Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Gọi m_{1};m_{2} là giá trị của tham số m để đồ thị hàm số y = 2x^{3} - 3x^{2} + m - 1 có hai điểm cực trị là P;Q sao cho diện tích tam giác OPQ bằng 2 (O là gốc tọa độ). Khi đó giá trị biểu thức m_{1}.m_{2} bằng:

    Tập xác định D\mathbb{= R}.

    Ta có: y' = 6x^{2} - 6x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y = m - 1 \\
x = 1 \Rightarrow y = m - 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Suy ra P(0;m - 1),Q(1;m - 2)

    \Rightarrow \overrightarrow{PQ} = (1; -
1) \Rightarrow \left| \overrightarrow{PQ} ight| =
\sqrt{2}

    Đường thẳng (PQ) đi qua điểm P(0;m -
1) và nhận \overrightarrow{n} =
(1;1) làm một vecto pháp tuyến nên có phương trình

    1(x - 0) + 1(y - m + 1) = 0
\Leftrightarrow x + y - m + 1 = 0

    d(O;PQ) = \frac{|1 -
m|}{\sqrt{2}}

    Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:

    S_{OAB} = \frac{1}{2}.d(O;PQ).PQ =
2

    \Leftrightarrow \frac{1}{2}.\frac{|1 -
m|}{\sqrt{2}}.\sqrt{2} = 2 \Leftrightarrow |1 - m| = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - m = 4 \\
1 - m = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 3 \\
m = 5 \\
\end{matrix} ight.

    Vậy m_{1}.m_{2} = - 15.

  • Câu 2: Thông hiểu

    Hình vẽ nào sau đây là đồ thị của hàm số y = (x - c)(d - x)^{2} với c > d > 0?

    Với c > d > 0 thì đồ thị hàm số y = (x - c)(d - x)^{2} theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ x = dx =
c

    Mặt khác với x \leq c thì y \leq 0 nên khi x \leq c thì đồ thị hàm số nằm phía dưới trục hoành

    Vậy đồ thị hàm số cần tìm là .

  • Câu 3: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Xét hàm g(x) = f\left( x^{2} - 2
ight). Mệnh đề nào dưới đây sai?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 2 ight)

    g'(x) = 0 \Leftrightarrow
2x.f'\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = - 1 \\
x^{2} - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Dựa vào đồ thị ta thấy f'\left( x^{2}
- 2 ight) > 0

    \Leftrightarrow x^{2} - 2 > 2
\Leftrightarrow x^{2} > 4 \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
x > 2 \\
\end{matrix} ight.

    Vậy hàm số g(x) nghịch biến trên ( - 1;0) là sai.

  • Câu 4: Thông hiểu

    Cho hàm số bậc năm y = f(x) và đồ thị hàm số y = f'(x) trên \mathbb{R} biểu diễn bởi hình vẽ:

    Mệnh đề nào sau đây đúng?

    Từ đồ thị hàm số y = f'(x) ta có bảng biến thiên của hàm số y =
f(x)

    Từ bảng biến thiên ta thấy hàm số y =
f(x) có 1 cực đại và 1 cực tiểu.

  • Câu 5: Vận dụng cao

    Cho hàm số y = \left| x^{4} - 4x^{3} +
4x^{2} + m ight| với m là tham số. Khi giá trị của m biến thiên thì số điểm cực trị của hàm số có thể là a hoặc b hoặc c. Tính giá trị biểu thức P = a.b.c?

    Đặt g(x) = x^{4} - 4x^{3} + 4x^{2} +
m

    \Rightarrow g'(x) = 4x^{3} - 12x^{2}
+ 8x \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên của g(x) như sau:

    TH1: m \geq 0

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra a = 3

    TH2: - 1 < m < 0

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra b = 7

    TH3: m \leq - 1

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra c = 5

    Vậy P = a.b.c = 105

  • Câu 6: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Số đường tiệm cận ngang: 1

    Số đường tiệm cận đứng: 1

    Tổng số đường tiệm cận ngang và tiệm cận đứng: 2.

  • Câu 7: Nhận biết

    Hàm số y = 2{x^4} - 4 đồng biến trên khoảng

    Ta có y’ = 8x => y’ = 0 => x = 0

    => y’ > 0 => x > 0

    => y’ < 0 => x < 0

    Vậy hàm số đồng biến trên khoảng \left( {0; + \infty } ight)

  • Câu 8: Nhận biết

    Hàm số y =
\frac{x - 2}{x - 1} đồng biến trên khoảng nào dưới đây?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}. Ta có: y' = \frac{1}{(x - 1)^{2}} > 0;\forall
x\mathbb{\in R}\backslash\left\{ 1 ight\}

    Suy ra hàm số đồng biến trên khoảng ( -
\infty;1)(1; +
\infty).

  • Câu 9: Thông hiểu

    Cho đồ thị:

    Xác định hàm số tương ứng với đồ thị hàm số đã cho?

    Nhận diện đồ thị hàm số bậc 4 trùng phương có a < 0

    Đồ thị hàm số đi qua điểm (0; -
1) nên loại hàm số y = - x^{4} +
2x^{2} - 3.

    Đồ thị hàm số có các cực trị là (1;0),( -
1;0) nên hàm số cần tìm là y = -
x^{4} + 2x^{2} - 1.

  • Câu 10: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

  • Câu 12: Thông hiểu

    Cho hàm số y = f(x) = x^{2} - 4\ln(1 -x) . Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là D = (1; +
\infty) . Sai||Đúng

    b) Đạo hàm của hàm số là y' = \frac{-
2x^{2} + 2x + 4}{1 - x} . Đúng||Sai

    c) Giá trị lớn nhất của hàm số trên \lbrack - 2;0brack là 2. Sai||Đúng

    d) Giá trị nhỏ nhất của hàm số trên \lbrack - 2;0brack1 - 4\ln2 . Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{2} - 4\ln(1 -x) . Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là D = (1; +
\infty) . Sai||Đúng

    b) Đạo hàm của hàm số là y' = \frac{-
2x^{2} + 2x + 4}{1 - x} . Đúng||Sai

    c) Giá trị lớn nhất của hàm số trên \lbrack - 2;0brack là 2. Sai||Đúng

    d) Giá trị nhỏ nhất của hàm số trên \lbrack - 2;0brack1 - 4\ln2 . Đúng||Sai

    Tập xác định của hàm số là D = (1; +
\infty).

    Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

    Ta có: y' = 2x + \frac{4}{1 - x} =
\frac{- 2x^{2} + 2x + 4}{1 - x}

    Khi đó y' = 0 \Leftrightarrow \frac{-
2x^{2} + 2x + 4}{1 - x} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(TM) \\
x = 2(L) \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}f( - 2) = 4 - 4\ln3 \\f( - 1) = 1 - 4\ln2 \\f(0) = 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}M = 0 \\m = 1 - 4\ln2 \\\end{matrix} ight.

  • Câu 13: Nhận biết

    Giá trị lớn nhất của hàm số y = - x^{4} +
2x^{2} + 1 trên đoạn \lbrack -
2;5brack bằng:

    Ta có: y' = - 4x^{3} + 4x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 1 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}y( - 2) = - 5 \\y( - 1) = y(1) = 2 \\y(0) = 1 \\y(5) = - 574 \\\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;5brack}y =y(1) = 2

  • Câu 14: Nhận biết

    Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?

    Xét hàm số y =
\frac{1}{\sqrt{x}}

    Tập xác định D = (0; +
\infty)

    \lim_{x ightarrow
0^{+}}\frac{1}{\sqrt{x}} = + \infty suy ra x = 0 là tiệm cận đứng của hàm số.

  • Câu 15: Vận dụng cao

    Cho hai số thực x, y thỏa mãn x \geqslant 0;y \geqslant 0 và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} lần lượt là:

    Ta có: 

    P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} = \frac{{x\left( {x + 1} ight) + y\left( {y + 1} ight)}}{{\left( {x + 1} ight)\left( {y + 1} ight)}} = \frac{{{{\left( {x + y} ight)}^2} - 2xy + 1}}{{xy + x + y + 1}} = \frac{{2 - 2xy}}{{2 + xy}}

    Đặt t = xy ta được P = \frac{{2 - 2t}}{{2 + t}}

    x \geqslant 0;y \geqslant 0 \Rightarrow t \geqslant 0

    Mặt khác 1 = x + y \geqslant 2\sqrt {xy}  \Leftrightarrow xy \leqslant \frac{1}{4} \Rightarrow t \leqslant \frac{1}{4}

    Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} trên \left[ {0;\frac{1}{4}} ight]

    Xét hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} xác định và liên tục trên \left[ {0;\frac{1}{4}} ight]

    Ta có: g'\left( t ight) = \frac{{ - 6}}{{{{\left( {2 + t} ight)}^2}}} < 0,\forall t \in \left( {0;\frac{1}{4}} ight)

    => Hàm số g(t) nghịch biến trên đoạn \left[ {0;\frac{1}{4}} ight]

    => \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( {\dfrac{1}{4}} ight) = \dfrac{2}{3}} \\   {\mathop {\max }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( 0 ight) = 1} \end{array}} ight.

  • Câu 16: Vận dụng

    Một khối gỗ có dạng hình khối nón có bán kính đáy bằng r = 2m, chiều cao h = 6m. Bác thợ mộc chế tác từ khúc gỗ thành một khúc gỗ có dạng hình khối trụ như hình vẽ:

    Gọi V là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Xác định giá trị của V

    Gọi r_{t};h_{t} lần lượt là bán kính và chiều cao của khối trụ.

    Ta có: \frac{r_{t}}{2} = \frac{6 -
h_{t}}{6} \Rightarrow 2\left( 6 - h_{t} ight) = 6r_{t} \Leftrightarrow
h_{t} = 6 - 3r_{t}

    Ta lại có: V = \pi{r_{t}}^{2}.h_{t} =
\pi{r_{t}}^{2}.\left( 6 - 3r_{t} ight) = \pi.\left( 6{r_{t}}^{2} -
3{r_{t}}^{3} ight)

    Xét hàm số f\left( r_{t} ight) =
6{r_{t}}^{2} - 3{r_{t}}^{3} với r_{t} \in (0;2)có:

    f'\left( r_{t} ight) = 12r_{t} -
9{r_{t}}^{2}

    f'\left( r_{t} ight) = 0
\Leftrightarrow 12r_{t} - 9{r_{t}}^{2} = 0 \Leftrightarrow r_{t} =
\frac{4}{3}

    Ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có \max
f\left( r_{t} ight) = \frac{32}{9} đạt tại r_{t} = \frac{4}{3}

    Vậy V = \frac{32\pi}{9}\left( m^{3}
ight) là giá trị cần tìm.

  • Câu 17: Thông hiểu

    Cho hàm số y = - x^{3} - mx^{2} + (4m +
9)x + 5. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho đồng biến trên \mathbb{R}?

    Ta có: y' = - 3x^{2} - 2mx + 4m +
9

    Hàm số đã cho nghịch biến trên \mathbb{R} khi và chỉ khi \left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
m^{2} + 3(4m + 9) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow m^{2} + 12m + 27 \leq 0
\Leftrightarrow m \in \lbrack - 9; - 3brack

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 9; - 8;...; - 3 ight\}

    Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 18: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số g(x) = \frac{1}{f(x)} đồng biến trên khoảng nào sau đây?

    Ta có: g'(x) = -
\frac{f'(x)}{\left\lbrack f(x) ightbrack^{2}} >
0

    \Leftrightarrow \left\{ \begin{matrix}
f'(x) < 0 \\
f(x) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 3 \\
x eq \left\{ - 2;0;3 ight\} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 2 < x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.

    Vậy hàm số g(x) = \frac{1}{f(x)} đồng biến trên các khoảng ( - \infty; - 2),(
- 2; - 1),(1;3)

    Suy ra hàm số g(x) =
\frac{1}{f(x)} đồng biến trên khoảng (1;2).

  • Câu 19: Nhận biết

    Đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm:

    Ta có: x = 0 \Rightarrow y = 0^{4} -
0^{2} - 2 = - 2

    Vậy đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm (0; -
2).

  • Câu 20: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) = x\left( x^{2} - x ight)(x -
2). Số điểm cực trị của hàm số đã cho là:

    Ta có: f'(x) = x\left( x^{2} - x
ight)(x - 2) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    x = 1;x = 2 là nghiệm bội lẻ và x = 0 là nghiệm bội chẵn nên hàm số có hai điểm cực trị.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo