Cho hàm số f(x) có bảng xét dấu đạo hàm f’(x) như sau:

Hàm số f(x) có bao nhiêu điểm cực đại?
Dựa vào bảng xét dấu đạo hàm f’(x) ta thấy đạo hàm f’(x) đổi dấu từ dương sang âm 2 lần nên f(x) có 2 điểm cực đại.
Cho hàm số f(x) có bảng xét dấu đạo hàm f’(x) như sau:

Hàm số f(x) có bao nhiêu điểm cực đại?
Dựa vào bảng xét dấu đạo hàm f’(x) ta thấy đạo hàm f’(x) đổi dấu từ dương sang âm 2 lần nên f(x) có 2 điểm cực đại.
Đường tiệm cận ngang của đồ thị hàm số
có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Tìm tập hợp các giá trị thực của m để đồ thị hàm số
có tiệm cận đứng là:
Điều kiện để đồ thị hàm số có tiệm cận là
Độ giảm huyết áp của một bệnh nhân
trong đó
là số miligam thuộc được tiêm cho bệnh nhân
. Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là .
Cho hàm số
với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Hàm số
đồng biến trên khoảng nào dưới dây?
Tập xác định
Ta có:
Ta có bảng xét dấu
Vậy hàm số đồng biến trên khoảng
Giá trị lớn nhất của hàm số
trên đoạn
bằng:
Ta có:
Khi đó:
Cho hàm số
có đạo hàm
. Mệnh đề nào sau đây đúng?
Xét ta có bảng xét dấu
như sau:
Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng , hàm số đồng biến trên khoảng
.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên khi
Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu bài toán.
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là
. Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là . Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Cho hàm số
xác định trên
và có bảng biến thiên như sau:

Số giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt là:
Phương trình là phương trình hoành độ giao điểm của hai đồ thị
và đường thẳng
Để phương trình có ba nghiệm phân biệt khi và chỉ khi
có ba giao điểm
Mà
Vậy có 2 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.
Biết đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi có
thuộc khoảng nào sau đây?
Phương trình hoành độ giao điểm là
Xét hàm số
Đồ thị có điểm uốn là
Để đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
là:
Điều kiện xác định của hàm số
Tập xác định
suy ra đồ thị hàm số có tiệm cận ngang là
.
suy ra
là tiệm cận đứng của đồ thị hàm số
suy ra
không là tiệm cận đứng.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hám số là .
Xác định giá trị của a để hàm số
nghịch biến trên trục số.
Ta có:
Hàm số nghịch biến trên
Cho hàm số
. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)
Ta có:
Hàm số đã cho nghịch biến trên khoảng (0; +∞)
=>
=>
=>
Xét ta có:
Ta lại có:
Cho hàm số
với
là tham số. Tìm điều kiện của tham số
để hàm số
có
cực trị?
Nhận thấy rằng nếu là điểm cực trị dương của hàm số
thì
là điểm cực trị của hàm số
Lại thấy vì đồ thị hàm số nhận trục tung làm trục đối xứng mà
là hàm đa thức bậc ba nên
luôn là một điểm cực trị của hàm số
.
Khi đó để hàm số có 5 điểm cực trị thì hàm số
có hai cực trị dương phân biệt.
Suy ra phương trình có hai nghiệm dương phân biệt:
Vậy đáp án cần tìm là .
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực đại của hàm số đã cho bằng:
Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay vào
ta được:
Vậy thuộc đồ thị hàm số
.
Giá trị của tham số m để bất phương trình
có nghiệm là:
Đặt
Khi đó bất phương trình ban đầu trở thành:
Xét hàm số trên
Ta có:
Bảng biến thiên của
Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì .
Có bao nhiêu số thực dương
để giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số trên đoạn
bằng
thì
.
Khi đó
Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.