Chọn hàm số tương ứng với bảng biến thiên sau?

Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Chọn hàm số tương ứng với bảng biến thiên sau?

Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Tập hợp tất cả các giá trị thực của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có:
Hàm số nghịch biến trên khoảng khi
Đặt ta có:
. Ta có bảng biến thiên của
như sau:
Dựa vào bảng biến thiên ta thấy
Vậy là giá trị của tham số m cần tìm.
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số
không có cực trị. Số phần tử của S là:
Xét hàm số ta có:
Hàm số đã cho không có cực trị
=> Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép
=>
Do m là số nguyên nên
Vậy tập S có 4 phần tử.
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Cho hàm số
có bảng biến thiên như sau:

Xác định giá trị cực tiểu của hàm số đã cho.
Dựa vào bảng biến thiên ta thấy:
Hàm số đạt cực tiểu tại , giá trị cực tiểu là
.
Cho hàm số
có bảng biến thiên:

Số đường tiệm cận ngang của đồ thị hàm số
là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Cho hàm số sau, hàm số nào đồng biến trên
?
Xét hàm số ta có:
đồng biến trên
.
Xác định hàm số đồng biến trên
?
Xét hàm số ta có:
Suy ra hàm số đồng biến trên
.
Cho hàm số
với m là tham số thực thỏa mãn
. Mệnh đề nào dưới đây là đúng?
Xét hàm số trên [1; 2] ta có:
Khi đó:
Cho hàm số
với
là tham số. Tổng tất cả các giá trị nguyên của tham số
để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt bằng:
Phương trình hoành độ giao điểm của đồ thị và trục hoành là:
Xét hàm số
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta thấy để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi
Mà
Vậy tổng tất cả các giá trị nguyên của tham số thỏa mãn yêu cầu bằng
.
Tìm giá trị lớn nhất của hàm số y = f(x) = x4 – 2x2 + 1 trên đoạn [0; 2].
Xét hàm số f(x) = x4 – 2x2 + 1 trên [0; 2] có:
f’(x) = 4x3 – 4x
f’(x) = 0 =>
Tính f(0) = 1; f(1) = 0; f(2) = 9
Vậy
Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức
trong đó
là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?
Đáp án: 26
Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức trong đó
là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?
Đáp án: 26
Ta có .
Bảng biến thiên
Vậy để lợi nhuận lớn nhất thì xưởng cần sản xuất 26 tạ sản phẩm trong một tuần.
Một sợi dây kim loại dài
được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Một sợi dây kim loại dài được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Cho hàm số
xác định trên
, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số
để phương trình
có ba nghiệm thực phân biệt?
Dựa vào bảng biến thiên ta thấy phương trình có ba nghiệm thực phân biệt khi và chỉ khi
Cho hàm số
có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Điều kiện xác định của hàm số là
Từ bảng biến thiên ta có:
Tập xác định
Ta có:
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận đứng
.
suy ra đồ thị hàm số có tiệm cận đứng
.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là
.
Cho hàm số
. Gọi
lần lượt là hoành độ tại hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây đúng?
Tập xác định
Ta có:
nên
là điểm cực tiểu của hàm số.
nên
là điểm cực đại của hàm số.
Vậy kết luận đúng là: .
Xác định số đường tiệm cận của đồ thị hàm số
?
Tập xác định
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận đứng.
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận ngang.
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận ngang.
vậy đồ thị hàm số có tổng số đường tiệm cận bằng 3.
Cho hàm số
xác định và liên tục trên
và có đồ thị của hàm số
là đường cong như hình vẽ sau:

Chọn khẳng định đúng?
Từ đồ thị hàm số ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra khẳng định đúng là: “Hàm số nghịch biến trên khoảng
”.
Cho hàm số
có đạo hàm liên tục trên
và có bảng biến thiên của đạo hàm như hình vẽ.

Đặt
. Tìm số điểm cực trị của hàm số ![]()
Đáp án: 6
Cho hàm số có đạo hàm liên tục trên
và có bảng biến thiên của đạo hàm như hình vẽ.
Đặt . Tìm số điểm cực trị của hàm số
Đáp án: 6
Đặt
Xét hàm số
Bảng biến thiên của hàm số
Dựa vào bảng biến thiến trên ta thấy phương trình .
Mỗi phương trình có hai nghiệm phân biệt khác , mà
có 4 nghiệm đơn phân biệt
khác
và phương trình
vô nghiệm.
Do đó phương trình có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là
.
Vậy hàm số có 6 cực trị.
Cho hàm số
xác định và liên tục trên đoạn
và có đạo hàm
trên khoảng
. Đồ thị của hàm số
như hình vẽ sau:

Mệnh đề nào sau đây đúng?
Dựa vào đồ thị ta thấy và dấu “=” chỉ xảy ra tại
nên hàm số đồng biến trên khoảng
.