Trong không gian với hệ tọa độ
, cho điểm
và
Biết tọa độ điểm
để tứ giác
là hình bình hành. Tính ![]()
Hình vẽ minh họa
Ta có
Để tứ giác là hình bình hành
Vậy
Trong không gian với hệ tọa độ
, cho điểm
và
Biết tọa độ điểm
để tứ giác
là hình bình hành. Tính ![]()
Hình vẽ minh họa
Ta có
Để tứ giác là hình bình hành
Vậy
Trong không gian
, cho hai điểm
và
. Tìm tọa độ vectơ
?
Ta có:
Vậy đáp án đúng là: .
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Biết
là tâm đường tròn nội tiếp tam giác
. Tính giá trị biểu thức
?
Hình vẽ minh họa
Ta có:
Gọi D là chân đường phân giác kẻ từ O ta có:
. Do đó
Ta có:
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian
, cho hai vectơ
và
. Phát biểu nào sau đây sai?
Dễ thấy từ đo suy ra hai vectơ
và
ngược hướng và
.
Lại có
Vậy phát biểu sai là: .
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian
, cho tọa độ ba điểm
. Tính cosin góc
?
Ta có: .
Trong không gian tọa độ
, cho hai điểm
. Tìm tọa độ điểm
có hoành độ dương thuộc trục
sao cho tam giác
vuông tại
?
Ta có: có hoành độ dương thuộc trục
Theo bài ra ta có: và tam giác
vuông tại
nên
Vậy
Cho lăng trụ tam giác
. Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Cho tứ diện
có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Cho tứ diện có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Cho hình hộp chữ nhật
có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Trong không gian hệ trục tọa độ
cho điểm
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu đối xứng với
qua mặt phẳng
thì
.
Nếu đối xứng với
qua trục
thì
.
Nếu đối xứng với
qua gốc tọa độ thì
.
Vậy mệnh đề đúng là: “Nếu đối xứng với
qua mặt phẳng
thì
”.
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ
(đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
Ta có
(m).
Đáp số 14(m).
Trong không gian hệ trục tọa độ
, cho hình hộp
biết
. Xác định tọa độ B’?
Hình vẽ minh họa
Giả sử điểm
Gọi
Suy ra . Vì
là hình hộp nên
Trong không gian cho ba vectơ
có giá không cùng nằm trên một mặt phẳng. Mệnh đề nào sau đây đúng?
Vì ba vectơ có giá không cùng nằm trên một mặt phẳng nên
Giá các vectơ không cùng nằm trên một mặt phẳng.
Giá các vectơ không cùng nằm trên một mặt phẳng.
Giá các vectơ không cùng nằm trên một mặt phẳng.
Giá của các vectơ cùng nằm trên một mặt phẳng
Vậy mệnh đề đúng là: “Giá các vectơ không cùng nằm trên một mặt phẳng.”
Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu giá của ba vectơ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.
Cho tứ diện
. Đặt
. Gọi
là trọng tâm tam giác
. Trong các đẳng thức sau, đẳng thức nào đúng?
Hình vẽ minh họa
Gọi M là trung điểm của CD suy ra
Ta có:
Cho tứ diện
đều cạnh bằng
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi M là trung điểm của CD
Vì ABCD là tứ diện đều nên
Ta có:
Suy ra nên số đo góc giữa hai đường thẳng bằng
.