Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P):2x + 2y + z - 2 = 0 và mặt cầu (S) tâm I(2;1; - 1) bán kính R = 2. Bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S) là:

    Hình vẽ minh họa

    Gọi bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S)r

    Ta có:

    h = d\left( I;(P) ight) = \frac{\left|
2.2 + 2.( - 1) - 1 - 2 ight|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} =
1

    Suy ra r = \sqrt{2^{2} - 1^{2}} =
\sqrt{3}

  • Câu 2: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, mặt cầu có tâm I(1;1;1) và có diện tích bằng 4\pi có phương trình là:

    Ta có: S = 4\pi R^{2} = 4\pi \Rightarrow
R = 1

    Vậy mặt cầu tâm I(1;1;1) có bán kính R = 1 có phương trình:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1.

  • Câu 3: Nhận biết

    Một hình cầu có bán kính là 2m, một mặt phẳng cắt hình cầu theo một hình tròn có độ dài là 2,4\pi {m{m}} . Khoảng cách từ tâm mặt cầu đến mặt phẳng là:

    Gọi khoảng cách từ tâm cầu đến mặt phẳng là d, ta có {d^2} = {R^2} - {r^2} .

    Theo giả thiết R = 2m và 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

    Vậy 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

  • Câu 4: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 5: Thông hiểu

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).

     Theo đề bài, mặt cầu (S) có tâm I\left( { - 2,1, - 3} ight) và vecto pháp tuyến của (P):\,\,\overrightarrow n  = \left( {3,2,6} ight)

    \begin{array}{l}IH \bot \left( P ight) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t\\H \in \left( P ight) \Rightarrow 3\left( { - 2 + 3t} ight) + 2\left( {1 + 2t} ight) + 6\left( { - 3 + 6t} ight) + 1 = 0 \Leftrightarrow t = \dfrac{3}{7}\\ \Rightarrow H\left( { - \dfrac{5}{7},\dfrac{{13}}{7}, - \dfrac{3}{7}} ight)\end{array}

  • Câu 6: Thông hiểu

    Giá trị (\alpha) phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {3 - {{\cos }^2}\alpha } ight)x + 4\left( {{{\sin }^2}\alpha  - 1} ight) + 2z + \cos 4\alpha  + 8 = 0? (k\in \mathbb{Z})

     Ta có: a = 2{\cos ^2}\alpha  - 3 = \cos 2\alpha  - 2;\,b = 2\left( {1 - {{\sin }^2}\alpha } ight) = \cos 2\alpha  + 1;c =  - 1;

    d = \cos 4\alpha  + 8 = 2{\cos ^2}2\alpha  + 7.\,\,\left( S ight) là mặt cầu \Leftrightarrow {a^2} + {b^2} + {c^2} - d > 0

    \Leftrightarrow  - 1 + \cos 2\alpha  <  - \frac{1}{2}

    \Leftrightarrow \frac{{2\pi }}{3} + k2\pi  < 2\alpha  < \frac{{4\pi }}{3} + k2\pi

    \Leftrightarrow \frac{\pi }{3} + k\pi  < \alpha  < \frac{{2\pi }}{3} + k\pi ,\,\,k \in \mathbb{Z}.

  • Câu 7: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 8: Vận dụng

    Trong không gian Oxyz, cho mặt cầu (S):(x + 2)^{2} + (y - 1)^{2} + \left( z
+ \sqrt{2} ight)^{2} = 9 và hai điểm A\left( - 2;0; - 2\sqrt{2} ight),B( - 4; -
4;0). Biết tập hợp tất cả các điểm M \in (S) để MA^{2} + \overrightarrow{MO}.\overrightarrow{MB} =
16 là một đường tròn. Bán kính của đường tròn đó là:

    Gọi M(x;y;z) \in (S) khi đó ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = \left( x + 2;y;z + 2\sqrt{2} ight) \\
\overrightarrow{OM} = (x;y;z) \\
\overrightarrow{BM} = (x + 4;y + 4;z) \\
\end{matrix} ight..

    Ta có:

    MA^{2} +
\overrightarrow{MO}.\overrightarrow{MB} = 16

    \Leftrightarrow MA^{2} +
\overrightarrow{OM}.\overrightarrow{BM} = 16

    \Leftrightarrow (x + 2)^{2} + y^{2} +
\left( z + 2\sqrt{2} ight)^{2} + x(x + 4) + y(y + 4) + z^{2} =
16

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
4x + 4y + 2\sqrt{2}z - 2 = 0

    Ta lại có:

    M \in (S) \Leftrightarrow (x + 2)^{2} +
(y - 1)^{2} + \left( z + \sqrt{2} ight)^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
4x - 2y + 2\sqrt{2}z - 2 = 0

    Từ (1) và (2) ta có hệ phương trình:

    \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} + 4x + 4y + 2\sqrt{2}z - 2 = 0 \\
x^{2} + y^{2} + z^{2} + 4x - 2y + 2\sqrt{2}z - 2 = 0 \\
\end{matrix} ight.\  \Rightarrow y = 0

    Vậy tập hợp tất cả các điểm M là đường tròn giao tuyến (C) của (S) và mặt phẳng (P): y = 0.

    Mặt cầu (S) có bán kính R = 3, tâm I\left( - 2;1; - \sqrt{2} ight) nên d [I,(P)] = 1.

    Suy ra đường tròn (C) có bán kính:

    r = \sqrt{R^{2} - \left( d\left( I;(P)
ight) ight)^{2}} = 2\sqrt{2}

  • Câu 9: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 10: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 11: Vận dụng

    Trong hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z -
3)^{2} = 16 và các điểm A(1; 0; 2); B(−1; 2; 2). Gọi (P) là mặt phẳng đi qua hai điểm A; B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax + by + cz + 3 = 0. Tính T = a + b + c.

    Ta có:

    (S) có tâm I(1; 2; 3), bán kính R = 4.

    Nhận thấy: IA = IB = \sqrt{5} <
R ⇒ A; B nằm bên trong mặt cầu.

    Gọi K là trung đểm của AB ⇒ K(0; 1; 2); IK ⊥ AB.

    Gọi H là hình chiếu của I trên (P),(P) cắt (S) theo thiết diện là đường tròn tâm H bán kính r.

    Std nhỏ nhất ⇔ r nhỏ nhất ⇔ IH lớn nhất

    ⇔ IH = IK ⇔ H ≡ K.

    Khi đó mặt phẳng (P): Đi qua A và có VTPT là \overrightarrow{IK} = ( - 1; - 1; -
1)

    ⇒ Phương trình mặt phẳng (P) : −x−y−z+3 = 0 ⇒ a+b+c = −3

  • Câu 12: Vận dụng cao

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên mặt phẳng(ABC) là trung điểm H của cạnh BC. Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 60^0. Gọi G là trọng tâm tam giác SAC, R là bán kính mặt cầu có tâm G và tiếp xúc với mặt phẳng (SAB). Đẳng thức nào sau đây sai?

    Chọn câu sai 

    Ta có {60^0} = \widehat {SA,\left( {ABC} ight)} = \widehat {SA,HA} = \widehat {SAH}.

    Tam giác ABC đều cạnh a nên AH = \frac{{a\sqrt 3 }}{2} .

    Trong tam giác vuông SHA, ta có SH = AH.\tan \widehat {SAH} = \frac{{3a}}{2}.

    Vì mặt cầu có tâm G và tiếp xúc với (SAB) nên bán kính mặt cầu R = d\left[ {G,\left( {SAB} ight)} ight].

    Ta có d\left[ {G,\left( {SAB} ight)} ight] = \frac{1}{3}d\left[ {C,\left( {SAB} ight)} ight] = \frac{2}{3}d\left[ {H,\left( {SAB} ight)} ight].

    Gọi M, E lần lượt là trung điểm của AB và MB.

    Suy ra \left\{ \begin{array}{l}CM \bot AB\\CM = \dfrac{{a\sqrt 3 }}{2}\end{array} ight. và  \left\{ \begin{array}{l}HE \bot AB\\HE = \dfrac{1}{2}CM = \dfrac{{a\sqrt 3 }}{4}\end{array} ight..

    Gọi K là hình chiếu vuông góc của H trên SE , suy ra HK \bot SE    (1).

    Ta có \left\{ \begin{array}{l}HE \bot AB\\AB \bot SH\end{array} ight. \Rightarrow AB \bot \left( {SHE} ight) \Rightarrow AB \bot HK.   (2)

    Từ (1) và (2) , suy ra HK \bot \left( {SAB} ight)  nên  d\left[ {H,\left( {SAB} ight)} ight] = HK.

    Trong tam giác vuông SHE, ta có HK = \frac{{SH.HE}}{{\sqrt {S{H^2} + H{E^2}} }} = \frac{{3a}}{{2\sqrt {13} }}.

    Vậy R = \frac{2}{3}HK = \frac{a}{{\sqrt {13} }}.

  • Câu 13: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 14: Vận dụng cao

    Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác vuông  SAB có diện tích bằng 4a^2. Góc giữa trục SO và mặt phẳng (SAB) bằng {30}^\circ. Diện tích xung quanh của hình nón đã cho bằng?

     

    Gọi M là trung điểm của AB , tam giác OAB cân đỉnh O nên OM\bot AB  và SO\bot AB suy ra AB\bot(SOM)

    Dựng OK\bot SM..

    Theo trên có OK\bot AB nên OK\bot(SAB).

    Vậy góc tạo bởi giữa trục SO và mặt phẳng (SAB)\widehat{OSM}={30}^\circ. Tam giác vuông cân SAB có diện tích bằng 4a^2 suy ra \frac{1}{2}SA^2=4a^2\Rightarrow SA=2a\sqrt2

    \Rightarrow AB=4a\Rightarrow SM=2a..

    Xét tam giác vuông SOM\cos\widehat{OSM}=\frac{SO}{SM}\Rightarrow SO=\frac{\sqrt3}{2}\cdot2a=\sqrt3a..

    Cuối cùng OB=\sqrt{SB^2-SO^2}=a\sqrt5.

    Vậy diện tích xung quanh của hình nón bằng S_{xq}=\pi rl=\pi\cdot a\sqrt5\cdot2a\sqrt2=2a^2\sqrt{10}\pi.

  • Câu 15: Vận dụng

    Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng \frac{3a}{2}. Diện tích của thiết diện đó bằng?

    Xét hình nón đỉnh S có chiều cao SO=2a, bán kính đáy OA=3a .

    Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

    Diện tích thiết diện

    Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ OH\bot SI,H\in SI

    Ta có: 

     +\left\{\begin{matrix}AB\bot O I\\AB\bot S O\\\end{matrix}\Rightarrow A B\bot(SOI)\Rightarrow A B\bot O Hight.

    +\left\{\begin{matrix}OH\bot S I\\OH\bot A B\\\end{matrix}\Rightarrow O H\bot(SAB)\Rightarrow d(O,(SAB))=OH=\frac{3a}{2}ight.

    Xét tam giác SOI vuông tại O, ta có

    \frac{1}{OI^2}=\frac{1}{OH^2}-\frac{1}{SO^2}=\frac{4}{9a^2}-\frac{1}{4a^2}=\frac{7}{36a^2}\Rightarrow OI=\frac{6a}{\sqrt7}.

    SI=\sqrt{SO^2+OI^2}=\sqrt{4a^2+\frac{36a^2}{7}}=\frac{8a}{\sqrt7}.

    Xét tam giác AOI vuông tại I, có: 

    AI=\sqrt{AO^2-OI^2}=\sqrt{9a^2-\frac{36a^2}{7}}=\frac{3\sqrt3a}{\sqrt7}

    \Rightarrow AB=2AI=\frac{6\sqrt3a}{\sqrt7}

    Vậy diện tích của thiết diện là:

    S_{\triangle S A B}=\frac{1}{2}\cdot SI\cdot AB=\frac{1}{2}\cdot\frac{8a}{\sqrt7}\cdot\frac{6\sqrt3a}{\sqrt7}=\frac{24a^2\sqrt3}{7}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo