Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Ta có:

    x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.0.x - 2.1y - 2.( - 1)z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = - 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I(0;1; - 1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{0^{2} + 1^{2} + ( - 1)^{2} - 7} = 3

  • Câu 2: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

     Tìm bán kính

    Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.

    Gọi I là trung điểm SC, suy ra IM ||SA nên IM \bot \left( {ABC} ight) .

    Do đó IM là trục của \triangle ABC, suy ra IA=IB=IC     (1)

    Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS=IC=IA.  (2)

    Từ (1) và (2) , ta có IS=IA=IB=IC

    hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.

    Vậy bán kính R = IS = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = \frac{{a\sqrt 6 }}{2} .

  • Câu 3: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 4: Vận dụng cao

    Cho một chiếc cốc có dạng hình nón cụt và một viên bi có đường kính bằng chiều cao của cốc. Đổ đầy nước rồi thả viên bi vào, ta thấy lượng nước tràn ra bằng một phần ba lượng nước đổ vào cốc lúc ban đầu. Biết viên bi tiếp xúc với đáy cốc và thành cốc. Tìm tỉ số bán kính của miệng cốc và đáy cốc (bỏ qua độ dày của cốc).

    Tỉ số bán kính

     

    Gọi bán kính viên bi là r; bán kính đáy cốc, miệng cốc lần lượt là r_1,r_2,\left(r_1 < r_2ight) . Theo giả thiết thì chiều cao của cốc là h=2r.

    Thể tích viên bi là V_B=\frac{4}{3}\pi r^3.

    Thể tích cốc là V_C=\frac{1}{3}\pi h\left(r_1^2+r_2^2+r_1r_2ight)=\frac{2}{3}\pi r\left(r_1^2+r_2^2+r_1r_2ight).

    Theo giả thiết thì  V_B=\frac{1}{3}V_C\Leftrightarrow6r^2=r_1^2+r_2^2+r_1r_2 (1).

    Mặt cắt chứa trục của cốc là hình thang cân  ABB^\prime A^\prime . Đường tròn tâm (O;r) là đường tròn lớn của viên bi, đồng thời là đường tròn nội tiếp hình thang ABB^\prime A^\prime, tiếp xúc với A'B', AB  lần lượt tại H_1, H_2 và tiếp xúc với BB' tại M.

    Tỉ số thể tích

    Dễ thấy tam giác BOB' vuông tại O.

    Ta có OM^2=MB\cdot MB^\prime\Leftrightarrow r^2=r_1r_2.

    Thay (2) vào (1) ta được 6r_1r_2=r_1^2+r_2^2+r_1r_2\Leftrightarrow\left(\frac{r_2}{r_1}ight)^2-5\frac{r_2}{r_1}+1=0..

    Giải phương trình với điều kiện \frac{r_2}{r_1}>1 ta được \frac{r_2}{r_1}=\frac{5+\sqrt{21}}{2}.

  • Câu 5: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 6: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60^0 . Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:

    Thể tích của khối cầu ngoại tiếp

    Gọi O = AC \cap BD, suy ra SO \bot \left( {ABCD} ight).

    Ta có {60^0}{m{ = }}\widehat {SB,\left( {ABCD} ight)} = \widehat {SB,OB} = \widehat {SBO}.

    Trong \triangle SOB, ta có SO = OB.\tan \widehat {SBO} = \frac{{a\sqrt 6 }}{2}.

    Ta có SO là trục của hình vuông ABCD.

    Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.

    Gọi I = SO \cap d \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in d\end{array} ight. \Rightarrow \left\{ \begin{array}{l}IA = IB = IC = ID\\IS = IB\end{array} ight.

    \Rightarrow IA = IB = IC = ID = IS = R

    Xét \triangle SBD\left\{ \begin{array}{l}SB = SD\\\widehat {SBD} = \widehat {SBO} = {60^o}\end{array} ight. \Rightarrow    \triangle SBD đều.

    Do đó d cũng là đường trung tuyến của \triangle SBD . Suy ra I là trọng tâm \triangle SBD .

    Bán kính mặt cầu R = SI = \frac{2}{3}SO = \frac{{a\sqrt 6 }}{3}.

    Suy ra V = \frac{4}{3}\pi {R^3} = \frac{{8\pi {a^3}\sqrt 6 }}{{27}}

  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm nằm trên mặt phẳng (Oxy) và đi qua ba điểm A(1;2; - 4),B(1; - 3;1),C(2;2;3). Tọa độ tâm I của mặt cầu (S) là:

    Gọi tâm mặt cầu là I(a;b;c) và phương trình mặt cầu (S):x^{2} + y^{2} +
z^{2} - 2ax - 2by - 2cz + d = 0

    Do I \in (Oxy) \Rightarrow c =
0

    \Rightarrow (S):x^{2} + y^{2} + z^{2} -
2ax - 2by + d = 0

    Lại có \left\{ \begin{matrix}
A \in (S) \\
B \in (S) \\
C \in (S) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a + 4b - d = 21 \\
2a - 6b - d = 11 \\
4a + 4b - d = 17 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2 \\
b = 1 \\
d = - 21 \\
\end{matrix} ight.

    Vậy I( - 2;1;0) là đáp án cần tìm.

  • Câu 8: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 9: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 10: Thông hiểu

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 11: Vận dụng

    Cho hình nón đỉnh S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và \widehat {SAO} = {30^0},\widehat {SAB} = {60^0}. Độ dài đường sinh \ell của hình nón bằng:

     Độ dài đường sinh

    Gọi I là trung điểm AB, suy ra OI \bot AB,{m{ }}SI \bot ABOI = a.

    Trong tam giác vuông SOA, ta có OA = SA.\cos \widehat {SAO} = \frac{{SA\sqrt 3 }}{2}

    Trong tam giác vuông SIA, ta có IA = SA.\cos \widehat {SAB} = \frac{{SA}}{2}

    Trong tam giác vuông OIA, ta có:

    O{A^2} = O{I^2} + I{A^2} \Leftrightarrow \frac{3}{4}S{A^2} = {a^2} + \frac{1}{4}S{A^2} \Rightarrow SA = a\sqrt 2 .

  • Câu 12: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 13: Vận dụng cao

    Hai quả bóng hình cầu có kích thước khác nhau, được đặt ở hai góc của một căn nhà hình hộp chữ nhật sao cho mỗi quả bóng đều tiếp xúc với hai bức tường và nền của căn nhà đó. Biết rằng trên bề mặt của mỗi quả bóng đều tồn tại một điểm có khoảng cách đến hai bức tường và nền nhà nó tiếp xúc lần lượt bằng 1, 2, 3. Tính tổng các bình phương của hai bán kính của hai quả bóng đó.

    Hình vẽ minh họa

    Xét quả bóng tiếp xúc với hai bức tường, nền của căn nhà và chọn hệ trục tọa độ Oxyz như hình vẽ (tương tự với góc tường còn lại).

    Gọi I(a; a; a) là tâm của mặt cầu có bán kính R = a.

    Phương trình mặt cầu là: (S):(x - a)^{2}+ (y - a)^{2} + (z - a)^{2} = a^{2}\ \ \ (1)

    Xét điểm M(x; y; z) nằm trên mặt cầu sao cho

    d(M,(Oxz)) = 2, d(M,(Oyz)) = 1, d(M,(Oxy)) = 3.

    Suy ra M(2; 1; 3).

    Vì M thuộc mặt cầu (S) nên từ (1) ta có:

    (2 - a)^{2} + (1 - a)^{2} + (3 - a)^{2}= a^{2}

    \Leftrightarrow a^{2} - 6a + 7 = 0\Leftrightarrow \left\lbrack \begin{matrix}a_{1} = 3 + \sqrt{2} = R_{1} \\a_{2} = 3 - \sqrt{2} = R_{2} \\\end{matrix} ight.

    \Rightarrow {R_{1}}^{2} + {R_{2}}^{2} =22

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P):x + \sqrt{2}y - z + 3 = 0 cắt mặt cầu (S):x^{2} + y^{2} + z^{2} = 5 theo giao tuyến là đường tròn có diện tích là:

    Mặt cầu (S) có tâm O(0;0;0) và bán kính R = \sqrt{5}

    Khoảng cách từ O đến (P): d\left( O;(P) ight) = \frac{3}{2}

    Bán kính đường tròn giao tuyến

    r = \sqrt{R^{2} - \left\lbrack d\left(
O;(P) ight) ightbrack^{2}} = \sqrt{5 - \frac{9}{4}} =
\sqrt{\frac{11}{4}}

    Diện tích đường tròn giao tuyến S = 2\pi
r^{2} = \frac{11\pi}{4}.

  • Câu 15: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, mặt cầu (S) đi qua điểm O và cắt các tia Ox;Oy;Oz lần lượt tại các điểm A;B;C khác O thỏa mãn tam giác ABC có trọng tâm là điểm G( - 6; - 12;18). Tọa độ tâm của mặt cầu (S) là:

    Gọi tọa độ các điểm trên ba tia Ox;Oy;Oz lần lượt là A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0

    Vì G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{a}{3} = - 6 \\
\frac{b}{3} = - 12 \\
\frac{c}{3} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 18 \\
b = - 36 \\
c = 54 \\
\end{matrix} ight.

    Gọi phương trình mặt cầu cần tìm là:

    (S):x^{2} + y^{2} + z^{2} - 2mx - 2ny -
2pz + q = 0

    (S) qua các điểm OABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}
q = 0 \\
36m + q = - 18^{2} \\
72n + q = - 36^{2} \\
- 108p + q = - 54^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
q = 0 \\
m = - 9 \\
n = - 18 \\
p = 27 \\
\end{matrix} ight.

    Vậy tọa độ tâm của mặt cầu (S) là: ( - 9; - 18;27).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo