Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian Oxyz, cho điểm M(1;2;3). Tìm tọa độ hình chiếu M lên trục Ox.

    Tọa độ hình chiếu của điểm M trên trục Ox là (1;0;0)

  • Câu 2: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 3: Vận dụng

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu

    Cho hình chóp OABCOA = OB = OC = 1, các cạnh OA;OB;OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vectơ \overrightarrow{OC};\overrightarrow{MA}.

    Hình vẽ minh họa

    Ta có: \overrightarrow{OA}.\overrightarrow{MA} =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{BA} =
\frac{1}{2}\overrightarrow{OC}.\left( \overrightarrow{OA} -
\overrightarrow{OB} ight)

    =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OA} -
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OB} = 0 - 0 =
0

    Vậy \overrightarrow{OA}.\overrightarrow{MA} =
0

  • Câu 5: Vận dụng

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Tính giá trị của biểu thức T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight|?

    Vì các vectơ \frac{\overrightarrow{AB}}{AB};\frac{\overrightarrow{AC}}{AC};\frac{\overrightarrow{AD}}{AD} có độ dài bằng 1 và đôi một vuông góc với nhau nên

    \left( \frac{\overrightarrow{AB}}{AB} +
\frac{\overrightarrow{AC}}{AC} + \frac{\overrightarrow{AD}}{AD}
ight)^{2} = 3 \Leftrightarrow T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight| = \sqrt{3}

  • Câu 6: Vận dụng cao

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Đáp án là:

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Hình vẽ minh họa

    Ta có: A(0;\ 0;\ 0), B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) nên \overrightarrow{AB} = (m;0;0)

    AB = m (do m;n > 0); AD = m; AA' = n.

    V_{ACB'D'} =\frac{1}{3}V_{ABCD.A'B'C'D'} =\frac{1}{3}.m.m.n

    V_{ACB'D'} = \frac{1}{3}.m.m.n =\frac{1}{3}m^{2}(4 - m).

    Xét hàm số f(m) = \frac{1}{3}m^{2}(4 - m)= - \frac{1}{3}m^{3} + \frac{4}{3}m^{2} trên (0;4)

    f'(m) = - m^{2} + \frac{8}{3}m =0\left\lbrack \begin{matrix}m = 0 \\m = \frac{8}{3} \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy MaxV_{ACB'D'} =\frac{256}{81} \simeq 3,16.

  • Câu 7: Thông hiểu

    Cho tứ diện đều ABCD cạnh a. Tính \left| \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight| theo a?

    Hình vẽ minh họa

    Gọi G là trọng tâm của \Delta BCD.

    Do đó \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| = \left|
3\overrightarrow{AG} ight| = 3AG.

    Ta có BG = \frac{2}{3}BI =
\frac{2}{3}.\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}.

    ABCD là tứ diện đều nên AG\bot(BCD) \Rightarrow AG\bot BG.

    Suy ra AG = \sqrt{AB^{2} - BG^{2}} =
\frac{a\sqrt{6}}{3}.

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| =
3.\frac{a\sqrt{6}}{3} = a\sqrt{6}.

  • Câu 8: Thông hiểu

    Trong không gian tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thoả mãn: \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = - 5 \\
\overrightarrow{x}.\overrightarrow{b} = - 11 \\
\overrightarrow{x}.\overrightarrow{c} = 20 \\
\end{matrix} ight.. Tọa độ của vectơ \overrightarrow{x} là:

    Đặt \overrightarrow{x} =
(a;b;c).

    Ta có: \left\{ \begin{matrix}\overrightarrow{x}.\overrightarrow{a} = - 5 \\\overrightarrow{x}.\overrightarrow{b} = - 11 \\\overrightarrow{x}.\overrightarrow{c} = 20 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}2a - b + 3c = - 5 \\a - 3b + 2c = - 11 \\3a + 2b - 4c = 20 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 3 \\c = - 2 \\\end{matrix} ight.\  ight.\  ight.

    Vậy \overrightarrow{x} = (2;3; -
2).

  • Câu 9: Thông hiểu

    Tìm m để góc giữa hai vectơ \overrightarrow{u} = \left(1;\log_{3}5;\log_{m}2 ight),\overrightarrow{v} = \left( 3;\log_{5}3;4ight) là góc nhọn.

    Để \left( {\widehat {\vec u,\vec v}} ight) < {90^0} \Rightarrow \cos \left( {\widehat {\vec u,\vec v}} ight) > 0

    \Rightarrow\overrightarrow{u}.\overrightarrow{v} > 0 \Leftrightarrow 3 +\log_{3}5.\log_{5}3 + 4\log_{m}2 > 0

    \Leftrightarrow 4 + 4log_{m}2 > 0
\Leftrightarrow log_{m}2 > - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m > 1 \\
m < \frac{1}{2} \\
\end{matrix} ight..

    Kết hợp điều kiện m > 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}
  {m > 1} \\ 
  {0 < m < \frac{1}{2}} 
\end{array}} ight.

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;3; -
2);\overrightarrow{v} = (2;1; - 1). Vectơ \overrightarrow{u} - \overrightarrow{v} có tọa độ là:

    Ta có: \overrightarrow{u} -
\overrightarrow{v} = (1 - 2;3 - 1; - 2 + 1) = ( - 1;2; - 1)

    Vậy đáp án cần tìm là ( - 1;2 -
1).

  • Câu 11: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Trung điểm M của AB có tọa độ là:

    Ta có: M là trung điểm của AB nên tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = - 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 5 \\\end{matrix} ight.\  \Rightarrow M(2; - 1;5)

    Vậy đáp án đúng là: (2; -
1;5).

  • Câu 12: Vận dụng cao

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}?

    Đặt \overrightarrow{OA} =
\overrightarrow{a};\overrightarrow{OB} =
\overrightarrow{b};\overrightarrow{OC} = \overrightarrow{c}. Khi đó \overrightarrow{OM} =
x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} với x;y;z là ba số có tổng bằng 1.

    Ta có:

    \overrightarrow{AM} =
\overrightarrow{OM} - \overrightarrow{OA} = (x - 1)\overrightarrow{a} +
y\overrightarrow{b} + z\overrightarrow{c}

    \Rightarrow {\overrightarrow{AM}}^{2} =
(x - 1)^{2}{\overrightarrow{a}}^{2} + y^{2}{\overrightarrow{b}}^{2} +
z^{2}{\overrightarrow{c}}^{2}

    \Rightarrow \frac{MA^{2}}{OA^{2}} = (x -
1)^{2} + y^{2}.\frac{b^{2}}{a^{2}} +
z^{2}.\frac{c^{2}}{a^{2}}

    Tương tự ta được

    \Rightarrow \left\{ \begin{matrix}\dfrac{MB^{2}}{OB^{2}} = (y - 1)^{2} + z^{2}.\dfrac{c^{2}}{b^{2}} +x^{2}.\dfrac{a^{2}}{b^{2}} \\\dfrac{MC^{2}}{OC^{2}} = (z - 1)^{2} + x^{2}.\dfrac{a^{2}}{c^{2}} +y^{2}.\dfrac{b^{2}}{c^{2}} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    + (x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight)

    - \left( x^{2} + y^{2} + z^{2} ight) +
(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight) - 2(x + y + z) + 3

    Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa \left\{ \begin{matrix}\dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} + \dfrac{1}{c^{2}} = \dfrac{1}{OH^{2}}\\x^{2}a^{2} + y^{2}b^{2} + z^{2}c^{2} = OM^{2} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}} = \frac{OM^{2}}{OH^{2}} +
1 \geq 1 + 1 = 2

    Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.

    Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.

  • Câu 13: Nhận biết

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{EG}?

    Hình vẽ minh họa

    \overrightarrow{EG} =
\overrightarrow{AC} (AEGC là hình chữ nhật) nên \left(
\overrightarrow{AB};\overrightarrow{EG} ight) = \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = \widehat{BAC} =
45^{0}(AEGC là hình vuông)

  • Câu 14: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;0;3),B(0;0; - 1),C(1;0; - 1),D(0;1; -
1). Mệnh đề nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (0;0; - 4) \\
\overrightarrow{AC} = (1;0; - 4) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{AC} = 16 eq 0 suy ra ABAC không vuông góc với nhau.

    Vậy mệnh đề sai là: “AB\bot
AC”.

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt \overrightarrow{SA} =
\overrightarrow{a};\overrightarrow{SB} =
\overrightarrow{b};\overrightarrow{SC} =
\overrightarrow{c};\overrightarrow{SD} = \overrightarrow{d}. Khẳng định nào sau đây đúng?

    Gọi O là tâm hình bình hành ABCD. Khi đó:

    \overrightarrow{SA} +
\overrightarrow{SC} = \overrightarrow{SB} + \overrightarrow{SD} =
2\overrightarrow{SO}

    Vậy \overrightarrow{a} +
\overrightarrow{c} = \overrightarrow{d} +
\overrightarrow{b}.

  • Câu 16: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (P):y = 0 \Leftrightarrow 0x + 1y
+ 0z = 0 có vectơ pháp tuyến \overrightarrow{n_{1}} = (0;1;0).

    b) \overrightarrow{n_{2}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (Q):\sqrt{3}x - y - 2024 = 0
\Leftrightarrow \sqrt{3}x - y + 0z - 2024 = 0 = 0 có vectơ pháp tuyến \overrightarrow{n_{2}} = \left(
\sqrt{3}; - 1;0 ight).

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} =
0.\sqrt{3} + 1.( - 1) + 0.0 = - 1.

    d) Gọi \varphi là góc giữa hai mặt phẳng (P)(Q)

    \cos\varphi = \left| \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) ight| =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|}

    = \frac{| - 1|}{\sqrt{0^{2} + 1^{2} +
0^{2}}.\sqrt{\left( \sqrt{3} ight)^{2} + ( - 1)^{2} + 0^{2}}} =
\frac{1}{2} \Rightarrow \varphi = 60{^\circ}.

  • Câu 17: Thông hiểu

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{k} \Leftrightarrow A(0;1; -
2)

  • Câu 18: Thông hiểu

    Cho tứ diện SABCSA = SB = SC = AB = AC = aBC = a\sqrt{2}. Tính góc giữa hai đường thẳng SCAB?

    Hình vẽ minh họa

    Ta có: \left(\overrightarrow{SA};\overrightarrow{AB} ight) = 120^{0}; AC^{2} + AB^{2} = BC^{2} suy ra AC\bot AB. Ta có:

    \cos\left(\overrightarrow{SC};\overrightarrow{AB} ight) =\frac{\overrightarrow{SC}.\overrightarrow{AB}}{\left|\overrightarrow{SC} ight|.\left| \overrightarrow{AB} ight|} =\frac{\left( \overrightarrow{SA} + \overrightarrow{AC}ight).\overrightarrow{AB}}{\left| \overrightarrow{SC} ight|.\left|\overrightarrow{AB} ight|}

    =\dfrac{\overrightarrow{SA}.\overrightarrow{AB} +\overrightarrow{AC}.\overrightarrow{AB}}{a^{2}} = \dfrac{-\dfrac{a^{2}}{2} + 0}{a^{2}} = - \dfrac{1}{2}

    \Rightarrow \left(\overrightarrow{SC};\overrightarrow{AB} ight) = 120^{0}. Vậy góc giữa hai đường thẳng cần tìm là 180^{0}- 120^{0} = 60^{0}

  • Câu 19: Vận dụng

    Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (91;75;0) và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 294,92 km.

    Đáp án là:

    Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (91;75;0) và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 294,92 km.

    Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.

    Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.

    Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)

    Ta có \overrightarrow{OH} = ( - 688 +
91t; - 185 + 75t;8)

    OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0

    ⟺13906t - 76483 = 0 ⟺ t =
\frac{11}{2}.

    Suy ra H(\frac{-
375}{2};\frac{455}{2};8).

    Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:

    OH = \sqrt{\left( \frac{- 375}{2}
ight)^{2} + \left( \frac{455}{2} ight)^{2} + 8^{2})} \approx
294,92(km).

  • Câu 20: Nhận biết

    Trong không gian Oxyz, điểm đối xứng của điểm M(1;2;3) qua trục Ox có tọa độ là

    Gọi M' là điểm đối xứng của M(1;2;3) qua trục Ox.

    Hình chiếu vuông góc của M(1;2;3) lên trục OxH(1;0;0)

    Khi đó H(1;0;0) là trung điểm của M'M. Do đó tọa độ của M'(1;
- 2; - 3)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo