Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 2: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 3: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60^0 . Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:

    Thể tích của khối cầu ngoại tiếp

    Gọi O = AC \cap BD, suy ra SO \bot \left( {ABCD} ight).

    Ta có {60^0}{m{ = }}\widehat {SB,\left( {ABCD} ight)} = \widehat {SB,OB} = \widehat {SBO}.

    Trong \triangle SOB, ta có SO = OB.\tan \widehat {SBO} = \frac{{a\sqrt 6 }}{2}.

    Ta có SO là trục của hình vuông ABCD.

    Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.

    Gọi I = SO \cap d \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in d\end{array} ight. \Rightarrow \left\{ \begin{array}{l}IA = IB = IC = ID\\IS = IB\end{array} ight.

    \Rightarrow IA = IB = IC = ID = IS = R

    Xét \triangle SBD\left\{ \begin{array}{l}SB = SD\\\widehat {SBD} = \widehat {SBO} = {60^o}\end{array} ight. \Rightarrow    \triangle SBD đều.

    Do đó d cũng là đường trung tuyến của \triangle SBD . Suy ra I là trọng tâm \triangle SBD .

    Bán kính mặt cầu R = SI = \frac{2}{3}SO = \frac{{a\sqrt 6 }}{3}.

    Suy ra V = \frac{4}{3}\pi {R^3} = \frac{{8\pi {a^3}\sqrt 6 }}{{27}}

  • Câu 4: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác OMN và tiếp xúc với mặt phẳng (Oxz)?

    Gọi I là tâm đường tròn nội tiếp tam giác OMN

    Ta áp dụng tính chất sau: “Cho tam giác OMN với I là tâm đường tròn nội tiếp, khi đó ta có: a.\overrightarrow{IO} +
b.\overrightarrow{IM} + c.\overrightarrow{IN} =
\overrightarrow{0} với a = MN,b =
ON,c = OM

    Ta có: \left\{ \begin{matrix}OM = \sqrt{2^{2} + 2^{2} + 2^{2}} = 3 \\ON = \sqrt{\left( - \dfrac{8}{3} ight)^{2} + \left( \dfrac{4}{3}ight)^{2} + \left( \dfrac{8}{3} ight)^{2}} = 4 \\MN = \sqrt{\left( - \dfrac{8}{3} - 2 ight)^{2} + \left( \dfrac{4}{3} - 2ight)^{2} + \left( \dfrac{8}{3} - 1 ight)^{2}} = 5 \\\end{matrix} ight.

    Khi đó:

    5.\overrightarrow{IO} +
4.\overrightarrow{IM} + 3.\overrightarrow{IN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{5.0 + 4.2 + 3.\left( - \dfrac{8}{3} ight)}{3 + 4 + 5} = 0\\y_{I} = \dfrac{5.0 + 4.2 + 3.\left( \dfrac{4}{3} ight)}{3 + 4 + 5} = 1\\z_{I} = \dfrac{5.0 + 4.2 + 3.\left( \dfrac{8}{3} ight)}{3 + 4 + 5} = 1\\\end{matrix} ight.

    Mặt phẳng (Oxz) có phương trình y = 0

    Mặt cầu tiếp xúc với mặt phẳng (Oxz) nên mặt cầu có bán kính R = d\left( I;(Oxz) ight) = 1

    Vậy phương trình mặt cầu cần tìm là: x^{2} + (y - 1)^{2} + (z - 1)^{2} =
1.

  • Câu 5: Vận dụng

    Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng \frac{3a}{2}. Diện tích của thiết diện đó bằng?

    Xét hình nón đỉnh S có chiều cao SO=2a, bán kính đáy OA=3a .

    Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

    Diện tích thiết diện

    Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ OH\bot SI,H\in SI

    Ta có: 

     +\left\{\begin{matrix}AB\bot O I\\AB\bot S O\\\end{matrix}\Rightarrow A B\bot(SOI)\Rightarrow A B\bot O Hight.

    +\left\{\begin{matrix}OH\bot S I\\OH\bot A B\\\end{matrix}\Rightarrow O H\bot(SAB)\Rightarrow d(O,(SAB))=OH=\frac{3a}{2}ight.

    Xét tam giác SOI vuông tại O, ta có

    \frac{1}{OI^2}=\frac{1}{OH^2}-\frac{1}{SO^2}=\frac{4}{9a^2}-\frac{1}{4a^2}=\frac{7}{36a^2}\Rightarrow OI=\frac{6a}{\sqrt7}.

    SI=\sqrt{SO^2+OI^2}=\sqrt{4a^2+\frac{36a^2}{7}}=\frac{8a}{\sqrt7}.

    Xét tam giác AOI vuông tại I, có: 

    AI=\sqrt{AO^2-OI^2}=\sqrt{9a^2-\frac{36a^2}{7}}=\frac{3\sqrt3a}{\sqrt7}

    \Rightarrow AB=2AI=\frac{6\sqrt3a}{\sqrt7}

    Vậy diện tích của thiết diện là:

    S_{\triangle S A B}=\frac{1}{2}\cdot SI\cdot AB=\frac{1}{2}\cdot\frac{8a}{\sqrt7}\cdot\frac{6\sqrt3a}{\sqrt7}=\frac{24a^2\sqrt3}{7}.

  • Câu 6: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    Ta có:

    x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    \Leftrightarrow (x - 4)^{2} + (y +
1)^{2} + z^{2} = 16

    Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là: I(4; - 1;0),R = 4

  • Câu 7: Nhận biết

    Trong không gian tọa độ Oxyz, cho tọa độ hai điểm A(1;2;3),B(5;4; -
1). Phương trình mặt cầu đường kính AB là:

    Gọi I là trung điểm của AB suy ra I(3;3;1)

    \overrightarrow{AB} = (4;2; - 4)
\Rightarrow AB = \sqrt{16 + 4 + 16} = 6

    Mặt cầu đường kính AB có tâm I(3;3;1) và bán kính R = \frac{AB}{2} = 3 có phương trình là: (x - 3)^{2} + (y - 3)^{2} + (z - 1)^{2} =
9

  • Câu 8: Vận dụng cao

    Trong các hình trụ có diện tích toàn phần bằng 1000{\mathrm{\ }cm}^2 thì hình trụ có thể tích lớn nhất là bao nhiêu {m cm}^3

    Ta có S_{tp}=2\pi Rh+2\pi R^2\Rightarrow Rh+R^2=\frac{S}{2\pi}

    Vậy thể tích khối trụ V=\pi R^2h=\pi R\left(\frac{S}{2\pi}-R^2ight)=\frac{S}{2}R-\pi R^3=F(R)

    Ta có: F^\prime(R)=\frac{S}{2}-3\pi R^2=0\Leftrightarrow R=\sqrt{\frac{S}{6\pi}}

    Bảng biến thiên

    Thể tích lớn nhất

    Từ bảng biến thiên ta có

    V_{max}=\frac{S}{2}R-\pi R^3=\frac{1000}{2}\sqrt{\frac{1000}{6\pi}}-\pi{\sqrt{\frac{1000}{6\pi}}}^3\approx2428.

  • Câu 9: Thông hiểu

    Cho hai điểm A;B cố định trong không gian có độ dài AB = 4. Biết rằng tập hợp các điểm M trong không gian sao cho MA = 3MB là một mặt cầu. Bán kính mặt cầu đó bằng bao nhiêu?

    Ta có: MA = 3MB \Leftrightarrow
\overrightarrow{MA} = 3\overrightarrow{MB}

    \Leftrightarrow \left(
\overrightarrow{MI} + \overrightarrow{IA} ight)^{2} = 9\left(
\overrightarrow{MI} + \overrightarrow{IB} ight)^{2}

    \Leftrightarrow IA^{2} - 9IB^{2} +
2\overrightarrow{MI}\left( \overrightarrow{IA} - 9\overrightarrow{IB}
ight) = 8MI^{2}(*)

    Gọi I thỏa mãn \overrightarrow{IA} - 9\overrightarrow{IB} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{BI} =
\frac{1}{8}\overrightarrow{AB} nên IB = \frac{1}{2};IA = \frac{9}{2}

    Từ (*) suy ra 8MI^{2} = 18
\Leftrightarrow MI = \frac{3}{2} \Rightarrow M \in S\left( I;\frac{3}{2}
ight).

  • Câu 10: Vận dụng cao

    Trong không gian cho ba điểm A(3;0;0), B(1;2;1)C(2;-1;2). Biết mặt

    phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện OABC có một vectơ pháp tuyến là (10;a;b). Tổng a+b là?

     Phương trình (OAB) là: -y+2z=0.

    Phương trình (OAC) là:2y+z=0.

    Phương trình (OBC) là: x-z=0.

    Phương trình (ABC) là: 5x+3y+4z-15=0 .

    Gọi I(a';b';c') là tâm mặt cầu nội tiếp tứ diện OABC.

    Do đó:

    I nằm cùng phía với A đối với (OBC) suy ra: (a'-c')>0.

    I nằm cùng phía với B đối với (OAC) suy ra: (2b'+c')>0.

    I nằm cùng phía với C đối với (OAB) suy ra: (-b'+2c')>0.

    I nằm cùng phía với O đối với (ABC) suy ra: (5a'+3b'+4c'-15)<0.

    Suy ra:

    \left\{\begin{matrix} d(I,(OAB))=d(I,(OAC)) \\ d(I,(OAB))=d(I,(OBC)) \\ d(I,(OAB))=d(I,(ABC)) \end{matrix}ight.\Leftrightarrow \left\{\begin{matrix} \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|2b'+c'|}{\sqrt 5} \\ \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|a'-c'|}{\sqrt 2} \\ \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|5a'+3b'+4c'-15|}{5\sqrt 2} \end{matrix}ight.

     

    \Leftrightarrow \left\{\begin{matrix} |-b'+2c'|= |2b'+c'| \\ \sqrt 2{|-b'+2c'|}= \sqrt 5|a'-c'|\\ \sqrt 10{|-b'+2c'|}= |5a'+3b'+4c'-15| \end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} -b'+2c'= 2b'+c' \\ \sqrt 2{(-b'+2c')}= \sqrt 5(a'-c')\\ \sqrt 10{(-b'+2c')}= -(5a'+3b'+4c'-15)\end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} a'=\dfrac{3}{ 2} \\ -b'=\dfrac{3 \sqrt 10 -9}{2} \\ c'=\dfrac{9 \sqrt 10 -27}{ 2} \end{matrix}ight.

    Suy ra:  I (\frac {3}{2} ;\frac {3\sqrt{10} -9}{2}; \frac {9\sqrt{10} -27}{2}), \Rightarrow \overrightarrow {BI}= (\frac {1}{2} ;\frac {3\sqrt{10} -13}{2}; \frac {9\sqrt{10} -29}{2}) ; \,\, \overrightarrow {BC}= (1;-3;1)

    \Rightarrow [\overrightarrow {BI}, \overrightarrow {BC}]= (-50+15 \sqrt{10} ; \frac {9\sqrt{10} -30}{2}; \frac {-3\sqrt{10} +10}{2})

    cùng phương với \vec n =(10;3;-1).

    Suy ra (BCI) có một VTPT là \vec n =(10;3;-1) =(10; a; b).

    Vậy: a+b=2.

  • Câu 11: Thông hiểu

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x - 2y + 2z
- 19 = 0 và mặt phẳng (P):2x - y -
2z + m + 3 = 0, với m là tham số. Gọi T là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi 6\pi. Tổng giá trị của tất cả các phần tử thuộc T bằng:

    Mặt cầu (S):(x - 2)^{2} + (y - 1)^{2} +
(z + 1)^{2} = 25 có tâm I(2; 1; −1) và bán kính R = 5.

    Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.

    Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:

    d\left( I;(P) ight) = \sqrt{R^{2} -
r^{2}} = 4

    \Leftrightarrow \frac{|4 - 1 + 2 + m +
3|}{3} = 4

    \Leftrightarrow |m + 8| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = - 20 \\
\end{matrix} ight.

    Vậy tổng giá trị của các phần tử thuộc T bằng −16.

  • Câu 12: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 13: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 14: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 15: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình mặt cầu tâm I bán kính IM?

    Hình chiếu vuông góc của M trên Ox là: I(1;0;0)

    \Rightarrow IM = \sqrt{13}

    Suy ra phương trình mặt cầu tâm I bán kính IM là: (x -
1)^{2} + y^{2} + z^{2} = 13.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo