Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu:
.
Theo đề bài, ta có:
là mặt cầu
Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu:
.
Theo đề bài, ta có:
là mặt cầu
Một hình cầu có bán kính là 2m, một mặt phẳng cắt hình cầu theo một hình tròn có độ dài là
. Khoảng cách từ tâm mặt cầu đến mặt phẳng là:
Gọi khoảng cách từ tâm cầu đến mặt phẳng là d, ta có .
Theo giả thiết R = 2m và .
Vậy .
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao
và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Trong không gian với hệ tọa độ
, cho mặt cầu
, mặt phẳng
. Gọi
là mặt phẳng vuông góc với mặt phẳng
,
song song với giá của vectơ
và
tiếp xúc với
. Lập phương trình mặt phẳng
.
Mặt cầu có tâm I(1; −3; 2) và bán kính
.
Từ giả thiết suy ra là một vectơ pháp tuyến của
.
Ta có , suy ra
có vectơ pháp tuyến
Vậy có phương trình dạng
Do tiếp xúc với mặt cầu
nên:
Vậy có hai mặt phẳng thỏa mãn yêu cầu bài toán là .
Cho hình chóp
có đáy
là hình vuông cạnh a. Cạnh bên
và vuông góc với đáy (
). Tính theo
diện tích mặt cầu ngoại tiếp hình chóp
ta được:

Gọi , suy ra O là tâm đường tròn ngoại tiếp hình vuông
.
Gọi I là trung điểm SC, suy ra
Do đó IO là trục của hình vuông , suy ra
(1)
Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên . (2)
Từ (1) và (2), ta có:
Vậy diện tích mặt cầu (đvdt).
Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn
, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

Gọi (O) và (O') lần lượt là hai đường tròn đáy; .
Dựng AD, CB lần lượt song song với OO' . Dễ dàng có ABCD là hình chữ nhật.
Do .
Gọi H là trung điểm của DC.
.
Ta có .
Suy ra .
Vậy thể tích của khối trụ là .
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
Công thức tính thể tích , suy ra
Hộp sữa chỉ kín một đáy nên diện tích tôn cần dùng là:
Xét hàm trên
, ta được
đạt tại
.
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:

Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.
Ta có nên
.
Trong tam giác vuông A'AB có .
Trong tam giác vuông A'BD có .
Do đó suy ra tam giác BO'D nên .
Vậy (đvtt).
Cho lăng trụ đứng
có đáy là tam giác đều cạnh a. Mặt phẳng (AB'C') tạo với mặt đáy góc
và điểm G là trọng tâm tam giác ABC. Bán kính mặt cầu ngoại tiếp khối chóp
bằng:

Gọi M là trung điểm B’C’, ta có
.
Trong , có
;
.
Gọi G’ là trọng tâm tam giác đều A’B’C’, suy ra G’ cũng là tâm đường tròn ngoại tiếp .
Vì lặng trụ đứng nên .
Do đó là trục của tam giác
.
Trong mặt phẳng , kẻ trung trực d của đoạn thẳng
cắt
tại I. Khi đó I là tâm mặt cầu ngoại tiếp khối chóp
, bán kính
Ta có
.
Hình nón có đường sinh
và hợp với đáy góc
. Diện tích toàn phần của hình nón bằng:

Theo giả thiết, ta có
và
.
Suy ra:
.
Vậy diện tích toàn phần của hình nón bằng: (đvdt).
Trong không gian với hệ tọa độ
, cho mặt cầu
. Một mặt cầu
có tâm
và tiếp xúc ngoài với mặt cầu
. Kết luận nào sau đây đúng về phương trình mặt cầu
?
Ta có tâm và bán kính mặt cầu lần lượt là
.
Suy ra
Gọi là bán kính mặt cầu
. Theo giả thiết ta có:
Khi đó phương trình mặt cầu cần tìm là: .
Trong không gian tọa độ
, mặt cầu tâm
bán kính
có phương trình là
Mặt cầu tâm và bán kính
có phương trình là:
Trong không gian
, cho
và mặt phẳng
. Viết phương trình mặt cầu đi qua
và tiếp xúc mặt phẳng
.
Gọi là tâm mặt cầu cần tìm.
Theo bài ra ta có:
Vậy phương trình mặt cầu tâm I(3; 1; −2) bán kính là
.