Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,
Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.
Theo đề bài, ta có tam giác SAB vuông cân tại S nên ,
Suy ra ,
và
Diện tích toàn phần của hình nón: (đvdt).
Thể tích khối nón là: (đvtt).
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm
và đi qua điểm
. Phương trình mặt cầu
là:
Phương trình mặt cầu có tâm
và bán kính
là:
Ta có:
Vậy phương trình cần tìm là: .
Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

Hình vẽ kết hợp với giả thiết, ta có
Suy ra và
Thể tích khối nón (đvtt).
Thể tích khối cầu (đvtt).
Suy ra
Trong không gian với hệ tọa độ
, cho điểm
. Mặt cầu
có tâm
và đi qua hai điểm
có phương trình là:
Ta có:
Vì đi qua hai điểm
nên
Vậy phương trình mặt cầu cần tìm là: .
Trong hệ tọa độ
, cho mặt cầu
và các điểm
. Gọi
là mặt phẳng đi qua hai điểm
sao cho thiết diện của mặt phẳng
với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình
dưới dạng
. Tính
.
Ta có:
(S) có tâm , bán kính
.
Nhận thấy: ⇒ A; B nằm bên trong mặt cầu.
Gọi K là trung đểm của AB
Gọi H là hình chiếu của I trên (P),(P) cắt (S) theo thiết diện là đường tròn tâm H bán kính r.
Std nhỏ nhất ⇔ r nhỏ nhất ⇔ IH lớn nhất
Khi đó mặt phẳng (P): Đi qua A và có VTPT là
⇒ Phương trình mặt phẳng
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Trong không gian với hệ tọa độ
, cho hai điểm
và
. Hai điểm
thay đổi sao cho
và
. Biết rằng luôn tồn tại một mặt cầu cố định đi qua
và tiếp xúc với mặt phẳng
. Bán kính của mặt cầu đó là:
Phương trình mặt phẳng là
.
Gọi và
là tâm và bán kính của mặt cầu cố định.
Ta có
Mà không đổi nên
, hay
.
Mặt khác ta có .
Vậy .
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:

Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Giá trị
phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:
? ![]()
Ta có:
là mặt cầu
.
Cho hình nón có bán kính đáy là
, độ dài đường sinh là
. Thể tích khối cầu nội tiếp hình nón bằng:

Xét mặt phẳng qua trục SO của hình nón ta được thiết diện là tam giác cân SAB.
Mặt phẳng đó cắt mặt cầu theo đường tròn có bán kính r (bán kính mặt cầu) và nội tiếp trong tam giác cân SAB.
Trong tam giác vuông SOB, gọi I là giao điểm của đường phân giác trong góc B với đường thẳng SO.
Chứng minh được I là tâm đường tròn nội tiếp tam giác và bán kính (E là hình chiếu vuông góc của I trên SB).
Theo tính chất phân giác, ta có .
Lại có .
Từ đó suy ra .
Ta có nên
Thể tích khối cầu: (đvtt).
Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng
, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng
. Đường cao h của hình nón bằng:
Theo giả thiết ta có tam giác OAB đều cạnh R.
Gọi E là trung điểm AB, suy ra và
.
Gọi H là hình chiếu của O trên SE, suy ra .
Ta có
Từ đó suy ra nên
Trong tam giác vuông SOE, ta có
Trong không gian
, cho mặt cầu
và mặt phẳng
. Viết phương trình mặt phẳng
, biết
song song với giá của vectơ
, vuông góc với
và tiếp xúc với
.
Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R = 4.
Vectơ pháp tuyến của (α) là
Theo giả thiết, suy ra (P) có vectơ pháp tuyến là
Phương trình của mặt phẳng (P) có dạng
Vì (P) tiếp xúc với mặt cầu (S) nên ta có:
Vậy có 2 mặt phẳng thỏa yêu cầu bài toán có phương trình là:
Trong không gian
, tìm tất cả các giá trị của
để phương trình
là phương trình của một mặt cầu?
Phương trình là một mặt cầu
.
Trong không gian
, cho mặt phẳng
và mặt cầu
tâm
bán kính
. Bán kính đường tròn giao của mặt phẳng
và mặt cầu
là:
Hình vẽ minh họa
Gọi bán kính đường tròn giao của mặt phẳng và mặt cầu
là
Ta có:
Suy ra