Trong không gian với hệ tọa độ , cho mặt phẳng
và mặt cầu
. Tìm tất cả các giá trị của m để
tiếp xúc với mặt cầu
?
Ta có mặt cầu có tâm I(1; −1; 1) và bán kính R = 3.
Mặt phẳng tiếp xúc với
khi và chỉ khi:
.
Trong không gian với hệ tọa độ , cho mặt phẳng
và mặt cầu
. Tìm tất cả các giá trị của m để
tiếp xúc với mặt cầu
?
Ta có mặt cầu có tâm I(1; −1; 1) và bán kính R = 3.
Mặt phẳng tiếp xúc với
khi và chỉ khi:
.
Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng , khoảng cách từ tâm O đến mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác OAB đều cạnh R.
Gọi E là trung điểm AB, suy ra và
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Trong không gian , cho điểm A(1;2;-1) và mặt phẳng
. Xét các mặt cầu (S) có tâm
, đi qua điểm A, tiếp xúc với mặt phẳng (P) . Tính giá trị của biểu thức
khi (S) có bán kính nhỏ nhất.
Gọi H là hình chiếu của I trên mặt phẳng (P) ta có nên R nhỏ nhất khi
thẳng hàng và I là trung điểm của AH.
Phương trình AH đi qua A và vuông góc với mặt phẳng (P) có phương trình là
Tọa độ H là nghiệm của hệ:
Suy ra, ta có:
Xét các mệnh đề:
(I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng cố định một khoảng không đổi là một mặt trụ.
(II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.
Trong các mệnh đề trên, mệnh đề nào đúng?
Ta xét về khái niệm Mặt trụ suy ra (I) đúng.
Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).
Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.
Vì vậy Mệnh đề (II) cũng đúng.
Trong không gian với hệ tọa độ , cho các điểm
. Bán kính mặt cầu ngoại tiếp tứ diện
là:
Gọi là mặt cầu ngoại tiếp tứ diện
Phương trình mặt cầu có dạng
Vì nên ta có:
Vậy bán kính mặt cầu là:
Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:
Hình vẽ kết hợp với giả thiết, ta có
Suy ra và
Thể tích khối nón (đvtt).
Thể tích khối cầu (đvtt).
Suy ra
Cho mặt cầu và một điểm A, biết
. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho
. Khi đó khoảng cách từ O đến BC bằng:
Gọi H là hình chiếu của O lên BC.
Ta có , suy ra H là trung điểm của BC nên
Suy ra
Trong không gian , cho mặt cầu
và hai điểm
. Biết tập hợp tất cả các điểm
để
là một đường tròn. Bán kính của đường tròn đó là:
Gọi khi đó ta có:
.
Ta có:
Ta lại có:
Từ (1) và (2) ta có hệ phương trình:
Vậy tập hợp tất cả các điểm M là đường tròn giao tuyến (C) của (S) và mặt phẳng (P): y = 0.
Mặt cầu (S) có bán kính R = 3, tâm nên d [I,(P)] = 1.
Suy ra đường tròn (C) có bán kính:
Trong các hình trụ có diện tích toàn phần bằng thì hình trụ có thể tích lớn nhất là bao nhiêu
Ta có
Vậy thể tích khối trụ
Ta có:
Bảng biến thiên
Từ bảng biến thiên ta có
.
Trong không gian với hệ tọa độ , cho mặt cầu
có tâm
có bán kính bằng
. Phương trình của
là:
Mặt cầu có tâm
và bán kính bằng
có phương trình là:
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:
Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng . Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:
Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Cho hình chóp có đáy
là hình vuông cạnh bằng a. Đường thẳng
vuông góc với đáy
. Gọi M là trung điểm SC, mặt phẳng
đi qua hai điểm A và M đồng thời song song với BD cắt SB, SD lần lượt tại E và F. Bán kính mặt cầu đi qua năm điểm
nhận giá trị nào sau đây?
Mặt phẳng song song với BD cắt SB, SD lần lượt tại E, F nên
cân tại A , trung tuyến AM nên
(1)
Ta có
Do đó (2)
Từ (1) và (2), suy ra (*)
Lại có (**)
Từ (*) và (**), suy ra . Tương tự ta cũng có
Do đó nên năm điểm
cùng thuộc mặt cầu tâm I là trung điểm của SA, bán kính
.
Với giá trị nào của m thì mặt phẳng tiếp xúc với mặt cầu
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I của cầu có tọa độ là .
tiếp xúc (S) khi:
(loại)
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng . Diện tích toàn phần của hình nón là:
Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).