Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),C(0;0;3),B(0;2;0). Tập hợp các điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là:

    Giả sử M(x;y;z)

    Ta có:\left\{ \begin{matrix}
MA^{2} = (x - 1)^{2} + y^{2} + z^{2} \\
MB^{2} = x^{2} + (y - 2)^{2} + z^{2} \\
MC^{2} = x^{2} + y^{2} + (z - 3)^{2} \\
\end{matrix} ight.

    Theo bài ra ta có:

    MA^{2} = MB^{2} + MC^{2}

    \Leftrightarrow (x - 1)^{2} + y^{2} +
z^{2} = x^{2} + (y - 2)^{2} + z^{2} + x^{2} + y^{2} + (z -
3)^{2}

    \Leftrightarrow - 2x + 1 = (y - 2)^{2} +
x^{2} + (z - 3)^{2}

    \Leftrightarrow (x + 1)^{2} + (y -
2)^{2} + (z - 3)^{2} = 2

    Vậy tập hợp điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là R = \sqrt{2}.

  • Câu 2: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: \dfrac{x-2}{2}=\dfrac{y}{-1} = \dfrac z 4và mặt

    cầu (S) tâm I(1;2;1), bán kính R. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với

    (S) tạo với nhau góc 60^0 . Hãy viết phương trình mặt cầu (S)

     Viết phương trình mặt cầu

    Gọi M, N là tiếp điểm của mặt phẳng (P), (Q) và mặt cầu (S). Gọi H là hình chiếu của điểm I trên đường thẳng d.

    \Rightarrow IH=d(I,d)= \sqrt 6

    TH1: Góc \widehat {MHN}=60^0:

    Theo bài ra ta có: R=IM=IH.\sin30^0= \sqrt 6 .\frac 1 2 = \frac{\sqrt 6}{2}

    \Rightarrow(S) : (x-1)^2+(y-2)^2+(z-1)^2= \frac 3 2

    TH2: Góc \widehat {MHN}=120^0:

    Theo bài ra ta có: R=IM=IH.\sin60^0= \sqrt 6 .\frac {\sqrt 3}{2} = \frac{\sqrt18}{2}

    \Rightarrow(S) : (x-1)^2+(y-2)^2+(z-1)^2= \frac 9 2.

  • Câu 3: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 4: Nhận biết

    Trong không gian Oxyz, cho hai điểm I(1;1;1)A(1;2;3). Phương trình mặt cầu có tâm I và đi qua A là:

    Ta có: R = IA = \sqrt{(1 - 1)^{2} + (2 -
1)^{2} + (3 - 1)^{2}} = \sqrt{5}

    Vậy phương trình mặt cầu tâm I và đi qua điểm A có phương trình là:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
5.

  • Câu 5: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 6: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 7: Thông hiểu

    Gọi (S) là mặt cầu đi qua bốn điểm A(2;0;0),B(1;3;0),C( -
1;0;3),D(1;2;3). Tính bán kính R của (S)?

    Gọi I(a;b;c) là tâm mặt cầu đi qua bốn điểm A;B;C;D

    Khi đó ta có phương trình:

    \left\{ \begin{matrix}
AI^{2} = BI^{2} \\
AI^{2} = CI^{2} \\
AI^{2} = DI^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 2)^{2} + b^{2} + c^{2} = (a - 1)^{2} + (b - 3)^{2} + c^{2} \\
(a - 2)^{2} + b^{2} + c^{2} = (a + 1)^{2} + b^{2} + (c - 3)^{2} \\
(a - 2)^{2} + b^{2} + c^{2} = (a - 1)^{2} + (b - 2)^{2} + (c - 3)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a - 3b = - 3 \\
a - c = - 1 \\
a - 2b - 3c = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy bán kính cần tìm là: R = IA =
\sqrt{2^{2} + 1^{2} + 1^{2}} = \sqrt{6}

  • Câu 8: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 9: Thông hiểu

    Tìm tập hợp các tâm I của mặt cầu sau nằm trên?

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {1 - m} ight)x + 2\left( {3 - 2m} ight)y + 2\left( {m - 2} ight)z + 5{m^2} - 9m + 6 = 0

    Theo đề bài, ta xác định các hệ số của (S)

    a = m - 1;\,\,b = 2m - 3;\,\,c = 2 - m;\,\,d = 5{m^2} - 9m + 6

    Suy ra ta gọi được tâm I của mặt cầu có tọa độ là I\left( {x = m - 1;y = 2m - 3;z = 2 - m} ight)

    \Rightarrow x + 1 = \frac{{y + 3}}{2} = 2 - z

    Xét (S) là mặt cầu \Leftrightarrow {\left( {m - 1} ight)^2} + {\left( {2m - 3} ight)^2} + {\left( {2 - m} ight)^2} - 5{m^2} + 9m - 6 > 0

    \begin{array}{l} \Leftrightarrow {m^2} - 9m + 8 > 0 \Leftrightarrow m < 1 \vee m > 8\\ \Leftrightarrow m - 1 < 0 \vee m - 1 > 7 \Leftrightarrow x < 0 \vee x > 7\end{array}

    Vậy tập hợp các điểm I là phân đường thẳng  x + 1 = \frac{{y + 3}}{2} = 2 - z

    tương ứng với x < 0\,\,\, \vee \,\,\,x > 7.

  • Câu 10: Vận dụng cao

    Từ một tấm tôn hình chữ nhật kích thước 50{m{cm}} \times 240{m{cm}} , người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50  cm , theo hai cách sau (xem hình minh họa sau đây):

    Tính tỉ số thể tích

    ● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

    ● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

    Kí hiệu V_1là thể tích của thùng gò được theo cách 1 và V_2 là thể tích của thùng gò được theo cách 2. Khi đó tỉ số \frac{{{V_1}}}{{{V_2}}} bằng:

    2 || Hai || hai

    Đáp án là:

    Từ một tấm tôn hình chữ nhật kích thước 50{m{cm}} \times 240{m{cm}} , người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50  cm , theo hai cách sau (xem hình minh họa sau đây):

    Tính tỉ số thể tích

    ● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

    ● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

    Kí hiệu V_1là thể tích của thùng gò được theo cách 1 và V_2 là thể tích của thùng gò được theo cách 2. Khi đó tỉ số \frac{{{V_1}}}{{{V_2}}} bằng:

    2 || Hai || hai

     Công thức thể tích khối trụ V = \pi {R^2}h.

    ● Ở cách 1, suy ra h= 50  cm2\pi {R_1} = 240 \Leftrightarrow {R_1} = \frac{{120}}{\pi }. Do đó {V_1} = \pi .{\left( {\frac{{120}}{\pi }} ight)^2}.50 (đvtt).

    ● Ở cách 2, suy ra mỗi thùng có h= 50  cm2\pi {R_2} = 120 \Leftrightarrow {R_2} = \frac{{60}}{\pi }

    Do đó {V_2} = 2 \times \left[ {\pi .{{\left( {\frac{{60}}{\pi }} ight)}^2}.50} ight] (đvtt).

    Suy ra \frac{{{V_1}}}{{{V_2}}} = 2

  • Câu 11: Nhận biết

    Một hình cầu có bán kính là 2m, một mặt phẳng cắt hình cầu theo một hình tròn có độ dài là 2,4\pi {m{m}} . Khoảng cách từ tâm mặt cầu đến mặt phẳng là:

    Gọi khoảng cách từ tâm cầu đến mặt phẳng là d, ta có {d^2} = {R^2} - {r^2} .

    Theo giả thiết R = 2m và 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

    Vậy 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

  • Câu 12: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;3)B( - 1;0;1) và mặt phẳng (P):x + y + z + 4 = 0. Phương trình mặt cầu (S) có bán kính bằng \frac{AB}{6} có tâm thuộc đường thẳng AB(S) tiếp xúc với mặt phẳng (P) là:

    Ta có: \overrightarrow{AB} = ( - 2;2; -
2) suy ra AB:\left\{ \begin{matrix}
x = 1 - 2t \\
y = - 2 + 2t \\
z = 3 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Ta có: R = \frac{AB}{6} =
\frac{2\sqrt{3}}{6} = \frac{\sqrt{3}}{3}

    Tâm I thuộc AB nên I(1 - 2t; - 2 + 2t;3 -
2t)

    Mặt phẳng (P) tiếp xúc mặt cầu nên

    d\left( I;(P) ight) = R

    \Leftrightarrow \frac{\left| (1 - 2t) +
( - 2 + 2t) + (2 - 2t) + 4 ight|}{\sqrt{1^{2} + 1^{2} + 1^{2}}} =
\frac{\sqrt{3}}{3}

    \Leftrightarrow |6 - 2t| = 1
\Leftrightarrow \left\lbrack \begin{matrix}
6 - 2t = 1 \\
6 - 2t = - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}t = \dfrac{5}{2} \Rightarrow I( - 4;3; - 2) \\t = \dfrac{7}{2} \Rightarrow I( - 6;5; - 4) \\\end{matrix} ight.

    Ta có phương trình đường tròn (C) tâm I(−4; 3; −2), bán kính R = \frac{\sqrt{3}}{3}là:

    (x + 4)^{2} + (y - 3)^{2} + (z + 2)^{2}
= \frac{1}{3}

    Ta có phương trình đường tròn (C) tâm I(−6; 5; −4), bán kính R = \frac{\sqrt{3}}{3}là:

    (x + 6)^{2} + (y - 5)^{2} + (z + 4)^{2}
= \frac{1}{3}

    Vậy đáp án cần tìm là: \left\lbrack\begin{matrix}(x + 4)^{2} + (y - 3)^{2} + (z + 2)^{2} = \dfrac{1}{3} \\(x + 6)^{2} + (y - 5)^{2} + (z + 4)^{2} = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 13: Vận dụng

    Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:

     Tính thể tích khối trụ

    Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.

    Ta có BH \bot \left( {AOO'A'} ight) nên {V_{OO'AB}} = \frac{1}{3}{S_{\Delta AOO'}}.BH.

    Trong tam giác vuông A'AB có A'B = \sqrt {A{B^2} - AA{'^2}}  = \sqrt 3 a.

    Trong tam giác vuông A'BD có BD = \sqrt {A'{D^2} - A'{B^2}}  = a.

    Do đó suy ra tam giác BO'D nên BH = \frac{{\sqrt 3 a}}{2}.

    Vậy  {V_{OO'AB}} = \frac{1}{3}.\left( {\frac{1}{2}{a^2}} ight).\frac{{a\sqrt 3 }}{2} = \frac{{\sqrt 3 {a^3}}}{{12}} (đvtt).

  • Câu 14: Vận dụng

    Trong không gian Oxyz, cho mặt phẳng (P): 2x + y − 2z + 10 = 0 và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
25 cắt nhau theo giao tuyến đường tròn (C). Gọi V_{1} là thể tích khối cầu (S), V_{2} là thể tích khối nón (N) có đỉnh là giao điểm của đường thẳng đi qua tâm mặt cầu (S) và vuông góc với mặt phẳng (P), đáy là đường tròn (C). Biết độ dài đường cao khối nón (N) lớn hơn bán kính của khối cầu (S). Tính tỉ số \frac{V_{1}}{V_{2}}?

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(2; 1; 3) và bán kính R = 5, khoảng cách từ tâm I đến mặt phẳng (P) là:

    d = d\left( I;(P) ight) = \frac{|4 + 1
- 6 + 10|}{3} = 3

    Bán kính đường tròn (C) là: r = \sqrt{R^{2} - d^{2}} = 4

    Thể tích khối cầu (S) là: V_{1} =
\frac{4}{3}\pi R^{3} = \frac{500\pi}{3}

    Chiều cao hình nón là h = R + d = 8.

    Thể tích khối nón làV_{2} = \frac{1}{3}\pi r^{2}h =
\frac{128\pi}{3}

    Vậy \frac{V_{1}}{V_{2}} =
\frac{125}{32}.

  • Câu 15: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo