Số điểm cực trị của hàm số
là?
Xét hàm số
Ta có:
Ta có bảng biến thiên:

Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2
=> Hàm số có 5 điểm cực trị
Số điểm cực trị của hàm số
là?
Xét hàm số
Ta có:
Ta có bảng biến thiên:

Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2
=> Hàm số có 5 điểm cực trị
Cho hình vẽ:

Đồ thị được cho trong hình vẽ là đồ thị của hàm số nào trong các hàm số sau?
Từ đồ thị ta thấy đây là hàm số bậc 4 trùng phương có hệ số
Mặt khác hàm số đạt cực tiểu tại và giá trị cực tiểu
nên hàm số cần tìm là
.
Cho hàm số
. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Cho hàm số . Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

Đồ thị trong hình vẽ là hàm số có dạng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng
nên hàm số cần tìm là
.
Cho hàm số
có đồ thị là
. Số điểm thuộc
có hoành độ và tung độ đều là các số nguyên là
Ta có:
Gọi
Vậy có 4 điểm thỏa mãn yêu cầu.
Cho hàm số
có bảng biến thiên như hình vẽ sau 

Hàm số
đồng biến trên khoảng nào dưới đây
Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng .
Tập hợp tất cả các giá trị thực của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có:
Hàm số nghịch biến trên khoảng khi
Đặt ta có:
. Ta có bảng biến thiên của
như sau:
Dựa vào bảng biến thiên ta thấy
Vậy là giá trị của tham số m cần tìm.
Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Điều kiện xác định
Ta có: nên
là tiệm cận ngang của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có hai đường tiệm cận.
Tìm giá trị nhỏ nhất của hàm số
trên
?
Ta có:
. Khi đó:
Vậy .
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại và
; giá trị cực tiểu bằng
.
Cho hai số thực
thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.
Tìm giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị và khoảng cách giữa chúng bằng
?
Tập xác định
Ta có: . Để đồ thị của hàm số đã cho có hai điểm cực trị thì
có hai nghiệm phân biệt
Khi đó
Giả sử hai điểm cực trị là
Ta có:
Vậy giá trị cần tìm là .
Gọi
là tập hợp tất cả các giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên
bằng
. Số phần tử của tập hợp
:
Ta có:
Đặt
Hàm số đã cho trở thành:
Ta có:
Vậy số phần tử của tập hợp S là 1.
Xác định giá trị của a để hàm số
nghịch biến trên trục số.
Ta có:
Hàm số nghịch biến trên
Cho hàm số y = f(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị thực của tham số m để hàm số
có đúng 6 điểm cực trị?

Xét hàm số
Yêu cầu bài toán xảy ra khi phương trình đạo hàm phải có 6 nghiệm bội lẻ:
Ta có:
Phương trình (*) luôn có hai nghiệm phân biệt => Hai phương trình còn lại phải cho đúng 4 nghiệm nghiệm bội lẻ.
Nhận thấy hai phương trình (1), (2) luôn cho hai nghiệm phân biệt vafcacs nghiệm của hai phương trình này không trùng nhau.
Để hai phương trình có đúng 4 nghiệm bội lẻ thì:
TH1: x = 1 là nghiệm của (x – 1)[x2 – (m – 1)x – m – 1] = 0 và x = -1 không phải là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0
TH2: x = -1 là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0 và x = 1 không phải là nghiệm của (x – 1)[x2 – (m – 1)x - m – 1] = 0
=>
Vậy có hai giá thực của m thỏa mãn
Gọi
là tập hợp các giá trị
để tiệm cận xiên của đồ thị hàm số
tạo với hai trục hệ tọa độ
một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của
bằng bao nhiêu?
Gọi là tập hợp các giá trị
để tiệm cận xiên của đồ thị hàm số
tạo với hai trục hệ tọa độ
một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của
bằng bao nhiêu?
Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
khi và chỉ khi
Vì nên có tất cả 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Hàm số
nghịch biến trên khoảng nào?
Tập xác định
suy ra hàm số nghịch biến trên
và
.
Đồ thị hàm số
có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Ta có: => Đồ thị hàm số có tiệm cận đứng là x = -2
Ta có: => y = -3 là tiệm cận ngang của đồ thị hàm số.
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .