Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Bài kiểm tra 15 phút Mặt nón, mặt trụ, mặt cầu của gồm 4 mức độ, các câu hỏi được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 15 câu
  • Số điểm tối đa: 15 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 3 = 0 và mặt cầu (S) tâm I(5;
- 3;5), bán kính R =
2\sqrt{5}. Từ một điểm A thuộc mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu (S) tại B. Tính OA biết AB =
4.

    Hình vẽ minh họa

    Khoảng cách từ điểm I đến mặt phẳng (P) là

    d\left( I;(P) ight) = \frac{\left| 5 -
2.( - 3) + 2.5 - 3 ight|}{3} = 6

    Vì AB tiếp xúc với (S) tại B nên tam giác AIB vuông tại B, do đó ta có:

    IA = \sqrt{IB^{2} + AB^{2}} =
\sqrt{R^{2} + AB^{2}} = 6 = d\left( I;(P) ight)

    Đường thẳng IA đi qua I(5; −3; 5) có vectơ chỉ phương là \overrightarrow{u} = (1; - 2;2) nên có phương trình là: \left\{ \begin{matrix}
x = 5 + t \\
y = - 3 - 2t \\
z = 5 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do A = IA ∩ (P) nên 5 + t − 2(−3 − 2t) + 2(5 + 2t) − 3 = 0 ⇔ t = −2

    Vậy A(3; 1; 1) nên OA =
\sqrt{11}.

  • Câu 2: Vận dụng cao

    Cho một chiếc cốc có dạng hình nón cụt và một viên bi có đường kính bằng chiều cao của cốc. Đổ đầy nước rồi thả viên bi vào, ta thấy lượng nước tràn ra bằng một phần ba lượng nước đổ vào cốc lúc ban đầu. Biết viên bi tiếp xúc với đáy cốc và thành cốc. Tìm tỉ số bán kính của miệng cốc và đáy cốc (bỏ qua độ dày của cốc).

    Tỉ số bán kính

     

    Gọi bán kính viên bi là r; bán kính đáy cốc, miệng cốc lần lượt là r_1,r_2,\left(r_1 < r_2ight) . Theo giả thiết thì chiều cao của cốc là h=2r.

    Thể tích viên bi là V_B=\frac{4}{3}\pi r^3.

    Thể tích cốc là V_C=\frac{1}{3}\pi h\left(r_1^2+r_2^2+r_1r_2ight)=\frac{2}{3}\pi r\left(r_1^2+r_2^2+r_1r_2ight).

    Theo giả thiết thì  V_B=\frac{1}{3}V_C\Leftrightarrow6r^2=r_1^2+r_2^2+r_1r_2 (1).

    Mặt cắt chứa trục của cốc là hình thang cân  ABB^\prime A^\prime . Đường tròn tâm (O;r) là đường tròn lớn của viên bi, đồng thời là đường tròn nội tiếp hình thang ABB^\prime A^\prime, tiếp xúc với A'B', AB  lần lượt tại H_1, H_2 và tiếp xúc với BB' tại M.

    Tỉ số thể tích

    Dễ thấy tam giác BOB' vuông tại O.

    Ta có OM^2=MB\cdot MB^\prime\Leftrightarrow r^2=r_1r_2.

    Thay (2) vào (1) ta được 6r_1r_2=r_1^2+r_2^2+r_1r_2\Leftrightarrow\left(\frac{r_2}{r_1}ight)^2-5\frac{r_2}{r_1}+1=0..

    Giải phương trình với điều kiện \frac{r_2}{r_1}>1 ta được \frac{r_2}{r_1}=\frac{5+\sqrt{21}}{2}.

  • Câu 3: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 4: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(0; 8; 2), điểm B(9; −7; 23) và mặt cầu (S) : (x − 5)^2 + (y + 3)^2 + (z − 7)^2 = 72. Gọi (P) là mặt phẳng qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Biết \vec{n} = (1; m; n) là một vectơ pháp tuyến của (P). Tính mn.

    Mặt cầu (S) có tâm I(5; −3; 7); bán kính R = 6\sqrt{2}.

    Phương trình mặt phẳng (P) : 1(x − 0) + m(y − 8) + n(z − 2) = 0.

    Vì (P) và (S) tiếp xúc nhau nên:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|5 - 11m + 5n|}{\sqrt{1 + m^{2} + n^{2}}} =
6\sqrt{2}

    \Leftrightarrow |5 - 11m + 5n| =
6\sqrt{2}\sqrt{1 + m^{2} + n^{2}}(*)

    Ta có: d\left( B;(P) ight) = \frac{|9 -
15m + 21n|}{\sqrt{1 + m^{2} + n^{2}}}

    Ta có:

    |9 - 15m + 21n| = |5 - 11m + 5n + 4 - 4m
+ 16n|

    \leq |5 - 11m + 5n| + |4 - 4m +
16n|(**)

    Áp dụng BĐT Bunhiacopxki ta có

    (4 - 4m + 16n)^{2} \leq \left( 4^{2} +
4^{2} + 16^{2} ight)\left( 1 + m^{2} + n^{2} ight) = 288\left( 1 +
m^{2} + n^{2} ight)

    \Rightarrow |4 - 4m + 16n| \leq
12\sqrt{2}.\sqrt{1 + m^{2} + n^{2}}(***)

    Từ (*); (**); (***) ta có:

    |9 - 15m + 21n| \leq 18\sqrt{2}\sqrt{1 +
m^{2} + n^{2}}

    Dấu “=” xảy ra khi và chỉ khi: \left\{\begin{matrix}|5 - 11m + 5n| = 6\sqrt{2}\sqrt{1 + m^{2} + n^{2}} \\(5 - 11m + 5n)(4 - 4m + 16n) \geq 0 \\\dfrac{1}{4} = \dfrac{m}{- 4} = \dfrac{n}{16} \\\end{matrix} ight.

    \Rightarrow m = - 1;n = 4 \Rightarrow mn
= - 4.

  • Câu 5: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 6: Vận dụng

    Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng \frac{3a}{2}. Diện tích của thiết diện đó bằng?

    Xét hình nón đỉnh S có chiều cao SO=2a, bán kính đáy OA=3a .

    Thiết diện đi qua đỉnh của hình nón là tam giác SAB cân tại S.

    Diện tích thiết diện

    Gọi I là trung điểm của đoạn thẳng AB. Trong tam giác SOI, kẻ OH\bot SI,H\in SI

    Ta có: 

     +\left\{\begin{matrix}AB\bot O I\\AB\bot S O\\\end{matrix}\Rightarrow A B\bot(SOI)\Rightarrow A B\bot O Hight.

    +\left\{\begin{matrix}OH\bot S I\\OH\bot A B\\\end{matrix}\Rightarrow O H\bot(SAB)\Rightarrow d(O,(SAB))=OH=\frac{3a}{2}ight.

    Xét tam giác SOI vuông tại O, ta có

    \frac{1}{OI^2}=\frac{1}{OH^2}-\frac{1}{SO^2}=\frac{4}{9a^2}-\frac{1}{4a^2}=\frac{7}{36a^2}\Rightarrow OI=\frac{6a}{\sqrt7}.

    SI=\sqrt{SO^2+OI^2}=\sqrt{4a^2+\frac{36a^2}{7}}=\frac{8a}{\sqrt7}.

    Xét tam giác AOI vuông tại I, có: 

    AI=\sqrt{AO^2-OI^2}=\sqrt{9a^2-\frac{36a^2}{7}}=\frac{3\sqrt3a}{\sqrt7}

    \Rightarrow AB=2AI=\frac{6\sqrt3a}{\sqrt7}

    Vậy diện tích của thiết diện là:

    S_{\triangle S A B}=\frac{1}{2}\cdot SI\cdot AB=\frac{1}{2}\cdot\frac{8a}{\sqrt7}\cdot\frac{6\sqrt3a}{\sqrt7}=\frac{24a^2\sqrt3}{7}.

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 10y - 6z + 49 =
0. Tính bán kính của mặt cầu (S)?

    Phương trình mặt cầu:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0 có tâm I(a;b;c) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Ta có: a = 4;b = - 5;c = 3;d =
49

    Khi đó R = \sqrt{a^{2} + b^{2} + c^{2} -
d} = 1

  • Câu 8: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 9: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(2;3;4)A(1;2;3). Phương trình mặt cầu tâm I và đi qua A có phương trình là:

    Bán kính mặt cầu là R = IA =
\sqrt{3}

    Phương trình mặt cầu tâm I(2;3;4)R
= IA = \sqrt{3} là:

    (x - 2)^{2} + (y - 3)^{2} + (z - 4)^{2}
= 3

  • Câu 10: Thông hiểu

    Với giá trị nào của m thì mặt phẳng \left( Q ight):x + y + z + 3 = 0 cắt mặt cầu

    \left( S ight):{x^2} + {y^2} + {z^2} - 2\left( {m + 1} ight)x + 2my - 2mz + 2{m^2} + 9 = 0?

    Theo đề bài, ta xác định các hệ số của (S):

    a = m + 1;b =  - m;c = m;d = 2{m^2} + 9.

    Suy ra tâm I có tọa độ là I\left( {m + 1, - m,m} ight)

    \Rightarrow {R^2} = {\left( {m + 1} ight)^2} + {m^2} + {m^2} - 2{m^2} - 9 = {m^2} + 2m - 8 > 0

    \Rightarrow m <  - 4 \vee m > 2

    (P) cắt (S) khi:

    d\left( {I,P} ight) < R \Leftrightarrow \frac{{\left| {m + 4} ight|}}{{\sqrt 3 }} < \sqrt {{m^2} + 2m - 8}  \Leftrightarrow m <  - 4 \vee m > 5

  • Câu 11: Vận dụng

    Trong không gian Oxyz, cho điểm A(0; 1; 2), mặt phẳng (α): x−y +z −4 = 0 và mặt cầu (S):(x - 3)^{2} + (y - 1)^{2} + (z - 2)^{2} =
16. Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x’Ox

    Gọi (C) là giao tuyến của mặt phẳng (P) và mặt cầu (S) và (C) có tâm H, bán kính r.

    Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi d(I,(P)) lớn nhất.

    M ∈ x'Ox nên gọi M(m; 0; 0).

    Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).

    Khi đó \overrightarrow{n_{(P)}} =
\left\lbrack \overrightarrow{MA};\overrightarrow{n_{(\alpha)}}
ightbrack = (3;2 + m;m - 1)

    Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:

    3(x − 0) + (2 + m)(y − 2) + (m − 1)(z − 2) = 0 hay 3x + (2 + m)y + (m − 1)z −3m=0

    Ta có:

    d\left( I;(P) ight) =
\frac{9}{\sqrt{2m^{2} + 2m + 14}} lớn nhất khi và chỉ khi 2m^{2} + 2m + 14 đạt giá trị nhỏ nhất

    2m^{2} + 2m + 14 = 2\left( m +
\frac{1}{2} ight)^{2} + \frac{27}{2} \geq \frac{27}{2}

    Do đó 2m^{2} + 2m + 14 nhỏ nhất khi và chỉ khi m = -
\frac{1}{2}

    Vậy M\left( - \frac{1}{2};0;0
ight).

  • Câu 12: Thông hiểu

    Cho hai điểm A;B cố định trong không gian có độ dài AB = 4. Biết rằng tập hợp các điểm M trong không gian sao cho MA = 3MB là một mặt cầu. Bán kính mặt cầu đó bằng bao nhiêu?

    Ta có: MA = 3MB \Leftrightarrow
\overrightarrow{MA} = 3\overrightarrow{MB}

    \Leftrightarrow \left(
\overrightarrow{MI} + \overrightarrow{IA} ight)^{2} = 9\left(
\overrightarrow{MI} + \overrightarrow{IB} ight)^{2}

    \Leftrightarrow IA^{2} - 9IB^{2} +
2\overrightarrow{MI}\left( \overrightarrow{IA} - 9\overrightarrow{IB}
ight) = 8MI^{2}(*)

    Gọi I thỏa mãn \overrightarrow{IA} - 9\overrightarrow{IB} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{BI} =
\frac{1}{8}\overrightarrow{AB} nên IB = \frac{1}{2};IA = \frac{9}{2}

    Từ (*) suy ra 8MI^{2} = 18
\Leftrightarrow MI = \frac{3}{2} \Rightarrow M \in S\left( I;\frac{3}{2}
ight).

  • Câu 13: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, mặt cầu (S) đi qua điểm O và cắt các tia Ox;Oy;Oz lần lượt tại các điểm A;B;C khác O thỏa mãn tam giác ABC có trọng tâm là điểm G( - 6; - 12;18). Tọa độ tâm của mặt cầu (S) là:

    Gọi tọa độ các điểm trên ba tia Ox;Oy;Oz lần lượt là A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0

    Vì G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{a}{3} = - 6 \\
\frac{b}{3} = - 12 \\
\frac{c}{3} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 18 \\
b = - 36 \\
c = 54 \\
\end{matrix} ight.

    Gọi phương trình mặt cầu cần tìm là:

    (S):x^{2} + y^{2} + z^{2} - 2mx - 2ny -
2pz + q = 0

    (S) qua các điểm OABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}
q = 0 \\
36m + q = - 18^{2} \\
72n + q = - 36^{2} \\
- 108p + q = - 54^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
q = 0 \\
m = - 9 \\
n = - 18 \\
p = 27 \\
\end{matrix} ight.

    Vậy tọa độ tâm của mặt cầu (S) là: ( - 9; - 18;27).

  • Câu 14: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 15: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo