Cho lập phương có cạnh bằng
. Gọi
là trọng tâm tam giác
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Do G là trọng tâm tam giác suy ra
Cho lập phương có cạnh bằng
. Gọi
là trọng tâm tam giác
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Do G là trọng tâm tam giác suy ra
Trong không gian , cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 2 là giá trị cần tìm.
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Gọi lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
và
là một điểm bất kì trong không gian. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Vì lần lượt là trung điểm của các cạnh
nên ta có:
.
Mặt khác (vì I là trung điểm của MN) suy ra
Theo bài ra ta có:
Trong không gian tọa độ cho ba điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành
Minh họa bằng hình vẽ sau:
Ta có .
là hình bình hành
.
Vậy .
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Trong không gian , cho hai điểm
và
. Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Sai||Đúng
c) . Sai||Đúng
d) Tứ giác là hình bình hành khi
. Đúng||Sai
Trong không gian , cho hai điểm
và
. Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Sai||Đúng
c) . Sai||Đúng
d) Tứ giác là hình bình hành khi
. Đúng||Sai
a) Đúng
.
b) Sai
.
c) Sai
.
d) Đúng
Ta có: ,
là hình bình hành
Một chiếc máy bay đang bay từ điểm đến điểm
. Giả sử với đơn vị km, điểm
có tọa độ
và điểm
có tọa độ
. Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí
với tọa độ
, máy bay được an toàn khi cách tâm bão tối thiểu là
. Tính gọi
là điểm trên đường bay (giữa
và
) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường
(kết quả lấy phần nguyên).
Đáp án: 173,21 km
Một chiếc máy bay đang bay từ điểm đến điểm
. Giả sử với đơn vị km, điểm
có tọa độ
và điểm
có tọa độ
. Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí
với tọa độ
, máy bay được an toàn khi cách tâm bão tối thiểu là
. Tính gọi
là điểm trên đường bay (giữa
và
) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường
(kết quả lấy phần nguyên).
Đáp án: 173,21 km
Hình vẽ minh họa
Giả sử
Vì là điểm trên đường bay (giữa
và
). Khi đó ta có ba điểm
thẳng hàng.
Ta lại có là điểm mà máy bay cần chuyển hướng để tránh cơn bão.
Khi đó
Ta có hệ phương trình:
Giải (*) ta có
Vì là điểm gần
hơn do đó chọn
hay
Vậy độ dài quãng đường:
Biết khác
và vuông góc với cả hai vectơ
. Khẳng định nào sau đây đúng?
Theo đề bài ta có: khác
và vuông góc với cả hai vectơ
nên
Vậy khẳng định đúng là
Trong không gian , cho vectơ
. Tọa độ điểm
là:
Ta có:
Trong không gian hệ trục tọa độ , cho
. Gọi
là trọng tâm tam giác
. Tính độ dài đoạn thẳng
?
Vì là trọng tâm tam giác
nên tọa độ điểm
hay
Vậy .
Cho tứ diện có trọng tâm
. Chọn mệnh đề đúng?
Vì G là trọng tâm tứ diện ABCD nên suy ra:
Mệnh đề nào sau đây sai?
Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.
Cho hai điểm phân biệt và một điểm
bất kì. Hãy xét xem mệnh đề nào sau đây là đúng?
Mệnh đề đúng: “Điểm thuộc đường thẳng
khi và chỉ khi
”.
Cho tứ diện có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Cho tứ diện có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Trong không gian với hệ trục tọa độ , cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có:
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian hệ trục tọa độ cho
. Khi đó tọa độ
với hệ
là:
Ta có:
Lại có
Trong không gian , cho điểm
. Tọa độ trung điểm của
là.
Tọa độ trung điểm I của AB là:
Trong không gian , cho
. Tọa độ vectơ
là:
Ta có:
Trong không gian hệ trục tọa độ , cho hình hộp
biết
. Xác định tọa độ B’?
Hình vẽ minh họa
Giả sử điểm
Gọi
Suy ra . Vì
là hình hộp nên