Trong không gian
cho mặt cầu
Đường kính của
bằng
Ta có bán kính của là
nên đường kính của
bằng
.
Trong không gian
cho mặt cầu
Đường kính của
bằng
Ta có bán kính của là
nên đường kính của
bằng
.
Trong không gian với hệ tọa độ
, cho hai điểm
. Gọi
là mặt cầu có đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao tuyến của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rằng
với
. Tính giá trị
.
Hình vẽ minh họa
Ta có: mà
nên
Suy ra (P): 2x + 2y + z + d = 0.
Ta có AB = 6. Gọi I là trung điểm của đoạn thẳng AB, suy ra I (4; 3; 4).
Ta có (S) là mặt cầu có đường kính AB nên có
Gọi r là bán kính đường tròn tâm H.
Khi đó, thể tích khối nón đỉnh cần tìm được xác định bởi công thức
Ta có:
Đặt
Mà
Vậy
Hình nón có đường sinh
và hợp với đáy góc
. Diện tích toàn phần của hình nón bằng:

Theo giả thiết, ta có
và
.
Suy ra:
.
Vậy diện tích toàn phần của hình nón bằng: (đvdt).
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Một hình trụ có bán kính đáy
, chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:

Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Trong không gian với hệ tọa độ
, cho mặt cầu
. Tâm mặt cầu
có tọa độ là:
Mặt cầu có tâm là
Mặt cầu có tâm
.
Trong không gian với hệ toạ độ
, cho phương trình
. Viết phương trình mặt phẳng
, biết
song song với mặt phẳng
và cắt mặt cầu theo thiết diện là một đường tròn có chu vi
?
Vì nên phương trình mặt phẳng (α) có dạng
Mặt cầu (S) có tâm và bán kính
.
Đường tròn lớn có chu vi là nên bán kính của
là
Khoảng cách từ tâm I đến mặt phẳng P bằng 3
Từ đó ta có:
Vì nên phương trình mặt phẳng (α) là
Một khối lập phương có cạnh 1m chứa đầy nước. Đặt vào trong khối đó một khối nón có đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích lượng nước trào ra ngoài và thể tích lượng nước ban đầu của khối lập phương.

Thể tích khối lập phương là .
Ta có khối nón có đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện có chiều cao và bán kính đáy
. Suy ra thể tích khối nón (tức là phần thể tích lượng nước tràn ra ngoài) là
.
Vậy tỉ số thể tích của lượng nước trào ra ngoài và lượng nước ban đầu của khối lập phương là .
Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,
Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.
Theo đề bài, ta có tam giác SAB vuông cân tại S nên ,
Suy ra ,
và
Diện tích toàn phần của hình nón: (đvdt).
Thể tích khối nón là: (đvtt).
Cho mặt cầu
và mặt phẳng
. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu (S') chứa (C) và điểm M(1,-2,1)
Phương trình của
(S') qua
Trong không gian với hệ tọa độ
, cho mặt cầu
. Một mặt cầu
có tâm
và tiếp xúc ngoài với mặt cầu
. Kết luận nào sau đây đúng về phương trình mặt cầu
?
Ta có tâm và bán kính mặt cầu lần lượt là
.
Suy ra
Gọi là bán kính mặt cầu
. Theo giả thiết ta có:
Khi đó phương trình mặt cầu cần tìm là: .
Trong không gian với hệ tọa độ
, cho mặt cầu
và mặt phẳng
. Mặt phẳng
song song với
và tiếp xúc với
là
Ta có:
(S) có tâm , bán kính
. (P) song song với (α)
⇒, với
Do mặt phẳng (P) tiếp xúc với (S) nên , so với điều kiện ta nhận
.
Vậy .
Một hình nón có đường cao bằng 9 cm nội tiếp trong một hình cầu bán kính bằng 5 cm. Tỉ số giữa thể tích khối nón và khối cầu là:

Hình vẽ kết hợp với giả thiết, ta có
Suy ra và
Thể tích khối nón (đvtt).
Thể tích khối cầu (đvtt).
Suy ra
Trong không gian với hệ tọa độ
, cho hai điểm
và
và mặt phẳng
. Phương trình mặt cầu
có bán kính bằng
có tâm thuộc đường thẳng
và
tiếp xúc với mặt phẳng
là:
Ta có: suy ra
Ta có:
Tâm I thuộc AB nên
Mặt phẳng (P) tiếp xúc mặt cầu nên
Ta có phương trình đường tròn (C) tâm , bán kính
là:
Ta có phương trình đường tròn (C) tâm I(−6; 5; −4), bán kính là:
Vậy đáp án cần tìm là: