Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x - 2y + 2z
- 19 = 0 và mặt phẳng (P):2x - y -
2z + m + 3 = 0, với m là tham số. Gọi T là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi 6\pi. Tổng giá trị của tất cả các phần tử thuộc T bằng:

    Mặt cầu (S):(x - 2)^{2} + (y - 1)^{2} +
(z + 1)^{2} = 25 có tâm I(2; 1; −1) và bán kính R = 5.

    Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.

    Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:

    d\left( I;(P) ight) = \sqrt{R^{2} -
r^{2}} = 4

    \Leftrightarrow \frac{|4 - 1 + 2 + m +
3|}{3} = 4

    \Leftrightarrow |m + 8| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = - 20 \\
\end{matrix} ight.

    Vậy tổng giá trị của các phần tử thuộc T bằng −16.

  • Câu 2: Vận dụng cao

    Trong các hình trụ có diện tích toàn phần bằng 1000{\mathrm{\ }cm}^2 thì hình trụ có thể tích lớn nhất là bao nhiêu {m cm}^3

    Ta có S_{tp}=2\pi Rh+2\pi R^2\Rightarrow Rh+R^2=\frac{S}{2\pi}

    Vậy thể tích khối trụ V=\pi R^2h=\pi R\left(\frac{S}{2\pi}-R^2ight)=\frac{S}{2}R-\pi R^3=F(R)

    Ta có: F^\prime(R)=\frac{S}{2}-3\pi R^2=0\Leftrightarrow R=\sqrt{\frac{S}{6\pi}}

    Bảng biến thiên

    Thể tích lớn nhất

    Từ bảng biến thiên ta có

    V_{max}=\frac{S}{2}R-\pi R^3=\frac{1000}{2}\sqrt{\frac{1000}{6\pi}}-\pi{\sqrt{\frac{1000}{6\pi}}}^3\approx2428.

  • Câu 3: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \frac{a}{2}. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

     Thể tích khối nón

    Gọi E là trung điểm của BC, dựng OH \bot SE tại H.

    Chứng minh được OH \bot \left( {SBC} ight) nên suy ra OH = d\left[ {O,\left( {SBC} ight)} ight] = \frac{a}{2}.

    Trong tam giác đều ABC, ta có OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}

    và  OA = \frac{2}{3}AE = \frac{{2a\sqrt 3 }}{3}

    Trong tam giác vuông SOE, ta có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{S{O^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{1}{{{a^2}}} \Rightarrow SO = a.

    Vậy thể tích khối nón V = \frac{1}{3}\pi O{A^2}.SO = \frac{1}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} ight)^2}.a = \frac{{4\pi {a^3}}}{9}  (đvtt).

  • Câu 4: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho \left( S_{m} ight):(x - 1)^{2} + (y - 1)^{2} +
(z - m)^{2} = \frac{m^{2}}{4} với m
> 0 là tham số thực) và hai điểm A(2;3;5),B(1;2;4). Tìm giá trị nhỏ nhất của tham số m để trên \left( S_{m} ight) tồn tại điểm M sao cho MA^{2} - MB^{2} = 9?

    Gọi M(x;y;z)

    Theo đề bài ra ta có:

    MA^{2} - MB^{2} = 9

    \Leftrightarrow (x - 2)^{2} + (y -
3)^{2} + (z - 5)^{2} - (x - 1)^{2} - (y - 2)^{2} - (z - 4)^{2} =
9

    \Leftrightarrow x + y + z - 4 =
0

    Mặt cầu (Sm) có tâm I(1; 1; m) và bán kính R = \frac{m}{2}

    Gọi (α): x + y + z − 4 = 0. Khi đó:

    M(1;1;m) \in \left( S_{m} ight)
\Leftrightarrow d\left( I;(\alpha) ight) \leq R

    \Leftrightarrow \frac{|m - 2|}{\sqrt{3}}
\leq \frac{m}{2} \Leftrightarrow m - 2 \geq -
\frac{\sqrt{3}}{2}m

    \Leftrightarrow m \geq 8 -
4\sqrt{3}

    Vậy giá trị nhỏ nhất của tham số m cần tìm là m = 8 - 4\sqrt{3}.

  • Câu 5: Nhận biết

    Mặt cầu (S) có tâm A(1; -2; 2) và bán kính R = 8. Tìm phương trình mặt cầu (S).

    Phương trình mặt cầu tâm I(a;b;c) bán kính R có dạng: (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}

  • Câu 6: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P):x + \sqrt{2}y - z + 3 = 0 cắt mặt cầu (S):x^{2} + y^{2} + z^{2} = 5 theo giao tuyến là đường tròn có diện tích là:

    Mặt cầu (S) có tâm O(0;0;0) và bán kính R = \sqrt{5}

    Khoảng cách từ O đến (P): d\left( O;(P) ight) = \frac{3}{2}

    Bán kính đường tròn giao tuyến

    r = \sqrt{R^{2} - \left\lbrack d\left(
O;(P) ight) ightbrack^{2}} = \sqrt{5 - \frac{9}{4}} =
\sqrt{\frac{11}{4}}

    Diện tích đường tròn giao tuyến S = 2\pi
r^{2} = \frac{11\pi}{4}.

  • Câu 7: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 8: Thông hiểu

    Khi đặt hệ tọa độ Oxyz vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu (S) (tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} + 14x + 12y - 10z + 29 =
0. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.

    Đáp án : 18km

    Đáp án là:

    Khi đặt hệ tọa độ Oxyz vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu (S) (tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} + 14x + 12y - 10z + 29 =
0. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.

    Đáp án : 18km

    Ta có x^{2} + y^{2} + z^{2} + 14x + 12y -
10z + 29 = 0

    \Leftrightarrow (x + 7)^{2} + (y + 6)^{2}
+ (z - 5)^{2} = 9^{2}.

    Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là 18km.

    Đáp số: 18km.

  • Câu 9: Vận dụng cao

    Trong không gian với hệ toạ độ Oxyz, cho điểm S(0;0;1), Hai điểm M(m;0;0),N(0;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Mặt phẳng (SMN) luôn tiếp xúc với một mặt cầu cố định đi qua P(1;1;1) có bán kính là

    Phương trình (SMN):\frac{x}{m} +\frac{y}{n} + z = 1. Gọi I(a;b;c)R là tâm và bán kính mặt cầu cố định trong đề bài, phương trình mặt cầu là (x -a)^{2} + (y - b)^{2} + (z - c)^{2} = R^{2}.

    Ta có khoảng cách từ I đên (SMN)d = \dfrac{\left| \dfrac{a}{m} +\dfrac{b}{n} + c - 1 ight|}{\sqrt{\dfrac{1}{m^{2}} + \dfrac{1}{n^{2}} +1}} = R

    \ m + n = 1 \Rightarrow\frac{1}{m^{2}} + \frac{1}{n^{2}} + 1

    = \frac{m^{2} + n^{2} +m^{2}n^{2}}{m^{2}n^{2}} = \frac{1 - 2mn +m^{2}n^{2}}{m^{2}n^{2}}

    \Rightarrow d = \frac{|an + bm + cmn -mn|}{1 - mn} = R

    Nếu an + bm + cmn - mn = R(1 -mn)

    \Leftrightarrow a(1 - m) + bm + cm(1 -m) - m(1 - m) = R - Rm(1 - m)

    \Leftrightarrow m^{2}(R + c - 1) + m(a -b - c - R + 1) - a + R = 0

    Đẳng thức đúng với mọi m \in(0;1) nên R + c - 1 = a - b - c - R+ 1 = - a + R hay a = b = R,c = 1 -R, thay vào phương trình mặt cầu ta có R = 1.

    Nếu an + bm + cmn − mn = −R(1 − mn)

    \Leftrightarrow m^{2}( - R + c - 1) +m(a - b - c + R + 1) - a - R = 0

    Đẳng thức đúng với mọi m ∈ (0; 1) nên R+c−1 = a−b−c−R+1 = −a+R hay a = b = −R, c = 1+R thay vào phương trình mặt cầu ta có R = −1 không thỏa mãn.

    Vậy R = 1.

  • Câu 10: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 11: Vận dụng

    Trong không gian Oxyz, cho mặt phẳng (P): 2x + y − 2z + 10 = 0 và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
25 cắt nhau theo giao tuyến đường tròn (C). Gọi V_{1} là thể tích khối cầu (S), V_{2} là thể tích khối nón (N) có đỉnh là giao điểm của đường thẳng đi qua tâm mặt cầu (S) và vuông góc với mặt phẳng (P), đáy là đường tròn (C). Biết độ dài đường cao khối nón (N) lớn hơn bán kính của khối cầu (S). Tính tỉ số \frac{V_{1}}{V_{2}}?

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(2; 1; 3) và bán kính R = 5, khoảng cách từ tâm I đến mặt phẳng (P) là:

    d = d\left( I;(P) ight) = \frac{|4 + 1
- 6 + 10|}{3} = 3

    Bán kính đường tròn (C) là: r = \sqrt{R^{2} - d^{2}} = 4

    Thể tích khối cầu (S) là: V_{1} =
\frac{4}{3}\pi R^{3} = \frac{500\pi}{3}

    Chiều cao hình nón là h = R + d = 8.

    Thể tích khối nón làV_{2} = \frac{1}{3}\pi r^{2}h =
\frac{128\pi}{3}

    Vậy \frac{V_{1}}{V_{2}} =
\frac{125}{32}.

  • Câu 12: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 13: Nhận biết

    Trong không gian Oxyz, viết phương trình mặt cầu (S) đường kính AB biết A(2; - 1; - 3),B(0;3; - 1)?

    Gọi I là trung điểm của AB khi đó I(1;1; - 2) là tâm mặt cầu (S).

    Bán kính R = \frac{1}{2}AB =
\frac{1}{2}\sqrt{4 + 16 + 4} = \frac{\sqrt{24}}{2}

    Vậy phương trình mặt cầu cần tìm là: (S):(x + 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
6.

  • Câu 14: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 15: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo