Cho hàm số
có đạo hàm
xác định và liên tục trên
. Hình vẽ sau đây là đồ thị của hàm số
:

Hàm số
nghịch biến trên khoảng:
Ta có:
Với ta có:
ta có bảng xét dấu của
như sau:
Suy ra hàm số nghịch biến trên khoảng
.
Cho hàm số
có đạo hàm
xác định và liên tục trên
. Hình vẽ sau đây là đồ thị của hàm số
:

Hàm số
nghịch biến trên khoảng:
Ta có:
Với ta có:
ta có bảng xét dấu của
như sau:
Suy ra hàm số nghịch biến trên khoảng
.
Cho hàm số
có đạo hàm trên
và có đồ thị như hình vẽ:

Xét hàm số
. Tìm
để
.
Cho hàm số có đạo hàm trên
và có đồ thị như hình vẽ:
Xét hàm số . Tìm
để
.
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Cho hàm số
. Hãy chọn khẳng định đúng?
Tập xác định
Ta có: nên hàm số đồng biến trên các khoảng
và
.
Cho hàm số
với
là tham số. Khi giá trị của
biến thiên thì số điểm cực trị của hàm số có thể là
hoặc
hoặc
. Tính giá trị biểu thức
?
Đặt
Ta có bảng biến thiên của như sau:
TH1:
Hàm số có 3 điểm cực trị suy ra
TH2:
Hàm số có 3 điểm cực trị suy ra
TH3:
Hàm số có 3 điểm cực trị suy ra
Vậy
Có bao nhiêu giá trị tham số
để hàm số
có điểm cực đại là
?
Tập xác định
Ta có: . Để hàm số đạt cực đại tại
thì
Lúc này nên hàm số đạt cực đại tại
Vậy có hai giá trị của tham số m thỏa mãn yêu cầu bài toán.
Gọi
lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Đồ thị hàm số không có tiệm cận ngang.
ta có
là tiệm cận đứng.
ta có:
là tiệm cận đứng.
Vậy .
Cho hàm số | ![]() |
Từ đồ thị hàm số ta có nhận xét như sau:
Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)
=>
Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)
=>
Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)
=> y(0) = -1 =>
=>
Cho hàm số
có đồ thị là
. Số điểm thuộc
có hoành độ và tung độ đều là các số nguyên là
Ta có:
Gọi
Vậy có 4 điểm thỏa mãn yêu cầu.
Cho hàm số
có đồ thị như hình vẽ như sau:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng
. Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng
. Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng
. Đúng||Sai
d) Hàm số đạt cực tiểu tại
.Sai|| Đúng
Cho hàm số có đồ thị như hình vẽ như sau:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng . Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng . Đúng||Sai
d) Hàm số đạt cực tiểu tại .Sai|| Đúng
Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:
a) Hàm số nghịch biến trên khoảng .
b) Hàm số đồng biến trên khoảng nên khẳng định đồng biến trên khoảng
là sai.
c) Hàm số đồng biến trên khoảng nên nên hàm số đồng biến trên khoảng
.
d) Hàm số đạt cực tiểu tại (chú ý:
gọi là giá trị cực tiểu).
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
bằng:
Tập xác định
Đồ thị hàm số không có tiệm cận đứng.
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số.
Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho bằng 1.
Hàm số
có bao nhiêu điểm cực trị?
Ta có:
Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.
Cho hàm số
. Tọa độ điểm cực tiểu của đồ thị hàm số là:
Ta có:
Vậy điểm cực tiểu của đồ thị hàm số là (1; 0)
Cho hàm số
. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Khi đó
bằng:
Ta có:
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Số các giá trị nguyên của tham số
để hàm số
có giá trị nhỏ nhất trên đoạn
thuộc khoảng
là:
Xét hàm số trên
ta có:
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.
Cho hàm số
xác định và liên tục trên
và có bảng biến thiên như hình vẽ:

Tìm giá trị của tham số thực
để phương trình
có ít nhất hai nghiệm thực phân biệt?
Phương trình có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng
cắt đồ thị hàm số
tại ít nhất hai điểm phân biệt
Cho hàm số
(với
là tham số thực) thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
TH1: loại
TH2: khi đó
Suy ra đáp án cần tìm là .
Cho hình vẽ:

Đường trong trong hình vẽ là đồ thị của hàm số nào?
Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho hai số thực
thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.