Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có .
Diện tích toàn phần là: (đvdt).
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có .
Diện tích toàn phần là: (đvdt).
Trong không gian
, cho mặt cầu
và mặt phẳng
, với
là tham số. Gọi
là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng
cắt mặt cầu
theo một đường tròn có chu vi
. Tổng giá trị của tất cả các phần tử thuộc
bằng:
Mặt cầu có tâm I(2; 1; −1) và bán kính R = 5.
Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.
Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:
Vậy tổng giá trị của các phần tử thuộc T bằng −16.
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:

Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Trong không gian với hệ tọa độ
, cho hai điểm
. Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác
và tiếp xúc với mặt phẳng
?
Gọi I là tâm đường tròn nội tiếp tam giác
Ta áp dụng tính chất sau: “Cho tam giác với I là tâm đường tròn nội tiếp, khi đó ta có:
với
”
Ta có:
Khi đó:
Mặt phẳng có phương trình
Mặt cầu tiếp xúc với mặt phẳng nên mặt cầu có bán kính
Vậy phương trình mặt cầu cần tìm là: .
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng
. Diện tích toàn phần của hình nón là:

Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Trong không gian với hệ tọa độ
, cho
và điểm
. Xét các điểm
sao cho đường thẳng
luôn tiếp xúc với
. Điểm
luôn thuộc một mặt phẳng cố định có phương trình là
Tọa độ tâm mặt cầu là:
Gọi khi đó:
.
Theo đề bài ra ta có:
Mặt khác phương trình mặt cầu
Lấy (*) trừ (**) ta được: .
Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu:
.
Theo đề bài, ta có:
là mặt cầu
Cho khối trụ có hai đáy là
và
.
lần lượt là hai đường kính của
và
, góc giữa
và
bằng
. Thể tích khối tứ diện ABCD bằng 30 . Thể tích khối trụ đã cho bằng?

Ta chứng minh: .

Lấy điểm E sao cho tứ giác BCDE là hình bình hành.
Khi đó .
Mà góc giữa và
bằng
nên ta có:
Ta có
Suy ra
Vậy
Chiều cao của lăng trụ bằng
Áp dụng CT thể tích lăng trụ là:
Giá trị
phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:
? ![]()
Ta có:
là mặt cầu
.
Trong không gian với hệ tọa độ
, cho mặt cầu ![]()
Ta có:
Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là:
Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng
, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác OAB đều cạnh R.
Gọi E là trung điểm AB, suy ra và
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Trong không gian
, cho mặt cầu
có tọa độ tâm
là:
Tâm của có tọa độ là
.
Trong không gian với hệ tọa độ
, cho hai điểm
. Gọi
là mặt cầu có đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao tuyến của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rằng
với
. Tính giá trị
.
Hình vẽ minh họa
Ta có: mà
nên
Suy ra (P): 2x + 2y + z + d = 0.
Ta có AB = 6. Gọi I là trung điểm của đoạn thẳng AB, suy ra I (4; 3; 4).
Ta có (S) là mặt cầu có đường kính AB nên có
Gọi r là bán kính đường tròn tâm H.
Khi đó, thể tích khối nón đỉnh cần tìm được xác định bởi công thức
Ta có:
Đặt
Mà
Vậy
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là
. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

Gọi E là trung điểm của BC, dựng tại H.
Chứng minh được nên suy ra
.
Trong tam giác đều ABC, ta có
và
Trong tam giác vuông SOE, ta có
.
Vậy thể tích khối nón (đvtt).