Trong không gian với hệ tọa độ
, cho hai điểm
. Mặt cầu đường kính
có phương trình là:
Gọi là trung điểm của
khi đó
là tâm mặt cầu
.
Bán kính
Vậy phương trình mặt cầu cần tìm là: .
Trong không gian với hệ tọa độ
, cho hai điểm
. Mặt cầu đường kính
có phương trình là:
Gọi là trung điểm của
khi đó
là tâm mặt cầu
.
Bán kính
Vậy phương trình mặt cầu cần tìm là: .
Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,
Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.
Theo đề bài, ta có tam giác SAB vuông cân tại S nên ,
Suy ra ,
và
Diện tích toàn phần của hình nón: (đvdt).
Thể tích khối nón là: (đvtt).
Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

Trả lời: 23,9 cm
Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)
Trả lời: 23,9 cm
Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt , và nền là
Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với mặt phẳng toạ độ và chứa điểm
.
Ta có thể gọi phương trình mặt cầu là , với
Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên
Do nên
.
Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên thỏa.
Vậy đường kính quả bóng bằng .
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao
và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Cho hình trụ có hai đáy là hai hình tròn (O) và (O'), bán kính bằng a. Một hình nón có đỉnh là O' và có đáy là hình tròn (O). Biết góc giữa đường sinh của hình nón với mặt đáy bằng
, tỉ số diện tích xung quanh của hình trụ và hình nón bằng

Gọi A là điểm thuộc đường tròn (O).
Góc giữa O'A và mặt phẳng đáy là góc . Theo giả thiết ta có
.
Xét tam giác vuông tại , ta có:
Diện tích xung quanh của hình trụ là:
Diện tích xung quanh của hình nón là:
.
Cho đường tròn (C) đường kính AB và đường thẳng
. Để hình tròn xoay sinh bởi (C) khi quay quanh
là một mặt cầu thì cần có thêm điều kiện nào sau đây:
Điều kiện để hình tròn xoay sinh bởi (C) khi quay quanh là một mặt cầu là trục quay
phải cố định và hai điểm A, B cũng cố định trên
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
và mặt cầu
. Tìm tất cả các giá trị của m để
tiếp xúc với mặt cầu
?
Ta có mặt cầu có tâm I(1; −1; 1) và bán kính R = 3.
Mặt phẳng tiếp xúc với
khi và chỉ khi:
.
Trong không gian với hệ tọa độ
, cho ba điểm
với
. Biết rằng mặt phẳng
đi qua điểm
và tiếp xúc với mặt cầu
. Tính
.
Mặt phẳng đi qua ba điểm
nên có phương trình là:
Ta có nên
.
Mặt cầu (S) có tâm và bán kính
.
tiếp xúc với (S)
Cho hình chóp tứ giác đều
có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc
. Thể tích của khối cầu ngoại tiếp khối chóp
là:

Gọi , suy ra
.
Ta có .
Trong , ta có
.
Ta có SO là trục của hình vuông ABCD.
Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.
Gọi
Xét có
đều.
Do đó d cũng là đường trung tuyến của . Suy ra I là trọng tâm
.
Bán kính mặt cầu .
Suy ra
Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng
, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác OAB đều cạnh R.
Gọi E là trung điểm AB, suy ra và
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác vuông
có diện tích bằng
. Góc giữa trục
và mặt phẳng
bằng
. Diện tích xung quanh của hình nón đã cho bằng?

Gọi là trung điểm của
, tam giác
cân đỉnh O nên
và
suy ra
Dựng .
Theo trên có nên
.
Vậy góc tạo bởi giữa trục và mặt phẳng
là
. Tam giác vuông cân
có diện tích bằng
suy ra
.
Xét tam giác vuông có
.
Cuối cùng .
Vậy diện tích xung quanh của hình nón bằng .
Trong không gian
, có tất cả bao nhiêu giá trị nguyên của tham số
để
là một phương trình mặt cầu
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
Theo bài ra
Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Trong không gian với hệ trục tọa độ
, mặt cầu
đi qua điểm
và cắt các tia
lần lượt tại các điểm
khác
thỏa mãn tam giác
có trọng tâm là điểm
. Tọa độ tâm của mặt cầu
là:
Gọi tọa độ các điểm trên ba tia lần lượt là
với
Vì G là trọng tâm tam giác nên
Gọi phương trình mặt cầu cần tìm là:
Vì qua các điểm
nên ta có hệ phương trình:
Vậy tọa độ tâm của mặt cầu là:
.