Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Cho mặt cầu (S):
và điểm
. Gọi M là tiếp điểm của (S) và tiếp tuyến di động qua (d). Tìm tập hợp các điểm M.
(Có thể chọn nhiều đáp án)
Theo đề bài, (S) có tâm
Ta có:
đường tròn
Hay
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm
và đi qua điểm
. Phương trình mặt cầu
là:
Phương trình mặt cầu có tâm
và bán kính
là:
Ta có:
Vậy phương trình cần tìm là: .
Trong hệ tọa độ
, cho mặt cầu
có tâm
và có thể tích bằng
. Khi đó phương trình mặt cầu
là:
Thể tích mặt cầu là:
Vậy phương trình mặt cầu tâm có bán kính
là:
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có .
Diện tích toàn phần là: (đvdt).
Một hình trụ có bán kính đáy
, chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.
Cho khối trụ có hai đáy là
và
.
lần lượt là hai đường kính của
và
, góc giữa
và
bằng
. Thể tích khối tứ diện ABCD bằng 30 . Thể tích khối trụ đã cho bằng?

Ta chứng minh: .

Lấy điểm E sao cho tứ giác BCDE là hình bình hành.
Khi đó .
Mà góc giữa và
bằng
nên ta có:
Ta có
Suy ra
Vậy
Chiều cao của lăng trụ bằng
Áp dụng CT thể tích lăng trụ là:
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Cho hình trụ có bán kính đáy bằng R và chiều cao bằng
. Mặt phẳng
song song với trục của hình trụ và cách trục một khoảng bằng
. Diện tích thiết diện của hình trụ cắt bởi mặt phẳng
là:

Giả sử thiết diện là hình chữ nhật ABCD như hình vẽ.
Gọi H là trung điểm BC suy ra suy ra
Khi đó
Suy ra .
Cho lăng trụ đứng
có đáy ABC là tam giác vuông tại B,
, góc
bằng
. Góc giữa đường thẳng
và mặt phẳng
bằng
. Bán kính mặt cầu ngoại tiếp tứ diện
bằng:

Ta có .
Trong , ta có
Trong , ta có
Gọi N là trung điểm AC , suy ra N là tâm đường tròn ngoại tiếp .
Gọi là trung điểm A'C, suy ra
.
Do đó IN là trục của , suy ra
(1)
Hơn nữa, tam giác vuông tại A có
là trung điểm A'C nên
. (2)
Từ (1) và (2), ta có hay
là tâm của mặt cầu ngoại tiếp hình chóp
với bán kính
.
Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn
, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

Gọi (O) và (O') lần lượt là hai đường tròn đáy; .
Dựng AD, CB lần lượt song song với OO' . Dễ dàng có ABCD là hình chữ nhật.
Do .
Gọi H là trung điểm của DC.
.
Ta có .
Suy ra .
Vậy thể tích của khối trụ là .
Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng cạnh đáy bằng a. Khi đó mặt cầu nội tiếp hình chóp S.ABCD có bán kính bằng:

Gọi H là tâm của hình vuông ABCD.
Ta có SH là trục đường tròn ngoại tiếp đáy.
Gọi M là trung điểm của CD và I là chân đường phân giác trong của góc .
Suy ra I là tâm của mặt cầu nội tiếp hình chóp, bán kính .
Ta có:
Dựa vào tính chất của đường phân giác ta có:
Trong không gian với hệ trục tọa độ
, mặt cầu
đi qua điểm
và cắt các tia
lần lượt tại các điểm
khác
thỏa mãn tam giác
có trọng tâm là điểm
. Tọa độ tâm của mặt cầu
là:
Gọi tọa độ các điểm trên ba tia lần lượt là
với
Vì G là trọng tâm tam giác nên
Gọi phương trình mặt cầu cần tìm là:
Vì qua các điểm
nên ta có hệ phương trình:
Vậy tọa độ tâm của mặt cầu là:
.
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm là điểm
, mặt phẳng
cắt mặt cầu
theo thiết diện là đường tròn có bán kính
. Diện tích của mặt cầu
là:
Ta có:
Vậy diện tích mặt cầu là: .
Trong không gian
, cho mặt cầu
và mặt phẳng
. Với giá trị nào của tham số
thì mặt phẳng tiếp xúc với mặt cầu?
Mặt cầu (S) có tâm và bán kính
Mặt phẳng (α) tiếp xúc với (S) khi và chỉ khi
Vậy đáp án cần tìm là: .