Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm giá trị lớn nhất của hàm số y = 3\sin x - 4{\sin ^3}x trên khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) bằng:

    Đặt \sin x = t \Rightarrow t \in \left( { - 1;1} ight)

    Khi đó:

    \begin{matrix}  f'\left( t ight) =  - 12{t^2} + 3 \hfill \\  f'\left( t ight) = 0 \Leftrightarrow t =  \pm \dfrac{1}{2} \hfill \\ \end{matrix}

    So sánh f\left( {\frac{1}{2}} ight)f\left( { - \frac{1}{2}} ight) ta thấy GTLN là f\left( {\frac{1}{2}} ight) = 1

  • Câu 2: Thông hiểu

    Đường tiệm cận xiên của đồ thị hàm số y =
\frac{x^{2} - 2x + 3}{x + 1} là đường thẳng có phương trình

    Tập xác định: D = R\backslash\left\{ - 1
ight\}.

    Phương trình đường tiệm cận xiên có dạng: y = ax + b.

    Trong đó,

    a = \lim_{x ightarrow +
\infty}\frac{f(x)}{x} = \lim_{x ightarrow + \infty}\frac{x^{2} - 2x +
3}{x^{2} + x} = 1

    b = \lim_{x ightarrow +
\infty}\left\lbrack f(x) - ax ightbrack = \lim_{x ightarrow +
\infty}\left( \frac{x^{2} - 2x + 3}{x + 1} - x ight) = \lim_{x
ightarrow + \infty}\frac{- 3x + 3}{x + 1} = - 3.

    Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x - 3.

  • Câu 3: Nhận biết

    Xác định tâm đối xứng của đồ thị hàm số y
= \frac{2x + 1}{x - 3}?

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{xightarrow + \infty}\dfrac{2x + 1}{x - 3} = \lim_{x ightarrow +\infty}\dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{3}{x}} = 2 suy ra tiệm cận ngang là y = 2

    \lim_{x ightarrow 3^{+}}y = \lim_{x
ightarrow 3^{+}}\frac{2x + 1}{x - 3} = + \infty suy ra tiệm cận đứng là x = 3

    Tâm đối xứng của đồ thị hàm số là A(3;2).

  • Câu 4: Thông hiểu

    Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 đồng biến trên tập số thực?

    Ta có: y' = x^{2} - 4m +
4

    Hàm số y = \frac{1}{3}x^{3} - 2mx^{2} +
4x - 5 đồng biến trên \mathbb{R}

    y' \geq 0;\forall x \Leftrightarrow
x^{2} - 4m + 4 \geq 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 > 0 \\
\Delta' = 4m^{2} - 4 \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 1 \leq m \leq 1

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1 ight\}

    Vậy số giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán là 3.

  • Câu 5: Nhận biết

    Cho hàm số y =
f(x) có đồ thị là đường cong trong hình vẽ:

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Trên khoảng (0;1) đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên (0;1).

  • Câu 6: Vận dụng cao

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

    Xét G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight) ta có:

    \begin{matrix}  G'\left( x ight) = 0,035\left( {30x - 3{x^2}} ight) \hfill \\  G'\left( x ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 10} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {G\left( 0 ight) = G\left( {15} ight) = 0} \\   {G\left( {10} ight) = 17,5} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;15} ight]}  = 17,5 \Rightarrow x = 10

  • Câu 7: Vận dụng

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu

    Biết rằng giá trị nhỏ nhất của hàm số f(x) = \frac{mx + 5}{x - m} trên đoạn \lbrack 0;1brack bằng - 7. mệnh đề nào sau đây đúng?

    Ta có: y' = - \frac{m^{2} + 5}{(x -m)^{2}} < 0;\forall x eq m \Rightarrow \Delta' = m^{2} + 2m -3

    Suy ra hàm số luôn nghịch biến trên các khoảng ( - \infty;m)(m; + \infty)

    Vì hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack nên m otin \lbrack 0;1brack

    Hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 7 nên suy ra

    \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {TM} ight) \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {KTM} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow m = 2 \in(0;2brack

  • Câu 10: Vận dụng

    Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= \sqrt {1 + x}  + \sqrt {1 - x}. Giá trị của M – 2m2 bằng:

    Điều kiện xác định \left\{ {\begin{array}{*{20}{c}}  {1 + x \geqslant 0} \\   {1 - x \geqslant 0} \end{array}} ight. \Leftrightarrow  - 1 \leqslant x \leqslant 1

    Xét hàm số y = \sqrt {1 + x}  + \sqrt {1 - x} trên [-1; 1] có:

    \begin{matrix}  y' = \dfrac{{ - 1}}{{2\sqrt {1 + x} }} + \dfrac{1}{{2\sqrt {1 - x} }} \hfill \\  y' = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   {\sqrt {1 + x}  = \sqrt {1 - x} } \end{array}} ight. \Leftrightarrow x = 0 \hfill \\ \end{matrix}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = f\left( 1 ight) = \sqrt 2 } \\   {f\left( 0 ight) = 2} \end{array}} ight.

    Vậy \left\{ {\begin{array}{*{20}{c}}  {m = \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = \sqrt 2 } \\   {M = \mathop {\max }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 2} \end{array}} ight. \Rightarrow M - 2{m^2} = 2 - 2.2 =  - 2

  • Câu 11: Thông hiểu

    Cho hàm số bậc ba y = f(x) có đồ thị như sau:

    Số giá trị nguyên của tham số m để phương trình f(x) + 3m = 0 có ba nghiệm phân biệt là:

    Số nghiệm của phương trình f(x) + 3m =0 là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = - 3m

    Suy ra để phương trình f(x) + 3m =0 có ba nghiệm phân biệt thì - 1< - 3m < 3 \Leftrightarrow - 1 < m <\frac{1}{3}

    m\mathbb{\in Z \Rightarrow}m =0

    Vậy có duy nhất một số nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 12: Thông hiểu

    Tìm GTLN, GTNN của hàm số lượng giác y = f\left( x ight) = \sin x + \cos x + \sin x.\cos x trên đoạn

    \left[ {0,\pi } ight]

    Đặt t = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} ight)

    x \in \left[ {0,\pi } ight] \Rightarrow t \in \left[ { - 1,\sqrt 2 } ight]

    Ta có:

    \begin{matrix}  {t^2} = {\left( {\sin x + \cos x} ight)^2} \hfill \\   = {\sin ^2}x + co{x^2}x + 2\sin x.\cos x \hfill \\   = 1 + 2\sin x.\cos x \hfill \\   \Rightarrow \sin x.\cos x = \dfrac{{{t^2} - 1}}{2} \hfill \\ \end{matrix}

    \begin{matrix}  f\left( x ight) = g\left( t ight) = t + \dfrac{{{t^2} - 1}}{2} = \dfrac{{{t^2}}}{2} + t - \dfrac{1}{2} \hfill \\  g'\left( t ight) = t + 1,g'\left( t ight) = 0 \Leftrightarrow t =  - 1 \hfill \\  g\left( { - 1} ight) =  - 1,g\left( {\sqrt 2 } ight) = \sqrt 2  + \dfrac{1}{2} \hfill \\ \end{matrix}

    \mathop { \Rightarrow \max f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  = \sqrt 2  + \frac{1}{2},\mathop {\min f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  =  - 1

     

  • Câu 13: Thông hiểu

    Hàm số y = \frac{x - 2}{x - m} nghịch biến trên khoảng ( -
\infty;3) khi:

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{- m + 2}{(x -
m)^{2}}

    Hàm số nghịch biến trên khoảng ( -
\infty;3) khi \left\{ \begin{matrix}
m otin ( - \infty;3) \\
- m + 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 3 \\
m > 2 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

    Vậy đáp án cần tìm là m \geq
3.

  • Câu 14: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào bảng biến thiên ta thấy: f'(x) > 0, \forall x \in (0;1).

    Suy ra, hàm số y = f(x) đồng biến trên khoảng (0;1).

  • Câu 15: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 16: Thông hiểu

    Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?

    Dựa vào dấu của hệ số a < 0;b >
0 nên hàm số y = - x^{4} + x^{2} +
3 có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.

  • Câu 17: Nhận biết

    Chọn hàm số có nhiều điểm cực trị nhất trong các hàm số sau?

    Ta có:

    Hàm số y = - 3x + 1y = \frac{2x + 1}{x - 3} không có điểm cực trị (đạo hàm không đổi dấu).

    Hàm số y = x^{4} + 3x^{2} + 1y' = 4x^{3} + 6x = 0 \Leftrightarrow x =
0. Đạo hàm đổi dấu qua 1 điểm x =
0 nên hàm số y = x^{4} + 3x^{2} +
1 chỉ có một điểm cực trị.

    Hàm số y = x^{3} - 3x^{2} + 1y' = 3x^{2} - 6x = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.. Đạo hàm đổi dấu qua hai điểm x = 0x =
2 nên hàm số y = x^{3} - 3x^{2} +
1 có hai điểm cực trị.

    Vậy hàm số có nhiều điểm cực trị nhất là: y = x^{3} - 3x^{2} + 1.

  • Câu 18: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số m \in ( - 2021;2021) để hàm số y = \left| x^{4} - 4x^{2} + m + 2020ight| có 7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có tất cả bao nhiêu giá trị nguyên của tham số m \in ( - 2021;2021) để hàm số y = \left| x^{4} - 4x^{2} + m + 2020ight| có 7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Thông hiểu

    Cho hàm số y = \frac{{ax + b}}{{cx + d}} có bảng biến thiên như hình vẽ. Hỏi hàm số đã cho là hàm số nào?

    Hàm số đã cho là hàm số nào

    Dựa vào bảng biến thiên ta thấy:

    Đồ thị hàm số nhận các đường thẳng x = 2 và tiệm cận ngang y = 1

    => Loại đáp án C và D

    Hàm số đã cho nghịch biến trên mỗi khoảng xác định

    Xét hàm số y = \frac{{x - 3}}{{x - 2}} \Rightarrow y' = \frac{1}{{{{\left( {x - 2} ight)}^2}}}

    => Hàm số đồng biến trên mỗi khoảng xác định nên ta loại đáp án A

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo