Trong không gian
, cho các điểm
. Tập hợp các điểm
thỏa mãn
là mặt cầu có bán kính là:
Giả sử
Ta có:
Theo bài ra ta có:
Vậy tập hợp điểm thỏa mãn
là mặt cầu có bán kính là
.
Trong không gian
, cho các điểm
. Tập hợp các điểm
thỏa mãn
là mặt cầu có bán kính là:
Giả sử
Ta có:
Theo bài ra ta có:
Vậy tập hợp điểm thỏa mãn
là mặt cầu có bán kính là
.
Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

Hình vẽ kết hợp với giả thiết, ta có
Suy ra và
Thể tích khối nón (đvtt).
Thể tích khối cầu (đvtt).
Suy ra
Cho hai mặt cầu sau:
![]()
![]()
Xét vị trí tương đối của 2 mặt cầu?
Tiếp xúc trong || tiếp xúc trong
Cho hai mặt cầu sau:
Xét vị trí tương đối của 2 mặt cầu?
Tiếp xúc trong || tiếp xúc trong
Theo đề bài, ta suy ra các hệ số, tâm và bán kính của (S):
Tâm
bán kính
Tâm
; bán kính
(S) và (S') tiếp xúc trong.
Điều kiện để
là một mặt cầu là:
Theo đề bài, ta có:
có dạng:
Như vậy, (S) là mặt cầu
Cho khối trụ có hai đáy là
và
.
lần lượt là hai đường kính của
và
, góc giữa
và
bằng
. Thể tích khối tứ diện ABCD bằng 30 . Thể tích khối trụ đã cho bằng?

Ta chứng minh: .

Lấy điểm E sao cho tứ giác BCDE là hình bình hành.
Khi đó .
Mà góc giữa và
bằng
nên ta có:
Ta có
Suy ra
Vậy
Chiều cao của lăng trụ bằng
Áp dụng CT thể tích lăng trụ là:
Trong không gian
, cho mặt cầu
và các điểm
. Điểm
thuộc mặt cầu
. Thể tích lớn nhất của tứ diện
bằng:
Mặt cầu có tâm là
và bán kính
.
Khi lớn nhất thì
Ta có: suy ra:
.
Xét các mệnh đề:
(I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng
cố định một khoảng không đổi là một mặt trụ.
(II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.
Trong các mệnh đề trên, mệnh đề nào đúng?
Ta xét về khái niệm Mặt trụ suy ra (I) đúng.
Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).
Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.
Vì vậy Mệnh đề (II) cũng đúng.
Cho hình chóp
có đáy
là hình vuông cạnh bằng a. Đường thẳng
vuông góc với đáy
. Gọi M là trung điểm SC, mặt phẳng
đi qua hai điểm A và M đồng thời song song với BD cắt SB, SD lần lượt tại E và F. Bán kính mặt cầu đi qua năm điểm
nhận giá trị nào sau đây?

Mặt phẳng song song với BD cắt SB, SD lần lượt tại E, F nên
cân tại A , trung tuyến AM nên
(1)
Ta có
Do đó (2)
Từ (1) và (2), suy ra (*)
Lại có (**)
Từ (*) và (**), suy ra . Tương tự ta cũng có
Do đó nên năm điểm
cùng thuộc mặt cầu tâm I là trung điểm của SA, bán kính
.
Trong không gian, cho tam giác ABC vuông tại A, AB =a và
. Độ dài đường sinh
của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là và chiều cao hình nón là
.
Vậy độ dài đường sinh của hình nón là:
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao
và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn
, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

Gọi (O) và (O') lần lượt là hai đường tròn đáy; .
Dựng AD, CB lần lượt song song với OO' . Dễ dàng có ABCD là hình chữ nhật.
Do .
Gọi H là trung điểm của DC.
.
Ta có .
Suy ra .
Vậy thể tích của khối trụ là .
Trong không gian
, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính
?
Phương trình mặt cầu có bán kính
Xét phương trình mặt cầu ta có:
Trong không gian với hệ tọa độ
, cho mặt phẳng
và mặt cầu
. Tìm tất cả các giá trị của m để
tiếp xúc với mặt cầu
?
Ta có mặt cầu có tâm I(1; −1; 1) và bán kính R = 3.
Mặt phẳng tiếp xúc với
khi và chỉ khi:
.
Trong không gian
, cho điểm A(0; 1; 2), mặt phẳng
và mặt cầu
. Gọi
là mặt phẳng đi qua
, vuông góc với
và đồng thời
cắt mặt cầu
theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm
của
và trục
là
Gọi (C) là giao tuyến của mặt phẳng và mặt cầu (S) và (C) có tâm H, bán kính r.
Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi lớn nhất.
Vì nên gọi M(m; 0; 0).
Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).
Khi đó
Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:
hay
Ta có:
lớn nhất khi và chỉ khi
đạt giá trị nhỏ nhất
Mà
Do đó nhỏ nhất khi và chỉ khi
Vậy .