Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4y - 20 =
0 và mặt phẳng (\alpha):x + 2y - 2z
+ 7 = 0 cắt nhau theo một đường tròn có chu vi là:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; 2; 0) và bán kính R = 5.

    Ta có d\left( I,(\alpha) ight) = \
\frac{|1.1 + 2.2 - 2.0 + 7|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
4

    d(I,(α)) < R nên (α) cắt (S) theo giao tuyến là đường tròn (C).

    Gọi H là hình chiếu vuông góc của I trên (α) ⇒ H là tâm của (C).

    Lấy M ∈ (C) ⇒ M ∈ (S)

    Tam giác IHM vuông tại M \Rightarrow HM =
\sqrt{IM^{2} - IH^{2}} = \sqrt{5^{2} - 4^{2}} = 3

    Suy ra chu vi của đường tròn (C) bằng 2π . HM = 6π.

  • Câu 2: Vận dụng

    Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng \frac{3a}{2}. Diện tích của thiết diện đó bằng?

    Xét hình nón đỉnh S có chiều cao SO=2a, bán kính đáy OA=3a .

    Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

    Diện tích thiết diện

    Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ OH\bot SI,H\in SI

    Ta có: 

     +\left\{\begin{matrix}AB\bot O I\\AB\bot S O\\\end{matrix}\Rightarrow A B\bot(SOI)\Rightarrow A B\bot O Hight.

    +\left\{\begin{matrix}OH\bot S I\\OH\bot A B\\\end{matrix}\Rightarrow O H\bot(SAB)\Rightarrow d(O,(SAB))=OH=\frac{3a}{2}ight.

    Xét tam giác SOI vuông tại O, ta có

    \frac{1}{OI^2}=\frac{1}{OH^2}-\frac{1}{SO^2}=\frac{4}{9a^2}-\frac{1}{4a^2}=\frac{7}{36a^2}\Rightarrow OI=\frac{6a}{\sqrt7}.

    SI=\sqrt{SO^2+OI^2}=\sqrt{4a^2+\frac{36a^2}{7}}=\frac{8a}{\sqrt7}.

    Xét tam giác AOI vuông tại I, có: 

    AI=\sqrt{AO^2-OI^2}=\sqrt{9a^2-\frac{36a^2}{7}}=\frac{3\sqrt3a}{\sqrt7}

    \Rightarrow AB=2AI=\frac{6\sqrt3a}{\sqrt7}

    Vậy diện tích của thiết diện là:

    S_{\triangle S A B}=\frac{1}{2}\cdot SI\cdot AB=\frac{1}{2}\cdot\frac{8a}{\sqrt7}\cdot\frac{6\sqrt3a}{\sqrt7}=\frac{24a^2\sqrt3}{7}.

  • Câu 3: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, giá trị dương của tham số m sao cho mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1 là:

    Ta có: (Oxy) có phương trình z = 0

    Mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2}
= m^{2} + 1 có tâm I(3;0;2) và bán kính R = \sqrt{m^{2} + 1}

    Để mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} =
m^{2} + 1 thì

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2|}{\sqrt{1}} = \sqrt{m^{2} + 1}

    \Leftrightarrow m^{2} + 1 = 4
\Leftrightarrow m = \pm \sqrt{3}. Vì m nhận giá trị dương nên m = \sqrt{3}.

    Vậy m = \sqrt{3} thỏa yêu cầu đề bài.

  • Câu 5: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60^0 . Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:

    Thể tích của khối cầu ngoại tiếp

    Gọi O = AC \cap BD, suy ra SO \bot \left( {ABCD} ight).

    Ta có {60^0}{m{ = }}\widehat {SB,\left( {ABCD} ight)} = \widehat {SB,OB} = \widehat {SBO}.

    Trong \triangle SOB, ta có SO = OB.\tan \widehat {SBO} = \frac{{a\sqrt 6 }}{2}.

    Ta có SO là trục của hình vuông ABCD.

    Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.

    Gọi I = SO \cap d \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in d\end{array} ight. \Rightarrow \left\{ \begin{array}{l}IA = IB = IC = ID\\IS = IB\end{array} ight.

    \Rightarrow IA = IB = IC = ID = IS = R

    Xét \triangle SBD\left\{ \begin{array}{l}SB = SD\\\widehat {SBD} = \widehat {SBO} = {60^o}\end{array} ight. \Rightarrow    \triangle SBD đều.

    Do đó d cũng là đường trung tuyến của \triangle SBD . Suy ra I là trọng tâm \triangle SBD .

    Bán kính mặt cầu R = SI = \frac{2}{3}SO = \frac{{a\sqrt 6 }}{3}.

    Suy ra V = \frac{4}{3}\pi {R^3} = \frac{{8\pi {a^3}\sqrt 6 }}{{27}}

  • Câu 6: Nhận biết

    Trong không gian Oxyz, viết phương trình mặt cầu (S) đường kính AB biết A(2; - 1; - 3),B(0;3; - 1)?

    Gọi I là trung điểm của AB khi đó I(1;1; - 2) là tâm mặt cầu (S).

    Bán kính R = \frac{1}{2}AB =
\frac{1}{2}\sqrt{4 + 16 + 4} = \frac{\sqrt{24}}{2}

    Vậy phương trình mặt cầu cần tìm là: (S):(x + 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
6.

  • Câu 7: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 8: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1; - 4;0) có bán kính bằng 3. Phương trình của (S) là:

    Mặt cầu (S) có tâm I(1; - 4;0)và bán kính bằng 3có phương trình là:

    (x - 1)^{2} + (y + 4)^{2} + (z - 0)^{2}
= 3^{2}

    \Rightarrow (x - 1)^{2} + (y + 4)^{2} +
z^{2} = 9

  • Câu 9: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 10: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a, AB = BC = CD = a. Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số \frac{R}{a}nhận giá trị nào sau đây?

     Tính tỉ số

    Ta có SA \bot AD hay \widehat {SAD} = {90^0}

    Gọi E là trung điểm AD.

    Ta có EA = AB = BC nên ABCE là hình thoi.

    Suy ra CE = EA = \frac{1}{2}AD .

    Do đó tam giác ACD vuông tại C. Ta có:

    \left\{ \begin{array}{l}DC \bot AC\\DC \bot SA\end{array} ight. \Rightarrow DC \bot \left( {SAC} ight) \Rightarrow DC \bot SC   hay    \widehat {SCD} = {90^0}

    Tương tự, ta cũng có SB \bot BD hay \widehat {SBD} = {90^0}

    Ta có \widehat {SAD} = \widehat {SBD} = \widehat {SCD} = {90^0} nên khối chóp S.ABCD nhận trung điểm I của SD làm tâm mặt cầu ngoại tiếp, bán kính R = \frac{{SD}}{2} = \frac{{\sqrt {S{A^2} + A{D^2}} }}{2} = a\sqrt 2.

    Suy ra \frac{R}{a} = \sqrt 2.

  • Câu 11: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 12: Vận dụng cao

    Một khối lập phương có cạnh 1m chứa đầy nước. Đặt vào trong khối đó một khối nón có đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích lượng nước trào ra ngoài và thể tích lượng nước ban đầu của khối lập phương.

     Tính tỉ số thể tích

    Thể tích khối lập phương là V=1^3=1\left({\mathrm{\ }m}^3ight).

    Ta có khối nón có đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện có chiều cao h=1 (m) và bán kính đáy r=\frac{1}{2}(\mathrm{\ }m). Suy ra thể tích khối nón (tức là phần thể tích lượng nước tràn ra ngoài) là V_N=\frac{1}{3}\pi r^2h=\frac{\pi}{12}\left({\mathrm{\ }m}^3ight).

    Vậy tỉ số thể tích của lượng nước trào ra ngoài và lượng nước ban đầu của khối lập phương là \frac{V_N}{V}=\frac{\frac{\pi}{12}}{1}=\frac{\pi}{12}.

  • Câu 13: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1;2;-1) và mặt phẳng (P):x+y+2z-13=0. Xét các mặt cầu (S) có tâm I(a;b;c), đi qua điểm A, tiếp xúc với mặt phẳng (P) . Tính giá trị của biểu thức T=a^2+2b^2+3c^2 khi (S) có bán kính nhỏ nhất.

     Gọi H là hình chiếu của I trên mặt phẳng (P) ta có IA + IH =2R nên R nhỏ nhất khi I, A, H thẳng hàng và I là trung điểm của AH.

    Phương trình AH đi qua A và vuông góc với mặt phẳng (P) có phương trình là

    \left\{\begin{matrix} x=1+t \\ y=2+t \\ z=-1+2t \end{matrix}ight.

    Tọa độ H là nghiệm (x;y;z) của hệ:

    \left\{\begin{matrix} x=1+t \\ y=2+t \\ z=-1+2t \\ x+y+2z-13=0 \end{matrix}ight.

    \Rightarrow H(3;4;3)\Rightarrow I(2;3;1)

    Suy ra, ta có: T=a^2+2b^2+3c^2 =2^2+2.3^2+3.1^2=25

  • Câu 14: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 15: Thông hiểu

    Cho hai mặt cầu sau:

    \left( S ight):{x^2} + {y^2} + {z^2} - 4x + 6y - 10z - 11 = 0;

    \left( {S'} ight):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0

    Xét vị trí tương đối của 2 mặt cầu?

    Tiếp xúc trong || tiếp xúc trong

    Đáp án là:

    Cho hai mặt cầu sau:

    \left( S ight):{x^2} + {y^2} + {z^2} - 4x + 6y - 10z - 11 = 0;

    \left( {S'} ight):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0

    Xét vị trí tương đối của 2 mặt cầu?

    Tiếp xúc trong || tiếp xúc trong

     Theo đề bài, ta suy ra các hệ số, tâm và bán kính của (S):

    \left( S ight):a = 2;\,\,b =  - 3;\,\,c = 5;\,\,d =  - 11 \Rightarrow Tâm I\left( {2, - 3,5} ight); bán kính R=7

    \left( {S'} ight) = a' = 1;\,\,b' =  - 1;\,c' = 3;\,\,d' =  - 5 \Rightarrow Tâm J\left( {1, - 1,3} ight); bán kính R'=4

    I{J^2} = {\left( {1 - 2} ight)^2} + {\left( { - 1 + 3} ight)^2} + {\left( {3 - 5} ight)^2} = 9 \Rightarrow IJ = 3 = R - R'

    (S) và (S') tiếp xúc trong.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo