Trong không gian
, cho mặt cầu
có tọa độ tâm
là:
Tâm của có tọa độ là
.
Trong không gian
, cho mặt cầu
có tọa độ tâm
là:
Tâm của có tọa độ là
.
Một hộp sữa hình trụ có thể tích V (không đổi) được làm từ một tấm tôn có diện tích đủ lớn. Nếu hộp sữa chỉ kín một đáy thì để tốn ít vật liệu nhất, hệ thức giữa bán kính đáy R và đường cao h bằng:
Công thức tính thể tích , suy ra
Hộp sữa chỉ kín một đáy nên diện tích tôn cần dùng là:
Xét hàm trên
, ta được
đạt tại
.
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao
và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh có cạnh bằng 2R. Diện tích toàn phần của khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có .
Diện tích toàn phần là: (đvdt).
Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

Trả lời: 23,9 cm
Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)
Trả lời: 23,9 cm
Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt , và nền là
Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với mặt phẳng toạ độ và chứa điểm
.
Ta có thể gọi phương trình mặt cầu là , với
Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên
Do nên
.
Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên thỏa.
Vậy đường kính quả bóng bằng .
Trong không gian
, cho mặt cầu
và mặt phẳng
, với
là tham số. Gọi
là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng
cắt mặt cầu
theo một đường tròn có chu vi
. Tổng giá trị của tất cả các phần tử thuộc
bằng:
Mặt cầu có tâm I(2; 1; −1) và bán kính R = 5.
Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.
Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:
Vậy tổng giá trị của các phần tử thuộc T bằng −16.
Trong không gian với hệ tọa độ
, cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
. Viết phương trình mặt cầu tâm O và tiếp xúc với
.
Hình vẽ minh họa
Vì H là trực tâm tam giác ABC nên
Do vậy mặt cầu tâm O tiếp xúc với (P) nhận OH làm bán kính
⇒ Phương trình mặt cầu là .
Trong không gian
, cho mặt phẳng
và mặt cầu
tâm
bán kính
. Bán kính đường tròn giao của mặt phẳng
và mặt cầu
là:
Hình vẽ minh họa
Gọi bán kính đường tròn giao của mặt phẳng và mặt cầu
là
Ta có:
Suy ra
Cho hình nón đỉnh S, đường cao SO. Gọi A, B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng a và
. Độ dài đường sinh
của hình nón bằng:

Gọi I là trung điểm AB, suy ra và
.
Trong tam giác vuông SOA, ta có
Trong tam giác vuông SIA, ta có
Trong tam giác vuông OIA, ta có:
Trong không gian với hệ tọa độ
, cho mặt cầu
tâm I và mặt phẳng
. Gọi H là hình chiếu vuông góc của I trên (P). Điểm M thuộc (S) sao cho đoạn MH có độ dài lớn nhất. Tìm tọa độ điểm M.
Ta có tâm và bán kính
. Do
nên mặt phẳng (P) không cắt mặt cầu (S) . Do H là hình chiếu của I lên (P) và MH lớn nhất nên M là giao điểm của đường thẳng IH với mp (P) .
.
Phương trình đường thẳng IH là .
Giao điểm của IH với (S):
Suy ra:
.
Vậy điểm cần tìm là .
Trong không gian với hệ tọa độ
, cho các mặt phẳng
,
. Gọi
là mặt cầu có tâm thuộc trục hoành, đồng thời
cắt mặt phẳng
theo giao tuyến là một đường tròn có bán kính bằng 2 và
cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng
. Xác định
sao cho chỉ có đúng một mặt cầu
thỏa mãn yêu cầu.
Gọi lần lượt là bán kính, tâm của mặt cầu;
lần lượt là khoảng cách từ I đến mặt phẳng
.
Từ đó ta có: suy ra
Để tồn tại đúng một mặt cầu tương đương phương trình (∗) có đúng một nghiệm m hay
Vậy đáp án cần tìm là: .
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:

Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Diện tích hình tròn lớn của một hình cầu là p. Một mặt phẳng
cắt hình cầu theo một hình tròn có diện tích là
. Khoảng cách từ tâm mặt cầu đến mặt phẳng
bằng:
Hình tròn lớn của hình cầu S là hình tròn tạo bởi mặt phẳng cắt hình cầu và đi qua tâm của hình cầu.
Gọi R là bán kính hình cầu thì hình tròn lớn cũng có bán kính là R.
Theo giả thiết, ta có và
Suy ra .