Giá trị
phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:
? ![]()
Ta có:
là mặt cầu
.
Giá trị
phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:
? ![]()
Ta có:
là mặt cầu
.
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng
. Diện tích toàn phần của hình nón là:

Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Xét các mệnh đề:
(I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng
cố định một khoảng không đổi là một mặt trụ.
(II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.
Trong các mệnh đề trên, mệnh đề nào đúng?
Ta xét về khái niệm Mặt trụ suy ra (I) đúng.
Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).
Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.
Vì vậy Mệnh đề (II) cũng đúng.
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:

Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.
Ta có nên
.
Trong tam giác vuông A'AB có .
Trong tam giác vuông A'BD có .
Do đó suy ra tam giác BO'D nên .
Vậy (đvtt).
Trong không gian
, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?
Phương trình không có
=> Loại
Phương trình có số hạng
=> Loại
Phương trình loại vì
Phương trình thỏa mãn vì
.
Trong không gian với hệ trục toạ độ
, cho điểm
. Viết phương trình mặt cầu tâm
cắt trục
tại hai điểm
sao cho
?
Hình vẽ minh họa
Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên
Phương trình mặt cầu là: .
Cho một chiếc cốc có dạng hình nón cụt và một viên bi có đường kính bằng chiều cao của cốc. Đổ đầy nước rồi thả viên bi vào, ta thấy lượng nước tràn ra bằng một phần ba lượng nước đổ vào cốc lúc ban đầu. Biết viên bi tiếp xúc với đáy cốc và thành cốc. Tìm tỉ số bán kính của miệng cốc và đáy cốc (bỏ qua độ dày của cốc).

Gọi bán kính viên bi là r; bán kính đáy cốc, miệng cốc lần lượt là . Theo giả thiết thì chiều cao của cốc là
.
Thể tích viên bi là
Thể tích cốc là .
Theo giả thiết thì (1).
Mặt cắt chứa trục của cốc là hình thang cân . Đường tròn tâm
là đường tròn lớn của viên bi, đồng thời là đường tròn nội tiếp hình thang
, tiếp xúc với
lần lượt tại
và tiếp xúc với BB' tại M.

Dễ thấy tam giác BOB' vuông tại O.
Ta có .
Thay (2) vào (1) ta được .
Giải phương trình với điều kiện ta được
.
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Trong không gian
, cho tứ diện
có tọa độ đỉnh ![]()
. Gọi
là mặt cầu ngoại tiếp tứ diện
. Viết phương trình mặt cầu
có tâm trùng với tâm của mặt cầu
và có bán kính gấp hai lần bán kính của mặt cầu
?
Gọi phương trình mặt cầu có
Vì là mặt cầu ngoại tiếp tứ diện
nên ta có hệ phương trình
. Suy ra tâm mặt cầu
và bán kính
Vậy phương trình mặt cầu có tâm trùng với tâm của mặt cầu
và có bán kính gấp hai lần bán kính của mặt cầu
là:
Cho mặt cầu tâm
, bán kính
. Xét mặt phẳng
thay đổi cắt mặt cầu theo giao tuyến là đường tròn
. Hình nón
có đỉnh S nằm trên mặt cầu, có đáy là đường tròn
và có chiều cao là
. Hình trụ
có đáy là đường tròn
và có cùng chiều cao với hình nón
. Tính thể tích
khối trụ được tạo nên bởi
theo
, biết
có giá trị lớn nhất.
Hình vẽ minh họa
Gọi khoảng cách từ dến mặt phẳng
là
với
, đường tròn
có bán kính là
.
Ta có và
.
Vậy
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao
và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Cho hình chóp tam giác đều
có cạnh đáy bằng a và cạnh bên bằng
. Gọi h là chiều cao của khối chóp và R là bán kính mặt cầu ngoại tiếp khối chóp. Tỉ số
bằng:

Gọi O là tâm , suy ra
và
Trong SOA, ta có
Trong mặt phẳng SOA, kẻ trung trực d của đoạn SA cắt SO tại I, suy ra:
Do đó nên I là tâm mặt cầu ngoại tiếp khối chóp .
Gọi M là tung điểm SA, ta có nên
Vậy
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Trong không gian với hệ tọa độ
, cho mặt cầu ![]()
Ta có:
Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là:
Trong không gian
, cho mặt cầu
và mặt phẳng
. Gọi
là mặt cầu chứa đường tròn giao tuyến của
và
đồng thời
tiếp xúc với mặt phẳng
. Gọi
là tâm của
. Tính giá trị biểu thức ![]()
Phương trình mặt cầu (S’) có dạng:
Mặt cầu có tâm
, bán kính
.
Mặt cầu tiếp xúc với
nên
Vậy .