Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian Oxyz (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(1;3;7). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3\ km.

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 1)^{2} + (y + 3)^{2} + (z + 7)^{2} =
9. Sai||Đúng

    b) Điểm A(2;2;7) nằm ngoài mặt cầu (S). Sai||Đúng

    c) Nếu người dùng điện thoại ở vị trí có tọa độ (2;2;7) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    d) Nếu người dùng điện thoại ở vị trí có tọa độ (5;6;7) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(1;3;7). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3\ km.

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 1)^{2} + (y + 3)^{2} + (z + 7)^{2} =
9. Sai||Đúng

    b) Điểm A(2;2;7) nằm ngoài mặt cầu (S). Sai||Đúng

    c) Nếu người dùng điện thoại ở vị trí có tọa độ (2;2;7) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    d) Nếu người dùng điện thoại ở vị trí có tọa độ (5;6;7) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    Phương trình mặt cầu (S) tâm I(1;3;7) bán kính 3\ km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x - 1)^{2} +
(y - 3)^{2} + (z - 7)^{2} = 9.

    Ta có: IA = \sqrt{(2 - 1)^{2} + (2 -
3)^{2} + (7 - 7)^{2}} = \sqrt{2} < 3 nên điểm A nằm trong mặt cầu.

    Vì điểm A nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ (2;2;7) có thể sử dưng dịch vụ của trạm thu phát sóng đó.

    Ta có: IB = \sqrt{(5 - 1)^{2} + (6 -
3)^{2} + (7 - 7)^{2}} = 5' > 3 nên điểm B nằm ngoài mặt cầu.

    Vậy người dùng điện thoại ở vị trí có tọa độ (5;6;7) không thể sử dựng dịch vụ của trạm thu phát sóng đó

  • Câu 2: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu (S_1): (x+3)^2+(y−2)^2+(z−4)^2 = 1, (S_2): x ^2 + (y − 2)^2 + (z − 4)^2 = 4, (S_3): x ^2 + y ^2 + z ^2 + 4x − 4y − 1 = 0. Có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu (S_1), (S_2), (S_3)?

    Ta có \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight) có tâm lần lượt là I_{1}( - 3;2;4),I_{2}(0;2;4),I_{3}( -2;2;0) và bán kính lần lượt là R_{1} = 1,R_{2} = 2,R_{3} = 3.

    Gọi (P):ax + by + cz + d = 0\left( a^{2} +b^{2} + c^{2} eq 0 ight) là mặt phẳng tiếp xúc với cả ba mặt cầu nói trên. Khi đó:

    \left\{ \begin{matrix}d\left( I_{1};(P) ight) = R_{1} \\d\left( I_{2};(P) ight) = R_{2} \\d\left( I_{3};(P) ight) = R_{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}| - 3a + 2b + 4c + d| = \sqrt{a^{2} + b^{2} + c^{2}} \\|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\| - 2a + 2b + d| = 3\sqrt{a^{2} + b^{2} + c^{2}} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\2| - 3a + 2b + 4c + d| = |2b + 4c + d| \\3|2b + 4c + d| = 2| - 2a + 2b + d| \\\end{matrix} ight.

    Xét phương trình

    3|2b + 4c + d| = 2| - 2a + 2b +d|

    \Leftrightarrow \left\lbrack\begin{matrix}3(2b + 4c + d) = 2( - 2a + 2b + d) \\3(2b + 4c + d) = - 2( - 2a + 2b + d) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}d = - 4a - 2b - 12c \\5d = 4a - 10b - 12c \\\end{matrix} ight.

    (1) Với d = - 4a - 2b - 12c. Thay vào 2| - 3a + 2b + 4c + d| = |2b + 4c +d|, ta được

    2| - 7a - 8c| = | - 4a -8c|

    \Leftrightarrow \left\lbrack\begin{matrix}7a + 8c = 2a + 4c \\7a + 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = - \dfrac{6c}{5} \\a = - \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = - \frac{6c}{5} \Rightarrow d = -\frac{36c}{5} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{18c}{5} + 2b + 4c -\frac{36c}{5} - 2b ight| = \sqrt{\left( - \frac{6c}{5} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{2c}{5}ight| = \frac{1}{5} \cdot \sqrt{25b^{2} + 61c^{2}} \Leftrightarrow4c^{2} = 25b^{2} + 61c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    Với a = - \frac{4c}{3} \Rightarrow d = -\frac{20c}{3} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{12c}{5} + 2b + 4c -\frac{20c}{5} - 2b ight| = \sqrt{\left( - \frac{4c}{3} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{4c}{3}ight| = \frac{1}{3} \cdot \sqrt{9b^{2} + 25c^{2}}

    \Leftrightarrow 16c^{2} = 9b^{2} +25c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    (2) Với 5d = 4a - 10b - 12c.

    Thay vào 2| - 3a + 2b + 4c + d| = |2b +4c + d|, ta được

    2| - 11a + 8c| = |4a + 8c

    \Leftrightarrow \left\lbrack\begin{matrix}11a - 8c = 2a + 4c \\11a - 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{4c}{13} \\a = \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = \frac{4c}{13} \Rightarrow 5d = -\frac{140c}{13} - 10b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được

    \left| \frac{60c}{13} ight| =\frac{5}{13} \cdot \sqrt{169b^{2} + 185c^{2}}

    \Leftrightarrow 11c^{2} = 169b^{2}\Leftrightarrow c = \pm \frac{13b}{\sqrt{11}}

    Với c = \frac{13b}{\sqrt{11}} : chọn b = \sqrt{11} \Rightarrow c = 13\Rightarrow Tồn tại một mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight).

    Với a = \frac{4c}{3} \Rightarrow 5d = -\frac{20c}{3} - 10b

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}} ta được:

    \left| \frac{20c}{3} ight| =\frac{5}{3}.\sqrt{9b^{2} + 25c^{2}} \Leftrightarrow 9b^{2} + 9c^{2} = 0\Leftrightarrow b = c = 0

    Với b = c = 0 ⇒ a = 0, d = 0 (vô lí).

    Vậy tồn tại 2 mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2} ight),\left(S_{3} ight).

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 6y - 4z - 2 =
0, mặt phẳng (\alpha):x + 4y + z -
11 = 0. Gọi (P) là mặt phẳng vuông góc với mặt phẳng (\alpha), (P) song song với giá của vectơ \overrightarrow{v} = (1;6;2)(P) tiếp xúc với (S). Lập phương trình mặt phẳng (P).

    Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R\  = \ 4.

    Từ giả thiết suy ra \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{v} ightbrack là một vectơ pháp tuyến của (P).

    Ta có \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{v} ightbrack = (2; -
1;2), suy ra (P) có vectơ pháp tuyến \overrightarrow{n} = (2; -
1;2)

    Vậy (P) có phương trình dạng 2x - y + 2z + m = 0

    Do (P) tiếp xúc với mặt cầu (S) nên:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2.1 + 3 + 2.2 + m|}{\sqrt{2^{2} + 1^{2} + 2^{2}}}
= 4

    \Leftrightarrow |9 + m| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 3 \\
m = - 21 \\
\end{matrix} ight.

    Vậy có hai mặt phẳng thỏa mãn yêu cầu bài toán là \left\lbrack \begin{matrix}
2x - y + 2z + 3 = 0 \\
2x - y + 2z - 21 = 0 \\
\end{matrix} ight..

  • Câu 4: Vận dụng cao

    Từ một tấm tôn hình chữ nhật kích thước 50{m{cm}} \times 240{m{cm}} , người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50  cm , theo hai cách sau (xem hình minh họa sau đây):

    Tính tỉ số thể tích

    ● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

    ● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

    Kí hiệu V_1là thể tích của thùng gò được theo cách 1 và V_2 là thể tích của thùng gò được theo cách 2. Khi đó tỉ số \frac{{{V_1}}}{{{V_2}}} bằng:

    2 || Hai || hai

    Đáp án là:

    Từ một tấm tôn hình chữ nhật kích thước 50{m{cm}} \times 240{m{cm}} , người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50  cm , theo hai cách sau (xem hình minh họa sau đây):

    Tính tỉ số thể tích

    ● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

    ● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

    Kí hiệu V_1là thể tích của thùng gò được theo cách 1 và V_2 là thể tích của thùng gò được theo cách 2. Khi đó tỉ số \frac{{{V_1}}}{{{V_2}}} bằng:

    2 || Hai || hai

     Công thức thể tích khối trụ V = \pi {R^2}h.

    ● Ở cách 1, suy ra h= 50  cm2\pi {R_1} = 240 \Leftrightarrow {R_1} = \frac{{120}}{\pi }. Do đó {V_1} = \pi .{\left( {\frac{{120}}{\pi }} ight)^2}.50 (đvtt).

    ● Ở cách 2, suy ra mỗi thùng có h= 50  cm2\pi {R_2} = 120 \Leftrightarrow {R_2} = \frac{{60}}{\pi }

    Do đó {V_2} = 2 \times \left[ {\pi .{{\left( {\frac{{60}}{\pi }} ight)}^2}.50} ight] (đvtt).

    Suy ra \frac{{{V_1}}}{{{V_2}}} = 2

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + z^{2} =
4. Một mặt cầu (S') có tâm I'(9;1;6) và tiếp xúc ngoài với mặt cầu (S). Kết luận nào sau đây đúng về phương trình mặt cầu (S')?

    Ta có tâm và bán kính mặt cầu (S) lần lượt là I(1;1;0);R = 2.

    Suy ra II' = 10

    Gọi R' là bán kính mặt cầu (S'). Theo giả thiết ta có:

    R + R' = II' \Leftrightarrow
R' = II' - R = 8

    Khi đó phương trình mặt cầu cần tìm là: (S'):(x - 9)^{2} + (y - 1)^{2} + (z - 6)^{2} =
64.

  • Câu 6: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 7: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 8: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2)B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m + 1)z +
m^{2} + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1.

    Ta có:

    x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m +
1)z + m^{2} + 2m + 8 = 0

    \Leftrightarrow (x - 2)^{2} + (y +
m)^{2} + (z - m - 1)^{2} = m^{2} - 3(*)

    Suy ra (*) là phương trình mặt cầu

    \Leftrightarrow m^{2} - 3 > 0
\Leftrightarrow |m| > \sqrt{3}

    Khi đó, mặt cầu (S) có tâm I(2; −m; m + 1) và bán kính R = \sqrt{m^{2} - 3}

    Gọi (P) là mặt phẳng đi qua A, B.

    Theo giả thiết (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính r = 1.

    Mặt khác, khoảng cách từ tâm I đến mặt phẳng (P) là d = \sqrt{R^{2} - r^{2}} = \sqrt{m^{2} - 4};\left(
m^{2} - 4 \geq 0 ight)

    Ta có: \overrightarrow{AB} = (2;6; -
2) suy ra \overrightarrow{u} =
(1;3; - 1) là một vectơ chỉ phương của đường thẳng AB

    Suy ra đường thẳng AB là: \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Để có duy nhất mặt phẳng (P) thỏa mãn bài thì

    TH1. Mặt phẳng (P) đi qua điểm I và I
otin AB

    Ta có I ∈ (P) ⇔ d = 0 ⇔ m^2 − 4 = 0 ⇔ m = ±2.

    + Với m = 2 ⇒ I(2; −2; 3) ∈ AB ⇒ m = 2 (loại).

    + Với m = −2 ⇒ I(2;2; - 1) otin
AB⇒ m = −2 (thỏa mãn).

    TH2. Mặt phẳng (P) cách I một khoảng lớn nhất ⇔ d lớn nhất ⇔ d = d(I, AB). (*)

    \overrightarrow{IA} = (1;1 + m;1 -
m)

    \Rightarrow \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack = ( - 4 + 2m;2 -
m;2 - m)

    \Rightarrow \left| \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack ight| = |2 -
m|\sqrt{6};\left| \overrightarrow{u} ight| = \sqrt{11}

    Khi đó d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{IA};\overrightarrow{u} ightbrack
ight|}{\left| \overrightarrow{u} ight|} = \frac{|2 -
m|\sqrt{6}}{\sqrt{11}}

    (*) \Leftrightarrow \sqrt{m^{2} - 4} =
\frac{|2 - m|\sqrt{6}}{\sqrt{11}}

    \Leftrightarrow 5m^{2} + 24m - 68 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 2(ktm) \\m = - \dfrac{34}{5}(tm) \\\end{matrix} ight.

    Vậy có 2 giá trị tham số m thỏa mãn yêu cầu.

  • Câu 9: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho H là trực tâm của \Delta ABC. Tính diện tích mặt cầu ngoại tiếp tứ diện OABC?

    Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c) lần lượt thuộc các trục tọa độ Ox, Oy, Oz.

    Khi đó ta có phương trình mặt phẳng (α) đi qua các điểm A, B, C là

    \frac{x}{a} + \frac{y}{b} + \frac{z}{c}
= 1

    H \in (\alpha) \Rightarrow \frac{1}{a}
+ \frac{2}{b} - \frac{2}{c} = 1\ \ (1)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = (1 - a;2; - 2);\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{BH} = (1;2 - b; - 2);\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight.

    Theo đề bài ta có H là trực tâm \Delta
ABC, ta có:

    \left\{ \begin{matrix}
\overrightarrow{AM}\bot\overrightarrow{BC} \\
\overrightarrow{BH}\bot\overrightarrow{AC} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2b - 2c = 0 \\
- a - 2c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2c \\
b = - c \\
\end{matrix} ight. thay vào (1) ta được:

    \frac{1}{- 2c} + \frac{2}{- c} -
\frac{2}{c} = 1 \Rightarrow c = - \frac{9}{2} \Rightarrow a = 9;b =
\frac{9}{2}

    \Rightarrow \left\{ \begin{matrix}A(9;0;0) \\B\left( 0;\dfrac{9}{2};0 ight) \\C\left( 0;0; - \dfrac{9}{2} ight) \\\end{matrix} ight.. Gọi I\left(
x_{0};y_{0};z_{0} ight)là tâm mặt cầu ngoại tiếp chóp tứ giác OABC, ta có:

    \left\{ \begin{matrix}OI = IA \\OI = IB \\OI = IC \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = \left( x_{0} - 9 ight)^{2} +{y_{0}}^{2} + {z_{0}}^{2} \\{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = {x_{0}}^{2} + \left( y_{0} -\dfrac{9}{2} ight)^{2} + {z_{0}}^{2} \\{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = {x_{0}}^{2} + {y_{0}}^{2} +\left( z_{0} - \dfrac{9}{2} ight)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}{x_{0}}^{2} = \left( x_{0} - 9 ight)^{2} \\{y_{0}}^{2} = \left( y_{0} - \dfrac{9}{2} ight)^{2} \\{z_{0}}^{2} = \left( z_{0} - \dfrac{9}{2} ight)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{0} = - x_{0} - 9 \\y_{0} = - y_{0} - \dfrac{9}{2} \\z_{0} = - z_{0} - \dfrac{9}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{0} = \dfrac{9}{2} \\y_{0} = \dfrac{9}{4} \\z_{0} = - \frac{9}{4} \\\end{matrix} ight.

    Vậy I\left( \frac{9}{2};\frac{9}{4}; -
\frac{9}{4} ight);R = OI = \frac{9\sqrt{6}}{4}

    \Rightarrow S_{(I)} = 4\pi R^{2} =
4\pi.\left( \frac{9\sqrt{6}}{4} ight)^{2} =
\frac{243\pi}{2}

  • Câu 10: Nhận biết

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 11: Vận dụng

    Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:

     Tính thể tích khối trụ

    Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.

    Ta có BH \bot \left( {AOO'A'} ight) nên {V_{OO'AB}} = \frac{1}{3}{S_{\Delta AOO'}}.BH.

    Trong tam giác vuông A'AB có A'B = \sqrt {A{B^2} - AA{'^2}}  = \sqrt 3 a.

    Trong tam giác vuông A'BD có BD = \sqrt {A'{D^2} - A'{B^2}}  = a.

    Do đó suy ra tam giác BO'D nên BH = \frac{{\sqrt 3 a}}{2}.

    Vậy  {V_{OO'AB}} = \frac{1}{3}.\left( {\frac{1}{2}{a^2}} ight).\frac{{a\sqrt 3 }}{2} = \frac{{\sqrt 3 {a^3}}}{{12}} (đvtt).

  • Câu 12: Nhận biết

    Trong không gian Oxyz, hai điểm A(7; - 2;2)B(1;2;4). Phương trình nào sau đây là phương trình mặt cầu đường kính AB?

    Mặt cầu nhận AB làm đường kính, do đó mặt cầu nhận trung điểm I(4;0;3) của AB làm tâm và có bán kính R = \frac{AB}{2} = \sqrt{56}

    Suy ra phương trình mặt cầu cần tìm là (x
- 4)^{2} + y^{2} + (z - 3)^{2} = 56.

  • Câu 13: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 14: Nhận biết

    Cho mặt cầu S(O;R) , A là một điểm ở trên mặt cầu (S) và (P) là mặt phẳng qua A sao cho góc giữa OA và (P) bằng 60^0. Diện tích của đường tròn giao tuyến bằng:

    Diện tích của đường tròn giao tuyến

    Gọi H là hình chiếu vuông góc của (O) trên (P) thì

    ● H là tâm của đường tròn giao tuyến của (P) và (S).

    \widehat {OA,\left( P ight)} = \widehat {\left( {OA,AH} ight)} = {60^0}

    Bán kính của đường tròn giao tuyến: r = HA = OA.\cos {60^0} = \frac{R}{2}.

    Suy ra diện tích đường tròn giao tuyến: \pi {r^2} = \pi {\left( {\frac{R}{2}} ight)^2} = \frac{{\pi {R^2}}}{4}.

  • Câu 15: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo