Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Đồ thị hàm số y = {x^3} - 3{x^2} - 9x + 1 có hai điểm cực trị là A và B. Điểm nào dưới đây thuộc đường thẳng AB?

     Cách 1: Xét hàm số f\left( x ight) = {x^3} - 3{x^2} - 9x + 1

    Ta có: f\left( x ight) = \left( {\frac{1}{3}x - \frac{1}{3}} ight).f'\left( x ight) - 8x - 2

    Đồ thị hàm số f(x) có hai điểm cực trị A và B nên f’(A) = f’(B) = 0

    Suy ra \left\{ {\begin{array}{*{20}{c}}  {{y_A} = f\left( {{x_A}} ight) =  - 8{x_A} - 2} \\   {{y_B} = f\left( {{x_B}} ight) =  - 8{x_B} - 2} \end{array}} ight.

    Do đó phương trình đường thẳng AB là y = -8x – 2

    Khi đó ta có điểm có tọa độ (1; -10) thuộc đường thẳng AB.

    Cách 2: Xét hàm số y = f\left( x ight) = {x^3} - 3{x^2} - 9x + 1

    \begin{matrix}  f'\left( x ight) = 3{x^2} - 6x - 9 \hfill \\  f'\left( x ight) = 0 \Rightarrow 3{x^2} - 6x - 9 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 3} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => Tọa độ hai điểm cực trị của hàm số là A(3; -26) và B(-1; 6)

    Ta có: \overrightarrow {AB}  = \left( { - 4;32} ight) \Rightarrow \overrightarrow u  = \left( { - 1;8} ight)

    Phương trình đường thẳng AB đ qua B(-1; 6) nhận vecto \overrightarrow u làm vecto chỉ phương là \left\{ {\begin{array}{*{20}{c}}  {x =  - 1 - t} \\   {y = 6 + 8t} \end{array}} ight.;\left( {t \in \mathbb{R}} ight)

    Khi đó ta có điểm có tọa độ (1; -10) thuộc đường thẳng AB.

  • Câu 2: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{4} - 3x^{2} + m = 0 có 4 nghiệm thực phân biệt?

    Đặt t = x^{2};(t \geq 0). Ta được phương trình 3t^{2} - 3t + m =
0(*)

    Phương trình đã cho có 4 nghiệm thực phân biệt khi và chỉ khi phương trình có 2 nghiệm dương phân biệt \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
9 - 4m > 0 \\
3 > 0 \\
m > 0 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m <
\frac{9}{4}

    Do m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2 ight\}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 3: Thông hiểu

    Cho hàm số y = \frac{x^{2} - 4x}{2x +
1}. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack 0;3brack?

    Hàm số y = \frac{x^{2} - 4x}{2x +
1} liên tục trên đoạn \lbrack
0;3brack

    Ta có: y' = \frac{2x^{2} + 2x -
4}{(2x + 1)^{2}} \Rightarrow y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
f(0) = 0 \\
f(1) = - 1 \\
f(3) = - \frac{3}{7} \\
\end{matrix} ight.\  \Rightarrow f(1) < f(3) < f(0) nên \min_{\lbrack 0;3brack}y = y(1) = -
1.

  • Câu 4: Nhận biết

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{x^{3}}{3} + 2x^{2} - mx + 2020 đồng biến trên \mathbb{R}?

    Ta có:

    Hàm số y = \frac{x^{3}}{3} + 2x^{2} - mx
+ 2020 đồng biến trên \mathbb{R}

    \Leftrightarrow y' = x^{2} + 4x - m
\geq 0;\forall x\mathbb{\in R}

    Dễ thấy x^{2} + 4x - m \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix}
1 > 0 \\
\Delta' = 4 + m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \leq - 4

    Vậy hàm số đã cho đồng biến trên \mathbb{R} khi m \leq - 4.

  • Câu 5: Thông hiểu

    Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

    Mệnh đề nào dưới đây đúng

     Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty } \end{array}} ight. \Rightarrow a > 0

    Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0

    Ta có: y' = 3a{x^2} + 2bx + c, nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - b}}{a} > 0 \Rightarrow b < 0} \\   {{x_1}.{x_2} = \dfrac{c}{a} = 0 \Rightarrow c = 0} \end{array}} ight.

  • Câu 6: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.

    Từ bảng biến thiên ta có: y_{CÐ} =
0;y_{CT} = - 3.

  • Câu 7: Vận dụng

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng cao

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Đáp án là:

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Gọi hàm số bậc ba y = f(x) = ax^{3} +
bx^{2} + cx + d

    \Rightarrow f'(x) = 3ax^{2} + 2bx +
c.

    Vì đồ thị hàm số đi qua hai điểm (0;1)
\Rightarrow d = 1.

    Vì đồ thị hàm số đi qua hai điểm A(2;5)
\Rightarrow 8a + 4b + 2c + 1 = 5.

    Vì hàm số có hai điểm cực trị x = 0;x =
2

    \Rightarrow \left\{ \begin{matrix}
f'(0) = 0 \\
f'(2) = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 0 \\
12a + 4b = 0 \\
\end{matrix} ight. .

    \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow f(x) = - x^{3} + 3x^{2} + 1f'(x) = - 3x^{2} + 6x.

    Gọi M\left( x_{0};y_{0} ight),\ x_{0}
> 0, là điểm nằm trên hòn đảo và nối với mặt đường và d là tiếp tuyến của đồ thị hàm số song song với mặt đường.

    Suy ra M là tiếp điểm của d với y = f(x).

    Đường thẳng y = 36 - 9x có hệ số góc k = - 9

    \Rightarrow f'\left( x_{0} ight) =
- 9 \Leftrightarrow - 3x_{0}^{2} + 6x_{0} = - 9

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 3 \\
x_{0} = - 1 \\
\end{matrix} ight.\  \Rightarrow M(3;1).

    Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm M đến đường thẳng 9x + y - 36 = 0.

    h = \frac{|9.3 + 1 - 36|}{\sqrt{9^{2} +
1^{2}}} \approx 0,883.

    Vì đơn vị của hệ trục là 100m nên độ dài ngắn nhất của cây cầu là 88,3m.

  • Câu 9: Thông hiểu

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Nhận biết

    Hàm số y = f(x) = x^{3} - 7x^{2} + 11x -
2 trên đoạn \lbrack
0;2brack có giá trị nhỏ nhất bằng:

    Ta có: y' = 3x^{2} - 14x +
11

    \Rightarrow y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = \frac{11}{3} \\
\end{matrix} ight.. Khi đó f(0)
= - 2;f(1) = 3;f(2) = 0 suy ra \min_{\lbrack 0;2brack}f(x) = - 2.

  • Câu 11: Vận dụng

    Cho hàm số y =
f(3 - 2x) có bảng xét dấu đạo hàm như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

    Xét hàm số y = f(3 - 2x) ta có: y' = - 2f'(3 - 2x)

    y' = 0 \Leftrightarrow - 2f'(3 -
2x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
3 - 2x = 5 \\
3 - 2x = 3 \\
3 - 2x = 1 \\
\end{matrix} ight.

    \Rightarrow y' > 0
\Leftrightarrow - 2.f'(3 - 2x) > 0

    \Leftrightarrow f'(3 - 2x) < 0
\Leftrightarrow \left\lbrack \begin{matrix}
- 1 < x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
3 < 3 - 2x < 5 \\
3 - 2x < 1 \\
\end{matrix} ight.

    Đặt 3 - 2x = t \Rightarrow f'(t) <
0 \Leftrightarrow \left\lbrack \begin{matrix}
3 < t < 5 \\
t < 1 \\
\end{matrix} ight.

    Xét hàm số y = f(x)y' = f'(x). Hàm số nghịch biến khi y' < 0 \Leftrightarrow f'(x)
< 0 \Leftrightarrow \left\lbrack \begin{matrix}
3 < x < 5 \\
x < 1 \\
\end{matrix} ight.

    Vậy hàm số y = f(x) nghịch biến trên khoảng (3;5).

  • Câu 12: Thông hiểu

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Hàm số y = f( - x) nghịch biến trên khoảng nào dưới đây?

    Từ đồ thị hàm số y = f(x) ta thấy hàm số đồng biến trên khoảng (0;2)

    \Leftrightarrow f'(x) > 0
\Leftrightarrow 0 < x < 2

    Xét hàm số y = f( - x) ta có: y' = - f'( - x)

    y' < 0 \Leftrightarrow - f'(
- x) < 0 \Leftrightarrow f'( - x) > 0

    \Leftrightarrow 0 < - x < 2
\Leftrightarrow - 2 < x < 0

    Suy ra hàm số y = f( - x) nghịch biến trên khoảng ( - 2;0).

  • Câu 13: Vận dụng

    Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.

    Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:

    f’(x) = -3x2 – 6x

    f’(x) = 0 => \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   { - 3{x^2} - 6x = 0} \end{array}} ight. \Leftrightarrow x = 0

    Ta tính được

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = 2 + m} \\   \begin{gathered}  f\left( 0 ight) = m \hfill \\  f\left( 1 ight) =  - 4 + m \hfill \\ \end{gathered}  \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = f\left( 1 ight) =  - 4 + m \hfill \\   \Leftrightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 0 \Rightarrow m = 4 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Đồ thị hàm số y = \frac{x^{3} - 4x}{x^{3}
- 3x - 2} có bao nhiêu đường tiệm cận?

    Ta có: y = \frac{x^{3} - 4x}{x^{3} - 3x -
2} = \frac{(x - 2)\left( x^{2} + 2x ight)}{(x - 2)\left( x^{2} + 2x +
1 ight)} = \frac{x^{2} + 2x}{x^{2} + 2x + 1}

    \lim_{x ightarrow ( - 1)^{+}}y =
\lim_{x ightarrow ( - 1)^{+}}\frac{x^{2} + 2x}{x^{2} + 2x + 1} =
\lim_{x ightarrow ( - 1)^{+}}\frac{x(x + 2)}{(x + 1)^{2}} = -
\infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x^{2} + 2x}{x^{2} + 2x + 1}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{1 + \dfrac{2}{x}}{1+ \dfrac{2}{x} + \dfrac{1}{x^{2}}} ight) = 1 suy ra đồ thị hàm số có tiệm cận ngang là y = 1.

    Vậy đồ thị hàm số có hai đường tiệm cận.

  • Câu 15: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 nghịch biến trên \mathbb{R}?

    Ta có: y' = - x^{2} - 4x +
m

    Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi y' \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow - x^{2} - 4x + m \leq
0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\in ( - \infty; - 4brack

    Vậy đáp án cần tìm là m \in ( - \infty; -
4brack.

  • Câu 16: Nhận biết

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 17: Vận dụng

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 18: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên các khoảng ( -
\infty;0)(0; + \infty) có bảng biến thiên như hình vẽ:

    Chọn khẳng định đúng trong các khẳng định sau.

    \lim_{x ightarrow 0^{+}}y = -
\infty nên đồ thị hàm số có đúng một đường tiệm cận đứng.

    Vậy khẳng định đúng là “Đồ thị hàm số có đúng một đường tiệm cận đứng.”

  • Câu 19: Nhận biết

    Xác định hàm số đồng biến trên ( - \infty; + \infty)?

    Xét hàm số y = x^{3} + 3x ta có:

    y' = 3x^{2} + 3 > 0;\forall x \in
( - \infty; + \infty)

    Suy ra hàm số y = x^{3} + 3x đồng biến trên ( - \infty; +
\infty).

  • Câu 20: Vận dụng cao

    Cho hàm số y = f(x) = (m - 1)x^{3} -5x^{2} + (3 + m)x + 3 với m là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = f\left( |x| ight) có đúng ba cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = (m - 1)x^{3} -5x^{2} + (3 + m)x + 3 với m là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = f\left( |x| ight) có đúng ba cực trị?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo