Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên đoạn \lbrack - 3;3brack và có đạo hàm f'(x) trên khoảng ( - 3;3). Đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Mệnh đề nào sau đây đúng?

    Dựa vào đồ thị ta thấy f'(x) \geq0;\forall x \in ( - 2;3) và dấu “=” chỉ xảy ra tại x = 1 nên hàm số đồng biến trên khoảng ( - 2;3).

  • Câu 2: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có đồ thị như hình vẽ:

    Xét hàm số g(x) = f\left( 2x^{3} + x - 1ight) + m. Tìm m để \max_{\lbrack 0;1brack}g(x) = -10.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có đồ thị như hình vẽ:

    Xét hàm số g(x) = f\left( 2x^{3} + x - 1ight) + m. Tìm m để \max_{\lbrack 0;1brack}g(x) = -10.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Tìm các đường tiệm cận của đồ thị hàm số y = \frac{\sqrt{x^{2} - 4}}{x - 1}.

    Tập xác định của hàm số: D = ( - \infty;
- 2brack \cup \lbrack 2; + \infty).

    +) Ta có: \lim_{x ightarrow
1^{+}}y\lim_{x ightarrow
1^{-}}y không tồn tại nên đồ thị hàm số không có đường tiệm cận đứng.

    +) Ta có: \lim_{x ightarrow + \infty}y
= \lim_{x ightarrow + \infty}\frac{\sqrt{x^{2} - 4}}{x - 1} = \lim_{x
ightarrow + \infty}\frac{\sqrt{1 - \frac{4}{x^{2}}}}{1 - \frac{1}{x}}
= 1

    \lim_{x ightarrow - \infty}y =\lim_{x ightarrow - \infty}\frac{\sqrt{x^{2} - 4}}{x - 1}= \lim_{xightarrow - \infty}\frac{- \sqrt{1 - \frac{4}{x^{2}}}}{1 -\frac{1}{x}} = - 1 \Rightarrow y = 1,y = - 1 là các đường tiệm cận ngang của đồ thị hàm số.

  • Câu 4: Thông hiểu

    Có bao nhiêu điểm M thuộc đồ thị hàm số y = \frac{x + 2}{x - 1} sao cho khoảng cách từ điểm M đến trục tung bằng hai lần khoảng cách từ điểm M đến trục hoành?

    Gọi M\left( a;\frac{a + 2}{a - 1}
ight);(a eq 1) là điểm thuộc đồ thị hàm số y = \frac{x + 2}{x - 1}

    Ta có: \left\{ \begin{matrix}d(M;Oy) = |a| \\d(M;Ox) = \left| \dfrac{a + 2}{a - 1} ight| \\\end{matrix} ight.. Theo bài ra ta có phương trình:

    |a| = 2.\left| \frac{a + 2}{a - 1}ight| \Leftrightarrow \left\lbrack \begin{matrix}a = 2.\left( \dfrac{a + 2}{a - 1} ight) \\a = - 2.\left( \dfrac{a + 2}{a - 1} ight) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}a^{2} - 3a - 4 = 0 \\a^{2} + a + 4 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = - 1 \Rightarrow M\left( - 1; - \dfrac{1}{2} ight) \\a = 4 \Rightarrow M(4;2) \\\end{matrix} ight.

    Vậy có 2 điểm M thỏa mãn yêu cầu bài toán.

  • Câu 5: Vận dụng

    Cho hàm số y = f\left( x ight) có bảng biến thiên như hình vẽ dưới đây.

    Tìm số đường tiệm cận của hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} là:

    Phương trình f\left( x ight) = 2018 có 2 nghiệm phân biệt

    => Đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 2 đường tiệm cận đứng.

    Khi x \to  - \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Khi x \to  + \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Vậy đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 1 tiệm cận ngang.

     

  • Câu 6: Nhận biết

    Cho bảng biến thiên như hình vẽ:

    Tìm hàm số

    Bảng biến thiên trên là của hàm số nào?

    Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2

    => Loại đáp án C và D

    Quan sát bảng biến thiên

    => Loại đáp án B

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Điểm cực tiểu của hàm số là x = - 1;x =
1

    Điểm cực tiểu của đồ thị hàm số là ( -
1;0),(1;0)

    Điểm cực đại của hàm số là x =
0.

  • Câu 8: Nhận biết

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{x^{3}}{3} + 2x^{2} - mx + 2020 đồng biến trên \mathbb{R}?

    Ta có:

    Hàm số y = \frac{x^{3}}{3} + 2x^{2} - mx
+ 2020 đồng biến trên \mathbb{R}

    \Leftrightarrow y' = x^{2} + 4x - m
\geq 0;\forall x\mathbb{\in R}

    Dễ thấy x^{2} + 4x - m \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix}
1 > 0 \\
\Delta' = 4 + m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \leq - 4

    Vậy hàm số đã cho đồng biến trên \mathbb{R} khi m \leq - 4.

  • Câu 9: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = x^{4} - 2(m - 1)x^{2} + m + 2020 đồng biến trên khoảng ( - 3; - 1)?

    Ta có: y' = 4x^{3} - 4(m -
1)x

    Hàm số đồng biến trên khoảng ( - 3; -
1) \Leftrightarrow y' \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow 4x^{3} - 4(m - 1)x \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow x^{2} \leq m - 1;\forall
x \in ( - 3; - 1)

    \Leftrightarrow m - 1 \geq \max_{\lbrack
- 3; - 1brack}x^{2} \Leftrightarrow m - 1 \geq 9 \Leftrightarrow m
\geq 10

    Vậy đáp án cần tìm là: m \geq
10.

  • Câu 10: Thông hiểu

    Số điểm cực trị của hàm số y = (x + 1)(x
- 2)(3 - x) là:

    Tập xác định D\mathbb{= R}

    Ta có:

    y' = (x - 2)(3 - x) + (x + 1)(3 - x)
- (x + 1)(x - 2)

    = - 3x^{2} + 8x - 1

    \Rightarrow y' = 0 \Leftrightarrow x
= \frac{4 \pm \sqrt{13}}{3}

    Ta có bảng xét dấu:

    Vậy hàm số có hai điểm cực trị.

  • Câu 11: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ \pm 2
ight\} và có bảng biến thiên như sau:

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số không có điểm cực trị. Đúng||Sai

    b) \lim_{x ightarrow ( - 2)^{-}}f(x) =
+ \infty. Sai||Đúng

    c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai

    d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ \pm 2
ight\} và có bảng biến thiên như sau:

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số không có điểm cực trị. Đúng||Sai

    b) \lim_{x ightarrow ( - 2)^{-}}f(x) =
+ \infty. Sai||Đúng

    c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai

    d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng

    Dựa vào bảng biến thiên ta thấy

    a) Hàm số không có điểm cực trị.

    b) lim \lim_{x ightarrow ( -
2)^{-}}f(x) = - 10.

    c) \lim_{x ightarrow \pm \infty}f(x) =
0. Suy ra đồ thị có đúng 1 đường tiệm cận ngang là y = 0.

    d) \lim_{x ightarrow ( - 2)^{+}}f(x) =
+ \infty\lim_{x ightarrow
2^{+}}f(x) = + \infty nên đồ thị hàm số có đúng 2 đường tiệm cận đứng x = \pm 2.

  • Câu 12: Vận dụng

    Cho hàm số đa thức bậc bốn f(x). Đồ thị hàm số y = f'(3 - 2x) được biểu thị trong hình vẽ sau:

    Hàm số y = f(x) nghịch biến trong khoảng nào?

    Đặt t = 3 - 2x. Ta có bảng xét dấu của f'(3 - 2x) được mô tả lại như sau:

    Từ đó suy ra bảng xét dấu của f'(t)

    Vậy hàm số y = f(x) nghịch biến trên các khoảng ( - \infty; -
1),(3;5).

  • Câu 13: Vận dụng

    Cho hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên \mathbb{R}. Khi đó hàm số y = f\left( {{x^2} - 2x} ight) có bao nhiêu điểm cực trị?

    Ta có hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên \mathbb{R} nên f’(x) = 0 có ba nghiệm x = -2; x = -1, x = 0

    Đặt  g\left( x ight) = f\left( {{x^2} - 2x} ight) \Rightarrow g'\left( x ight) = \left( {2x - 2} ight)f\left( {{x^2} - 2x} ight)

    Vì f’(x) liên tục trên \mathbb{R} nên g’(x) cũng liên tục trên \mathbb{R}. Do đó những điểm g’(x) có thể đổi dấu thuộc tập các điểm thỏa mãn.

    \left[ {\begin{array}{*{20}{c}}  {2x - 2 = 0} \\   {{x^2} - 2x =  - 2} \\   {{x^2} - 2x =  - 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \\   {x = 2} \end{array}} ight.

    Ba nghiệm trên đều là nghiệm đơn hoặc bội lẻ nên hàm số g(x) có ba điểm cực trị.

     

  • Câu 14: Thông hiểu

    Cho hàm số y =f(x) = - \frac{1}{3}x^{3} + ax^{2} + (3a + 2)x - 5. Tập hợp các giá trị của tham số a để hàm số y = f(x) nghịch biến trên \mathbb{R}\lbrack m;nbrack. Tính giá trị biểu thức T=2m-n?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) = - \frac{1}{3}x^{3} + ax^{2} + (3a + 2)x - 5. Tập hợp các giá trị của tham số a để hàm số y = f(x) nghịch biến trên \mathbb{R}\lbrack m;nbrack. Tính giá trị biểu thức T=2m-n?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu

    Cho hàm số y = \frac{{ax + b}}{{cx + d}} có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

    Hàm số đã cho là hàm số nào

    Dựa vào bảng biến thiên ta thấy:

    Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1

    => Loại đáp án C và D

    Hàm số đã cho nghịch biến trên mỗi khoảng xác định

    Xét hàm số y = \frac{{x - 3}}{{x - 2}} \Rightarrow y' = \frac{1}{{{{\left( {x - 2} ight)}^2}}}

    => Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A

  • Câu 16: Vận dụng cao

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Vận dụng cao

    Một sợi dây kim loại dài 60cm được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một sợi dây kim loại dài 60cm được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Nhận biết

    Hàm số nào dưới đây nghịch biến trên \mathbb{R}?

    Xét hàm số y = - x^{3} - 3x + 1 ta có: y' = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R}

    Do đó hàm số y = - x^{3} - 3x +
1 nghịch biến trên \mathbb{R}.

  • Câu 19: Thông hiểu

    Cho hàm số y = f(x) = x^{2} - 4\ln(1 -x) . Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là D = (1; +
\infty) . Sai||Đúng

    b) Đạo hàm của hàm số là y' = \frac{-
2x^{2} + 2x + 4}{1 - x} . Đúng||Sai

    c) Giá trị lớn nhất của hàm số trên \lbrack - 2;0brack là 2. Sai||Đúng

    d) Giá trị nhỏ nhất của hàm số trên \lbrack - 2;0brack1 - 4\ln2 . Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{2} - 4\ln(1 -x) . Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là D = (1; +
\infty) . Sai||Đúng

    b) Đạo hàm của hàm số là y' = \frac{-
2x^{2} + 2x + 4}{1 - x} . Đúng||Sai

    c) Giá trị lớn nhất của hàm số trên \lbrack - 2;0brack là 2. Sai||Đúng

    d) Giá trị nhỏ nhất của hàm số trên \lbrack - 2;0brack1 - 4\ln2 . Đúng||Sai

    Tập xác định của hàm số là D = (1; +
\infty).

    Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

    Ta có: y' = 2x + \frac{4}{1 - x} =
\frac{- 2x^{2} + 2x + 4}{1 - x}

    Khi đó y' = 0 \Leftrightarrow \frac{-
2x^{2} + 2x + 4}{1 - x} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(TM) \\
x = 2(L) \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}f( - 2) = 4 - 4\ln3 \\f( - 1) = 1 - 4\ln2 \\f(0) = 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}M = 0 \\m = 1 - 4\ln2 \\\end{matrix} ight.

  • Câu 20: Nhận biết

    Giá trị lớn nhất của hàm số y = \frac{- x
+ 3}{x - 2} trên đoạn \lbrack -
2;0brack bằng

    Ta có: D\mathbb{= R}\backslash\left\{ 2
ight\}

    y' = \frac{- 1}{(x - 2)^{2}} <
0;\forall x eq 2

    Suy ra hàm số nghịch biến trên đoạn \lbrack - 2;0brack.

    Do đó \max_{\lbrack - 2;0brack}y = y( -
2) = \frac{- ( - 2) + 3}{- 2 - 2} = - \frac{5}{4}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo