Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y - z - 1 = 0 và mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4y + 6z + 5 =
0. Khẳng định nào sau đây đúng?

    Mặt cầu (S) có tâm I(1; 2; −3), bán kính R = \sqrt{1 + 4 + 9 - 5} = 3

    Ta có:

    d\left( I;(P) ight) = \frac{\left| 2.1
+ 2.2 - ( - 3) - 1 ight|}{\sqrt{4 + 4 + 1}} = \frac{8}{3} <
R

    Do đó (P) cắt mặt cầu (S).

  • Câu 2: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} + 4x +
2y + z = 0\left( S_{2}
ight):x^{2} + y^{2} + z^{2} - 2x - y - z = 0 cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?

    Mặt phẳng (P) chứa đường tròn (C) có được bằng cách khử x^{2};y^{2};z^{2} trong phương trình hai mặt cầu ta được 6x + 3y + 2z = 0. Mặt phẳng (ABC) có phương trình là

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} =
1⇔ 6x + 3y + 2z − 6 = 0.

    Do đó (P) // (ABC). Mặt cầu (S) tiếp xúc với cả ba đường thẳng AB, BC, CA sẽ giao với mặt phẳng (ABC) theo một đường tròn tiếp xúc với ba đường thẳng AB, BC, CA.

    Trên mặt phẳng (ABC) có 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA đó là đường tròn nội tiếp tam giác ABC và ba đường tròn bàng tiếp các góc A, B, C.

    Do đó có 4 mặt cầu có tâm nằm trên (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA.

    Tâm của 4 mặt cầu là hình chiếu của tâm 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA lên mặt phẳng (P).

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y + z - m^{2} - 3m = 0 và mặt cầu (S):(x - 1)^{2} + (y + 1)^{2} + (z -
1)^{2} = 9. Tìm tất cả các giá trị của m để (P) tiếp xúc với mặt cầu (S)?

    Ta có mặt cầu (S) có tâm I(1; −1; 1) và bán kính R = 3.

    Mặt phẳng (P) tiếp xúc với (S) khi và chỉ khi:

    d\left\lbrack I;(P) ightbrack = R
\Leftrightarrow \frac{\left| 1 - m^{2} - 3m ight|}{3} = 3

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} + 3m - 10 = 0 \\
m^{2} + 3m + 8 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2 \\
m = - 5 \\
\end{matrix} ight..

  • Câu 4: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 5: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho các mặt phẳng (P): x−y + 2z + 1 = 0, (Q): 2x+y +z −1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu (S) thỏa mãn yêu cầu.

    Gọi R, I(m; 0; 0) lần lượt là bán kính, tâm của mặt cầu; d_1, d_2 lần lượt là khoảng cách từ I đến mặt phẳng (P), (Q).

    Từ đó ta có: R^{2} = {d_{1}}^{2} + 4 =
{d_{2}}^{2} + r^{2} suy ra

    \frac{(m + 1)^{2}}{1^{2} + ( - 1)^{2} +
2^{2}} + 4 = \frac{(2m - 1)^{2}}{2^{2} + 1^{2} + 1^{2}} +
r^{2}

    \Leftrightarrow m^{2} + 2m + 1 + 16 =
4m^{2} - 4m + 1 + 6r^{2}

    \Leftrightarrow m^{2} - 2m + \left(
2r^{2} - 8 ight) = 0\ \ (*)

    Để tồn tại đúng một mặt cầu tương đương phương trình (∗) có đúng một nghiệm m hay \Delta' = 1^{2} - \left(
2r^{2} - 8 ight) = 0 \Leftrightarrow r =
\frac{3\sqrt{2}}{2}

    Vậy đáp án cần tìm là: r =
\frac{3\sqrt{2}}{2}.

  • Câu 6: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;2; - 4),B(1; - 3;1),C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy)?

    Gọi tâm mặt cầu là I(x;y;0)

    Ta có:

    \left\{ \begin{matrix}
IA = IB \\
IA = IC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 1)^{2} + (y +
3)^{2} + 1^{2}} \\
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 2)^{2} + (y -
2)^{2} + 3^{2}} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(y - 2)^{2} + 4^{2} = (y + 3)^{2} + 1 \\
x^{2} - 2x + 1 + 16 = x^{2} - 4x + 4 + 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10y = 10 \\
2x = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 1 \\
x = - 2 \\
\end{matrix} ight.

    \Rightarrow l = 2R = 2\sqrt{( - 3)^{2} +
( - 1)^{2} + 4^{2}} = 2\sqrt{26}.

  • Câu 7: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 8: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, tìm tọa độ tâm I và bán kính R của mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} + (z - 4)^{2} =
20

    Tâm của (S) có tọa độ là I(1; - 2;4)

    Bán kính mặt cầu (S) là: R = \sqrt{20} = 2\sqrt{5}.

  • Câu 9: Thông hiểu

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu: 

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {2 - \ln t} ight)x + 4\ln t.y + 2\left( {\ln t + 1} ight)z + 5{\ln ^2}t + 8 = 0.

    Theo đề bài, ta có:

    a = \ln t - 2;\,\,b =  - 2\ln t;\,\,c =  - \ln t - 1;\,\,d = 5{\ln ^2}t + 8

    (S) là mặt cầu \Leftrightarrow {\left( {\ln t - 2} ight)^2} + 4{\ln ^2}t + {\left( {\ln t + 1} ight)^2} - 5{\ln ^2}t - 8 > 0

    \Leftrightarrow {\ln ^2}t - 2\ln t - 3 > 0

    \Leftrightarrow \ln t <  - 1 \vee \ln t > 3

    \Leftrightarrow 0 < t < \frac{1}{e} \vee t > {e^3}

  • Câu 10: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu (S_1): (x+3)^2+(y−2)^2+(z−4)^2 = 1, (S_2): x ^2 + (y − 2)^2 + (z − 4)^2 = 4, (S_3): x ^2 + y ^2 + z ^2 + 4x − 4y − 1 = 0. Có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu (S_1), (S_2), (S_3)?

    Ta có \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight) có tâm lần lượt là I_{1}( - 3;2;4),I_{2}(0;2;4),I_{3}( -2;2;0) và bán kính lần lượt là R_{1} = 1,R_{2} = 2,R_{3} = 3.

    Gọi (P):ax + by + cz + d = 0\left( a^{2} +b^{2} + c^{2} eq 0 ight) là mặt phẳng tiếp xúc với cả ba mặt cầu nói trên. Khi đó:

    \left\{ \begin{matrix}d\left( I_{1};(P) ight) = R_{1} \\d\left( I_{2};(P) ight) = R_{2} \\d\left( I_{3};(P) ight) = R_{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}| - 3a + 2b + 4c + d| = \sqrt{a^{2} + b^{2} + c^{2}} \\|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\| - 2a + 2b + d| = 3\sqrt{a^{2} + b^{2} + c^{2}} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\2| - 3a + 2b + 4c + d| = |2b + 4c + d| \\3|2b + 4c + d| = 2| - 2a + 2b + d| \\\end{matrix} ight.

    Xét phương trình

    3|2b + 4c + d| = 2| - 2a + 2b +d|

    \Leftrightarrow \left\lbrack\begin{matrix}3(2b + 4c + d) = 2( - 2a + 2b + d) \\3(2b + 4c + d) = - 2( - 2a + 2b + d) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}d = - 4a - 2b - 12c \\5d = 4a - 10b - 12c \\\end{matrix} ight.

    (1) Với d = - 4a - 2b - 12c. Thay vào 2| - 3a + 2b + 4c + d| = |2b + 4c +d|, ta được

    2| - 7a - 8c| = | - 4a -8c|

    \Leftrightarrow \left\lbrack\begin{matrix}7a + 8c = 2a + 4c \\7a + 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = - \dfrac{6c}{5} \\a = - \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = - \frac{6c}{5} \Rightarrow d = -\frac{36c}{5} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{18c}{5} + 2b + 4c -\frac{36c}{5} - 2b ight| = \sqrt{\left( - \frac{6c}{5} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{2c}{5}ight| = \frac{1}{5} \cdot \sqrt{25b^{2} + 61c^{2}} \Leftrightarrow4c^{2} = 25b^{2} + 61c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    Với a = - \frac{4c}{3} \Rightarrow d = -\frac{20c}{3} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{12c}{5} + 2b + 4c -\frac{20c}{5} - 2b ight| = \sqrt{\left( - \frac{4c}{3} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{4c}{3}ight| = \frac{1}{3} \cdot \sqrt{9b^{2} + 25c^{2}}

    \Leftrightarrow 16c^{2} = 9b^{2} +25c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    (2) Với 5d = 4a - 10b - 12c.

    Thay vào 2| - 3a + 2b + 4c + d| = |2b +4c + d|, ta được

    2| - 11a + 8c| = |4a + 8c

    \Leftrightarrow \left\lbrack\begin{matrix}11a - 8c = 2a + 4c \\11a - 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{4c}{13} \\a = \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = \frac{4c}{13} \Rightarrow 5d = -\frac{140c}{13} - 10b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được

    \left| \frac{60c}{13} ight| =\frac{5}{13} \cdot \sqrt{169b^{2} + 185c^{2}}

    \Leftrightarrow 11c^{2} = 169b^{2}\Leftrightarrow c = \pm \frac{13b}{\sqrt{11}}

    Với c = \frac{13b}{\sqrt{11}} : chọn b = \sqrt{11} \Rightarrow c = 13\Rightarrow Tồn tại một mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight).

    Với a = \frac{4c}{3} \Rightarrow 5d = -\frac{20c}{3} - 10b

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}} ta được:

    \left| \frac{20c}{3} ight| =\frac{5}{3}.\sqrt{9b^{2} + 25c^{2}} \Leftrightarrow 9b^{2} + 9c^{2} = 0\Leftrightarrow b = c = 0

    Với b = c = 0 ⇒ a = 0, d = 0 (vô lí).

    Vậy tồn tại 2 mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2} ight),\left(S_{3} ight).

  • Câu 11: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 12: Vận dụng

    Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

    Tỉ số giữa thể tích

    Hình vẽ kết hợp với giả thiết, ta có SH = 9cm, OS=OA=5cm

    Suy ra OH = 4{m{cm}}AH = \sqrt {O{A^2} - O{H^2}}  = 3{m{cm}}{m{.}}

    Thể tích khối nón {V_n} = \frac{1}{3}\pi A{H^2}.SH = 27\pi(đvtt).

    Thể tích khối cầu {V_c} = \frac{4}{3}\pi .S{O^3} = \frac{{500\pi }}{3}  (đvtt).

    Suy ra \frac{{{V_n}}}{{{V_c}}} = \frac{{81}}{{500}}

  • Câu 13: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 14: Thông hiểu

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 15: Vận dụng cao

    Trong các hình trụ có diện tích toàn phần bằng 1000{\mathrm{\ }cm}^2 thì hình trụ có thể tích lớn nhất là bao nhiêu {m cm}^3

    Ta có S_{tp}=2\pi Rh+2\pi R^2\Rightarrow Rh+R^2=\frac{S}{2\pi}

    Vậy thể tích khối trụ V=\pi R^2h=\pi R\left(\frac{S}{2\pi}-R^2ight)=\frac{S}{2}R-\pi R^3=F(R)

    Ta có: F^\prime(R)=\frac{S}{2}-3\pi R^2=0\Leftrightarrow R=\sqrt{\frac{S}{6\pi}}

    Bảng biến thiên

    Thể tích lớn nhất

    Từ bảng biến thiên ta có

    V_{max}=\frac{S}{2}R-\pi R^3=\frac{1000}{2}\sqrt{\frac{1000}{6\pi}}-\pi{\sqrt{\frac{1000}{6\pi}}}^3\approx2428.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo