Cho hàm số
có một nguyên hàm là hàm số F(x). Số điểm cực trị của hàm số F(x) là
TXĐ: có một nguyên hàm là hàm số F(x)
=> F’(x) = f(x),
=>
Ta có bảng xét dấu F’(x) như sau:

Dựa vào bảng trên ta thấy hàm số F(x) có một điểm cực trị.
Cho hàm số
có một nguyên hàm là hàm số F(x). Số điểm cực trị của hàm số F(x) là
TXĐ: có một nguyên hàm là hàm số F(x)
=> F’(x) = f(x),
=>
Ta có bảng xét dấu F’(x) như sau:

Dựa vào bảng trên ta thấy hàm số F(x) có một điểm cực trị.
Cho đồ thị hàm số như hình vẽ dưới đây:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1
=> Loại A và B
Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C
Biết đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi có
thuộc khoảng nào sau đây?
Phương trình hoành độ giao điểm là
Xét hàm số
Đồ thị có điểm uốn là
Để đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại
Sự ảnh hưởng khi sử dụng một loại thuốc với cá thể
được một nhà sinh học mô tả bởi hàm số
, trong đó
là số lượng cá thể sau
giờ sử dụng thuốc. Vào thời điểm nào thì số lượng cá thể
bắt đầu giảm?
Xét ta có:
Ta thấy hàm số đạt cực đại tại và
nên sau
giờ thì cá thể bắt đầu giảm.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

Đồ thị trong hình vẽ là hàm số có dạng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng
nên hàm số cần tìm là
.
Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng
.
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.
Ta có:
Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình có hai nghiệm phân biệt thỏa mãn
Cho các hàm số sau:
. Có bao nhiêu hàm số có đúng một điểm cực trị?
Ta có:
có
và
đổi dấu khi
qua nghiệm đó nên hàm số có đúng 1 điểm cực trị.
có
và
đổi dấu khi
qua các nghiệm đó nên hàm số có 3 điểm cực trị.
; y’ không xác định khi
và y’ đổi dấu khi
qua
nên hàm số có hai điểm cực trị.
và y’ đổi dấu khi x qua các nghiệm đó nên hàm số có hai điểm cực trị.
Vậy chỉ có một hàm số có đúng một cực trị.
Cho hàm số
. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Xác định giá trị thực của tham số
để hàm số
đồng biến trên khoảng
?
Tập xác định
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là .
Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao
m, một phía rộng
m, một phía rộng
m. Một người thợ cần mang một số ống thép cứng các loại có độ dài
m,
m,
m,
m,
m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

Đáp án: 4
Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao m, một phía rộng
m, một phía rộng
m. Một người thợ cần mang một số ống thép cứng các loại có độ dài
m,
m,
m,
m,
m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?
Đáp án: 4
Ống thép muốn qua được hành lang (bên này qua bên kia) phải qua được góc vuông giữa hành lang.
Vì vậy chiều dài của ống thép phải thỏa mãn
,
Ta có
Trong đó
Xét hàm số
Vì vậy
Cho hàm số
có đạo hàm liên tục trên
và có đồ thị của hàm số
như hình vẽ sau:

Xét hàm
. Mệnh đề nào dưới đây sai?
Ta có:
Dựa vào đồ thị ta thấy
Vậy hàm số nghịch biến trên
là sai.
Cho hàm số
có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Dựa vào đồ thị ta có hàm số đồng biến trên khoảng
Cho hàm số
với
là tham số. Khi giá trị của
biến thiên thì số điểm cực trị của hàm số có thể là
hoặc
hoặc
. Tính giá trị biểu thức
?
Đặt
Ta có bảng biến thiên của như sau:
TH1:
Hàm số có 3 điểm cực trị suy ra
TH2:
Hàm số có 3 điểm cực trị suy ra
TH3:
Hàm số có 3 điểm cực trị suy ra
Vậy
Bác H cần xây dựng một bể nước mưa có thể tích
dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Bác H cần xây dựng một bể nước mưa có thể tích dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Cho hàm số bậc ba có bảng biến thiên như sau:

Chọn khẳng định đúng?
Quan sát bảng biến thiên ta suy ra a < 0
Ta có: có hai nghiệm dương nên
Hàm số
đồng biến trên khoảng
Ta có y’ = 8x => y’ = 0 => x = 0
=> y’ > 0 => x > 0
=> y’ < 0 => x < 0
Vậy hàm số đồng biến trên khoảng
Gọi
là tập hợp các giá trị của tham số
để giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tính tổng các phần tử của tập
?
Ta có: . Suy ra hàm số
đồng biến trên đoạn
do đó
Theo giả thiết
Vậy nên tổng các phần tử của tập hợp
bằng
.
Cho hàm số
có bảng xét dấu đạo hàm như sau:

Mệnh đề nào dưới đây đúng?
Hàm số có
đổi dấu từ + sang – khi
đi qua điểm
Vậy hàm số đạt cực đại tại
.
Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Tập xác định nên hàm số xác định và liên tục trên
Ta có:
Mà