Cho lăng trụ tam giác
. Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Hình vẽ minh họa
Ta có:
Vậy đáp án đúng là: .
Cho lăng trụ tam giác
. Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Hình vẽ minh họa
Ta có:
Vậy đáp án đúng là: .
Trong không gian hệ trục tọa độ
, cho các điểm
. Tìm tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho hình chóp
có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ
là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ
bằng
. Sai||Đúng
c) Tích vô hướng của
bằng
. Đúng||Sai
d) Độ dài vectơ
là
. Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
a) Sai
Ta thấy ABCD là hình chữ nhật nên
Suy ra hai vectơ là hai vectơ cùng phương, ngược hướng.
b) Sai
Ta có ABCD là hình chữ nhật nên
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra
Ta có:
c) Đúng
Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:
Lại có M là trung điểm của SB nên
Ta tính được
Mà
d) Sai
Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD
Do đó
Suy ra
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Trong không gian
, cho hai điểm
và
. Tìm tọa độ vectơ
?
Ta có:
Vậy đáp án đúng là: .
Trong không gian
, cho các điểm
. Tích
bằng:
Ta có: . Khi đó
.
Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc
và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc
và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 124 N
Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc
và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 124 N
Gọi hai lực tạo với nhau một góc là
và
, ta có
N.
Lực còn lại là , ta có
N.
Gọi là hợp lực của ba lực trên ta có
.
N
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Cho hình lập phương
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Theo quy tắc hình bình hành ta có:
Trong không gian với hệ trục tọa độ
, cho hai điểm
và
. Xác định tọa độ trung điểm
của
?
Ta có: I là trung điểm của AB nên tọa độ điểm I là:
Vậy đáp án đúng là: .
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
với
. Độ dài đoạn thẳng
là:
Hình vẽ minh họa
Ta có:
Theo quy tắc hình hộp ta có:
Suy ra
Vậy độ dài AC’ bằng .
Cho tứ diện
và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Tích tất cả giá trị của
để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Gọi là góc giữa hai đường thẳng đã cho.
Đường thẳng có vectơ chỉ phương là
.
Đường thẳng có vectơ chỉ phương là
.
Ta có:
Vậy tích tất cả các giá trị của tham số a bằng -4.
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt
, giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.

Tính tích vô hướng của
(làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt , giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.
Tính tích vô hướng của (làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Ta có:
.
Suy ra, (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).
Do đó:
.
Mà .
Suy ra .
Từ đó .
Vậy .
Cho ba vectơ
không đồng phẳng. Xét các vectơ ![]()
![]()
. Khẳng định nào dưới đây đúng?
Giả sử ba vectơ đồng phẳng, khi đó
Ta có:
Khi đó:
Vậy ba vectơ đồng phẳng.
Vậy khẳng định đúng là: “Ba vectơ đồng phẳng”.
Trong không gian, cho hai vectơ
và
. Vectơ
bằng
Theo quy tắc ba điểm: .
Trong không gian
, cho các điểm
. Xác định tọa độ điểm
thỏa mãn
?
Ta có:
Trong không gian
, cho tọa độ ba điểm
. Góc giữa hai đường thẳng
và
là
Ta có: .
Trong không gian hệ trục tọa độ
, cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ .
Trong không gian với hệ trục tọa độ
, cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ , cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?