Cho hình nón đỉnh S có bán kính đáy
, góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:

Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Cho hình nón đỉnh S có bán kính đáy
, góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:

Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Một hình trụ có bán kính đáy
, chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Trong không gian với hệ toạ độ
, mặt cầu
có tâm là
Mặt cầu có tâm là:
.
Trong không gian
, cho điểm A(0; 1; 2), mặt phẳng
và mặt cầu
. Gọi
là mặt phẳng đi qua
, vuông góc với
và đồng thời
cắt mặt cầu
theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm
của
và trục
là
Gọi (C) là giao tuyến của mặt phẳng và mặt cầu (S) và (C) có tâm H, bán kính r.
Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi lớn nhất.
Vì nên gọi M(m; 0; 0).
Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).
Khi đó
Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:
hay
Ta có:
lớn nhất khi và chỉ khi
đạt giá trị nhỏ nhất
Mà
Do đó nhỏ nhất khi và chỉ khi
Vậy .
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có .
Diện tích toàn phần là: (đvdt).
Cho mặt cầu (S):
và điểm
. Gọi M là tiếp điểm của (S) và tiếp tuyến di động qua (d). Tìm tập hợp các điểm M.
(Có thể chọn nhiều đáp án)
Theo đề bài, (S) có tâm
Ta có:
đường tròn
Hay
Cho hình trụ có hai đáy là hai hình tròn (O) và(O’), thiết diện qua trục của hình trụ là hình vuông. Gọi A, B là hai điểm lần lượt nằm trên hai đường tròn (O) và(O’). Biết AB = 2a và khoảng cách giữa hai đường thẳng AB và OO’ bằng
. Bán kính đáy bằng:

Dựng đường sinh BB', gọi I là trung điểm của AB’, ta có
Suy ra
Gọi bán kính đáy của hình trụ là R.
Vì thiết diện qua trục của hình trụ là hình vuông nên
Trong tam giác vuông A B’B, ta có .
Trong tam giác vuông OIB’, ta có N .
Suy ra .
Từ đó ta có .
Trong không gian với hệ tọa độ
, cho ba điểm
với
. Biết rằng mặt phẳng
đi qua điểm
và tiếp xúc với mặt cầu
. Tính
.
Mặt phẳng đi qua ba điểm
nên có phương trình là:
Ta có nên
.
Mặt cầu (S) có tâm và bán kính
.
tiếp xúc với (S)
Với giá trị nào của m thì mặt phẳng
tiếp xúc với mặt cầu
![]()
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I của cầu có tọa độ là .
tiếp xúc (S) khi:
(loại)
Trong hệ tọa độ
, cho mặt cầu
có đường kính
, với
. Viết phương trình
tiếp xúc với mặt cầu
tại
?
Hình vẽ minh họa
Vì mặt cầu có đường kính là AB nên tâm I của mặt cầu
là trung điểm của
.
Mặt cầu có tâm I(1; 1; 1).
Vì tiếp xúc với
tại
nên
đi qua
và nhận
làm vectơ pháp tuyến.
Suy ra
Trong không gian
, cho các điểm
. Tập hợp các điểm
thỏa mãn
là mặt cầu có bán kính là:
Giả sử
Ta có:
Theo bài ra ta có:
Vậy tập hợp điểm thỏa mãn
là mặt cầu có bán kính là
.
Cho hình nón có bán kính đáy là
, độ dài đường sinh là
. Thể tích khối cầu nội tiếp hình nón bằng:

Xét mặt phẳng qua trục SO của hình nón ta được thiết diện là tam giác cân SAB.
Mặt phẳng đó cắt mặt cầu theo đường tròn có bán kính r (bán kính mặt cầu) và nội tiếp trong tam giác cân SAB.
Trong tam giác vuông SOB, gọi I là giao điểm của đường phân giác trong góc B với đường thẳng SO.
Chứng minh được I là tâm đường tròn nội tiếp tam giác và bán kính (E là hình chiếu vuông góc của I trên SB).
Theo tính chất phân giác, ta có .
Lại có .
Từ đó suy ra .
Ta có nên
Thể tích khối cầu: (đvtt).
Trong không gian với hệ tọa độ
, phương trình mặt cầu tâm
bán kính
là:
Phương trình mặt cầu tâm bán kính
là:
Tổng quát .