Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số y =
f(3 - 2x) có bảng xét dấu đạo hàm như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

    Xét hàm số y = f(3 - 2x) ta có: y' = - 2f'(3 - 2x)

    y' = 0 \Leftrightarrow - 2f'(3 -
2x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
3 - 2x = 5 \\
3 - 2x = 3 \\
3 - 2x = 1 \\
\end{matrix} ight.

    \Rightarrow y' > 0
\Leftrightarrow - 2.f'(3 - 2x) > 0

    \Leftrightarrow f'(3 - 2x) < 0
\Leftrightarrow \left\lbrack \begin{matrix}
- 1 < x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
3 < 3 - 2x < 5 \\
3 - 2x < 1 \\
\end{matrix} ight.

    Đặt 3 - 2x = t \Rightarrow f'(t) <
0 \Leftrightarrow \left\lbrack \begin{matrix}
3 < t < 5 \\
t < 1 \\
\end{matrix} ight.

    Xét hàm số y = f(x)y' = f'(x). Hàm số nghịch biến khi y' < 0 \Leftrightarrow f'(x)
< 0 \Leftrightarrow \left\lbrack \begin{matrix}
3 < x < 5 \\
x < 1 \\
\end{matrix} ight.

    Vậy hàm số y = f(x) nghịch biến trên khoảng (3;5).

  • Câu 2: Nhận biết

    Tiệm cận đứng của đồ thị hàm số y =
\frac{2x + 3}{x - 1} là đường thẳng có phương trình

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{2x + 3}{x - 1} = + \infty \Rightarrow x =
1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 1^{-}}y = \lim_{xightarrow 1^{-}}\frac{2x + 3}{x - 1} = - \infty \Rightarrow x =1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 3: Nhận biết

    Xác định hàm số nghịch biến trên \mathbb{R}?

    Xét hàm số y = - x^{3} + x^{2} -
x ta có:

    y' = - 3x^{2} + 2x - 1 = - 3\left( x
- \frac{1}{3} ight)^{2} - \frac{2}{3} < 0;\forall x\mathbb{\in
R}

    Nên hàm số y = - x^{3} + x^{2} -
x nghịch biến trên \mathbb{R}.

  • Câu 4: Nhận biết

    Các dân tộc ít người phân bố chủ yếu ở khu vực nào của Trung Quốc?

  • Câu 5: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Giá trị cực tiểu của hàm số đã cho bằng:

    Dựa vào đồ thị của hàm số ta thấy giá trị cực tiểu của hàm số bằng -2.

  • Câu 6: Thông hiểu

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +cx + d;(a eq 0) có đồ thị như sau:

    Hàm số y = \left| f(x) ight| có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +cx + d;(a eq 0) có đồ thị như sau:

    Hàm số y = \left| f(x) ight| có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu

    Cho hàm số y = \frac{3x - 2}{x} có đồ thị (C). Có tất cả bao nhiêu đường thẳng cắt (C) tại hai điểm phân biệt mà hoành độ và tung độ của giao điểm này đều là các số nguyên?

    Ta có:y = 3 - \frac{2}{x}. Vì M \in (C) có tọa độ nguyên khi x \in U(2) \Rightarrow x \in \left\{ - 2; -
1;1;2 ight\}

    Các điểm thuộc (C) có tọa độ nguyên thuộc tập B = \left\{ ( -
1;5),(1;1),(2;2),( - 2;4) ight\}

    Mỗi cặp hai điểm thuộc tập B xác định một đường thẳng cắt (C) tại hai điểm có tọa độ nguyên do đó số đường thẳng cần tìm là C_{4}^{2} =
6 (đường thẳng)

  • Câu 8: Vận dụng

    Cho hàm số y = f(x) = x^{4} - 2(m +
1)x^{2} + m^{2} - 8 (với mlà tham số) có đồ thị (C). Giả sử các điểm A;B;C là các điểm cực trị của (C). Để tam giác ABC đều thì giá trị của tham số m nằm trong khoảng nào sau đây?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
1)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 1)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 1 \\
\end{matrix} ight.

    Hàm số có ba điểm cực trị khi và chỉ khi phương trình y' = 0 có ba nghiệm phân biệt hay x^{2} = m + 1 có hai nghiệm khác 0

    \Leftrightarrow m + 1 > 0
\Leftrightarrow m > - 1

    Khi đó y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{m + 1} \\
x = - \sqrt{m + 1} \\
\end{matrix} ight.

    Đồ thị (C) có ba điểm cực trị là A\left( 0;m^{2} + 8 ight);B\left( \sqrt{m + 1}; - (m + 1)^{2} + m^{2} + 8
ight);C\left( - \sqrt{m + 1}; -
(m + 1)^{2} + m^{2} + 8 ight).

    Ta có: AB = AC = \sqrt{m + 1 + (m +
1)^{4}}

    Do đó tam giác ABC đều \Leftrightarrow AB = BC

    \Leftrightarrow \sqrt{m + 1 + (m +
1)^{4}} = \sqrt{4(m + 1)}

    \Leftrightarrow m + 1 + (m + 1)^{4} =
4(m + 1)

    \Leftrightarrow (m + 1)^{4} - 3(m + 1) =
0

    \Leftrightarrow (m + 1)\left\lbrack (m +
1)^{3} - 3 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m + 1 = 0 \\
(m + 1)^{3} - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = - 1 + \sqrt[3]{3} \\
\end{matrix} ight.

    Kết hợp với điều kiện m > - 1
\Rightarrow m = - 1 + \sqrt[3]{3}.

    Vậy đáp án cần tìm là m \in \left(
\frac{1}{4};\frac{1}{2} ight).

  • Câu 9: Thông hiểu

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Thông hiểu

    Cho hàm số y = \frac{\sqrt{4 -
x}}{\sqrt{x + 1}}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Tập xác định D = ( - 1;4brack suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị nhận đường thẳng x = - 1 làm tiệm cận đứng.

    Vậy đồ thị hàm số có một đường tiệm cận.

  • Câu 11: Thông hiểu

    Cho hàm số f(x) = ax^{3} + bx^{2} + cx +
d;(a eq 0) có đồ thị như hình vẽ:

    Tập hợp các giá trị của tham số m để phương trình f(x + m) = m có đúng ba nghiệm phân biệt là:

    Đồ thị hàm số f(x + m) = m có được bằng cách tịnh tiến đồ thị hàm số y =
f(x) sang trái hoặc sang phải theo phương song song với trục hoành |m| đơn vị.

    Suy ra phương trình f(x + m) = m có đúng ba nghiệm phân biệt khi và chỉ khi m
\in ( - 2;2).

  • Câu 12: Thông hiểu

    Gọi m,n lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = |x|
+ 2 trên \lbrack - 2; -
1brack. Tính giá trị biểu thức C
= m + n?

    Vì trên đoạn \lbrack - 2; -
1brack thì 0 \leq |x| \leq 2
\Leftrightarrow 2 \leq |x| + 2 \leq 4 \Rightarrow \left\{ \begin{matrix}
m = 4 \\
n = 2 \\
\end{matrix} ight.\  \Rightarrow C = 6

  • Câu 13: Thông hiểu

    Cho hàm số y = \frac{x + m}{x^{2} +
1}. Biết \min_{\mathbb{R}}y = -
2. Mệnh đề nào dưới đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: \min_{\mathbb{R}}y = - 2\Leftrightarrow \left\{ \begin{matrix}\forall x\mathbb{\in R}:\dfrac{x + m}{x^{2} + 1} \geq - 2(*) \\\exists x_{0}:\dfrac{x_{0} + m}{{x_{0}}^{2} + 1} = - 2(**) \\\end{matrix} ight.

    Từ (*) \Leftrightarrow \frac{x + m}{x^{2}
+ 1} \geq - 2 \Leftrightarrow 2x^{2} + x + m + 2 \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow 1 - 4.2.(m + 2) \leq 0
\Leftrightarrow m \geq \frac{- 15}{8}

    Từ (**) suy ra m = \frac{- 15}{8} \in ( -
2;0).

    Vậy - 2 < m < 0 là đáp án cần tìm.

  • Câu 14: Vận dụng

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Vận dụng

    Tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x - 1}{x^{2} - 3x + m} có đúng hai đường tiệm cận?

    Ta có: \lim_{x ightarrow +
\infty}\frac{x - 1}{x^{2} - 3x + m} = \lim_{x ightarrow -
\infty}\frac{x - 1}{x^{2} - 3x + m} = 0

    Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang y = 0. Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.

    Tam thức h(x) = x^{2} - 3x + m\Delta = 9 - 4m

    Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:

    \left[ \begin{gathered}
  \Delta  = 9 - 4m = 0 \hfill \\
  \left\{ \begin{gathered}
  \Delta  = 9 - 4m > 0 \hfill \\
  h\left( 1 ight) = 0 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  \left\{ \begin{gathered}
  m < \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy m \in \left\{ 2;\frac{9}{4}
ight\}.

  • Câu 16: Nhận biết

    Đồ thị sau đây là của hàm số nào?

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 17: Nhận biết

    Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3

  • Câu 18: Thông hiểu

    Cho hàm số y = - x^{3} - mx^{2} + (4m +
9)x + 5. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho đồng biến trên \mathbb{R}?

    Ta có: y' = - 3x^{2} - 2mx + 4m +
9

    Hàm số đã cho nghịch biến trên \mathbb{R} khi và chỉ khi \left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
m^{2} + 3(4m + 9) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow m^{2} + 12m + 27 \leq 0
\Leftrightarrow m \in \lbrack - 9; - 3brack

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 9; - 8;...; - 3 ight\}

    Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 19: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số m \in ( - 2021;2021) để hàm số y = \left| x^{4} - 4x^{2} + m + 2020ight| có 7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có tất cả bao nhiêu giá trị nguyên của tham số m \in ( - 2021;2021) để hàm số y = \left| x^{4} - 4x^{2} + m + 2020ight| có 7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng cao

    Cho x, y là các số thực dương thỏa mãn điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - xy + 3 = 0} \\   {2x + 3y - 14 \leqslant 0} \end{array}} ight.. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức P = 3{x^2}y - x{y^2} - 2{x^3} + 2x bằng:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {x > 0,y > 0} \\   {{x^2} - xy + 3 = 0} \end{array}} ight. \Rightarrow y = \frac{{{x^2} + 3}}{x} = x + \frac{3}{x}

    Lại có: 2x + 3y - 14 \leqslant 0

    \begin{matrix}   \Leftrightarrow 2x + 3\left( {x + \dfrac{3}{x} - 14} ight) \leqslant 0 \hfill \\   \Leftrightarrow 5{x^2} - 14x + 9 \leqslant 0 \Leftrightarrow x \in \left[ {1;\dfrac{9}{5}} ight] \hfill \\ \end{matrix}

    Từ đó P = 3{x^2}\left( {x + \frac{3}{x}} ight) - x\left( {x + \frac{3}{x}} ight) - 2{x^3} + 2x = 5x - \frac{9}{x}

    Xét hàm số f\left( x ight) = 5x - \frac{9}{x};\forall x \in \left[ {1;\frac{9}{5}} ight]

    f'\left( x ight) = 5 + \frac{9}{{{x^2}}} > 0;\forall x \in \left[ {1;\frac{9}{5}} ight]

    => Hàm số đồng biến trên \left[ {1;\frac{9}{5}} ight]

    => f\left( 1 ight) \leqslant f\left( x ight) \leqslant f\left( {\frac{9}{5}} ight) \Rightarrow  - 4 \leqslant f\left( x ight) \leqslant 4

    => \max P + \min P = 4 + \left( { - 4} ight) = 0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo