Cho đồ thị hàm số
như hình vẽ:

Hỏi hàm số
nghịch biến trên khoảng nào dưới đây?
Theo đồ thị hàm số ta có hàm số đồng biến trên khoảng
và
khi đó:
Mặt khác
Do hàm số nghịch biến nên
Vậy hàm số nghịch biến trên khoảng
.
Cho đồ thị hàm số
như hình vẽ:

Hỏi hàm số
nghịch biến trên khoảng nào dưới đây?
Theo đồ thị hàm số ta có hàm số đồng biến trên khoảng
và
khi đó:
Mặt khác
Do hàm số nghịch biến nên
Vậy hàm số nghịch biến trên khoảng
.
Cho hình vẽ:

Hàm số nào sau đây có đồ thị như hình vẽ bên?
Nhận thấy dạng đồ thị của hàm số bậc ba
Mặt khác đồ thị cắt trục tung tại điểm có tung độ âm nên hàm số tương ứng với đồ thị là .
Hàm số nào dưới dây nghịch biến trên tập số thực?
Ta thấy hàm số có tập xác định
và đạo hàm
nên nghịch biến trên
.
Cho hàm số
với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho hàm số với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho x, y là các số thực dương thỏa mãn điều kiện
. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức
bằng:
Ta có:
Lại có:
Từ đó
Xét hàm số
=> Hàm số đồng biến trên
=>
=>
Cho hàm số
có đạo hàm
. Số điểm cực tiểu của hàm số là:
Ta có:
Bảng xét dấu:
Suy ra số điểm cực tiểu của hàm số là 2 điểm.
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
cắt trục hoành tại ba điểm phân biệt?
Phương trình hoành độ giao điểm của đồ thị hàm số
Ta cps:
Đặt . Khi đó số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số
và đường thẳng
.
Khảo sát sự biến thiên của hàm số ta có:
Ta có bảng biến thiên
Với thì phương trình (*) có ba nghiệm phân biệt. Mặt khác do m nguyên nên
.
Vậy có 31 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số bậc ba
với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số
có đồ thị như hình vẽ dưới đây. Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số theo thứ tự là

Từ đồ thị của hàm số suy ra tiệm cận đứng và tiệm cận ngang là : x = 1 ; y = 1
Tính giá trị của tham số m biết rằng giá trị lớn nhất của hàm số
là
?
Ta có: có tập xác định
Ta có: . Theo bài ra ta có:
Vậy đáp án cần tìm là
Cho hàm số
có bảng biến thiên của hàm số
như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?

Đáp án: 6
Cho hàm số có bảng biến thiên của hàm số
như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đáp án: 6
Để hàm số đồng biến trên khoảng
Đặt và
.
Ta có: .
Do đó, ta có: khi
.
Do đó, .
Từ ta có
.
Mà .
Vậy có tất cả 6 số nguyên thỏa mãn.
Tìm điều kiện của tham số
để hàm số
đồng biến trên từng khoảng xác định?
Tập xác định
Ta có: .
Để hàm số đồng biến trên từng khoảng xác định
Vậy giá trị cần tìm là .
Biết giá trị lớn nhất của hàm số
trên đoạn
bằng
. Khẳng định nào dưới đây đúng?
Ta có: nên giá trị lớn nhất của hàm số
trên đoạn
là:
Vậy đáp án cần tìm là .
Tìm giá trị của tham số
để hàm số
nghịch biến trên
?
Đặt
hay
Bài toán trở thành tìm m để hàm số đồng biến trên
Tập xác định
Ta có: . Hàm số
đồng biến trên
Vậy đáp án cần tìm là .
Cho hàm số
có bảng biến thiên như hình vẽ.

Tính giá trị của biểu thức ![]()
Ta có:
Mặt khác
Cho hàm số | ![]() |
Từ đồ thị hàm số ta có nhận xét như sau:
Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)
=>
Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)
=>
Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)
=> y(0) = -1 =>
=>
Cho hàm số bậc ba
có đồ thị là đường cong hình bên.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ đồ thị đã cho ta thấy hàm số nghịch biến trên khoảng .
Cho hàm số
đạt cực đại tại
thỏa mãn
. Khi đó:
Tập xác định
Ta có: hàm số có hai cực trị
khi và chỉ khi
Khi đó .
Mặt khác
Vậy đáp án cần tìm là .
Giá trị lớn nhất của hàm số
trên đoạn
bằng
Ta có:
Suy ra hàm số nghịch biến trên đoạn .
Do đó
Cho hàm số
. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Tập xác định suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên
suy ra đồ thị nhận đường thẳng
làm tiệm cận đứng.
Vậy đồ thị hàm số có một đường tiệm cận.