Trong không gian với hệ trục tọa độ , cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Trong không gian với hệ trục tọa độ , cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Cho hình chóp có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp
là:
Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi I là trung điểm SC, suy ra nên
.
Do đó IM là trục của , suy ra
(1)
Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên . (2)
Từ (1) và (2) , ta có
hay I là tâm của mặt cầu ngoại tiếp hình chóp .
Vậy bán kính .
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho . Độ dài đường sinh
của hình nón bằng:
Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Cho một chiếc cốc có dạng hình nón cụt và một viên bi có đường kính bằng chiều cao của cốc. Đổ đầy nước rồi thả viên bi vào, ta thấy lượng nước tràn ra bằng một phần ba lượng nước đổ vào cốc lúc ban đầu. Biết viên bi tiếp xúc với đáy cốc và thành cốc. Tìm tỉ số bán kính của miệng cốc và đáy cốc (bỏ qua độ dày của cốc).
Gọi bán kính viên bi là r; bán kính đáy cốc, miệng cốc lần lượt là . Theo giả thiết thì chiều cao của cốc là
.
Thể tích viên bi là
Thể tích cốc là .
Theo giả thiết thì (1).
Mặt cắt chứa trục của cốc là hình thang cân . Đường tròn tâm
là đường tròn lớn của viên bi, đồng thời là đường tròn nội tiếp hình thang
, tiếp xúc với
lần lượt tại
và tiếp xúc với BB' tại M.
Dễ thấy tam giác BOB' vuông tại O.
Ta có .
Thay (2) vào (1) ta được .
Giải phương trình với điều kiện ta được
.
Cho hình nón đỉnh S có bán kính đáy , góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:
Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Cho hình chóp tứ giác đều có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc
. Thể tích của khối cầu ngoại tiếp khối chóp
là:
Gọi , suy ra
.
Ta có .
Trong , ta có
.
Ta có SO là trục của hình vuông ABCD.
Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.
Gọi
Xét có
đều.
Do đó d cũng là đường trung tuyến của . Suy ra I là trọng tâm
.
Bán kính mặt cầu .
Suy ra
Trong không gian với hệ tọa độ , cho mặt cầu
có tâm nằm trên mặt phẳng
và đi qua ba điểm
. Tọa độ tâm
của mặt cầu
là:
Gọi tâm mặt cầu là và phương trình mặt cầu
Do
Lại có
Vậy là đáp án cần tìm.
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Trong không gian, cho hình chữ nhật ABCD có và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:
Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:
Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Cho hình nón đỉnh S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và . Độ dài đường sinh
của hình nón bằng:
Gọi I là trung điểm AB, suy ra và
.
Trong tam giác vuông SOA, ta có
Trong tam giác vuông SIA, ta có
Trong tam giác vuông OIA, ta có:
Trong không gian với hệ trục tọa độ , phương trình nào sau đây không phải là phương trình của một mặt cầu?
Phương trình là phương trình của một mặt cầu nếu
.
Vậy phương trình không phải phương trình mặt cầu là:
Hai quả bóng hình cầu có kích thước khác nhau, được đặt ở hai góc của một căn nhà hình hộp chữ nhật sao cho mỗi quả bóng đều tiếp xúc với hai bức tường và nền của căn nhà đó. Biết rằng trên bề mặt của mỗi quả bóng đều tồn tại một điểm có khoảng cách đến hai bức tường và nền nhà nó tiếp xúc lần lượt bằng 1, 2, 3. Tính tổng các bình phương của hai bán kính của hai quả bóng đó.
Hình vẽ minh họa
Xét quả bóng tiếp xúc với hai bức tường, nền của căn nhà và chọn hệ trục tọa độ Oxyz như hình vẽ (tương tự với góc tường còn lại).
Gọi là tâm của mặt cầu có bán kính
.
Phương trình mặt cầu là:
Xét điểm nằm trên mặt cầu sao cho
Suy ra
Vì M thuộc mặt cầu (S) nên từ (1) ta có:
Trong không gian với hệ tọa độ , mặt phẳng
cắt mặt cầu
theo giao tuyến là đường tròn có diện tích là:
Mặt cầu có tâm
và bán kính
Khoảng cách từ đến (P):
Bán kính đường tròn giao tuyến
Diện tích đường tròn giao tuyến .
Trong không gian với hệ trục tọa độ , mặt cầu
đi qua điểm
và cắt các tia
lần lượt tại các điểm
khác
thỏa mãn tam giác
có trọng tâm là điểm
. Tọa độ tâm của mặt cầu
là:
Gọi tọa độ các điểm trên ba tia lần lượt là
với
Vì G là trọng tâm tam giác nên
Gọi phương trình mặt cầu cần tìm là:
Vì qua các điểm
nên ta có hệ phương trình:
Vậy tọa độ tâm của mặt cầu là:
.