Cho tứ diện
và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện
và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Trong không gian hệ trục tọa độ
, cho các điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho tứ diện
có
đôi một vuông góc.
là một điểm bất kì thuộc miền trong tam giác
. Tìm giá trị nhỏ nhất của biểu thức
?
Đặt . Khi đó
với
là ba số có tổng bằng 1.
Ta có:
Tương tự ta được
Do đó
Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa
Do đó
Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.
Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.
Cho bốn điểm
trong không gian. Hỏi có bao nhiêu vectơ khác
có điểm đầu và điểm cuối là
điểm?
Lấy làm gốc ta được 3 vectơ
. Tương tự đối với
ta được
vectơ.
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Khi đó giá trị của
bằng bao nhiêu?
Ta có: .
Khi đó
Vậy đáp án cần tìm là:
Cho tứ diện đều
cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ
) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ
và
bằng
. Sai||Đúng
c) Nếu
thì
. Sai||Đúng
d) Tích vô hướng
. Đúng||Sai
Cho tứ diện đều cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ và
bằng
. Sai||Đúng
c) Nếu thì
. Sai||Đúng
d) Tích vô hướng . Đúng||Sai
Hình vẽ minh họa
a) Sai: Các vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là:
.
Do đó có 12 vectơ thỏa mãn yêu cầu.
b) Sai:
c) Sai: .
Do đó suy ra
.
d) Đúng: Ta có:
Suy ra
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Biết
là tâm đường tròn nội tiếp tam giác
. Tính giá trị biểu thức
?
Hình vẽ minh họa
Ta có:
Gọi D là chân đường phân giác kẻ từ O ta có:
. Do đó
Ta có:
Trong không gian cho hình hộp
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: suy ra
đồng phẳng.
Trong không gian hệ trục tọa độ
cho
. Khi đó tọa độ
với hệ
là:
Ta có:
Lại có
Trong không gian
, góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của
là
. Đúng||Sai
b)
. Đúng||Sai
c) Góc giữa hai đường thẳng
và
bằng
. Đúng||Sai
d) Điểm
nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian với hệ trục tọa độ , cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của là
. Đúng||Sai
b) . Đúng||Sai
c) Góc giữa hai đường thẳng và
bằng
. Đúng||Sai
d) Điểm nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Đúng: Gọi là trung điểm
.
Ta có
b) Đúng: Ta có .
c) Đúng: Ta có .
Suy ra .
d) Sai: Gọi thỏa mãn
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
suy ra
.
Suy ra .
Vậy .
Trong không gian tọa độ
, cho hai mặt phẳng
và ![]()
a) Vectơ có tọa độ
là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ
là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ
và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng
và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
và
a) Vectơ có tọa độ là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) nên mệnh đề sai
b) nên mệnh đề đúng
c) mệnh đề đúng
d) Góc hai mặt phẳng không thể tù nên mệnh đề sai
Trong không gian hệ trục tọa độ
, cho hai vectơ
và
. Xác định tích vô hướng
?
Ta có: nên
Trong không gian hệ trục tọa độ
, cho các điểm
. Gọi
là điểm sao cho
là trọng tâm tam giác
. Tính tổng các tọa độ của điểm
?
Đặt . Vì
là trọng tâm tam giác
nên
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Cho hình hộp
có tâm
. Đặt
. Điểm
xác định bởi đẳng thức
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Gọi lần lượt là tâm các mặt đáy
suy ra
là trung điểm của
Do là hình hộp nên
Theo giả thiết ta có:
Vì là hình hộp nên từ đẳng thức
suy ra M là trung điểm của
.
Trong không gian tọa độ Oxyz, cho hình hộp
với các điểm
,
,
và
. Tìm tọa độ đỉnh
.
Hình vẽ minh họa
.
Theo quy tắc hình hộp ta có: .
Cho hình hộp
. Điểm
được xác định bởi đẳng thức vectơ
. Mệnh đề nào sau đây đúng?
Gọi
Khi đó
Ta có:
Tương tự ta cũng có:
Từ đó suy ra
Vậy điểm M cần tìm là trung điểm của .