Tìm giá trị của tham số m sao cho đồ thị hàm số
có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Tìm giá trị của tham số m sao cho đồ thị hàm số
có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Biết rằng hàm số
đạt giá trị nhỏ nhất trên
tại điểm
. Khi đó giá trị biểu thức
bằng:
Ta có:
Mà khi
Suy ra .
Số giá trị nguyên của tham số m để hàm số
đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Cho hàm số
có bảng biến thiên như sau.

Xét tính đúng sai của các khẳng định sau.
a) Hàm số đồng biến trên
. Sai|| Đúng
b) Hàm số nghịch biến trên
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Sai|| Đúng
d) Hàm số đạt cực đại tại
. Đúng||Sai
Cho hàm số có bảng biến thiên như sau.
Xét tính đúng sai của các khẳng định sau.
a) Hàm số đồng biến trên . Sai|| Đúng
b) Hàm số nghịch biến trên . Đúng||Sai
c) Hàm số có hai điểm cực trị. Sai|| Đúng
d) Hàm số đạt cực đại tại . Đúng||Sai
Quan sát bảng biến thiên, ta có các kết quả sau:
a) Hàm số đồng biến trên nên khẳng định hàm số đồng biến trên
là sai.
b) Hàm số nghịch biến trên .
c) Hàm số có đúng 1 điểm cực trị là .
d) Hàm số có đạt cực đại tại .
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm
cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).

Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình
. Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).
Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình . Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Gọi S là tập hợp chứa tất cả các giá trị thực của tham số m để hàm số
có điểm cực đại với giá trị cực đại tương ứng nằm trong khoảng (3; 4) và đồng thời thỏa mãn 10m là số nguyên. Số phần tử của tập hợp S là:
Xét phương trình
Nếu thì hàm số
không có điểm cực đại.
Nếu thì phương trình (*) có hai nghiệm phân biệt là
Với thì
không có điểm cực đại.
Với thì
Hàm số này đạt cực đại tại x = m + 2 và giá trị cực đại là
Vậy điều kiện để hàm số có cực đại là:
Do 10m là số nguyên nên có hai giá trị thỏa mãn là
Hàm số
nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Hàm số y = x3 – 3x2 nghịch biến trên khoảng nào dưới đây?
Ta có:
Theo dấu hiệu nhận biết tính đơn điệu của hàm số, hàm số nghịch biến trên (0; 2)
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số đã cho có hai tiệm cận đứng là
và
.
nên đồ thị hàm số đã cho có một tiệm cận ngang là
Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.
Xác định giá trị lớn nhất của hàm số ![]()
Điều kiện xác định:
Đặt ta có:
Ta có:
Khi đó:
Do đó:
Xét hàm số
Ta xác được
Tìm các đường tiệm cận của đồ thị hàm số
.
Tập xác định của hàm số: .
+) Ta có: và
không tồn tại nên đồ thị hàm số không có đường tiệm cận đứng.
+) Ta có:
và là các đường tiệm cận ngang của đồ thị hàm số.
Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.
Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:
f’(x) = -3x2 – 6x
f’(x) = 0 =>
Ta tính được
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên khoảng
?
Điều kiện xác định
Ta có:
Hàm số đồng biến trên khoảng khi và chỉ khi
Vậy đáp án cần tìm là .
Cho hàm số
.
a) Tập xác định của hàm số là
. Đúng||Sai
b)
. Sai||Đúng
c)
khi
,
khi
. Sai||Đúng
d) Hàm số đã cho có đồ thị như hình vẽ.
Đúng||Sai
Cho hàm số .
a) Tập xác định của hàm số là . Đúng||Sai
b) . Sai||Đúng
c) khi
,
khi
. Sai||Đúng
d) Hàm số đã cho có đồ thị như hình vẽ.
Đúng||Sai
Tập xác định: .
Sự biến thiên
Giới hạn tại vô cực: .
và
hoặc
Hàm số đồng biến trên mỗi khoảng và
, nghịch biến trên khoảng
.
Hàm số đạt cực đại tại ; hàm số đạt cực tiểu tại
.
Đồ thị:
Giao điểm của đồ thị với trục tung: .
Giao điểm của đồ thị với trục hoành tại hoặc
. Vậy đồ thị hàm số giao với trục hoành tại ba điểm
và
.
Vậy đồ thị hàm số được cho ở hình vẽ.
Cho hàm số
có đồ thị như hình vẽ:

Tìm số điểm cực trị của hàm số
trên khoảng
?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng biến thiên suy ra hàm số có hai cực trị trên khoảng
.
Cho hàm số
có đồ thị như hình vẽ:

Số điểm cực trị của hàm số
là:
Tịnh tiến hàm số sang trái hai đơn vị ta được hàm số
Đồ thị hàm số có được gồm hai phần.
Phần 1 là phần đồ thị nằm phía bên phải
.
Phần 2 là phần đồ thị đối xứng qua .
Khi đó đồ thị hàm số sẽ có một điểm cực trị.
Cho hàm số
có đồ thị
. Tìm tham số
để
đi qua điểm
?
Ta có:
Vậy .
Hàm số
đồng biến trên khoảng
Ta có y’ = 8x => y’ = 0 => x = 0
=> y’ > 0 => x > 0
=> y’ < 0 => x < 0
Vậy hàm số đồng biến trên khoảng
Cho hàm số
. Hàm số có bao nhiêu điểm cực trị?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có hai điểm cực trị.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Hàm số có đồ thị như sau:
a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.
b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.
c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.
d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên