Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =
25. Đường thẳng d cắt mặt cầu (S) tại hai điểm A, B. Biết tiếp diện của (S) tại A, B vuông góc. Tính độ dài AB.

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; 2; −1), bán kính R = 5. Xét mặt phẳng (P) chứa d cắt giao tuyến của hai tiếp diện tại O.

    Ta có tứ giác OIAB là hình vuông.

    Suy ra AB = IA.\sqrt{2} = R\sqrt{2} =
5\sqrt{2}.

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho mặt cầu (S):(x + 3)^{2} + (y - 1)^{2} + (z +
1)^{2} = 3 và mặt phẳng (\alpha):(m
- 4)x + 3y - 3mz + 2m - 8 = 0. Với giá trị nào của tham số m thì mặt phẳng tiếp xúc với mặt cầu?

    Mặt cầu (S) có tâm I(−3; 1; −1) và bán kính R = \sqrt{3}

    Mặt phẳng (α) tiếp xúc với (S) khi và chỉ khi

    d\left( I;(P) ight) = R

    \Leftrightarrow \frac{\left| (m - 4).( -
3) + 3.1 - 3m.( - 1) + 2m - 8 ight|}{\sqrt{(m - 4)^{2} + 3^{2} + ( -
3m)^{2}}} = \sqrt{3}

    \Leftrightarrow \frac{|2m +
7|}{\sqrt{10m^{2} - 8m + 25}} = \sqrt{3}

    \Leftrightarrow 26m^{2} - 52m + 26 = 0
\Leftrightarrow m = 1

    Vậy đáp án cần tìm là: m =
1.

  • Câu 3: Vận dụng cao

    Trong các hình trụ có diện tích toàn phần bằng 1000{\mathrm{\ }cm}^2 thì hình trụ có thể tích lớn nhất là bao nhiêu {m cm}^3

    Ta có S_{tp}=2\pi Rh+2\pi R^2\Rightarrow Rh+R^2=\frac{S}{2\pi}

    Vậy thể tích khối trụ V=\pi R^2h=\pi R\left(\frac{S}{2\pi}-R^2ight)=\frac{S}{2}R-\pi R^3=F(R)

    Ta có: F^\prime(R)=\frac{S}{2}-3\pi R^2=0\Leftrightarrow R=\sqrt{\frac{S}{6\pi}}

    Bảng biến thiên

    Thể tích lớn nhất

    Từ bảng biến thiên ta có

    V_{max}=\frac{S}{2}R-\pi R^3=\frac{1000}{2}\sqrt{\frac{1000}{6\pi}}-\pi{\sqrt{\frac{1000}{6\pi}}}^3\approx2428.

  • Câu 4: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 5: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \frac{a}{2}. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

     Thể tích khối nón

    Gọi E là trung điểm của BC, dựng OH \bot SE tại H.

    Chứng minh được OH \bot \left( {SBC} ight) nên suy ra OH = d\left[ {O,\left( {SBC} ight)} ight] = \frac{a}{2}.

    Trong tam giác đều ABC, ta có OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}

    và  OA = \frac{2}{3}AE = \frac{{2a\sqrt 3 }}{3}

    Trong tam giác vuông SOE, ta có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{S{O^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{1}{{{a^2}}} \Rightarrow SO = a.

    Vậy thể tích khối nón V = \frac{1}{3}\pi O{A^2}.SO = \frac{1}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} ight)^2}.a = \frac{{4\pi {a^3}}}{9}  (đvtt).

  • Câu 6: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, . Cạnh bên , hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là:

    Tính bán kính

    Gọi M là trung điểm AC, suy ra SM \bot \left( {ABC} ight) \Rightarrow SM \bot AC.

    Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.

    Ta có AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2, suy ra tam giác SAC đều.

    Gọi G là trọng tâm \triangle SAC , suy ra GS = GA = GC.    (1)

    Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.

    Lại có SM \bot \left( {ABC} ight) nên SM là trục của tam giác ABC.

    Mà G thuộc SM nên suy ra GA = GB = GC.

    Từ (1) và (2), suy ra GS = GA = GB = GC hay G là tâm mặt cầu ngoại tiếp khối chóp S.ABC.

    Bán kính mặt cầu R = GS = \frac{2}{3}SM = \frac{{a\sqrt 6 }}{3}.

  • Câu 7: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2)B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m + 1)z +
m^{2} + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1.

    Ta có:

    x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m +
1)z + m^{2} + 2m + 8 = 0

    \Leftrightarrow (x - 2)^{2} + (y +
m)^{2} + (z - m - 1)^{2} = m^{2} - 3(*)

    Suy ra (*) là phương trình mặt cầu

    \Leftrightarrow m^{2} - 3 > 0
\Leftrightarrow |m| > \sqrt{3}

    Khi đó, mặt cầu (S) có tâm I(2; −m; m + 1) và bán kính R = \sqrt{m^{2} - 3}

    Gọi (P) là mặt phẳng đi qua A, B.

    Theo giả thiết (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính r = 1.

    Mặt khác, khoảng cách từ tâm I đến mặt phẳng (P) là d = \sqrt{R^{2} - r^{2}} = \sqrt{m^{2} - 4};\left(
m^{2} - 4 \geq 0 ight)

    Ta có: \overrightarrow{AB} = (2;6; -
2) suy ra \overrightarrow{u} =
(1;3; - 1) là một vectơ chỉ phương của đường thẳng AB

    Suy ra đường thẳng AB là: \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Để có duy nhất mặt phẳng (P) thỏa mãn bài thì

    TH1. Mặt phẳng (P) đi qua điểm I và I
otin AB

    Ta có I ∈ (P) ⇔ d = 0 ⇔ m^2 − 4 = 0 ⇔ m = ±2.

    + Với m = 2 ⇒ I(2; −2; 3) ∈ AB ⇒ m = 2 (loại).

    + Với m = −2 ⇒ I(2;2; - 1) otin
AB⇒ m = −2 (thỏa mãn).

    TH2. Mặt phẳng (P) cách I một khoảng lớn nhất ⇔ d lớn nhất ⇔ d = d(I, AB). (*)

    \overrightarrow{IA} = (1;1 + m;1 -
m)

    \Rightarrow \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack = ( - 4 + 2m;2 -
m;2 - m)

    \Rightarrow \left| \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack ight| = |2 -
m|\sqrt{6};\left| \overrightarrow{u} ight| = \sqrt{11}

    Khi đó d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{IA};\overrightarrow{u} ightbrack
ight|}{\left| \overrightarrow{u} ight|} = \frac{|2 -
m|\sqrt{6}}{\sqrt{11}}

    (*) \Leftrightarrow \sqrt{m^{2} - 4} =
\frac{|2 - m|\sqrt{6}}{\sqrt{11}}

    \Leftrightarrow 5m^{2} + 24m - 68 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 2(ktm) \\m = - \dfrac{34}{5}(tm) \\\end{matrix} ight.

    Vậy có 2 giá trị tham số m thỏa mãn yêu cầu.

  • Câu 8: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 9: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S): (x-1)^2+(y+1)^2+(z-2)^2=16 và điểm A(1;2;3) . Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu theo ba đường tròn. Tính tổng diện tích của ba đường tròn tương ứng đó.

    Tính tổng diện tích

    Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là (P), (Q), (R).

    Với điểm I bất kỳ, hạ II_1, II_2, II_3 lần lượt vuông góc với ba mặt phẳng (P), (Q), (R) thì ta luôn có: IA^2 = II_1 ^2+ II_2^2, II_3 ^2(1) .

    Thật vậy , ta chọn hệ trục tọa độ Oxyz với O\equiv A , ba trục Ox, Oy, Oz lần lượt là ba giao tuyến của ba mặt phẳng (P), (Q), (R)..

    Khi đó tọa độ I(a;b;c) thì:

    IA^2=a^2+b^2+c^2=d^2(A;(Iyz))+d^2(A;(Ixz))+d^2(A;(Ixy))

    hay IA^2=II_1^2+II_2^2+II_3^2.

    Vậy (1) được chứng minh.

    Tính tổng diện tích

    Áp dụng giải bài:

    Mặt cầu (S) có tâm I(1;-1;2) và có bán kính r=4.

    \overrightarrow {IA}=(0;3;1) \Rightarrow IA= \sqrt {10}.

    Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là (P), (Q), (R) và cắt mặt cầu (S) theo ba đường tròn lần lượt là(C_1),(C_2),(C_3).

    Gọi I_1, I_2, I_3 và  r_1, r_2, r_3 lần lượt là tâm và bán kính của (C_1),(C_2),(C_3).

    Khi đó : II_1\perp (P) \Rightarrow II_1^2+r_1^2=r^2 \Rightarrow r_1^2=r^2-II_1^2.

    Tương tự có: r_2^2=r^2-II_2^2  và  r_3^2=r^2-II_3^2.

    Theo nhận xét ở trên ta có: IA^2=II_1^2+II_2^2+II_3^2

    Ta có tổng diện tích các đường tròn là :

    S= \pi(r_1^2+r_2^2+r_3^2)=\pi(r^2-II_1^2+r^2-II_2^2+r^2-II_3^2)

    =\pi[3r^2-(II_1^2+II_2^2+II_3^2)]

    =\pi(3r^2-IA^2)=38 \pi.

  • Câu 10: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 11: Thông hiểu

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu: 

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {2 - \ln t} ight)x + 4\ln t.y + 2\left( {\ln t + 1} ight)z + 5{\ln ^2}t + 8 = 0.

    Theo đề bài, ta có:

    a = \ln t - 2;\,\,b =  - 2\ln t;\,\,c =  - \ln t - 1;\,\,d = 5{\ln ^2}t + 8

    (S) là mặt cầu \Leftrightarrow {\left( {\ln t - 2} ight)^2} + 4{\ln ^2}t + {\left( {\ln t + 1} ight)^2} - 5{\ln ^2}t - 8 > 0

    \Leftrightarrow {\ln ^2}t - 2\ln t - 3 > 0

    \Leftrightarrow \ln t <  - 1 \vee \ln t > 3

    \Leftrightarrow 0 < t < \frac{1}{e} \vee t > {e^3}

  • Câu 12: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 13: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình mặt cầu

    Phương trình mặt cầu tâm I bán kính R có dạng: (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}

    Vậy đáp án cần tìm là: (x - 13)^{2} + (y
- 24)^{2} + (z - 36)^{2} = 7^{2} .

  • Câu 14: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 15: Nhận biết

    Trong không gian tọa độ Oxyz, cho tọa độ hai điểm A(1;2;3),B(5;4; -
1). Phương trình mặt cầu đường kính AB là:

    Gọi I là trung điểm của AB suy ra I(3;3;1)

    \overrightarrow{AB} = (4;2; - 4)
\Rightarrow AB = \sqrt{16 + 4 + 16} = 6

    Mặt cầu đường kính AB có tâm I(3;3;1) và bán kính R = \frac{AB}{2} = 3 có phương trình là: (x - 3)^{2} + (y - 3)^{2} + (z - 1)^{2} =
9

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo