Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Mặt phẳng (AB'C') tạo với mặt đáy góc 60^0 và điểm G là trọng tâm tam giác ABC. Bán kính mặt cầu ngoại tiếp khối chóp G.A'B'C' bằng:

      Bán kính mặt cầu

    Gọi M là trung điểm B’C’, ta có

    {60^0} = \widehat {\left( {AB'C'} ight),\left( {A'B'C'} ight)} = \widehat {AM,A'M} = \widehat {AMA'}.

    Trong \Delta AA'M, có A'M = \frac{{a\sqrt 3 }}{2};

    AA' = A'M.\tan \widehat {AMA'} = \frac{{3a}}{2}.

    Gọi G’ là trọng tâm tam giác đều A’B’C’, suy ra G’ cũng là tâm đường tròn ngoại tiếp \Delta A'B'C'.

    Vì lặng trụ đứng nên GG' \bot \left( {A'B'C'} ight).

    Do đó GG' là trục của tam giác A'B'C'.

    Trong mặt phẳng \left( {GC'G'} ight), kẻ trung trực d của đoạn thẳng GC' cắt GG' tại I. Khi đó I là tâm mặt cầu ngoại tiếp khối chóp G.A'B'C' , bán kính R = GI

    Ta có \Delta GPI\,\backsim\,\,\,\Delta GG'C' \Rightarrow \frac{{GP}}{{GI}} = \frac{{GG'}}{{GC'}}

    \Rightarrow R = GI = \frac{{GP.GC'}}{{GG'}} = \frac{{GC{'^2}}}{{2GG'}} = \frac{{GG{'^2} + G'C{'^2}}}{{2GG'}} = \frac{{31a}}{{36}}.

  • Câu 2: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 3: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 4: Vận dụng cao

    Cho khối trụ có hai đáy là (O)\left(O^\primeight). AB,CD lần lượt là hai đường kính của (O)\left(O^\primeight), góc giữa ABCD bằng {30}^\circ,AB=6. Thể tích khối tứ diện ABCD bằng 30 . Thể tích khối trụ đã cho bằng?

     Thể tích trụ

    Ta chứng minh: V_{ABCD}=\frac{1}{6}AB\cdot CD\cdot d(AB,CD)\cdot\sin(AB,CD)..

    Lấy điểm E sao cho tứ giác BCDE là hình bình hành.

    Khi đó  (AB,CD)=(AB,BE)\Rightarrow\sin(AB,CD)=\sin(AB,BE)..

    Mà góc giữa ABCD bằng {30}^\circ,AB=6 nên ta có:

    \sin(AB,CD)=\sin(AB,BE)=\sin 30^0 =\frac 1 2

    Ta có d(D,(ABE))=d(AB, CD)

    V_{ABCD}=V_{ABDE}

    =\frac{1}{3}.d(D,(ABE)).S_{ABE}=\frac {1}{6} AB.CD.d(AB,CD).sin (AB,CD)

    Suy ra V_{ABCD}=\frac {1}{6} AB.CD.d(AB,CD).sin (AB,CD)

    Vậy d(AB,CD)=\dfrac{6V_{ABCD}}{AB.CD.\sin30^0}=\dfrac{180}{6.6.\dfrac{1}{2}}=10

    Chiều cao của lăng trụ bằng h = d(AB, CD)=10

    Áp dụng CT thể tích lăng trụ là: V=Sh=\pi .3^2.10=90 \pi

     

  • Câu 5: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a, AB = BC = CD = a. Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số \frac{R}{a}nhận giá trị nào sau đây?

     Tính tỉ số

    Ta có SA \bot AD hay \widehat {SAD} = {90^0}

    Gọi E là trung điểm AD.

    Ta có EA = AB = BC nên ABCE là hình thoi.

    Suy ra CE = EA = \frac{1}{2}AD .

    Do đó tam giác ACD vuông tại C. Ta có:

    \left\{ \begin{array}{l}DC \bot AC\\DC \bot SA\end{array} ight. \Rightarrow DC \bot \left( {SAC} ight) \Rightarrow DC \bot SC   hay    \widehat {SCD} = {90^0}

    Tương tự, ta cũng có SB \bot BD hay \widehat {SBD} = {90^0}

    Ta có \widehat {SAD} = \widehat {SBD} = \widehat {SCD} = {90^0} nên khối chóp S.ABCD nhận trung điểm I của SD làm tâm mặt cầu ngoại tiếp, bán kính R = \frac{{SD}}{2} = \frac{{\sqrt {S{A^2} + A{D^2}} }}{2} = a\sqrt 2.

    Suy ra \frac{R}{a} = \sqrt 2.

  • Câu 6: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P):2x + 2y + z - 2 = 0 và mặt cầu (S) tâm I(2;1; - 1) bán kính R = 2. Bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S) là:

    Hình vẽ minh họa

    Gọi bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S)r

    Ta có:

    h = d\left( I;(P) ight) = \frac{\left|
2.2 + 2.( - 1) - 1 - 2 ight|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} =
1

    Suy ra r = \sqrt{2^{2} - 1^{2}} =
\sqrt{3}

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, có tất cả bao nhiêu giá trị nguyên của tham số m để x^{2} +
y^{2} + z^{2} + 2(m + 2)x - 2(m - 1)z + 3m^{2} - 5 = 0 là một phương trình mặt cầu

    Phương trình đã cho là phương trình mặt cầu khi và chỉ khi

    (m + 2)^{2} + (m - 1)^{3} - 3m^{2} + 5
> 0

    \Leftrightarrow m^{2} - 2m - 10 <
0

    \Leftrightarrow m \in \left( - 1 -
\sqrt{11};1 + \sqrt{11} ight)

    Theo bài ra m\mathbb{\in Z \Rightarrow}m
\in \left\{ - 2; - 1;0;1;2;3;4 ight\}

    Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 8: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \frac{a}{2}. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

     Thể tích khối nón

    Gọi E là trung điểm của BC, dựng OH \bot SE tại H.

    Chứng minh được OH \bot \left( {SBC} ight) nên suy ra OH = d\left[ {O,\left( {SBC} ight)} ight] = \frac{a}{2}.

    Trong tam giác đều ABC, ta có OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}

    và  OA = \frac{2}{3}AE = \frac{{2a\sqrt 3 }}{3}

    Trong tam giác vuông SOE, ta có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{S{O^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{1}{{{a^2}}} \Rightarrow SO = a.

    Vậy thể tích khối nón V = \frac{1}{3}\pi O{A^2}.SO = \frac{1}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} ight)^2}.a = \frac{{4\pi {a^3}}}{9}  (đvtt).

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),C(0;0;3),B(0;2;0). Tập hợp các điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là:

    Giả sử M(x;y;z)

    Ta có:\left\{ \begin{matrix}
MA^{2} = (x - 1)^{2} + y^{2} + z^{2} \\
MB^{2} = x^{2} + (y - 2)^{2} + z^{2} \\
MC^{2} = x^{2} + y^{2} + (z - 3)^{2} \\
\end{matrix} ight.

    Theo bài ra ta có:

    MA^{2} = MB^{2} + MC^{2}

    \Leftrightarrow (x - 1)^{2} + y^{2} +
z^{2} = x^{2} + (y - 2)^{2} + z^{2} + x^{2} + y^{2} + (z -
3)^{2}

    \Leftrightarrow - 2x + 1 = (y - 2)^{2} +
x^{2} + (z - 3)^{2}

    \Leftrightarrow (x + 1)^{2} + (y -
2)^{2} + (z - 3)^{2} = 2

    Vậy tập hợp điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là R = \sqrt{2}.

  • Câu 10: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 11: Nhận biết

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 12: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 13: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho H là trực tâm của \Delta ABC. Tính diện tích mặt cầu ngoại tiếp tứ diện OABC?

    Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c) lần lượt thuộc các trục tọa độ Ox, Oy, Oz.

    Khi đó ta có phương trình mặt phẳng (α) đi qua các điểm A, B, C là

    \frac{x}{a} + \frac{y}{b} + \frac{z}{c}
= 1

    H \in (\alpha) \Rightarrow \frac{1}{a}
+ \frac{2}{b} - \frac{2}{c} = 1\ \ (1)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = (1 - a;2; - 2);\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{BH} = (1;2 - b; - 2);\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight.

    Theo đề bài ta có H là trực tâm \Delta
ABC, ta có:

    \left\{ \begin{matrix}
\overrightarrow{AM}\bot\overrightarrow{BC} \\
\overrightarrow{BH}\bot\overrightarrow{AC} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2b - 2c = 0 \\
- a - 2c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2c \\
b = - c \\
\end{matrix} ight. thay vào (1) ta được:

    \frac{1}{- 2c} + \frac{2}{- c} -
\frac{2}{c} = 1 \Rightarrow c = - \frac{9}{2} \Rightarrow a = 9;b =
\frac{9}{2}

    \Rightarrow \left\{ \begin{matrix}A(9;0;0) \\B\left( 0;\dfrac{9}{2};0 ight) \\C\left( 0;0; - \dfrac{9}{2} ight) \\\end{matrix} ight.. Gọi I\left(
x_{0};y_{0};z_{0} ight)là tâm mặt cầu ngoại tiếp chóp tứ giác OABC, ta có:

    \left\{ \begin{matrix}OI = IA \\OI = IB \\OI = IC \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = \left( x_{0} - 9 ight)^{2} +{y_{0}}^{2} + {z_{0}}^{2} \\{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = {x_{0}}^{2} + \left( y_{0} -\dfrac{9}{2} ight)^{2} + {z_{0}}^{2} \\{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = {x_{0}}^{2} + {y_{0}}^{2} +\left( z_{0} - \dfrac{9}{2} ight)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}{x_{0}}^{2} = \left( x_{0} - 9 ight)^{2} \\{y_{0}}^{2} = \left( y_{0} - \dfrac{9}{2} ight)^{2} \\{z_{0}}^{2} = \left( z_{0} - \dfrac{9}{2} ight)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{0} = - x_{0} - 9 \\y_{0} = - y_{0} - \dfrac{9}{2} \\z_{0} = - z_{0} - \dfrac{9}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{0} = \dfrac{9}{2} \\y_{0} = \dfrac{9}{4} \\z_{0} = - \frac{9}{4} \\\end{matrix} ight.

    Vậy I\left( \frac{9}{2};\frac{9}{4}; -
\frac{9}{4} ight);R = OI = \frac{9\sqrt{6}}{4}

    \Rightarrow S_{(I)} = 4\pi R^{2} =
4\pi.\left( \frac{9\sqrt{6}}{4} ight)^{2} =
\frac{243\pi}{2}

  • Câu 14: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 15: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;7),B( - 3;8; - 1). Mặt cầu đường kính AB có phương trình là:

    Gọi I là trung điểm của AB khi đó I(
- 1;3;3) là tâm mặt cầu (S).

    Bán kính R = IA = \sqrt{(1 + 1)^{2} + ( -
2 - 3)^{2} + (7 - 3)^{2}} = \sqrt{45}

    Vậy phương trình mặt cầu cần tìm là: (x +
1)^{2} + (y - 3)^{2} + (z - 3)^{2} = 45.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo