Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 2: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) qua bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). Phương trình mặt cầu (S) là:

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình

    \left\{ \begin{matrix}18 - 6a - 6b + d = 0 \\18 - 6a - 6c + d = 0 \\18 - 6b - 6c + d = 0 \\27 - 6a - 6b - 6c + d = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = \dfrac{3}{2} \\c = \dfrac{3}{2} \\d = 0 \\\end{matrix} ight.. Suy ra tâm mặt cầu I\left( \frac{3}{2};\frac{3}{2};\frac{3}{2}
ight) và bán kính R = \sqrt{a^{2}
+ b^{2} + c^{2} - d} = \frac{3\sqrt{3}}{2}

    Vậy phương trình mặt cầu cần tìm là: \left( x - \frac{3}{2} ight)^{2} + \left( y -
\frac{3}{2} ight)^{2} + \left( z - \frac{3}{2} ight)^{2} =
\frac{27}{4}

  • Câu 3: Thông hiểu

    Cho hình lập phương OABC.DEFG có cạnh bằng 1 có \overrightarrow {OA} ,\,\,\overrightarrow {OC} ,\,\,\overrightarrow {OG} trùng với ba trục \overrightarrow {Ox} ,{m{ }}\overrightarrow {Oy} ,{m{ }}\overrightarrow {Oz}. Viết phương trình mặt cầu \left( {{S_3}} ight) tiếp xúc với tất cả các cạnh của hình lập phương.

     \left( {{S_2}} ight) tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.

    Tâm I\left( {\frac{1}{2},\frac{1}{2},\frac{1}{2}} ight) là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng \sqrt 2

    Bán kính {R_3} = \frac{{\sqrt 2 }}{2}

    \begin{array}{l} \Rightarrow \left( {{S_2}} ight):{\left( {x - \dfrac{1}{2}} ight)^2} + {\left( {y - \dfrac{1}{2}} ight)^2} + {\left( {z - \dfrac{1}{2}} ight)^2} = \dfrac{1}{2}\\ \Rightarrow \left( {{S_3}} ight):{x^2} + {y^2} + {z^2} - x - y - z + \dfrac{1}{4} = 0\end{array}

  • Câu 4: Vận dụng

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu (S') chứa (C) và điểm M(1,-2,1)

     Phương trình của \left( {S'} ight):\left( S ight) + m\left( P ight) = 0,\,\,m e 0

    \left( {S'} ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 + m\left( {3x + 2y + 6z + 1} ight) = 0

    (S') qua M\left( {1, - 2,1} ight) \Rightarrow 6m + 18 = 0 \Leftrightarrow m =  - 3

    \Rightarrow \left( {S'} ight):{x^2} + {y^2} + {z^2} - 5x - 8y - 12z - 5 = 0

  • Câu 5: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 6: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, giá trị dương của tham số m sao cho mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1 là:

    Ta có: (Oxy) có phương trình z = 0

    Mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2}
= m^{2} + 1 có tâm I(3;0;2) và bán kính R = \sqrt{m^{2} + 1}

    Để mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} =
m^{2} + 1 thì

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2|}{\sqrt{1}} = \sqrt{m^{2} + 1}

    \Leftrightarrow m^{2} + 1 = 4
\Leftrightarrow m = \pm \sqrt{3}. Vì m nhận giá trị dương nên m = \sqrt{3}.

    Vậy m = \sqrt{3} thỏa yêu cầu đề bài.

  • Câu 7: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O'), bán kính bằng a. Một hình nón có đỉnh là O' và có đáy là hình tròn (O). Biết góc giữa đường sinh của hình nón với mặt đáy bằng 60^0, tỉ số diện tích xung quanh của hình trụ và hình nón bằng

     Tỉ số diện tích xung quanh

    Gọi A là điểm thuộc đường tròn (O).

    Góc giữa O'A và mặt phẳng đáy là góc \widehat{O^\prime A O}.. Theo giả thiết ta có \widehat{O^\prime A O}={60}^\circ.

    Xét tam giác O^\prime OA vuông tại , ta có:

    \tan\widehat{O^\prime A O}=\frac{O^\prime O}{OA}\Rightarrow O^\prime O=a\cdot\tan{60}^\circ=a\sqrt3

    \cos\widehat{O^\prime A O}=\frac{OA}{O^\prime A}\Rightarrow O^\prime A=\frac{a}{\cos{60}^\circ}=2a

    Diện tích xung quanh của hình trụ là:

    S_{xq(T)}=2\pi\cdot OA\cdot O^\prime O=2\pi\cdot a\cdot a\sqrt3=2\pi a^2\sqrt3.

    Diện tích xung quanh của hình nón là:

    S_{xq(N)}=\pi\cdot OA\cdot O^\prime A=\pi\cdot a\cdot2a=2\pi a^2.

    \Rightarrow\dfrac{S_{xq(T)}}{S_{xq(N)}}=\dfrac{2\pi a^2\sqrt3}{2\pi a^2}=\sqrt3

  • Câu 8: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1;2;-1) và mặt phẳng (P):x+y+2z-13=0. Xét các mặt cầu (S) có tâm I(a;b;c), đi qua điểm A, tiếp xúc với mặt phẳng (P) . Tính giá trị của biểu thức T=a^2+2b^2+3c^2 khi (S) có bán kính nhỏ nhất.

     Gọi H là hình chiếu của I trên mặt phẳng (P) ta có IA + IH =2R nên R nhỏ nhất khi I, A, H thẳng hàng và I là trung điểm của AH.

    Phương trình AH đi qua A và vuông góc với mặt phẳng (P) có phương trình là

    \left\{\begin{matrix} x=1+t \\ y=2+t \\ z=-1+2t \end{matrix}ight.

    Tọa độ H là nghiệm (x;y;z) của hệ:

    \left\{\begin{matrix} x=1+t \\ y=2+t \\ z=-1+2t \\ x+y+2z-13=0 \end{matrix}ight.

    \Rightarrow H(3;4;3)\Rightarrow I(2;3;1)

    Suy ra, ta có: T=a^2+2b^2+3c^2 =2^2+2.3^2+3.1^2=25

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a, AB = BC = CD = a. Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số \frac{R}{a}nhận giá trị nào sau đây?

     Tính tỉ số

    Ta có SA \bot AD hay \widehat {SAD} = {90^0}

    Gọi E là trung điểm AD.

    Ta có EA = AB = BC nên ABCE là hình thoi.

    Suy ra CE = EA = \frac{1}{2}AD .

    Do đó tam giác ACD vuông tại C. Ta có:

    \left\{ \begin{array}{l}DC \bot AC\\DC \bot SA\end{array} ight. \Rightarrow DC \bot \left( {SAC} ight) \Rightarrow DC \bot SC   hay    \widehat {SCD} = {90^0}

    Tương tự, ta cũng có SB \bot BD hay \widehat {SBD} = {90^0}

    Ta có \widehat {SAD} = \widehat {SBD} = \widehat {SCD} = {90^0} nên khối chóp S.ABCD nhận trung điểm I của SD làm tâm mặt cầu ngoại tiếp, bán kính R = \frac{{SD}}{2} = \frac{{\sqrt {S{A^2} + A{D^2}} }}{2} = a\sqrt 2.

    Suy ra \frac{R}{a} = \sqrt 2.

  • Câu 10: Vận dụng cao

    Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác vuông  SAB có diện tích bằng 4a^2. Góc giữa trục SO và mặt phẳng (SAB) bằng {30}^\circ. Diện tích xung quanh của hình nón đã cho bằng?

     

    Gọi M là trung điểm của AB , tam giác OAB cân đỉnh O nên OM\bot AB  và SO\bot AB suy ra AB\bot(SOM)

    Dựng OK\bot SM..

    Theo trên có OK\bot AB nên OK\bot(SAB).

    Vậy góc tạo bởi giữa trục SO và mặt phẳng (SAB)\widehat{OSM}={30}^\circ. Tam giác vuông cân SAB có diện tích bằng 4a^2 suy ra \frac{1}{2}SA^2=4a^2\Rightarrow SA=2a\sqrt2

    \Rightarrow AB=4a\Rightarrow SM=2a..

    Xét tam giác vuông SOM\cos\widehat{OSM}=\frac{SO}{SM}\Rightarrow SO=\frac{\sqrt3}{2}\cdot2a=\sqrt3a..

    Cuối cùng OB=\sqrt{SB^2-SO^2}=a\sqrt5.

    Vậy diện tích xung quanh của hình nón bằng S_{xq}=\pi rl=\pi\cdot a\sqrt5\cdot2a\sqrt2=2a^2\sqrt{10}\pi.

  • Câu 11: Nhận biết

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 12: Nhận biết

    Trong không gian Oxyz, cho hai điểm I(1;1;1)A(1;2;3). Phương trình mặt cầu có tâm I và đi qua A là:

    Ta có: R = IA = \sqrt{(1 - 1)^{2} + (2 -
1)^{2} + (3 - 1)^{2}} = \sqrt{5}

    Vậy phương trình mặt cầu tâm I và đi qua điểm A có phương trình là:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
5.

  • Câu 13: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 14: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 15: Nhận biết

    Phương trình nào sau đây là phương trình mặt cầu (S) tâm A(2;1;0) và đi qua điểm B(0;1;2)?

    Vì mặt cầu (S) tâm A(2;1;0) và đi qua điểm B(0;1;2) nên mặt cầu (S) nhận độ dài đoạn thẳng AB làm bán kính.

    Ta có: \overrightarrow{AB} = ( - 2;0;2)
\Rightarrow AB = 2\sqrt{2}

    \Rightarrow R = 2\sqrt{2}

    Vậy phương trình mặt cầu cần tìm là: (x -
2)^{2} + (y - 1)^{2} + z^{2} = 8.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo