Tìm giá trị nhỏ nhất của hàm số
trên
?
Ta có:
. Khi đó:
Vậy .
Tìm giá trị nhỏ nhất của hàm số
trên
?
Ta có:
. Khi đó:
Vậy .
Cho hàm số
. Xác định số điểm cực trị của hàm số?
Ta có:
Vì nên hàm số đã cho có 3 cực trị.
Tìm các khoảng nghịch biến của hàm số
?
Tập xác định
Ta có:
Do đó hàm số luôn nghịch biến trên từng khoảng xác định.
Cho hàm số
biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Cho hàm số biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Tìm giá trị của
để bất phương trình
có nghiệm trên khoảng
?
Bất phương trình có nghiệm trên khoảng
Với
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta suy ra .
Quan sát hình vẽ sau:

Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng là
nên hàm số tương ứng là
.
Tiệm cận đứng của đồ thị hàm số
là đường thẳng có phương trình
Ta có:
là tiệm cận đứng của đồ thị hàm số.
là tiệm cận đứng của đồ thị hàm số.
Tìm số các giá trị nguyên của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Hàm số có ba cực trị khi và chỉ khi
Mà . Vậy có 4 giá trị của tham số
thỏa mãn.
Tìm tập hợp các giá trị thực của m để đồ thị hàm số
có tiệm cận đứng là:
Điều kiện để đồ thị hàm số có tiệm cận là
Gọi M là giá trị lớn nhất của hàm số
. Tính tích các nghiệm của phương trình f(x) = M.
Đặt
Xét hàm số ta có:
Cho đồ thị hàm số
:

Có bao nhiêu giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm ta phải có
Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho hàm số
với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Cho hàm số với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Cho các hàm số sau:
![]()
![]()
Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?
Ta có:
có
nên có 1 tiệm cận ngang là
.
có
nên có 2 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.
Cho hàm số
có đồ thị
và đường thẳng
. Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị
cắt đường thẳng
tại ba điểm phân biệt?
Phương trình hoành độ giao điểm
Đặt
Để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt thì phương trình phải có 3 nghiệm phân biệt, khi đó
phải có hai nghiệm phân biệt khác
.
Do đó
Do nguyên dương nên
.
Vậy số giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán bằng 3.
Cho hàm số
có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:

Hàm số
nghịch biến trên khoảng nào trong các khoảng sau?
Quan sát hình vẽ ta thấy:
và
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số
. Tìm khẳng định đúng?
Ta có:
. Ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu ta suy ra hàm số nghịch biến trên khoảng .
Cho hai số thực a, b dương thỏa mãn
. Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
Đặt
Cho hàm số đa thức bậc bốn
. Đồ thị hàm số
được biểu thị trong hình vẽ sau:

Hàm số
nghịch biến trong khoảng nào?
Đặt . Ta có bảng xét dấu của
được mô tả lại như sau:
Từ đó suy ra bảng xét dấu của
Vậy hàm số nghịch biến trên các khoảng
.
Có tất cả bao nhiêu các giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Tập xác định
Ta có:
Hàm số đã cho đồng biến trên khoảng khi và chỉ khi
Vì
Vậy có hai giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Một chất điểm chuyển động với quy luật
. Thời điểm
(giây) tại vận tốc
của chuyển động đạt giá trị lớn nhất là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy vận tốc của chuyển động đạt giá trị lớn nhất bằng khi
.