Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Diện tích hình tròn lớn của một hình cầu là p. Một mặt phẳng (\alpha) cắt hình cầu theo một hình tròn có diện tích là \frac{p}{2}. Khoảng cách từ tâm mặt cầu đến mặt phẳng (\alpha)  bằng: 

    Hình tròn lớn của hình cầu S là hình tròn tạo bởi mặt phẳng cắt hình cầu và đi qua tâm của hình cầu.

    Gọi R là bán kính hình cầu thì hình tròn lớn cũng có bán kính là R.

    Theo giả thiết, ta có \pi {R^2} = p \Leftrightarrow R = \sqrt {\frac{p}{\pi }}\pi {r^2} = \frac{p}{2} \Leftrightarrow r = \sqrt {\frac{p}{{2\pi }}}

    Suy ra d = \sqrt {{R^2} - {r^2}}  = \sqrt {\frac{p}{{2\pi }}}.

  • Câu 2: Vận dụng

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Đáp án là:

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt (Oxz),(Oyz), và nền là (Oxy)

    Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với 3 mặt phẳng toạ độ và chứa điểm M(17\ ;\ 18\ ;\ 21).

    Ta có thể gọi phương trình mặt cầu là (S):(x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}, với a,b,c,R >
0

    Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên a = b = c = R

    \Rightarrow (S):(x - a)^{2} + (y -
a)^{2} + (z - a)^{2} = a^{2}

    Do M(17\ ;\ 18\ ;\ 21) \in (S) nên (17 - a)^{2} + (18 - a)^{2} + (21 -
a)^{2} = a^{2}.

    \Rightarrow 2a^{2} - 112a + 1054 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 28 - \sqrt{257} \\
a = 28 + \sqrt{257} \\
\end{matrix} ight.

    Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên a = 28 - \sqrt{257} thỏa.

    Vậy đường kính quả bóng bằng 2a = 56 -
2\sqrt{257} \approx 23,9\ (cm).

  • Câu 3: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + z^{2} =
4. Một mặt cầu (S') có tâm I'(9;1;6) và tiếp xúc ngoài với mặt cầu (S). Kết luận nào sau đây đúng về phương trình mặt cầu (S')?

    Ta có tâm và bán kính mặt cầu (S) lần lượt là I(1;1;0);R = 2.

    Suy ra II' = 10

    Gọi R' là bán kính mặt cầu (S'). Theo giả thiết ta có:

    R + R' = II' \Leftrightarrow
R' = II' - R = 8

    Khi đó phương trình mặt cầu cần tìm là: (S'):(x - 9)^{2} + (y - 1)^{2} + (z - 6)^{2} =
64.

  • Câu 5: Nhận biết

    Trong không gian Oxyz, cho mặt cầu (S):(x + 3)^{2} + (y + 1)^{2} + (z -
1)^{2} = 2 có tọa độ tâm I là:

    Tâm của (S) có tọa độ là I( - 3; - 1;1).

  • Câu 6: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 7: Vận dụng

    Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:

     Tính thể tích khối trụ

    Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.

    Ta có BH \bot \left( {AOO'A'} ight) nên {V_{OO'AB}} = \frac{1}{3}{S_{\Delta AOO'}}.BH.

    Trong tam giác vuông A'AB có A'B = \sqrt {A{B^2} - AA{'^2}}  = \sqrt 3 a.

    Trong tam giác vuông A'BD có BD = \sqrt {A'{D^2} - A'{B^2}}  = a.

    Do đó suy ra tam giác BO'D nên BH = \frac{{\sqrt 3 a}}{2}.

    Vậy  {V_{OO'AB}} = \frac{1}{3}.\left( {\frac{1}{2}{a^2}} ight).\frac{{a\sqrt 3 }}{2} = \frac{{\sqrt 3 {a^3}}}{{12}} (đvtt).

  • Câu 8: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60^0 . Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:

    Thể tích của khối cầu ngoại tiếp

    Gọi O = AC \cap BD, suy ra SO \bot \left( {ABCD} ight).

    Ta có {60^0}{m{ = }}\widehat {SB,\left( {ABCD} ight)} = \widehat {SB,OB} = \widehat {SBO}.

    Trong \triangle SOB, ta có SO = OB.\tan \widehat {SBO} = \frac{{a\sqrt 6 }}{2}.

    Ta có SO là trục của hình vuông ABCD.

    Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.

    Gọi I = SO \cap d \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in d\end{array} ight. \Rightarrow \left\{ \begin{array}{l}IA = IB = IC = ID\\IS = IB\end{array} ight.

    \Rightarrow IA = IB = IC = ID = IS = R

    Xét \triangle SBD\left\{ \begin{array}{l}SB = SD\\\widehat {SBD} = \widehat {SBO} = {60^o}\end{array} ight. \Rightarrow    \triangle SBD đều.

    Do đó d cũng là đường trung tuyến của \triangle SBD . Suy ra I là trọng tâm \triangle SBD .

    Bán kính mặt cầu R = SI = \frac{2}{3}SO = \frac{{a\sqrt 6 }}{3}.

    Suy ra V = \frac{4}{3}\pi {R^3} = \frac{{8\pi {a^3}\sqrt 6 }}{{27}}

  • Câu 9: Vận dụng cao

    Trong các hình trụ có diện tích toàn phần bằng 1000{\mathrm{\ }cm}^2 thì hình trụ có thể tích lớn nhất là bao nhiêu {m cm}^3

    Ta có S_{tp}=2\pi Rh+2\pi R^2\Rightarrow Rh+R^2=\frac{S}{2\pi}

    Vậy thể tích khối trụ V=\pi R^2h=\pi R\left(\frac{S}{2\pi}-R^2ight)=\frac{S}{2}R-\pi R^3=F(R)

    Ta có: F^\prime(R)=\frac{S}{2}-3\pi R^2=0\Leftrightarrow R=\sqrt{\frac{S}{6\pi}}

    Bảng biến thiên

    Thể tích lớn nhất

    Từ bảng biến thiên ta có

    V_{max}=\frac{S}{2}R-\pi R^3=\frac{1000}{2}\sqrt{\frac{1000}{6\pi}}-\pi{\sqrt{\frac{1000}{6\pi}}}^3\approx2428.

  • Câu 10: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y + z - m^{2} - 3m = 0 và mặt cầu (S):(x - 1)^{2} + (y + 1)^{2} + (z -
1)^{2} = 9. Tìm tất cả các giá trị của m để (P) tiếp xúc với mặt cầu (S)?

    Ta có mặt cầu (S) có tâm I(1; −1; 1) và bán kính R = 3.

    Mặt phẳng (P) tiếp xúc với (S) khi và chỉ khi:

    d\left\lbrack I;(P) ightbrack = R
\Leftrightarrow \frac{\left| 1 - m^{2} - 3m ight|}{3} = 3

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} + 3m - 10 = 0 \\
m^{2} + 3m + 8 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2 \\
m = - 5 \\
\end{matrix} ight..

  • Câu 12: Thông hiểu

    Trong không gian Oxyz, cho tứ diện đều ABCDA(0;1;2) và hình chiếu vuông góc của A trên mặt phẳng (BCD)H(4;
- 3; - 2). Tìm tọa độ tâm I của mặt cầu ngoại tiếp tứ diện ABCD?

    Gọi I(a;b;c) \Rightarrow \left\{
\begin{matrix}
\overrightarrow{IA} = ( - a;1 - b;2 - c) \\
\overrightarrow{IH} = (4 - a; - 3 - b; - 2 - c) \\
\end{matrix} ight.

    ABCD là tứ diện đều nên tâm I của mặt cầu ngoại tiếp trùng với trọng tâm tứ diện

    \Rightarrow \overrightarrow{IA} = -
3\overrightarrow{IH} \Leftrightarrow \left\{ \begin{matrix}
- a = - 3(4 - a) \\
1 - b = - 3(3 - b) \\
2 - c = - 3( - 2 - c) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow I(3; - 2; - 1)

  • Câu 13: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} =1,\left( S_{2} ight):x^{2} + (y -4)^{2} + z^{2} = 4 và các điểm A(4;0;0),B\left( \frac{1}{4};0;0ight),C(1;4;0),D(4;4;0). Gọi M là điểm thay đổi trên \left( S_{1} ight),N là điểm thay đổi trên \left( S_{2} ight). Giá trị nhỏ nhất của biểu thức Q = MA + 2ND + 4MN +6BC là:

    Hình vẽ minh họa

    Mặt cầu \left( S_{1} ight) có tâm O(0;0;0) bán kính bằng 1; mặt cầu \left( S_{2} ight) có tâm I(0;4;0) bán kính bằng 2 .
    Ta có 4 diểm O,A,D,I là 4 dỉnh của hình vuông cạnh bằng 4 và OB =\frac{1}{4},IC = 1.
    Ta có \bigtriangleup OMA \backsim\bigtriangleup OBM (c.g.c) \Rightarrow \frac{MA}{BM} = \frac{OM}{OB}\Rightarrow MA = 4MB.
    Ta có \bigtriangleup IND \backsim\bigtriangleup ICN (c.g.c) \Rightarrow \frac{ND}{CN} = \frac{IN}{IC} = 2\Rightarrow ND = 2NC.

    Q = 4MB + 4NC + 4MN + 6BC

    = 4(BM + MN + NC) + 6BC

    \  \geq 4BC + 6BC = 10BC = 10 \cdot\frac{\sqrt{265}}{4} = \frac{5\sqrt{265}}{2}

    Vậy Q nhỏ nhất là bằng \frac{5\sqrt{265}}{2}, dấu " = " xảy ra khi M,N là giao điểm của BC với các mặt cầu.

  • Câu 14: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 15: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo