Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian
, cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: do đó
Vậy đáp án cần tìm là .
Trong không gian hệ trục tọa độ
, cho các điểm
. Gọi
là điểm sao cho
là trọng tâm tam giác
. Tính tổng các tọa độ của điểm
?
Đặt . Vì
là trọng tâm tam giác
nên
Trong không gian với hệ trục tọa độ
cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Cho tứ diện
. Gọi
là trọng tâm tam giác
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Do G là trọng tâm tam giác BCD nên
Vậy mệnh đề đúng là “ thuộc tia
và
”.
Cho hình hộp
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ ![]()
Hình vẽ minh họa
Ta có:
.
Vậy .
Trong không gian
, cho hai điểm
. Tìm tọa độ điểm
thỏa mãn hệ thức
?
Ta có:
Trong không gian
, cho hai điểm
. Tọa độ tâm đường tròn nội tiếp tam giác
là:
Ta có bài toán sau
Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: với
Hình vẽ minh họa
Gọi A’ là chân đường phân giác kẻ từ A
Áp dụng công thức trong tam giác OMN ta có:
Vậy đáp án cần tìm là
Trong không gian hệ trục tọa độ
cho điểm
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu đối xứng với
qua mặt phẳng
thì
.
Nếu đối xứng với
qua trục
thì
.
Nếu đối xứng với
qua gốc tọa độ thì
.
Vậy mệnh đề đúng là: “Nếu đối xứng với
qua mặt phẳng
thì
”.
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian, cho hình chóp
với
là trọng tâm của tam giác
Khi đó
bằng.
Do là trọng tâm của tam giác
nên
.
Áp dụng quy tắc ba điểm, ta có:
.
Cho bốn điểm
trong không gian. Hỏi có bao nhiêu vectơ khác
có điểm đầu và điểm cuối là
điểm?
Lấy làm gốc ta được 3 vectơ
. Tương tự đối với
ta được
vectơ.
Cho tứ diện
có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Cho tứ diện có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Trong không gian
, cho hai vecto
,
cùng có độ dài bằng
. Biết rằng góc giữa hai vecto đó bằng
, giá trị của biểu thức
là
Ta có:
Do đó:
.
Trong không gian với hệ trục tọa độ
, cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a)
. Đúng||Sai
b) Ba điểm
thẳng hàng. Sai||Đúng
c) Điểm
là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm
trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)

Đáp án: N(1300; 750; 15,5)
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)
Đáp án: N(1300; 750; 15,5)
Gọi là tọa độ của máy bay sau 10 phút tiếp theo.
.
.
Vì máy bay giữ nguyên hướng bay nên và
cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ đến
gấp 4 lần thời gian bay từ
đến
nên
.
Suy ra:
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Trong không gian
, cho các điểm
. Xác định tọa độ điểm
thỏa mãn
?
Ta có:
Tứ giác
là hình bình hành biết tọa độ các điểm
. Tìm tọa độ điểm
?
Giả sử điểm khi đó
ta có là hình bình hành nên
. Vậy tọa độ điểm
.
Cho hình lập phương
; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.