Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho đường tròn (C) đường kính AB và đường thẳng \triangle. Để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu thì cần có thêm điều kiện nào sau đây:

    Điều kiện để hình tròn xoay sinh bởi (C) khi quay quanh \triangle là một mặt cầu là trục quay \triangle phải cố định và hai điểm A, B cũng cố định trên \triangle.

  • Câu 2: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:

    Do thiết diện đi qua trục hình trụ nên ta có h = 2R.

    Diện tích toàn phần là: {S_{tp}} = 2\pi R\left( {R + h} ight) = 6\pi {R^2} (đvdt).

  • Câu 3: Vận dụng

    Cho hình nón đỉnh S có đáy là hình tròn tâm O. Dựng hai đường sinh SA và SB, biết tam giác SAB vuông và có diện tích bằng 4a^2. Góc tạo bởi giữa trục SO và mặt phẳng (SAB) bằng 30^0. Đường cao h của hình nón bằng:

     Tính đường cao nón

    Theo giả thiết ta có tam giác SAB vuông cân tại S.

    Gọi E là trung điểm AB, suy ra\left\{ \begin{array}{l}SE \bot AB\\OE \bot AB\end{array} ight.  và SE = \frac{1}{2}AB.

    Ta có {S_{\Delta SAB}} = \frac{1}{2}AB.SE = 4{a^2} \Leftrightarrow \frac{1}{2}AB.\frac{1}{2}AB = 4{a^2}

    \Rightarrow AB = 4a \Rightarrow SE = 2a.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH.

    Từ đó suy ra OH \bot \left( {SAB} ight) nên

    {30^0} = \widehat {SO,\left( {SAB} ight)} = \widehat {SO,SH} = \widehat {OSH} = \widehat {OSE}

    Trong tam giác vuông SOE, ta có SO = SE.\cos \widehat {OSE} = a\sqrt 3

  • Câu 4: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 5: Thông hiểu

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x - 2y + 2z
- 19 = 0 và mặt phẳng (P):2x - y -
2z + m + 3 = 0, với m là tham số. Gọi T là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi 6\pi. Tổng giá trị của tất cả các phần tử thuộc T bằng:

    Mặt cầu (S):(x - 2)^{2} + (y - 1)^{2} +
(z + 1)^{2} = 25 có tâm I(2; 1; −1) và bán kính R = 5.

    Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.

    Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:

    d\left( I;(P) ight) = \sqrt{R^{2} -
r^{2}} = 4

    \Leftrightarrow \frac{|4 - 1 + 2 + m +
3|}{3} = 4

    \Leftrightarrow |m + 8| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = - 20 \\
\end{matrix} ight.

    Vậy tổng giá trị của các phần tử thuộc T bằng −16.

  • Câu 6: Nhận biết

    Trong không gian Oxyz, viết phương trình mặt cầu (S) đường kính AB biết A(2; - 1; - 3),B(0;3; - 1)?

    Gọi I là trung điểm của AB khi đó I(1;1; - 2) là tâm mặt cầu (S).

    Bán kính R = \frac{1}{2}AB =
\frac{1}{2}\sqrt{4 + 16 + 4} = \frac{\sqrt{24}}{2}

    Vậy phương trình mặt cầu cần tìm là: (S):(x + 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
6.

  • Câu 7: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 8: Vận dụng

    Trong không gian Oxyz, cho điểm M(1; −1; 2) và mặt cầu (S):x^{2} + y^{2} +
z^{2} = 9. Mặt phẳng đi qua M cắt S theo một đường tròn có bán kính nhỏ nhất có phương trình là:

    Ta có:

    (S) có bán kính R = 3 và tâm I(0; 0; 0), IM = \sqrt{6} < 3 nên I nằm trong hình cầu (S).

    Gọi r là bán kính của đường tròn, (P) là mặt phẳng qua M, ta có:

    r^{2} = R^{2} - d^{2}\left( I;(P)
ight) = 9 - d^{2}\left( I;(P) ight) \geq 9 - IM^{2} = 3

    Suy ra bán kính r_{\min} =
\sqrt{3} khi \overrightarrow{IM} là vectơ pháp tuyến của (P).

    Vậy phương trình của mặt phẳng (P): (x − 1) − (y + 1) + 2(z − 2) = 0⇔ x − y + 2z − 6 = 0.

  • Câu 9: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c>0. Biết rằng mặt phẳng (ABC) đi qua điểm M(\frac 1 7; \frac 2 7 ; \frac 3 7) và tiếp xúc với mặt cầu (S):(x-1)^2+(y-2)^2+(z-3)^2=\frac{72}{7}. Tính T=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}.

    Mặt phẳng (ABC) đi qua ba điểm A(a;0;0), B(0;b;0), C(0;0;c) nên có phương trình là:

    \frac{x}{a} +\frac{y}{b}+\frac{z}{c}=1

    Ta có M(\frac 1 7; \frac 2 7 ; \frac 3 7) \in (ABC) nên \frac{1}{a} +\frac{2}{b}+\frac{3}{c}=7.

    Mặt cầu (S) có tâm I(1;2;3) và bán kính R=\sqrt \frac{72}{7}.

    (ABC) tiếp xúc với  (S)

    \Leftrightarrow d(I, (ABC))=R\Leftrightarrow \dfrac { | \dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}-1 |}{\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}}=\sqrt{\frac{72}{7} }

    \Leftrightarrow \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}= \dfrac{7}{2}

  • Câu 10: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 11: Vận dụng cao

    Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:

    Công thức tính thể tích V = \pi {R^2}h , suy ra h = \frac{V}{{\pi {R^2}}}

    Hộp sữa chỉ kín một đáy nên diện tích tôn cần dùng là:

    {S_{tp}} = {S_{xq}} + {S_{{m{day}}}} = 2\pi Rh + \pi {R^2} = \frac{{2V}}{R} + \pi {R^2}

    Xét hàm f\left( R ight) = \frac{{2V}}{R} + \pi {R^2}  trên \left( {0; + \infty } ight) , ta được \mathop {\min }\limits_{\left( {0; + \infty } ight)} f\left( R ight) đạt tại R=h.

  • Câu 12: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho tứ diện ABCD có tọa độ đỉnh A(2;0;0),B(0;4;0),C(0;0;6),D(2;4;6). Gọi (S) là mặt cầu ngoại tiếp tứ diện ABCD. Viết phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)?

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    (S) là mặt cầu ngoại tiếp tứ diện ABCD nên ta có hệ phương trình

    \left\{ \begin{matrix}
2^{2} + 0^{2} + 0^{2} - 2.a.2 - 2.b.0 - 2.c.0 + d = 0 \\
0^{2} + 4^{2} + 0^{2} - 2.a.0 - 2.b.4 - 2.c.0 + d = 0 \\
0^{2} + 0^{2} + 6^{2} - 2.a.0 - 2.b.0 - 2.c.6 + d = 0 \\
2^{2} + 4^{2} + 6^{2} - 2.a.2 - 2.b.4 - 2.c.6 + d = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4a + d = - 4 \\
- 8b + d = - 16 \\
- 12c + d = - 36 \\
- 4a - 8b - 12c + d = - 56 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
d = 0 \\
\end{matrix} ight.. Suy ra tâm mặt cầu I(1;2;3) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{14}

    Vậy phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)là:

    (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2}
= 56

  • Câu 14: Vận dụng

    Trong không gian Oxyz, cho điểm A(0; 1; 2), mặt phẳng (α): x−y +z −4 = 0 và mặt cầu (S):(x - 3)^{2} + (y - 1)^{2} + (z - 2)^{2} =
16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x’Ox

    Gọi (C) là giao tuyến của mặt phẳng (P) và mặt cầu (S) và (C) có tâm H, bán kính r.

    Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi d(I,(P)) lớn nhất.

    M ∈ x'Ox nên gọi M(m; 0; 0).

    Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).

    Khi đó \overrightarrow{n_{(P)}} =
\left\lbrack \overrightarrow{MA};\overrightarrow{n_{(\alpha)}}
ightbrack = (3;2 + m;m - 1)

    Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:

    3(x − 0) + (2 + m)(y − 2) + (m − 1)(z − 2) = 0 hay 3x + (2 + m)y + (m − 1)z −3m=0

    Ta có:

    d\left( I;(P) ight) =
\frac{9}{\sqrt{2m^{2} + 2m + 14}} lớn nhất khi và chỉ khi 2m^{2} + 2m + 14 đạt giá trị nhỏ nhất

    2m^{2} + 2m + 14 = 2\left( m +
\frac{1}{2} ight)^{2} + \frac{27}{2} \geq \frac{27}{2}

    Do đó 2m^{2} + 2m + 14 nhỏ nhất khi và chỉ khi m = -
\frac{1}{2}

    Vậy M\left( - \frac{1}{2};0;0
ight).

  • Câu 15: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + (z + 3)^{2} =
25 theo thiết diện là đường tròn bán kính r bằng bao nhiêu?

    Mặt cầu (S) có tâm I(1;1; - 3) và bán kính R = 5.

    Khoảng cách từ tâm I đến (Oxy) bằng 3.

    \Rightarrow r = \sqrt{5^{2} - 3^{2}} =
4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo