 2.

  • Câu 7: Nhận biết

    Đồ thị hàm số nào sau đây không có tiệm cận ngang?

    Ta có:

    \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^2} + 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + \dfrac{1}{x}}}{{1 - \dfrac{1}{x}}} = \mathop {\lim }\limits_{x \to \infty } x = \infty

    Vậy đồ thị hàm số y = \frac{{{x^2} + 1}}{{x - 1}} không có tiệm cận ngang.

  • Câu 8: Thông hiểu

    Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}} trên tập D = \left( { - \infty ; - 1} ight] \cup \left[ {1;\frac{3}{2}} ight]. Tính giá trị H của m.M

    Tập xác định của hàm số y là: \left( { - \infty ; - 1} ight] \cup \left( {1; + \infty } ight]\backslash \left\{ 2 ight\}

    Ta có:

    \begin{matrix}  y' = \dfrac{{\dfrac{{x\left( {x - 2} ight)}}{{\sqrt {{x^2} - 1} }} - \sqrt {{x^2} - 1} }}{{{{\left( {x - 2} ight)}^2}}} = \dfrac{{ - 2x + 1}}{{\sqrt {{x^2} - 1} {{\left( {x - 2} ight)}^2}}} \hfill \\  y' = 0 \Rightarrow x = \dfrac{1}{2} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tìm GTLN, GTNN của hàm số

    Từ bảng biến thiên ta được:

    M = 0,m =  - \sqrt 5  \Rightarrow H = m.M = 0

  • Câu 9: Vận dụng cao

    Cho hàm số f(x) liên tục và có đạo hàm trên \mathbb{R}. Biết f(0) > 0. Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = \left| f(x) - \frac{x^{2}}{2}
ight| có bao nhiêu điểm cực trị?

    Xét g(x) = f(x) - \frac{x^{2}}{2}
\Rightarrow g'(x) = f'(x) - x.

    Từ đồ thị ta thấy: g'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Vì hệ số cao nhất của f(x) nhỏ hơn 0 nên hệ số cao nhất của g(x) cùng nhỏ hơn 0. Ta có bảng biến thiên:

    \Rightarrow g( x )=0 luôn có đúng 2 nghiệm bội lé.

    Số điểm cực trị của hàm số y = \left|
f(x) - \frac{x^{2}}{2} ight| là 5.

  • Câu 10: Nhận biết

    Tìm giá trị của tham số m để đồ thị hàm số y = x^{4} - (3 - m)x^{2} -
7 đi qua điểm A( -
2;1)?

    Đồ thị hàm số đi qua điểm A( -
2;1) nên ta có:

    1 = ( - 2)^{4} - (3 - m)( - 2)^{2} - 7
\Leftrightarrow m = 1

  • Câu 11: Thông hiểu

    Cho hàm số y = x^{4} - 2(m + 2)x^{2} + 3m
- 1. Tìm m để hàm số đã cho có cực tiểu nhưng không có cực đại?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
2)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 2 \\
\end{matrix} ight.

    Để hàm số đã cho chỉ có điểm cực tiểu và không có điểm cực đại thì m + 2 \leq 0 \Leftrightarrow m \leq -
2.

    Vậy đáp án cần tìm là ( - \infty; -
2brack.

  • Câu 12: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm y' = - x^{2} - 1;\forall x\mathbb{\in
R}. Khẳng định nào sau đây đúng?

    Ta có: y' = - x^{2} - 1;\forall
x\mathbb{\in R \Rightarrow}f'(x) < 0;\forall x\mathbb{\in
R} do đó hàm số y = f(x) nghịch biến trên \mathbb{R}

    Do 0 < 2020 \Rightarrow f(0) >
f(2020)

  • Câu 13: Vận dụng

    Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

    Đáp án: 2400 m2

    Đáp án là:

    Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

    Đáp án: 2400 m2

    Xét hình chữ nhật ABCD như hình vẽ, và đặtv AB = x (x > 0)

    Khi đó BC = 240 – 3x > 0 ⇒ x < 80.

    Diện tích của hình chữ nhật ABCD là S = x.(240 – 3x ) = 240x – 3x2

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x) với 0 < x < 80.

    Xét f(x) = 240x – 3x2 ⇒ f’(x) = 240 – 6x , f’(x) = 0 ⟺ x = 40.

    Do f’’(x) = - 6 < 0, ∀ x∈ (0; 80)

    Do đó maxS = \max_{x \in (0;80)}f(x) =
f(40) = 4800 \Leftrightarrow x = 40

    Vậy diện tích lớn nhất có thể bao quanh là 4800m2 .

  • Câu 14: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

    Số điểm cực đại của hàm số y =
f(x) là:

    Dựa vào bảng biến thiên ta thấy, hàm số y
= f(x) đạt cực đại tại x = -
2 nên hàm số đã cho có 1 điểm cực đại.

  • Câu 15: Nhận biết

    Hàm số nào dưới dây nghịch biến trên \mathbb{R}?

    Xét hàm số y = x^{3} + 2x - 2020y' = 3x^{2} + 2 > 0;\forall
x\mathbb{\in R} suy ra hàm số y =
x^{3} + 2x - 2020 đồng biến trên \mathbb{R}.

  • Câu 16: Thông hiểu

    Đồ thị hàm số y = x^{3} - 3x + 2 là hình nào trong 4 hình dưới đây?

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
y' = 3x^{2} - 3

    Khi đó \mathbf{y'
=}\mathbf{0}\mathbf{\Leftrightarrow}\left\lbrack \begin{matrix}
\mathbf{x = -}\mathbf{1} \\
\mathbf{x =}\mathbf{1} \\
\end{matrix} ight.\ \mathbf{\Rightarrow}\left\lbrack \begin{matrix}
\mathbf{y}\mathbf{(}\mathbf{-}\mathbf{1)}\mathbf{=}\mathbf{4} \\
\mathbf{y}\mathbf{(1)}\mathbf{=}\mathbf{0} \\
\end{matrix} ight..

    Do đó, chọn đáp án là: Hình 2

  • Câu 17: Vận dụng

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 18: Vận dụng

    Cho hàm số y = f(x) = x^{4} - 2(m +
1)x^{2} + m^{2} - 8 (với mlà tham số) có đồ thị (C). Giả sử các điểm A;B;C là các điểm cực trị của (C). Để tam giác ABC đều thì giá trị của tham số m nằm trong khoảng nào sau đây?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
1)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 1)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 1 \\
\end{matrix} ight.

    Hàm số có ba điểm cực trị khi và chỉ khi phương trình y' = 0 có ba nghiệm phân biệt hay x^{2} = m + 1 có hai nghiệm khác 0

    \Leftrightarrow m + 1 > 0
\Leftrightarrow m > - 1

    Khi đó y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{m + 1} \\
x = - \sqrt{m + 1} \\
\end{matrix} ight.

    Đồ thị (C) có ba điểm cực trị là A\left( 0;m^{2} + 8 ight);B\left( \sqrt{m + 1}; - (m + 1)^{2} + m^{2} + 8
ight);C\left( - \sqrt{m + 1}; -
(m + 1)^{2} + m^{2} + 8 ight).

    Ta có: AB = AC = \sqrt{m + 1 + (m +
1)^{4}}

    Do đó tam giác ABC đều \Leftrightarrow AB = BC

    \Leftrightarrow \sqrt{m + 1 + (m +
1)^{4}} = \sqrt{4(m + 1)}

    \Leftrightarrow m + 1 + (m + 1)^{4} =
4(m + 1)

    \Leftrightarrow (m + 1)^{4} - 3(m + 1) =
0

    \Leftrightarrow (m + 1)\left\lbrack (m +
1)^{3} - 3 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m + 1 = 0 \\
(m + 1)^{3} - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = - 1 + \sqrt[3]{3} \\
\end{matrix} ight.

    Kết hợp với điều kiện m > - 1
\Rightarrow m = - 1 + \sqrt[3]{3}.

    Vậy đáp án cần tìm là m \in \left(
\frac{1}{4};\frac{1}{2} ight).

  • Câu 19: Vận dụng cao

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x^{3}
- 3x^{2} - 9x + 5 trên đoạn \lbrack
- 2;2brack

    Tập xác định D\mathbb{= R}

    Với x \in \lbrack - 2;2brack ta có: y' = 3x^{2} - 6x - 9 \Rightarrow
y' = 0 \Leftrightarrow x = - 1

    Ta có: \left\{ \begin{matrix}
y( - 2) = 3 \\
y( - 1) = 10 \\
y(2) = - 17 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;2brack}y = -
17 khi x = 2.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo