Trong không gian
, có tất cả bao nhiêu giá trị nguyên của tham số
để
là một phương trình mặt cầu
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
Theo bài ra
Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Trong không gian
, có tất cả bao nhiêu giá trị nguyên của tham số
để
là một phương trình mặt cầu
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
Theo bài ra
Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm
có bán kính bằng
. Phương trình của
là:
Mặt cầu có tâm
và bán kính bằng
có phương trình là:
Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

Hình vẽ kết hợp với giả thiết, ta có
Suy ra và
Thể tích khối nón (đvtt).
Thể tích khối cầu (đvtt).
Suy ra
Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
Công thức tính thể tích , suy ra
Hộp sữa chỉ kín một đáy nên diện tích tôn cần dùng là:
Xét hàm trên
, ta được
đạt tại
.
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Trong không gian
, cho mặt phẳng
và mặt cầu
tâm
bán kính
. Bán kính đường tròn giao của mặt phẳng
và mặt cầu
là:
Hình vẽ minh họa
Gọi bán kính đường tròn giao của mặt phẳng và mặt cầu
là
Ta có:
Suy ra
Cho mặt cầu
và một điểm A, biết
. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho
. Khi đó khoảng cách từ O đến BC bằng:
Gọi H là hình chiếu của O lên BC.
Ta có , suy ra H là trung điểm của BC nên
Suy ra
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng
, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác OAB đều cạnh R.
Gọi E là trung điểm AB, suy ra và
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Trong không gian
(đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí
. Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là
.
a) Phương trình mặt cầu
để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
. Sai||Đúng
b) Điểm
nằm ngoài mặt cầu
. Sai||Đúng
c) Nếu người dùng điện thoại ở vị trí có tọa độ
thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
d) Nếu người dùng điện thoại ở vị trí có tọa độ
thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
Trong không gian (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí
. Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là
.
a) Phương trình mặt cầu để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
. Sai||Đúng
b) Điểm nằm ngoài mặt cầu
. Sai||Đúng
c) Nếu người dùng điện thoại ở vị trí có tọa độ thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
d) Nếu người dùng điện thoại ở vị trí có tọa độ thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
Phương trình mặt cầu tâm
bán kính
mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
.
Ta có: nên điểm
nằm trong mặt cầu.
Vì điểm nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ
có thể sử dưng dịch vụ của trạm thu phát sóng đó.
Ta có: nên điểm
nằm ngoài mặt cầu.
Vậy người dùng điện thoại ở vị trí có tọa độ không thể sử dựng dịch vụ của trạm thu phát sóng đó
Trong không gian với hệ tọa độ
, cho điểm
. Mặt phẳng
đi qua
và cắt các trục
tại
sao cho
là trực tâm tam giác
. Viết phương trình mặt cầu tâm
và tiếp xúc với mặt phẳng
?
Hình vẽ minh họa
Ta có H là trực tâm của tam giác ABC suy ra
Thật vậy
Mà (vì H là trực tâm tam giác ABC) (2)
Từ (1) và (2) suy ra suy ra
Tương tự
Từ (*) và (**) suy ra
Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3
Vây mặt cầu tâm O và tiếp xúc với mặt phẳng là:
.
Trong không gian với hệ tọa độ
, cho hai điểm
và mặt cầu
. Mặt phẳng
(với
là các số nguyên dương và
nguyên tố cùng nhau) đi qua
và cắt
theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính tổng
.
Hình vẽ minh họa
Ta có cùng phương với
suy ra phương trình đường thẳng
.
Xét mặt cầu ⇒ I(1; 2; 3), R = 5.
Gọi là điểm trên AB sao cho AB ⊥ IH
Vì ,
Gọi r là bán kính đường tròn giao tuyến giữa (P) và (S), K là hình chiếu vuông góc của I lên (P) .
Ta có
Dấu bằng chỉ xảy ra khi K ≡ H.
Khi đó phương trình mặt phẳng (P) nhận là vectơ pháp tuyến và đi qua điểm
là
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng
. Diện tích toàn phần của hình nón là:

Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Xét các mệnh đề:
(I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng
cố định một khoảng không đổi là một mặt trụ.
(II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.
Trong các mệnh đề trên, mệnh đề nào đúng?
Ta xét về khái niệm Mặt trụ suy ra (I) đúng.
Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).
Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.
Vì vậy Mệnh đề (II) cũng đúng.
Trong hệ tọa độ
, cho mặt cầu
và mặt phẳng
. Gọi
là mặt phẳng song song với
và cắt
theo thiết diện là đường tròn
sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi
có thể tích lớn nhất. Phương trình của mặt phẳng
là
Hình vẽ minh họa
Mặt cầu (S) có tâm I(1; −2; 3) và bán kính
Gọi r là bán kính đường tròn (C) và H là hình chiếu của I lên (Q).
Đặt IH = x ta có:
Vậy thể tích khối nón tạo được là:
Gọi ta có:
chỉ có
Ta có bảng biến thiên như sau:
Vậy khi
Mặt phẳng (Q) // (P) nên
Vậy
Vậy mặt phẳng (Q) có phương trình hoặc