Trong không gian
, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính
?
Phương trình mặt cầu có bán kính
Xét phương trình mặt cầu ta có:
Trong không gian
, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính
?
Phương trình mặt cầu có bán kính
Xét phương trình mặt cầu ta có:
Cho hình nón đỉnh S có đáy là hình tròn tâm O. Dựng hai đường sinh SA và SB, biết tam giác SAB vuông và có diện tích bằng
. Góc tạo bởi giữa trục SO và mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:

Theo giả thiết ta có tam giác SAB vuông cân tại S.
Gọi E là trung điểm AB, suy ra và
.
Ta có
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Cho hình chóp
có đáy
là hình vuông cạnh a. Cạnh bên
và vuông góc với đáy (
). Tính theo
diện tích mặt cầu ngoại tiếp hình chóp
ta được:

Gọi , suy ra O là tâm đường tròn ngoại tiếp hình vuông
.
Gọi I là trung điểm SC, suy ra
Do đó IO là trục của hình vuông , suy ra
(1)
Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên . (2)
Từ (1) và (2), ta có:
Vậy diện tích mặt cầu (đvdt).
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho
. Độ dài đường sinh
của hình nón bằng:

Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn
, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

Gọi (O) và (O') lần lượt là hai đường tròn đáy; .
Dựng AD, CB lần lượt song song với OO' . Dễ dàng có ABCD là hình chữ nhật.
Do .
Gọi H là trung điểm của DC.
.
Ta có .
Suy ra .
Vậy thể tích của khối trụ là .
Trong không gian với hệ tọa độ
cho mặt cầu
và điểm
. Ba mặt phẳng thay đổi đi qua
và đôi một vuông góc với nhau, cắt mặt cầu theo ba đường tròn. Tính tổng diện tích của ba đường tròn tương ứng đó.

Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là
Với điểm I bất kỳ, hạ lần lượt vuông góc với ba mặt phẳng
thì ta luôn có:
(1) .
Thật vậy , ta chọn hệ trục tọa độ Oxyz với , ba trục Ox, Oy, Oz lần lượt là ba giao tuyến của ba mặt phẳng
.
Khi đó tọa độ I(a;b;c) thì:
hay .
Vậy (1) được chứng minh.

Áp dụng giải bài:
Mặt cầu (S) có tâm và có bán kính
.
.
Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là và cắt mặt cầu (S) theo ba đường tròn lần lượt là
.
Gọi và
lần lượt là tâm và bán kính của
.
Khi đó : .
Tương tự có: và
.
Theo nhận xét ở trên ta có:
Ta có tổng diện tích các đường tròn là :
.
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Trong không gian
, cho mặt phẳng
và mặt cầu
tâm
bán kính
. Bán kính đường tròn giao của mặt phẳng
và mặt cầu
là:
Hình vẽ minh họa
Gọi bán kính đường tròn giao của mặt phẳng và mặt cầu
là
Ta có:
Suy ra
Từ một tấm tôn hình chữ nhật kích thước
, người ta làm các thùng đựng nước hình trụ có chiều cao bằng
, theo hai cách sau (xem hình minh họa sau đây):

● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.
● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.
Kí hiệu
là thể tích của thùng gò được theo cách 1 và
là thể tích của thùng gò được theo cách 2. Khi đó tỉ số
bằng:
2 || Hai || hai
Từ một tấm tôn hình chữ nhật kích thước , người ta làm các thùng đựng nước hình trụ có chiều cao bằng
, theo hai cách sau (xem hình minh họa sau đây):

● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.
● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.
Kí hiệu là thể tích của thùng gò được theo cách 1 và
là thể tích của thùng gò được theo cách 2. Khi đó tỉ số
bằng:
2 || Hai || hai
Công thức thể tích khối trụ .
● Ở cách 1, suy ra và
. Do đó
(đvtt).
● Ở cách 2, suy ra mỗi thùng có và
Do đó (đvtt).
Suy ra
Một hình trụ có bán kính đáy
, chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.
Cho hình chóp tam giác đều
có cạnh đáy bằng a và cạnh bên bằng
. Gọi h là chiều cao của khối chóp và R là bán kính mặt cầu ngoại tiếp khối chóp. Tỉ số
bằng:

Gọi O là tâm , suy ra
và
Trong SOA, ta có
Trong mặt phẳng SOA, kẻ trung trực d của đoạn SA cắt SO tại I, suy ra:
Do đó nên I là tâm mặt cầu ngoại tiếp khối chóp .
Gọi M là tung điểm SA, ta có nên
Vậy
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Trong không gian
, cho các điểm
. Tập hợp các điểm
thỏa mãn
là mặt cầu có bán kính là:
Giả sử
Ta có:
Theo bài ra ta có:
Vậy tập hợp điểm thỏa mãn
là mặt cầu có bán kính là
.
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm là điểm
, mặt phẳng
cắt mặt cầu
theo thiết diện là đường tròn có bán kính
. Diện tích của mặt cầu
là:
Ta có:
Vậy diện tích mặt cầu là: .
Điều kiện để
là một mặt cầu là:
Theo đề bài, ta có:
có dạng:
Như vậy, (S) là mặt cầu