Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O'), bán kính bằng a. Một hình nón có đỉnh là O' và có đáy là hình tròn (O). Biết góc giữa đường sinh của hình nón với mặt đáy bằng 60^0, tỉ số diện tích xung quanh của hình trụ và hình nón bằng

     Tỉ số diện tích xung quanh

    Gọi A là điểm thuộc đường tròn (O).

    Góc giữa O'A và mặt phẳng đáy là góc \widehat{O^\prime A O}.. Theo giả thiết ta có \widehat{O^\prime A O}={60}^\circ.

    Xét tam giác O^\prime OA vuông tại , ta có:

    \tan\widehat{O^\prime A O}=\frac{O^\prime O}{OA}\Rightarrow O^\prime O=a\cdot\tan{60}^\circ=a\sqrt3

    \cos\widehat{O^\prime A O}=\frac{OA}{O^\prime A}\Rightarrow O^\prime A=\frac{a}{\cos{60}^\circ}=2a

    Diện tích xung quanh của hình trụ là:

    S_{xq(T)}=2\pi\cdot OA\cdot O^\prime O=2\pi\cdot a\cdot a\sqrt3=2\pi a^2\sqrt3.

    Diện tích xung quanh của hình nón là:

    S_{xq(N)}=\pi\cdot OA\cdot O^\prime A=\pi\cdot a\cdot2a=2\pi a^2.

    \Rightarrow\dfrac{S_{xq(T)}}{S_{xq(N)}}=\dfrac{2\pi a^2\sqrt3}{2\pi a^2}=\sqrt3

  • Câu 2: Vận dụng cao

    Trong không gian Oxyz, cho ba điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c), trong đó a > 0, b > 0, c > 0\frac{1}{a} + \frac{2}{b} +
\frac{3}{c} = 7. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S): (x − 1)^2 + (y − 2)^2 + (z − 3)^2 = 72/7. Thể tích của khối tứ diện OABC là:

    Mặt phẳng (ABC) có phương trình là \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

    Mặt cầu (S) có tâm là I(1; 2; 3) và bán kính R =
\sqrt{\frac{72}{7}}. Khi đó:

    d\left( I;(ABC) ight) = \dfrac{\left|\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} ight|}{\sqrt{\dfrac{1}{a^{2}} +\dfrac{1}{b^{2}} + \dfrac{1}{c^{2}}}} = \sqrt{\dfrac{72}{7}}

    \Leftrightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} = \frac{7}{2}

    Áp dụng bất đẳng thức Cauchy - Schwarz, ta có:

    49 = \left( \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} ight)^{2} \leq \left( 1^{2} + 2^{2} + 3^{2} ight)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} ight) =
\frac{7}{2}.14 = 49

    Dấu đẳng thức xảy ra khi a = 2b = 3c. Thay vào giả thiết ta có:

    a = 2;b = 1;c = \frac{2}{3}

    Vì OABC là tứ diện vuông tại O nên V_{OABC} = \frac{abc}{2} =
\frac{2}{9}

  • Câu 3: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, . Cạnh bên , hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là:

    Tính bán kính

    Gọi M là trung điểm AC, suy ra SM \bot \left( {ABC} ight) \Rightarrow SM \bot AC.

    Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.

    Ta có AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2, suy ra tam giác SAC đều.

    Gọi G là trọng tâm \triangle SAC , suy ra GS = GA = GC.    (1)

    Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.

    Lại có SM \bot \left( {ABC} ight) nên SM là trục của tam giác ABC.

    Mà G thuộc SM nên suy ra GA = GB = GC.

    Từ (1) và (2), suy ra GS = GA = GB = GC hay G là tâm mặt cầu ngoại tiếp khối chóp S.ABC.

    Bán kính mặt cầu R = GS = \frac{2}{3}SM = \frac{{a\sqrt 6 }}{3}.

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm nằm trên mặt phẳng (Oxy) và đi qua ba điểm A(1;2; - 4),B(1; - 3;1),C(2;2;3). Tọa độ tâm I của mặt cầu (S) là:

    Gọi tâm mặt cầu là I(a;b;c) và phương trình mặt cầu (S):x^{2} + y^{2} +
z^{2} - 2ax - 2by - 2cz + d = 0

    Do I \in (Oxy) \Rightarrow c =
0

    \Rightarrow (S):x^{2} + y^{2} + z^{2} -
2ax - 2by + d = 0

    Lại có \left\{ \begin{matrix}
A \in (S) \\
B \in (S) \\
C \in (S) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a + 4b - d = 21 \\
2a - 6b - d = 11 \\
4a + 4b - d = 17 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2 \\
b = 1 \\
d = - 21 \\
\end{matrix} ight.

    Vậy I( - 2;1;0) là đáp án cần tìm.

  • Câu 5: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 6: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) qua bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). Phương trình mặt cầu (S) là:

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình

    \left\{ \begin{matrix}18 - 6a - 6b + d = 0 \\18 - 6a - 6c + d = 0 \\18 - 6b - 6c + d = 0 \\27 - 6a - 6b - 6c + d = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = \dfrac{3}{2} \\c = \dfrac{3}{2} \\d = 0 \\\end{matrix} ight.. Suy ra tâm mặt cầu I\left( \frac{3}{2};\frac{3}{2};\frac{3}{2}
ight) và bán kính R = \sqrt{a^{2}
+ b^{2} + c^{2} - d} = \frac{3\sqrt{3}}{2}

    Vậy phương trình mặt cầu cần tìm là: \left( x - \frac{3}{2} ight)^{2} + \left( y -
\frac{3}{2} ight)^{2} + \left( z - \frac{3}{2} ight)^{2} =
\frac{27}{4}

  • Câu 8: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 9: Thông hiểu

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 10: Vận dụng

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} = 9 và mặt phẳng (P):x + y + z - 3 = 0. Gọi (S') là mặt cầu chứa đường tròn giao tuyến của (S)(P) đồng thời (S') tiếp xúc với mặt phẳng (Q):x - y + z - 5 = 0. Gọi I(a;b;c) là tâm của (S'). Tính giá trị biểu thức T = abc.

    Phương trình mặt cầu (S’) có dạng:

    x^{2} + y^{2} + z^{2} - 9 + m(x + y + z
- 3) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
mx + my + mz - 9 - 3m = 0

    Mặt cầu (S') có tâm I\left( - \frac{m}{2}; - \frac{m}{2}; -
\frac{m}{2} ight), bán kính R =
\sqrt{\frac{3m^{2}}{4} + 3m + 9}.

    Mặt cầu (S') tiếp xúc với (Q) nên

    d\left( I;(Q) ight) = R\Leftrightarrow \dfrac{\left| - \dfrac{m}{2} - 5 ight|}{\sqrt{2}} =\sqrt{\frac{3m^{2}}{4} + 3m + 9}

    \Leftrightarrow |m + 10| = \sqrt{9m^{2}
+ 36m + 108}

    \Leftrightarrow m = - 1 \Rightarrow
I\left( \frac{1}{2};\frac{1}{2};\frac{1}{2} ight)

    Vậy T = abc = \frac{1}{8}.

  • Câu 11: Nhận biết

    Cho đường tròn (C) đường kính AB và đường thẳng \triangle. Để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu thì cần có thêm điều kiện nào sau đây:

    Điều kiện để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu là trục quay \triangle phải cố định và hai điểm A, B cũng cố định trên \triangle.

  • Câu 12: Nhận biết

    Trong không gian Oxyz, viết phương trình mặt cầu (S) đường kính AB biết A(2; - 1; - 3),B(0;3; - 1)?

    Gọi I là trung điểm của AB khi đó I(1;1; - 2) là tâm mặt cầu (S).

    Bán kính R = \frac{1}{2}AB =
\frac{1}{2}\sqrt{4 + 16 + 4} = \frac{\sqrt{24}}{2}

    Vậy phương trình mặt cầu cần tìm là: (S):(x + 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
6.

  • Câu 13: Thông hiểu

    Cho hình lập phương OABC.DEFG có cạnh bằng 1 có \overrightarrow {OA} ,\,\,\overrightarrow {OC} ,\,\,\overrightarrow {OG} trùng với ba trục \overrightarrow {Ox} ,{m{ }}\overrightarrow {Oy} ,{m{ }}\overrightarrow {Oz}. Viết phương trình mặt cầu \left( {{S_3}} ight) tiếp xúc với tất cả các cạnh của hình lập phương.

     \left( {{S_2}} ight) tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.

    Tâm I\left( {\frac{1}{2},\frac{1}{2},\frac{1}{2}} ight) là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng \sqrt 2

    Bán kính {R_3} = \frac{{\sqrt 2 }}{2}

    \begin{array}{l} \Rightarrow \left( {{S_2}} ight):{\left( {x - \dfrac{1}{2}} ight)^2} + {\left( {y - \dfrac{1}{2}} ight)^2} + {\left( {z - \dfrac{1}{2}} ight)^2} = \dfrac{1}{2}\\ \Rightarrow \left( {{S_3}} ight):{x^2} + {y^2} + {z^2} - x - y - z + \dfrac{1}{4} = 0\end{array}

  • Câu 14: Vận dụng cao

    Từ một tấm tôn hình chữ nhật kích thước 50{m{cm}} \times 240{m{cm}} , người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50  cm , theo hai cách sau (xem hình minh họa sau đây):

    Tính tỉ số thể tích

    ● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

    ● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

    Kí hiệu V_1là thể tích của thùng gò được theo cách 1 và V_2 là thể tích của thùng gò được theo cách 2. Khi đó tỉ số \frac{{{V_1}}}{{{V_2}}} bằng:

    2 || Hai || hai

    Đáp án là:

    Từ một tấm tôn hình chữ nhật kích thước 50{m{cm}} \times 240{m{cm}} , người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50  cm , theo hai cách sau (xem hình minh họa sau đây):

    Tính tỉ số thể tích

    ● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

    ● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

    Kí hiệu V_1là thể tích của thùng gò được theo cách 1 và V_2 là thể tích của thùng gò được theo cách 2. Khi đó tỉ số \frac{{{V_1}}}{{{V_2}}} bằng:

    2 || Hai || hai

     Công thức thể tích khối trụ V = \pi {R^2}h.

    ● Ở cách 1, suy ra h= 50  cm2\pi {R_1} = 240 \Leftrightarrow {R_1} = \frac{{120}}{\pi }. Do đó {V_1} = \pi .{\left( {\frac{{120}}{\pi }} ight)^2}.50 (đvtt).

    ● Ở cách 2, suy ra mỗi thùng có h= 50  cm2\pi {R_2} = 120 \Leftrightarrow {R_2} = \frac{{60}}{\pi }

    Do đó {V_2} = 2 \times \left[ {\pi .{{\left( {\frac{{60}}{\pi }} ight)}^2}.50} ight] (đvtt).

    Suy ra \frac{{{V_1}}}{{{V_2}}} = 2

  • Câu 15: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo