Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình mặt cầu tâm I bán kính IM?

    Hình chiếu vuông góc của M trên Ox là: I(1;0;0)

    \Rightarrow IM = \sqrt{13}

    Suy ra phương trình mặt cầu tâm I bán kính IM là: (x -
1)^{2} + y^{2} + z^{2} = 13.

  • Câu 2: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 3: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 4: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, mặt cầu (S):(x - 1)^{2} + y^{2} + (z + 3)^{2} =
16 có tâm là

    Mặt cầu (S):(x - 1)^{2} + y^{2} + (z +
3)^{2} = 16 có tâm là: I(1;0; -
3) .

  • Câu 5: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và(O’), thiết diện qua trục của hình trụ là hình vuông. Gọi A, B là hai điểm lần lượt nằm trên hai đường tròn (O) và(O’). Biết AB = 2a và khoảng cách giữa hai đường thẳng AB và OO’ bằng \frac{{a\sqrt 3 }}{2}. Bán kính đáy bằng:

     Tính bán kính

    Dựng đường sinh BB', gọi I là trung điểm của AB’, ta có

    \left\{ \begin{array}{l}OI \bot AB'\\OI \bot BB'\end{array} ight. \Rightarrow OI \bot \left( {ABB'} ight)

    Suy ra d\left[ {AB,OO'} ight] = d\left[ {OO',\left( {ABB'} ight)} ight] = d\left[ {O,\left( {ABB'} ight)} ight] = OI = \frac{{a\sqrt 3 }}{2}.

    Gọi bán kính đáy của hình trụ là R.

    Vì thiết diện qua trục của hình trụ là hình vuông nên OO' = BB' = 2R

    Trong tam giác vuông A B’B, ta có AB{'^2} = A{B^2} - B{B^2} = 4{a^2} - 4{R^2}.

    Trong tam giác vuông OIB’, ta có N OB{'^2} = O{I^2} + IB{'^2} \Leftrightarrow {R^2} = {\left( {\frac{{a\sqrt 3 }}{2}} ight)^2} + {\left( {\frac{{AB'}}{2}} ight)^2}.

    Suy ra AB{'^2} = 4{R^2} - 3{a^2}.

    Từ đó ta có 4{a^2} - 4{R^2} = 4{R^2} - 3{a^2} \Rightarrow R = \frac{{a\sqrt {14} }}{4}.

  • Câu 6: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2)B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m + 1)z +
m^{2} + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1.

    Ta có:

    x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m +
1)z + m^{2} + 2m + 8 = 0

    \Leftrightarrow (x - 2)^{2} + (y +
m)^{2} + (z - m - 1)^{2} = m^{2} - 3(*)

    Suy ra (*) là phương trình mặt cầu

    \Leftrightarrow m^{2} - 3 > 0
\Leftrightarrow |m| > \sqrt{3}

    Khi đó, mặt cầu (S) có tâm I(2; −m; m + 1) và bán kính R = \sqrt{m^{2} - 3}

    Gọi (P) là mặt phẳng đi qua A, B.

    Theo giả thiết (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính r = 1.

    Mặt khác, khoảng cách từ tâm I đến mặt phẳng (P) là d = \sqrt{R^{2} - r^{2}} = \sqrt{m^{2} - 4};\left(
m^{2} - 4 \geq 0 ight)

    Ta có: \overrightarrow{AB} = (2;6; -
2) suy ra \overrightarrow{u} =
(1;3; - 1) là một vectơ chỉ phương của đường thẳng AB

    Suy ra đường thẳng AB là: \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Để có duy nhất mặt phẳng (P) thỏa mãn bài thì

    TH1. Mặt phẳng (P) đi qua điểm I và I
otin AB

    Ta có I ∈ (P) ⇔ d = 0 ⇔ m^2 − 4 = 0 ⇔ m = ±2.

    + Với m = 2 ⇒ I(2; −2; 3) ∈ AB ⇒ m = 2 (loại).

    + Với m = −2 ⇒ I(2;2; - 1) otin
AB⇒ m = −2 (thỏa mãn).

    TH2. Mặt phẳng (P) cách I một khoảng lớn nhất ⇔ d lớn nhất ⇔ d = d(I, AB). (*)

    \overrightarrow{IA} = (1;1 + m;1 -
m)

    \Rightarrow \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack = ( - 4 + 2m;2 -
m;2 - m)

    \Rightarrow \left| \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack ight| = |2 -
m|\sqrt{6};\left| \overrightarrow{u} ight| = \sqrt{11}

    Khi đó d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{IA};\overrightarrow{u} ightbrack
ight|}{\left| \overrightarrow{u} ight|} = \frac{|2 -
m|\sqrt{6}}{\sqrt{11}}

    (*) \Leftrightarrow \sqrt{m^{2} - 4} =
\frac{|2 - m|\sqrt{6}}{\sqrt{11}}

    \Leftrightarrow 5m^{2} + 24m - 68 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 2(ktm) \\m = - \dfrac{34}{5}(tm) \\\end{matrix} ight.

    Vậy có 2 giá trị tham số m thỏa mãn yêu cầu.

  • Câu 7: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(0; 8; 2), điểm B(9; −7; 23) và mặt cầu (S) : (x − 5)^2 + (y + 3)^2 + (z − 7)^2 = 72. Gọi (P) là mặt phẳng qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Biết \vec{n} = (1; m; n) là một vectơ pháp tuyến của (P). Tính mn.

    Mặt cầu (S) có tâm I(5; −3; 7); bán kính R = 6\sqrt{2}.

    Phương trình mặt phẳng (P) : 1(x − 0) + m(y − 8) + n(z − 2) = 0.

    Vì (P) và (S) tiếp xúc nhau nên:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|5 - 11m + 5n|}{\sqrt{1 + m^{2} + n^{2}}} =
6\sqrt{2}

    \Leftrightarrow |5 - 11m + 5n| =
6\sqrt{2}\sqrt{1 + m^{2} + n^{2}}(*)

    Ta có: d\left( B;(P) ight) = \frac{|9 -
15m + 21n|}{\sqrt{1 + m^{2} + n^{2}}}

    Ta có:

    |9 - 15m + 21n| = |5 - 11m + 5n + 4 - 4m
+ 16n|

    \leq |5 - 11m + 5n| + |4 - 4m +
16n|(**)

    Áp dụng BĐT Bunhiacopxki ta có

    (4 - 4m + 16n)^{2} \leq \left( 4^{2} +
4^{2} + 16^{2} ight)\left( 1 + m^{2} + n^{2} ight) = 288\left( 1 +
m^{2} + n^{2} ight)

    \Rightarrow |4 - 4m + 16n| \leq
12\sqrt{2}.\sqrt{1 + m^{2} + n^{2}}(***)

    Từ (*); (**); (***) ta có:

    |9 - 15m + 21n| \leq 18\sqrt{2}\sqrt{1 +
m^{2} + n^{2}}

    Dấu “=” xảy ra khi và chỉ khi: \left\{\begin{matrix}|5 - 11m + 5n| = 6\sqrt{2}\sqrt{1 + m^{2} + n^{2}} \\(5 - 11m + 5n)(4 - 4m + 16n) \geq 0 \\\dfrac{1}{4} = \dfrac{m}{- 4} = \dfrac{n}{16} \\\end{matrix} ight.

    \Rightarrow m = - 1;n = 4 \Rightarrow mn
= - 4.

  • Câu 8: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 9: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} + 4x +
2y + z = 0\left( S_{2}
ight):x^{2} + y^{2} + z^{2} - 2x - y - z = 0 cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?

    Mặt phẳng (P) chứa đường tròn (C) có được bằng cách khử x^{2};y^{2};z^{2} trong phương trình hai mặt cầu ta được 6x + 3y + 2z = 0. Mặt phẳng (ABC) có phương trình là

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} =
1⇔ 6x + 3y + 2z − 6 = 0.

    Do đó (P) // (ABC). Mặt cầu (S) tiếp xúc với cả ba đường thẳng AB, BC, CA sẽ giao với mặt phẳng (ABC) theo một đường tròn tiếp xúc với ba đường thẳng AB, BC, CA.

    Trên mặt phẳng (ABC) có 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA đó là đường tròn nội tiếp tam giác ABC và ba đường tròn bàng tiếp các góc A, B, C.

    Do đó có 4 mặt cầu có tâm nằm trên (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA.

    Tâm của 4 mặt cầu là hình chiếu của tâm 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA lên mặt phẳng (P).

  • Câu 10: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =
25. Đường thẳng d cắt mặt cầu (S) tại hai điểm A, B. Biết tiếp diện của (S) tại A, B vuông góc. Tính độ dài AB.

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; 2; −1), bán kính R = 5. Xét mặt phẳng (P) chứa d cắt giao tuyến của hai tiếp diện tại O.

    Ta có tứ giác OIAB là hình vuông.

    Suy ra AB = IA.\sqrt{2} = R\sqrt{2} =
5\sqrt{2}.

  • Câu 12: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y - 6z + 5 =
0 và mặt phẳng (\alpha):2x + y + 2z
- 15 = 0. Mặt phẳng (P) song song với (\alpha) và tiếp xúc với (S)

    Ta có:

    (S) có tâm I (1; −2; 3), bán kính R = 3. (P) song song với (α)

    (P):2x + y + 2z + m = 0, với m eq - 15

    Do mặt phẳng (P) tiếp xúc với (S) nên d\left( I;(P) ight) = R \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 15 \\
m = 3 \\
\end{matrix} ight., so với điều kiện ta nhận m = 3.

    Vậy (P):2x + y + 2z + 3 = 0.

  • Câu 13: Vận dụng cao

    Một khối lập phương có cạnh 1m chứa đầy nước. Đặt vào trong khối đó một khối nón có đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích lượng nước trào ra ngoài và thể tích lượng nước ban đầu của khối lập phương.

     Tính tỉ số thể tích

    Thể tích khối lập phương là V=1^3=1\left({\mathrm{\ }m}^3ight).

    Ta có khối nón có đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện có chiều cao h=1 (m) và bán kính đáy r=\frac{1}{2}(\mathrm{\ }m). Suy ra thể tích khối nón (tức là phần thể tích lượng nước tràn ra ngoài) là V_N=\frac{1}{3}\pi r^2h=\frac{\pi}{12}\left({\mathrm{\ }m}^3ight).

    Vậy tỉ số thể tích của lượng nước trào ra ngoài và lượng nước ban đầu của khối lập phương là \frac{V_N}{V}=\frac{\frac{\pi}{12}}{1}=\frac{\pi}{12}.

  • Câu 14: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 15: Nhận biết

    Trong không gian Oxyz, tìm tất cả các giá trị của m để phương trình x^{2} + y^{2} + z^{2} - 2x - 2y - 4z +
m = 0 là phương trình của một mặt cầu?

    Phương trình x^{2} + y^{2} + z^{2} - 2x -
2y - 4z + m = 0 là một mặt cầu

    \Leftrightarrow 1^{2} + 1^{2} + 2^{2} - m
> 0 \Leftrightarrow m < 6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo