Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho mặt cầu S(O;R) , A là một điểm ở trên mặt cầu (S) và (P) là mặt phẳng qua A sao cho góc giữa OA và (P) bằng 60^0. Diện tích của đường tròn giao tuyến bằng:

    Diện tích của đường tròn giao tuyến

    Gọi H là hình chiếu vuông góc của (O) trên (P) thì

    ● H là tâm của đường tròn giao tuyến của (P) và (S).

    \widehat {OA,\left( P ight)} = \widehat {\left( {OA,AH} ight)} = {60^0}

    Bán kính của đường tròn giao tuyến: r = HA = OA.\cos {60^0} = \frac{R}{2}.

    Suy ra diện tích đường tròn giao tuyến: \pi {r^2} = \pi {\left( {\frac{R}{2}} ight)^2} = \frac{{\pi {R^2}}}{4}.

  • Câu 2: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; −2; 6), B(0; 1; 0) và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2}
+ (z - 3)^{2} = 25. Mặt phẳng (P): ax + by + cz + d = 0 (với a, b, c là các số nguyên dương và a, b, c, d nguyên tố cùng nhau) đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính tổng T = a + b + c.

    Hình vẽ minh họa

    Ta có \overrightarrow{AB} = ( - 3;3; -
6) cùng phương với \overrightarrow{u} = (1; - 1;2) suy ra phương trình đường thẳng AB:\left\{
\begin{matrix}
x = t \\
y = 1 - t \\
z = 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Xét mặt cầu (S):(x - 1)^{2} + (y - 2)^{2}
+ (z - 3)^{2} = 25⇒ I(1; 2; 3), R = 5.

    Gọi H(t; 1 − t; 2t) là điểm trên AB sao cho AB ⊥ IH

    \Rightarrow \overrightarrow{IH} = (t -
1; - t - 1;2t)

    AB ⊥ IH ⇒ t − 1 + t + 1 + 4t − 6 = 0 ⇒ t = 1⇒ H(1; 0; 2), \overrightarrow{IH} = (0; - 2; - 1)

    Gọi r là bán kính đường tròn giao tuyến giữa (P) và (S), K là hình chiếu vuông góc của I lên (P) ⇒ IK ≤ IH.

    Ta có r = \sqrt{R^{2} - IK^{2}} \geq
\sqrt{R^{2} - IH^{2}}

    Dấu bằng chỉ xảy ra khi K ≡ H.

    Khi đó phương trình mặt phẳng (P) nhận \overrightarrow{IH} = (0; - 2; - 1) là vectơ pháp tuyến và đi qua điểm H(1; 0; 2)2y + z − 2 = 0 ⇒ T = 3

  • Câu 3: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \frac{{a\sqrt {21} }}{6}. Gọi h là chiều cao của khối chóp và R là bán kính mặt cầu ngoại tiếp khối chóp. Tỉ số \frac{R}{h} bằng:

     Tính tỉ số

    Gọi O là tâm \triangle ABC, suy ra SO \bot \left( {ABC} ight)AO = \frac{{a\sqrt 3 }}{3}

    Trong SOA, ta có h = SO = \sqrt {S{A^2} - A{O^2}}  = \frac{a}{2}

    Trong mặt phẳng SOA, kẻ trung trực d của đoạn SA cắt SO tại I, suy ra:

    • I \in d nên IS =IA.
    • I \in SO nên IA=IB=IC.

    Do đó IA=IB=IC=IS nên I là tâm mặt cầu ngoại tiếp khối chóp .

    Gọi M là tung điểm SA, ta có \Delta SMI\,\, \backsim \,\,\Delta SOA nên R = SI = \frac{{SM.SA}}{{SO}} = \frac{{S{A^2}}}{{2SO}} = \frac{{7{m{a}}}}{{12}}

    Vậy \frac{R}{h} = \frac{7}{6}.

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với  AB=2a, AD=a. Cạnh bên SA vuông góc với đáy và góc giữa SC với đáy bằng 45^0 . Gọi N là trung điểm SA, h là chiều cao của khối chóp S.ABCD và R là bán kính mặt cầu ngoại tiếp khối chóp N.ABC. Biểu thức liên hệ giữa R và h là:

    Tìm biểu thức liên hệ

    Ta có {45^0} = \widehat {SC,\left( {ABCD} ight)} = \widehat {SC,AC} = \widehat {SCA} .

    Trong \Delta SAC, ta có h = SA = a\sqrt 5

    Ta có \left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot BN.

    Mặt khác, ta lại có NA \bot AC.

    Do đó hai điểm A, B cùng nhìn đoạn dưới một góc vuông nên hình chóp N.ABC nội tiếp mặt cầu tâm J là trung điểm NC, bán kính

    R = JN = \frac{{NC}}{2} = \frac{1}{2}.\sqrt {A{C^2} + {{\left( {\frac{{SA}}{2}} ight)}^2}}  = \frac{{5a}}{4}.

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + (z + 3)^{2} =
25 theo thiết diện là đường tròn bán kính r bằng bao nhiêu?

    Mặt cầu (S) có tâm I(1;1; - 3) và bán kính R = 5.

    Khoảng cách từ tâm I đến (Oxy) bằng 3.

    \Rightarrow r = \sqrt{5^{2} - 3^{2}} =
4

  • Câu 6: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 7: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 8: Vận dụng cao

    Từ một tấm tôn hình chữ nhật kích thước 50{m{cm}} \times 240{m{cm}} , người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50  cm , theo hai cách sau (xem hình minh họa sau đây):

    Tính tỉ số thể tích

    ● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

    ● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

    Kí hiệu V_1là thể tích của thùng gò được theo cách 1 và V_2 là thể tích của thùng gò được theo cách 2. Khi đó tỉ số \frac{{{V_1}}}{{{V_2}}} bằng:

    2 || Hai || hai

    Đáp án là:

    Từ một tấm tôn hình chữ nhật kích thước 50{m{cm}} \times 240{m{cm}} , người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50  cm , theo hai cách sau (xem hình minh họa sau đây):

    Tính tỉ số thể tích

    ● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

    ● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

    Kí hiệu V_1là thể tích của thùng gò được theo cách 1 và V_2 là thể tích của thùng gò được theo cách 2. Khi đó tỉ số \frac{{{V_1}}}{{{V_2}}} bằng:

    2 || Hai || hai

     Công thức thể tích khối trụ V = \pi {R^2}h.

    ● Ở cách 1, suy ra h= 50  cm2\pi {R_1} = 240 \Leftrightarrow {R_1} = \frac{{120}}{\pi }. Do đó {V_1} = \pi .{\left( {\frac{{120}}{\pi }} ight)^2}.50 (đvtt).

    ● Ở cách 2, suy ra mỗi thùng có h= 50  cm2\pi {R_2} = 120 \Leftrightarrow {R_2} = \frac{{60}}{\pi }

    Do đó {V_2} = 2 \times \left[ {\pi .{{\left( {\frac{{60}}{\pi }} ight)}^2}.50} ight] (đvtt).

    Suy ra \frac{{{V_1}}}{{{V_2}}} = 2

  • Câu 9: Vận dụng cao

    Trong không gian với hệ toạ độ Oxyz, cho điểm S(0;0;1), Hai điểm M(m;0;0),N(0;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Mặt phẳng (SMN) luôn tiếp xúc với một mặt cầu cố định đi qua P(1;1;1) có bán kính là

    Phương trình (SMN):\frac{x}{m} +\frac{y}{n} + z = 1. Gọi I(a;b;c)R là tâm và bán kính mặt cầu cố định trong đề bài, phương trình mặt cầu là (x -a)^{2} + (y - b)^{2} + (z - c)^{2} = R^{2}.

    Ta có khoảng cách từ I đên (SMN)d = \dfrac{\left| \dfrac{a}{m} +\dfrac{b}{n} + c - 1 ight|}{\sqrt{\dfrac{1}{m^{2}} + \dfrac{1}{n^{2}} +1}} = R

    \ m + n = 1 \Rightarrow\frac{1}{m^{2}} + \frac{1}{n^{2}} + 1

    = \frac{m^{2} + n^{2} +m^{2}n^{2}}{m^{2}n^{2}} = \frac{1 - 2mn +m^{2}n^{2}}{m^{2}n^{2}}

    \Rightarrow d = \frac{|an + bm + cmn -mn|}{1 - mn} = R

    Nếu an + bm + cmn - mn = R(1 -mn)

    \Leftrightarrow a(1 - m) + bm + cm(1 -m) - m(1 - m) = R - Rm(1 - m)

    \Leftrightarrow m^{2}(R + c - 1) + m(a -b - c - R + 1) - a + R = 0

    Đẳng thức đúng với mọi m \in(0;1) nên R + c - 1 = a - b - c - R+ 1 = - a + R hay a = b = R,c = 1 -R, thay vào phương trình mặt cầu ta có R = 1.

    Nếu an + bm + cmn − mn = −R(1 − mn)

    \Leftrightarrow m^{2}( - R + c - 1) +m(a - b - c + R + 1) - a - R = 0

    Đẳng thức đúng với mọi m ∈ (0; 1) nên R+c−1 = a−b−c−R+1 = −a+R hay a = b = −R, c = 1+R thay vào phương trình mặt cầu ta có R = −1 không thỏa mãn.

    Vậy R = 1.

  • Câu 10: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 11: Vận dụng

    Cho hình trụ có bán kính đáy bằng R và chiều cao bằng \frac{3R}{2}. Mặt phẳng (\alpha) song song với trục của hình trụ và cách trục một khoảng bằng \frac{R}{2}. Diện tích thiết diện của hình trụ cắt bởi mặt phẳng (\alpha) là:

     Diện tích thiết diện

    Giả sử thiết diện là hình chữ nhật ABCD như hình vẽ.

    Gọi H là trung điểm BC suy ra OH\bot BC suy ra d(O;BC)=\frac{R}{2}

    Khi đó BC=2HB=2\sqrt{OB^2-OH^2}=2\sqrt{R^2-\left(\frac{R}{2}ight)^2}=R\sqrt3

    Suy ra S_{ABCD}=BC\cdot AB=R\sqrt3\cdot\frac{3R}{2}=\frac{3\sqrt3R^2}{2} .

  • Câu 12: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 13: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 14: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 15: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, mặt cầu (S) đi qua điểm O và cắt các tia Ox;Oy;Oz lần lượt tại các điểm A;B;C khác O thỏa mãn tam giác ABC có trọng tâm là điểm G( - 6; - 12;18). Tọa độ tâm của mặt cầu (S) là:

    Gọi tọa độ các điểm trên ba tia Ox;Oy;Oz lần lượt là A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0

    Vì G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{a}{3} = - 6 \\
\frac{b}{3} = - 12 \\
\frac{c}{3} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 18 \\
b = - 36 \\
c = 54 \\
\end{matrix} ight.

    Gọi phương trình mặt cầu cần tìm là:

    (S):x^{2} + y^{2} + z^{2} - 2mx - 2ny -
2pz + q = 0

    (S) qua các điểm OABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}
q = 0 \\
36m + q = - 18^{2} \\
72n + q = - 36^{2} \\
- 108p + q = - 54^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
q = 0 \\
m = - 9 \\
n = - 18 \\
p = 27 \\
\end{matrix} ight.

    Vậy tọa độ tâm của mặt cầu (S) là: ( - 9; - 18;27).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo