Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

    Xét G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight) ta có:

    \begin{matrix}  G'\left( x ight) = 0,035\left( {30x - 3{x^2}} ight) \hfill \\  G'\left( x ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 10} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {G\left( 0 ight) = G\left( {15} ight) = 0} \\   {G\left( {10} ight) = 17,5} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;15} ight]}  = 17,5 \Rightarrow x = 10

  • Câu 2: Thông hiểu

    Cho hàm số y = 2x^{3} - 5x^{2} + 4x -
2021. Gọi x_{1};x_{2} lần lượt là hoành độ tại hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 6x^{2} - 10x + 4 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = \dfrac{2}{3} \\\end{matrix} ight.

    y'' = 12x - 10

    \Rightarrow y''(1) = 1 >
0 nên x_{2} = 1 là điểm cực tiểu của hàm số.

    y''\left( \frac{2}{3} ight) = -
2 < 0 nên x_{1} =
\frac{2}{3} là điểm cực đại của hàm số.

    Vậy kết luận đúng là: 2x_{1} - x_{2} =
\frac{1}{3}.

  • Câu 3: Thông hiểu

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y = - x^{3} - 3(m + 1)x + 3(2m - 1) +
2020 đồng biến trên ( - \infty; +
\infty)?

    Tập xác định D\mathbb{= R}

    Ta có: y' = - 3x^{2} - 6(m + 1)x +
3(2m - 1)

    Hàm số nghịch biến trên ( - \infty; +
\infty) khi và chỉ khi y' \leq
0;\forall x \in ( - \infty; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
a = - 3 < 0 \\
\Delta' = 9(m + 1)^{2} + 9(2m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow 9m^{2} + 36m \leq 0
\Leftrightarrow - 4 \leq m \leq 0

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3; - 2; - 1;0 ight\}

    Vậy có tất cả 5 giá trị của tham số m thỏa mãn yêu cầu đề bài đưa ra.

  • Câu 6: Nhận biết

    Cho hàm số f\left( x ight) = \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} - 6x + \frac{3}{4}

    Ta có: f'\left( x ight) = {x^2} - x - 6 có hai nghiệm phân biệt là -2 và 3

    => f’(x) < 0 => x \in \left( { - 2;3} ight)

    Vậy hàm số nghịch biến trên khoảng (-2; 3)

  • Câu 7: Thông hiểu

    Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua x điện thoại thì giá tiền của mỗi điện thoại là 4000-2x(nghìn đồng), x \in N^{*},x < 2000. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?

    Đáp án: 1000||1 000

    Đáp án là:

    Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua x điện thoại thì giá tiền của mỗi điện thoại là 4000-2x(nghìn đồng), x \in N^{*},x < 2000. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?

    Đáp án: 1000||1 000

    Số tiền hãng thu được khi đại lí nhập x chiếc điện thoại là f(x) = x(4000 - 2x).

    Ta có: f'(x) = - \ 4x +
4000.

    Khi đó, f'(x) = 0 \Leftrightarrow x =
1\ 000 \Rightarrow f(x) = 2000000

    Học sinh tự vẽ bảng biến thiên

    Ta suy ra:

    Đại lí nhập cùng lúc 1\ 000 chiếc điện thoại thì hãng có thể thu nhiều tiền nhất từ đại lí đó với 2 000 000 000(đồng).

    Đáp số: 1000.

  • Câu 8: Nhận biết

    Chọn hàm số có nhiều điểm cực trị nhất trong các hàm số sau?

    Ta có:

    Hàm số y = - 3x + 1y = \frac{2x + 1}{x - 3} không có điểm cực trị (đạo hàm không đổi dấu).

    Hàm số y = x^{4} + 3x^{2} + 1y' = 4x^{3} + 6x = 0 \Leftrightarrow x =
0. Đạo hàm đổi dấu qua 1 điểm x =
0 nên hàm số y = x^{4} + 3x^{2} +
1 chỉ có một điểm cực trị.

    Hàm số y = x^{3} - 3x^{2} + 1y' = 3x^{2} - 6x = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.. Đạo hàm đổi dấu qua hai điểm x = 0x =
2 nên hàm số y = x^{3} - 3x^{2} +
1 có hai điểm cực trị.

    Vậy hàm số có nhiều điểm cực trị nhất là: y = x^{3} - 3x^{2} + 1.

  • Câu 9: Nhận biết

    Giá trị nhỏ nhất của hàm số y =
\frac{x^{2} + x + 4}{x} trên đoạn \lbrack - 3; - 1brack bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0 ight\} nên hàm số xác định và liên tục trên \lbrack - 3; - 1brack

    Ta có: y' = \frac{x^{2} -
4}{x^{2}};\forall x eq 0

    y' = 0 \Leftrightarrow \frac{x^{2} -
4}{x^{2}} = 0 \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
x = - 2 \\
\end{matrix} ight.

    y( - 3) = - \frac{10}{3};y( - 1) = -
4;y( - 2) = - 3

    \Rightarrow \min_{\lbrack - 3; -
1brack}y = y( - 1) = - 4

  • Câu 10: Thông hiểu

    Hàm số nào sau đây có đồ thị như hình vẽ:

    Dựa vào hình dáng đồ thị ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên loại đáp án y = x^{4} - 2x^{2} - 1

    Đồ thị hàm số đi qua điểm có tọa độ (0; -1) nên loại đáp án y = - x^{4} +2x^{2}

    Lại có đồ thị hàm số có các điểm cực trị (1;1),( - 1,1) nên loại đáp án y = - x^{4} + 2x^{2} - 1

    Vậy hàm số cần tìm là y = - 2x^{4} +4x^{2} - 1.

  • Câu 11: Vận dụng cao

    Cho hàm số y = f’(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \left[ { - 30;30} ight] để hàm số f\left( {{x^3} - 3{m^2}x} ight) có đúng 11 điểm cực trị?

    Tìm m để hàm số có 11 cực trị

    Hàm số đạt cực trị tại x = a <  - 1;x =  - 1;x = 4

    Xét hàm số f\left( {\left| {{x^3} - 3mx} ight|} ight) = f\left( u ight)

    Bảng biến thiên của hàm số u = \left| {{x^3} - 3mx} ight| \geqslant 0 suy ra chỉ có phương trình u = \left| {{x^3} - 3mx} ight| = 4 cho ta nghiệm bội lẻ.

    Nếu m \leqslant 0

    => Số điểm cực trị u là 1

    => Số nghiệm bội lẻ của phương trình u = 4 tối đa 2 nghiệm bội lẻ (Không thỏa yêu cầu)

    Khi m > 0 => Số điểm cực trị u là 5 ta có bảng biến thiên của hàm số u = \left| {{x^3} - 3mx} ight|

    Tìm m để hàm số có 11 cực trị

    Áp dụng công thức:

    Số điểm cực trị của hàm số f(u) = số nghiệm bội lẻ của phương trình (u = 4) + số điểm cực trị của u

    => \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {2m\sqrt m  > 4} \end{array}} ight. \Leftrightarrow m > \sqrt[3]{4}. Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \mathbb{Z}} \\   {m \in \left[ { - 30;30} ight]} \end{array}} ight.

    => Có 29 giá trị nguyên thỏa mãn yêu cầu.

  • Câu 12: Nhận biết

    Hàm số nào dưới đây nghịch biến trên \mathbb{R}?

    Xét hàm số y = - x^{3} - 3x + 1 ta có: y' = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R}

    Do đó hàm số y = - x^{3} - 3x +
1 nghịch biến trên \mathbb{R}.

  • Câu 13: Thông hiểu

    Cho hàm số y = f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{\sqrt {{x^2} + 1} }}{x}{\text{   khi x }} \geqslant {\text{ 1}}} \\   {\dfrac{{2x}}{{x - 1}}{\text{   khi x  <  1}}} \end{array}} ight.. Số đường tiệm cận của đồ thị hàm số y = f(x) là:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x}}{{x - 1}} =  - \infty

     => Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

    \mathop {\lim }\limits_{x \to  - \infty } \frac{{2x}}{{x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{1 - \frac{1}{x}}} = 2 => y = 2 là tiệm cận ngang của đồ thị hàm số

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {2 + \frac{1}{{{x^2}}}}  = 1 => đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

  • Câu 14: Thông hiểu

    Một chất điểm chuyển động với vận tốc được cho bởi công thức v(t) = - t^{2} + 4t + 2 với t (giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?

    Ta có: v(t) = - t^{2} + 4t + 2 với t > 0.

    v'(t) = - 2t + 4

    v'(t) = 0 \Leftrightarrow - 2t + 4 =
0 \Leftrightarrow t = 2 (thỏa mãn).

    Bảng biến thiên

    Dựa vào bảng biến thiên, tại thời điểm t
= 2 giây thì vận tốc của chất điểm là lớn nhất.

  • Câu 15: Vận dụng

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 16: Vận dụng

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Nhận biết

    Đường cong ở hình dưới đây là đồ thị của hàm số nào?

    Đồ thị của hàm số

    Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng y = a{x^3} + b{x^2} + cx + d;\left( {a > 0} ight)

  • Câu 18: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

    Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m - 1 có ba nghiệm thực phân biệt?

    Dựa vào bảng biến thiên ta thấy phương trình f(x) = m - 1 có ba nghiệm thực phân biệt khi và chỉ khi 1 < m - 1 < 3
\Leftrightarrow 2 < m < 4 \Rightarrow m \in (2;4)

  • Câu 19: Vận dụng

    Xác định giá trị nhỏ nhất của biểu thức P = 4\left( {{m^2} + {n^2}} ight) - m - n, biết y = {\left( {x + m} ight)^3} + {\left( {x + n} ight)^3} - {x^3} với m,n là tham số và hàm số đồng biến trên \left( { - \infty ; + \infty } ight).

    Ta có:

    \begin{matrix}  y' = 3{\left( {x + m} ight)^2} + 3{\left( {x + n} ight)^2} - 3{x^2} \hfill \\   = 3\left[ {{x^2} + 2\left( {m + n} ight)x + {m^2} + {n^2}} ight] \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên \mathbb{R}

    \begin{matrix} y' \geqslant 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \Delta ' = {\left( {m + n} ight)^2} - {m^2} - {n^2} \leqslant 0 \hfill \\   \Rightarrow mn \leqslant 0 \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  P = 4\left( {{m^2} + {n^2}} ight) - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 8mn - \left( {m + n} ight) \hfill \\   \geqslant 4{\left( {m + n} ight)^2} - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 2.2\left( {m + n} ight).\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} \hfill \\   = {\left[ {2\left( {m + n} ight) - \dfrac{1}{4}} ight]^2} - \dfrac{1}{{16}} \geqslant  - \dfrac{1}{{16}} \hfill \\   \Rightarrow {P_{\min }} =  - \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên:

    Số đường tiệm cận ngang của đồ thị hàm số y = f(x) là:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 5 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 3 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang y = - 3;y = 5.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo