Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Hỏi có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) - m + 2 = 0 có đúng ba nghiệm phân biệt?

    Ta có:

    2f(x) - m + 2 = 0 \Leftrightarrow 2f(x)
= m - 2 \Leftrightarrow f(x) = \frac{m - 2}{2}

    Để phương trình có ba nghiệm phân biệt

    \Leftrightarrow \left\lbrack\begin{matrix}f(x) = - 1 \\f(x) = \dfrac{3}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\dfrac{m - 2}{2} = - 1 \\\dfrac{m - 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 0 \\m = 5 \\\end{matrix} ight.

    Vậy có đúng một giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 2: Vận dụng cao

    Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2m, một phía rộng 1m, một phía rộng 1,2m. Một người thợ cần mang một số ống thép cứng các loại có độ dài 2m, 2,5m, 3m, 3,5m, 4m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

    Đáp án: 4

    Đáp án là:

    Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2m, một phía rộng 1m, một phía rộng 1,2m. Một người thợ cần mang một số ống thép cứng các loại có độ dài 2m, 2,5m, 3m, 3,5m, 4m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

    Đáp án: 4

    Ống thép muốn qua được hành lang (bên này qua bên kia) phải qua được góc vuông giữa hành lang.

    Vì vậy chiều dài l của ống thép phải thỏa mãn l \leq AN, \forall a \in \left( 0;\frac{\pi}{2} ight)
\Leftrightarrow l \leq \min_{\left( 0;\frac{\pi}{2}
ight)}AN(*)

    Ta có AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{AB^{2} + 4}

    Trong đó AB = AM + MB =
\frac{AH}{\sin\alpha} + \frac{BK}{\cos\alpha} = \frac{1}{\sin\alpha} +
\frac{1,2}{\cos\alpha}

    Xét hàm số g(\alpha) =
\frac{1}{\sin\alpha} + \frac{1,2}{\cos\alpha}

    \Rightarrow g'(\alpha) = -
\frac{\cos\alpha}{sin^{2}\alpha} + \frac{1,2sina}{cos^{2}a} =
0

    \Leftrightarrow 1,2sin^{3}\alpha =
cos^{3}\alpha

    \Leftrightarrow \tan\alpha =
\frac{1}{\sqrt[3]{1,2}} \Leftrightarrow \alpha =
\arctan\frac{1}{\sqrt[3]{1,2}}

    Vì vậy \min_{\left( 0;\frac{\pi}{2}
ight)}g(\alpha) = g\left( \arctan\frac{1}{\sqrt[3]{1,2}}
ight)

    \Rightarrow (*) \Leftrightarrow l \leq
\sqrt{\left\lbrack g\left( \arctan\frac{1}{\sqrt[3]{1,2}} ight)
ightbrack^{2} + 4} \approx 3,69504

  • Câu 3: Thông hiểu

    Hàm số y = f(x) = - x^{3} + 3x^{2} + (2m
- 1)x - 1 nghịch biến trên khoảng (0; + \infty) khi và chỉ khi:

    Tập xác định D\mathbb{= R}

    Ta có:y' = - 3x^{2} + 6x + 2m -
1

    Hàm số đã cho nghịch biến trên khoảng (0;
+ \infty)

    y' \leq 0;\forall x \in (0; +
\infty) khi và chỉ khi

    \Leftrightarrow 2m \leq 3x^{2} - 6x +
1;\forall x \in (0; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
1 trên (0; + \infty) ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có:

    \min_{(0; + \infty)}g(x) = -
2

    Do đó \Leftrightarrow 2m \leq \min_{(0; +
\infty)}g(x) \Leftrightarrow 2m \leq - 2 \Leftrightarrow m \leq -
1

    Vậy m \leq - 1 thỏa mãn yêu cầu bài toán.

  • Câu 4: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x^{3}
- 3x^{2} - 9x + 5 trên đoạn \lbrack
- 2;2brack

    Tập xác định D\mathbb{= R}

    Với x \in \lbrack - 2;2brack ta có: y' = 3x^{2} - 6x - 9 \Rightarrow
y' = 0 \Leftrightarrow x = - 1

    Ta có: \left\{ \begin{matrix}
y( - 2) = 3 \\
y( - 1) = 10 \\
y(2) = - 17 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;2brack}y = -
17 khi x = 2.

  • Câu 5: Vận dụng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số g(x) =
f\left( x^{2} - 2x ight) trên khoảng (0; + \infty)?

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 1\  \\
x^{2} - 2x = 2\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 1 \pm \sqrt{3} \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên suy ra hàm số g(x) =
f\left( x^{2} - 2x ight) có hai cực trị trên khoảng (0; + \infty).

  • Câu 6: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = 2.

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên:

    Số đường tiệm cận ngang của đồ thị hàm số y = f(x) là:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 5 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 3 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang y = - 3;y = 5.

  • Câu 8: Thông hiểu

    Đường tiệm cận xiên của đồ thị hàm số y =
\frac{x^{2} - 2x + 3}{x + 1} là đường thẳng có phương trình

    Tập xác định: D = R\backslash\left\{ - 1
ight\}.

    Phương trình đường tiệm cận xiên có dạng: y = ax + b.

    Trong đó,

    a = \lim_{x ightarrow +
\infty}\frac{f(x)}{x} = \lim_{x ightarrow + \infty}\frac{x^{2} - 2x +
3}{x^{2} + x} = 1

    b = \lim_{x ightarrow +
\infty}\left\lbrack f(x) - ax ightbrack = \lim_{x ightarrow +
\infty}\left( \frac{x^{2} - 2x + 3}{x + 1} - x ight) = \lim_{x
ightarrow + \infty}\frac{- 3x + 3}{x + 1} = - 3.

    Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x - 3.

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Quan sát bảng biến thiên, ta có các kết quả sau:

    a) Hàm số đồng biến trên (−∞; 1) nên khẳng định hàm số đồng biến trên (−∞; 2) là sai.

    b) Hàm số nghịch biến trên (1; +∞).

    c) Hàm số có đúng 1 điểm cực trị là x = 1.

    d) Hàm số có đạt cực đại tại x = 1.

  • Câu 10: Thông hiểu

    Cho đồ thị hàm số y = \frac{x^{2} - 2x}{1 - x}. Khẳng định nào sau đây đúng?

    Tập xác định D = ( - \infty;1) \cup (1; +
\infty)

    Ta có: y' = - 1 - \frac{1}{(1 -
x)^{2}} < 0;\forall x \in D

    Do đó hàm số nghịch biến trên từng khoảng xác định.

    Vậy khẳng định đúng là: “Hàm số nghịch biến trên các khoảng ( - \infty;1)(1; + \infty)”.

  • Câu 11: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= - \frac{1}{3}x^{3} - 2x^{2} + mx - 1 nghịch biến trên \mathbb{R}?

    Ta có:

    y' = - x^{2} - 4x + m

    Hàm số nghịch biến trên \mathbb{R} \Leftrightarrow - x^{2} - 4x + m \leq 0;\forall
x

    \Rightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\leq - 4

    Vậy đáp án cần tìm là m \leq -
4

  • Câu 12: Thông hiểu

    Cho hàm số y =  - {x^4} + b{x^2} + c có bảng biến thiên như hình vẽ.

    Tính giá trị của biểu thức

    Tính giá trị của biểu thức H = 2c + b

    Ta có:

    \begin{matrix}  y\left( 0 ight) = 2 \Rightarrow c =  - 3 \hfill \\   \Rightarrow y =  - {x^4} + b{x^2} - 3 \hfill \\ \end{matrix}

    Mặt khác

    \begin{matrix}  f\left( 1 ight) =  - 2 \hfill \\   \Rightarrow  - 1 + b + c =  - 2 \hfill \\   \Rightarrow b + c =  - 1 \Rightarrow b = 2 \hfill \\   \Rightarrow 2c + b =  - 4 \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Cho hàm số y = \frac{3x - 1}{x +
2} có đồ thị kí hiệu là (H). Tìm điểm thuộc (H)?

    Ta thấy x = - 1 \Rightarrow y = \frac{3.(
- 1) - 1}{( - 1) + 2} = - 4 \Rightarrow ( - 1; - 4) \in (H)

  • Câu 14: Vận dụng

    Gọi S là tập hợp các giá trị thực của tham số m để hàm số y = \frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + 2mx -
3m + 4 nghịch biến trên một đoạn có độ dài bằng 3. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp S bằng:

    Ta có: y' = x^{2} - mx +
2m

    \Leftrightarrow y' = 0
\Leftrightarrow x^{2} - mx + 2m = 0(*)

    Gọi x_{1};x_{2} là nghiệm của phương trình (*) ta có bảng biến thiên:

    Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x_{1};x_{2} thỏa mãn \left| x_{1} - x_{2} ight| = 3

    (*) có hai nghiệm phân biệt \Leftrightarrow \Delta = m^{2} - 8m > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
m > 8 \\
\end{matrix} ight.\ (**)

    \left| x_{1} - x_{2} ight| = 3
\Leftrightarrow \left( x_{1} - x_{2} ight)^{2} = 9 \Leftrightarrow
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}.x_{2} = 9

    \Leftrightarrow m^{2} - 8m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 1 \\
\end{matrix} ight.\ \left( tm(**) ight)

    Suy ra S = \left\{ 9; - 1
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng 8.

  • Câu 15: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1;2
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Số đường tiệm cận của đồ thị hàm số y =
\frac{1}{f(x) - 1} bằng:

    Dựa vào bảng biến thiên ta thấy f(x) - 1
= 0 có 4 nghiệm phân biệt nên đồ thị hàm số y = \frac{1}{f(x) - 1} có 4 đường tiệm cận đứng.

    Ngoài ra \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f\left( x ight) - 1}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f\left( x ight) - 1}} =  - \frac{1}{2} \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số y = \frac{1}{f(x) - 1} có hai đường tiệm cận ngang.

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{1}{f(x) - 1} bằng 6.

  • Câu 16: Vận dụng

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình vẽ như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên (0;1).

  • Câu 18: Thông hiểu

    Đồ thị hàm số y = ax^{3} + bx^{2} + cx +
d có hai điểm cực trị A(1; -
7),B(2; - 8). Khi đó y( -
1) có giá trị là:

    Gọi đồ thị hàm số y = ax^{3} + bx^{2} +
cx + d(C)

    Ta có: y' = 3ax^{2} + 2bx +
c.

    A(1; - 7),B(2; - 8) là hai điểm cực trị của đồ thị hàm số y =
ax^{3} + bx^{2} + cx + d nên ta có:

    \left\{ \begin{matrix}
A \in (C) \\
y'\left( x_{A} ight) = 0 \\
B \in (C) \\
y'\left( x_{B} ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 7 = a.1^{3} + b.1^{2} + c.1 + d \\
0 = 3a.1^{3} + 2b.1^{2} + c \\
- 8 = a.2^{3} + b.2^{2} + c.2 + d \\
0 = 3a.2^{3} + 2.b.2^{2} + c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 9 \\
c = 12 \\
d = - 12 \\
\end{matrix} ight.

    Vậy y = 2x^{3} - 9x^{2} + 12x -
12 do đó y( - 1) = -
35.

  • Câu 19: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số m \in ( - 2021;2021) để hàm số y = \left| x^{4} - 4x^{2} + m + 2020ight| có 7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có tất cả bao nhiêu giá trị nguyên của tham số m \in ( - 2021;2021) để hàm số y = \left| x^{4} - 4x^{2} + m + 2020ight| có 7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Thông hiểu

    Gọi S là tập hợp các giá trị của tham số m để giá trị lớn nhất của hàm số y = \frac{x - m^{2}}{x + 2} trên đoạn \lbrack 1;5brack bằng - 4. Tính tổng các phần tử của tập S?

    Ta có: y' = \frac{2 + m^{2}}{(x +
2)^{2}} > 0;\forall x eq - 2. Suy ra hàm số y = \frac{x - m^{2}}{x + 2} đồng biến trên đoạn \lbrack 1;5brack do đó \max_{\lbrack 1;5brack}y = y(5) = \frac{5
- m^{2}}{7}

    Theo giả thiết \frac{5 - m^{2}}{7} = - 4
\Leftrightarrow m^{2} = 33 \Leftrightarrow m = \pm
\sqrt{33}

    Vậy S = \left\{ \sqrt{33}; - \sqrt{33}
ight\} nên tổng các phần tử của tập hợp S bằng 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo