Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 2: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1; 2; −2). Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với (P).

    Hình vẽ minh họa

    Vì H là trực tâm tam giác ABC nên AH ⊥ BC, CH ⊥ AB

    \Rightarrow \left\{ \begin{matrix}
AB\bot(OHC) \\
BC\bot(AHO) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
(ABC)\bot(OHC) \\
(ABC)\bot(AHO) \\
\end{matrix} ight.\  \Rightarrow OH\bot(ABC)

    Do vậy mặt cầu tâm O tiếp xúc với (P) nhận OH làm bán kính

    ⇒ Phương trình mặt cầu là x^{2} + y^{2} + z^{2} =
9.

  • Câu 3: Nhận biết

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 4: Vận dụng

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Đáp án là:

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt (Oxz),(Oyz), và nền là (Oxy)

    Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với 3 mặt phẳng toạ độ và chứa điểm M(17\ ;\ 18\ ;\ 21).

    Ta có thể gọi phương trình mặt cầu là (S):(x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}, với a,b,c,R >
0

    Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên a = b = c = R

    \Rightarrow (S):(x - a)^{2} + (y -
a)^{2} + (z - a)^{2} = a^{2}

    Do M(17\ ;\ 18\ ;\ 21) \in (S) nên (17 - a)^{2} + (18 - a)^{2} + (21 -
a)^{2} = a^{2}.

    \Rightarrow 2a^{2} - 112a + 1054 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 28 - \sqrt{257} \\
a = 28 + \sqrt{257} \\
\end{matrix} ight.

    Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên a = 28 - \sqrt{257} thỏa.

    Vậy đường kính quả bóng bằng 2a = 56 -
2\sqrt{257} \approx 23,9\ (cm).

  • Câu 5: Thông hiểu

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu: 

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {2 - \ln t} ight)x + 4\ln t.y + 2\left( {\ln t + 1} ight)z + 5{\ln ^2}t + 8 = 0.

    Theo đề bài, ta có:

    a = \ln t - 2;\,\,b =  - 2\ln t;\,\,c =  - \ln t - 1;\,\,d = 5{\ln ^2}t + 8

    (S) là mặt cầu \Leftrightarrow {\left( {\ln t - 2} ight)^2} + 4{\ln ^2}t + {\left( {\ln t + 1} ight)^2} - 5{\ln ^2}t - 8 > 0

    \Leftrightarrow {\ln ^2}t - 2\ln t - 3 > 0

    \Leftrightarrow \ln t <  - 1 \vee \ln t > 3

    \Leftrightarrow 0 < t < \frac{1}{e} \vee t > {e^3}

  • Câu 6: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 7: Thông hiểu

    Gọi (S) là mặt cầu đi qua bốn điểm A(2;0;0),B(1;3;0),C( -
1;0;3),D(1;2;3). Tính bán kính R của (S)?

    Gọi I(a;b;c) là tâm mặt cầu đi qua bốn điểm A;B;C;D

    Khi đó ta có phương trình:

    \left\{ \begin{matrix}
AI^{2} = BI^{2} \\
AI^{2} = CI^{2} \\
AI^{2} = DI^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 2)^{2} + b^{2} + c^{2} = (a - 1)^{2} + (b - 3)^{2} + c^{2} \\
(a - 2)^{2} + b^{2} + c^{2} = (a + 1)^{2} + b^{2} + (c - 3)^{2} \\
(a - 2)^{2} + b^{2} + c^{2} = (a - 1)^{2} + (b - 2)^{2} + (c - 3)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a - 3b = - 3 \\
a - c = - 1 \\
a - 2b - 3c = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy bán kính cần tìm là: R = IA =
\sqrt{2^{2} + 1^{2} + 1^{2}} = \sqrt{6}

  • Câu 8: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 9: Nhận biết

    Trong hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I( - 1;4;2) và có thể tích bằng \frac{256\pi}{3}. Khi đó phương trình mặt cầu (S) là:

    Thể tích mặt cầu là: V = \frac{4\pi
R^{3}}{3} = \frac{256\pi}{3} \Rightarrow R = 4

    Vậy phương trình mặt cầu tâm I có bán kính R = 4 là: (x + 1)^{2} + (y - 4)^{2} + (z - 2)^{2} =
16

  • Câu 10: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = a\sqrt 6 và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp hình chóp S.ABCD ta được:

     Tính diện tích mặt cầu

    Gọi O = AC \cap BD, suy ra O là tâm đường tròn ngoại tiếp hình vuông ABCD.

    Gọi I là trung điểm SC, suy ra IO\parallel SA \Rightarrow IO \bot \left( {ABCD} ight)

    Do đó IO là trục của hình vuông ABCD, suy ra IA = IB = IC = ID.  (1)

    Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên IS = IC = IA.   (2)

    Từ (1) và (2), ta có: R = IA = IB = IC = ID = IS = \frac{{SC}}{2} = a\sqrt 2

    Vậy diện tích mặt cầu S = 4\pi {R^2} = 8\pi {a^2} (đvdt).

  • Câu 11: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 12: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \frac{a}{2}. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

     Thể tích khối nón

    Gọi E là trung điểm của BC, dựng OH \bot SE tại H.

    Chứng minh được OH \bot \left( {SBC} ight) nên suy ra OH = d\left[ {O,\left( {SBC} ight)} ight] = \frac{a}{2}.

    Trong tam giác đều ABC, ta có OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}

    và  OA = \frac{2}{3}AE = \frac{{2a\sqrt 3 }}{3}

    Trong tam giác vuông SOE, ta có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{S{O^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{1}{{{a^2}}} \Rightarrow SO = a.

    Vậy thể tích khối nón V = \frac{1}{3}\pi O{A^2}.SO = \frac{1}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} ight)^2}.a = \frac{{4\pi {a^3}}}{9}  (đvtt).

  • Câu 13: Vận dụng cao

    Trong các hình trụ có diện tích toàn phần bằng 1000{\mathrm{\ }cm}^2 thì hình trụ có thể tích lớn nhất là bao nhiêu {m cm}^3

    Ta có S_{tp}=2\pi Rh+2\pi R^2\Rightarrow Rh+R^2=\frac{S}{2\pi}

    Vậy thể tích khối trụ V=\pi R^2h=\pi R\left(\frac{S}{2\pi}-R^2ight)=\frac{S}{2}R-\pi R^3=F(R)

    Ta có: F^\prime(R)=\frac{S}{2}-3\pi R^2=0\Leftrightarrow R=\sqrt{\frac{S}{6\pi}}

    Bảng biến thiên

    Thể tích lớn nhất

    Từ bảng biến thiên ta có

    V_{max}=\frac{S}{2}R-\pi R^3=\frac{1000}{2}\sqrt{\frac{1000}{6\pi}}-\pi{\sqrt{\frac{1000}{6\pi}}}^3\approx2428.

  • Câu 14: Nhận biết

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 15: Vận dụng cao

    Trong không gian Oxyz, cho ba điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c), trong đó a > 0, b > 0, c > 0\frac{1}{a} + \frac{2}{b} +
\frac{3}{c} = 7. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S): (x − 1)^2 + (y − 2)^2 + (z − 3)^2 = 72/7. Thể tích của khối tứ diện OABC là:

    Mặt phẳng (ABC) có phương trình là \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

    Mặt cầu (S) có tâm là I(1; 2; 3) và bán kính R =
\sqrt{\frac{72}{7}}. Khi đó:

    d\left( I;(ABC) ight) = \dfrac{\left|\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} ight|}{\sqrt{\dfrac{1}{a^{2}} +\dfrac{1}{b^{2}} + \dfrac{1}{c^{2}}}} = \sqrt{\dfrac{72}{7}}

    \Leftrightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} = \frac{7}{2}

    Áp dụng bất đẳng thức Cauchy - Schwarz, ta có:

    49 = \left( \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} ight)^{2} \leq \left( 1^{2} + 2^{2} + 3^{2} ight)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} ight) =
\frac{7}{2}.14 = 49

    Dấu đẳng thức xảy ra khi a = 2b = 3c. Thay vào giả thiết ta có:

    a = 2;b = 1;c = \frac{2}{3}

    Vì OABC là tứ diện vuông tại O nên V_{OABC} = \frac{abc}{2} =
\frac{2}{9}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo