Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Nhận biết

    Hàm số y = \frac{ 2x + 3 }{ x + 1 } có bao nhiêu điểm cực trị?

    y' = \frac{- 1}{(x + 1)^{2}} >
0,\forall x eq - 1 nên hàm số không có cực trị.

  • Câu 3: Nhận biết

    Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số y = \frac{2}{- x + 3}?

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{2}{- x + 3} = 0

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{2}{- x + 3} là đường thẳng có phương trình y = 0.

  • Câu 4: Nhận biết

    Cho hàm số y = \frac{2x + 3}{x -
2}. Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 0;1brack. Khi đó giá trị của biểu thức S = M + m là:

    Ta có: y' = \frac{- 7}{(x - 2)^{2}}
< 0;\forall x \in \lbrack 0;1brack

    Vậy \left\{ \begin{matrix}M = y(0) = - \dfrac{3}{2} \\m = y(1) = - 5 \\\end{matrix} ight.\  \Rightarrow S = M + m = -\dfrac{13}{2}

  • Câu 5: Vận dụng cao

    Cho hàm số f(x) = x^{3} - 3x^{2} + m^{2}
- 2m với m là tham số. Gọi S tập hợp tất cả các giá trị nguyên của tham số m thỏa mãn 3\max_{\lbrack - 3;1brack}f\left( |x| ight) +
2\min_{\lbrack - 3;1brack}f\left( |x| ight) \leq 112. Số phần tử của tập hợp S bằng:

    Ta có: f\left( |x| ight) = f\left( | -
x| ight);\forall x\mathbb{\in R}

    \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack - 3;1brack}f\left( |x| ight) = \max_{0;3}f(x) \\
\min_{\lbrack - 3;1brack}f\left( |x| ight) = \min_{\lbrack
0;3brack}f(x) \\
\end{matrix} ight.

    Đạo hàm f'(x) = 3x^{2} - 6x =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow f(0) = m^{2} - 2m \\
x = 2 \Rightarrow f(2) = m^{2} - 2m - 4 \\
\end{matrix} ight.f(3) =
m^{2} - 2m

    Suy ra 3\max_{\lbrack -
3;1brack}f\left( |x| ight) + 2\min_{\lbrack - 3;1brack}f\left( |x|
ight) \leq 112

    \Leftrightarrow 3\left( m^{2} - 2m
ight) + 2\left( m^{2} - 2m - 4 ight) \leq 112

    \Leftrightarrow m^{2} - 2m - 24 \leq 0
\Leftrightarrow - 4 \leq m \leq 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3;...;5;6 ight\}

    Vậy có tất cả 11 giá trị nguyên của tham số m.

  • Câu 6: Thông hiểu

    Cho hàm số y = x^{4} - 2(m + 2)x^{2} + 3m
- 1. Tìm m để hàm số đã cho có cực tiểu nhưng không có cực đại?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
2)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 2 \\
\end{matrix} ight.

    Để hàm số đã cho chỉ có điểm cực tiểu và không có điểm cực đại thì m + 2 \leq 0 \Leftrightarrow m \leq -
2.

    Vậy đáp án cần tìm là ( - \infty; -
2brack.

  • Câu 7: Vận dụng

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 8: Thông hiểu

    Cho hàm số y = f(x) luôn nghịch biến trên \mathbb{R}. Tập nghiệm của bất phương trình f\left( \frac{1}{x}
ight) > f(1) là:

    Vì hàm số y = f(x) luôn nghịch biến trên \mathbb{R} nên ta có:

    f\left( \frac{1}{x} ight) > f(1)
\Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x < 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x > 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Rightarrow x \in ( - \infty;0) \cup (1; +
\infty)

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty;0) \cup (1; + \infty)

  • Câu 9: Thông hiểu

    Gia đình bác T muốn xây một bình chứa hình trụ có thể tích 75m^{3}. Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?

    Gọi x(m);(x > 0) là bán kính đáy của bình chứa hình trụ

    Khi đó tổng số tiền phải trả là 14.10^{4}.\pi x^{2} + 10^{5}.\pi x^{2} +\frac{144.9.10^{4}}{x}

    Đặt f(x) = 14.10^{4}.\pi x^{2} +10^{5}.\pi x^{2} + \frac{144.9.10^{4}}{x}

    \Rightarrow f'(x) = 48.10^{4}\pi x -\frac{1296.10^{4}}{x}

    \Rightarrow f'(x) = 0\Leftrightarrow 48.10^{4}\pi x - \frac{1296.10^{4}}{x} = 0\Leftrightarrow x = \frac{3}{\sqrt[3]{\pi}}

    Vậy để chi phí xây dựng là thấp nhất thì bán kính đáy bằng \frac{3}{\sqrt[3]{\pi}}m.

  • Câu 10: Thông hiểu

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= x^{3} - 3x^{2} + (4 - m)x đồng biến trên khoảng (2; + \infty) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x + 4 -
m

    Hàm số đồng biến trên khoảng (2; +
\infty) \Leftrightarrow y' \geq 0;\forall x \in (2; +
\infty)

    \Leftrightarrow m \leq 3x^{2} - 6x +
4;\forall x \in (2; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
4 trên khoảng (2; +
\infty).

    Ta có: g'(x) = 6x - 6;g'(x) = 0
\Leftrightarrow x = 1

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có: m \leq
g(x);;\forall x \in (2; + \infty) \Leftrightarrow m \leq 4

    Vậy m \leq 4 thỏa mãn yêu cầu bài toán.

  • Câu 11: Nhận biết

    Trong các hàm số dưới đây, hàm số nào đồng biến trên \mathbb{R}?

     Hàm số y = x – sinx có tập các định D = \mathbb{R}y' = 1 - \cos x \geqslant 0, \vee x \in \mathbb{R}

    Nên hàm số luôn đồng biến trên \mathbb{R}

  • Câu 12: Thông hiểu

    Tìm hàm số tương ứng với đồ thị được cho trong hình vẽ sau?

    Dựa vào đồ thị đã cho trong hình vẽ ta thấy đường tiệm cận ngang của đồ thị là y = - 1 và đường tiệm cận đứng của đồ thị là x = - 1.

    Đồ thị hàm số đi qua điểm (1;1) nên hàm số cần tìm là y = \frac{- x + 1}{x +
1}.

  • Câu 13: Vận dụng

    Tìm tập hợp các giá trị thực của m để đồ thị hàm số y = \frac{{x - 1}}{{mx - 1}} có tiệm cận đứng là:

     Điều kiện để đồ thị hàm số có tiệm cận là \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   { - 1 + m e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   {m e 1} \end{array}} ight.

  • Câu 14: Vận dụng

    Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200m^{2}. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200m^{2}. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu

    Tìm m để hàm số y = \frac{2x - 1}{x + m} đồng biến trên khoảng ( - \infty; - 5)?

    Điều kiện xác định: x eq -
m

    Ta có: y' = \frac{2m + 1}{(x +
m)^{2}}

    Hàm số y = \frac{2x - 1}{x + m} đồng biến trên ( - \infty; - 5) khi và chỉ khi \left\{ \begin{matrix}
y' > 0;\forall x \in ( - \infty; - 5) \\
x eq - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}2m + 1 > 0 \\m otin ( - \infty; - 5) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{2} \\- m \geq - 5 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{2} \\m \leq 5 \\\end{matrix} ight.

    \Leftrightarrow m \in \left( -
\frac{1}{2};5 ightbrack

    Vậy đáp án cần tìm là m \in \left( -
\frac{1}{2};5 ightbrack

  • Câu 16: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Đồ thị hàm số y f’(x) như hình vẽ bên:

    Số điểm cực trị của hàm số

    Số điểm cực trị của hàm số y = f(x) + 2x là:

    Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) < 0 \Leftrightarrow f'\left( x ight) <  - 2 \Leftrightarrow x > \alpha

    Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị x = \alpha

    Từ đó ta có bảng xét dấu như sau:

    Số điểm cực trị của hàm số

    Vậy hàm số đã cho có đúng một cực trị

  • Câu 17: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới dây?

    Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên (0;1).

  • Câu 18: Thông hiểu

    Cho hàm số y = \frac{{ax + b}}{{cx + d}} có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

    Hàm số đã cho là hàm số nào

    Dựa vào bảng biến thiên ta thấy:

    Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1

    => Loại đáp án C và D

    Hàm số đã cho nghịch biến trên mỗi khoảng xác định

    Xét hàm số y = \frac{{x - 3}}{{x - 2}} \Rightarrow y' = \frac{1}{{{{\left( {x - 2} ight)}^2}}}

    => Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A

  • Câu 19: Thông hiểu

    Cho hàm số y = f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{\sqrt {{x^2} + 1} }}{x}{\text{   khi x }} \geqslant {\text{ 1}}} \\   {\dfrac{{2x}}{{x - 1}}{\text{   khi x  <  1}}} \end{array}} ight.. Số đường tiệm cận của đồ thị hàm số y = f(x) là:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x}}{{x - 1}} =  - \infty

     => Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

    \mathop {\lim }\limits_{x \to  - \infty } \frac{{2x}}{{x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{1 - \frac{1}{x}}} = 2 => y = 2 là tiệm cận ngang của đồ thị hàm số

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {2 + \frac{1}{{{x^2}}}}  = 1 => đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

  • Câu 20: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

    Đồ thị của hàm số y = f(x)

    Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức y = \frac{{ax + b}}{{cx + d}}

    => Loại đáp án B và D

    Ta có: y\left( 0 ight) = 2 => Loại đáp án B

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo