Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Tìm tập hợp các tâm I của mặt cầu sau nằm trên?
![]()
Theo đề bài, ta xác định các hệ số của :
Suy ra ta gọi được tâm I của mặt cầu có tọa độ là
Xét là mặt cầu
Vậy tập hợp các điểm I là phân đường thẳng
tương ứng với .
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:

Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao
và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Cho hình chóp
có đáy
là hình vuông cạnh bằng a. Đường thẳng
vuông góc với đáy
. Gọi M là trung điểm SC, mặt phẳng
đi qua hai điểm A và M đồng thời song song với BD cắt SB, SD lần lượt tại E và F. Bán kính mặt cầu đi qua năm điểm
nhận giá trị nào sau đây?

Mặt phẳng song song với BD cắt SB, SD lần lượt tại E, F nên
cân tại A , trung tuyến AM nên
(1)
Ta có
Do đó (2)
Từ (1) và (2), suy ra (*)
Lại có (**)
Từ (*) và (**), suy ra . Tương tự ta cũng có
Do đó nên năm điểm
cùng thuộc mặt cầu tâm I là trung điểm của SA, bán kính
.
Cho hình nón có bán kính đáy là
, độ dài đường sinh là
. Thể tích khối cầu nội tiếp hình nón bằng:

Xét mặt phẳng qua trục SO của hình nón ta được thiết diện là tam giác cân SAB.
Mặt phẳng đó cắt mặt cầu theo đường tròn có bán kính r (bán kính mặt cầu) và nội tiếp trong tam giác cân SAB.
Trong tam giác vuông SOB, gọi I là giao điểm của đường phân giác trong góc B với đường thẳng SO.
Chứng minh được I là tâm đường tròn nội tiếp tam giác và bán kính (E là hình chiếu vuông góc của I trên SB).
Theo tính chất phân giác, ta có .
Lại có .
Từ đó suy ra .
Ta có nên
Thể tích khối cầu: (đvtt).
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho
. Độ dài đường sinh
của hình nón bằng:

Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Một hình nón có bán kính đáy R, góc ở đỉnh là
. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo
. Diện tích của thiết diện là:

Vì góc ở đỉnh là nên thiết diện qua trục SAC là tam giác đều cạnh 2R.
Suy ra đường cao của hình nón là .
Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng nên IAB là tam giác vuông cân tại I, suy ra
.
Gọi M là trung điểm của AB thì và
.
Trong tam giác vuông SIM, ta có
Vậy (đvdt).
Cho mặt cầu tâm I bán kính
. Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng
. Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:
Theo đề bài, mặt phẳng cắt mặt cầu theo một đường tròn
.
Vậy .
Cho hình chóp
có đáy
là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên mặt phẳng
là trung điểm H của cạnh BC. Góc giữa đường thẳng SA và mặt phẳng
bằng
. Gọi G là trọng tâm tam giác SAC, R là bán kính mặt cầu có tâm G và tiếp xúc với mặt phẳng
. Đẳng thức nào sau đây sai?
Ta có .
Tam giác ABC đều cạnh a nên .
Trong tam giác vuông SHA, ta có .
Vì mặt cầu có tâm G và tiếp xúc với (SAB) nên bán kính mặt cầu .
Ta có
Gọi M, E lần lượt là trung điểm của AB và MB.
Suy ra và
.
Gọi K là hình chiếu vuông góc của H trên SE , suy ra (1).
Ta có (2)
Từ (1) và (2) , suy ra nên
.
Trong tam giác vuông SHE, ta có .
Vậy .
Trong hệ tọa độ
, cho mặt cầu
và các điểm
. Gọi
là mặt phẳng đi qua hai điểm
sao cho thiết diện của mặt phẳng
với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình
dưới dạng
. Tính
.
Ta có:
(S) có tâm , bán kính
.
Nhận thấy: ⇒ A; B nằm bên trong mặt cầu.
Gọi K là trung đểm của AB
Gọi H là hình chiếu của I trên (P),(P) cắt (S) theo thiết diện là đường tròn tâm H bán kính r.
Std nhỏ nhất ⇔ r nhỏ nhất ⇔ IH lớn nhất
Khi đó mặt phẳng (P): Đi qua A và có VTPT là
⇒ Phương trình mặt phẳng
Trong không gian
, tìm tất cả các giá trị của tham số
để
là phương trình mặt cầu
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
Vậy đáp án cần tìm là:
Trong không gian với hệ trục toạ độ
, cho điểm
. Viết phương trình mặt cầu tâm
cắt trục
tại hai điểm
sao cho
?
Hình vẽ minh họa
Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên
Phương trình mặt cầu là: .
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính đường kính
của mặt cầu
đi qua ba điểm trên và có tâm nằm trên mặt phẳng
?
Gọi tâm mặt cầu là
Ta có:
.