Hàm số
nghịch biến trên khoảng:
Tập xác định
Ta có:
Vậy hàm số nghịch biến trên khoảng
Hàm số
nghịch biến trên khoảng:
Tập xác định
Ta có:
Vậy hàm số nghịch biến trên khoảng
Cho hàm số
với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho hàm số với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Suy ra hàm số nghịch biến trên khoảng
Mà nên hàm số cũng nghịch biến trên khoảng
.
Trong các hàm số sau, hàm số nào đồng biến trên
?
Ta có:
Ta có: y’ = 0 chỉ tại x = 1
Vậy đồng biến trên
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số
đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Cho hàm số
có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:
a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai
b) Hàm số
đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai
c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số
. Đúng||Sai
d) Phương trình đường tiệm cận xiên của đồ thị hàm số
là
. Sai||Đúng
Cho hàm số có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:
a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai
b) Hàm số đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai
c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số . Đúng||Sai
d) Phương trình đường tiệm cận xiên của đồ thị hàm số là
. Sai||Đúng
Hàm số có tập xác định
Ta có:
Bảng biến thiên
a) Đúng: Hàm số đồng biến trên các khoảng (−∞; -1) và (3;+∞) và nghịch biến trên các khoảng (−1;1) và (1;3) .
b) Đúng: Đồ thị hàm số đạt cực đại tại điểm (−1;2)
c) Đúng: Xét nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số
.
d) Sai: Xét nên đường thẳng y = x + 5 là tiệm cận xiên của đồ thị hàm số
.
Cho hàm số
xác định trên R và có đồ thị hàm số
là đường cong như hình vẽ:

Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.
a) Hàm số
nghịch biến trên khoảng
. Sai||Đúng
b) Hàm số
nghịch biến trên khoảng
. Đúng||Sai
c) Hàm số
đạt cực đại tại
. Đúng||Sai
d) Hàm số
đạt cực tiểu tại
. Sai||Đúng
Cho hàm số xác định trên R và có đồ thị hàm số
là đường cong như hình vẽ:
Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.
a) Hàm số nghịch biến trên khoảng
. Sai||Đúng
b) Hàm số nghịch biến trên khoảng
. Đúng||Sai
c) Hàm số đạt cực đại tại
. Đúng||Sai
d) Hàm số đạt cực tiểu tại
. Sai||Đúng
Từ đồ thị hàm số , ta có bảng biến thiên
a) Từ bảng biến thiên hàm số đồng biến trên khoảng (−1; 0) và nghịch biến trên khoảng (0; 1).
b) Từ bảng biến thiên ta thấy hàm số y = f(x) nghịch biến trên (0; 2).
c) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực đại tại x = 0.
d) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực tiểu tại x = −2 và x = 2.
Cho hàm số
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Cho hàm số với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Giá trị lớn nhất của hàm số
trên khoảng ![]()
Ta có:
=> Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1
Gọi
là tập hợp các giá trị của tham số
để giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tính tổng các phần tử của tập
?
Ta có: . Suy ra hàm số
đồng biến trên đoạn
do đó
Theo giả thiết
Vậy nên tổng các phần tử của tập hợp
bằng
.
Hàm số
có bao nhiêu điểm cực trị?
Hàm số là hàm trùng phương có
nên hàm số có ba điểm cực trị.
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số trên có tiệm cận ngang là:
Dựa vào bảng biến thiên ta có:
Suy ra tiệm cận ngang của đồ thị hàm số là .
Tập hợp tất cả các giá trị thực của tham số
để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Một khối gỗ có dạng hình khối nón có bán kính đáy bằng
, chiều cao
. Bác thợ mộc chế tác từ khúc gỗ thành một khúc gỗ có dạng hình khối trụ như hình vẽ:

Gọi
là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Xác định giá trị của ![]()
Gọi lần lượt là bán kính và chiều cao của khối trụ.
Ta có:
Ta lại có:
Xét hàm số với
có:
Ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta có đạt tại
Vậy là giá trị cần tìm.
Cho hàm số
có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Từ đồ thị, ta thấy hàm số đồng biến trên các khoảng và
.
Đồ thị của hàm số nào có dạng như hình vẽ sau đây?

Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số nên hàm số cần tìm là
.
Đồ thị hàm số nào sau đây có ba đường tiệm cận?
Ta có: Đồ thị hàm số có 3 đường tiệm cận trong đó
Tiệm cận đứng là x = 2 và x = -2
Tiệm cận ngang là y = 0
Tìm giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị và khoảng cách giữa chúng bằng
?
Tập xác định
Ta có: . Để đồ thị của hàm số đã cho có hai điểm cực trị thì
có hai nghiệm phân biệt
Khi đó
Giả sử hai điểm cực trị là
Ta có:
Vậy giá trị cần tìm là .
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.