Giá trị của tham số m để đồ thị hàm số
có đường tiệm cận ngang
là:
Điều kiện để đồ thị hàm số có tiệm cận là:
luôn đúng với
Phương trình đường tiệm cận ngang là nên ta có
Giá trị của tham số m để đồ thị hàm số
có đường tiệm cận ngang
là:
Điều kiện để đồ thị hàm số có tiệm cận là:
luôn đúng với
Phương trình đường tiệm cận ngang là nên ta có
Cho x, y là các số thực thỏa mãn
. Giá trị nhỏ nhất của biểu thức
bằng:
Đặt
Ta được
Xét
Vì
Đồ thị hàm số
có tiệm cận ngang là:
Tập xác định
Ta có:
Vì nên đồ thị hàm số có đường tiệm cận ngang là y = 2.
Cho hàm số y = f(x) có đạo hàm
. Khi đó số cực trị của hàm số là:
Ta có:
=> Hàm số có 1 cực trị.
Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết
kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?
Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?
![]() |
Dựa vào đồ thị hàm số ta thấy
=> Hệ số a > 0
=> Loại đáp án B và đáp án D
Mặt khác hàm số có ba điểm cực trị
=> Loại đáp án C
Xác định hàm số nghịch biến trên
?
Xét hàm số ta có:
Nên hàm số nghịch biến trên
.
Cho hàm số y = f(x) liên tục trên
và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị của tham số m để phương trình
có đúng hai nghiệm phân biệt.

Để phương trình có hai nghiệm phân biệt thì
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Cho hàm số y = f(x) xác định, liên tục trên
và có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng
Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
khi và chỉ khi
Vì nên có tất cả 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tìm tất cả các giá trị thực của tham số
để giá trị nhỏ nhất của hàm số
trên
bằng
?
Ta có:
Xét
Mà và
Khi đó
Theo đề bài ra ta có:
Vậy đáp án cần tìm là .
Gọi
là giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị là
sao cho diện tích tam giác
bằng
(
là gốc tọa độ). Khi đó giá trị biểu thức
bằng:
Tập xác định .
Ta có:
Ta có bảng biến thiên như sau:
Suy ra
Đường thẳng (PQ) đi qua điểm và nhận
làm một vecto pháp tuyến nên có phương trình
Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:
Vậy .
Cho hàm số
trên đoạn
. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức
.
Xét hàm số trên đoạn
ta có:
=> là hàm số nghịch biến trên
=>
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số nghịch biến trên tập xác định
Hay hàm số nghịch biến trên các khoảng .
Đồ thị hàm số
có điểm cực đại là
và một điểm cực tiểu là
. Tính giá trị biểu thức
?
Do đồ thị hàm số có một cực tiểu
nên
.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên từng khoảng xác định?
Có bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên từng khoảng xác định?
Cho hàm số
với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho hàm số với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho hàm số
có đạo hàm trên khoảng
và có bảng biến thiên như sau:

Hàm số
là hàm số nào dưới đây?
Nhận diện đồ thị hàm số bậc 4 trùng phương nên loại hàm số
Hàm số có 3 cực trị nên nên loại hàm số
.
Vì nên hàm số cần tìm là
.
Cho hàm số f(x) có bảng biến thiên như sau:

Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có
=> Đồ thị hàm số đường tiệm cận ngang là y = 2