Số giá trị nguyên của tham số m để hàm số đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Số giá trị nguyên của tham số m để hàm số đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:
Quan sát đồ thị hàm số ta thấy:
Hàm số có dạng hàm số bậc bốn trùng phương:
=> Loại đáp án B
Đồ thị có nhánh cuối của đồ thị đi lên
=> Hệ số a > 0
=> Loại đáp án A
Đồ thị hàm số cắt trục tung tại điểm O
=> c = 0
=> Loại đáp án C
Sau khi phát hiện một dịch bệnh, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ là
(kết quả khào sát trong 12 tháng liên tục). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
thì tốc độ truyền bệnh lớn nhất vào ngày thứ mấy?
Trả lời: Ngày thứ 7
Sau khi phát hiện một dịch bệnh, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ là
(kết quả khào sát trong 12 tháng liên tục). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
thì tốc độ truyền bệnh lớn nhất vào ngày thứ mấy?
Trả lời: Ngày thứ 7
Ta có
Vì có đồ thị là một parabol có bề lõm quay xuống nên đạt giá trị cực đại tại
.
Vậy vào ngày thứ 7 tốc độ truyền bệnh là nhanh nhất.
Số điểm cực trị của hàm số là?
Xét hàm số
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2
=> Hàm số có 5 điểm cực trị
Cho hàm số có bảng biến thiên như sau:
Hàm số nghịch biến trên khoảng nào dưới dây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên .
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn ?
Từ đồ thị hàm số ta có:
Khi đó .
Hàm số nào dưới dây nghịch biến trên tập số thực?
Ta thấy hàm số có tập xác định
và đạo hàm
nên nghịch biến trên
.
Cho hàm số Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu
Đáp án: 3,2
Cho hàm số Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu
Đáp án: 3,2
Ta có:
Xét
Vậy đường tiệm cận xiên có phương trình
Khoảng cách từ điểm đến đường tiệm cận xiên là:
Cho hàm số . Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Cho hàm số bậc ba có đồ thị như sau:
Số giá trị nguyên của tham số để phương trình
có ba nghiệm phân biệt là:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số
và đường thẳng
Suy ra để phương trình có ba nghiệm phân biệt thì
Vì
Vậy có duy nhất một số nguyên của thỏa mãn yêu cầu bài toán.
Cho hàm số có đạo hàm trên
. Biết rằng hàm số
có đồ thị như sau:
Đặt . Hỏi hàm số
có bao nhiêu điểm cực trị?
Hàm số có đạo hàm trên
nên
cũng có đạo hàm trên
Ta có:
Dựa vào đồ thị ta có:
suy ra
là ba nghiệm phân biệt và
Bảng biến thiên của hàm
Vậy hàm số có 3 điểm cực trị.
Cho hàm số . Có bao nhiêu giá trị nguyên dương của tham số
luôn đồng biến trên
?
Ta có:
Khi đó:
Do nguyên dương nên
.
Vậy có 1 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Từ bảng biến thiên ta có:
suy ra đồ thị hàm số có tiệm cận ngang
suy ra đồ thị hàm số có tiệm cận đứng
Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng và tiệm cận ngang
”.
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định . Đúng||Sai
b) . Sai|| Đúng
c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng
d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định . Đúng||Sai
b) . Sai|| Đúng
c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng
d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai
a) Tập xác định .
b)
c) Sai.
Hàm số đã cho đồng biến trên (−∞; 0) khi và chỉ khi
.
d) Đúng
Tất cả các giá trị của tham số để hàm số
có ba điểm cực trị phân biệt là:
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi .
Gọi K là tập hợp các giá trị nguyên của tham số để bất phương trình
nghiệm đúng với mọi
. Số các phần tử của tập hợp K là:
Đặt
Bất phương trình đã cho trở thành
Yêu cầu bài toán tương đương với bất phương trình (*) nghiệm đúng với mọi
Xét hàm số
Vì
Do đó bất phương trình (*) nghiệm đúng với mọi khi và chỉ khi
Mặt khác m là số nguyên thuộc [0; 2019] nên
Có bao nhiêu giá trị nguyên của tham số để giá trị lớn nhất của hàm số
nhỏ hơn
?
Ta có:
Phương trình có nghiệm khi
Xét phương trình có
Suy ra phương trình luôn có hai nghiệm phân biệt. Do đó:
Suy ra . Theo yêu cầu bài toán ta có:
Mà suy ra
Vậy có tất cả 5 giá trị nguyên của tham số m thỏa mãn.
Hàm số nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Cho hàm số bậc ba có đồ thị như hình vẽ dưới đây.
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.
Đặt khi đó
thì
Khi đó
=> y = 0 là tiệm cận ngang của đồ thị hàm số g(x)
Mặt khác
=> Đồ thị hàm số g(x) có ba đường tiệm cận đứng.
Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.
Cho hàm số có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?