Hình nón có đường sinh
và hợp với đáy góc
. Diện tích toàn phần của hình nón bằng:

Theo giả thiết, ta có
và
.
Suy ra:
.
Vậy diện tích toàn phần của hình nón bằng: (đvdt).
Hình nón có đường sinh
và hợp với đáy góc
. Diện tích toàn phần của hình nón bằng:

Theo giả thiết, ta có
và
.
Suy ra:
.
Vậy diện tích toàn phần của hình nón bằng: (đvdt).
Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu:
.
Theo đề bài, ta có:
là mặt cầu
Trong không gian với hệ tọa độ
, phương trình đường thẳng tiếp xúc với mặt cầu
tại điểm
là:
Mặt cầu có tâm
.
Gọi (α) là mặt phẳng cần tìm.
Do (α) tiếp xúc với (S) tại P nên mặt phẳng (α) đi qua P và có vectơ pháp tuyến
Phương trình mặt phẳng (α) là
Một hình trụ có bán kính đáy
, chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.
Giá trị
phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:
? ![]()
Ta có:
là mặt cầu
.
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Trong không gian với hệ tọa độ
, cho đường thẳng
và mặt
cầu (S) tâm I(1;2;1), bán kính R. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với
(S) tạo với nhau góc
. Hãy viết phương trình mặt cầu (S)

Gọi M, N là tiếp điểm của mặt phẳng (P), (Q) và mặt cầu (S). Gọi H là hình chiếu của điểm I trên đường thẳng d.
TH1: Góc :
Theo bài ra ta có:
TH2: Góc :
Theo bài ra ta có:
.
Trong không gian với hệ tọa độ
, cho điểm
. Mặt phẳng
đi qua
và cắt các trục
tại
sao cho
là trực tâm tam giác
. Viết phương trình mặt cầu tâm
và tiếp xúc với mặt phẳng
?
Hình vẽ minh họa
Ta có H là trực tâm của tam giác ABC suy ra
Thật vậy
Mà (vì H là trực tâm tam giác ABC) (2)
Từ (1) và (2) suy ra suy ra
Tương tự
Từ (*) và (**) suy ra
Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3
Vây mặt cầu tâm O và tiếp xúc với mặt phẳng là:
.
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a,
. Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số
nhận giá trị nào sau đây?

Ta có hay
Gọi E là trung điểm AD.
Ta có nên ABCE là hình thoi.
Suy ra .
Do đó tam giác ACD vuông tại C. Ta có:
hay
Tương tự, ta cũng có hay
Ta có nên khối chóp S.ABCD nhận trung điểm I của SD làm tâm mặt cầu ngoại tiếp, bán kính
.
Suy ra .
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Cho hình trụ có hai đáy là hai hình tròn (O) và(O’), thiết diện qua trục của hình trụ là hình vuông. Gọi A, B là hai điểm lần lượt nằm trên hai đường tròn (O) và(O’). Biết AB = 2a và khoảng cách giữa hai đường thẳng AB và OO’ bằng
. Bán kính đáy bằng:

Dựng đường sinh BB', gọi I là trung điểm của AB’, ta có
Suy ra
Gọi bán kính đáy của hình trụ là R.
Vì thiết diện qua trục của hình trụ là hình vuông nên
Trong tam giác vuông A B’B, ta có .
Trong tam giác vuông OIB’, ta có N .
Suy ra .
Từ đó ta có .
Trong không gian
, tìm tất cả các giá trị của
để phương trình
là phương trình của một mặt cầu?
Phương trình là một mặt cầu
.
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho
. Độ dài đường sinh
của hình nón bằng:

Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
Công thức tính thể tích , suy ra
Hộp sữa chỉ kín một đáy nên diện tích tôn cần dùng là:
Xét hàm trên
, ta được
đạt tại
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
và mặt cầu
. Tìm tất cả các giá trị của m để
tiếp xúc với mặt cầu
?
Ta có mặt cầu có tâm I(1; −1; 1) và bán kính R = 3.
Mặt phẳng tiếp xúc với
khi và chỉ khi:
.