Trong không gian với hệ tọa độ
, mặt cầu có tâm
và có diện tích bằng
có phương trình là:
Ta có:
Vậy mặt cầu tâm có bán kính
có phương trình:
.
Trong không gian với hệ tọa độ
, mặt cầu có tâm
và có diện tích bằng
có phương trình là:
Ta có:
Vậy mặt cầu tâm có bán kính
có phương trình:
.
Cho hai điểm
cố định trong không gian có độ dài
. Biết rằng tập hợp các điểm
trong không gian sao cho
là một mặt cầu. Bán kính mặt cầu đó bằng bao nhiêu?
Ta có:
(*)
Gọi thỏa mãn
nên
Từ (*) suy ra .
Trong không gian
, cho điểm
và mặt cầu
. Mặt phẳng đi qua
cắt
theo một đường tròn có bán kính nhỏ nhất có phương trình là:
Ta có:
(S) có bán kính và tâm
,
nên I nằm trong hình cầu (S).
Gọi r là bán kính của đường tròn, (P) là mặt phẳng qua M, ta có:
Suy ra bán kính khi
là vectơ pháp tuyến của (P).
Vậy phương trình của mặt phẳng .
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Trong không gian với hệ tọa độ
, cho hai điểm
và mặt cầu
. Mặt phẳng
(với
là các số nguyên dương và
nguyên tố cùng nhau) đi qua
và cắt
theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính tổng
.
Hình vẽ minh họa
Ta có cùng phương với
suy ra phương trình đường thẳng
.
Xét mặt cầu ⇒ I(1; 2; 3), R = 5.
Gọi là điểm trên AB sao cho AB ⊥ IH
Vì ,
Gọi r là bán kính đường tròn giao tuyến giữa (P) và (S), K là hình chiếu vuông góc của I lên (P) .
Ta có
Dấu bằng chỉ xảy ra khi K ≡ H.
Khi đó phương trình mặt phẳng (P) nhận là vectơ pháp tuyến và đi qua điểm
là
Trong không gian với hệ tọa độ
, cho hai điểm
và
. Hai điểm
thay đổi sao cho
và
. Biết rằng luôn tồn tại một mặt cầu cố định đi qua
và tiếp xúc với mặt phẳng
. Bán kính của mặt cầu đó là:
Phương trình mặt phẳng là
.
Gọi và
là tâm và bán kính của mặt cầu cố định.
Ta có
Mà không đổi nên
, hay
.
Mặt khác ta có .
Vậy .
Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,
Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.
Theo đề bài, ta có tam giác SAB vuông cân tại S nên ,
Suy ra ,
và
Diện tích toàn phần của hình nón: (đvdt).
Thể tích khối nón là: (đvtt).
Tìm tập hợp các tâm I của mặt cầu sau nằm trên?
![]()
Theo đề bài, ta xác định các hệ số của :
Suy ra ta gọi được tâm I của mặt cầu có tọa độ là
Xét là mặt cầu
Vậy tập hợp các điểm I là phân đường thẳng
tương ứng với .
Trong không gian với hệ tọa độ
, cho mặt cầu
. Đường thẳng d cắt mặt cầu
tại hai điểm
. Biết tiếp diện của
tại
vuông góc. Tính độ dài
.
Hình vẽ minh họa
Mặt cầu (S) có tâm , bán kính R = 5. Xét mặt phẳng (P) chứa d cắt giao tuyến của hai tiếp diện tại O.
Ta có tứ giác OIAB là hình vuông.
Suy ra .
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có .
Diện tích toàn phần là: (đvdt).
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

Hình vẽ kết hợp với giả thiết, ta có
Suy ra và
Thể tích khối nón (đvtt).
Thể tích khối cầu (đvtt).
Suy ra
Cho hình trụ có O, O' là tâm hai đáy. Xét hình chữ nhật
có A, B cùng thuộc (O) và C, D cùng thuộc (O') sao cho
đồng thời
tạo với mặt phẳng đáy hình trụ góc
. Thể tích khối trụ bằng

Gọi lần lượt là trung điểm của
và
là trung điểm của
. Suy ra góc giữa mặt phẳng
và mặt phẳng đáy là
.
Ta có .
Xét vuông tại O, ta có:
;
Xét vuông tại M, có
.
Vậy .
Trong không gian
, tìm tất cả các giá trị của tham số
để
là phương trình mặt cầu
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
Vậy đáp án cần tìm là:
Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng
, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác OAB đều cạnh R.
Gọi E là trung điểm AB, suy ra và
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có