Cho hàm số
với
là tham số. Với điều kiện nào của tham số
thì hàm số đã cho có cực đại và cực tiểu?
Ta có:
Để hàm số có cực đại và cực tiểu thì phương trình (*) có hai nghiệm phân biệt
.
Vậy đáp án cần tìm là .
Cho hàm số
với
là tham số. Với điều kiện nào của tham số
thì hàm số đã cho có cực đại và cực tiểu?
Ta có:
Để hàm số có cực đại và cực tiểu thì phương trình (*) có hai nghiệm phân biệt
.
Vậy đáp án cần tìm là .
Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên
Vì
Vậy số giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán là .
Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?
Xét hàm số có:
Suy ra hàm số đồng biến trên tập số thực.
Cho hàm số
với
là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên
bằng
. Khi đó giá trị lớn nhất của hàm số đó là:
Ta có: do xét trên
nên nhận
Vì
Từ đó .
Cho hàm số
có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

Dựa vào bảng biến thiên ta thấy:
Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1
=> Loại đáp án C và D
Hàm số đã cho nghịch biến trên mỗi khoảng xác định
Xét hàm số
=> Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có ba nghiệm phân biệt?
Phương trình đã cho là phương trình hoành độ giao điểm của đồ thị hàm số và đường thẳng
Xét có
Phương trình
Lập bảng biến thiên
Đường thẳng cắt đồ thị
tại ba điểm phân biệt khi và chỉ khi
Do
Vậy có 7 giá trị nguyên của tham số m thỏa mãn.
Cho hàm số
xác định, liên tục trên tập số thực và đồ thị của hàm số
là đường cong như hình vẽ bên dưới.

Khẳng định nào sau đây là khẳng định đúng?
Từ đồ thị của hàm số ta có:
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số
là hàm đa thức có đạo hàm
. Số điểm cực trị của hàm số là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy hàm số có hai điểm cực trị.
Cho hàm số
liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:

Hàm số
nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
, trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Xét ta có:
Mặt khác
Đồ thị hàm số nào sau đây nhận điểm
làm tâm đối xứng?
Đồ thị hàm số có tiệm cận đứng là đường thẳng
và tiệm cận ngang là
suy ra giao điểm của hai đường tiệm cận là
Vậy điểm là tâm đối xứng của đồ thị hàm số
.
Đồ thị hàm số nào sau đây không có tiệm cận ngang?
Ta có:
Vậy đồ thị hàm số không có tiệm cận ngang.
Tìm tất cả các giá trị thực của tham số
để giá trị nhỏ nhất của hàm số
trên
bằng
?
Ta có:
Xét
Mà và
Khi đó
Theo đề bài ra ta có:
Vậy đáp án cần tìm là .
Hàm số
liên tục trên đoạn
và có bảng biến thiên như sau.

Gọi
và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a)
Sai|| Đúng
b)
Sai|| Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Hàm số liên tục trên đoạn
và có bảng biến thiên như sau.
Gọi và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a) Sai|| Đúng
b) Sai|| Đúng
c) Đúng||Sai
d) Đúng||Sai
Dựa vào bảng biến thiên trên ta có:
Hỏi đồ thị của hàm số
có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Cho hàm số
có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Giá trị của tham số m để đồ thị hàm số
có đường tiệm cận ngang
là:
Điều kiện để đồ thị hàm số có tiệm cận là:
luôn đúng với
Phương trình đường tiệm cận ngang là nên ta có
Cho hàm số y = f(x) có đạo hàm liên tục trên
. Đồ thị hàm số y f’(x) như hình vẽ bên:

Số điểm cực trị của hàm số y = f(x) + 2x là:
Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:
Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị
Từ đó ta có bảng xét dấu như sau:

Vậy hàm số đã cho có đúng một cực trị
Cho hàm số
có bảng biến thiên như sau:

Hỏi hàm số
đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Cho hàm số
liên tục trên
và có đồ thị của đạo hàm
như hình vẽ sau:

Trên đoạn
, hàm số
đạt giá trị nhỏ nhất tại điểm nào?
Cho hàm số liên tục trên
và có đồ thị của đạo hàm
như hình vẽ sau:
Trên đoạn , hàm số
đạt giá trị nhỏ nhất tại điểm nào?