Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} =
(1;2;1);\overrightarrow{b} = ( - 1;3;0). Vectơ \overrightarrow{c} = 2\overrightarrow{a} +
\overrightarrow{b} có tọa độ là:

    Ta có: 2\overrightarrow{a} =
(2;4;2). Khi đó \overrightarrow{c}
= 2\overrightarrow{a} + \overrightarrow{b} = \left( 2 + ( - 1);4 + 3;2 +
0 ight) = (1;7;2)

    Vậy \overrightarrow{c} =
(1;7;2)

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;2; - 3),B(2;5;7),C( - 3;1;4). Xác định tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 3 - x \\
3 = 1 - y \\
20 = 4 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = - 6 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2; - 6).

  • Câu 3: Thông hiểu

    Trong không gian Oxyz. cho điểm M(3; - 1;2). Tìm tọa độ điểm N đối xứng với điểm M qua mặt phẳng (Oyz)?

    Lấy đối xứng qua mặt phẳng (Oyz) thì x đổi dấu còn y;z giữ nguyên nên điểm N có tọa độ là N( - 3; - 1;2).

  • Câu 4: Thông hiểu

    Trong không gian Oxyz, cho điểm A( - 3; - 1; - 1). Hình chiếu vuông góc của A trên mặt phẳng (Oyz) là điểm A'(x;y;z). Khi đó giá trị 2x + y + z bằng:

    Hình chiếu vuông góc của A( - 3; - 1; -
1) trên mặt phẳng (Oyz)A'(0; - 1; - 1)

    Suy ra 2x + y + z = - 2.

  • Câu 5: Thông hiểu

    Cho hình hộp chữ nhật ABCD.EFGHAB = AE = 2,AD = 3 và đặt \overrightarrow{a} =
\overrightarrow{AB},\overrightarrow{b} =
\overrightarrow{AD},\overrightarrow{c} = \overrightarrow{AE}. Lấy điểm M thỏa \overrightarrow{AM} =
\frac{1}{5}\overrightarrow{AD} và điểm N thỏa \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC}. (Quan sát hình vẽ).

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MA} = -
\frac{1}{5}\overrightarrow{b} Đúng||Sai

    b) \overrightarrow{EN} =
\frac{2}{5}\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} ight) Sai||Đúng

    c) \left( m\overrightarrow{a} +
n\overrightarrow{b} + p\overrightarrow{c} ight)^{2} =
m^{2}\overrightarrow{a^{2}} + n^{2}\overrightarrow{b^{2}} +
p^{2}\overrightarrow{c^{2}}, với m;n;p là các số thực. Đúng||Sai

    d) MN = \frac{\sqrt{61}}{5}. Đúng||Sai

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.EFGHAB = AE = 2,AD = 3 và đặt \overrightarrow{a} =
\overrightarrow{AB},\overrightarrow{b} =
\overrightarrow{AD},\overrightarrow{c} = \overrightarrow{AE}. Lấy điểm M thỏa \overrightarrow{AM} =
\frac{1}{5}\overrightarrow{AD} và điểm N thỏa \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC}. (Quan sát hình vẽ).

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MA} = -
\frac{1}{5}\overrightarrow{b} Đúng||Sai

    b) \overrightarrow{EN} =
\frac{2}{5}\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} ight) Sai||Đúng

    c) \left( m\overrightarrow{a} +
n\overrightarrow{b} + p\overrightarrow{c} ight)^{2} =
m^{2}\overrightarrow{a^{2}} + n^{2}\overrightarrow{b^{2}} +
p^{2}\overrightarrow{c^{2}}, với m;n;p là các số thực. Đúng||Sai

    d) MN = \frac{\sqrt{61}}{5}. Đúng||Sai

    a) Đúng: Ta có

    \overrightarrow{MA} = -
\overrightarrow{AM} = - \frac{1}{5}\overrightarrow{AD} = -
\frac{1}{5}\overrightarrow{b}

    b) Sai:

    \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC} = \frac{2}{5}(\overrightarrow{EF} +
\overrightarrow{EH} + \overrightarrow{EA}) =
\frac{2}{5}(\overrightarrow{a} + \overrightarrow{b} -
\overrightarrow{c})

    c) Đúng:

    (m.\overrightarrow{a} +n.\overrightarrow{b} + p.\overrightarrow{c})^{2} =m^{2}.{\overrightarrow{a}}^{2} + n^{2}.{\overrightarrow{b}}^{2}+p^{2}.{\overrightarrow{c}}^{2} +2mn.\overrightarrow{a}.\overrightarrow{b}+2np\overrightarrow{b}.\overrightarrow{c} +2mp.\overrightarrow{a}.\overrightarrow{c}= m^{2}.{\overrightarrow{a}}^{2} +
n^{2}.{\overrightarrow{b}}^{2} + p^{2}.{\overrightarrow{c}}^{2}

    (vì \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đôi một vuông góc nên \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{b}.\overrightarrow{c} =
\overrightarrow{a}.\overrightarrow{c} = 0).

    Ta có

    \overrightarrow{MN} =\overrightarrow{MA} + \overrightarrow{AE} + \overrightarrow{EN}

    = -\frac{1}{5}\overrightarrow{b} + \overrightarrow{c} +\frac{2}{5}(\overrightarrow{a} + \overrightarrow{b} -\overrightarrow{c})

    = \frac{2}{5}\overrightarrow{a} +\frac{1}{5}\overrightarrow{b} +\frac{3}{5}\overrightarrow{c}.

    d) Đúng:

    MN^{2} =
{\overrightarrow{MN}}^{2} = \left( \frac{2}{5}\overrightarrow{a} +
\frac{1}{5}\overrightarrow{b} + \frac{3}{5}\overrightarrow{c}
ight)^{2}

    = \frac{4}{25}{\overrightarrow{a}}^{2} +\frac{1}{25}{\overrightarrow{b}}^{2} +\frac{9}{25}{\overrightarrow{c}}^{2}= \frac{4}{25}.4 + \frac{1}{25}.9 +\frac{9}{25}.4 = \frac{61}{25}

    Suy ra MN =
\frac{\sqrt{61}}{5}.

  • Câu 6: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai véc tơ \overrightarrow{u} = ( - 3;0;1)\overrightarrow{v} = (0;2; - 2). Tọa độ của véc tơ \overrightarrow{w} =
2\overrightarrow{u} - \overrightarrow{v} tương ứng là:

    Ta có: 2\overrightarrow{u} = ( -
6;0;2).

    \overrightarrow{v} = (0;2; -
2).

    Suy ra \overrightarrow{w} = ( - 6 - 0;0 -
2;2 + 2) = ( - 6; - 2;4).

  • Câu 7: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng cao

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đáp án là:

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đặt \overrightarrow{F} ={\overrightarrow{F}}_{1} + {\overrightarrow{F}}_{2} +{\overrightarrow{F}}_{3} thì \left|\overrightarrow{F} ight| = 2000(N).

    Chú ý thêm là: \left|{\overrightarrow{F}}_{1} ight| = \left| {\overrightarrow{F}}_{2}ight| = \left| {\overrightarrow{F}}_{3} ight|

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AC}+ \overrightarrow{AD} = 3\overrightarrow{AG} với G là trọng tâm \Delta BCD.

    Vì hình chóp A.BCD đều nên AG\bot mp(BCD)

    Do đó \widehat{ABG} = 30^{0}, suy ra AG = AB.sin30^{0} = \frac{AB}{2}\Rightarrow AB = 2AG.

    Khi gắn các lực vào ta có:

    \overrightarrow{F} =\overrightarrow{F_{1}} + \overrightarrow{F_{2}} + \overrightarrow{F_{3}}= - \overrightarrow{F_{AB}} - \overrightarrow{F_{AC}} -\overrightarrow{F_{AD}} = - 3\overrightarrow{F_{AG}}

    \Rightarrow \left| {\overrightarrow F } ight| = 3\left| {\overrightarrow {{F_{AG}}} } ight| \Rightarrow \left| {\overrightarrow {{F_{AG}}} } ight| = \frac{{2000}}{3}\left( N ight)

    Từ đó: \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{AB}} ight| = 2\left|\overrightarrow{F_{AG}} ight| = \frac{4000}{3}(N).

    Vậy lực căng mỗi sợi dây là \frac{4000}{3}\ N \approx 1333\ N.

  • Câu 9: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{u} = ( - 2;3;0)\overrightarrow{v} = (2; - 2;1). Tính độ dài vectơ \overrightarrow{w} =
\overrightarrow{u} - 2\overrightarrow{v}?

    Ta có: \overrightarrow{w} =
\overrightarrow{u} - 2\overrightarrow{v} = ( - 2;3;0) - 2(2; - 2;1) = (
- 6;7; - 2)

    Khi đó \left| \overrightarrow{w} ight|
= \sqrt{89}

  • Câu 10: Vận dụng

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = - \overrightarrow{i} +
2\overrightarrow{j} - 3\overrightarrow{k}. Tọa độ vectơ \overrightarrow{a} là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} = -
\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k} suy ra tọa độ vectơ \overrightarrow{a} = ( -
1;2; - 3).

  • Câu 12: Nhận biết

    Cho ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?

    Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;1; -
2);\overrightarrow{v} = (1;0;m). Tìm tất cả các giá trị của tham số m để \left( \overrightarrow{u};\overrightarrow{v}
ight) = 45^{0}?

    Ta có: \left(
\overrightarrow{u};\overrightarrow{v} ight) = 45^{0} \Leftrightarrow
\cos\left( \overrightarrow{u};\overrightarrow{v} ight) =
\frac{\sqrt{2}}{2} \Leftrightarrow
\frac{\overrightarrow{u}.\overrightarrow{v}}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{v} ight|} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{1 -
2m}{\sqrt{6}.\sqrt{1 + m^{2}}} = \frac{\sqrt{2}}{2} \Leftrightarrow
\sqrt{3\left( m^{2} + 1 ight)} = 1 - 2m

    \Leftrightarrow \left\{ \begin{matrix}1 - 2m \geq 0 \\3m^{2} + 3 = 1 - 4m + 4m^{2} \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}m \leq \dfrac{1}{2} \\m^{2} - 4m - 2 = 0 \\\end{matrix} ight.\  \Leftrightarrow m = 2 - \sqrt{6}

    Vậy đáp án cần tìm là m = 2 -
\sqrt{6}.

  • Câu 14: Thông hiểu

    Cho tứ diện ABCD và điểm G thỏa mãn \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0} (G là trọng tâm của tứ diện). Gọi G_{0} là giao điểm của GA và mặt phẳng (BCD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    G_{0} là giao điểm của GA và mặt phẳng (BCD) suy ra G_{0} là trọng tâm tam giác BCD suy ra \overrightarrow{G_{0}B} + \overrightarrow{G_{0}C}
+ \overrightarrow{G_{0}D} = \overrightarrow{0}

    Theo bài ra ta có: \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{GA} +
3\overrightarrow{GG_{0}} + \overrightarrow{G_{0}B} +
\overrightarrow{G_{0}C} + \overrightarrow{G_{0}D} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{GA} +
3\overrightarrow{GG_{0}} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{GA} = 3\overrightarrow{G_{0}G}

  • Câu 15: Thông hiểu

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Ta có \overrightarrow{AB} = (1;5; -
2),\overrightarrow{AC} = (5;4; - 1),\overrightarrow{AC} = (4; -
1;1).

    Ta có:

    \overrightarrow{AB}.\overrightarrow{AC} = 5 + 20 +
2 = 27.

    Ta có:

    \overrightarrow{AC}.\overrightarrow{CB} = 5.( - 4)
+ 4.1 + ( - 1).( - 1) = - 15.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB} ight|.|\overrightarrow{AC}|} =\frac{27}{\sqrt{30}.\sqrt{42}} = \frac{9}{2\sqrt{35}}.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{\overrightarrow{AB}.\overrightarrow{BC}}{\left|\overrightarrow{AB} ight||\overrightarrow{BC}|} =\frac{15}{\sqrt{42}.\sqrt{18}} = \frac{5}{2\sqrt{21}}.

  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1; - 3)\overrightarrow{b} = ( - 4; - 2;6). Phát biểu nào sau đây sai?

    Dễ thấy \overrightarrow{b} =
2\overrightarrow{a} từ đo suy ra hai vectơ \overrightarrow{a}\overrightarrow{b} ngược hướng và \left| \overrightarrow{b} ight| = 2\left|
\overrightarrow{a} ight|.

    Lại có \overrightarrow{a}.\overrightarrow{b} = 2.( - 4) +
1.( - 2) + ( - 3).6 = - 28 eq 0

    Vậy phát biểu sai là: \overrightarrow{a}.\overrightarrow{b} =
0.

  • Câu 17: Nhận biết

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{A_{1}D_{1}} = \overrightarrow{A_{1}C} +
\overrightarrow{CD_{1}} suy ra \overrightarrow{CD_{1}};\overrightarrow{AD};\overrightarrow{A_{1}C} đồng phẳng.

  • Câu 18: Vận dụng cao

    Một chiếc máy bay đang bay từ điểm A đến điểm B. Giả sử với đơn vị km, điểmA có tọa độ A(100,200,300)và điểm B có tọa độ B(400,500,600). Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí C với tọa độ C(250,350,450), máy bay được an toàn khi cách tâm bão tối thiểu là 50\sqrt{3}\ \
km. Tính gọi D là điểm trên đường bay (giữa AB) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường AD (kết quả lấy phần nguyên).

    Đáp án: 173,21 km

    Đáp án là:

    Một chiếc máy bay đang bay từ điểm A đến điểm B. Giả sử với đơn vị km, điểmA có tọa độ A(100,200,300)và điểm B có tọa độ B(400,500,600). Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí C với tọa độ C(250,350,450), máy bay được an toàn khi cách tâm bão tối thiểu là 50\sqrt{3}\ \
km. Tính gọi D là điểm trên đường bay (giữa AB) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường AD (kết quả lấy phần nguyên).

    Đáp án: 173,21 km

    Hình vẽ minh họa

    Giả sử D\left( x_{0},y_{0},z_{0}
ight)

    D là điểm trên đường bay (giữa AB). Khi đó ta có ba điểm A,D,B thẳng hàng.

    Ta lại có D là điểm mà máy bay cần chuyển hướng để tránh cơn bão.

    Khi đó DC = 50\sqrt{3}\ km

    Ta có hệ phương trình:

    \left\{ \begin{matrix}\overrightarrow{AD}= k\overrightarrow{AB} \\DC =50\sqrt{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{0} - 100 = k.300 \\
y_{0} - 200 = k.300 \\
z_{0} - 300 = k.300 \\
\sqrt{\left( x_{0} - 250 ight)^{2} + \left( y_{0} - 350 ight)^{2} +
\left( z_{0} - 450 ight)^{2}} = 50\sqrt{3} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 100 + 300k \\
y_{0} = 200 + 300k \\
z_{0} = 300 + 300k \\
\sqrt{(100 + 300k - 250)^{2} + (200 + 300k - 350)^{2} + (300 + 300k -
450)^{2}} = 50\sqrt{3}(*) \\
\end{matrix} ight.

    Giải (*) ta có 3{(k.300 - 150)^2} = 7500 \Leftrightarrow \left[ \begin{gathered}
  k = \frac{2}{3} \hfill \\
  k = \frac{1}{3} \hfill \\ 
\end{gathered}  ight.

    D là điểm gần A hơn do đó chọn k = \frac{1}{3} hay D(200,300,400)

    Vậy độ dài quãng đường:

    AD = \sqrt {{{\left( {200 - 100} ight)}^2} + {{\left( {300 - 200} ight)}^2} + {{\left( {400 - 300} ight)}^2}}

    = 100\sqrt{3} \approx
173,21

  • Câu 19: Vận dụng

    Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (91;75;0) và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 294,92 km.

    Đáp án là:

    Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (91;75;0) và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 294,92 km.

    Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.

    Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.

    Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)

    Ta có \overrightarrow{OH} = ( - 688 +
91t; - 185 + 75t;8)

    OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0

    ⟺13906t - 76483 = 0 ⟺ t =
\frac{11}{2}.

    Suy ra H(\frac{-
375}{2};\frac{455}{2};8).

    Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:

    OH = \sqrt{\left( \frac{- 375}{2}
ight)^{2} + \left( \frac{455}{2} ight)^{2} + 8^{2})} \approx
294,92(km).

  • Câu 20: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Giả sử điểm C'(a;b;c). Tính giá trị biểu thức T=a+b+2c?

    Gọi điểm C'(x;y;z)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +2\overrightarrow{j} + 0.\overrightarrow{k} \\\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +0.\overrightarrow{j} + 1.\overrightarrow{k} \\\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +2\overrightarrow{j} + 3\overrightarrow{k} \\\end{matrix} ight.

    \overrightarrow{AB} +\overrightarrow{AD} + \overrightarrow{AA'} =\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =10\overrightarrow{i} + 4\overrightarrow{j} +4\overrightarrow{k}

    Suy ra \left\{ \begin{matrix}x = 10 + 3 \\y = 4 - 0 \\z = 4 - 0 \\\end{matrix} ight.\  \Rightarrow C'(13;4;4) suy ra a=13;b=4;c=4

    Vậy  T=25

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo