Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{4} - 2x^{2} + 3 - 2m = 0 có nghiệm thuộc ( - 2;2)?

    Ta có: x^{4} - 2x^{2} + 3 =
2m

    Xét hàm số f(x) = x^{4} - 2x^{2} +
3f'(x) = 4x^{3} - 4x + 3 =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Theo yêu cầu bài toán ta có: 2 \leq 2m
\leq 11 \Leftrightarrow 1 \leq m \leq 5,5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;4;5 ight\}

  • Câu 2: Vận dụng

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    a) Sai

    Ta có f'(x) = (x - 1)^{2}\left( x^{2}
- 3x + 2 ight) = (x - 1)^{3}(x - 2).

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight..

    Vậy phương trình f'(x) = 0 có hai nghiệm.

    b) Đúng

    Bảng biến thiên y = f(x)

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số đồng biến trên các khoảng ( - \infty;1),(2; + \infty).

    Ta có ( - 3;0) \subset ( -
\infty;1) nên hàm số f(x) đồng biến trên khoảng ( - 3;0).

    c) Đúng

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số có hai điểm cực trị.

    d) Sai

    Ta có:

    y = f\left( x^{2} - 6x + 1
ight)

    \Rightarrow y^{'} = \left( x^{2} - 6x
+ 1 ight)^{'}f^{'\left( x^{2} - 6x + 1 ight)} = (2x -
6)f'\left( x^{2} - 6x + 1 ight).

    y' = 0 \Leftrightarrow (2x -
6)f'\left( x^{2} - 6x + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x - 6 = 0 \\
x^{2} - 6x + 1 = 1 \\
x^{2} - 6x + 1 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 0 \\
x = 6 \\
x = - 3 + \sqrt{10} \\
x = - 3 - \sqrt{10} \\
\end{matrix} ight..

    Bảng biến thiên y = f\left( x^{2} - 6x +
1 ight)

    Dựa vào bảng biến thiên của hàm số y =
f\left( x^{2} - 6x + 1 ight) ta thấy hàm số có hai điểm cực đại.

  • Câu 3: Nhận biết

    Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?

    Xét hàm số y = \frac{2x + 1}{x -
3} ta có:

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ 3 ight\}

    Lại có: y' = \frac{- 7}{(x - 3)^{2}}
< 0;\forall x \in D nên hàm số y
= \frac{2x + 1}{x - 3} nghịch biến trên từng khoảng xác định của nó.

  • Câu 4: Nhận biết

    Cho hàm số y = \sqrt[3]{x^{2}}. Hỏi hàm số có bao nhiêu điểm cực trị?

    Tập xác định D\mathbb{= R}

    Ta có: y' =
\frac{2}{3\sqrt[3]{x^{2}}};(x eq 0)

    Xét dấu y' ta có: \left\{ \begin{matrix}
y' > 0;\forall x \in (0; + \infty) \\
y' < 0;\forall x \in ( - \infty;0) \\
\end{matrix} ight.

    Vậy hàm số có 1 cực trị.

  • Câu 5: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và hàm số y = f'(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số y =
f(x)?

    Từ đồ thị hàm số y = f'(x) ta có đồ thị hàm số y = f'(x) cắt trục hoành tại 4 điểm phân biệt.

    Do đó phương trình f'(x) = 0 có bốn nghiệm phân biệt. Qua các nghiệm này f'(x) đều đổi dấu nên số cực trị của hàm số y = f(x) là bốn cực trị.

  • Câu 6: Thông hiểu

    Điều kiện của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + 3mx + 1 đồng biến trên \mathbb{R} là:

    Tập xác định: D\mathbb{= R}

    Ta có: y' = x^{2} - 2mx +
3m

    Hàm số đồng biến trên \mathbb{R}

    \Leftrightarrow y' \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}x^{2} - 2mx + 3m \geq 0

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m^{2} - 3m \leq 0 \Leftrightarrow
m \in \lbrack 0;3brack

    Vậy giá trị của tham số m thỏa mãn yêu cầu bài toán là m \in \lbrack 0;3brack.

  • Câu 7: Vận dụng

    Cho hàm số y = \frac{mx^{2} + \left(
m^{2} + m + 2 ight)x + m^{2} + 3}{x + 1}. Tìm m \in \mathbb{R} để khoảng cách từ gốc O đến tiệm cận xiên hoặc ngang là nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx^{2} + \left(
m^{2} + m + 2 ight)x + m^{2} + 3}{x + 1}. Tìm m \in \mathbb{R} để khoảng cách từ gốc O đến tiệm cận xiên hoặc ngang là nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Xét hàm g(x) = f\left( x^{2} - 2
ight). Mệnh đề nào dưới đây sai?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 2 ight)

    g'(x) = 0 \Leftrightarrow
2x.f'\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = - 1 \\
x^{2} - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Dựa vào đồ thị ta thấy f'\left( x^{2}
- 2 ight) > 0

    \Leftrightarrow x^{2} - 2 > 2
\Leftrightarrow x^{2} > 4 \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
x > 2 \\
\end{matrix} ight.

    Vậy hàm số g(x) nghịch biến trên ( - 1;0) là sai.

  • Câu 9: Thông hiểu

    Gọi m,n lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = |x|
+ 2 trên \lbrack - 2; -
1brack. Tính giá trị biểu thức C
= m + n?

    Vì trên đoạn \lbrack - 2; -
1brack thì 0 \leq |x| \leq 2
\Leftrightarrow 2 \leq |x| + 2 \leq 4 \Rightarrow \left\{ \begin{matrix}
m = 4 \\
n = 2 \\
\end{matrix} ight.\  \Rightarrow C = 6

  • Câu 10: Thông hiểu

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ:

    Tìm giá trị của tham số thực m để phương trình f(x) = m có ít nhất hai nghiệm thực phân biệt?

    Phương trình f(x) = m có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng y = m cắt đồ thị hàm số y = f(x) tại ít nhất hai điểm phân biệt

    \Leftrightarrow - 1 \leq m \leq
3

  • Câu 11: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

    Đồ thị của hàm số y = f(x)

    Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức y = \frac{{ax + b}}{{cx + d}}

    => Loại đáp án B và D

    Ta có: y\left( 0 ight) = 2 => Loại đáp án B

  • Câu 12: Nhận biết

    Tìm giá trị nhỏ nhất a của hàm số y = x^{4} - x^{2} + 13 trên đoạn \lbrack - 2;3brack?

    Hàm số đã cho liên tục trên \lbrack -
2;3brack

    Ta có: y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{1}{\sqrt{2}} \\x = - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}y( - 2) = 25;y\left( \pm \dfrac{1}{\sqrt{2}} ight) = \dfrac{51}{4} \\y(0) = 13;y(3) = 85 \\\end{matrix} ight.

    Vậy giá trị nhỏ nhất của hàm số là a =
\frac{51}{4}.

  • Câu 13: Vận dụng

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng cao

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây

    Số đường tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y = f(x) là

    Dựa vào bảng biến thiên ta thấy

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} y =  + \infty => x = -2 là tiệm cận đúng của đồ thị hàm số

    Ta cũng có \mathop {\lim }\limits_{x \to \infty } y = 5 = > y = 5 là tiệm cận ngang của đồ thị hàm số

    Do đó đồ thị hàm số có 2 đường tiệm cận

  • Câu 16: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Số đường tiệm cận ngang: 1

    Số đường tiệm cận đứng: 1

    Tổng số đường tiệm cận ngang và tiệm cận đứng: 2.

  • Câu 17: Thông hiểu

    Cho hàm số y = f(x) = \frac{x + m}{x +
1} thỏa mãn \max_{\lbrack
1;2brack}y + \min_{\lbrack 1;2brack}y = \frac{9}{2}. Mệnh đề nào sau đây đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Hàm số đơn điệu trên đoạn \lbrack
1;2brack nên \max_{\lbrack
1;2brack}y + \min_{\lbrack 1;2brack}y = f(1) + f(2)

    \Leftrightarrow \frac{1 + m}{2} +
\frac{2 + m}{3} = \frac{9}{2} \Leftrightarrow m = 4

    Vậy đáp án cần tìm là 2 < m \leq
4.

  • Câu 18: Thông hiểu

    Cho hàm số y = \sqrt{2x -x^2}. Biết hàm số nghịch biến trên đoạn (a;b). Tính a
+ 2b.

    Đáp án: 5

    Đáp án là:

    Cho hàm số y = \sqrt{2x -x^2}. Biết hàm số nghịch biến trên đoạn (a;b). Tính a
+ 2b.

    Đáp án: 5

    Tập xác định: D = \lbrack
0;2brack.

    Ta có: y^{'} = \frac{1 - x}{\sqrt{2x
- x^{2}}} = 0 \Leftrightarrow x = 1.

    Bảng xét dấu:

    Từ bảng xét dấu, ta thấy hàm số nghịch biến trên (1;2).

    Khi đó: a = 1;b = 2 \Rightarrow a + 2b =
1 + 2.2 = 5.

  • Câu 19: Nhận biết

    Hàm số nào sau đây đồng biến trên các khoảng (-∞; 2) và (2; +∞)?

     Ta có:

    y' = \frac{{2\left( {x - 2} ight) - \left( {2x - 5} ight)}}{{{{\left( {x - 2} ight)}^2}}} = \frac{1}{{{{\left( {x - 2} ight)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ 2 ight\}

    Vậy hàm số y = \frac{{2x - 5}}{{x - 2}} đồng biến trên các khoảng (-∞; 2) và (2; +∞)

  • Câu 20: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo