Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 2: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1;2; - 3),B\left( \frac{3}{2};\frac{3}{2}; -\frac{1}{2} ight),C(1;1;4),D(5;3;0). Gọi \left( S_{1} ight) là mặt cầu tâm A bán kính bằng 3,\left( S_{2} ight) là mặt cầu tâm B bán kính bằng \frac{3}{2}. Có bao nhiêu mặt phẳng tiếp xúc với hai mặt cầu \left( S_{1}ight),\left( S_{2} ight) đồng thời song song với đường thẳng đi qua 2 điểm C, D ?

    Hình vẽ minh họa:

    Ta có \overrightarrow{AB} = \left(\frac{1}{2}; - \frac{1}{2};\frac{5}{2} ight) \Rightarrow AB =\frac{3\sqrt{3}}{2} < 3 nên B nằm bên trong mặt cầu \left( S_{1} ight).

    Một mặt phẳng qua AB cắt hai mặt cầu theo hai đường tròn giao tuyến như hình bên.

    Kẻ tiếp tuyến chung của hai đường tròn, tiếp tuyến này sẽ cắt đường thẳng AB tại M.

    Gọi N,E lần lượt là tiếp điểm với hai đường tròn như hình vẽ.

    Tam giác ANM đồng dạng tam giác BEM nên \frac{AM}{BM} = \frac{AN}{BE} = 2.

    Suy ra \overrightarrow{AM} =2\overrightarrow{AB} \Rightarrow M(2;1;2).

    Gọi (P) là mặt phẳng tiếp xúc với cả hai mặt cầu \left( S_{1}ight)\left( S_{2}ight).

    Khi đó (P) sẽ luôn đi qua M.

    Gọi \overrightarrow{n} = (m;n;p) với m^{2} + n^{2} + p^{2} eq 0 là một vectơ pháp tuyến của mặt phẳng (P).

    Phương trình (P):m(x - 2) + n(y - 1) +p(z - 2) = 0.

    Ta có:

    \overrightarrow{CD} = (4;2; -4)

    CD // (P) \Rightarrow\overrightarrow{n} \cdot \overrightarrow{CD} = 0

    \Rightarrow 4m + 2n - 4p = 0 \Rightarrown = 2p - 2m

    d\left( A,(P) ight) = 3\Leftrightarrow \frac{| - m + n - 5p|}{\sqrt{m^{2} + n^{2} + p^{2}}} =3

    \Leftrightarrow | - 3m - 3p| =3\sqrt{m^{2} + (2p - 2m)^{2} + p^{2}}

    \Leftrightarrow 4m^{2} - 10mp + 4p^{2} =0 \Leftrightarrow \left\lbrack \begin{matrix}\dfrac{m}{p} = \dfrac{1}{2} \\\dfrac{m}{p} = 2 \\\end{matrix} ight.

    Trường hợp \frac{m}{p} =\frac{1}{2} : chọn m = 1,p = 2\Rightarrow n = 2.

    Khi đó (P):x + 2y + 2z - 8 = 0 (nhận).

    Trường hợp \frac{m}{p} = 2 : chọn m = 2,p = 1 \Rightarrow n = -2.

    Khi đó (P):2x - 2y + z - 4 = 0 (loại vì chứa C,D).

  • Câu 3: Vận dụng cao

    Cho khối trụ có hai đáy là (O)\left(O^\primeight). AB,CD lần lượt là hai đường kính của (O)\left(O^\primeight), góc giữa ABCD bằng {30}^\circ,AB=6. Thể tích khối tứ diện ABCD bằng 30 . Thể tích khối trụ đã cho bằng?

     Thể tích trụ

    Ta chứng minh: V_{ABCD}=\frac{1}{6}AB\cdot CD\cdot d(AB,CD)\cdot\sin(AB,CD)..

    Lấy điểm E sao cho tứ giác BCDE là hình bình hành.

    Khi đó  (AB,CD)=(AB,BE)\Rightarrow\sin(AB,CD)=\sin(AB,BE)..

    Mà góc giữa ABCD bằng {30}^\circ,AB=6 nên ta có:

    \sin(AB,CD)=\sin(AB,BE)=\sin 30^0 =\frac 1 2

    Ta có d(D,(ABE))=d(AB, CD)

    V_{ABCD}=V_{ABDE}

    =\frac{1}{3}.d(D,(ABE)).S_{ABE}=\frac {1}{6} AB.CD.d(AB,CD).sin (AB,CD)

    Suy ra V_{ABCD}=\frac {1}{6} AB.CD.d(AB,CD).sin (AB,CD)

    Vậy d(AB,CD)=\dfrac{6V_{ABCD}}{AB.CD.\sin30^0}=\dfrac{180}{6.6.\dfrac{1}{2}}=10

    Chiều cao của lăng trụ bằng h = d(AB, CD)=10

    Áp dụng CT thể tích lăng trụ là: V=Sh=\pi .3^2.10=90 \pi

     

  • Câu 4: Vận dụng

    Cho hình nón đỉnh S có đáy là hình tròn tâm O. Dựng hai đường sinh SA và SB, biết tam giác SAB vuông và có diện tích bằng 4a^2. Góc tạo bởi giữa trục SO và mặt phẳng (SAB) bằng 30^0. Đường cao h của hình nón bằng:

     Tính đường cao nón

    Theo giả thiết ta có tam giác SAB vuông cân tại S.

    Gọi E là trung điểm AB, suy ra\left\{ \begin{array}{l}SE \bot AB\\OE \bot AB\end{array} ight.  và SE = \frac{1}{2}AB.

    Ta có {S_{\Delta SAB}} = \frac{1}{2}AB.SE = 4{a^2} \Leftrightarrow \frac{1}{2}AB.\frac{1}{2}AB = 4{a^2}

    \Rightarrow AB = 4a \Rightarrow SE = 2a.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH.

    Từ đó suy ra OH \bot \left( {SAB} ight) nên

    {30^0} = \widehat {SO,\left( {SAB} ight)} = \widehat {SO,SH} = \widehat {OSH} = \widehat {OSE}

    Trong tam giác vuông SOE, ta có SO = SE.\cos \widehat {OSE} = a\sqrt 3

  • Câu 5: Thông hiểu

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 6: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng cạnh đáy bằng a. Khi đó mặt cầu nội tiếp hình chóp S.ABCD có bán kính bằng:

    Tìm bán kính

    Gọi H là tâm của hình vuông ABCD.

    Ta có SH là trục đường tròn ngoại tiếp đáy.

    Gọi M là trung điểm của CD và I là chân đường phân giác trong của góc \widehat {SMH}{m{ (}}I \in SH).

    Suy ra I là tâm của mặt cầu nội tiếp hình chóp, bán kính r = IH.

    Ta có:

    \begin{array}{l}SH = \sqrt {S{A^2} - A{H^2}}  = \dfrac{{a\sqrt 2 }}{2};{m{ }}\\SM = \dfrac{{a\sqrt 3 }}{2};{m{ }}MH = \dfrac{a}{2}.\end{array}

    Dựa vào tính chất của đường phân giác ta có: \frac{{IS}}{{IH}} = \frac{{MS}}{{MH}}

     

       \Rightarrow \frac{{SH}}{{IH}} = \frac{{MS + MH}}{{MH}}

    \Rightarrow IH = \dfrac{{SH.MH}}{{MS + MH}} = \frac{a}{{\sqrt 2  + \sqrt 6 }} = \dfrac{{a\left( {\sqrt 6  - \sqrt 2 } ight)}}{4}

  • Câu 7: Thông hiểu

    Với giá trị nào của m thì mặt phẳng \left( P ight):2x - y + z - 5 = 0 tiếp xúc với mặt cầu 

    \left( S ight):{x^2} + {y^2} + {z^2} - 2mx + 2\left( {2 - m} ight)y - 4mz + 5{m^2} + 1 = 0?

    Theo đề bài, ta xác định các hệ số của (S): a = m;b = m - 2;c = 2m;d = 5{m^2} + 1

    Suy ra tâm I của cầu có tọa độ là I\left( {m,m - 2,2m} ight).

    \Rightarrow {R^2} = {m^2} + {\left( {m - 2} ight)^2} + 4{m^2} - 5{m^2} - 1 = {m^2} - 4m + 3 > 0

    \Rightarrow m < 1 \vee m > 3.\left( P ight) tiếp xúc (S) khi: 

    d\left( {I,P} ight) = \frac{{\left| {3m - 3} ight|}}{{\sqrt 6 }} = R = \sqrt {{m^2} - 4m+3}

    \Leftrightarrow {m^2} + 2m - 3 = 0 \Leftrightarrow m =  - 3 \vee m = 1   (loại)

    \Rightarrow m =  - 3

  • Câu 8: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 9: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác OMN và tiếp xúc với mặt phẳng (Oxz)?

    Gọi I là tâm đường tròn nội tiếp tam giác OMN

    Ta áp dụng tính chất sau: “Cho tam giác OMN với I là tâm đường tròn nội tiếp, khi đó ta có: a.\overrightarrow{IO} +
b.\overrightarrow{IM} + c.\overrightarrow{IN} =
\overrightarrow{0} với a = MN,b =
ON,c = OM

    Ta có: \left\{ \begin{matrix}OM = \sqrt{2^{2} + 2^{2} + 2^{2}} = 3 \\ON = \sqrt{\left( - \dfrac{8}{3} ight)^{2} + \left( \dfrac{4}{3}ight)^{2} + \left( \dfrac{8}{3} ight)^{2}} = 4 \\MN = \sqrt{\left( - \dfrac{8}{3} - 2 ight)^{2} + \left( \dfrac{4}{3} - 2ight)^{2} + \left( \dfrac{8}{3} - 1 ight)^{2}} = 5 \\\end{matrix} ight.

    Khi đó:

    5.\overrightarrow{IO} +
4.\overrightarrow{IM} + 3.\overrightarrow{IN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{5.0 + 4.2 + 3.\left( - \dfrac{8}{3} ight)}{3 + 4 + 5} = 0\\y_{I} = \dfrac{5.0 + 4.2 + 3.\left( \dfrac{4}{3} ight)}{3 + 4 + 5} = 1\\z_{I} = \dfrac{5.0 + 4.2 + 3.\left( \dfrac{8}{3} ight)}{3 + 4 + 5} = 1\\\end{matrix} ight.

    Mặt phẳng (Oxz) có phương trình y = 0

    Mặt cầu tiếp xúc với mặt phẳng (Oxz) nên mặt cầu có bán kính R = d\left( I;(Oxz) ight) = 1

    Vậy phương trình mặt cầu cần tìm là: x^{2} + (y - 1)^{2} + (z - 1)^{2} =
1.

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 6y - 4z - 2 =
0, mặt phẳng (\alpha):x + 4y + z -
11 = 0. Gọi (P) là mặt phẳng vuông góc với mặt phẳng (\alpha), (P) song song với giá của vectơ \overrightarrow{v} = (1;6;2)(P) tiếp xúc với (S). Lập phương trình mặt phẳng (P).

    Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R\  = \ 4.

    Từ giả thiết suy ra \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{v} ightbrack là một vectơ pháp tuyến của (P).

    Ta có \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{v} ightbrack = (2; -
1;2), suy ra (P) có vectơ pháp tuyến \overrightarrow{n} = (2; -
1;2)

    Vậy (P) có phương trình dạng 2x - y + 2z + m = 0

    Do (P) tiếp xúc với mặt cầu (S) nên:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2.1 + 3 + 2.2 + m|}{\sqrt{2^{2} + 1^{2} + 2^{2}}}
= 4

    \Leftrightarrow |9 + m| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 3 \\
m = - 21 \\
\end{matrix} ight.

    Vậy có hai mặt phẳng thỏa mãn yêu cầu bài toán là \left\lbrack \begin{matrix}
2x - y + 2z + 3 = 0 \\
2x - y + 2z - 21 = 0 \\
\end{matrix} ight..

  • Câu 11: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 12: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + (z + 3)^{2} =
25 theo thiết diện là đường tròn bán kính r bằng bao nhiêu?

    Mặt cầu (S) có tâm I(1;1; - 3) và bán kính R = 5.

    Khoảng cách từ tâm I đến (Oxy) bằng 3.

    \Rightarrow r = \sqrt{5^{2} - 3^{2}} =
4

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(0;0; - 3) và đi qua điểm M(4;0;0). Phương trình mặt cầu (S) là:

    Phương trình mặt cầu (S) có tâm I(0;0; - 3) và bán kính R là:

    x^{2} + y^{2} + (z + 3)^{2} =
R^{2}

    Ta có: M \in (S) \Rightarrow 4^{2} +
0^{2} + (0 + 3)^{2} = R^{2}

    \Leftrightarrow R^{2} = 25

    Vậy phương trình cần tìm là: x^{2} +
y^{2} + (z + 3)^{2} = 25.

  • Câu 14: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 15: Nhận biết

    Trong không gian Oxyz, viết phương trình mặt cầu (S) đường kính AB biết A(2; - 1; - 3),B(0;3; - 1)?

    Gọi I là trung điểm của AB khi đó I(1;1; - 2) là tâm mặt cầu (S).

    Bán kính R = \frac{1}{2}AB =
\frac{1}{2}\sqrt{4 + 16 + 4} = \frac{\sqrt{24}}{2}

    Vậy phương trình mặt cầu cần tìm là: (S):(x + 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo