Cho hàm số
có bảng biến thiên như sau:

Hàm số
nghịch biến trên khoảng nào dưới dây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên .
Cho hàm số
có bảng biến thiên như sau:

Hàm số
nghịch biến trên khoảng nào dưới dây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên .
Số giá trị nguyên của tham số
để hàm số
đồng biến trên
là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=> Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.
Cho hàm số
. Đồ thị hàm số có mấy đường tiệm cận?
Tập xác định:
Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.
=> y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
Hỏi đồ thị hàm số
có tất cả bao nhiêu đường tiệm cận?
Tập xác định
Ta có:
Suy ra là tiệm cận ngang của đồ thị hàm số.
Suy ra hàm số không có tiệm cận đứng
Vậy hàm số có 1 đường tiệm cận.
Cho hàm số
với
là tham số. Tích tất cả các giá trị của tham số
để giá trị lớn nhất của hàm số đã cho trên đoạn
bằng
bằng:
Ta có:
Vậy tích tất cả các giá trị của tham số bằng
.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

Đồ thị của hàm số thỏa mãn bài toán.
Cho hàm trùng phương
có đồ thị như hình vẽ dưới đây:

Tìm các giá trị của tham số m để phương trình
có 4 nghiệm phân biệt?
Hình vẽ minh họa
Để phương trình có 4 nghiệm phân biệt thì
.
Cho hàm số
với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Gọi
là tập hợp các giá trị của tham số
để giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tính tổng các phần tử của tập
?
Ta có: . Suy ra hàm số
đồng biến trên đoạn
do đó
Theo giả thiết
Vậy nên tổng các phần tử của tập hợp
bằng
.
Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là
đồng một khách cho
khách. Từ khách thứ
, cứ thêm một khách, giá của tour lại được giảm
nghìn (
là số nguyên dương). Số khách thêm của tour không quá
người. Biết rằng nếu nhận thêm từ
đến
khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của
.
Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là đồng một khách cho
khách. Từ khách thứ
, cứ thêm một khách, giá của tour lại được giảm
nghìn (
là số nguyên dương). Số khách thêm của tour không quá
người. Biết rằng nếu nhận thêm từ
đến
khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của
.
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là
. Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là . Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Hình vẽ nào sau đây là đồ thị của hàm số
với
?
Với thì đồ thị hàm số
theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ
và
Mặt khác với thì
nên khi
thì đồ thị hàm số nằm phía dưới trục hoành
Vậy đồ thị hàm số cần tìm là .
Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Điểm cực đại của đồ thị hàm số là:
Điểm cực đại của đồ thị hàm số đã cho là .
Cho hàm số
xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng
. Sai|| Đúng
b) Hàm số đạt cực đại tại điểm
. Đúng||Sai
c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng
d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai
Cho hàm số xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng . Sai|| Đúng
b) Hàm số đạt cực đại tại điểm . Đúng||Sai
c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng
d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai
Hàm số không có giá trị nhỏ nhất nên phát biểu “Hàm số
có giá trị nhỏ nhất bằng −2” là phát biểu sai.
Trong các hàm số sau, hàm số nào nghịch biến trên tập xác định của nó?
Hàm trùng phương không nghịch biến trên tập xác định của nó
Với
Hàm số đã cho đồng biến trên từng khoảng xác định
Với
=> Hàm số nghịch biến trên
Định tất cả các giá trị thực của
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì có ba nghiệm phân biệt suy ra phương trình
có hai nghiệm phân biệt khác
Vậy đáp án cần tìm là .
Tập hợp tất cả các giá trị của tham số
để đồ thị hàm số
có đúng hai đường tiệm cận?
Ta có:
Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang . Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.
Tam thức có
Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:
Vậy .
Cho hàm số
. Mệnh đề nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên từng khoảng và
.
Cho hàm số
. Giả sử
là tổng bình phương các giá trị của tham số
để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng
. Tính giá trị
? (Kết quả làm tròn đến chữ số thập phân thứ ba).
Cho hàm số . Giả sử
là tổng bình phương các giá trị của tham số
để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng
. Tính giá trị
? (Kết quả làm tròn đến chữ số thập phân thứ ba).
Cho hàm số
. Tìm khẳng định đúng?
Ta có:
. Ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu ta suy ra hàm số nghịch biến trên khoảng .