Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 2: Vận dụng cao

    Một khối lập phương có cạnh 1m chứa đầy nước. Đặt vào trong khối đó một khối nón có đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích lượng nước trào ra ngoài và thể tích lượng nước ban đầu của khối lập phương.

     Tính tỉ số thể tích

    Thể tích khối lập phương là V=1^3=1\left({\mathrm{\ }m}^3ight).

    Ta có khối nón có đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện có chiều cao h=1 (m) và bán kính đáy r=\frac{1}{2}(\mathrm{\ }m). Suy ra thể tích khối nón (tức là phần thể tích lượng nước tràn ra ngoài) là V_N=\frac{1}{3}\pi r^2h=\frac{\pi}{12}\left({\mathrm{\ }m}^3ight).

    Vậy tỉ số thể tích của lượng nước trào ra ngoài và lượng nước ban đầu của khối lập phương là \frac{V_N}{V}=\frac{\frac{\pi}{12}}{1}=\frac{\pi}{12}.

  • Câu 3: Vận dụng

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 6y - 4z
- 2 = 0 và mặt phẳng (α) : x + 4y + z − 11 = 0. Viết phương trình mặt phẳng (P), biết (P) song song với giá của vectơ \overrightarrow{v} = (1;6;2), vuông góc với (α) và tiếp xúc với (S).

    Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R = 4.

    Vectơ pháp tuyến của (α) là \overrightarrow{n_{(\alpha)}} =
(1;4;1)

    Theo giả thiết, suy ra (P) có vectơ pháp tuyến là \overrightarrow{n_{(P)}} = \left\lbrack
\overrightarrow{v};\overrightarrow{n_{(\alpha)}} ightbrack = (2; -
1;2)

    Phương trình của mặt phẳng (P) có dạng 2x − y + 2z + D = 0

    Vì (P) tiếp xúc với mặt cầu (S) nên ta có:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2 + 3 + 4 + D|}{\sqrt{2^{2} + 1^{2} + 2^{2}}} =
4

    \Leftrightarrow |9 + D| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
D = 3 \\
D = - 21 \\
\end{matrix} ight.

    Vậy có 2 mặt phẳng thỏa yêu cầu bài toán có phương trình là: \left\lbrack \begin{matrix}
(P):2x - y + 2z + 3 = 0 \\
(P):2x - y + 2z - 21 = 0 \\
\end{matrix} ight.

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;2),B(3;2; - 3). Mặt cầu (S) có tâm I
\in Ox và đi qua hai điểm A;B có phương trình là:

    Ta có: I \in Ox \Rightarrow
I(a;0;0)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{IA} = (1 - a;1;2) \\
\overrightarrow{IB} = (3 - a;2; - 3) \\
\end{matrix} ight.

    (S) đi qua hai điểm A;B nên

    IA = IB \Leftrightarrow \sqrt{(1 -
a)^{2} + 5} = \sqrt{(3 - a)^{2} + 13}

    \Leftrightarrow 4a = 16 \Leftrightarrow
a = 4 \Rightarrow I(4;0;0)

    \Rightarrow R = IA =
\sqrt{14}

    Vậy phương trình mặt cầu cần tìm là: (S):x^{2} + y^{2} + z^{2} - 8x + 2 =
0.

  • Câu 5: Thông hiểu

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 6: Nhận biết

    Trong không gian Oxyz, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính R = 2?

    Phương trình mặt cầu (S):x^{2} + y^{2} +
z^{2} - 2ax - 2by - 2cz + d = 0 có bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Xét phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 4x + 2y + 2z + 2 = 0 ta có:

    \left\{ \begin{matrix}
a = 2;b = - 1 \\
c = - 1;d = 2 \\
\end{matrix} ight.\  \Rightarrow R = \sqrt{a^{2} + b^{2} + c^{2} - d}
= \sqrt{4} = 2

  • Câu 7: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 8: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho tứ diện ABCD có tọa độ đỉnh A(2;0;0),B(0;4;0),C(0;0;6),D(2;4;6). Gọi (S) là mặt cầu ngoại tiếp tứ diện ABCD. Viết phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)?

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    (S) là mặt cầu ngoại tiếp tứ diện ABCD nên ta có hệ phương trình

    \left\{ \begin{matrix}
2^{2} + 0^{2} + 0^{2} - 2.a.2 - 2.b.0 - 2.c.0 + d = 0 \\
0^{2} + 4^{2} + 0^{2} - 2.a.0 - 2.b.4 - 2.c.0 + d = 0 \\
0^{2} + 0^{2} + 6^{2} - 2.a.0 - 2.b.0 - 2.c.6 + d = 0 \\
2^{2} + 4^{2} + 6^{2} - 2.a.2 - 2.b.4 - 2.c.6 + d = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4a + d = - 4 \\
- 8b + d = - 16 \\
- 12c + d = - 36 \\
- 4a - 8b - 12c + d = - 56 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
d = 0 \\
\end{matrix} ight.. Suy ra tâm mặt cầu I(1;2;3) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{14}

    Vậy phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)là:

    (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2}
= 56

  • Câu 10: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 11: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, . Cạnh bên , hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là:

    Tính bán kính

    Gọi M là trung điểm AC, suy ra SM \bot \left( {ABC} ight) \Rightarrow SM \bot AC.

    Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.

    Ta có AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2, suy ra tam giác SAC đều.

    Gọi G là trọng tâm \triangle SAC , suy ra GS = GA = GC.    (1)

    Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.

    Lại có SM \bot \left( {ABC} ight) nên SM là trục của tam giác ABC.

    Mà G thuộc SM nên suy ra GA = GB = GC.

    Từ (1) và (2), suy ra GS = GA = GB = GC hay G là tâm mặt cầu ngoại tiếp khối chóp S.ABC.

    Bán kính mặt cầu R = GS = \frac{2}{3}SM = \frac{{a\sqrt 6 }}{3}.

  • Câu 12: Nhận biết

    Điều kiện để \left( S ight):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0 là một mặt cầu là:

    Theo đề bài, ta có:

    \left( S ight):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0 có dạng:

    \left( S ight):{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0

    \Rightarrow a =  - \frac{A}{2};\,\,b =  - \frac{B}{2};\,\,c =  - \frac{C}{2};\,\,d = D

    Như vậy, (S) là mặt cầu\Leftrightarrow {a^2} + {b^2} + {c^2} - d > 0 \Leftrightarrow {A^2} + {B^2} + {C^2} - 4D > 0

    \Rightarrow {x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0,\,\,{a^2} + {b^2} + {c^2} - d > 0

  • Câu 13: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + (z + 3)^{2} =
25 theo thiết diện là đường tròn bán kính r bằng bao nhiêu?

    Mặt cầu (S) có tâm I(1;1; - 3) và bán kính R = 5.

    Khoảng cách từ tâm I đến (Oxy) bằng 3.

    \Rightarrow r = \sqrt{5^{2} - 3^{2}} =
4

  • Câu 14: Vận dụng

    Cho hình nón đỉnh S có đáy là hình tròn tâm O. Dựng hai đường sinh SA và SB, biết tam giác SAB vuông và có diện tích bằng 4a^2. Góc tạo bởi giữa trục SO và mặt phẳng (SAB) bằng 30^0. Đường cao h của hình nón bằng:

     Tính đường cao nón

    Theo giả thiết ta có tam giác SAB vuông cân tại S.

    Gọi E là trung điểm AB, suy ra\left\{ \begin{array}{l}SE \bot AB\\OE \bot AB\end{array} ight.  và SE = \frac{1}{2}AB.

    Ta có {S_{\Delta SAB}} = \frac{1}{2}AB.SE = 4{a^2} \Leftrightarrow \frac{1}{2}AB.\frac{1}{2}AB = 4{a^2}

    \Rightarrow AB = 4a \Rightarrow SE = 2a.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH.

    Từ đó suy ra OH \bot \left( {SAB} ight) nên

    {30^0} = \widehat {SO,\left( {SAB} ight)} = \widehat {SO,SH} = \widehat {OSH} = \widehat {OSE}

    Trong tam giác vuông SOE, ta có SO = SE.\cos \widehat {OSE} = a\sqrt 3

  • Câu 15: Vận dụng cao

    Trong không gian Oxyz, cho mặt cầu (S): x^2 +y^2 +z^2 −2x+ 2z −2 = 0 và các điểm A(0; 1; 1), B(−1; −2; −3), C(1; 0; −3). Điểm D thuộc mặt cầu (S). Thể tích lớn nhất của tứ diện ABCD bằng:

    Mặt cầu (S) có tâm là I(1; 0; −1) và bán kính R = 2.

    Khi V_{DABC} lớn nhất thì \frac{V_{DABC}}{V_{IABC}} = \frac{d\left( D;(ABC)
ight)}{d\left( I;(ABC) ight)} = \frac{R + d\left( I;(ABC)
ight)}{d\left( I;(ABC) ight)}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1; - 3; - 4) \\
\overrightarrow{AC} = (1; - 1; - 4) \\
\overrightarrow{AI} = (1; - 1; - 2) \\
\end{matrix} ight. suy ra:

    V_{IABC} = \frac{1}{6}\left|
\left\lbrack \left\lbrack \overrightarrow{AB};\overrightarrow{AC}
ightbrack.\overrightarrow{AI} ightbrack ight| =
\frac{4}{3}

    \Rightarrow d\left( I;(ABC) ight) =
\frac{6.V_{IABC}}{\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight|} =
\frac{2}{3}

    \Rightarrow V_{DABC} =\dfrac{4}{3}.\dfrac{2 + \dfrac{2}{3}}{\dfrac{2}{3}} =\dfrac{16}{3}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo