Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Trong không gian Oxyz, cho mặt cầu (S): x^2 +y^2 +z^2 −2x+ 2z −2 = 0 và các điểm A(0; 1; 1), B(−1; −2; −3), C(1; 0; −3). Điểm D thuộc mặt cầu (S). Thể tích lớn nhất của tứ diện ABCD bằng:

    Mặt cầu (S) có tâm là I(1; 0; −1) và bán kính R = 2.

    Khi V_{DABC} lớn nhất thì \frac{V_{DABC}}{V_{IABC}} = \frac{d\left( D;(ABC)
ight)}{d\left( I;(ABC) ight)} = \frac{R + d\left( I;(ABC)
ight)}{d\left( I;(ABC) ight)}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1; - 3; - 4) \\
\overrightarrow{AC} = (1; - 1; - 4) \\
\overrightarrow{AI} = (1; - 1; - 2) \\
\end{matrix} ight. suy ra:

    V_{IABC} = \frac{1}{6}\left|
\left\lbrack \left\lbrack \overrightarrow{AB};\overrightarrow{AC}
ightbrack.\overrightarrow{AI} ightbrack ight| =
\frac{4}{3}

    \Rightarrow d\left( I;(ABC) ight) =
\frac{6.V_{IABC}}{\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight|} =
\frac{2}{3}

    \Rightarrow V_{DABC} =\dfrac{4}{3}.\dfrac{2 + \dfrac{2}{3}}{\dfrac{2}{3}} =\dfrac{16}{3}.

  • Câu 2: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 3: Thông hiểu

    Cho hình lập phương OABC.DEFG có cạnh bằng 1 có \overrightarrow {OA} ,\,\,\overrightarrow {OC} ,\,\,\overrightarrow {OG} trùng với ba trục \overrightarrow {Ox} ,{m{ }}\overrightarrow {Oy} ,{m{ }}\overrightarrow {Oz}. Viết phương trình mặt cầu \left( {{S_3}} ight) tiếp xúc với tất cả các cạnh của hình lập phương.

     \left( {{S_2}} ight) tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.

    Tâm I\left( {\frac{1}{2},\frac{1}{2},\frac{1}{2}} ight) là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng \sqrt 2

    Bán kính {R_3} = \frac{{\sqrt 2 }}{2}

    \begin{array}{l} \Rightarrow \left( {{S_2}} ight):{\left( {x - \dfrac{1}{2}} ight)^2} + {\left( {y - \dfrac{1}{2}} ight)^2} + {\left( {z - \dfrac{1}{2}} ight)^2} = \dfrac{1}{2}\\ \Rightarrow \left( {{S_3}} ight):{x^2} + {y^2} + {z^2} - x - y - z + \dfrac{1}{4} = 0\end{array}

  • Câu 4: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y + z - m^{2} - 3m = 0 và mặt cầu (S):(x - 1)^{2} + (y + 1)^{2} + (z -
1)^{2} = 9. Tìm tất cả các giá trị của m để (P) tiếp xúc với mặt cầu (S)?

    Ta có mặt cầu (S) có tâm I(1; −1; 1) và bán kính R = 3.

    Mặt phẳng (P) tiếp xúc với (S) khi và chỉ khi:

    d\left\lbrack I;(P) ightbrack = R
\Leftrightarrow \frac{\left| 1 - m^{2} - 3m ight|}{3} = 3

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} + 3m - 10 = 0 \\
m^{2} + 3m + 8 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2 \\
m = - 5 \\
\end{matrix} ight..

  • Câu 6: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 7: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;3)B( - 1;0;1) và mặt phẳng (P):x + y + z + 4 = 0. Phương trình mặt cầu (S) có bán kính bằng \frac{AB}{6} có tâm thuộc đường thẳng AB(S) tiếp xúc với mặt phẳng (P) là:

    Ta có: \overrightarrow{AB} = ( - 2;2; -
2) suy ra AB:\left\{ \begin{matrix}
x = 1 - 2t \\
y = - 2 + 2t \\
z = 3 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Ta có: R = \frac{AB}{6} =
\frac{2\sqrt{3}}{6} = \frac{\sqrt{3}}{3}

    Tâm I thuộc AB nên I(1 - 2t; - 2 + 2t;3 -
2t)

    Mặt phẳng (P) tiếp xúc mặt cầu nên

    d\left( I;(P) ight) = R

    \Leftrightarrow \frac{\left| (1 - 2t) +
( - 2 + 2t) + (2 - 2t) + 4 ight|}{\sqrt{1^{2} + 1^{2} + 1^{2}}} =
\frac{\sqrt{3}}{3}

    \Leftrightarrow |6 - 2t| = 1
\Leftrightarrow \left\lbrack \begin{matrix}
6 - 2t = 1 \\
6 - 2t = - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}t = \dfrac{5}{2} \Rightarrow I( - 4;3; - 2) \\t = \dfrac{7}{2} \Rightarrow I( - 6;5; - 4) \\\end{matrix} ight.

    Ta có phương trình đường tròn (C) tâm I(−4; 3; −2), bán kính R = \frac{\sqrt{3}}{3}là:

    (x + 4)^{2} + (y - 3)^{2} + (z + 2)^{2}
= \frac{1}{3}

    Ta có phương trình đường tròn (C) tâm I(−6; 5; −4), bán kính R = \frac{\sqrt{3}}{3}là:

    (x + 6)^{2} + (y - 5)^{2} + (z + 4)^{2}
= \frac{1}{3}

    Vậy đáp án cần tìm là: \left\lbrack\begin{matrix}(x + 4)^{2} + (y - 3)^{2} + (z + 2)^{2} = \dfrac{1}{3} \\(x + 6)^{2} + (y - 5)^{2} + (z + 4)^{2} = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 8: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 9: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 10: Vận dụng

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu (S') chứa (C) và điểm M(1,-2,1)

     Phương trình của \left( {S'} ight):\left( S ight) + m\left( P ight) = 0,\,\,m e 0

    \left( {S'} ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 + m\left( {3x + 2y + 6z + 1} ight) = 0

    (S') qua M\left( {1, - 2,1} ight) \Rightarrow 6m + 18 = 0 \Leftrightarrow m =  - 3

    \Rightarrow \left( {S'} ight):{x^2} + {y^2} + {z^2} - 5x - 8y - 12z - 5 = 0

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =
25. Đường thẳng d cắt mặt cầu (S) tại hai điểm A, B. Biết tiếp diện của (S) tại A, B vuông góc. Tính độ dài AB.

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; 2; −1), bán kính R = 5. Xét mặt phẳng (P) chứa d cắt giao tuyến của hai tiếp diện tại O.

    Ta có tứ giác OIAB là hình vuông.

    Suy ra AB = IA.\sqrt{2} = R\sqrt{2} =
5\sqrt{2}.

  • Câu 12: Vận dụng

    Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:

     Tính thể tích khối trụ

    Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.

    Ta có BH \bot \left( {AOO'A'} ight) nên {V_{OO'AB}} = \frac{1}{3}{S_{\Delta AOO'}}.BH.

    Trong tam giác vuông A'AB có A'B = \sqrt {A{B^2} - AA{'^2}}  = \sqrt 3 a.

    Trong tam giác vuông A'BD có BD = \sqrt {A'{D^2} - A'{B^2}}  = a.

    Do đó suy ra tam giác BO'D nên BH = \frac{{\sqrt 3 a}}{2}.

    Vậy  {V_{OO'AB}} = \frac{1}{3}.\left( {\frac{1}{2}{a^2}} ight).\frac{{a\sqrt 3 }}{2} = \frac{{\sqrt 3 {a^3}}}{{12}} (đvtt).

  • Câu 13: Nhận biết

    Trong hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I( - 1;4;2) và có thể tích bằng \frac{256\pi}{3}. Khi đó phương trình mặt cầu (S) là:

    Thể tích mặt cầu là: V = \frac{4\pi
R^{3}}{3} = \frac{256\pi}{3} \Rightarrow R = 4

    Vậy phương trình mặt cầu tâm I có bán kính R = 4 là: (x + 1)^{2} + (y - 4)^{2} + (z - 2)^{2} =
16

  • Câu 14: Vận dụng cao

    Trong các hình trụ có diện tích toàn phần bằng 1000{\mathrm{\ }cm}^2 thì hình trụ có thể tích lớn nhất là bao nhiêu {m cm}^3

    Ta có S_{tp}=2\pi Rh+2\pi R^2\Rightarrow Rh+R^2=\frac{S}{2\pi}

    Vậy thể tích khối trụ V=\pi R^2h=\pi R\left(\frac{S}{2\pi}-R^2ight)=\frac{S}{2}R-\pi R^3=F(R)

    Ta có: F^\prime(R)=\frac{S}{2}-3\pi R^2=0\Leftrightarrow R=\sqrt{\frac{S}{6\pi}}

    Bảng biến thiên

    Thể tích lớn nhất

    Từ bảng biến thiên ta có

    V_{max}=\frac{S}{2}R-\pi R^3=\frac{1000}{2}\sqrt{\frac{1000}{6\pi}}-\pi{\sqrt{\frac{1000}{6\pi}}}^3\approx2428.

  • Câu 15: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;7),B( - 3;8; - 1). Mặt cầu đường kính AB có phương trình là:

    Gọi I là trung điểm của AB khi đó I(
- 1;3;3) là tâm mặt cầu (S).

    Bán kính R = IA = \sqrt{(1 + 1)^{2} + ( -
2 - 3)^{2} + (7 - 3)^{2}} = \sqrt{45}

    Vậy phương trình mặt cầu cần tìm là: (x +
1)^{2} + (y - 3)^{2} + (z - 3)^{2} = 45.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo