Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;2;3)\overrightarrow{v} = ( - 5;1;1). Khẳng định nào sau đây đúng?

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1.( - 5) +2.1 + 3.1 = 0 \Rightarrow\overrightarrow{u}\bot\overrightarrow{v}

    Vậy khẳng định đúng là \overrightarrow{u}\bot\overrightarrow{v}

  • Câu 2: Vận dụng cao

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}?

    Đặt \overrightarrow{OA} =
\overrightarrow{a};\overrightarrow{OB} =
\overrightarrow{b};\overrightarrow{OC} = \overrightarrow{c}. Khi đó \overrightarrow{OM} =
x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} với x;y;z là ba số có tổng bằng 1.

    Ta có:

    \overrightarrow{AM} =
\overrightarrow{OM} - \overrightarrow{OA} = (x - 1)\overrightarrow{a} +
y\overrightarrow{b} + z\overrightarrow{c}

    \Rightarrow {\overrightarrow{AM}}^{2} =
(x - 1)^{2}{\overrightarrow{a}}^{2} + y^{2}{\overrightarrow{b}}^{2} +
z^{2}{\overrightarrow{c}}^{2}

    \Rightarrow \frac{MA^{2}}{OA^{2}} = (x -
1)^{2} + y^{2}.\frac{b^{2}}{a^{2}} +
z^{2}.\frac{c^{2}}{a^{2}}

    Tương tự ta được

    \Rightarrow \left\{ \begin{matrix}\dfrac{MB^{2}}{OB^{2}} = (y - 1)^{2} + z^{2}.\dfrac{c^{2}}{b^{2}} +x^{2}.\dfrac{a^{2}}{b^{2}} \\\dfrac{MC^{2}}{OC^{2}} = (z - 1)^{2} + x^{2}.\dfrac{a^{2}}{c^{2}} +y^{2}.\dfrac{b^{2}}{c^{2}} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    + (x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight)

    - \left( x^{2} + y^{2} + z^{2} ight) +
(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight) - 2(x + y + z) + 3

    Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa \left\{ \begin{matrix}\dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} + \dfrac{1}{c^{2}} = \dfrac{1}{OH^{2}}\\x^{2}a^{2} + y^{2}b^{2} + z^{2}c^{2} = OM^{2} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}} = \frac{OM^{2}}{OH^{2}} +
1 \geq 1 + 1 = 2

    Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.

    Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.

  • Câu 3: Vận dụng cao

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Đáp án là:

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Hình vẽ minh họa

    Ta có: A(0;\ 0;\ 0), B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) nên \overrightarrow{AB} = (m;0;0)

    AB = m (do m;n > 0); AD = m; AA' = n.

    V_{ACB'D'} =\frac{1}{3}V_{ABCD.A'B'C'D'} =\frac{1}{3}.m.m.n

    V_{ACB'D'} = \frac{1}{3}.m.m.n =\frac{1}{3}m^{2}(4 - m).

    Xét hàm số f(m) = \frac{1}{3}m^{2}(4 - m)= - \frac{1}{3}m^{3} + \frac{4}{3}m^{2} trên (0;4)

    f'(m) = - m^{2} + \frac{8}{3}m =0\left\lbrack \begin{matrix}m = 0 \\m = \frac{8}{3} \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy MaxV_{ACB'D'} =\frac{256}{81} \simeq 3,16.

  • Câu 4: Nhận biết

    Trong không gian tọa độ Oxyz, hình chiếu vuông góc của điểm B( -
2;3;1) trên trục Ox có tọa độ là:

    Hình chiếu vuông góc của điểm B( -
2;3;1) trên trục Ox là điểm có tọa độ ( - 2;0;0).

  • Câu 5: Vận dụng

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu

    Cho tứ diện đều ABCD cạnh a. Tính \left| \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight| theo a?

    Hình vẽ minh họa

    Gọi G là trọng tâm của \Delta BCD.

    Do đó \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| = \left|
3\overrightarrow{AG} ight| = 3AG.

    Ta có BG = \frac{2}{3}BI =
\frac{2}{3}.\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}.

    ABCD là tứ diện đều nên AG\bot(BCD) \Rightarrow AG\bot BG.

    Suy ra AG = \sqrt{AB^{2} - BG^{2}} =
\frac{a\sqrt{6}}{3}.

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| =
3.\frac{a\sqrt{6}}{3} = a\sqrt{6}.

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;1; -
2);\overrightarrow{v} = (1;0;m). Tìm tất cả các giá trị của tham số m để \left( \overrightarrow{u};\overrightarrow{v}
ight) = 45^{0}?

    Ta có: \left(
\overrightarrow{u};\overrightarrow{v} ight) = 45^{0} \Leftrightarrow
\cos\left( \overrightarrow{u};\overrightarrow{v} ight) =
\frac{\sqrt{2}}{2} \Leftrightarrow
\frac{\overrightarrow{u}.\overrightarrow{v}}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{v} ight|} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{1 -
2m}{\sqrt{6}.\sqrt{1 + m^{2}}} = \frac{\sqrt{2}}{2} \Leftrightarrow
\sqrt{3\left( m^{2} + 1 ight)} = 1 - 2m

    \Leftrightarrow \left\{ \begin{matrix}1 - 2m \geq 0 \\3m^{2} + 3 = 1 - 4m + 4m^{2} \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}m \leq \dfrac{1}{2} \\m^{2} - 4m - 2 = 0 \\\end{matrix} ight.\  \Leftrightarrow m = 2 - \sqrt{6}

    Vậy đáp án cần tìm là m = 2 -
\sqrt{6}.

  • Câu 8: Nhận biết

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Từ hình vẽ ta thấy các vectơ \overrightarrow{A'D};\overrightarrow{AA'};\overrightarrow{A'D'};\overrightarrow{DD'} có giá cùng thuộc một mặt phẳng (AA'D'D).

  • Câu 9: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm B(1;2; - 3),C(7;4 - 2). Tìm tọa độ điểm E thỏa mãn đẳng thức \overrightarrow{CE} =
2\overrightarrow{EB}?

    Gọi E(x;y;z)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CE} = (x - 7;y - 4;z + 2) \\
2\overrightarrow{EB} = (2 - 2x;4 - 2y; - 6 - 2z) \\
\end{matrix} ight.

    Theo bài ra ta có:

    \overrightarrow{CE} =2\overrightarrow{EB} \Leftrightarrow \left\{ \begin{matrix}x - 7 = 2 - 2x \\y - 4 = 4 - 2y \\z + 2 = - 6 - 2z \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = \dfrac{8}{3} \\z = - \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow E\left( 3;\frac{8}{3}; - \dfrac{8}{3}ight)

    Vậy điểm E có tọa độ là E\left(
3;\frac{8}{3}; - \frac{8}{3} ight).

  • Câu 10: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 11: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;0),B(1;1;0),C(0;1;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = - 1 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.. Vậy tọa độ điểm D(0;0;1).

  • Câu 12: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 13: Thông hiểu

    Tích tất cả giá trị của a để góc tạo bởi đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}(t\mathbb{\in R}) ight. và đường thẳng 3x + 4y - 2 = 0 bằng 45^{0} là:

    Đáp án: -4||- 4

    Đáp án là:

    Tích tất cả giá trị của a để góc tạo bởi đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}(t\mathbb{\in R}) ight. và đường thẳng 3x + 4y - 2 = 0 bằng 45^{0} là:

    Đáp án: -4||- 4

    Gọi \varphi là góc giữa hai đường thẳng đã cho.

    Đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}\ \ \ \ (t\mathbb{\in R}) ight. có vectơ chỉ phương là \overrightarrow{u} = (a; -
2).

    Đường thẳng 3x + 4y - 2 = 0 có vectơ chỉ phương là \overrightarrow{v} = (4;
- 3).

    Ta có:

    \cos\varphi =
|cos(\overrightarrow{u},\overrightarrow{v})|

    \Leftrightarrow cos45^{0} =
\frac{|\overrightarrow{u}.\overrightarrow{v}|}{|\overrightarrow{u}|.|\overrightarrow{v}|}

    \Leftrightarrow \frac{1}{\sqrt{2}} =
\frac{|4a + 6|}{5\sqrt{a^{2} + 4}}

    \Leftrightarrow 5\sqrt{a^{2} + 4} =
\sqrt{2}|4a + 6|

    \Leftrightarrow 25a^{2} + 100 = 32a^{2}
+ 96a + 72

    \Leftrightarrow 7a^{2} + 96a - 28 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{2}{7} \\a = - 14 \\\end{matrix}. ight.

    Vậy tích tất cả các giá trị của tham số a bằng -4.

  • Câu 14: Nhận biết

    Trong không gian Oxyz, cho điểm \overrightarrow{u} = \overrightarrow{i} -
2\overrightarrow{k} + \overrightarrow{j}. Tìm tọa độ của \overrightarrow{u} là.

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{i} = (1;0;0) \\
\overrightarrow{k} = (0;0;1) \\
\overrightarrow{j} = (0;1;0) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u} =
\overrightarrow{i} - 2\overrightarrow{k} + \overrightarrow{j} = (1;1; -
2)

  • Câu 15: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tích vô hướng của hai vectơ \overrightarrow{AB}\overrightarrow{A'C'} có giá trị bằng:

    Ta có:

    \left(
\overrightarrow{A'C'};\overrightarrow{AB} ight) = \left(
\overrightarrow{AC};\overrightarrow{AB} ight) = \widehat{BAC} =
45^{0}

    \Rightarrow
\overrightarrow{A'C'}.\overrightarrow{AB} = \left|
\overrightarrow{A'C'} ight|.\left| \overrightarrow{AB}
ight|.cos\left( \overrightarrow{A'C'};\overrightarrow{AB}
ight) = a.a.1 = a^{2}

  • Câu 16: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A( - 2;3;1),B(5;6;2). Đường thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tính tỉ số \frac{AM}{BM}?

    Ta có: M \in (Oxz) \Rightarrow
M(x;0;z)

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (7;3;1) \Rightarrow AB = \sqrt{59} \\
\overrightarrow{AM} = (x + 2; - 3;z - 1) \\
\end{matrix} ight. và ba điểm A;B;M thẳng hàng

    \overrightarrow{AM} =
k.\overrightarrow{AB};\left( k\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x + 2 = 7k \\
- 3 = 3k \\
z - 1 = k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 9 \\
k = - 1 \\
z = 0 \\
\end{matrix} ight.

    \Rightarrow M( - 9;0;0) \Rightarrow
\left\{ \begin{matrix}
\overrightarrow{BM} = ( - 14; - 6; - 2) \\
\overrightarrow{AM} = ( - 7; - 3; - 1) \\
\end{matrix} ight.\  \Rightarrow BM = 2AB

    Vậy đáp án đúng là \frac{AM}{BM} =
\frac{1}{2}.

  • Câu 17: Thông hiểu

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi M là trung điểm của BC. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hình vẽ minh họa

    Vì M là trung điểm của BC nên suy ra \overrightarrow{BM} =
\frac{1}{2}\overrightarrow{BC}

    Ta có: \overrightarrow{DM} =
\overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BM} =
\overrightarrow{AB} - \overrightarrow{AD} +
\frac{1}{2}\overrightarrow{BC}

    = \overrightarrow{AB} -
\overrightarrow{AD} + \frac{1}{2}\left( \overrightarrow{BA} +
\overrightarrow{AC} ight) = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} - \overrightarrow{AD}

    = \frac{1}{2}\overrightarrow{a} +
\frac{1}{2}\overrightarrow{b} - \overrightarrow{c} = \frac{1}{2}\left(
\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}
ight)

  • Câu 18: Nhận biết

    Tích vô hướng của 2 vectơ \overrightarrow{a},\overrightarrow{b}trong không gian được tính bằng:

    Theo định nghĩa tích vô hướng của hai vecto, ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos\left(
\overrightarrow{a},\overrightarrow{b} ight).

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1;0)\overrightarrow{b} = ( - 1;0; -
2). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{-
2}{\sqrt{5}.\sqrt{5}} = - \frac{2}{5}

  • Câu 20: Thông hiểu

    Tứ giác ABCD là hình bình hành biết tọa độ các điểm A(1;0;1),B(2;1;2),D(1;
- 1;1). Tìm tọa độ điểm C?

    Giả sử điểm C(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 2 - 1 \\
y + 1 = 1 - 0 \\
z - 1 = 2 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm C(2;0;2).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo