Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hình nón có bán kính đáy là 5a , độ dài đường sinh là 13a. Thể tích khối cầu nội tiếp hình nón bằng:

    Thể tích khối cầu nội tiếp hình nón

    Xét mặt phẳng qua trục SO của hình nón ta được thiết diện là tam giác cân SAB.

    Mặt phẳng đó cắt mặt cầu theo đường tròn có bán kính r (bán kính mặt cầu) và nội tiếp trong tam giác cân SAB.

    Trong tam giác vuông SOB, gọi I là giao điểm của đường phân giác trong góc B với đường thẳng SO.

    Chứng minh được I là tâm đường tròn nội tiếp tam giác và bán kínhr =IO=IE  (E là hình chiếu vuông góc của I trên SB).

    Theo tính chất phân giác, ta có \frac{{IS}}{{IO}} = \frac{{BS}}{{BO}} = \frac{{13}}{5}.

    Lại có IS + IO = SO = \sqrt {S{B^2} - O{B^2}}  = 12.

    Từ đó suy ra IS = \frac{{26}}{3},{m{ }}IO = \frac{{10}}{3}.

    Ta có \Delta SEI \backsim\Delta SOB  nên \frac{{IE}}{{IS}} = \frac{{BO}}{{BS}} = \frac{5}{{13}} \Rightarrow IE = \frac{5}{{13}}IS = \frac{{10}}{3}

    Thể tích khối cầu: V = \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi {\left( {\frac{{10a}}{3}} ight)^3} = \frac{{4000\pi {a^3}}}{{81}} (đvtt).

  • Câu 2: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = a\sqrt 6 và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp hình chóp S.ABCD ta được:

     Tính diện tích mặt cầu

    Gọi O = AC \cap BD, suy ra O là tâm đường tròn ngoại tiếp hình vuông ABCD.

    Gọi I là trung điểm SC, suy ra IO\parallel SA \Rightarrow IO \bot \left( {ABCD} ight)

    Do đó IO là trục của hình vuông ABCD, suy ra IA = IB = IC = ID.  (1)

    Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên IS = IC = IA.   (2)

    Từ (1) và (2), ta có: R = IA = IB = IC = ID = IS = \frac{{SC}}{2} = a\sqrt 2

    Vậy diện tích mặt cầu S = 4\pi {R^2} = 8\pi {a^2} (đvdt).

  • Câu 3: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, mặt cầu (S):(x - 1)^{2} + y^{2} + (z + 3)^{2} =
16 có tâm là

    Mặt cầu (S):(x - 1)^{2} + y^{2} + (z +
3)^{2} = 16 có tâm là: I(1;0; -
3) .

  • Câu 4: Thông hiểu

    Giá trị (\alpha) phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {3 - {{\cos }^2}\alpha } ight)x + 4\left( {{{\sin }^2}\alpha  - 1} ight) + 2z + \cos 4\alpha  + 8 = 0? (k\in \mathbb{Z})

     Ta có: a = 2{\cos ^2}\alpha  - 3 = \cos 2\alpha  - 2;\,b = 2\left( {1 - {{\sin }^2}\alpha } ight) = \cos 2\alpha  + 1;c =  - 1;

    d = \cos 4\alpha  + 8 = 2{\cos ^2}2\alpha  + 7.\,\,\left( S ight) là mặt cầu \Leftrightarrow {a^2} + {b^2} + {c^2} - d > 0

    \Leftrightarrow  - 1 + \cos 2\alpha  <  - \frac{1}{2}

    \Leftrightarrow \frac{{2\pi }}{3} + k2\pi  < 2\alpha  < \frac{{4\pi }}{3} + k2\pi

    \Leftrightarrow \frac{\pi }{3} + k\pi  < \alpha  < \frac{{2\pi }}{3} + k\pi ,\,\,k \in \mathbb{Z}.

  • Câu 5: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 6: Thông hiểu

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).

     Theo đề bài, mặt cầu (S) có tâm I\left( { - 2,1, - 3} ight) và vecto pháp tuyến của (P):\,\,\overrightarrow n  = \left( {3,2,6} ight)

    \begin{array}{l}IH \bot \left( P ight) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t\\H \in \left( P ight) \Rightarrow 3\left( { - 2 + 3t} ight) + 2\left( {1 + 2t} ight) + 6\left( { - 3 + 6t} ight) + 1 = 0 \Leftrightarrow t = \dfrac{3}{7}\\ \Rightarrow H\left( { - \dfrac{5}{7},\dfrac{{13}}{7}, - \dfrac{3}{7}} ight)\end{array}

  • Câu 7: Thông hiểu

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 8: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 9: Nhận biết

    Một hình cầu có bán kính là 2m, một mặt phẳng cắt hình cầu theo một hình tròn có độ dài là 2,4\pi {m{m}} . Khoảng cách từ tâm mặt cầu đến mặt phẳng là:

    Gọi khoảng cách từ tâm cầu đến mặt phẳng là d, ta có {d^2} = {R^2} - {r^2} .

    Theo giả thiết R = 2m và 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

    Vậy 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

  • Câu 10: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng cạnh đáy bằng a. Khi đó mặt cầu nội tiếp hình chóp S.ABCD có bán kính bằng:

    Tìm bán kính

    Gọi H là tâm của hình vuông ABCD.

    Ta có SH là trục đường tròn ngoại tiếp đáy.

    Gọi M là trung điểm của CD và I là chân đường phân giác trong của góc \widehat {SMH}{m{ (}}I \in SH).

    Suy ra I là tâm của mặt cầu nội tiếp hình chóp, bán kính r = IH.

    Ta có:

    \begin{array}{l}SH = \sqrt {S{A^2} - A{H^2}}  = \dfrac{{a\sqrt 2 }}{2};{m{ }}\\SM = \dfrac{{a\sqrt 3 }}{2};{m{ }}MH = \dfrac{a}{2}.\end{array}

    Dựa vào tính chất của đường phân giác ta có: \frac{{IS}}{{IH}} = \frac{{MS}}{{MH}}

     

       \Rightarrow \frac{{SH}}{{IH}} = \frac{{MS + MH}}{{MH}}

    \Rightarrow IH = \dfrac{{SH.MH}}{{MS + MH}} = \frac{a}{{\sqrt 2  + \sqrt 6 }} = \dfrac{{a\left( {\sqrt 6  - \sqrt 2 } ight)}}{4}

  • Câu 11: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 2a, khoảng cách từ tâm O của đường tròn ngoại tiếp của đáy ABC đến một mặt bên là \frac{a}{2}. Thể tích của khối nón ngoại tiếp hình chóp SABC bằng:

     Thể tích khối nón

    Gọi E là trung điểm của BC, dựng OH \bot SE tại H.

    Chứng minh được OH \bot \left( {SBC} ight) nên suy ra OH = d\left[ {O,\left( {SBC} ight)} ight] = \frac{a}{2}.

    Trong tam giác đều ABC, ta có OE = \frac{1}{3}AE = \frac{1}{3}.\frac{{2a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}

    và  OA = \frac{2}{3}AE = \frac{{2a\sqrt 3 }}{3}

    Trong tam giác vuông SOE, ta có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{E^2}}} + \frac{1}{{S{O^2}}} \Rightarrow \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{1}{{{a^2}}} \Rightarrow SO = a.

    Vậy thể tích khối nón V = \frac{1}{3}\pi O{A^2}.SO = \frac{1}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} ight)^2}.a = \frac{{4\pi {a^3}}}{9}  (đvtt).

  • Câu 12: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 13: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1; 2; −2). Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với (P).

    Hình vẽ minh họa

    Vì H là trực tâm tam giác ABC nên AH ⊥ BC, CH ⊥ AB

    \Rightarrow \left\{ \begin{matrix}
AB\bot(OHC) \\
BC\bot(AHO) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
(ABC)\bot(OHC) \\
(ABC)\bot(AHO) \\
\end{matrix} ight.\  \Rightarrow OH\bot(ABC)

    Do vậy mặt cầu tâm O tiếp xúc với (P) nhận OH làm bán kính

    ⇒ Phương trình mặt cầu là x^{2} + y^{2} + z^{2} =
9.

  • Câu 15: Vận dụng cao

    Trong hệ tọa độ Oxyz, cho mặt cầu (S): (x − 1)^2 + (y + 2)^2 + (z − 3)^2 = 12 và mặt phẳng (P): 2x + 2y − z − 3 = 0. Gọi (Q) là mặt phẳng song song với (P) và cắt (S) theo thiết diện là đường tròn (C) sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi (C) có thể tích lớn nhất. Phương trình của mặt phẳng (Q)

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; −2; 3) và bán kính R = 2\sqrt{3}

    Gọi r là bán kính đường tròn (C) và H là hình chiếu của I lên (Q).

    Đặt IH = x ta có:

    r = \sqrt{R^{2} - x^{2}} = \sqrt{12 -
x^{2}}

    Vậy thể tích khối nón tạo được là:

    V = \frac{1}{3}IH.S_{\left( (C) ight)}
= \frac{1}{3}.x.\pi\left( \sqrt{12 - x^{2}} ight)^{2} =
\frac{1}{3}.\pi\left( 12x - x^{3} ight)

    Gọi f'(x) = 12x - 3x^{2} ta có: f'(x) = 0 \Leftrightarrow x = \pm
2 chỉ có x = 2 \in \left(
0;2\sqrt{3} ight)

    Ta có bảng biến thiên như sau:

    Vậy V_{\max} =
\frac{1}{3}.\pi.16 khi x = IH =
2

    Mặt phẳng (Q) // (P) nên (Q): 2x + 2y − z + a = 0 (a eq - 3)

    Vậy d\left( I;(Q) ight) = IH
\Leftrightarrow \frac{\left| 2 + 2( - 2) - 3 + a ight|}{\sqrt{2^{2} +
2^{2} + ( - 1)^{2}}} = 2

    \Leftrightarrow |a - 5| = 6
\Leftrightarrow \left\lbrack \begin{matrix}
a = 11 \\
a = - 1 \\
\end{matrix} ight.

    Vậy mặt phẳng (Q) có phương trình 2x + 2y − z − 1 = 0 hoặc 2x + 2y − z + 11 =0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo