Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 2: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 3: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 4: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 5: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, mặt cầu (S):(x - 1)^{2} + y^{2} + (z + 3)^{2} =
16 có tâm là

    Mặt cầu (S):(x - 1)^{2} + y^{2} + (z +
3)^{2} = 16 có tâm là: I(1;0; -
3) .

  • Câu 6: Vận dụng

    Trong không gian Oxyz, cho điểm A(0; 1; 2), mặt phẳng (α): x−y +z −4 = 0 và mặt cầu (S):(x - 3)^{2} + (y - 1)^{2} + (z - 2)^{2} =
16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x’Ox

    Gọi (C) là giao tuyến của mặt phẳng (P) và mặt cầu (S) và (C) có tâm H, bán kính r.

    Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi d(I,(P)) lớn nhất.

    M ∈ x'Ox nên gọi M(m; 0; 0).

    Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).

    Khi đó \overrightarrow{n_{(P)}} =
\left\lbrack \overrightarrow{MA};\overrightarrow{n_{(\alpha)}}
ightbrack = (3;2 + m;m - 1)

    Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:

    3(x − 0) + (2 + m)(y − 2) + (m − 1)(z − 2) = 0 hay 3x + (2 + m)y + (m − 1)z −3m=0

    Ta có:

    d\left( I;(P) ight) =
\frac{9}{\sqrt{2m^{2} + 2m + 14}} lớn nhất khi và chỉ khi 2m^{2} + 2m + 14 đạt giá trị nhỏ nhất

    2m^{2} + 2m + 14 = 2\left( m +
\frac{1}{2} ight)^{2} + \frac{27}{2} \geq \frac{27}{2}

    Do đó 2m^{2} + 2m + 14 nhỏ nhất khi và chỉ khi m = -
\frac{1}{2}

    Vậy M\left( - \frac{1}{2};0;0
ight).

  • Câu 7: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:

    Do thiết diện đi qua trục hình trụ nên ta có h = 2R.

    Diện tích toàn phần là: {S_{tp}} = 2\pi R\left( {R + h} ight) = 6\pi {R^2} (đvdt).

  • Câu 8: Vận dụng

    Cho mặt cầu (S): {x^2} + {y^2} + {z^2} - 4x + 6y + 2z - 2 = 0 và điểm A\left( { - 6, - 1,3} ight). Gọi M là tiếp điểm của (S) và tiếp tuyến di động qua (d). Tìm tập hợp các điểm M.

    (Có thể chọn nhiều đáp án)

     Theo đề bài, (S) có tâm I\left( {2, - 3,1} ight).\,\overrightarrow {IM}  = \left( {x - 2,y + 3,z + 1} ight);\,\,\overrightarrow {AM}  = \left( {x + 6,y + 1,z - 3} ight)

    Ta có:

    \begin{array}{l}\overrightarrow {IM} .\overrightarrow {AM}  = \left( {x - 2} ight)\left( {x + 6} ight) + \left( {y + 3} ight)\left( {y + 1} ight) + \left( {z + 1} ight)\left( {z - 3} ight) = 0\\ \Rightarrow M \in \left( {S'} ight):{x^2} + {y^2} + {z^2} + 4x + 4y - 3z - 12 = 0;\,\,M \in \left( S ight)\end{array}

    \Rightarrow M \in  đường tròn  \left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} - 4x + 6y + 2z - 2 = 0\\4x - y - 2z - 5 = 0\end{array} ight.

    Hay \left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} + 4x + 4y - 2z - 12 = 0\\4x - y - 2z - 5 = 0\end{array} ight.

  • Câu 9: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và(O’), thiết diện qua trục của hình trụ là hình vuông. Gọi A, B là hai điểm lần lượt nằm trên hai đường tròn (O) và(O’). Biết AB = 2a và khoảng cách giữa hai đường thẳng AB và OO’ bằng \frac{{a\sqrt 3 }}{2}. Bán kính đáy bằng:

     Tính bán kính

    Dựng đường sinh BB', gọi I là trung điểm của AB’, ta có

    \left\{ \begin{array}{l}OI \bot AB'\\OI \bot BB'\end{array} ight. \Rightarrow OI \bot \left( {ABB'} ight)

    Suy ra d\left[ {AB,OO'} ight] = d\left[ {OO',\left( {ABB'} ight)} ight] = d\left[ {O,\left( {ABB'} ight)} ight] = OI = \frac{{a\sqrt 3 }}{2}.

    Gọi bán kính đáy của hình trụ là R.

    Vì thiết diện qua trục của hình trụ là hình vuông nên OO' = BB' = 2R

    Trong tam giác vuông A B’B, ta có AB{'^2} = A{B^2} - B{B^2} = 4{a^2} - 4{R^2}.

    Trong tam giác vuông OIB’, ta có N OB{'^2} = O{I^2} + IB{'^2} \Leftrightarrow {R^2} = {\left( {\frac{{a\sqrt 3 }}{2}} ight)^2} + {\left( {\frac{{AB'}}{2}} ight)^2}.

    Suy ra AB{'^2} = 4{R^2} - 3{a^2}.

    Từ đó ta có 4{a^2} - 4{R^2} = 4{R^2} - 3{a^2} \Rightarrow R = \frac{{a\sqrt {14} }}{4}.

  • Câu 10: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c>0. Biết rằng mặt phẳng (ABC) đi qua điểm M(\frac 1 7; \frac 2 7 ; \frac 3 7) và tiếp xúc với mặt cầu (S):(x-1)^2+(y-2)^2+(z-3)^2=\frac{72}{7}. Tính T=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}.

    Mặt phẳng (ABC) đi qua ba điểm A(a;0;0), B(0;b;0), C(0;0;c) nên có phương trình là:

    \frac{x}{a} +\frac{y}{b}+\frac{z}{c}=1

    Ta có M(\frac 1 7; \frac 2 7 ; \frac 3 7) \in (ABC) nên \frac{1}{a} +\frac{2}{b}+\frac{3}{c}=7.

    Mặt cầu (S) có tâm I(1;2;3) và bán kính R=\sqrt \frac{72}{7}.

    (ABC) tiếp xúc với  (S)

    \Leftrightarrow d(I, (ABC))=R\Leftrightarrow \dfrac { | \dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}-1 |}{\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}}=\sqrt{\frac{72}{7} }

    \Leftrightarrow \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}= \dfrac{7}{2}

  • Câu 11: Thông hiểu

    Với giá trị nào của m thì mặt phẳng \left( P ight):2x - y + z - 5 = 0 tiếp xúc với mặt cầu 

    \left( S ight):{x^2} + {y^2} + {z^2} - 2mx + 2\left( {2 - m} ight)y - 4mz + 5{m^2} + 1 = 0?

    Theo đề bài, ta xác định các hệ số của (S): a = m;b = m - 2;c = 2m;d = 5{m^2} + 1

    Suy ra tâm I của cầu có tọa độ là I\left( {m,m - 2,2m} ight).

    \Rightarrow {R^2} = {m^2} + {\left( {m - 2} ight)^2} + 4{m^2} - 5{m^2} - 1 = {m^2} - 4m + 3 > 0

    \Rightarrow m < 1 \vee m > 3.\left( P ight) tiếp xúc (S) khi: 

    d\left( {I,P} ight) = \frac{{\left| {3m - 3} ight|}}{{\sqrt 6 }} = R = \sqrt {{m^2} - 4m+3}

    \Leftrightarrow {m^2} + 2m - 3 = 0 \Leftrightarrow m =  - 3 \vee m = 1   (loại)

    \Rightarrow m =  - 3

  • Câu 12: Thông hiểu

    Trong hệ tọa độ Oxyz, cho mặt cầu (S) có đường kính AB, với A(6;2; - 5),B( - 4;0;7). Viết phương trình (P) tiếp xúc với mặt cầu (S) tại A?

    Hình vẽ minh họa

    Vì mặt cầu (S) có đường kính là AB nên tâm I của mặt cầu (S) là trung điểm của AB.

    Mặt cầu (S) có tâm I(1; 1; 1).

    (P) tiếp xúc với (S) tại A nên (P) đi qua A và nhận \overrightarrow{IA} = (5;1; - 6) làm vectơ pháp tuyến.

    Suy ra (P):5(x - 6) + (y - 2) - 6(z + 5)
= 0

    \Rightarrow (P):5x + y - 6z - 62 =
0

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),C(0;0;3),B(0;2;0). Tập hợp các điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là:

    Giả sử M(x;y;z)

    Ta có:\left\{ \begin{matrix}
MA^{2} = (x - 1)^{2} + y^{2} + z^{2} \\
MB^{2} = x^{2} + (y - 2)^{2} + z^{2} \\
MC^{2} = x^{2} + y^{2} + (z - 3)^{2} \\
\end{matrix} ight.

    Theo bài ra ta có:

    MA^{2} = MB^{2} + MC^{2}

    \Leftrightarrow (x - 1)^{2} + y^{2} +
z^{2} = x^{2} + (y - 2)^{2} + z^{2} + x^{2} + y^{2} + (z -
3)^{2}

    \Leftrightarrow - 2x + 1 = (y - 2)^{2} +
x^{2} + (z - 3)^{2}

    \Leftrightarrow (x + 1)^{2} + (y -
2)^{2} + (z - 3)^{2} = 2

    Vậy tập hợp điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là R = \sqrt{2}.

  • Câu 14: Vận dụng cao

    Cho hình nón có bán kính đáy là 5a , độ dài đường sinh là 13a. Thể tích khối cầu nội tiếp hình nón bằng:

    Thể tích khối cầu nội tiếp hình nón

    Xét mặt phẳng qua trục SO của hình nón ta được thiết diện là tam giác cân SAB.

    Mặt phẳng đó cắt mặt cầu theo đường tròn có bán kính r (bán kính mặt cầu) và nội tiếp trong tam giác cân SAB.

    Trong tam giác vuông SOB, gọi I là giao điểm của đường phân giác trong góc B với đường thẳng SO.

    Chứng minh được I là tâm đường tròn nội tiếp tam giác và bán kínhr =IO=IE  (E là hình chiếu vuông góc của I trên SB).

    Theo tính chất phân giác, ta có \frac{{IS}}{{IO}} = \frac{{BS}}{{BO}} = \frac{{13}}{5}.

    Lại có IS + IO = SO = \sqrt {S{B^2} - O{B^2}}  = 12.

    Từ đó suy ra IS = \frac{{26}}{3},{m{ }}IO = \frac{{10}}{3}.

    Ta có \Delta SEI \backsim\Delta SOB  nên \frac{{IE}}{{IS}} = \frac{{BO}}{{BS}} = \frac{5}{{13}} \Rightarrow IE = \frac{5}{{13}}IS = \frac{{10}}{3}

    Thể tích khối cầu: V = \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi {\left( {\frac{{10a}}{3}} ight)^3} = \frac{{4000\pi {a^3}}}{{81}} (đvtt).

  • Câu 15: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu tâm I(2;1; - 2) bán kính R = 2 là:

    Phương trình mặt cầu tâm I(2;1; -
2) bán kính R = 2 là:

    (x - 2)^{2} + (y - 1)^{2} + (z + 2)^{2}
= 2^{2}

    Tổng quát x^{2} + y^{2} + z^{2} - 4x - 2y
+ 4z + 5 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo