Đề kiểm tra 15 phút Chương 2 Vectơ và hệ tọa độ trong không gian CTST

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Hãy phân tích vectơ \overrightarrow{AC_{1}} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA_{1}}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC_{1}} =
\overrightarrow{AC} + \overrightarrow{AA_{1}} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA_{1}} (Theo quy tắc hình bình hành).

  • Câu 2: Nhận biết

    Biết rằng \overrightarrow{a} =
(0;1;3)\overrightarrow{b} = ( -
2;3;1). Tính \overrightarrow{x} =3\overrightarrow{a} + 2\overrightarrow{b}?

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{a} = (0;3;9) \\
2\overrightarrow{b} = ( - 4;6;2) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
3\overrightarrow{a} + 2\overrightarrow{b} = ( - 4;9;11)

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt \overrightarrow{SA} =
\overrightarrow{a};\overrightarrow{SB} =
\overrightarrow{b};\overrightarrow{SC} =
\overrightarrow{c};\overrightarrow{SD} = \overrightarrow{d}. Khẳng định nào sau đây đúng?

    Gọi O là tâm hình bình hành ABCD. Khi đó:

    \overrightarrow{SA} +
\overrightarrow{SC} = \overrightarrow{SB} + \overrightarrow{SD} =
2\overrightarrow{SO}

    Vậy \overrightarrow{a} +
\overrightarrow{c} = \overrightarrow{d} +
\overrightarrow{b}.

  • Câu 4: Thông hiểu

    Chọn mệnh đề sai. Trong không gian, cho hình hộp ABCD\ .A'B'C'D'.

    Hình vẽ minh họa

    Đáp án \overrightarrow{AC'}\  = \
\overrightarrow{AB}\ \  + \ \ \overrightarrow{AD}\  + \ \
\overrightarrow{AA'}\ đúng theo quy tắc hình hộp

    Đáp án \overrightarrow{BD}\  = \
\overrightarrow{BA}\ \  + \ \ \overrightarrow{BC}\ \  + \
\overrightarrow{BB'} sai

    Đáp án \overrightarrow{CA'}\  = \
\overrightarrow{CB}\ \  + \ \ \overrightarrow{CD}\  + \ \
\overrightarrow{CC'}\ đúng theo quy tắc hình hộp

    Đáp án \overrightarrow{C'A'}\  =
\ \overrightarrow{C'B'}\ \  + \ \ \overrightarrow{C'D'} đúng theo quy tắc hình bình hành

  • Câu 5: Thông hiểu

    Biết \overrightarrow{c} =
(x;y;z) khác \overrightarrow{0} và vuông góc với cả hai vectơ \overrightarrow{a} =
(1;3;4);\overrightarrow{b} = ( - 1;2;3). Khẳng định nào sau đây đúng?

    Theo đề bài ta có: \overrightarrow{c} =
(x;y;z) khác \overrightarrow{0} và vuông góc với cả hai vectơ \overrightarrow{a} =
(1;3;4);\overrightarrow{b} = ( - 1;2;3) nên

    \left\{ \begin{matrix}
\overrightarrow{a}.\overrightarrow{c} = 0 \\
\overrightarrow{b}.\overrightarrow{c} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + 3y + 4z = 0 \\
- x + 2y + 3z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x + 3y + 4z = 0 \\5y + 7z = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x + 3y + 4.\dfrac{- 5}{7}y = 0 \\z = - \dfrac{5}{7}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
7x + y = 0 \\
5y + 7z = 0 \\
\end{matrix} ight.

    Vậy khẳng định đúng là 7x + y =
0

  • Câu 6: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1;0)\overrightarrow{b} = ( - 1;0; -
2). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{-
2}{\sqrt{5}.\sqrt{5}} = - \frac{2}{5}

  • Câu 7: Nhận biết

    Trong không gian cho ba vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w} có giá không cùng nằm trên một mặt phẳng. Mệnh đề nào sau đây đúng?

    Vì ba vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w} có giá không cùng nằm trên một mặt phẳng nên

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v};\overrightarrow{v};\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v};\overrightarrow{v};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v}; - 2\overrightarrow{u};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá của các vectơ 2\left(
\overrightarrow{u} + \overrightarrow{v} ight); - \overrightarrow{u}; -
\overrightarrow{v} cùng nằm trên một mặt phẳng

    Vậy mệnh đề đúng là: “Giá các vectơ \overrightarrow{u} + \overrightarrow{v}; -
2\overrightarrow{u};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.”

  • Câu 8: Thông hiểu

    Cho tứ diện đều ABCD. Số đo giữa hai đường thẳng ABCD bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CD}.\overrightarrow{AM} = \overrightarrow{0} \\
\overrightarrow{CD}.\overrightarrow{MB} = \overrightarrow{0} \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{CD}.\overrightarrow{AB} = \overrightarrow{CD}.\left(
\overrightarrow{AM} + \overrightarrow{MB} ight) =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MB} =
\overrightarrow{0}

    Suu ra \overrightarrow{AB}\bot\overrightarrow{CD} nên số đo góc giữa hai đường thẳng AB;CD bằng 90^{0}.

  • Câu 9: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Nhận biết

    Trong không gian tọa độ Oxyz cho điểm A(3; - 2;5). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxz) là:

    Hình chiếu vuông góc của điểm A(3; -
2;5) trên mặt phẳng (Oxz) là điểm có tọa độ (3;0;5).

  • Câu 11: Nhận biết

    Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy)(Oyz) bằng:

    Ta có: góc giữa hai mặt phẳng (Oxy)(Oyz) bằng: 90^{0}.

  • Câu 12: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho M(2;1;4)M'(a;b;c) là điểm đối xứng cới điểm M qua Oy. Khi đó a
+ b + c bằng:

    Gọi H là hình chiếu của M trên Oy ta có H(0;1;0). Do M' đối xứng với M qua Oy, khi đó H là trung điểm của M'M

    Suy ra M'( - 2;1; - 4) từ đó a + b + c = - 5.

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} +
4\overrightarrow{j} - 5\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{i} = (3;0;0) \\
4\overrightarrow{j} = (0;4;0) \\
5\overrightarrow{k} = (0;0;5) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{OA} =
3\overrightarrow{i} + 4\overrightarrow{j} - 5\overrightarrow{k}
\Rightarrow A(3;4; - 5)

  • Câu 14: Thông hiểu

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Đáp án là:

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Ta có

    IM = \sqrt{(7 - 3)^{2} + (10 - 4)^{2} +
(17 - 5)^{2}}

    = \sqrt{4^{2} + 6^{2} + 12^{2}} =
\sqrt{196} = 14 (m).

    Đáp số 14(m).

  • Câu 15: Thông hiểu

    Trong không gian cho điểm O và bốn điểm A;B;C;D không thẳng hàng. Điều kiện cần và đủ để A;B;C;D tạo thành hình bình hành là:

    Để A;B;C;D tạo thành hình bình thành thì \left\lbrack \begin{matrix}
\overrightarrow{AB} = \overrightarrow{CD} \\
\overrightarrow{AC} = \overrightarrow{BD} \\
\end{matrix} ight..

    Khi đó:

    \overrightarrow{OA} +
\overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{OD} -
\overrightarrow{OC}

    \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{CD}

    \overrightarrow{OA} + \overrightarrow{OB}
+ \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}, O là trọng tâm tứ giác (hoặc tứ diện) ABCD. (Loại).

    \overrightarrow{OA} +
\frac{1}{2}\overrightarrow{OB} = \overrightarrow{OC} +
\frac{1}{2}\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OC} = \frac{1}{2}\overrightarrow{OD} -
\frac{1}{2}\overrightarrow{OB}

    \Leftrightarrow \overrightarrow{CA} =
\frac{1}{2}\overrightarrow{BD} (Loại)

    \overrightarrow{OA} +
\frac{1}{2}\overrightarrow{OC} = \overrightarrow{OB} +
\frac{1}{2}\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OB} = \frac{1}{2}\overrightarrow{OD} -
\frac{1}{2}\overrightarrow{OC}

    \Leftrightarrow \overrightarrow{BA} =
\frac{1}{2}\overrightarrow{CD} (loại)

    Vậy đáp án cần tìm là \overrightarrow{OA}
+ \overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}.

  • Câu 16: Vận dụng

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    a) Sai

    Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là ( -
1,5\ ;\  - 1\ ;\ 0,5).

    b) Đúng

    Chiếc khinh khí cầu thứ nhất có tọa độ là (2,5\ ;\ 1\ ;\ 0,7).

    Khoảng cách giữa hai chiếc khinh khí cầu là

    \sqrt{(2,5 + 1,5)^{2} + (1 + 1)^{2} +
(0,7 + 0,5)^{2}}

    = \frac{2\sqrt{134}}{5} \approx
4,6(km)

    c) Sai

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:

    \sqrt{2,5^{2} + 1^{2} + 0,7^{2}} =
\frac{3\sqrt{86}}{10} \approx 2,8(km)

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:

    \sqrt{( - 1,5)^{2} + ( - 1)^{2} +
0,5^{2}} = \frac{\sqrt{14}}{2} \approx 1,9(km)

    Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.

    d) Đúng

    Vị trí của chiếc flycam là

    \left( \frac{2,5 - 1,5}{2}\ ;\ \frac{1 -
1}{2}\ ;\ \frac{0,7 + 0,5}{2} ight) = (0,5\ ;\ 0\ ;\
0,6).

    Khoảng cách bay của flycam là:

    \sqrt{0,5^{2} + 0^{2} + 0,6^{2}} =
\frac{\sqrt{61}}{10} \approx 0,8(km)

    Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ (3\ ;\ 1\ ;\  - 1)

    \sqrt{3^{2} + 1^{2} + ( - 1)^{2}} =
\sqrt{11} \approx 3,3(km) > 0,8(km)

    Vậy flycam không đến được vị trí có tọa độ (3\ ;\ 1\ ;\  - 1).

  • Câu 17: Vận dụng cao

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Đáp án là:

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Gọi hai lực tạo với nhau một góc 80^{\circ}\overrightarrow{F_{1}}\overrightarrow{F_{2}}, ta có \left| \overrightarrow{F_{1}} ight| = \left|
\overrightarrow{F_{2}} ight| = 50N.

    Lực còn lại là \overrightarrow{F_{3}}, ta có \left| \overrightarrow{F_{3}} ight| =
60N.

    Gọi \overrightarrow{F} là hợp lực của ba lực trên ta có

    \left| \overrightarrow{F} ight|^{2} =
\left( \overrightarrow{F_{1}} + \overrightarrow{F_{2}} +
\overrightarrow{F_{3}} ight)^{2}

    = \left| \overrightarrow{F_{1}}
ight|^{2} + \left| \overrightarrow{F_{2}} ight|^{2} + \left|
\overrightarrow{F_{3}} ight|^{2} + 2\lbrack\left|
\overrightarrow{F_{1}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{1}},\overrightarrow{F_{2}}
ight)

    + \left| \overrightarrow{F_{1}}
ight|.\left| \overrightarrow{F_{3}} ight|.cos\left(
\overrightarrow{F_{1}},\overrightarrow{F_{3}} ight) + \left|
\overrightarrow{F_{3}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{3}},\overrightarrow{F_{2}}
ight)brack

    = 50^{2} + 50^{2} + 60^{2} + 2\lbrack
50.50.cos80^{0}+ 50.60.cos60^{0} +
60.50.cos60^{0}brack \approx 15468.

    \Rightarrow |F| \approx 124 N

  • Câu 18: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = ( - 2;2;0);\overrightarrow{b}
= (2;2;0);\overrightarrow{c} = (2;2;2). Khi đó giá trị của \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| bằng bao nhiêu?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = ( - 2 + 2 + 2;2 + 2 + 2;0 + 0
+ 2) = (2;6;2).

    Khi đó \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| = \sqrt{2^{2} + 6^{2} +
2^{2}} = 2\sqrt{11}

    Vậy đáp án cần tìm là: 2\sqrt{11}

  • Câu 19: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Trong không gian tọa độ Oxyz, hình chiếu vuông góc của điểm B( -
2;3;1) trên trục Ox có tọa độ là:

    Hình chiếu vuông góc của điểm B( -
2;3;1) trên trục Ox là điểm có tọa độ ( - 2;0;0).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ tọa độ trong không gian CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 76 lượt xem
Sắp xếp theo