Cho hàm số
là hàm đa thức có đạo hàm
. Số điểm cực trị của hàm số là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy hàm số có hai điểm cực trị.
Cho hàm số
là hàm đa thức có đạo hàm
. Số điểm cực trị của hàm số là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy hàm số có hai điểm cực trị.
Cho hàm số
xác định trên
liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Từ bảng biến thiên ta thấy:
suy ra
là tiệm cận đứng.
suy ra
là tiệm cận ngang
suy ra
là tiệm cận ngang
Vậy đồ thị hàm số đã cho có tất cả ba đường tiệm cận.
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên của hàm số ta có:
nên đồ thị hàm số đã cho không có tiệm cận ngang.
Và nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số đã cho không có tiệm cận.
Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
![]() |
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Một công ty bất động sản có
căn hộ cho thuê. Nếu giá cho thuê mỗi căn là
đồng/tháng thì không có phòng trống, còn nếu cho thuê mỗi căn hộ thêm
đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yếu bao nhiêu để doanh thu là lớn nhất?
Đặt số tiền tăng thêm là (đồng)
Giá tiền mỗi căn hộ một tháng là (đồng)
Số căn hộ bị trống là (phòng)
Số tiền thu được mỗi tháng là: (đồng)
Đặt
Để doanh thu là lớn nhất thì ta tìm giá trị lớn nhất của hàm số , giá trị lớn nhất của hàm số
tại đỉnh của parabol.
Hay:
Vậy công ty niêm yết giá tiền là: đồng để được doanh thu là lớn nhất.
Cho hàm số
có bảng biến thiên như hình vẽ dưới đây.

Số đường tiệm cận của đồ thị hàm số
là:
Phương trình có 2 nghiệm phân biệt
=> Đồ thị hàm số có 2 đường tiệm cận đứng.
Khi thì
Khi thì
Vậy đồ thị hàm số có 1 tiệm cận ngang.
Gọi M là giá trị lớn nhất của hàm số
. Tính tích các nghiệm của phương trình f(x) = M.
Đặt
Xét hàm số ta có:
Cho hàm số
với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã cho đồng biến trên
?
Tập xác định
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Hay
Vậy giá trị tham số m thỏa mãn yêu cầu bài toán là .
Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số .
Vậy hàm số cần tìm là .
Cho hàm số
là một hàm đa thức có bảng xét dấu
như sau:

Số điểm cực trị của hàm số
.
Ta có .
Số điểm cực trị của hàm số bằng hai lần số điểm cực trị dương của hàm số
cộng thêm 1.
Xét hàm số
Bảng xét dấu hàm số :
Hàm số có 2 điểm cực trị dương.
Vậy hàm số có 5 điểm cực trị.
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Ta có bảng xét dấu:

Quan sát bảng xét dấu ta thấy:
+ Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞)
+ Hàm số nghịch biến trên các khoảng (0; 2)
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: .
Cho hàm số
xác định và liên tục trên
và có đồ thị của hàm số
là đường cong như hình vẽ sau:

Chọn khẳng định đúng?
Từ đồ thị hàm số ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra khẳng định đúng là: “Hàm số nghịch biến trên khoảng
”.
Cho hàm số
có đạo hàm
với mọi
.
a) Phương trình
có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Hàm số
có hai điểm cực trị. Đúng||Sai
d) Hàm số
có ba điểm cực đại. Sai||Đúng
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
a) Sai
Ta có .
.
Vậy phương trình có hai nghiệm.
b) Đúng
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số đồng biến trên các khoảng
.
Ta có nên hàm số
đồng biến trên khoảng
.
c) Đúng
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực trị.
d) Sai
Ta có:
.
.
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực đại.
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là
. Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là . Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Cho hàm số
với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d)
. Đúng||Sai
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d) . Đúng||Sai
Ta có:
Do hàm số đạt cực đại tại x = 3 nên
Với .
Bảng xét dấu y’ như sau:
Với
Bảng xét dấu y’ như sau:
Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3
Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.
Giá trị lớn nhất của hàm số
trên đoạn
bằng:
Ta có:
Khi đó:
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng cho dưới đây?
Dựa vào bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng .
Cho hàm số
có đồ thị như hình vẽ:

Số điểm cực trị của hàm số
là:
Tịnh tiến hàm số sang trái hai đơn vị ta được hàm số
Đồ thị hàm số có được gồm hai phần.
Phần 1 là phần đồ thị nằm phía bên phải
.
Phần 2 là phần đồ thị đối xứng qua .
Khi đó đồ thị hàm số sẽ có một điểm cực trị.