Cho hàm số
có bảng biến thiên như sau:

Hỏi hàm số
đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Cho hàm số
có bảng biến thiên như sau:

Hỏi hàm số
đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Xác định hàm số nghịch biến trên
?
Xét hàm số ta có:
Nên hàm số nghịch biến trên
.
Cho hàm số
xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng
. Sai|| Đúng
b) Hàm số đạt cực đại tại điểm
. Đúng||Sai
c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng
d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai
Cho hàm số xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng . Sai|| Đúng
b) Hàm số đạt cực đại tại điểm . Đúng||Sai
c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng
d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai
Hàm số không có giá trị nhỏ nhất nên phát biểu “Hàm số
có giá trị nhỏ nhất bằng −2” là phát biểu sai.
Số giá trị nguyên của tham số m để hàm số
đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Cho hàm số
. Giả sử
là tổng bình phương các giá trị của tham số
để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng
. Tính giá trị
? (Kết quả làm tròn đến chữ số thập phân thứ ba).
Cho hàm số . Giả sử
là tổng bình phương các giá trị của tham số
để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng
. Tính giá trị
? (Kết quả làm tròn đến chữ số thập phân thứ ba).
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hai số thực x, y thỏa mãn
và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức
lần lượt là:
Ta có:
Đặt t = xy ta được
Vì
Mặt khác
Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số trên
Xét hàm số xác định và liên tục trên
Ta có:
=> Hàm số g(t) nghịch biến trên đoạn
=>
Cho hàm số bậc ba
có đồ thị như sau:

Số giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt là:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số
và đường thẳng
Suy ra để phương trình có ba nghiệm phân biệt thì
Vì
Vậy có duy nhất một số nguyên của thỏa mãn yêu cầu bài toán.
Điểm cực tiểu của đồ thị hàm số
thuộc đường thẳng nào sau đây?
Ta có: . Do đó
Vì là điểm cực tiểu của hàm số nên điểm
là điểm cực tiểu của đồ thị hàm số.
Nhận thấy thuộc đường thẳng
.
Vậy điểm cực tiểu của đồ thị hàm số thuộc đường thẳng
.
Cho hàm số | ![]() |
Từ đồ thị hàm số ta có nhận xét như sau:
Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)
=>
Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)
=>
Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)
=> y(0) = -1 =>
=>
Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức
trong đó
là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?
Đáp án: 26
Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức trong đó
là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?
Đáp án: 26
Ta có .
Bảng biến thiên
Vậy để lợi nhuận lớn nhất thì xưởng cần sản xuất 26 tạ sản phẩm trong một tuần.
Hàm số
đạt cực tiểu tại
khi:
Hàm số xác định với mọi
Ta có:
Hàm số đạt cực tiểu tại khi
Vậy thỏa mãn yêu cầu bài toán.
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1
Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị
=> A, C, D đúng và B sai
Số giao điểm của hai đồ thị hàm số
và
bằng số nghiệm phân biệt của phương trình nào sau đây?
Hoành độ giao điểm là nghiệm của phương trình hay
.
Cho hàm số
có đạo hàm trên
là
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có: . Lập bảng xét dấu như sau:
Suy ra hàm số đồng biến trên khoảng
Tính tổng
tất cả các giá trị nguyên của tham số
để hàm số
đồng biến trên tập xác định?
Tập xác định
Ta có:
Để hàm số đồng biến trên tập xác định thì
Vì nên
Vậy .
Cho hàm số
xác định và liên tục trên các khoảng
và
có bảng biến thiên như hình vẽ:

Mệnh đề nào sau đây đúng?
Vì nên
là tiệm cận ngang của đồ thị hàm số.
Vì nên
là tiệm cận đứng của đồ thị hàm số.
Cho hàm số bậc ba có bảng biến thiên như sau:

Chọn khẳng định đúng?
Quan sát bảng biến thiên ta suy ra a < 0
Ta có: có hai nghiệm dương nên
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là
trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Giá trị lớn nhất của hàm số ![]()
Điều kiện xác định
Xét hàm số trên
ta có:
Phương trình
Ta có: