Cho hàm số
có bảng biến thiên như hình vẽ dưới đây.

Số đường tiệm cận của đồ thị hàm số
là:
Phương trình có 2 nghiệm phân biệt
=> Đồ thị hàm số có 2 đường tiệm cận đứng.
Khi thì
Khi thì
Vậy đồ thị hàm số có 1 tiệm cận ngang.
Cho hàm số
có bảng biến thiên như hình vẽ dưới đây.

Số đường tiệm cận của đồ thị hàm số
là:
Phương trình có 2 nghiệm phân biệt
=> Đồ thị hàm số có 2 đường tiệm cận đứng.
Khi thì
Khi thì
Vậy đồ thị hàm số có 1 tiệm cận ngang.
Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?
Ta có bảng biến thiên như sau:

Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)
Có bao nhiêu giá trị nguyên của
để hàm số
có
điểm cực trị?
Có bao nhiêu giá trị nguyên của để hàm số
có
điểm cực trị?
Tọa độ tâm đối xứng của đồ thị hàm số
là:
Ta có:
Tọa độ tâm đối xứng của đồ thị hàm số là
Cho hàm số
có bảng biến thiên như sau:

Hỏi hàm số
đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Cho hàm số
. Mệnh đề nào dưới dây là đúng?
Tập xác định của hàm số
Ta có:
Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
Cho hàm số y = f(x) có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Dựa vào bảng biến thiên ta có:
=> y = 0 là một tiệm cận ngang
=> y = 5 là một tiệm cận ngang
=> x = 1 là một tiệm cận đứng
Vậy đồ thị hàm số có tổng số đường tiệm cận là 3 đường
Tìm tất cả các giá trị của tham số
để hàm số
có cực trị?
Ta có:
Để hàm số có cực trị thì
có hai nghiệm phân biệt
.
Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?
Xét hàm số có:
Suy ra hàm số đồng biến trên tập số thực.
Cho hàm số
,
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số có ba điểm cực trị khi và chỉ
. Đúng||Sai
b) Hàm số có hai điểm cực trị khi
. Sai|| Đúng
c) Hàm số có ba điểm cực trị khi và chỉ
. Sai|| Đúng
d) Hàm số có một điểm cực trị khi . Đúng||Sai
Cho hàm số ,
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số có ba điểm cực trị khi và chỉ . Đúng||Sai
b) Hàm số có hai điểm cực trị khi . Sai|| Đúng
c) Hàm số có ba điểm cực trị khi và chỉ . Sai|| Đúng
d) Hàm số có một điểm cực trị khi . Đúng||Sai
Nếu m = 0 thì hàm số đã cho trở thành.
Đây là hàm số đa thức bậc hai nên có 1 điểm cực trị.
Nếu thì hàm số đã cho là hàm số trùng phương có:
.
Ta có
Hàm số đã cho có ba điểm cực trị khi và chỉ khi phương trình (∗) có hai nghiệm phân biệt khác 0.
Điều kiện tương đương là:
Cho hàm số
có đạo hàm
. Số điểm cực tiểu của hàm số là:
Ta có:
Bảng xét dấu:
Suy ra số điểm cực tiểu của hàm số là 2 điểm.
Cho hàm số bậc ba có bảng biến thiên như sau:

Chọn khẳng định đúng?
Quan sát bảng biến thiên ta suy ra a < 0
Ta có: có hai nghiệm dương nên
Cho hàm số
, đồ thị của hàm số
là đường cong như hình vẽ:

Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Ta có:
trong đó các nghiệm
là nghiệm đơn và
là nghiệm kép.
nên ta có bảng biến thiên của hàm
như sau:
Vậy .
Cho hàm số
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Cho hàm số với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Cho hàm số
. Gọi M là giá trị lớn nhất của hàm số trên khoảng
. Tìm M.
Ta có:
Ta có bảng biến thiên

Từ bảng biến thiên ta có M = 1
Giá trị lớn nhất của hàm số
trên đoạn
bằng:
Ta có:
Khi đó
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận ngang là đường thẳng
.
Gọi
là tập tất cả các số nguyên dương của tham số
để hàm số
đồng biến trên khoảng
. Tính tổng tất cả các phần tử của tập
?
Theo yêu cầu bài toán
Do đó
Vậy tổng tất cả các phần tử của tập bằng
.