Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

  • Câu 2: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 3: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(0;0; - 3) và đi qua điểm M(4;0;0). Phương trình mặt cầu (S) là:

    Phương trình mặt cầu (S) có tâm I(0;0; - 3) và bán kính R là:

    x^{2} + y^{2} + (z + 3)^{2} =
R^{2}

    Ta có: M \in (S) \Rightarrow 4^{2} +
0^{2} + (0 + 3)^{2} = R^{2}

    \Leftrightarrow R^{2} = 25

    Vậy phương trình cần tìm là: x^{2} +
y^{2} + (z + 3)^{2} = 25.

  • Câu 4: Vận dụng

    Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

    Tỉ số giữa thể tích

    Hình vẽ kết hợp với giả thiết, ta có SH = 9cm, OS=OA=5cm

    Suy ra OH = 4{m{cm}}AH = \sqrt {O{A^2} - O{H^2}}  = 3{m{cm}}{m{.}}

    Thể tích khối nón {V_n} = \frac{1}{3}\pi A{H^2}.SH = 27\pi(đvtt).

    Thể tích khối cầu {V_c} = \frac{4}{3}\pi .S{O^3} = \frac{{500\pi }}{3}  (đvtt).

    Suy ra \frac{{{V_n}}}{{{V_c}}} = \frac{{81}}{{500}}

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;2),B(3;2; - 3). Mặt cầu (S) có tâm I
\in Ox và đi qua hai điểm A;B có phương trình là:

    Ta có: I \in Ox \Rightarrow
I(a;0;0)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{IA} = (1 - a;1;2) \\
\overrightarrow{IB} = (3 - a;2; - 3) \\
\end{matrix} ight.

    (S) đi qua hai điểm A;B nên

    IA = IB \Leftrightarrow \sqrt{(1 -
a)^{2} + 5} = \sqrt{(3 - a)^{2} + 13}

    \Leftrightarrow 4a = 16 \Leftrightarrow
a = 4 \Rightarrow I(4;0;0)

    \Rightarrow R = IA =
\sqrt{14}

    Vậy phương trình mặt cầu cần tìm là: (S):x^{2} + y^{2} + z^{2} - 8x + 2 =
0.

  • Câu 6: Vận dụng

    Trong hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z -
3)^{2} = 16 và các điểm A(1; 0; 2); B(−1; 2; 2). Gọi (P) là mặt phẳng đi qua hai điểm A; B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax + by + cz + 3 = 0. Tính T = a + b + c.

    Ta có:

    (S) có tâm I(1; 2; 3), bán kính R = 4.

    Nhận thấy: IA = IB = \sqrt{5} <
R ⇒ A; B nằm bên trong mặt cầu.

    Gọi K là trung đểm của AB ⇒ K(0; 1; 2); IK ⊥ AB.

    Gọi H là hình chiếu của I trên (P),(P) cắt (S) theo thiết diện là đường tròn tâm H bán kính r.

    Std nhỏ nhất ⇔ r nhỏ nhất ⇔ IH lớn nhất

    ⇔ IH = IK ⇔ H ≡ K.

    Khi đó mặt phẳng (P): Đi qua A và có VTPT là \overrightarrow{IK} = ( - 1; - 1; -
1)

    ⇒ Phương trình mặt phẳng (P) : −x−y−z+3 = 0 ⇒ a+b+c = −3

  • Câu 7: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 8: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm S(0;0;1)A(1;1;1). Hai điểm M(m;0;0),N(0  ;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Biết rằng luôn tồn tại một mặt cầu cố định đi qua A và tiếp xúc với mặt phẳng (SMN). Bán kính của mặt cầu đó là:

    Phương trình mặt phẳng (SMN)\frac{x}{m} + \frac{y}{n} + \frac{z}{1} =1

    \Leftrightarrow nx + my + mnz - mn =0.

    Gọi I(a;b;c)R là tâm và bán kính của mặt cầu cố định.

    Ta có

    R = d(I;(SMN))

    = \frac{|na + mb + mnc -mn|}{\sqrt{n^{2} + m^{2} + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{\sqrt{1 - 2mn + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{1 - mn}

    = \frac{\left| (1 - c)m^{2} + (b + c - a- 1)m + a ight|}{m^{2} - m + 1}

    R không đổi nên \frac{1 - c}{1} = \frac{b + c - a - 1}{- 1} =\frac{a}{1} = t \Rightarrow \left\{ \begin{matrix}a = t \\b = t \\c = 1 - t \\\end{matrix} ight., hay I(t;t;1- t).
    Mặt khác ta có R = IA = \sqrt{3t^{3} - 4t +2} = |t| \Rightarrow t = 1.

    Vậy R = 1.

  • Câu 9: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 10: Thông hiểu

    Giá trị (\alpha) phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {3 - {{\cos }^2}\alpha } ight)x + 4\left( {{{\sin }^2}\alpha  - 1} ight) + 2z + \cos 4\alpha  + 8 = 0? (k\in \mathbb{Z})

     Ta có: a = 2{\cos ^2}\alpha  - 3 = \cos 2\alpha  - 2;\,b = 2\left( {1 - {{\sin }^2}\alpha } ight) = \cos 2\alpha  + 1;c =  - 1;

    d = \cos 4\alpha  + 8 = 2{\cos ^2}2\alpha  + 7.\,\,\left( S ight) là mặt cầu \Leftrightarrow {a^2} + {b^2} + {c^2} - d > 0

    \Leftrightarrow  - 1 + \cos 2\alpha  <  - \frac{1}{2}

    \Leftrightarrow \frac{{2\pi }}{3} + k2\pi  < 2\alpha  < \frac{{4\pi }}{3} + k2\pi

    \Leftrightarrow \frac{\pi }{3} + k\pi  < \alpha  < \frac{{2\pi }}{3} + k\pi ,\,\,k \in \mathbb{Z}.

  • Câu 11: Vận dụng cao

    Cho hình nón có bán kính đáy là 5a , độ dài đường sinh là 13a. Thể tích khối cầu nội tiếp hình nón bằng:

    Thể tích khối cầu nội tiếp hình nón

    Xét mặt phẳng qua trục SO của hình nón ta được thiết diện là tam giác cân SAB.

    Mặt phẳng đó cắt mặt cầu theo đường tròn có bán kính r (bán kính mặt cầu) và nội tiếp trong tam giác cân SAB.

    Trong tam giác vuông SOB, gọi I là giao điểm của đường phân giác trong góc B với đường thẳng SO.

    Chứng minh được I là tâm đường tròn nội tiếp tam giác và bán kínhr =IO=IE  (E là hình chiếu vuông góc của I trên SB).

    Theo tính chất phân giác, ta có \frac{{IS}}{{IO}} = \frac{{BS}}{{BO}} = \frac{{13}}{5}.

    Lại có IS + IO = SO = \sqrt {S{B^2} - O{B^2}}  = 12.

    Từ đó suy ra IS = \frac{{26}}{3},{m{ }}IO = \frac{{10}}{3}.

    Ta có \Delta SEI \backsim\Delta SOB  nên \frac{{IE}}{{IS}} = \frac{{BO}}{{BS}} = \frac{5}{{13}} \Rightarrow IE = \frac{5}{{13}}IS = \frac{{10}}{3}

    Thể tích khối cầu: V = \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi {\left( {\frac{{10a}}{3}} ight)^3} = \frac{{4000\pi {a^3}}}{{81}} (đvtt).

  • Câu 12: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 13: Vận dụng

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 6y - 4z
- 2 = 0 và mặt phẳng (α) : x + 4y + z − 11 = 0. Viết phương trình mặt phẳng (P), biết (P) song song với giá của vectơ \overrightarrow{v} = (1;6;2), vuông góc với (α) và tiếp xúc với (S).

    Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R = 4.

    Vectơ pháp tuyến của (α) là \overrightarrow{n_{(\alpha)}} =
(1;4;1)

    Theo giả thiết, suy ra (P) có vectơ pháp tuyến là \overrightarrow{n_{(P)}} = \left\lbrack
\overrightarrow{v};\overrightarrow{n_{(\alpha)}} ightbrack = (2; -
1;2)

    Phương trình của mặt phẳng (P) có dạng 2x − y + 2z + D = 0

    Vì (P) tiếp xúc với mặt cầu (S) nên ta có:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2 + 3 + 4 + D|}{\sqrt{2^{2} + 1^{2} + 2^{2}}} =
4

    \Leftrightarrow |9 + D| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
D = 3 \\
D = - 21 \\
\end{matrix} ight.

    Vậy có 2 mặt phẳng thỏa yêu cầu bài toán có phương trình là: \left\lbrack \begin{matrix}
(P):2x - y + 2z + 3 = 0 \\
(P):2x - y + 2z - 21 = 0 \\
\end{matrix} ight.

  • Câu 14: Nhận biết

    Trong không gian Oxyz, tìm tất cả các giá trị của m để phương trình x^{2} + y^{2} + z^{2} - 2x - 2y - 4z +
m = 0 là phương trình của một mặt cầu?

    Phương trình x^{2} + y^{2} + z^{2} - 2x -
2y - 4z + m = 0 là một mặt cầu

    \Leftrightarrow 1^{2} + 1^{2} + 2^{2} - m
> 0 \Leftrightarrow m < 6.

  • Câu 15: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P):2x + 2y + z - 2 = 0 và mặt cầu (S) tâm I(2;1; - 1) bán kính R = 2. Bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S) là:

    Hình vẽ minh họa

    Gọi bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S)r

    Ta có:

    h = d\left( I;(P) ight) = \frac{\left|
2.2 + 2.( - 1) - 1 - 2 ight|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} =
1

    Suy ra r = \sqrt{2^{2} - 1^{2}} =
\sqrt{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo