Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Số giá trị nguyên của tham số m để hàm số y = 2{x^3} - 3m{x^2} + 6mx + 2 đồng biến trên \mathbb{R}?

    Ta có: y' = 6{x^2} - 6mx + 6m

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 6 > 0} \\   {\Delta ' = 9{m^2} - 36m \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.

  • Câu 2: Nhận biết

    Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

    Chọn hàm số tương ứng với đồ thị hàm số

    Quan sát đồ thị hàm số ta thấy:

    Hàm số có dạng hàm số bậc bốn trùng phương: y = a{x^4} + b{x^2} + c

    => Loại đáp án B

    Đồ thị có nhánh cuối của đồ thị đi lên

    => Hệ số a > 0

    => Loại đáp án A

    Đồ thị hàm số cắt trục tung tại điểm O

    => c = 0

    => Loại đáp án C

  • Câu 3: Thông hiểu

    Sau khi phát hiện một dịch bệnh, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 35t^{2} - \frac{5}{3}t^{3} (kết quả khào sát trong 12 tháng liên tục). Nếu xem f^{'}(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t thì tốc độ truyền bệnh lớn nhất vào ngày thứ mấy?

    Trả lời: Ngày thứ 7

    Đáp án là:

    Sau khi phát hiện một dịch bệnh, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 35t^{2} - \frac{5}{3}t^{3} (kết quả khào sát trong 12 tháng liên tục). Nếu xem f^{'}(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t thì tốc độ truyền bệnh lớn nhất vào ngày thứ mấy?

    Trả lời: Ngày thứ 7

    Ta có f(t) = 35t^{2} - \frac{5}{3}t^{3}
\Rightarrow f'(t) = 70t - 5t^{2}(t > 0)

    f^{'}(t) có đồ thị là một parabol có bề lõm quay xuống nên đạt giá trị cực đại tại t = - \frac{70}{2( - 5)} = 7.

    Vậy vào ngày thứ 7 tốc độ truyền bệnh là nhanh nhất.

  • Câu 4: Vận dụng

    Số điểm cực trị của hàm số y = \left| {\sin x - \frac{\pi }{4}} ight|,x \in \left( { - \pi ;\pi } ight) là?

    Xét hàm số y = f\left( x ight) = \sin x - \frac{x}{4};x \in \left( { - \pi ;\pi } ight)

    Ta có:

    \begin{matrix}  f'\left( x ight) = \cos x - \dfrac{1}{4} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \cos x = \dfrac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = {x_1} \in \left( { - \dfrac{\pi }{2};0} ight)} \\   {x = {x_1} \in \left( {0;\dfrac{\pi }{2}} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {{x_1}} ight) = \sin {x_1} - \dfrac{{{x_1}}}{4} =  - \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} <  - \dfrac{{\sqrt {15} }}{4} + \dfrac{\pi }{8} < 0 \hfill \\  f\left( {{x_2}} ight) = \sin {x_2} - \dfrac{{{x_2}}}{4} = \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} < \dfrac{{\sqrt {15} }}{4} - \dfrac{\pi }{8} < 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm số điểm cực trị của hàm số

    Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2

    => Hàm số y = \left| {\sin x - \frac{x}{4}} ight|,x \in \left( { - \pi ,\pi } ight) có 5 điểm cực trị

  • Câu 5: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới dây?

    Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên (0;1).

  • Câu 6: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack - 1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack?

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 7: Nhận biết

    Hàm số nào dưới dây nghịch biến trên tập số thực?

    Ta thấy hàm số y = - x^{2} - 3x có tập xác định \mathbb{R} và đạo hàm y = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R} nên nghịch biến trên \mathbb{R}.

  • Câu 8: Thông hiểu

    Cho hàm số y = \frac{3x^{2} + 2x}{4x +
4}. Khoảng cách từ điểm M(3; -
2) đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu?

    Đáp án: 3,2

    Đáp án là:

    Cho hàm số y = \frac{3x^{2} + 2x}{4x +
4}. Khoảng cách từ điểm M(3; -
2) đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu?

    Đáp án: 3,2

    Ta có: y = \frac{3x^{2} + 2x}{4x + 4} =
\frac{3}{4}x - \frac{1}{4} + \frac{1}{4x + 4}.

    Xét \lim_{x ightarrow \pm \infty}\left(
y - \left( \frac{3}{4}x - \frac{1}{4} ight) ight) = \lim_{x
ightarrow \pm \infty}\frac{1}{4x + 4} = 0.

    Vậy đường tiệm cận xiên có phương trình y
= \frac{3}{4}x - \frac{1}{4} \Leftrightarrow 3x - 4y - 1 =
0.

    Khoảng cách từ điểm M đến đường tiệm cận xiên là:

    d = \frac{\left| 3.3 - 4.( - 2) - 1
ight|}{\sqrt{3^{2} + ( - 4)^{2}}} = \frac{16}{5} = 3,2

  • Câu 9: Thông hiểu

    Cho hàm số y = x^{3} + mx^{2} +
m. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên (0;2) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Để hàm số đã cho nghịch biến trên (0;2) thì y' \leq 0;\forall x \in (0;2)

    \Leftrightarrow 3x^{2} + 2mx \leq
0;\forall x \in (0;2)

    \Leftrightarrow 2mx \leq - 3x^{2}
\Leftrightarrow m \leq - \frac{3}{2}x^{2};\forall x \in
(0;2)

    \Leftrightarrow m \leq
\min_{(0;2)}\left\{ - \frac{3}{2}x ight\} = - 3

    Vậy giá trị cần tìm là m \leq -
3.

  • Câu 10: Thông hiểu

    Cho hàm số bậc ba y = f(x) có đồ thị như sau:

    Số giá trị nguyên của tham số m để phương trình f(x) + 3m = 0 có ba nghiệm phân biệt là:

    Số nghiệm của phương trình f(x) + 3m =0 là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = - 3m

    Suy ra để phương trình f(x) + 3m =0 có ba nghiệm phân biệt thì - 1< - 3m < 3 \Leftrightarrow - 1 < m <\frac{1}{3}

    m\mathbb{\in Z \Rightarrow}m =0

    Vậy có duy nhất một số nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 11: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R}. Biết rằng hàm số y = f'(x) có đồ thị như sau:

    Đặt g(x) = f(x) - x. Hỏi hàm số g(x) có bao nhiêu điểm cực trị?

    Hàm số y = f(x) có đạo hàm trên \mathbb{R} nên g(x) = f(x) - x cũng có đạo hàm trên \mathbb{R}

    Ta có: g'(x) = f'(x) -
1

    \Rightarrow g'(x) = 0
\Leftrightarrow f'(x) = 1

    Dựa vào đồ thị f'(x) ta có: f'(x) = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = x_{1} \in ( - 1;0) \\
x = x_{2} \in (1;3) \\
x = x_{3} \in (2;3) \\
\end{matrix} ight. suy ra x_{1};x_{2};x_{3} là ba nghiệm phân biệt và x_{1} < x_{2} < x_{3}

    Bảng biến thiên của hàm g(x)

    Vậy hàm số g(x) = f(x) - x có 3 điểm cực trị.

  • Câu 12: Thông hiểu

    Cho hàm số y =
\frac{1}{3}x^{3} - mx^{2} - (2m - 3)x - m + 2. Có bao nhiêu giá trị nguyên dương của tham số m luôn đồng biến trên \mathbb{R}?

    Ta có: y' = x^{2} - 2mx - 2m +
3

    Khi đó: y' \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} - 2mx - 2m + 3
\geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' = m^{2} + 2m
- 3 \leq 0 \Leftrightarrow - 3 \leq m \leq 1

    Do m nguyên dương nên m = 1.

    Vậy có 1 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 13: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ -
1 ight\} có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow + \infty}y = -
2 suy ra đồ thị hàm số có tiệm cận ngang y = - 2

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị hàm số có tiệm cận đứng x = - 1

    Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng x = - 1 và tiệm cận ngang y = - 2”.

  • Câu 14: Thông hiểu

    Cho hàm số y = f(x) = \frac{x - 1}{x -
m} với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}. Đúng||Sai

    b) y' = \frac{m - 1}{(x -
m)^{2}};\forall x eq m. Sai|| Đúng

    c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng

    d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x - 1}{x -
m} với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}. Đúng||Sai

    b) y' = \frac{m - 1}{(x -
m)^{2}};\forall x eq m. Sai|| Đúng

    c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng

    d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}.

    b) y' = \frac{- m + 1}{(x -
m)^{2}};\forall x eq m

    c) Sai.

    Hàm số đã cho đồng biến trên (−∞; 0) khi và chỉ khi

    \left\{ \begin{matrix}
m otin ( - \infty;0) \\
- m + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 0 \\
m < 1 \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 1.

    d) Đúng

  • Câu 15: Nhận biết

    Tất cả các giá trị của tham số m để hàm số y = x^{4} + (2020 - m)x^{2} +
1 có ba điểm cực trị phân biệt là:

    Hàm số y = ax^{4} + bx^{2} + c có ba điểm cực trị khi và chỉ khi a.b <
0.

    Để hàm số đa cho có ba điểm cực trị khi và chỉ khi 2020 - m < 0 \Leftrightarrow m >
2020.

  • Câu 16: Vận dụng cao

    Gọi K là tập hợp các giá trị nguyên của tham số m \in \left[ {0;2019} ight] để bất phương trình {x^2} - m + \sqrt {{{\left( {1 - {x^2}} ight)}^3}}  \leqslant 0 nghiệm đúng với mọi x \in \left[ { - 1;1} ight] . Số các phần tử của tập hợp K là:

    Đặt t = \sqrt {1 - {x^2}} ;x \in \left[ { - 1;1} ight] \Rightarrow t \in \left[ {0;1} ight]

    Bất phương trình đã cho trở thành {t^3} - {t^2} + 1 - m \leqslant 0 \Leftrightarrow m \geqslant {t^3} - {t^2} + 1\left( * ight)

    Yêu cầu bài toán tương đương với bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight]

    Xét hàm số f\left( t ight) = {t^3} - {t^2} + 1 \Rightarrow f'\left( t ight) = 3{t^3} - 2t

    f'\left( t ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( L ight)} \\   {t = \dfrac{2}{3}\left( {tm} ight)} \end{array}} ight.

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = f\left( 1 ight) = 1} \\   {f\left( {\dfrac{2}{3}} ight) = \dfrac{{23}}{{27}}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} f\left( t ight) = 1

    Do đó bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight] khi và chỉ khi m \geqslant 1

    Mặt khác m là số nguyên thuộc [0; 2019] nên m \in \left\{ {1;2;3;...;2019} ight\}

  • Câu 17: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số y = \frac{m\sin x + 1}{\cos x + 2} nhỏ hơn 2?

    Ta có: y = \frac{m\sin x + 1}{\cos x + 2}\Leftrightarrow m\sin x + 1 = y\cos x + 2y

    \Leftrightarrow m\sin x - y\cos x = 2y -
1

    Phương trình có nghiệm khi

    m^{2} + y^{2} \geq (2y - 1)^{2}
\Leftrightarrow m^{2} + y^{2} \geq 4y^{2} - 4y + 1

    \Leftrightarrow 3y^{2} - 4y + 1 - m^{2}
\leq 0

    Xét phương trình 3y^{2} - 4y + 1 - m^{2}
= 0\Delta' = ( - 2)^{2} -
3\left( 1 - m^{2} ight) = 3m^{2} + 1 > 0;\forall m

    Suy ra phương trình 3y^{2} - 4y + 1 -
m^{2} = 0 luôn có hai nghiệm phân biệt. Do đó:

    \Leftrightarrow \frac{2 - \sqrt{3m^{2} +
1}}{3} \leq \frac{2 + \sqrt{3m^{2} + 1}}{3}

    Suy ra \max y = \frac{2 + \sqrt{3m^{2} +
1}}{3}. Theo yêu cầu bài toán ta có:

    \max y < 2 \Leftrightarrow \frac{2 +
\sqrt{3m^{2} + 1}}{3} < 2

    \Leftrightarrow \sqrt{3m^{2} + 1} < 4
\Leftrightarrow 3m^{2} + 1 < 16 \Leftrightarrow - \sqrt{5} < m
< \sqrt{5}

    m\mathbb{\in Z} suy ra m \in \left\{ - 2; - 1;0;1;2 ight\}

    Vậy có tất cả 5 giá trị nguyên của tham số m thỏa mãn.

  • Câu 18: Thông hiểu

    Hàm số y = 2x^{3} - 3(m + 1)x^{2} + 6mx +
1 nghịch biến trên khoảng (1;3) khi và chỉ khi:

    Tập xác định D\mathbb{= R}

    Ta có: y = 2x^{3} - 3(m + 1)x^{2} + 6mx +
1

    \Rightarrow y' = 6x^{2} - 6(m + 1)x
+ 6m

    Hàm số nghịch biến trên khoảng (1;3)

    \Leftrightarrow y' \leq 0;\forall x
\in (1;3)

    \Leftrightarrow 6x^{2} - 6(m + 1)x + 6m
\leq 0;\forall x \in (1;3)

    \Leftrightarrow x^{2} - (m + 1)x + m
\leq 0;\forall x \in (1;3)

    \Leftrightarrow m \geq x;\forall x \in
(1;3)

    Vậy m \geq 3 là giá trị cần tìm.

  • Câu 19: Vận dụng

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d;\left( {a,b,c,d \in \mathbb{R}} ight) có đồ thị như hình vẽ dưới đây.

    Xác định số TCĐ và TCN của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{1}{{f\left( {4 - {x^2}} ight) - 3}} có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.

    Đặt t = 4 - {x^2} khi đó x \to  \pm \infty thì t \to \infty

    Khi đó \mathop {\lim }\limits_{x \to  \pm \infty } g\left( x ight) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{f\left( t ight) - 3}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số g(x)

    Mặt khác

    \begin{matrix}  f\left( {4 - {x^2}} ight) - 3 = 0 \hfill \\   \Leftrightarrow f\left( {4 - {x^2}} ight) = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {4 - {x^2} =  - 2} \\   {4 - {x^2} = 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm \sqrt 6 } \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Đồ thị hàm số g(x) có ba đường tiệm cận đứng.

    Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.

  • Câu 20: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo