Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên khi
Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên khi
Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.
Đồ thị hàm số nào sau đây nhận điểm
làm tâm đối xứng?
Đồ thị hàm số có tiệm cận đứng là đường thẳng
và tiệm cận ngang là
suy ra giao điểm của hai đường tiệm cận là
Vậy điểm là tâm đối xứng của đồ thị hàm số
.
Cho hàm số bậc ba có bảng biến thiên như sau:

Chọn khẳng định đúng?
Quan sát bảng biến thiên ta suy ra a < 0
Ta có: có hai nghiệm dương nên
Gọi
là tập hợp các giá trị của tham số
để giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tính tổng các phần tử của tập
?
Ta có: . Suy ra hàm số
đồng biến trên đoạn
do đó
Theo giả thiết
Vậy nên tổng các phần tử của tập hợp
bằng
.
Cho hai số thực
thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.
Gọi
là tập hợp các giá trị thực của tham số
để hàm số
nghịch biến trên một đoạn có độ dài bằng
. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp
bằng:
Ta có:
Gọi là nghiệm của phương trình (*) ta có bảng biến thiên:
Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt thỏa mãn
(*) có hai nghiệm phân biệt
Suy ra
Vậy tổng tất cả các phần tử của tập S bằng 8.
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số trên có tiệm cận ngang là:
Dựa vào bảng biến thiên ta có:
Suy ra tiệm cận ngang của đồ thị hàm số là .
Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Điều kiện xác định
Ta có: nên
là tiệm cận ngang của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có hai đường tiệm cận.
Cho hàm số
có đạo hàm liên tục trên
và có bảng biến thiên của đạo hàm như hình vẽ.

Đặt
. Tìm số điểm cực trị của hàm số ![]()
Đáp án: 6
Cho hàm số có đạo hàm liên tục trên
và có bảng biến thiên của đạo hàm như hình vẽ.
Đặt . Tìm số điểm cực trị của hàm số
Đáp án: 6
Đặt
Xét hàm số
Bảng biến thiên của hàm số
Dựa vào bảng biến thiến trên ta thấy phương trình .
Mỗi phương trình có hai nghiệm phân biệt khác , mà
có 4 nghiệm đơn phân biệt
khác
và phương trình
vô nghiệm.
Do đó phương trình có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là
.
Vậy hàm số có 6 cực trị.
Tính giá trị của tham số m biết rằng giá trị lớn nhất của hàm số
là
?
Ta có: có tập xác định
Ta có: . Theo bài ra ta có:
Vậy đáp án cần tìm là
Cho hàm số
có đồ thị
. Gọi
và đối xứng nhau qua gốc tọa độ
. Độ dài
bằng:
Gọi là hai điểm đối xứng nhau qua gốc tọa độ (
)
Vì A và B thuộc (C) nên
. Khi đó
Độ dài đoạn AB là: .
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:

Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Cho hàm số
với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tập hợp tất cả các giá trị thực của tham số
để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Cho hàm số
(với
là tham số) đạt cực tiểu tại
. Tìm giá trị tham số
?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại suy ra
Với
. Khi đó
suy ra
là điểm cực tiểu của hàm số.
Vậy là giá trị cần tìm.
Hàm số
đồng biến trên khoảng nào dưới đây?
Tập xác định . Ta có:
Suy ra hàm số đồng biến trên khoảng và
.
Tìm giá trị nhỏ nhất của hàm số
trên đoạn ![]()
Tập xác định
Với ta có:
Ta có: khi
.
Hàm số
có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực trị?
Ta có:
Bảng biến thiên
Từ bảng biến thiên của hàm số ta thấy hàm số
có đúng một cực trị.
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số
có đồ thị
là parabol như hình vẽ:

Khẳng định nào sau đây là đúng?
Từ đồ thị hàm số ta có bảng biến thiên như sau:
Vậy hàm số đồng biến trên các khoảng và
.