Trong không gian cho hình hộp . Khi đó
bằng:
Theo quy tắc hình hộp ta có .
Trong không gian cho hình hộp . Khi đó
bằng:
Theo quy tắc hình hộp ta có .
Trong không gian , điểm đối xứng của điểm
qua trục
có tọa độ là
Gọi là điểm đối xứng của
qua trục
.
Hình chiếu vuông góc của lên trục
là
Khi đó là trung điểm của
. Do đó tọa độ của
là
Cho lăng trụ đứng , điểm
trên
sao cho
Đặt
Khẳng định nào dưới đây là đúng ?
Hình vẽ minh họa
Ta có
Trong không gian hệ trục tọa độ , cho các vectơ
. Đẳng thức nào dưới đây đúng?
Đặt
Vậy là đẳng thức đúng.
Trong không gian hệ trục tọa độ , cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Cho tứ diện . Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là đỉnh thứ tư của hình bình hành
.
Trong không gian , cho các điểm
. Tích
bằng:
Ta có: . Khi đó
.
Trong không gian , cho vectơ
. Hãy chọn vectơ cùng phương với
?
Ta có: cùng phương với
khi
. Khi đó đáp án cần tìm là
(vì
).
Trong không gian , cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Trong không gian hệ trục tọa độ , cho hình hộp
biết
. Xác định tọa độ B’?
Hình vẽ minh họa
Giả sử điểm
Gọi
Suy ra . Vì
là hình hộp nên
Cho tứ diện có trọng tâm
. Chọn mệnh đề đúng?
Vì G là trọng tâm tứ diện ABCD nên suy ra:
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Đặt thì
.
Chú ý thêm là:
Ta có:
với
là trọng tâm
.
Vì hình chóp đều nên
Do đó , suy ra
.
Khi gắn các lực vào ta có:
Từ đó: .
Vậy lực căng mỗi sợi dây là .
Trong không gian , cho điểm
. Mệnh đề nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Cho tứ diện có
đôi một vuông góc với nhau. Tính giá trị của biểu thức
?
Vì các vectơ có độ dài bằng 1 và đôi một vuông góc với nhau nên
Trong không gian , cho các vectơ
và
. Xác định giá trị của
để hai vectơ đã cho có cùng hướng?
Ta có: Hai vectơ và
cùng hướng nên
Vậy là đáp án cần tìm.
Trong không gian cho điểm và bốn điểm
không thẳng hàng. Điều kiện cần và đủ để
tạo thành hình bình hành là:
Để tạo thành hình bình thành thì
.
Khi đó:
, O là trọng tâm tứ giác (hoặc tứ diện) ABCD. (Loại).
(Loại)
(loại)
Vậy đáp án cần tìm là .
Trong không gian với hệ trục tọa độ , cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian hệ trục tọa độ , cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ
Trong không gian hệ trục tọa độ , cho các điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Một chiếc máy bay đang bay từ điểm đến điểm
. Giả sử với đơn vị km, điểm
có tọa độ
và điểm
có tọa độ
. Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí
với tọa độ
, máy bay được an toàn khi cách tâm bão tối thiểu là
. Tính gọi
là điểm trên đường bay (giữa
và
) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường
(kết quả lấy phần nguyên).
Đáp án: 173,21 km
Một chiếc máy bay đang bay từ điểm đến điểm
. Giả sử với đơn vị km, điểm
có tọa độ
và điểm
có tọa độ
. Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí
với tọa độ
, máy bay được an toàn khi cách tâm bão tối thiểu là
. Tính gọi
là điểm trên đường bay (giữa
và
) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường
(kết quả lấy phần nguyên).
Đáp án: 173,21 km
Hình vẽ minh họa
Giả sử
Vì là điểm trên đường bay (giữa
và
). Khi đó ta có ba điểm
thẳng hàng.
Ta lại có là điểm mà máy bay cần chuyển hướng để tránh cơn bão.
Khi đó
Ta có hệ phương trình:
Giải (*) ta có
Vì là điểm gần
hơn do đó chọn
hay
Vậy độ dài quãng đường: