Cho hàm số
. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Cho hàm số
. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Cho hàm số
xác định trên
, liên tục trên các khoảng xác định và có bảng biến thiên như sau:

Tìm tập hợp các giá trị của tham số
để phương trình
có ba nghiệm phân biệt?
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số
và đường thẳng
Dựa vào bảng biến thiên ta suy ra để phương trình đã cho có ba nghiệm phân biệt thì .
Cho hàm số
xác định và liên tục trên khoảng
, có bảng biến thiên như hình sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy:
Hàm số nghịch biến trên khoảng
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ”.
Tìm giá trị của tham số
để hàm số
nghịch biến trên khoảng ![]()
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số
đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Cho hàm số
có bảng biến thiên như hình vẽ sau 

Hàm số
đồng biến trên khoảng nào dưới đây
Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng .
Biết rằng đồ thị hàm số
có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng
. Hỏi có bao nhiêu giá trị của tham số
thỏa mãn yêu cầu?
Biết rằng đồ thị hàm số có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng
. Hỏi có bao nhiêu giá trị của tham số
thỏa mãn yêu cầu?
Gia đình bác T muốn xây một bình chứa hình trụ có thể tích
. Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?
Gọi là bán kính đáy của bình chứa hình trụ
Khi đó tổng số tiền phải trả là
Đặt
Vậy để chi phí xây dựng là thấp nhất thì bán kính đáy bằng .
Cho hàm số
với m là tham số thực thỏa mãn
. Mệnh đề nào dưới đây là đúng?
Xét hàm số trên [1; 2] ta có:
Khi đó:
Cho hàm số
có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số
trên
bằng:

Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số trên
bằng
.
Cho hình vẽ:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số thỏa mãn.
Cho đồ thị hàm số như hình vẽ dưới đây:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1
=> Loại A và B
Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C
Cho hàm số
thỏa mãn
. Mệnh đề nào sau đây đúng?
Tập xác định
Hàm số đơn điệu trên đoạn nên
Vậy đáp án cần tìm là .
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là
. Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là . Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Cho hàm số
có bảng biến thiên như sau:

Có bao nhiêu khẳng định sai trong các khẳng định dưới đây?
(i) Đồ thị hàm số có ba đường tiệm cận.
(ii) Hàm số có cực tiểu tại
.
(iii) Hàm số nghịch biến trên mỗi khoảng
.
(iv) Hàm số xác định trên
.
Do nên đồ thị hàm số có hai đường tiệm cận ngang;
nên đồ thị hàm số có một tiệm cận đứng. Do đó đồ thị hàm số có ba đường tiệm cận nên (i) đúng.
Hàm số có cực tiểu tại đúng nên (ii) đúng.
Hàm số nghịch biến trên nên (iii) sai.
Hàm số không xác định tại nên (iv) sai.
Vậy có 2 khẳng định sai.
Cho hàm số y = f(x) có đạo hàm trên
là
. Hàm số đã cho có bao nhiêu điểm cực trị?
Tập xác định:
Ta có:
Ta có bảng xét dầu’(x) như sau:

Dựa vào bảng xét dấy của f’(x) ta thấy f’(x) đổi dấu qua hai điểm x = 2018, x = 2019 nên hàm số đã cho có hai điểm cực trị.
Cho hàm số
và đồ thị của hàm số
như hình vẽ sau:

Hàm số
có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Cho hàm số
có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Hàm số
có bảng biến thiên như sau:

Phương trình
có ba nghiệm thực phân biệt khi và chỉ khi:
Số nghiệm của phương trình bằng số giao điểm của hai đồ thị hàm số
.
Dựa vào bảng biến thiên ta có phương trình có ba nghiệm thực phân biệt khi và chỉ khi
.
Cho hàm số
có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Điều kiện xác định của hàm số là
Từ bảng biến thiên ta có:
Tập xác định
Ta có:
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận ngang
.
suy ra đồ thị hàm số có tiệm cận đứng
.
suy ra đồ thị hàm số có tiệm cận đứng
.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là
.