Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu

    Cho hàm số y = f(x) = x^{3} - 3x^{2} +
3 có đồ thị (C). Gọi A;B \in (C) và đối xứng nhau qua gốc tọa độ O. Độ dài AB bằng:

    Gọi A(x;y),B( - x; - y) là hai điểm đối xứng nhau qua gốc tọa độ (x >
0)

    Vì A và B thuộc (C) nên x^{3} - 3x^{2} +
3 = - \left\lbrack ( - x)^{3} - 3( - x)^{2} + 3
ightbrack

    \Leftrightarrow x^{2} = 1 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \Rightarrow y = 1 \\
x = - 1(L) \\
\end{matrix} ight.. Khi đó A(1;1),B( - 1; - 1)

    Độ dài đoạn AB là: AB = \sqrt{(1 + 1)^{2}
+ (1 + 1)^{2}} = 2\sqrt{2}.

  • Câu 5: Vận dụng cao

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

    Xét G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight) ta có:

    \begin{matrix}  G'\left( x ight) = 0,035\left( {30x - 3{x^2}} ight) \hfill \\  G'\left( x ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 10} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {G\left( 0 ight) = G\left( {15} ight) = 0} \\   {G\left( {10} ight) = 17,5} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;15} ight]}  = 17,5 \Rightarrow x = 10

  • Câu 6: Thông hiểu

    Mỗi đợt xuất khẩu gạo của tỉnh A kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ t được xác định bởi công thức: s(t) = - t^{3} + 27t^{2} + 262144 (tấn) với 1 \leq t \leq 60;t \in\mathbb{N}^{*}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Số lượng gạo xuất khẩu của tỉnh A ngày thứ 12 là 264304 (tấn).Đúng||Sai

    b) Ngày thứ 30 của tỉnh A có lượng gạo xuất khẩu cao nhất. Sai||Đúng

    c) Ngày thứ 1 của tỉnh A có lượng gạo xuất khẩu thấp nhất. Sai||Đúng

    d) Ngày thứ 60 của tỉnh A có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.

    Đáp án là:

    Mỗi đợt xuất khẩu gạo của tỉnh A kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ t được xác định bởi công thức: s(t) = - t^{3} + 27t^{2} + 262144 (tấn) với 1 \leq t \leq 60;t \in\mathbb{N}^{*}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Số lượng gạo xuất khẩu của tỉnh A ngày thứ 12 là 264304 (tấn).Đúng||Sai

    b) Ngày thứ 30 của tỉnh A có lượng gạo xuất khẩu cao nhất. Sai||Đúng

    c) Ngày thứ 1 của tỉnh A có lượng gạo xuất khẩu thấp nhất. Sai||Đúng

    d) Ngày thứ 60 của tỉnh A có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.

    a) Đúng. s(20)=264304

    b) Sai.

    Ta có s^{'}(t) = - 3t^{2} +54t;s^{'}(t) = 0 \Leftrightarrow - 3t^{2} + 54t = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 0 \\t = 18 \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy ngày thứ 18 của tỉnh A có lượng gạo xuất khẩu cao nhất là 265060.

    c) Sai. Ta có ngày thứ 60 tinh A có lượng gạo xuất khẩu thấp nhất là 143344.

    d) Đúng. Ta có ngày thứ 60 tỉnh A có lượng gạo xuất khẩu thấp nhất là 143344.

  • Câu 7: Nhận biết

    Tìm giá trị lớn nhất của hàm số y = 3\sin x - 4{\sin ^3}x trên khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) bằng:

    Đặt \sin x = t \Rightarrow t \in \left( { - 1;1} ight)

    Khi đó:

    \begin{matrix}  f'\left( t ight) =  - 12{t^2} + 3 \hfill \\  f'\left( t ight) = 0 \Leftrightarrow t =  \pm \dfrac{1}{2} \hfill \\ \end{matrix}

    So sánh f\left( {\frac{1}{2}} ight)f\left( { - \frac{1}{2}} ight) ta thấy GTLN là f\left( {\frac{1}{2}} ight) = 1

  • Câu 8: Thông hiểu

    Số giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - 2mx^{2} +
4x - 5 đồng biến trên \mathbb{R}?

    Theo yêu cầu bài toán \Leftrightarrow
y' = x^{2} - 4mx + 4 \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 4 \leq 0 \Leftrightarrow
- 1 \leq m \leq 1

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1 ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 9: Thông hiểu

    Cho hàm số y = \frac{x + 1}{x^{2} - 2x -
3}. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Ta có:

    \lim_{x ightarrow 3^{+}}y = \lim_{xightarrow 3^{+}}\dfrac{x + 1}{x^{2} - 2x - 3} = \lim_{x ightarrow3^{+}}\dfrac{\dfrac{1}{x} + \dfrac{1}{x^{2}}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = + \infty suy ra đồ thị hàm số có tiệm cận đứng là x = 3

    \lim_{x ightarrow ( - 1)^{+}}y =
\lim_{x ightarrow ( - 1)^{+}}\frac{x + 1}{x^{2} - 2x - 3} = \lim_{x
ightarrow ( - 1)^{+}}\frac{x + 1}{(x + 1)(x - 3)} = -
\frac{1}{4}

    \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 2x - 3}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}} ight) = 0 suy ra đồ thị hàm số có tiệm cận ngang là y
= 0

    Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đườn tiệm cận ngang bằng 2.

  • Câu 10: Vận dụng

    Hàm số y = \frac{1}{3}x^{3} +
\frac{m}{2}x^{2} + x + 6 đồng biến trên nửa khoảng \lbrack 1; + \infty) khi:

    Ta có: y' = x^{2} + mx +
1

    Để hàm số đã cho đồng biến trên nửa khoảng \lbrack 1; + \infty) khi đó:

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1; + \infty)

    \Leftrightarrow x^{2} + mx + 1 \geq
0;\forall x \in \lbrack 1; + \infty)

    \Leftrightarrow m \geq - x -
\frac{1}{x};\forall x \in \lbrack 1; + \infty)

    Xét hàm số g(x) = - x -
\frac{1}{x} trên nửa khoảng \lbrack
1; + \infty) ta có:

    g'(x) = - 1 + \frac{1}{x^{2}} =
\frac{1 - x^{2}}{x^{2}}

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Bảng biến thiên của hàm số g(x) = - x -
\frac{1}{x} trên nửa khoảng \lbrack
1; + \infty) là:

    Từ bảng biến thiên suy ra \max_{\lbrack
1; + \infty)}g(x) = g(1) = - 2

    Vậy m \geq g(x);\forall x \in \lbrack 1;
+ \infty) khi và chỉ khi m \geq -
2.

  • Câu 11: Thông hiểu

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= x^{3} - 3x^{2} + (4 - m)x đồng biến trên khoảng (2; + \infty) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x + 4 -
m

    Hàm số đồng biến trên khoảng (2; +
\infty) \Leftrightarrow y' \geq 0;\forall x \in (2; +
\infty)

    \Leftrightarrow m \leq 3x^{2} - 6x +
4;\forall x \in (2; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
4 trên khoảng (2; +
\infty).

    Ta có: g'(x) = 6x - 6;g'(x) = 0
\Leftrightarrow x = 1

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có: m \leq
g(x);;\forall x \in (2; + \infty) \Leftrightarrow m \leq 4

    Vậy m \leq 4 thỏa mãn yêu cầu bài toán.

  • Câu 12: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Từ đồ thị, ta thấy hàm số đồng biến trên các khoảng ( - 1;0)(1; + \infty).

  • Câu 13: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, đạo hàm y = f'(x) có đồ thị như hình vẽ sau:

    Tìm số điểm cực tiểu của hàm số y =
f(x)?

    Hàm số đạt cực tiểu tại điểm có f'(x) đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.

  • Câu 14: Thông hiểu

    Xác định số điểm cực trị của hàm số y =\left| (x - 1)^{3}(x + 1) ight|?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định số điểm cực trị của hàm số y =\left| (x - 1)^{3}(x + 1) ight|?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Nhận biết

    Tìm tiệm cận ngang của đồ thị hàm số y =
\frac{3x - 1}{- x - 1}?

    Ta có: \lim_{x ightarrow +
\infty}\frac{3x - 1}{- x - 1} = \lim_{x ightarrow - \infty}\frac{3x -
1}{- x - 1} = - 3

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{3x - 1}{- x - 1} là đường thẳng y = - 3.

  • Câu 16: Nhận biết

    Trong các hàm số dưới đây, hàm số nào đồng biến trên \mathbb{R}?

     Hàm số y = x – sinx có tập các định D = \mathbb{R}y' = 1 - \cos x \geqslant 0, \vee x \in \mathbb{R}

    Nên hàm số luôn đồng biến trên \mathbb{R}

  • Câu 17: Vận dụng cao

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 20: Thông hiểu

    Đồ thị hàm số y = x^{3} - 3x + 2 là hình nào trong 4 hình dưới đây?

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
y' = 3x^{2} - 3

    Khi đó \mathbf{y'
=}\mathbf{0}\mathbf{\Leftrightarrow}\left\lbrack \begin{matrix}
\mathbf{x = -}\mathbf{1} \\
\mathbf{x =}\mathbf{1} \\
\end{matrix} ight.\ \mathbf{\Rightarrow}\left\lbrack \begin{matrix}
\mathbf{y}\mathbf{(}\mathbf{-}\mathbf{1)}\mathbf{=}\mathbf{4} \\
\mathbf{y}\mathbf{(1)}\mathbf{=}\mathbf{0} \\
\end{matrix} ight..

    Do đó, chọn đáp án là: Hình 2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo