Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho một chiếc cốc có dạng hình nón cụt và một viên bi có đường kính bằng chiều cao của cốc. Đổ đầy nước rồi thả viên bi vào, ta thấy lượng nước tràn ra bằng một phần ba lượng nước đổ vào cốc lúc ban đầu. Biết viên bi tiếp xúc với đáy cốc và thành cốc. Tìm tỉ số bán kính của miệng cốc và đáy cốc (bỏ qua độ dày của cốc).

    Tỉ số bán kính

     

    Gọi bán kính viên bi là r; bán kính đáy cốc, miệng cốc lần lượt là r_1,r_2,\left(r_1 < r_2ight) . Theo giả thiết thì chiều cao của cốc là h=2r.

    Thể tích viên bi là V_B=\frac{4}{3}\pi r^3.

    Thể tích cốc là V_C=\frac{1}{3}\pi h\left(r_1^2+r_2^2+r_1r_2ight)=\frac{2}{3}\pi r\left(r_1^2+r_2^2+r_1r_2ight).

    Theo giả thiết thì  V_B=\frac{1}{3}V_C\Leftrightarrow6r^2=r_1^2+r_2^2+r_1r_2 (1).

    Mặt cắt chứa trục của cốc là hình thang cân  ABB^\prime A^\prime . Đường tròn tâm (O;r) là đường tròn lớn của viên bi, đồng thời là đường tròn nội tiếp hình thang ABB^\prime A^\prime, tiếp xúc với A'B', AB  lần lượt tại H_1, H_2 và tiếp xúc với BB' tại M.

    Tỉ số thể tích

    Dễ thấy tam giác BOB' vuông tại O.

    Ta có OM^2=MB\cdot MB^\prime\Leftrightarrow r^2=r_1r_2.

    Thay (2) vào (1) ta được 6r_1r_2=r_1^2+r_2^2+r_1r_2\Leftrightarrow\left(\frac{r_2}{r_1}ight)^2-5\frac{r_2}{r_1}+1=0..

    Giải phương trình với điều kiện \frac{r_2}{r_1}>1 ta được \frac{r_2}{r_1}=\frac{5+\sqrt{21}}{2}.

  • Câu 2: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 3: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 4: Thông hiểu

    Trong không gian Oxyz, cho tứ diện ABCD có tọa độ đỉnh A(2;0;0),B(0;4;0),C(0;0;6),D(2;4;6). Gọi (S) là mặt cầu ngoại tiếp tứ diện ABCD. Viết phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)?

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    (S) là mặt cầu ngoại tiếp tứ diện ABCD nên ta có hệ phương trình

    \left\{ \begin{matrix}
2^{2} + 0^{2} + 0^{2} - 2.a.2 - 2.b.0 - 2.c.0 + d = 0 \\
0^{2} + 4^{2} + 0^{2} - 2.a.0 - 2.b.4 - 2.c.0 + d = 0 \\
0^{2} + 0^{2} + 6^{2} - 2.a.0 - 2.b.0 - 2.c.6 + d = 0 \\
2^{2} + 4^{2} + 6^{2} - 2.a.2 - 2.b.4 - 2.c.6 + d = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4a + d = - 4 \\
- 8b + d = - 16 \\
- 12c + d = - 36 \\
- 4a - 8b - 12c + d = - 56 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
d = 0 \\
\end{matrix} ight.. Suy ra tâm mặt cầu I(1;2;3) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{14}

    Vậy phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)là:

    (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2}
= 56

  • Câu 5: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 6: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác OMN và tiếp xúc với mặt phẳng (Oxz)?

    Gọi I là tâm đường tròn nội tiếp tam giác OMN

    Ta áp dụng tính chất sau: “Cho tam giác OMN với I là tâm đường tròn nội tiếp, khi đó ta có: a.\overrightarrow{IO} +
b.\overrightarrow{IM} + c.\overrightarrow{IN} =
\overrightarrow{0} với a = MN,b =
ON,c = OM

    Ta có: \left\{ \begin{matrix}OM = \sqrt{2^{2} + 2^{2} + 2^{2}} = 3 \\ON = \sqrt{\left( - \dfrac{8}{3} ight)^{2} + \left( \dfrac{4}{3}ight)^{2} + \left( \dfrac{8}{3} ight)^{2}} = 4 \\MN = \sqrt{\left( - \dfrac{8}{3} - 2 ight)^{2} + \left( \dfrac{4}{3} - 2ight)^{2} + \left( \dfrac{8}{3} - 1 ight)^{2}} = 5 \\\end{matrix} ight.

    Khi đó:

    5.\overrightarrow{IO} +
4.\overrightarrow{IM} + 3.\overrightarrow{IN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{5.0 + 4.2 + 3.\left( - \dfrac{8}{3} ight)}{3 + 4 + 5} = 0\\y_{I} = \dfrac{5.0 + 4.2 + 3.\left( \dfrac{4}{3} ight)}{3 + 4 + 5} = 1\\z_{I} = \dfrac{5.0 + 4.2 + 3.\left( \dfrac{8}{3} ight)}{3 + 4 + 5} = 1\\\end{matrix} ight.

    Mặt phẳng (Oxz) có phương trình y = 0

    Mặt cầu tiếp xúc với mặt phẳng (Oxz) nên mặt cầu có bán kính R = d\left( I;(Oxz) ight) = 1

    Vậy phương trình mặt cầu cần tìm là: x^{2} + (y - 1)^{2} + (z - 1)^{2} =
1.

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} + (z - 3)^{2} =
4. Tâm mặt cầu (S) có tọa độ là:

    Mặt cầu (S):(x - a)^{2} + (y - b)^{2} +
(z - c)^{2} = R^{2} có tâm là I(a;b;c)

    Mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} +
(z - 3)^{2} = 4 có tâm I(2; -
1;3).

  • Câu 8: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y - 6z + 5 =
0 và mặt phẳng (\alpha):2x + y + 2z
- 15 = 0. Mặt phẳng (P) song song với (\alpha) và tiếp xúc với (S)

    Ta có:

    (S) có tâm I (1; −2; 3), bán kính R = 3. (P) song song với (α)

    (P):2x + y + 2z + m = 0, với m eq - 15

    Do mặt phẳng (P) tiếp xúc với (S) nên d\left( I;(P) ight) = R \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 15 \\
m = 3 \\
\end{matrix} ight., so với điều kiện ta nhận m = 3.

    Vậy (P):2x + y + 2z + 3 = 0.

  • Câu 9: Thông hiểu

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu: 

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {2 - \ln t} ight)x + 4\ln t.y + 2\left( {\ln t + 1} ight)z + 5{\ln ^2}t + 8 = 0.

    Theo đề bài, ta có:

    a = \ln t - 2;\,\,b =  - 2\ln t;\,\,c =  - \ln t - 1;\,\,d = 5{\ln ^2}t + 8

    (S) là mặt cầu \Leftrightarrow {\left( {\ln t - 2} ight)^2} + 4{\ln ^2}t + {\left( {\ln t + 1} ight)^2} - 5{\ln ^2}t - 8 > 0

    \Leftrightarrow {\ln ^2}t - 2\ln t - 3 > 0

    \Leftrightarrow \ln t <  - 1 \vee \ln t > 3

    \Leftrightarrow 0 < t < \frac{1}{e} \vee t > {e^3}

  • Câu 10: Nhận biết

    Trong hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I( - 1;4;2) và có thể tích bằng \frac{256\pi}{3}. Khi đó phương trình mặt cầu (S) là:

    Thể tích mặt cầu là: V = \frac{4\pi
R^{3}}{3} = \frac{256\pi}{3} \Rightarrow R = 4

    Vậy phương trình mặt cầu tâm I có bán kính R = 4 là: (x + 1)^{2} + (y - 4)^{2} + (z - 2)^{2} =
16

  • Câu 11: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 12: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 13: Vận dụng

    Trong không gian Oxyz, cho mặt phẳng (P): 2x + y − 2z + 10 = 0 và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
25 cắt nhau theo giao tuyến đường tròn (C). Gọi V_{1} là thể tích khối cầu (S), V_{2} là thể tích khối nón (N) có đỉnh là giao điểm của đường thẳng đi qua tâm mặt cầu (S) và vuông góc với mặt phẳng (P), đáy là đường tròn (C). Biết độ dài đường cao khối nón (N) lớn hơn bán kính của khối cầu (S). Tính tỉ số \frac{V_{1}}{V_{2}}?

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(2; 1; 3) và bán kính R = 5, khoảng cách từ tâm I đến mặt phẳng (P) là:

    d = d\left( I;(P) ight) = \frac{|4 + 1
- 6 + 10|}{3} = 3

    Bán kính đường tròn (C) là: r = \sqrt{R^{2} - d^{2}} = 4

    Thể tích khối cầu (S) là: V_{1} =
\frac{4}{3}\pi R^{3} = \frac{500\pi}{3}

    Chiều cao hình nón là h = R + d = 8.

    Thể tích khối nón làV_{2} = \frac{1}{3}\pi r^{2}h =
\frac{128\pi}{3}

    Vậy \frac{V_{1}}{V_{2}} =
\frac{125}{32}.

  • Câu 14: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \frac{a}{2}. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

     Thể tích khối nón

    Gọi E là trung điểm của BC, dựng OH \bot SE tại H.

    Chứng minh được OH \bot \left( {SBC} ight) nên suy ra OH = d\left[ {O,\left( {SBC} ight)} ight] = \frac{a}{2}.

    Trong tam giác đều ABC, ta có OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}

    và  OA = \frac{2}{3}AE = \frac{{2a\sqrt 3 }}{3}

    Trong tam giác vuông SOE, ta có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{S{O^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{1}{{{a^2}}} \Rightarrow SO = a.

    Vậy thể tích khối nón V = \frac{1}{3}\pi O{A^2}.SO = \frac{1}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} ight)^2}.a = \frac{{4\pi {a^3}}}{9}  (đvtt).

  • Câu 15: Vận dụng cao

    Trong hệ tọa độ Oxyz, cho mặt cầu (S): (x − 1)^2 + (y + 2)^2 + (z − 3)^2 = 12 và mặt phẳng (P): 2x + 2y − z − 3 = 0. Gọi (Q) là mặt phẳng song song với (P) và cắt (S) theo thiết diện là đường tròn (C) sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi (C) có thể tích lớn nhất. Phương trình của mặt phẳng (Q)

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; −2; 3) và bán kính R = 2\sqrt{3}

    Gọi r là bán kính đường tròn (C) và H là hình chiếu của I lên (Q).

    Đặt IH = x ta có:

    r = \sqrt{R^{2} - x^{2}} = \sqrt{12 -
x^{2}}

    Vậy thể tích khối nón tạo được là:

    V = \frac{1}{3}IH.S_{\left( (C) ight)}
= \frac{1}{3}.x.\pi\left( \sqrt{12 - x^{2}} ight)^{2} =
\frac{1}{3}.\pi\left( 12x - x^{3} ight)

    Gọi f'(x) = 12x - 3x^{2} ta có: f'(x) = 0 \Leftrightarrow x = \pm
2 chỉ có x = 2 \in \left(
0;2\sqrt{3} ight)

    Ta có bảng biến thiên như sau:

    Vậy V_{\max} =
\frac{1}{3}.\pi.16 khi x = IH =
2

    Mặt phẳng (Q) // (P) nên (Q): 2x + 2y − z + a = 0 (a eq - 3)

    Vậy d\left( I;(Q) ight) = IH
\Leftrightarrow \frac{\left| 2 + 2( - 2) - 3 + a ight|}{\sqrt{2^{2} +
2^{2} + ( - 1)^{2}}} = 2

    \Leftrightarrow |a - 5| = 6
\Leftrightarrow \left\lbrack \begin{matrix}
a = 11 \\
a = - 1 \\
\end{matrix} ight.

    Vậy mặt phẳng (Q) có phương trình 2x + 2y − z − 1 = 0 hoặc 2x + 2y − z + 11 =0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo