Trong không gian , cho điểm A(0; 1; 2), mặt phẳng
và mặt cầu
. Gọi
là mặt phẳng đi qua
, vuông góc với
và đồng thời
cắt mặt cầu
theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm
của
và trục
là
Gọi (C) là giao tuyến của mặt phẳng và mặt cầu (S) và (C) có tâm H, bán kính r.
Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi lớn nhất.
Vì nên gọi M(m; 0; 0).
Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).
Khi đó
Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:
hay
Ta có:
lớn nhất khi và chỉ khi
đạt giá trị nhỏ nhất
Mà
Do đó nhỏ nhất khi và chỉ khi
Vậy .