Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Trong không gian với hệ tọa độ
, cho hai điểm
và
. Có tất cả bao nhiêu giá trị thực của tham số m để phương trình
là phương trình của một mặt cầu (S) sao cho qua hai điểm
có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1.
Ta có:
Suy ra (*) là phương trình mặt cầu
Khi đó, mặt cầu (S) có tâm và bán kính
Gọi (P) là mặt phẳng đi qua A, B.
Theo giả thiết (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính r = 1.
Mặt khác, khoảng cách từ tâm I đến mặt phẳng (P) là
Ta có: suy ra
là một vectơ chỉ phương của đường thẳng
Suy ra đường thẳng là:
Để có duy nhất mặt phẳng (P) thỏa mãn bài thì
TH1. Mặt phẳng (P) đi qua điểm I và
Ta có
+ Với (loại).
+ Với m = −2 ⇒ ⇒ m = −2 (thỏa mãn).
TH2. Mặt phẳng (P) cách I một khoảng lớn nhất ⇔ d lớn nhất ⇔ d = d(I, AB). (*)
Khi đó
Vậy có 2 giá trị tham số m thỏa mãn yêu cầu.
Trong không gian
, cho mặt cầu
và các điểm
. Điểm
thuộc mặt cầu
. Thể tích lớn nhất của tứ diện
bằng:
Mặt cầu có tâm là
và bán kính
.
Khi lớn nhất thì
Ta có: suy ra:
.
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho
. Độ dài đường sinh
của hình nón bằng:

Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Trong không gian
, cho mặt cầu
và mặt phẳng
, với
là tham số. Gọi
là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng
cắt mặt cầu
theo một đường tròn có chu vi
. Tổng giá trị của tất cả các phần tử thuộc
bằng:
Mặt cầu có tâm I(2; 1; −1) và bán kính R = 5.
Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.
Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:
Vậy tổng giá trị của các phần tử thuộc T bằng −16.
Diện tích hình tròn lớn của một hình cầu là p. Một mặt phẳng
cắt hình cầu theo một hình tròn có diện tích là
. Khoảng cách từ tâm mặt cầu đến mặt phẳng
bằng:
Hình tròn lớn của hình cầu S là hình tròn tạo bởi mặt phẳng cắt hình cầu và đi qua tâm của hình cầu.
Gọi R là bán kính hình cầu thì hình tròn lớn cũng có bán kính là R.
Theo giả thiết, ta có và
Suy ra .
Trong không gian
, cho mặt cầu
và mặt phẳng
. Viết phương trình mặt phẳng
, biết
song song với giá của vectơ
, vuông góc với
và tiếp xúc với
.
Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R = 4.
Vectơ pháp tuyến của (α) là
Theo giả thiết, suy ra (P) có vectơ pháp tuyến là
Phương trình của mặt phẳng (P) có dạng
Vì (P) tiếp xúc với mặt cầu (S) nên ta có:
Vậy có 2 mặt phẳng thỏa yêu cầu bài toán có phương trình là:
Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là một tam giác vuông
có diện tích bằng
. Góc giữa trục
và mặt phẳng
bằng
. Diện tích xung quanh của hình nón đã cho bằng?

Gọi là trung điểm của
, tam giác
cân đỉnh O nên
và
suy ra
Dựng .
Theo trên có nên
.
Vậy góc tạo bởi giữa trục và mặt phẳng
là
. Tam giác vuông cân
có diện tích bằng
suy ra
.
Xét tam giác vuông có
.
Cuối cùng .
Vậy diện tích xung quanh của hình nón bằng .
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Trong không gian với hệ tọa độ
, cho mặt cầu ![]()
Ta có:
Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là:
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng
. Diện tích của thiết diện đó bằng?
Xét hình nón đỉnh S có chiều cao , bán kính đáy
.
Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ
Ta có:
Xét tam giác SOI vuông tại O, ta có
.
Xét tam giác AOI vuông tại I, có:
Vậy diện tích của thiết diện là:
.
Trong không gian với hệ tọa độ
, mặt phẳng
cắt mặt cầu
theo thiết diện là đường tròn bán kính
bằng bao nhiêu?
Mặt cầu có tâm
và bán kính
.
Khoảng cách từ tâm đến
bằng
.
Trong không gian
, cho tứ diện
có tọa độ đỉnh ![]()
. Gọi
là mặt cầu ngoại tiếp tứ diện
. Viết phương trình mặt cầu
có tâm trùng với tâm của mặt cầu
và có bán kính gấp hai lần bán kính của mặt cầu
?
Gọi phương trình mặt cầu có
Vì là mặt cầu ngoại tiếp tứ diện
nên ta có hệ phương trình
. Suy ra tâm mặt cầu
và bán kính
Vậy phương trình mặt cầu có tâm trùng với tâm của mặt cầu
và có bán kính gấp hai lần bán kính của mặt cầu
là:
Một hình trụ có bán kính đáy
, chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.