Cho hàm số
có đồ thị là đường cong trong hình vẽ:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trên khoảng đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên
.
Cho hàm số
có đồ thị là đường cong trong hình vẽ:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trên khoảng đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên
.
Cho hàm số đa thức bậc bốn
. Đồ thị hàm số
được biểu thị trong hình vẽ sau:

Hàm số
nghịch biến trong khoảng nào?
Đặt . Ta có bảng xét dấu của
được mô tả lại như sau:
Từ đó suy ra bảng xét dấu của
Vậy hàm số nghịch biến trên các khoảng
.
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

Đồ thị hàm số bậc 4 có hệ số cắt trục tung tại điểm có tung độ lớn hơn
nên hàm số cần tìm là
.
Cho hàm số
biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Cho hàm số biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?
Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2
Ta có bảng biến thiên:

=> Vận tốc lớn nhất đạt được khi t = 2
ho hàm số
. Khẳng định nào sau đây là khẳng định đúng?
Đồ thị hàm số có hai đường tiệm cận đứng là x = 1 và x = -1 và một tiệm cận ngang là y = -1
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Từ đồ thị hàm số ta có:
Khi đó .
Cho hàm số
với
là tham số. Tích tất cả các giá trị của tham số
để giá trị lớn nhất của hàm số đã cho trên đoạn
bằng
bằng:
Ta có:
Vậy tích tất cả các giá trị của tham số bằng
.
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Gọi
là tập hợp các giá trị
để tiệm cận xiên của đồ thị hàm số
tạo với hai trục hệ tọa độ
một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của
bằng bao nhiêu?
Gọi là tập hợp các giá trị
để tiệm cận xiên của đồ thị hàm số
tạo với hai trục hệ tọa độ
một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của
bằng bao nhiêu?
Cho hàm số
có bảng xét dấu như sau:

Hỏi hàm số
nghịch biến trên các khoảng nào dưới đây?
Ta có:
Xét
Bảng xét dấu là:
Căn cứ vào bảng xét dấu ta thấy
Hàm số nghịch biến trên khoảng
.
Xác định giá trị của a để hàm số
nghịch biến trên trục số.
Ta có:
Hàm số nghịch biến trên
Cho hàm số
có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Hàm số
có bao nhiêu điểm cực trị?
Có nên hàm số không có cực trị.
Cho hàm số
có đồ thị như hình dưới đây:

Số nghiệm của phương trình
là:
Ta có:
Số nghiệm của phương trình chính là số giao điểm của đồ thị hàm số
với đường thẳng
Quan sát đồ thị ta thấy đường thẳng cắt đồ thị tại hai điểm
=> Phương trình có 2 nghiệm.
Các dân tộc ít người phân bố chủ yếu ở khu vực nào của Trung Quốc?
Giả sử m là giá trị nhỏ nhất của hàm số
trên khoảng
. Tính giá trị của m.
Ta có:
Ta có bảng biến thiên như sau:

=> Giá trị nhỏ nhất của hàm số bằng 4
=> y(2) = 4
=> m = 4
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là
. Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là . Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Số đường tiệm cận ngang của đồ thị hàm số
bằng:
Ta có:
suy ra
là một tiệm cận ngang của đồ thị hàm số.
suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy tổng số đường tiệm cận ngang của đồ thị hàm số đã cho bằng 2.
Cho hàm số bậc ba
có đồ thị như sau:

Số giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt là:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số
và đường thẳng
Suy ra để phương trình có ba nghiệm phân biệt thì
Vì
Vậy có duy nhất một số nguyên của thỏa mãn yêu cầu bài toán.