Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 2: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 3: Thông hiểu

    Trong không gian Oxyz, cho tứ diện đều ABCDA(0;1;2) và hình chiếu vuông góc của A trên mặt phẳng (BCD)H(4;
- 3; - 2). Tìm tọa độ tâm I của mặt cầu ngoại tiếp tứ diện ABCD?

    Gọi I(a;b;c) \Rightarrow \left\{
\begin{matrix}
\overrightarrow{IA} = ( - a;1 - b;2 - c) \\
\overrightarrow{IH} = (4 - a; - 3 - b; - 2 - c) \\
\end{matrix} ight.

    ABCD là tứ diện đều nên tâm I của mặt cầu ngoại tiếp trùng với trọng tâm tứ diện

    \Rightarrow \overrightarrow{IA} = -
3\overrightarrow{IH} \Leftrightarrow \left\{ \begin{matrix}
- a = - 3(4 - a) \\
1 - b = - 3(3 - b) \\
2 - c = - 3( - 2 - c) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow I(3; - 2; - 1)

  • Câu 4: Thông hiểu

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 5: Vận dụng

    Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

    Tỉ số giữa thể tích

    Hình vẽ kết hợp với giả thiết, ta có SH = 9cm, OS=OA=5cm

    Suy ra OH = 4{m{cm}}AH = \sqrt {O{A^2} - O{H^2}}  = 3{m{cm}}{m{.}}

    Thể tích khối nón {V_n} = \frac{1}{3}\pi A{H^2}.SH = 27\pi(đvtt).

    Thể tích khối cầu {V_c} = \frac{4}{3}\pi .S{O^3} = \frac{{500\pi }}{3}  (đvtt).

    Suy ra \frac{{{V_n}}}{{{V_c}}} = \frac{{81}}{{500}}

  • Câu 6: Vận dụng

    Trong hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z -
3)^{2} = 16 và các điểm A(1; 0; 2); B(−1; 2; 2). Gọi (P) là mặt phẳng đi qua hai điểm A; B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax + by + cz + 3 = 0. Tính T = a + b + c.

    Ta có:

    (S) có tâm I(1; 2; 3), bán kính R = 4.

    Nhận thấy: IA = IB = \sqrt{5} <
R ⇒ A; B nằm bên trong mặt cầu.

    Gọi K là trung đểm của AB ⇒ K(0; 1; 2); IK ⊥ AB.

    Gọi H là hình chiếu của I trên (P),(P) cắt (S) theo thiết diện là đường tròn tâm H bán kính r.

    Std nhỏ nhất ⇔ r nhỏ nhất ⇔ IH lớn nhất

    ⇔ IH = IK ⇔ H ≡ K.

    Khi đó mặt phẳng (P): Đi qua A và có VTPT là \overrightarrow{IK} = ( - 1; - 1; -
1)

    ⇒ Phương trình mặt phẳng (P) : −x−y−z+3 = 0 ⇒ a+b+c = −3

  • Câu 7: Vận dụng cao

    Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:

    Công thức tính thể tích V = \pi {R^2}h , suy ra h = \frac{V}{{\pi {R^2}}}

    Hộp sữa chỉ kín một đáy nên diện tích tôn cần dùng là:

    {S_{tp}} = {S_{xq}} + {S_{{m{day}}}} = 2\pi Rh + \pi {R^2} = \frac{{2V}}{R} + \pi {R^2}

    Xét hàm f\left( R ight) = \frac{{2V}}{R} + \pi {R^2}  trên \left( {0; + \infty } ight) , ta được \mathop {\min }\limits_{\left( {0; + \infty } ight)} f\left( R ight) đạt tại R=h.

  • Câu 8: Thông hiểu

    Với giá trị nào của m thì mặt phẳng \left( P ight):2x - y + z - 5 = 0 tiếp xúc với mặt cầu 

    \left( S ight):{x^2} + {y^2} + {z^2} - 2mx + 2\left( {2 - m} ight)y - 4mz + 5{m^2} + 1 = 0?

    Theo đề bài, ta xác định các hệ số của (S): a = m;b = m - 2;c = 2m;d = 5{m^2} + 1

    Suy ra tâm I của cầu có tọa độ là I\left( {m,m - 2,2m} ight).

    \Rightarrow {R^2} = {m^2} + {\left( {m - 2} ight)^2} + 4{m^2} - 5{m^2} - 1 = {m^2} - 4m + 3 > 0

    \Rightarrow m < 1 \vee m > 3.\left( P ight) tiếp xúc (S) khi: 

    d\left( {I,P} ight) = \frac{{\left| {3m - 3} ight|}}{{\sqrt 6 }} = R = \sqrt {{m^2} - 4m+3}

    \Leftrightarrow {m^2} + 2m - 3 = 0 \Leftrightarrow m =  - 3 \vee m = 1   (loại)

    \Rightarrow m =  - 3

  • Câu 9: Nhận biết

    Diện tích hình tròn lớn của một hình cầu là p. Một mặt phẳng (\alpha) cắt hình cầu theo một hình tròn có diện tích là \frac{p}{2}. Khoảng cách từ tâm mặt cầu đến mặt phẳng (\alpha)  bằng: 

    Hình tròn lớn của hình cầu S là hình tròn tạo bởi mặt phẳng cắt hình cầu và đi qua tâm của hình cầu.

    Gọi R là bán kính hình cầu thì hình tròn lớn cũng có bán kính là R.

    Theo giả thiết, ta có \pi {R^2} = p \Leftrightarrow R = \sqrt {\frac{p}{\pi }}\pi {r^2} = \frac{p}{2} \Leftrightarrow r = \sqrt {\frac{p}{{2\pi }}}

    Suy ra d = \sqrt {{R^2} - {r^2}}  = \sqrt {\frac{p}{{2\pi }}}.

  • Câu 10: Nhận biết

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;2),B(3;2; - 3). Mặt cầu (S) có tâm I
\in Ox và đi qua hai điểm A;B có phương trình là:

    Ta có: I \in Ox \Rightarrow
I(a;0;0)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{IA} = (1 - a;1;2) \\
\overrightarrow{IB} = (3 - a;2; - 3) \\
\end{matrix} ight.

    (S) đi qua hai điểm A;B nên

    IA = IB \Leftrightarrow \sqrt{(1 -
a)^{2} + 5} = \sqrt{(3 - a)^{2} + 13}

    \Leftrightarrow 4a = 16 \Leftrightarrow
a = 4 \Rightarrow I(4;0;0)

    \Rightarrow R = IA =
\sqrt{14}

    Vậy phương trình mặt cầu cần tìm là: (S):x^{2} + y^{2} + z^{2} - 8x + 2 =
0.

  • Câu 12: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1;2; - 3),B\left( \frac{3}{2};\frac{3}{2}; -\frac{1}{2} ight),C(1;1;4),D(5;3;0). Gọi \left( S_{1} ight) là mặt cầu tâm A bán kính bằng 3,\left( S_{2} ight) là mặt cầu tâm B bán kính bằng \frac{3}{2}. Có bao nhiêu mặt phẳng tiếp xúc với hai mặt cầu \left( S_{1}ight),\left( S_{2} ight) đồng thời song song với đường thẳng đi qua 2 điểm C, D ?

    Hình vẽ minh họa:

    Ta có \overrightarrow{AB} = \left(\frac{1}{2}; - \frac{1}{2};\frac{5}{2} ight) \Rightarrow AB =\frac{3\sqrt{3}}{2} < 3 nên B nằm bên trong mặt cầu \left( S_{1} ight).

    Một mặt phẳng qua AB cắt hai mặt cầu theo hai đường tròn giao tuyến như hình bên.

    Kẻ tiếp tuyến chung của hai đường tròn, tiếp tuyến này sẽ cắt đường thẳng AB tại M.

    Gọi N,E lần lượt là tiếp điểm với hai đường tròn như hình vẽ.

    Tam giác ANM đồng dạng tam giác BEM nên \frac{AM}{BM} = \frac{AN}{BE} = 2.

    Suy ra \overrightarrow{AM} =2\overrightarrow{AB} \Rightarrow M(2;1;2).

    Gọi (P) là mặt phẳng tiếp xúc với cả hai mặt cầu \left( S_{1}ight)\left( S_{2}ight).

    Khi đó (P) sẽ luôn đi qua M.

    Gọi \overrightarrow{n} = (m;n;p) với m^{2} + n^{2} + p^{2} eq 0 là một vectơ pháp tuyến của mặt phẳng (P).

    Phương trình (P):m(x - 2) + n(y - 1) +p(z - 2) = 0.

    Ta có:

    \overrightarrow{CD} = (4;2; -4)

    CD // (P) \Rightarrow\overrightarrow{n} \cdot \overrightarrow{CD} = 0

    \Rightarrow 4m + 2n - 4p = 0 \Rightarrown = 2p - 2m

    d\left( A,(P) ight) = 3\Leftrightarrow \frac{| - m + n - 5p|}{\sqrt{m^{2} + n^{2} + p^{2}}} =3

    \Leftrightarrow | - 3m - 3p| =3\sqrt{m^{2} + (2p - 2m)^{2} + p^{2}}

    \Leftrightarrow 4m^{2} - 10mp + 4p^{2} =0 \Leftrightarrow \left\lbrack \begin{matrix}\dfrac{m}{p} = \dfrac{1}{2} \\\dfrac{m}{p} = 2 \\\end{matrix} ight.

    Trường hợp \frac{m}{p} =\frac{1}{2} : chọn m = 1,p = 2\Rightarrow n = 2.

    Khi đó (P):x + 2y + 2z - 8 = 0 (nhận).

    Trường hợp \frac{m}{p} = 2 : chọn m = 2,p = 1 \Rightarrow n = -2.

    Khi đó (P):2x - 2y + z - 4 = 0 (loại vì chứa C,D).

  • Câu 13: Vận dụng

    Trong không gian Oxyz, viết phương trình mặt cầu đi qua điểm A(1; -
1;4) và tiếp xúc với các mặt phẳng tọa độ?

    Gọi I(a;b;c) là tâm mặt cầu (S). Mặt cầu (S) tiếp xúc với các mặt phẳng tọa độ nên:

    d\left( I;(Oxy) ight) = d\left(
I;(Oyz) ight) = d\left( I;(Ozx) ight)

    \Leftrightarrow |a| = |b| = |c| =
R(*)

    Mặt cầu đi qua điểm A(1; -
1;4)

    \Rightarrow \left\{ \begin{matrix}
IA = R \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
IA^{2} = R^{2} \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + (b + 1)^{2} + (c - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + ( - a + 1)^{2} + (a - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a^{2} - 12a + 18 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a + 9 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = c = 3 \\
b = - 3 \\
R = 3 \\
\end{matrix} ight.\  \Rightarrow (S):(x - 3)^{2} + (y + 3)^{2} + (z -
3)^{2} = 9

  • Câu 14: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng tiếp xúc với mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} +
(z - 3)^{2} = 81 tại điểm P( - 5; -
4;6) là:

    Mặt cầu (S) có tâm I(1; 2; 3).

    Gọi (α) là mặt phẳng cần tìm.

    Do (α) tiếp xúc với (S) tại P nên mặt phẳng (α) đi qua P và có vectơ pháp tuyến \overrightarrow{n} =
\overrightarrow{IP} = ( - 6; - 6;3)

    Phương trình mặt phẳng (α) là

    - 6(x + 5) - 6(y + 4) + 3(z - 6) =
0

    \Leftrightarrow 2x + 2y - z + 24 =
0

  • Câu 15: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo