Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ).

    Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Đúng||Sai

    b) \overrightarrow{AC'} =
\overrightarrow{AD} + \overrightarrow{AB} +
\overrightarrow{AA'}. Đúng||Sai

    c) \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) =
45^{\circ}. Đúng||Sai

    d) \overrightarrow{AC}.\overrightarrow{B'C'}
= \frac{\sqrt{2}a^{2}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ).

    Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Đúng||Sai

    b) \overrightarrow{AC'} =
\overrightarrow{AD} + \overrightarrow{AB} +
\overrightarrow{AA'}. Đúng||Sai

    c) \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) =
45^{\circ}. Đúng||Sai

    d) \overrightarrow{AC}.\overrightarrow{B'C'}
= \frac{\sqrt{2}a^{2}}{2}. Sai||Đúng

    a) Vì ABCD là hình bình hành nên \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC}.

    b) Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{AD} +
\overrightarrow{AB} + \overrightarrow{AA'} =
\overrightarrow{AC'}.

    c) Vì \overrightarrow{B'C'} =
\overrightarrow{AD} nên \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC},\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}.

    d) Tam giác ADC vuông tại D nên AC =
\sqrt{AD^{2} + DC^{2}} = \sqrt{2}a.

    Ta có

    \overrightarrow{AC}.\overrightarrow{B'C'}
= \left| \overrightarrow{AC} ight|.\left|
\overrightarrow{B'C'} ight|.cos\left(
\overrightarrow{AC},\overrightarrow{B'C'} ight)

    = \sqrt{2}a.a.cos45^{0} =
a^{2}.

  • Câu 2: Nhận biết

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 3: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai véc tơ \overrightarrow{u} = ( - 3;0;1)\overrightarrow{v} = (0;2; - 2). Tọa độ của véc tơ \overrightarrow{w} =
2\overrightarrow{u} - \overrightarrow{v} tương ứng là:

    Ta có: 2\overrightarrow{u} = ( -
6;0;2).

    \overrightarrow{v} = (0;2; -
2).

    Suy ra \overrightarrow{w} = ( - 6 - 0;0 -
2;2 + 2) = ( - 6; - 2;4).

  • Câu 5: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;2;3)\overrightarrow{v} = ( - 5;1;1). Khẳng định nào sau đây đúng?

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1.( - 5) +2.1 + 3.1 = 0 \Rightarrow\overrightarrow{u}\bot\overrightarrow{v}

    Vậy khẳng định đúng là \overrightarrow{u}\bot\overrightarrow{v}

  • Câu 6: Thông hiểu

    Cho hình chóp OABCOA = OB = OC = 1, các cạnh OA;OB;OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vectơ \overrightarrow{OC};\overrightarrow{MA}.

    Hình vẽ minh họa

    Ta có: \overrightarrow{OA}.\overrightarrow{MA} =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{BA} =
\frac{1}{2}\overrightarrow{OC}.\left( \overrightarrow{OA} -
\overrightarrow{OB} ight)

    =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OA} -
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OB} = 0 - 0 =
0

    Vậy \overrightarrow{OA}.\overrightarrow{MA} =
0

  • Câu 7: Vận dụng cao

    Cho hình chóp S.ABC. Lấy các điểm A';B';C' lần lượt thuộc các tia SA;SB;SC sao cho \frac{SA}{SA'} = a;\frac{SB}{SB'} =
b;\frac{SC}{SC'} = c trong đó a;b;c là các hệ số biến thiên. Để mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC thì tổng các hệ số bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi G là trọng tâm tam giác ABC suy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Khi đó 3\overrightarrow{GS} +
\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =
\overrightarrow{0}\overrightarrow{SA} =
a\overrightarrow{SA'};\overrightarrow{SB} =
b\overrightarrow{SB'};\overrightarrow{SC} =
c\overrightarrow{SC'}

    Suy ra 3\overrightarrow{SG} =
a\overrightarrow{SA'} + b\overrightarrow{SB'} +
c\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'}

    Vì mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC suy ra \overrightarrow{GA'};\overrightarrow{GB'};\overrightarrow{GC'} đồng phẳng.

    Do đó tồn tại ba số l;m;n sao cho l^{2} + m^{2} + n^{2} eq 0) và l\overrightarrow{GA'} +
m\overrightarrow{GB'} + n\overrightarrow{GC'} =
\overrightarrow{0}

    \Leftrightarrow l\left(
\overrightarrow{GS} + \overrightarrow{SA'} ight) + m\left(
\overrightarrow{GS} + \overrightarrow{SB'} ight) + n\left(
\overrightarrow{GS} + \overrightarrow{SC'} ight) =
\overrightarrow{0}s

    \Leftrightarrow (l + m +
n)\overrightarrow{SG} = l\overrightarrow{SA'} +
m\overrightarrow{SB'} + n\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{l}{l + m + n}\overrightarrow{SA'} + \frac{m}{l + m +
n}\overrightarrow{SB'} + \frac{n}{l + m +
n}\overrightarrow{SC'}

    \Leftrightarrow
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'} = \frac{l}{l + m +
n}\overrightarrow{SA'} + \frac{m}{l + m + n}\overrightarrow{SB'}
+ \frac{n}{l + m + n}\overrightarrow{SC'}

    Suy ra \frac{a}{3} + \frac{b}{3} +
\frac{c}{3} = \frac{l}{l + m + n} + \frac{m}{l + m + n} + \frac{n}{l + m
+ n} = 1

    \Rightarrow a + b + c = 3

  • Câu 8: Thông hiểu

    Trong không gian Oxyz, cho tọa độ ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Tính cosin góc \widehat{BAC}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1;5; - 2) \\
\overrightarrow{AC} = (5;4; - 1) \\
\end{matrix} ight..

    \cos\widehat{BAC} = \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{5 + 20 + 2}{\sqrt{30}.\sqrt{42}} =
\frac{9}{2\sqrt{35}}

  • Câu 9: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 10: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 1;2;0),\ B(3;4; - 2)C(1;0; - 3). Biết tọa độ điểm D\left( x_{0};y_{0};z_{0} ight) để tứ giác BACD là hình bình hành. Tính x_{0} + y_{0} + z_{0}?

    Hình vẽ minh họa

    Ta có \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 4; - 2;2) \\
\overrightarrow{DC} = \left( 1 - x_{0}; - y_{0}; - 3 - z_{0} ight) \\
\end{matrix} ight.

    Để tứ giác BACD là hình bình hành

    \Leftrightarrow \overrightarrow{BA} =
\overrightarrow{DC} \Leftrightarrow \left\{ \begin{matrix}
1 - x_{0} = - 4 \\
- y_{0} = - 2 \\
- 3 - z_{0} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 5 \\
y_{0} = 2 \\
z_{0} = - 5 \\
\end{matrix} ight.

    Vậy x_{0} + y_{0} + z_{0} = 5 + 2 + ( -
5) = 2.

  • Câu 12: Vận dụng

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hình vuông ABCD, B(3;0;8),D( - 5; - 4;0). Biết đỉnh A thuộc mặt phẳng (Oxy) và có tọa độ là những số nguyên, khi đó \left|
\overrightarrow{CA} + \overrightarrow{CB} ight| bằng:

    Ta có trung điểm BD là I( - 1; - 2;4),BD
= 12 và điểm A thuộc mặt phẳng (Oxy) nên A(a;b;0). Lại có: ABCD là hình vuông \Rightarrow \left\{ \begin{matrix}
AB^{2} = AD^{2} \\
AI^{2} = \left( \frac{1}{2}BD ight)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 3)^{2} + b^{2} + 8^{2} = (a + 5)^{2} + (b + 4)^{2} \\
(a + 1)^{2} + (b + 2)^{2} + 4^{2} = 36 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 4 - 2a \\
(a + 1)^{2} + (6 - 2a)^{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight. hoặc \left\{\begin{matrix}a = \frac{17}{5} \\b = \dfrac{- 14}{5} \\\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}A(1;2;0)(tm) \\A\left( \dfrac{17}{5};\dfrac{- 14}{5};0 ight)(ktm) \\\end{matrix} ight.

    \Rightarrow A(1;2;0) \Rightarrow C( - 3;
- 6;8) \Rightarrow \overrightarrow{CA} = (4;8; - 8);\overrightarrow{CB}
= (6;6;0)

    \Rightarrow \overrightarrow{CA} +
\overrightarrow{CB} = (10;14; - 8) \Rightarrow \left|
\overrightarrow{CA} + \overrightarrow{CB} ight| =
6\sqrt{10}

  • Câu 14: Thông hiểu

    Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    S = v.t = 890.\frac{1}{2} = 445\ \
(km).

    Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho hai điểm A( - 1;2; - 3)B(2; - 1;0). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (2 + 1; - 1 - 2;0
+ 3) = (3; - 3;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(3; - 3;3).

  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1;3)B( - 1;2;3). Trung điểm của đoạn thẳng AB có tọa độ là:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 0 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{3}{2} \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M\left( 0;\dfrac{3}{2};3ight)

    Vậy tọa độ trung điểm của AB là: \left(
0;\frac{3}{2};3 ight).

  • Câu 17: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Ta có: \overrightarrow{AB} =
3\overrightarrow{AC} - 4\overrightarrow{AD} thỏa mãn biểu thức \overrightarrow{c} = m\overrightarrow{a} +
n\overrightarrow{b} (với m;n duy nhất) của định lí về các vectơ đồng phẳng.

    Vậy đáp án đúng là: “Nếu \overrightarrow{AB} = 3\overrightarrow{AC} -
4\overrightarrow{AD} thì bốn điểm A,B,C,D đồng phẳng.”

  • Câu 18: Thông hiểu

    Trong không gian Oxyz. cho điểm M(3; - 1;2). Tìm tọa độ điểm N đối xứng với điểm M qua mặt phẳng (Oyz)?

    Lấy đối xứng qua mặt phẳng (Oyz) thì x đổi dấu còn y;z giữ nguyên nên điểm N có tọa độ là N( - 3; - 1;2).

  • Câu 19: Vận dụng cao

    Trong không gian Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Tọa độ tâm đường tròn nội tiếp tam giác OMN là:

    Ta có bài toán sau

    Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: a\overrightarrow{IA} + b\overrightarrow{IB}
+ c\overrightarrow{IC} = \overrightarrow{0} với BC = a;AC = b;AB = c

    Hình vẽ minh họa

    Gọi A’ là chân đường phân giác kẻ từ A

    \Rightarrow \overrightarrow{BA} =
\frac{c}{b}\overrightarrow{A'C} \Leftrightarrow
b\overrightarrow{BA'} + c\overrightarrow{CA'} =
\overrightarrow{0}\ \ \ (1)

    \overrightarrow{IA} =\dfrac{c}{A'B}\overrightarrow{A'I} = \dfrac{c}{\dfrac{ac}{b +c}}\overrightarrow{A'I} = \dfrac{b +c}{a}\overrightarrow{A'I}

    \Leftrightarrow a\overrightarrow{IA} +
(b + c)\overrightarrow{IA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} + b\overrightarrow{BA'}
+ c\overrightarrow{CA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} =
\overrightarrow{0}

    Áp dụng công thức trong tam giác OMN ta có:

    OM.\overrightarrow{IN} +
ON.\overrightarrow{IM} + MN.\overrightarrow{IO} =
\overrightarrow{0}

    \Rightarrow \left\{ \begin{matrix}x_{I} = \dfrac{OM.x_{n} + ON.x_{M} + MN.x_{O}}{OM + ON + MN} = 0 \\y_{I} = \dfrac{OM.y_{n} + ON.y_{M} + MN.y_{O}}{OM + ON + MN} = 1 \\z_{I} = \dfrac{OM.z_{n} + ON.z_{M} + MN.z_{O}}{OM + ON + MN} = 1 \\\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy đáp án cần tìm là (0;1;1)

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, cho hình bình hành hình bình hành. Biết các điểm A(1;0;1),B(2;1;2),D(1; - 1;1). Xác định tọa độ điểm C?

    Giả sử điểm C(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{DC} =
\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 1 \\
y + 1 = 1 \\
z - 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm C(2;0;2).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo