Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm m để góc giữa hai vectơ \overrightarrow{u} = \left(1;\log_{3}5;\log_{m}2 ight),\overrightarrow{v} = \left( 3;\log_{5}3;4ight) là góc nhọn.

    Để \left( {\widehat {\vec u,\vec v}} ight) < {90^0} \Rightarrow \cos \left( {\widehat {\vec u,\vec v}} ight) > 0

    \Rightarrow\overrightarrow{u}.\overrightarrow{v} > 0 \Leftrightarrow 3 +\log_{3}5.\log_{5}3 + 4\log_{m}2 > 0

    \Leftrightarrow 4 + 4log_{m}2 > 0
\Leftrightarrow log_{m}2 > - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m > 1 \\
m < \frac{1}{2} \\
\end{matrix} ight..

    Kết hợp điều kiện m > 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}
  {m > 1} \\ 
  {0 < m < \frac{1}{2}} 
\end{array}} ight.

  • Câu 2: Thông hiểu

    Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    S = v.t = 890.\frac{1}{2} = 445\ \
(km).

    Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).

  • Câu 3: Vận dụng cao

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đáp án là:

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đặt \overrightarrow{F} ={\overrightarrow{F}}_{1} + {\overrightarrow{F}}_{2} +{\overrightarrow{F}}_{3} thì \left|\overrightarrow{F} ight| = 2000(N).

    Chú ý thêm là: \left|{\overrightarrow{F}}_{1} ight| = \left| {\overrightarrow{F}}_{2}ight| = \left| {\overrightarrow{F}}_{3} ight|

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AC}+ \overrightarrow{AD} = 3\overrightarrow{AG} với G là trọng tâm \Delta BCD.

    Vì hình chóp A.BCD đều nên AG\bot mp(BCD)

    Do đó \widehat{ABG} = 30^{0}, suy ra AG = AB.sin30^{0} = \frac{AB}{2}\Rightarrow AB = 2AG.

    Khi gắn các lực vào ta có:

    \overrightarrow{F} =\overrightarrow{F_{1}} + \overrightarrow{F_{2}} + \overrightarrow{F_{3}}= - \overrightarrow{F_{AB}} - \overrightarrow{F_{AC}} -\overrightarrow{F_{AD}} = - 3\overrightarrow{F_{AG}}

    \Rightarrow \left| {\overrightarrow F } ight| = 3\left| {\overrightarrow {{F_{AG}}} } ight| \Rightarrow \left| {\overrightarrow {{F_{AG}}} } ight| = \frac{{2000}}{3}\left( N ight)

    Từ đó: \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{AB}} ight| = 2\left|\overrightarrow{F_{AG}} ight| = \frac{4000}{3}(N).

    Vậy lực căng mỗi sợi dây là \frac{4000}{3}\ N \approx 1333\ N.

  • Câu 4: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    a) Đúng: Vì \overrightarrow{OA} =
3\overrightarrow{i} - \overrightarrow{k} nên A(3;0; - 1).

    b) Sai: Ta có \overrightarrow{AB} =
(4;2;4),\overrightarrow{AC} = ( - 2;4;2).

    4:2:4 eq - 2:4:2 nên \overrightarrow{AB},\overrightarrow{AC} không cùng phương suy ra A,B,C không thẳng hàng.

    c) Đúng

    D là điểm đối xứng với A qua B nên B là trung điểm của AD.

    Ta có \left\{ \begin{matrix}
x_{D} = 2x_{B} - x_{A} = - 5 \\
y_{D} = 2y_{B} - y_{A} = 4 \\
z_{D} = 2z_{B} - z_{A} = 7. \\
\end{matrix} ight. suy ra D( -
5;4;7).

    Do đó a = - 5,b = 4,c = 7. Vậy a + b + c = 6.

    d) Đúng. Gọi I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} =
\overrightarrow{0}.

    Ta có:

    \left\{ \begin{matrix}
3 - x - 1 - x + 1 - x = 0 \\
0 - y + 2 - y + 4 - y = 0 \\
- 1 - z + 3 - z + 1 - z = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 1 \\
\end{matrix} \Rightarrow I(1;2;1) ight.

    MA^{2} + MB^{2} + MC^{2}

    =(\overrightarrow{MI} + \overrightarrow{IA})^{2} + (\overrightarrow{MI} +\overrightarrow{IB})^{2} + (\overrightarrow{MI} +\overrightarrow{IC})^{2}

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2} +2\overrightarrow{MI}(\overrightarrow{IA} + \overrightarrow{IB} +\overrightarrow{IC})

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2}

    Do IA^{2} + IB^{2} + IC^{2} không thay đổi nên MA^{2} + MB^{2} +
MC^{2} nhỏ nhất khi MI nhỏ nhất hay M là hình chiếu của điểm I trên mặt phẳng (Oxy).

    Do đó M(1;2;0) suy ra m=1,n=2,p=0.

    Vậy 2m - n + 2024p = 2 - 2 + 0 =
0.

  • Câu 5: Nhận biết

    Xác định tọa độ trọng tâm G của tam giác ABC, biết rằng A(1;3;4),B(2; - 1;0),C(3;1;2)?

    Tọa độ trọng tâm G của tam giác được xác định như sau:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{1 + 2 + 3}{3} = 2 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{3 - 1 + 1}{3} = 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{4 + 0 + 2}{3} = 2 \\\end{matrix} ight.\  \Rightarrow G(2;1;2)

  • Câu 6: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho lăng trụ tam giác ABC.A'B'C' có tọa độ các điểm B( - 1;2;1),B'( -
2;1;0),C'(5;3;2). Xác định tọa độ điểm C?

    Hình vẽ minh họa

    Gọi tọa độ điểm C(x;y;z)

    ABC.A'B'C' là hình lăng trụ nên

    \overrightarrow{CC'} =
\overrightarrow{BB'} \Leftrightarrow \left\{ \begin{matrix}
5 - x = - 2 - ( - 1) \\
3 - y = 1 - 2 \\
2 - z = 0 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 6 \\
y = 4 \\
z = 3 \\
\end{matrix} ight.

    Vậy tọa độ C(6;4;3).

  • Câu 7: Nhận biết

    Trong không gian tọa độ Oxyz, cho vectơ \overrightarrow{a} = (1;0; -
2). Trong các vectơ dưới đây, vectơ nào không cùng phương với \overrightarrow{a}?

    Ta có: \overrightarrow{0} =
(0;0;0) cùng phương với mọi vectơ

    Lại có \left\{ \begin{matrix}\overrightarrow{c} = (2;0; - 4) = 2\overrightarrow{a} \\\overrightarrow{d} = \left( - \dfrac{1}{2};0;1 ight) = -\dfrac{1}{2}\overrightarrow{a} \\\end{matrix} ight.

    Vậy vectơ không cùng phương với \overrightarrow{a}\overrightarrow{b} = (1;0;2).

  • Câu 8: Nhận biết

    Mệnh đề nào sau đây sai?

    Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.

  • Câu 9: Vận dụng cao

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Đáp án là:

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Ta có: \left\{ \begin{matrix}\overrightarrow{EA_{1}} = (0;1; - 6) \\\overrightarrow{EA_{2}} = \left( \frac{\sqrt{3}}{2}; - \frac{1}{2}; - 6ight) \\\overrightarrow{EA_{3}} = \left( - \frac{\sqrt{3}}{2}; - \frac{1}{2}; -6 ight) \\\end{matrix} ight.

    \Rightarrow EA_{1} = EA_{2} = EA_{3} =\sqrt{37}.

    Suy ra, \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{2}} ight| = \left|\overrightarrow{F_{3}} ight| (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).

    Do đó: \left\{ \begin{matrix}\overrightarrow{F_{1}} = k\overrightarrow{EA_{1}} = (0;k; - 6k) \\\overrightarrow{F_{2}} = k\overrightarrow{EA_{2}} = \left(\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\overrightarrow{F_{3}} = k\overrightarrow{EA_{3}} = \left( -\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\end{matrix} ight.

    \Rightarrow \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = (0;0; -18k).

    \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = \overrightarrow{P} =(0;0; - 240).

    Suy ra - 18k = - 240 \Leftrightarrow k =\frac{40}{3}.

    Từ đó \left\{ \begin{matrix}\overrightarrow{F_{1}} = \left( 0;\frac{40}{3}; - 80 ight) \\\overrightarrow{F_{2}} = \left( \frac{20\sqrt{3}}{3}; - \frac{20}{3}; -80 ight) \\\overrightarrow{F_{3}} = \left( - \frac{20\sqrt{3}}{3}; - \frac{20}{3};- 80 ight) \\\end{matrix} ight..

    Vậy \overrightarrow{F_{1}}.\overrightarrow{F_{3}} =0.\left( \frac{- 20\sqrt{3}}{3} ight) + \frac{40}{3}\left( -\frac{20}{3} ight) + ( - 80).( - 80) \approx 6311.

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD. Gọi M;N lần lượt là trung điểm các cạnh AC;BD, G là trọng tâm của tứ diện ABCDO là một điểm bất kì trong không gian. Tìm giá trị của k thỏa mãn đẳng thức k.\left( \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} ight)
= \overrightarrow{OG}?

    Vì G là trọng tâm tứ diện nên

    \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \left(
\overrightarrow{GO} + \overrightarrow{OA} ight) + \left(
\overrightarrow{GO} + \overrightarrow{OB} ight) + \left(
\overrightarrow{GO} + \overrightarrow{OC} ight) + \left(
\overrightarrow{GO} + \overrightarrow{OD} ight) =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{GO} +
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
4\overrightarrow{OG}

    \Leftrightarrow k = \dfrac{1}{4}.

  • Câu 11: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Gọi N(x;y;z) là tọa độ của máy bay sau 10 phút tiếp theo.

    \overrightarrow{MQ} =
(400;200;2).

    \overrightarrow{NQ} = (1400 - x;800 -
y;16 - z).

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MQ}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ =
4NQ.

    Suy ra: \overrightarrow{MQ} =
4\overrightarrow{NQ}

    \Leftrightarrow \left\{ \begin{matrix}
400 = 4(1400 - x) \\
200 = 4(800 - y) \\
2 = 4(16 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1300 \\
y = 750 \\
z = 15,5 \\
\end{matrix} ight.

    \Rightarrow N(1300;750;15,5)

  • Câu 12: Thông hiểu

    Cho tứ diện ABCD. Gọi M;N lần lượt là tung điểm của AB;CD. Chọn mệnh đề đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AD} +
\overrightarrow{DN} \\
\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN} \\
\end{matrix} ight.

    Cộng hai vế của hai đẳng thức trên ta có:

    2\overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +
\overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN}

    \Leftrightarrow 2\overrightarrow{MN} =
\left( \overrightarrow{MA} + \overrightarrow{MB} ight) + \left(
\overrightarrow{AD} + \overrightarrow{BC} ight) + \left(
\overrightarrow{DN} + \overrightarrow{CN} ight)

    \Leftrightarrow 2\overrightarrow{MN} =
\overrightarrow{AD} + \overrightarrow{BC} \Leftrightarrow
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AD} +
\overrightarrow{BC} ight)

  • Câu 13: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{u} = ( - 2;3;0)\overrightarrow{v} = (2; - 2;1). Tính độ dài vectơ \overrightarrow{w} =
\overrightarrow{u} - 2\overrightarrow{v}?

    Ta có: \overrightarrow{w} =
\overrightarrow{u} - 2\overrightarrow{v} = ( - 2;3;0) - 2(2; - 2;1) = (
- 6;7; - 2)

    Khi đó \left| \overrightarrow{w} ight|
= \sqrt{89}

  • Câu 14: Vận dụng

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    a) Sai: Hình chiếu của điểm M trên trục Oy có tọa độ là (0;3;0)

    b) Đúng: Vì N là trung điểm của ME

    \Leftrightarrow \left\{ \begin{matrix}- 1 = \dfrac{2 + x_{E}}{2} \\1 = \dfrac{3 + y_{E}}{2} \\1 = \dfrac{- 1 + z_{E}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{E} = - 4 \\y_{E} = - 1 \\z_{E} = 3 \\\end{matrix} \Rightarrow E( - 4; - 1;3) ight.\  ight..

    c) Đúng: Ta có \overrightarrow{NM} =
(3;2; - 2);\overrightarrow{NP} = (2;m - 2;2).

    \bigtriangleup MNP vuông tại N \Leftrightarrow\overrightarrow{NM}.\overrightarrow{NP} = 0

    \Leftrightarrow 3.2 + 2.(m - 2) + ( -
2).2 = 0 \Leftrightarrow m = 1.

    d) Sai.

    Gọi J(x;y;z) thỏa 3\overrightarrow{JM} - \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - ( - 1 - x) = 0 \\3(3 - y) - (1 - y) = 0 \\3( - 1 - z) - (1 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{2} \\y = 4 \\z = - 2 \\\end{matrix} ight.\  ight.

    Suy ra J\left( \frac{7}{2};4; - 2
ight).

    Khi đó T = |3\overrightarrow{IM} -
\overrightarrow{IN}| = |3\overrightarrow{IJ} + 3\overrightarrow{JM} -
\overrightarrow{IJ} - \overrightarrow{JN}| = |2\overrightarrow{IJ}| =
2IJ.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của J trên (Oxy)

    \Leftrightarrow I\left( \frac{7}{2};4;0 ight).

    Vậy a = \frac{7}{2};b = 4;c =
0.

    Suy ra 2a+b+c=11

  • Câu 15: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho tọa độ ba điểm A( - 1;2; - 3),B(1;0;2),C(x;y; - 2) thẳng hàng. Khi đó giá trị của biểu thức x +y là:

    Ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (2; - 2;5) \\\overrightarrow{AC} = (x + 1;y - 2;1) \\\end{matrix} ight.. Vì A; B; C thẳng hàng nên \overrightarrow{AB};\overrightarrow{AC} cùng phương

    \Leftrightarrow \dfrac{x + 1}{2} =\dfrac{y - 2}{- 2} = \dfrac{1}{5} \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{3}{5} \\y = \dfrac{8}{5} \\\end{matrix} ight.\  \Rightarrow x + y = 1

  • Câu 16: Vận dụng

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1; - 1)B(2;3;2). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (2 - 1;3 - 1;2 +
1) = (1;2;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(1;2;3).

  • Câu 18: Nhận biết

    Trong không gian cho ba vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w} có giá không cùng nằm trên một mặt phẳng. Mệnh đề nào sau đây đúng?

    Vì ba vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w} có giá không cùng nằm trên một mặt phẳng nên

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v};\overrightarrow{v};\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v};\overrightarrow{v};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v}; - 2\overrightarrow{u};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá của các vectơ 2\left(
\overrightarrow{u} + \overrightarrow{v} ight); - \overrightarrow{u}; -
\overrightarrow{v} cùng nằm trên một mặt phẳng

    Vậy mệnh đề đúng là: “Giá các vectơ \overrightarrow{u} + \overrightarrow{v}; -
2\overrightarrow{u};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.”

  • Câu 19: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai véc tơ \overrightarrow{u} = ( - 3;0;1)\overrightarrow{v} = (0;2; - 2). Tọa độ của véc tơ \overrightarrow{w} =
2\overrightarrow{u} - \overrightarrow{v} tương ứng là:

    Ta có: 2\overrightarrow{u} = ( -
6;0;2).

    \overrightarrow{v} = (0;2; -
2).

    Suy ra \overrightarrow{w} = ( - 6 - 0;0 -
2;2 + 2) = ( - 6; - 2;4).

  • Câu 20: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C', điểm M trên CC' sao cho \overrightarrow{MC} = -
\frac{1}{3}\overrightarrow{MC'}. Đặt \overrightarrow{AB} = \overrightarrow{a},\ \
\overrightarrow{AC} = \overrightarrow{b},\ \ \overrightarrow{AA'} =
\overrightarrow{c}. Khẳng định nào dưới đây là đúng ?

    Hình vẽ minh họa

    Ta có

    \overrightarrow{A'M} =
\overrightarrow{A'C} + \overrightarrow{CM}

    = \overrightarrow{A'A} +
\overrightarrow{A'C'} +
\frac{1}{4}\overrightarrow{AA'}

    = - \overrightarrow{AA'} +\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AA'}

    = \overrightarrow{AC} -
\frac{3}{4}\overrightarrow{AA'} = \overrightarrow{b} -
\frac{3}{4}\overrightarrow{c}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo