Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số f(x) = x^{3} + \left( 1 +
m^{2} ight)x + 1. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn \lbrack 0;1brack không vượt quá 7. Hỏi tập S có bao nhiêu phần tử là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) = x^{3} + \left( 1 +
m^{2} ight)x + 1. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn \lbrack 0;1brack không vượt quá 7. Hỏi tập S có bao nhiêu phần tử là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng cao

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Đáp án là:

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Giả thiết cho 2^{x - 2y}.(2x + 1) = 4y +
2x + 4

    \Leftrightarrow 2^{x}.(2x + 1) = 2(2y +
x + 2)2^{2y}

    \Leftrightarrow 2^{x}.(2x + 1) = 2^{2y +
1}(2y + x + 2)

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    Xét hàm số f(t) = 2^{t}.(t + 1) trên (0\ ; + \infty)

    Suy ra f'(t) = 2^{t}.(t + 1)ln2 + 2^{t} > 0,\
\forall t \in (0\ ; + \infty)

    Vậy hàm số f(t) luôn đồng biến trên (0\ ; + \infty) nên ta có:

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    \Leftrightarrow 2x = 2y + x + 1
\Leftrightarrow x = 2y + 1

    Suy ra: P = 2^{x - y - 2} - x - y^{2} +
2037

    = 2^{y - 1} - \left( y^{2} + 2y + 1
ight) + 2037

    = \frac{1}{4}.2^{y + 1} - (y + 1)^{2} +
2037

    Xét hàm số g(a) = \frac{1}{4}.2^{a} -
a^{2};\ a \in \lbrack 2\ ;4brack

    g^{'(a)} = \frac{2^{a}.ln2}{4} -
2a

    \Rightarrow g''(a) =
\frac{2^{a}.ln^{2}2}{4} - 2 < 0,\forall\ a \in \lbrack 2\
;4brack

    \Rightarrow g'(a) luôn nghịch biến trên \lbrack 2\
;4brack

    \Rightarrow \max_{\lbrack 2\
;4brack}g'(a) = g'(2) = ln2 - 4 < 0

    \Rightarrow g(a) luôn nghịch biến trên \lbrack 2\ ;4brack

    \Rightarrow \min g(a) = g(4) = -
12

    Vậy \min P = - 12 + 2037 = 2025 khi y + 1 = 4 \Rightarrow y = 3\ ;x =
7.

  • Câu 3: Thông hiểu

    Tìm giá trị của m để bất phương trình x + \frac{4}{x - 1} \geq m có nghiệm trên khoảng ( -
\infty;1)?

    Bất phương trình x + \frac{4}{x - 1} \geq
m có nghiệm trên khoảng ( -
\infty;1)

    \Leftrightarrow m \leq \max_{( -
\infty;1brack}g(x)

    Với g(x) = x + \frac{4}{x - 1}
\Rightarrow g'(x) = 1 - \frac{4}{(x - 1)^{2}}

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 3 otin ( - \infty;1) \\
x = - 1 \in ( - \infty;1) \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta suy ra m \leq
- 3.

  • Câu 4: Vận dụng

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
+ (3 - 2m)x với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số nghịch biến trên một khoảng có độ dài bằng 2\sqrt{5}. Tính tổng các phần tử của tập hợp S?

    Ta có: y' = x^{2} - 2mx + 3 - 2m
\Rightarrow \Delta' = m^{2} + 2m - 3

    Dễ thấy nếu \Delta' \leq 0 suy ra hàm số đồng biến trên \mathbb{R} nên trường hợp này không thỏa mãn

    Theo yêu cầu bài toán

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
\left| x_{1} - x_{2} ight| = 2\sqrt{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 2m - 3 > 0 \\
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}x_{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
4m^{2} - 4(3 - 2m) = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
\left\lbrack \begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \Rightarrow S = \left\{ - 4;2
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng -2.

  • Câu 5: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị của tham số m để phương trình f\left( x ight) = 2m có đúng hai nghiệm phân biệt.

    Tìm m để phương trình có hai nghiệm phân biệt

    Để phương trình f\left( x ight) = 2m có hai nghiệm phân biệt thì \left[ {\begin{array}{*{20}{c}}  {2m = 0} \\   {2m <  - 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 0} \\   {m < \dfrac{{ - 3}}{2}} \end{array}} ight.

  • Câu 6: Thông hiểu

    Đồ thị hàm số y = \frac{x + 1}{x^{2} -
2020x - 2021} có bao nhiêu tiệm cận đứng?

    Ta có: x^{2} - 2020x - 2021 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 2021 \\
\end{matrix} ight.

    \lim_{x ightarrow - 1}y = \lim_{x
ightarrow - 1}\frac{x + 1}{x^{2} - 2020x - 2021}

    = \lim_{x ightarrow - 1}\frac{x +
1}{(x + 1)(x - 2021)} = \lim_{x ightarrow - 1}\frac{1}{x - 2021} = -
\frac{1}{2022}

    Lại có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{2021}^ + }} \frac{{x + 1}}{{\left( {x + 1} ight)\left( {x - 2021} ight)}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{2021}^ - }} \frac{{x + 1}}{{\left( {x + 1} ight)\left( {x - 2021} ight)}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
2021 là tiệm cận đứng của đồ thị hàm số

    Vậy hàm số đã cho có 1 tiệm cận đứng.

  • Câu 7: Nhận biết

    Cho hàm số y =
f(x) có đồ thị là đường cong trong hình vẽ:

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Trên khoảng (0;1) đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên (0;1).

  • Câu 8: Thông hiểu

    Biết rằng \min_{\lbrack -
3;0brack}\left( - \frac{1}{3}x^{3} + x^{2} - x + m ight) =
2. Định giá trị tham số m?

    Xét hàm số y = - \frac{1}{3}x^{3} + x^{2}
- x + m trên \lbrack -
3;0brack

    Hàm số liên tục trên \lbrack -
3;0brack

    Ta có: f'(x) = - x^{2} + 2x - 1 = -
(x - 1)^{2} < 0\forall x \in \lbrack - 3;0brack

    Do đó hàm số nghịch biến trên khoảng ( -
3;0)

    \Rightarrow \min_{\lbrack -
3;0brack}f(x) = f(0) = m \Rightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 9: Thông hiểu

    Có bao nhiêu điểm M thuộc đồ thị hàm số y = \frac{x + 2}{x - 1} sao cho khoảng cách từ điểm M đến trục tung bằng hai lần khoảng cách từ điểm M đến trục hoành?

    Gọi M\left( a;\frac{a + 2}{a - 1}
ight);(a eq 1) là điểm thuộc đồ thị hàm số y = \frac{x + 2}{x - 1}

    Ta có: \left\{ \begin{matrix}d(M;Oy) = |a| \\d(M;Ox) = \left| \dfrac{a + 2}{a - 1} ight| \\\end{matrix} ight.. Theo bài ra ta có phương trình:

    |a| = 2.\left| \frac{a + 2}{a - 1}ight| \Leftrightarrow \left\lbrack \begin{matrix}a = 2.\left( \dfrac{a + 2}{a - 1} ight) \\a = - 2.\left( \dfrac{a + 2}{a - 1} ight) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}a^{2} - 3a - 4 = 0 \\a^{2} + a + 4 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = - 1 \Rightarrow M\left( - 1; - \dfrac{1}{2} ight) \\a = 4 \Rightarrow M(4;2) \\\end{matrix} ight.

    Vậy có 2 điểm M thỏa mãn yêu cầu bài toán.

  • Câu 10: Vận dụng

    Cho hàm số f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}}. Số điểm cực trị của hàm số đã cho là:

    Áp dụng công thức khai triển nhị thức Newton ta có:

    \begin{matrix}  f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}} = {\left( {1 + x} ight)^{10}} \hfill \\   \Rightarrow f'\left( x ight) = 10{\left( {1 + x} ight)^9} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Xác định số điểm cực trị của hàm số

    Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1

  • Câu 11: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1;2
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Số đường tiệm cận của đồ thị hàm số y =
\frac{1}{f(x) - 1} bằng:

    Dựa vào bảng biến thiên ta thấy f(x) - 1
= 0 có 4 nghiệm phân biệt nên đồ thị hàm số y = \frac{1}{f(x) - 1} có 4 đường tiệm cận đứng.

    Ngoài ra \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f\left( x ight) - 1}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f\left( x ight) - 1}} =  - \frac{1}{2} \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số y = \frac{1}{f(x) - 1} có hai đường tiệm cận ngang.

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{1}{f(x) - 1} bằng 6.

  • Câu 12: Thông hiểu

    Tìm số các giá trị nguyên của tham số m để hàm số y
= x^{4} + 2\left( m^{2} - m - 6 ight)x^{2} + m - 1 có ba điểm cực trị?

    Ta có: y' = 4x^{3} + 4\left( m^{2} -
m - 6 ight)x

    y' = 0 \Leftrightarrow 4x^{3} +
4\left( m^{2} - m - 6 ight)x = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
4x = 0 \\
x^{2} = - m^{2} + m + 6 \\
\end{matrix} ight.

    Hàm số có ba cực trị khi và chỉ khi -
m^{2} + m + 6 > 0 \Leftrightarrow - 2 < m < 3

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2 ight\}. Vậy có 4 giá trị của tham số m thỏa mãn.

  • Câu 13: Nhận biết

    Tất cả các giá trị của tham số m để hàm số y = x^{4} + (2020 - m)x^{2} +
1 có ba điểm cực trị phân biệt là:

    Hàm số y = ax^{4} + bx^{2} + c có ba điểm cực trị khi và chỉ khi a.b <
0.

    Để hàm số đa cho có ba điểm cực trị khi và chỉ khi 2020 - m < 0 \Leftrightarrow m >
2020.

  • Câu 14: Nhận biết

    Đồ thị hàm số nào sau đây nhận điểm A(1;3) làm tâm đối xứng?

    Đồ thị hàm số y = \frac{3x + 4}{x -
1} có tiệm cận đứng là đường thẳng x = 1 và tiệm cận ngang là y = 3 suy ra giao điểm của hai đường tiệm cận là (1;3)

    Vậy điểm A(1;3) là tâm đối xứng của đồ thị hàm số y = \frac{3x + 4}{x -
1}.

  • Câu 15: Nhận biết

    Hàm số nào dưới dây nghịch biến trên khoảng ( - \infty; + \infty)?

    Xét hàm số y = - 2x + 1y' = - 2 < 0;\forall x\mathbb{\in
R} nên hàm số y = - 2x + 1 nghịch biến trên khoảng ( - \infty; +
\infty).

  • Câu 16: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m\in \lbrack - 200;200brack để hàm số g(x) = \left| f^{2}(x) + 8f(x) - might| có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m\in \lbrack - 200;200brack để hàm số g(x) = \left| f^{2}(x) + 8f(x) - might| có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Nhận biết

    Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số y = \frac{2}{- x + 3}?

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{2}{- x + 3} = 0

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{2}{- x + 3} là đường thẳng có phương trình y = 0.

  • Câu 18: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} + mx^{2} + (2m - 1)x -
1 đồng biến trên tập số thực?

    Ta có: y' = x^{2} + 2mx + 2m -
1

    Hàm số đồng biến trên \mathbb{R} khi

    y' \geq 0 \Leftrightarrow x^{2} +
2mx + 2m - 1

    \Leftrightarrow \Delta' \leq 0
\Leftrightarrow m^{2} - 2m + 1 \leq 0 \Leftrightarrow m = 1

    Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 19: Nhận biết

    Tìm giá trị lớn nhất của hàm số y = f(x)
= x^{3} - x^{2} - 8x trên đoạn \lbrack 1;3brack?

    Ta có: y' = 3x^{2} - 2x -
8

    \Leftrightarrow y' = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = - \dfrac{4}{3} \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(1) = - 8 \\
f(2) = - 12 \\
f(33) = - 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
6.

  • Câu 20: Thông hiểu

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Hàm số y = f( - x) nghịch biến trên khoảng nào dưới đây?

    Từ đồ thị hàm số y = f(x) ta thấy hàm số đồng biến trên khoảng (0;2)

    \Leftrightarrow f'(x) > 0
\Leftrightarrow 0 < x < 2

    Xét hàm số y = f( - x) ta có: y' = - f'( - x)

    y' < 0 \Leftrightarrow - f'(
- x) < 0 \Leftrightarrow f'( - x) > 0

    \Leftrightarrow 0 < - x < 2
\Leftrightarrow - 2 < x < 0

    Suy ra hàm số y = f( - x) nghịch biến trên khoảng ( - 2;0).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo