Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d;\left( {a,b,c,d \in \mathbb{R}} ight) có đồ thị như hình vẽ dưới đây.

    Xác định số TCĐ và TCN của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{1}{{f\left( {4 - {x^2}} ight) - 3}} có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.

    Đặt t = 4 - {x^2} khi đó x \to  \pm \infty thì t \to \infty

    Khi đó \mathop {\lim }\limits_{x \to  \pm \infty } g\left( x ight) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{f\left( t ight) - 3}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số g(x)

    Mặt khác

    \begin{matrix}  f\left( {4 - {x^2}} ight) - 3 = 0 \hfill \\   \Leftrightarrow f\left( {4 - {x^2}} ight) = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {4 - {x^2} =  - 2} \\   {4 - {x^2} = 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm \sqrt 6 } \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Đồ thị hàm số g(x) có ba đường tiệm cận đứng.

    Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.

  • Câu 2: Vận dụng cao

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Đáp án là:

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Gọi hàm số bậc ba y = f(x) = ax^{3} +
bx^{2} + cx + d

    \Rightarrow f'(x) = 3ax^{2} + 2bx +
c.

    Vì đồ thị hàm số đi qua hai điểm (0;1)
\Rightarrow d = 1.

    Vì đồ thị hàm số đi qua hai điểm A(2;5)
\Rightarrow 8a + 4b + 2c + 1 = 5.

    Vì hàm số có hai điểm cực trị x = 0;x =
2

    \Rightarrow \left\{ \begin{matrix}
f'(0) = 0 \\
f'(2) = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 0 \\
12a + 4b = 0 \\
\end{matrix} ight. .

    \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow f(x) = - x^{3} + 3x^{2} + 1f'(x) = - 3x^{2} + 6x.

    Gọi M\left( x_{0};y_{0} ight),\ x_{0}
> 0, là điểm nằm trên hòn đảo và nối với mặt đường và d là tiếp tuyến của đồ thị hàm số song song với mặt đường.

    Suy ra M là tiếp điểm của d với y = f(x).

    Đường thẳng y = 36 - 9x có hệ số góc k = - 9

    \Rightarrow f'\left( x_{0} ight) =
- 9 \Leftrightarrow - 3x_{0}^{2} + 6x_{0} = - 9

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 3 \\
x_{0} = - 1 \\
\end{matrix} ight.\  \Rightarrow M(3;1).

    Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm M đến đường thẳng 9x + y - 36 = 0.

    h = \frac{|9.3 + 1 - 36|}{\sqrt{9^{2} +
1^{2}}} \approx 0,883.

    Vì đơn vị của hệ trục là 100m nên độ dài ngắn nhất của cây cầu là 88,3m.

  • Câu 3: Vận dụng

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - (m - 1)x^{2} - 4mx đồng biến trên đoạn \lbrack 1;4brack?

    Theo yêu cầu bài toán ta có:

    y' = x^{2} - 2(m - 1)x - 4m \geq
0;\forall x \in \lbrack 1;4brack(*)

    Để hàm số đồng biến trên đoạn \lbrack
1;4brack

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1;4brack

    \Leftrightarrow x^{2} - 2(m - 1)x - 4m
\geq 0

    \Leftrightarrow m \leq \frac{x^{2} +
2x}{4 + 2x}

    Đặt g(x) = \frac{x^{2} + 2x}{4 + 2x}
\Rightarrow g'(x) = \frac{8x}{(4 + 2x)^{2}} > 0;\forall x \in
\lbrack 1;4brack

    \Rightarrow \min_{\lbrack
1;4brack}g(x) = g(1) = \frac{1}{2} \Rightarrow m \leq
\frac{1}{2}

    Vậy m \leq \frac{1}{2} là đáp án cần tìm.

  • Câu 5: Thông hiểu

    Hỏi đồ thị của hàm số y = \frac{|x +
1|}{\sqrt{x^{2} + 3} - 2} có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;1 ight\}

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{|x + 1|}{\sqrt{x^{2} + 3} - 2} = 1 nên đồ thị hàm số có tiệm cận ngang là y = 1

    y = \frac{{\left| {x + 1} ight|}}{{\sqrt {{x^2} + 3}  - 2}} = \frac{{\left| {x + 1} ight|.\left( {\sqrt {{x^2} + 3}  + 2} ight)}}{{{x^2} - 1}}= \left\{ \begin{gathered}
  \frac{{\sqrt {{x^2} + 3}  + 2}}{{x - 1}};x \geqslant  - 1 \hfill \\
   - \frac{{\sqrt {{x^2} + 3}  + 2}}{{x - 1}};x <  - 1 \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 1^{+}}y = +
\infty;\lim_{x ightarrow 1^{-}}y = + \infty nên đồ thị hàm số có tiệm cận đứng là x = 1

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 6: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a < 0

    Vậy hàm số cần tìm là y = - x^{3} +
3x^{2} - 1.

  • Câu 8: Nhận biết

    Giá trị lớn nhất của hàm số y = x^{3} +
2x^{2} - 7x - 3 trên đoạn \lbrack -
1;2brack bằng:

    Ta có: y' = 3x^{2} + 4x -
7

    y' = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = - \dfrac{7}{3} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}
y(1) = - 7 \\
y(2) = - 1 \\
y( - 1) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}y = y( -
1) = 5

  • Câu 9: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên khoảng (1; + \infty)?

    Ta có:

    y = - x^{3} + x - 1 sai vì 2 < 3 nhưng f(2) = - 7 > f(3) = - 25

    y = \frac{3 - x}{x + 1} sai vì 2 < 3 nhưng f(2) = \frac{1}{3} > f(3) = - 0

    y = \frac{x - 2}{2x - 3} sai vì 1,1 < 2 nhưng f(1,1) = \frac{9}{8} > f(2) = 0

    y = x^{4} - x^{2} + 3 đúng vì y' = 4x^{3} - 2x = 2x\left( 2x^{2} - 1
ight) > 0;\forall x > 1 nên hàm số y = x^{4} - x^{2} + 3 đồng biến trên khoảng (1; + \infty).

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số theo thứ tự là

    Từ đồ thị của hàm số suy ra tiệm cận đứng và tiệm cận ngang là : x = 1 ; y = 1

  • Câu 11: Thông hiểu

    Hàm số nào sau đây có đồ thị như hình vẽ:

    Dựa vào hình dáng đồ thị ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên loại đáp án y = x^{4} - 2x^{2} - 1

    Đồ thị hàm số đi qua điểm có tọa độ (0; -1) nên loại đáp án y = - x^{4} +2x^{2}

    Lại có đồ thị hàm số có các điểm cực trị (1;1),( - 1,1) nên loại đáp án y = - x^{4} + 2x^{2} - 1

    Vậy hàm số cần tìm là y = - 2x^{4} +4x^{2} - 1.

  • Câu 12: Thông hiểu

    Hai điểm cực trị của đồ thị hàm số y = (x
- 2)^{2}(x + 1)

    Ta có:

    f^{'}(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    f^{'}(x) = 0 = > x = 1;x =
2

    Vậy hai điểm cực trị cần tìm là: A(0;4),B(2;0)

  • Câu 13: Thông hiểu

    Cho hàm số y = \frac{mx + 2m + 3}{x +
m} với m là tham số. Gọi T là tập hợp tất cả các giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (2; +
\infty). Hỏi tập hợp T có tất cả bao nhiêu phần tử?

    Ta có: y' = \frac{m^{2} - (2m +
3)}{(x + m)^{2}} = \frac{m^{2} - 2m - 3}{(x + m)^{2}}

    Theo yêu cầu bài toán \Leftrightarrow
y' < 0;\forall x \in (2; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m - 3 < 0 \\
- m \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 < m < 3 \\
m \geq - 2 \\
\end{matrix} ight.\  \Leftrightarrow - 1 < m < 3

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2 ight\}

    \Rightarrow T = \left\{ 0;1;2
ight\}

    Vậy tập hợp T có tất cả 3 phần tử.

  • Câu 14: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho bằng:

    Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại x = - 1x
= 1; giá trị cực tiểu bằng -
4.

  • Câu 15: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} + mx +
1 có đồ thị (C) và đường thẳng d:y = 2x + 1. Có bao nhiêu giá trị nguyên dương của tham số m để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt?

    Phương trình hoành độ giao điểm

    x^{3} - 3x^{2} + mx + 1 = 2x +
1

    \Leftrightarrow x^{3} + 3x^{2} + (m -
2)x = 0

    \Leftrightarrow x\left( x^{2} - 3x + m -
2 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 3x + m - 2 = 0 \\
\end{matrix} ight.

    Đặt f(x) = x^{2} - 3x + m -
2

    Để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt thì phương trình x^{3} - 3x^{2} + (m - 2)x = 0 phải có 3 nghiệm phân biệt, khi đó f(x) =
0 phải có hai nghiệm phân biệt khác 0.

    Do đó \left\{ \begin{gathered}
  f\left( 0 ight) e 0 \hfill \\
  \Delta  > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m - 2 e 0 \hfill \\
  9 - 4\left( {m - 2} ight) > 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
  m e 2 \hfill \\
   - 4m >  - 17 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e 2 \hfill \\
  m < \frac{{17}}{4} \hfill \\ 
\end{gathered}  ight.

    Do m nguyên dương nên m \in \left\{ 1;3;4 ight\}.

    Vậy số giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán bằng 3.

  • Câu 16: Thông hiểu

    Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x\sqrt {1 - {x^2}}. Giá trị của biểu thức M - 2m là:

    Điều kiện xác định: 1 - {x^2} \geqslant 0 \Leftrightarrow  - 1 \leqslant x \leqslant 1

    Xét hàm số y = x\sqrt {1 - {x^2}} trên \left[ { - 1;1} ight] ta có:

    f'\left( x ight) = \sqrt {1 - {x^2}}  - \frac{{{x^2}}}{{\sqrt {1 - {x^2}} }} = \frac{{1 - 2{x^2}}}{{\sqrt {1 - {x^2}} }}

    Phương trình f'\left( x ight) = 0

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 1 < x < 1} \\   {1 - 2{x^2} = 0} \end{array} \Rightarrow x \in \left\{ { - \frac{{\sqrt 2 }}{2};\frac{{\sqrt 2 }}{2}} ight\}} ight.

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = f\left( 1 ight) = 0} \\   {f\left( {\dfrac{{ - \sqrt 2 }}{2}} ight) =  - \dfrac{1}{2}} \\   {f\left( {\dfrac{{\sqrt 2 }}{2}} ight) = \dfrac{1}{2}} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\max f\left( x ight)}\limits_{\left[ { - 1;1} ight]}  = M = \dfrac{1}{2}} \\   {\mathop {\min f\left( x ight)}\limits_{\left[ { - 1;1} ight]}  = m = \dfrac{1}{2}} \end{array}} ight.

    => M - 2m = \frac{1}{2} - 2\left( { - \frac{1}{2}} ight) = \frac{3}{2}

  • Câu 17: Nhận biết

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{x^{3}}{3} + 2x^{2} - mx + 2020 đồng biến trên \mathbb{R}?

    Ta có:

    Hàm số y = \frac{x^{3}}{3} + 2x^{2} - mx
+ 2020 đồng biến trên \mathbb{R}

    \Leftrightarrow y' = x^{2} + 4x - m
\geq 0;\forall x\mathbb{\in R}

    Dễ thấy x^{2} + 4x - m \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix}
1 > 0 \\
\Delta' = 4 + m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \leq - 4

    Vậy hàm số đã cho đồng biến trên \mathbb{R} khi m \leq - 4.

  • Câu 18: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đặt g'(x) = \left( \frac{x^{2} -
1}{x^{2}} ight)f'\left( \frac{x^{2} + 1}{x} ight)

    g'\left( x ight) = 0 \Leftrightarrow \left[ \begin{gathered}
  \left( {\frac{{{x^2} - 1}}{{{x^2}}}} ight) = 0 \hfill \\
  f'\left( {\frac{{{x^2} + 1}}{x}} ight) = 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  x =  \pm 1 \hfill \\
  \frac{{{x^2} + 1}}{x} = a\,\,\left( {a <  - 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = b\,\,\left( { - 2 < b < 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = c\,\,\left( {c > 2} ight) \hfill \\ 
\end{gathered}  ight.

    Xét hàm số h(x) = \frac{x^{2} +
1}{x},h'(x) = \frac{x^{2} - 1}{x^{2}},h'(x) = 0 \Leftrightarrow
x = \pm 1

    Bảng biến thiên của hàm số h(x) =
\frac{x^{2} + 1}{x}

    Dựa vào bảng biến thiến trên ta thấy phương trình h(x) = a,h(x) = c.

    Mỗi phương trình có hai nghiệm phân biệt khác \pm 1, mà a eq c \Rightarrow f'\left(
\frac{x^{2} + 1}{x} ight) = 0 có 4 nghiệm đơn phân biệt x_{1},x_{2},x_{3},x_{4} khác \pm 1 và phương trình h(x) = b vô nghiệm.

    Do đó phương trình g'(x) = 0 có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là x_{1},- 1,x_{2},x_{3},1,x_{4}.

    Vậy hàm số g(x) = f\left( \frac{x^{2} +
1}{x} ight)có 6 cực trị.

  • Câu 19: Vận dụng

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 20: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} và có bảng biến thiên như hình bên dưới

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên (3; + \infty).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo