Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 2: Vận dụng

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} = 9 và mặt phẳng (P):x + y + z - 3 = 0. Gọi (S') là mặt cầu chứa đường tròn giao tuyến của (S)(P) đồng thời (S') tiếp xúc với mặt phẳng (Q):x - y + z - 5 = 0. Gọi I(a;b;c) là tâm của (S'). Tính giá trị biểu thức T = abc.

    Phương trình mặt cầu (S’) có dạng:

    x^{2} + y^{2} + z^{2} - 9 + m(x + y + z
- 3) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
mx + my + mz - 9 - 3m = 0

    Mặt cầu (S') có tâm I\left( - \frac{m}{2}; - \frac{m}{2}; -
\frac{m}{2} ight), bán kính R =
\sqrt{\frac{3m^{2}}{4} + 3m + 9}.

    Mặt cầu (S') tiếp xúc với (Q) nên

    d\left( I;(Q) ight) = R\Leftrightarrow \dfrac{\left| - \dfrac{m}{2} - 5 ight|}{\sqrt{2}} =\sqrt{\frac{3m^{2}}{4} + 3m + 9}

    \Leftrightarrow |m + 10| = \sqrt{9m^{2}
+ 36m + 108}

    \Leftrightarrow m = - 1 \Rightarrow
I\left( \frac{1}{2};\frac{1}{2};\frac{1}{2} ight)

    Vậy T = abc = \frac{1}{8}.

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y + z - m^{2} - 3m = 0 và mặt cầu (S):(x - 1)^{2} + (y + 1)^{2} + (z -
1)^{2} = 9. Tìm tất cả các giá trị của m để (P) tiếp xúc với mặt cầu (S)?

    Ta có mặt cầu (S) có tâm I(1; −1; 1) và bán kính R = 3.

    Mặt phẳng (P) tiếp xúc với (S) khi và chỉ khi:

    d\left\lbrack I;(P) ightbrack = R
\Leftrightarrow \frac{\left| 1 - m^{2} - 3m ight|}{3} = 3

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} + 3m - 10 = 0 \\
m^{2} + 3m + 8 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2 \\
m = - 5 \\
\end{matrix} ight..

  • Câu 4: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 5: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 6: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 7: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 8: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Ta có:

    x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.0.x - 2.1y - 2.( - 1)z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = - 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I(0;1; - 1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{0^{2} + 1^{2} + ( - 1)^{2} - 7} = 3

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x - 2y + 2z
- 19 = 0 và mặt phẳng (P):2x - y -
2z + m + 3 = 0, với m là tham số. Gọi T là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi 6\pi. Tổng giá trị của tất cả các phần tử thuộc T bằng:

    Mặt cầu (S):(x - 2)^{2} + (y - 1)^{2} +
(z + 1)^{2} = 25 có tâm I(2; 1; −1) và bán kính R = 5.

    Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.

    Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:

    d\left( I;(P) ight) = \sqrt{R^{2} -
r^{2}} = 4

    \Leftrightarrow \frac{|4 - 1 + 2 + m +
3|}{3} = 4

    \Leftrightarrow |m + 8| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = - 20 \\
\end{matrix} ight.

    Vậy tổng giá trị của các phần tử thuộc T bằng −16.

  • Câu 10: Nhận biết

    Một hình cầu có bán kính là 2m, một mặt phẳng cắt hình cầu theo một hình tròn có độ dài là 2,4\pi {m{m}} . Khoảng cách từ tâm mặt cầu đến mặt phẳng là:

    Gọi khoảng cách từ tâm cầu đến mặt phẳng là d, ta có {d^2} = {R^2} - {r^2} .

    Theo giả thiết R = 2m và 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

    Vậy 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

  • Câu 11: Vận dụng cao

    Trong các hình trụ có diện tích toàn phần bằng 1000{\mathrm{\ }cm}^2 thì hình trụ có thể tích lớn nhất là bao nhiêu {m cm}^3

    Ta có S_{tp}=2\pi Rh+2\pi R^2\Rightarrow Rh+R^2=\frac{S}{2\pi}

    Vậy thể tích khối trụ V=\pi R^2h=\pi R\left(\frac{S}{2\pi}-R^2ight)=\frac{S}{2}R-\pi R^3=F(R)

    Ta có: F^\prime(R)=\frac{S}{2}-3\pi R^2=0\Leftrightarrow R=\sqrt{\frac{S}{6\pi}}

    Bảng biến thiên

    Thể tích lớn nhất

    Từ bảng biến thiên ta có

    V_{max}=\frac{S}{2}R-\pi R^3=\frac{1000}{2}\sqrt{\frac{1000}{6\pi}}-\pi{\sqrt{\frac{1000}{6\pi}}}^3\approx2428.

  • Câu 12: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x − 1)^2 + (y − 2)^2 + (z − 2)^2 = 9 hai hai điểm M(4; −4; 2),N(6; 0; 6). Gọi E là điểm thuộc mặt cầu (S) sao cho EM + EN đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E?

    Hình vẽ minh họa

    Gọi I(1; 2; 2) là tâm của (S), P(5; −2; 4) là trung điểm MN.

    Theo bất đẳng thức Bu-nhi-a-copx-ki và công thức độ dài trung tuyến ta được:

    (EM + EN)^{2} \leq 2\left( EM^{2} +
EN^{2} ight) = 2\left( 2EP^{2} + \frac{MN^{2}}{2} ight)

    nên T = EM + EN đạt giá trị lớn nhất khi EM = EN và EP đạt giá trị lớn nhất.

    Khi đó E là giao điểm của đường thẳng IP với mặt cầu (S) (I nằm giữa E và P). Đường thẳng IP có phương trình:

    \frac{x - 1}{2} = \frac{y - 2}{- 2} =
\frac{z - 2}{1}

    Tọa độ E thỏa hệ phương trình:

    \left\{ \begin{matrix}(x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2} = 9 \\\dfrac{x - 1}{2} = \dfrac{y - 2}{- 2} = \dfrac{z - 2}{1} \\\end{matrix} ight.

    Tìm được E(3; 0; 3) hoặc E(−1; 4; 1), thử lại để EP lớn nhất ta được E(−1; 4; 1).

    Khi đó phương trình tiếp diện với (S) tại E là 2x−2y+z+9 = 0.

  • Câu 13: Vận dụng

    Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

    Tỉ số giữa thể tích

    Hình vẽ kết hợp với giả thiết, ta có SH = 9cm, OS=OA=5cm

    Suy ra OH = 4{m{cm}}AH = \sqrt {O{A^2} - O{H^2}}  = 3{m{cm}}{m{.}}

    Thể tích khối nón {V_n} = \frac{1}{3}\pi A{H^2}.SH = 27\pi(đvtt).

    Thể tích khối cầu {V_c} = \frac{4}{3}\pi .S{O^3} = \frac{{500\pi }}{3}  (đvtt).

    Suy ra \frac{{{V_n}}}{{{V_c}}} = \frac{{81}}{{500}}

  • Câu 14: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho H là trực tâm của \Delta ABC. Tính diện tích mặt cầu ngoại tiếp tứ diện OABC?

    Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c) lần lượt thuộc các trục tọa độ Ox, Oy, Oz.

    Khi đó ta có phương trình mặt phẳng (α) đi qua các điểm A, B, C là

    \frac{x}{a} + \frac{y}{b} + \frac{z}{c}
= 1

    H \in (\alpha) \Rightarrow \frac{1}{a}
+ \frac{2}{b} - \frac{2}{c} = 1\ \ (1)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = (1 - a;2; - 2);\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{BH} = (1;2 - b; - 2);\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight.

    Theo đề bài ta có H là trực tâm \Delta
ABC, ta có:

    \left\{ \begin{matrix}
\overrightarrow{AM}\bot\overrightarrow{BC} \\
\overrightarrow{BH}\bot\overrightarrow{AC} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2b - 2c = 0 \\
- a - 2c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2c \\
b = - c \\
\end{matrix} ight. thay vào (1) ta được:

    \frac{1}{- 2c} + \frac{2}{- c} -
\frac{2}{c} = 1 \Rightarrow c = - \frac{9}{2} \Rightarrow a = 9;b =
\frac{9}{2}

    \Rightarrow \left\{ \begin{matrix}A(9;0;0) \\B\left( 0;\dfrac{9}{2};0 ight) \\C\left( 0;0; - \dfrac{9}{2} ight) \\\end{matrix} ight.. Gọi I\left(
x_{0};y_{0};z_{0} ight)là tâm mặt cầu ngoại tiếp chóp tứ giác OABC, ta có:

    \left\{ \begin{matrix}OI = IA \\OI = IB \\OI = IC \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = \left( x_{0} - 9 ight)^{2} +{y_{0}}^{2} + {z_{0}}^{2} \\{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = {x_{0}}^{2} + \left( y_{0} -\dfrac{9}{2} ight)^{2} + {z_{0}}^{2} \\{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = {x_{0}}^{2} + {y_{0}}^{2} +\left( z_{0} - \dfrac{9}{2} ight)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}{x_{0}}^{2} = \left( x_{0} - 9 ight)^{2} \\{y_{0}}^{2} = \left( y_{0} - \dfrac{9}{2} ight)^{2} \\{z_{0}}^{2} = \left( z_{0} - \dfrac{9}{2} ight)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{0} = - x_{0} - 9 \\y_{0} = - y_{0} - \dfrac{9}{2} \\z_{0} = - z_{0} - \dfrac{9}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{0} = \dfrac{9}{2} \\y_{0} = \dfrac{9}{4} \\z_{0} = - \frac{9}{4} \\\end{matrix} ight.

    Vậy I\left( \frac{9}{2};\frac{9}{4}; -
\frac{9}{4} ight);R = OI = \frac{9\sqrt{6}}{4}

    \Rightarrow S_{(I)} = 4\pi R^{2} =
4\pi.\left( \frac{9\sqrt{6}}{4} ight)^{2} =
\frac{243\pi}{2}

  • Câu 15: Thông hiểu

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu: 

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {2 - \ln t} ight)x + 4\ln t.y + 2\left( {\ln t + 1} ight)z + 5{\ln ^2}t + 8 = 0.

    Theo đề bài, ta có:

    a = \ln t - 2;\,\,b =  - 2\ln t;\,\,c =  - \ln t - 1;\,\,d = 5{\ln ^2}t + 8

    (S) là mặt cầu \Leftrightarrow {\left( {\ln t - 2} ight)^2} + 4{\ln ^2}t + {\left( {\ln t + 1} ight)^2} - 5{\ln ^2}t - 8 > 0

    \Leftrightarrow {\ln ^2}t - 2\ln t - 3 > 0

    \Leftrightarrow \ln t <  - 1 \vee \ln t > 3

    \Leftrightarrow 0 < t < \frac{1}{e} \vee t > {e^3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo