Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT

Mô tả thêm: Bài kiểm tra 15 phút Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    a) Sai

    Ta có f'(x) = (x - 1)^{2}\left( x^{2}
- 3x + 2 ight) = (x - 1)^{3}(x - 2).

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight..

    Vậy phương trình f'(x) = 0 có hai nghiệm.

    b) Đúng

    Bảng biến thiên y = f(x)

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số đồng biến trên các khoảng ( - \infty;1),(2; + \infty).

    Ta có ( - 3;0) \subset ( -
\infty;1) nên hàm số f(x) đồng biến trên khoảng ( - 3;0).

    c) Đúng

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số có hai điểm cực trị.

    d) Sai

    Ta có:

    y = f\left( x^{2} - 6x + 1
ight)

    \Rightarrow y^{'} = \left( x^{2} - 6x
+ 1 ight)^{'}f^{'\left( x^{2} - 6x + 1 ight)} = (2x -
6)f'\left( x^{2} - 6x + 1 ight).

    y' = 0 \Leftrightarrow (2x -
6)f'\left( x^{2} - 6x + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x - 6 = 0 \\
x^{2} - 6x + 1 = 1 \\
x^{2} - 6x + 1 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 0 \\
x = 6 \\
x = - 3 + \sqrt{10} \\
x = - 3 - \sqrt{10} \\
\end{matrix} ight..

    Bảng biến thiên y = f\left( x^{2} - 6x +
1 ight)

    Dựa vào bảng biến thiên của hàm số y =
f\left( x^{2} - 6x + 1 ight) ta thấy hàm số có hai điểm cực đại.

  • Câu 2: Thông hiểu

    Có bao nhiêu số thực dương m để giá trị lớn nhất của hàm số y = x^{3} - 3x +
1 trên đoạn \lbrack m + 1;m +
2brack bằng 53?

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số y = x^{3} - 3x + 1 trên đoạn \lbrack m + 1;m + 2brack bằng 53 thì m + 1
> 1 \Leftrightarrow m > 0.

    Khi đó \max_{\lbrack m + 1;m +
2brack}f(x) = f(m + 2) = (x + 2)^{3} - 3(m + 2) + 1 = 53

    \Leftrightarrow m^{3} + 6m^{2} + 9m - 50
= 0 \Leftrightarrow m = 2

    Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 3: Thông hiểu

    Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(x) = - x^{3} + 24x^{2} +
780x - 1000 trong đó x là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?

    Đáp án: 26

    Đáp án là:

    Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(x) = - x^{3} + 24x^{2} +
780x - 1000 trong đó x là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?

    Đáp án: 26

    Ta có P'(x) = - 3x^{2} + 48x + 780;\
\ P'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 10 \\
x = 26\ \ \  \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy để lợi nhuận lớn nhất thì xưởng cần sản xuất 26 tạ sản phẩm trong một tuần.

  • Câu 4: Nhận biết

    Đồ thị của hàm số y = \frac{x^{2} - 1}{3
- 2x - 5x^{2}} có bao nhiêu đường tiệm cận đứng?

    Ta có: 5x^{2} - 2x + 3 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{3}{5} \\\end{matrix} ight.

    Với x = - 1 thì x^{2} - 1 = 0 nên đồ thị hàm số có một tiệm cận đứng là x =
\frac{3}{5}.

  • Câu 5: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0 nên chọn y = - x^{4} + 2x^{2} +
1.

  • Câu 6: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 7: Thông hiểu

    Biết rằng đồ thị hàm số y =\frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + x - 2 có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng \sqrt{7}. Hỏi có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết rằng đồ thị hàm số y =\frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + x - 2 có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng \sqrt{7}. Hỏi có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Nhận biết

    Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

    Mệnh đề nào dưới đây đúng?

    Hàm số y = f(x)f'(x) đổi dấu từ + sang – khi f'(x) đi qua điểm x = 1

    Vậy hàm số y = f(x) đạt cực đại tại x = 1.

  • Câu 9: Vận dụng cao

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x) = \frac{x}{|x| - 1} là:

    Khi x \geq 0;x eq 1 \Rightarrow f(x) =
\frac{x}{x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = 1 và 1 tiệm cận đứng x = 1

    Khi x < 0;x eq - 1 \Rightarrow f(x)
= \frac{x}{- x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = - 1 và 1 tiệm cận đứng x = - 1

    Vậy đồ thị hàm số y = f(x) = \frac{x}{|x|
- 1} có tất cả 4 đường tiệm cận.

  • Câu 11: Thông hiểu

    Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

    Khẳng định nào dưới đây sai

    Khẳng định nào dưới đây sai?

    Quan sát đồ thị hàm số ta có:

    Đáp án A sai vì hàm số không nghịch biến trên \left( {4; + \infty } ight)

    Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2

    Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.

    Đáp án D đúng vì \mathop {\min y}\limits_{\left[ {0;2} ight]}  + \mathop {\max y}\limits_{\left[ {0;2} ight]}  =  - 2 + 2 = 0

  • Câu 12: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1;2
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Số đường tiệm cận của đồ thị hàm số y =
\frac{1}{f(x) - 1} bằng:

    Dựa vào bảng biến thiên ta thấy f(x) - 1
= 0 có 4 nghiệm phân biệt nên đồ thị hàm số y = \frac{1}{f(x) - 1} có 4 đường tiệm cận đứng.

    Ngoài ra \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f\left( x ight) - 1}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f\left( x ight) - 1}} =  - \frac{1}{2} \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số y = \frac{1}{f(x) - 1} có hai đường tiệm cận ngang.

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{1}{f(x) - 1} bằng 6.

  • Câu 13: Thông hiểu

    Cho hàm số y = x^{3} + mx^{2} +
m với m là tham số. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên khoảng (0;2) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Hàm số nghịch biến trên (0;2) khi và chỉ khi y' \leq 0;\forall x \in
(0;2)

    Xét hàm số y = - \frac{3}{2}x trên khoảng (0;2) ta có bảng biến thiên như sau:

    Vậy để hàm số nghịch biến trên (0;2) thì m
\leq - 3.

  • Câu 14: Thông hiểu

    Cho hàm số y = f(x) = \frac{x^{2} + 4x -
1}{x - 1} có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:

    a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai

    b) Hàm số y = f(x) đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai

    c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số y = f(x). Đúng||Sai

    d) Phương trình đường tiệm cận xiên của đồ thị hàm số y = f(x)y
= 2x + 5. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + 4x -
1}{x - 1} có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:

    a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai

    b) Hàm số y = f(x) đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai

    c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số y = f(x). Đúng||Sai

    d) Phương trình đường tiệm cận xiên của đồ thị hàm số y = f(x)y
= 2x + 5. Sai||Đúng

    Hàm số y = f(x) = \frac{x^{2} + 4x - 1}{x
- 1} có tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y' = \frac{x^{2} - 2x - 3}{(x
- 1)^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Bảng biến thiên

    a) Đúng: Hàm số đồng biến trên các khoảng (−∞; -1) và (3;+∞) và nghịch biến trên các khoảng (−1;1) và (1;3) .

    b) Đúng: Đồ thị hàm số đạt cực đại tại điểm (−1;2)

    c) Đúng: Xét \lim_{x ightarrow 1^{-}}y
= - \infty;\lim_{x ightarrow 1^{+}}y = + \infty nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số y = f(x) = \frac{x^{2} + 4x - 1}{x -
1}.

    d) Sai: Xét \lim_{x ightarrow
\infty}\left\lbrack y - (x + 5) ightbrack = \lim_{x ightarrow
\infty}\left\lbrack \frac{4}{x - 1} ightbrack = 0 nên đường thẳng y = x + 5 là tiệm cận xiên của đồ thị hàm số y = f(x) = \frac{x^{2} + 4x - 1}{x -
1}.

  • Câu 15: Nhận biết

    Hàm số f(x) =
\frac{2x + 3}{x - 1} nghịch biến trên khoảng nào?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    f'(x) = \frac{- 5}{(x - 1)^{2}} <
0;\forall x \in D suy ra hàm số nghịch biến trên ( - \infty;1)(1; + \infty).

  • Câu 16: Vận dụng

    Số giá trị nguyên của tham số m để hàm số y = 2{x^3} - 3m{x^2} + 6mx + 2 đồng biến trên \mathbb{R}?

    Ta có: y' = 6{x^2} - 6mx + 6m

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 6 > 0} \\   {\Delta ' = 9{m^2} - 36m \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.

  • Câu 17: Vận dụng cao

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y= \dfrac{2\cot x + 1}{\cot x + m} đồng biến trên khoảng \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Điều kiện xác định \cot x eq -
m

    Ta có: y' = \dfrac{-\dfrac{2}{\sin^{2}x}\left( \cot x + m ight) + \dfrac{1}{\sin^{2}}(2\cot x +1)}{\left( \cot x + m ight)^{2}}

    = \dfrac{1 - 2m}{\sin^{2}x.\left( \cot x +m ight)^{2}}

    Hàm số đồng biến trên khoảng \left(
\frac{\pi}{4};\frac{\pi}{2} ight) khi và chỉ khi

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 2m > 0 \\
\left\lbrack \begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in ( - \infty; - 1brack \cup
\left\lbrack 0;\frac{1}{2} ight)

    Vậy đáp án cần tìm là m \in ( - \infty; -
1brack \cup \left\lbrack 0;\frac{1}{2} ight).

  • Câu 19: Vận dụng

    Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200m^{2}. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200m^{2}. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Cho hàm số y = -
\frac{1}{3}x^{3} + \frac{1}{2}x^{2} + 6x - 1. Khẳng định nào sau đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: y' = - x^{2} + x + 6
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu

    Suy ra hàm số đồng biến trên khoảng ( -
2,3).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo