Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 2: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: \dfrac{x-2}{2}=\dfrac{y}{-1} = \dfrac z 4và mặt

    cầu (S) tâm I(1;2;1), bán kính R. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với

    (S) tạo với nhau góc 60^0 . Hãy viết phương trình mặt cầu (S)

     Viết phương trình mặt cầu

    Gọi M, N là tiếp điểm của mặt phẳng (P), (Q) và mặt cầu (S). Gọi H là hình chiếu của điểm I trên đường thẳng d.

    \Rightarrow IH=d(I,d)= \sqrt 6

    TH1: Góc \widehat {MHN}=60^0:

    Theo bài ra ta có: R=IM=IH.\sin30^0= \sqrt 6 .\frac 1 2 = \frac{\sqrt 6}{2}

    \Rightarrow(S) : (x-1)^2+(y-2)^2+(z-1)^2= \frac 3 2

    TH2: Góc \widehat {MHN}=120^0:

    Theo bài ra ta có: R=IM=IH.\sin60^0= \sqrt 6 .\frac {\sqrt 3}{2} = \frac{\sqrt18}{2}

    \Rightarrow(S) : (x-1)^2+(y-2)^2+(z-1)^2= \frac 9 2.

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, giá trị dương của tham số m sao cho mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1 là:

    Ta có: (Oxy) có phương trình z = 0

    Mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2}
= m^{2} + 1 có tâm I(3;0;2) và bán kính R = \sqrt{m^{2} + 1}

    Để mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} =
m^{2} + 1 thì

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2|}{\sqrt{1}} = \sqrt{m^{2} + 1}

    \Leftrightarrow m^{2} + 1 = 4
\Leftrightarrow m = \pm \sqrt{3}. Vì m nhận giá trị dương nên m = \sqrt{3}.

    Vậy m = \sqrt{3} thỏa yêu cầu đề bài.

  • Câu 4: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 5: Vận dụng

    Cho hình nón đỉnh S có đáy là hình tròn tâm O. Dựng hai đường sinh SA và SB, biết tam giác SAB vuông và có diện tích bằng 4a^2. Góc tạo bởi giữa trục SO và mặt phẳng (SAB) bằng 30^0. Đường cao h của hình nón bằng:

     Tính đường cao nón

    Theo giả thiết ta có tam giác SAB vuông cân tại S.

    Gọi E là trung điểm AB, suy ra\left\{ \begin{array}{l}SE \bot AB\\OE \bot AB\end{array} ight.  và SE = \frac{1}{2}AB.

    Ta có {S_{\Delta SAB}} = \frac{1}{2}AB.SE = 4{a^2} \Leftrightarrow \frac{1}{2}AB.\frac{1}{2}AB = 4{a^2}

    \Rightarrow AB = 4a \Rightarrow SE = 2a.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH.

    Từ đó suy ra OH \bot \left( {SAB} ight) nên

    {30^0} = \widehat {SO,\left( {SAB} ight)} = \widehat {SO,SH} = \widehat {OSH} = \widehat {OSE}

    Trong tam giác vuông SOE, ta có SO = SE.\cos \widehat {OSE} = a\sqrt 3

  • Câu 6: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;3)B( - 1;0;1) và mặt phẳng (P):x + y + z + 4 = 0. Phương trình mặt cầu (S) có bán kính bằng \frac{AB}{6} có tâm thuộc đường thẳng AB(S) tiếp xúc với mặt phẳng (P) là:

    Ta có: \overrightarrow{AB} = ( - 2;2; -
2) suy ra AB:\left\{ \begin{matrix}
x = 1 - 2t \\
y = - 2 + 2t \\
z = 3 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Ta có: R = \frac{AB}{6} =
\frac{2\sqrt{3}}{6} = \frac{\sqrt{3}}{3}

    Tâm I thuộc AB nên I(1 - 2t; - 2 + 2t;3 -
2t)

    Mặt phẳng (P) tiếp xúc mặt cầu nên

    d\left( I;(P) ight) = R

    \Leftrightarrow \frac{\left| (1 - 2t) +
( - 2 + 2t) + (2 - 2t) + 4 ight|}{\sqrt{1^{2} + 1^{2} + 1^{2}}} =
\frac{\sqrt{3}}{3}

    \Leftrightarrow |6 - 2t| = 1
\Leftrightarrow \left\lbrack \begin{matrix}
6 - 2t = 1 \\
6 - 2t = - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}t = \dfrac{5}{2} \Rightarrow I( - 4;3; - 2) \\t = \dfrac{7}{2} \Rightarrow I( - 6;5; - 4) \\\end{matrix} ight.

    Ta có phương trình đường tròn (C) tâm I(−4; 3; −2), bán kính R = \frac{\sqrt{3}}{3}là:

    (x + 4)^{2} + (y - 3)^{2} + (z + 2)^{2}
= \frac{1}{3}

    Ta có phương trình đường tròn (C) tâm I(−6; 5; −4), bán kính R = \frac{\sqrt{3}}{3}là:

    (x + 6)^{2} + (y - 5)^{2} + (z + 4)^{2}
= \frac{1}{3}

    Vậy đáp án cần tìm là: \left\lbrack\begin{matrix}(x + 4)^{2} + (y - 3)^{2} + (z + 2)^{2} = \dfrac{1}{3} \\(x + 6)^{2} + (y - 5)^{2} + (z + 4)^{2} = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 7: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 8: Vận dụng cao

    Cho khối trụ có hai đáy là (O)\left(O^\primeight). AB,CD lần lượt là hai đường kính của (O)\left(O^\primeight), góc giữa ABCD bằng {30}^\circ,AB=6. Thể tích khối tứ diện ABCD bằng 30 . Thể tích khối trụ đã cho bằng?

     Thể tích trụ

    Ta chứng minh: V_{ABCD}=\frac{1}{6}AB\cdot CD\cdot d(AB,CD)\cdot\sin(AB,CD)..

    Lấy điểm E sao cho tứ giác BCDE là hình bình hành.

    Khi đó  (AB,CD)=(AB,BE)\Rightarrow\sin(AB,CD)=\sin(AB,BE)..

    Mà góc giữa ABCD bằng {30}^\circ,AB=6 nên ta có:

    \sin(AB,CD)=\sin(AB,BE)=\sin 30^0 =\frac 1 2

    Ta có d(D,(ABE))=d(AB, CD)

    V_{ABCD}=V_{ABDE}

    =\frac{1}{3}.d(D,(ABE)).S_{ABE}=\frac {1}{6} AB.CD.d(AB,CD).sin (AB,CD)

    Suy ra V_{ABCD}=\frac {1}{6} AB.CD.d(AB,CD).sin (AB,CD)

    Vậy d(AB,CD)=\dfrac{6V_{ABCD}}{AB.CD.\sin30^0}=\dfrac{180}{6.6.\dfrac{1}{2}}=10

    Chiều cao của lăng trụ bằng h = d(AB, CD)=10

    Áp dụng CT thể tích lăng trụ là: V=Sh=\pi .3^2.10=90 \pi

     

  • Câu 9: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(0;0; - 3) và đi qua điểm M(4;0;0). Phương trình mặt cầu (S) là:

    Phương trình mặt cầu (S) có tâm I(0;0; - 3) và bán kính R là:

    x^{2} + y^{2} + (z + 3)^{2} =
R^{2}

    Ta có: M \in (S) \Rightarrow 4^{2} +
0^{2} + (0 + 3)^{2} = R^{2}

    \Leftrightarrow R^{2} = 25

    Vậy phương trình cần tìm là: x^{2} +
y^{2} + (z + 3)^{2} = 25.

  • Câu 10: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + (z + 3)^{2} =
25 theo thiết diện là đường tròn bán kính r bằng bao nhiêu?

    Mặt cầu (S) có tâm I(1;1; - 3) và bán kính R = 5.

    Khoảng cách từ tâm I đến (Oxy) bằng 3.

    \Rightarrow r = \sqrt{5^{2} - 3^{2}} =
4

  • Câu 12: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 13: Thông hiểu

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu: 

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {2 - \ln t} ight)x + 4\ln t.y + 2\left( {\ln t + 1} ight)z + 5{\ln ^2}t + 8 = 0.

    Theo đề bài, ta có:

    a = \ln t - 2;\,\,b =  - 2\ln t;\,\,c =  - \ln t - 1;\,\,d = 5{\ln ^2}t + 8

    (S) là mặt cầu \Leftrightarrow {\left( {\ln t - 2} ight)^2} + 4{\ln ^2}t + {\left( {\ln t + 1} ight)^2} - 5{\ln ^2}t - 8 > 0

    \Leftrightarrow {\ln ^2}t - 2\ln t - 3 > 0

    \Leftrightarrow \ln t <  - 1 \vee \ln t > 3

    \Leftrightarrow 0 < t < \frac{1}{e} \vee t > {e^3}

  • Câu 14: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \frac{{a\sqrt {21} }}{6}. Gọi h là chiều cao của khối chóp và R là bán kính mặt cầu ngoại tiếp khối chóp. Tỉ số \frac{R}{h} bằng:

     Tính tỉ số

    Gọi O là tâm \triangle ABC, suy ra SO \bot \left( {ABC} ight)AO = \frac{{a\sqrt 3 }}{3}

    Trong SOA, ta có h = SO = \sqrt {S{A^2} - A{O^2}}  = \frac{a}{2}

    Trong mặt phẳng SOA, kẻ trung trực d của đoạn SA cắt SO tại I, suy ra:

    • I \in d nên IS =IA.
    • I \in SO nên IA=IB=IC.

    Do đó IA=IB=IC=IS nên I là tâm mặt cầu ngoại tiếp khối chóp .

    Gọi M là tung điểm SA, ta có \Delta SMI\,\, \backsim \,\,\Delta SOA nên R = SI = \frac{{SM.SA}}{{SO}} = \frac{{S{A^2}}}{{2SO}} = \frac{{7{m{a}}}}{{12}}

    Vậy \frac{R}{h} = \frac{7}{6}.

  • Câu 15: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo