Cho hàm số y = f(x) xác định, liên tục trên
và có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng
Cho hàm số y = f(x) xác định, liên tục trên
và có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có:
=> y = 2 là tiệm cận ngang của đồ thị hàm số
Ta cũng có: => x = 1; x = 32 là tiệm cận đứng của đồ thị hàm số
Cho hàm số
liên tục trên đoạn
và có đồ thị là đường cong trong hình bên dưới.

Hàm số
đạt cực tiểu tại điểm
Theo hình vẽ thì hàm số đạt cực tiểu tại điểm
.
Cho hàm số
. Số đường tiệm cận của đồ thị hàm số y = f(x) là:
Ta có:
=> Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
=> y = 2 là tiệm cận ngang của đồ thị hàm số
=> đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Cho hàm số y = f’(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng 11 điểm cực trị?

Hàm số đạt cực trị tại
Xét hàm số
Bảng biến thiên của hàm số suy ra chỉ có phương trình
cho ta nghiệm bội lẻ.
Nếu
=> Số điểm cực trị u là 1
=> Số nghiệm bội lẻ của phương trình u = 4 tối đa 2 nghiệm bội lẻ (Không thỏa yêu cầu)
Khi m > 0 => Số điểm cực trị u là 5 ta có bảng biến thiên của hàm số

Áp dụng công thức:
Số điểm cực trị của hàm số f(u) = số nghiệm bội lẻ của phương trình (u = 4) + số điểm cực trị của u
=> . Kết hợp với điều kiện
=> Có 29 giá trị nguyên thỏa mãn yêu cầu.
Tìm tất cả các giá trị của tham số m để hàm số
; (
là tham số) đồng biến trên tập số thực?
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Tìm điều kiện cần và đủ của tham số thực ủa tham số
để đường thẳng
cắt đồ thị
tại ba điểm phân biệt là:
Phương trình hoành độ giao điểm của hai đồ thị:
(*) là phương trình hoành độ giao điểm của hai đồ thị
Xét hàm số có
Bảng biến thiên
Vậy theo yêu cầu bài toán
Hàm số
có bảng biến thiên như sau:

Phương trình
có ba nghiệm thực phân biệt khi và chỉ khi:
Số nghiệm của phương trình bằng số giao điểm của hai đồ thị hàm số
.
Dựa vào bảng biến thiên ta có phương trình có ba nghiệm thực phân biệt khi và chỉ khi
.
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
, trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Xét ta có:
Mặt khác
Giá trị của tham số m để đồ thị hàm số
có đường tiệm cận ngang
là:
Điều kiện để đồ thị hàm số có tiệm cận là:
luôn đúng với
Phương trình đường tiệm cận ngang là nên ta có
Cho một tấm nhôm hình vuông có cạnh là
. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Cho một tấm nhôm hình vuông có cạnh là . Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Chiều cao của chiếc hộp khi gập tấm nhôm là .
Kích thước đáy hai đáy của chiếc hộp là .
Ta có .
Thể tích chiếc hộp là .
.
Bài toán trở thành, tìm
sao cho
là lớn nhất.
Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là để chiếc hộp tạo thành có thể tích lớn nhất.
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên mỗi khoảng và
.
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Suy ra hàm số nghịch biến trên khoảng
Mà nên hàm số cũng nghịch biến trên khoảng
.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số
. Chọn mệnh đề đúng?

Dựa vào đồ thị ta thấy hàm số có tập xác định là hàm số luôn nghịch biến trên khoảng
nên
.
Cho hàm số
có bảng xét dấu đạo hàm như sau:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Xét hàm số ta có:
Đặt
Xét hàm số có
. Hàm số nghịch biến khi
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Gọi
là tập tất cả các số nguyên dương của tham số
để hàm số
đồng biến trên khoảng
. Tính tổng tất cả các phần tử của tập
?
Theo yêu cầu bài toán
Do đó
Vậy tổng tất cả các phần tử của tập bằng
.
Hàm số
nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Cho các hàm số sau:
. Có bao nhiêu hàm số có đúng một điểm cực trị?
Ta có:
có
và
đổi dấu khi
qua nghiệm đó nên hàm số có đúng 1 điểm cực trị.
có
và
đổi dấu khi
qua các nghiệm đó nên hàm số có 3 điểm cực trị.
; y’ không xác định khi
và y’ đổi dấu khi
qua
nên hàm số có hai điểm cực trị.
và y’ đổi dấu khi x qua các nghiệm đó nên hàm số có hai điểm cực trị.
Vậy chỉ có một hàm số có đúng một cực trị.