Cho hàm số bậc năm
và đồ thị hàm số
trên
biểu diễn bởi hình vẽ:

Mệnh đề nào sau đây đúng?
Từ đồ thị hàm số ta có bảng biến thiên của hàm số
Từ bảng biến thiên ta thấy hàm số có 1 cực đại và 1 cực tiểu.
Cho hàm số bậc năm
và đồ thị hàm số
trên
biểu diễn bởi hình vẽ:

Mệnh đề nào sau đây đúng?
Từ đồ thị hàm số ta có bảng biến thiên của hàm số
Từ bảng biến thiên ta thấy hàm số có 1 cực đại và 1 cực tiểu.
Cho hàm số
có đạo hàm
với mọi
.
a) Phương trình
có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Hàm số
có hai điểm cực trị. Đúng||Sai
d) Hàm số
có ba điểm cực đại. Sai||Đúng
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
a) Sai
Ta có .
.
Vậy phương trình có hai nghiệm.
b) Đúng
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số đồng biến trên các khoảng
.
Ta có nên hàm số
đồng biến trên khoảng
.
c) Đúng
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực trị.
d) Sai
Ta có:
.
.
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực đại.
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
, trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Xét ta có:
Mặt khác
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có ba nghiệm phân biệt?
Phương trình đã cho là phương trình hoành độ giao điểm của đồ thị hàm số và đường thẳng
Xét có
Phương trình
Lập bảng biến thiên
Đường thẳng cắt đồ thị
tại ba điểm phân biệt khi và chỉ khi
Do
Vậy có 7 giá trị nguyên của tham số m thỏa mãn.
Trong các hàm số sau đây, hàm số nào không nghịch biến trên
?
Với
y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên
Số đường tiệm cận ngang của đồ thị hàm số
bằng:
Ta có:
suy ra
là một tiệm cận ngang của đồ thị hàm số.
suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy tổng số đường tiệm cận ngang của đồ thị hàm số đã cho bằng 2.
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho đạt cực đại tại điểm nào dưới đây?
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Tìm các giá trị của tham số m để bất phương trình
nghiệm đúng với mọi ![]()
Xét hàm số ta có:
=>
Ta có:
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên
bằng:
Ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn bằng
.
Tìm giá trị của tham số
để giá trị nhỏ nhất của hàm số
trên đoạn
bằng
?
Ta có:
Vậy giá trị cần tìm là .
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Vì tập xác định của hàm số không chứa và
nên đồ thị hàm số không có đường tiệm cận ngang.
Lại có: . Vậy đồ thị hàm số có 1 đường tiệm cận đứng
.
Cho hàm số y = f(x) có bảng biến thiên như sau:

Số nghiệm thực của phương trình
là
Kí hiệu bảng biến thiên như sau:
Ta có:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số và đường thẳng
.
Dựa vào bảng biến thiên, ta thấy đồ thị hàm số cắt đường thẳng
tại 2 điểm phân biệt.
Vậy phương trình có 2 nghiệm phân biệt.
Cho hàm số
có bảng biến thiên như sau:

Xác định hàm số
?
Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba
Vì nên đáp án là
.
Cho hàm số
có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Điều kiện xác định của hàm số là
Từ bảng biến thiên ta có:
Tập xác định
Ta có:
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận đứng
.
suy ra đồ thị hàm số có tiệm cận đứng
.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là
.
Cho hàm số
với
là tham số. Tìm điều kiện của tham số
để hàm số
có
cực trị?
Nhận thấy rằng nếu là điểm cực trị dương của hàm số
thì
là điểm cực trị của hàm số
Lại thấy vì đồ thị hàm số nhận trục tung làm trục đối xứng mà
là hàm đa thức bậc ba nên
luôn là một điểm cực trị của hàm số
.
Khi đó để hàm số có 5 điểm cực trị thì hàm số
có hai cực trị dương phân biệt.
Suy ra phương trình có hai nghiệm dương phân biệt:
Vậy đáp án cần tìm là .
Một chất điểm chuyển động với vận tốc được cho bởi công thức
với
(giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?
Ta có: với
.
(thỏa mãn).
Bảng biến thiên
Dựa vào bảng biến thiên, tại thời điểm giây thì vận tốc của chất điểm là lớn nhất.
Cho hàm số
với
là tham số. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên khoảng
là:
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Xét hàm số trên khoảng
ta có bảng biến thiên như sau:
Vậy để hàm số nghịch biến trên thì
.
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số nghịch biến trên tập xác định
Hay hàm số nghịch biến trên các khoảng .
Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Hàm số đã cho nghịch biến trên khoảng
Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.