Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}?

    Đặt \overrightarrow{OA} =
\overrightarrow{a};\overrightarrow{OB} =
\overrightarrow{b};\overrightarrow{OC} = \overrightarrow{c}. Khi đó \overrightarrow{OM} =
x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} với x;y;z là ba số có tổng bằng 1.

    Ta có:

    \overrightarrow{AM} =
\overrightarrow{OM} - \overrightarrow{OA} = (x - 1)\overrightarrow{a} +
y\overrightarrow{b} + z\overrightarrow{c}

    \Rightarrow {\overrightarrow{AM}}^{2} =
(x - 1)^{2}{\overrightarrow{a}}^{2} + y^{2}{\overrightarrow{b}}^{2} +
z^{2}{\overrightarrow{c}}^{2}

    \Rightarrow \frac{MA^{2}}{OA^{2}} = (x -
1)^{2} + y^{2}.\frac{b^{2}}{a^{2}} +
z^{2}.\frac{c^{2}}{a^{2}}

    Tương tự ta được

    \Rightarrow \left\{ \begin{matrix}\dfrac{MB^{2}}{OB^{2}} = (y - 1)^{2} + z^{2}.\dfrac{c^{2}}{b^{2}} +x^{2}.\dfrac{a^{2}}{b^{2}} \\\dfrac{MC^{2}}{OC^{2}} = (z - 1)^{2} + x^{2}.\dfrac{a^{2}}{c^{2}} +y^{2}.\dfrac{b^{2}}{c^{2}} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    + (x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight)

    - \left( x^{2} + y^{2} + z^{2} ight) +
(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight) - 2(x + y + z) + 3

    Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa \left\{ \begin{matrix}\dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} + \dfrac{1}{c^{2}} = \dfrac{1}{OH^{2}}\\x^{2}a^{2} + y^{2}b^{2} + z^{2}c^{2} = OM^{2} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}} = \frac{OM^{2}}{OH^{2}} +
1 \geq 1 + 1 = 2

    Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.

    Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.

  • Câu 2: Nhận biết

    Cho hình hộp ABCD.EFFH. Tính tổng \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE}?

    Hình vẽ minh họa

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AC} +
\overrightarrow{AE} = \overrightarrow{AG}

  • Câu 3: Thông hiểu

    Trong không gian Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} +
4\overrightarrow{j} - 5\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{i} = (3;0;0) \\
4\overrightarrow{j} = (0;4;0) \\
5\overrightarrow{k} = (0;0;5) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{OA} =
3\overrightarrow{i} + 4\overrightarrow{j} - 5\overrightarrow{k}
\Rightarrow A(3;4; - 5)

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt \overrightarrow{SA} =
\overrightarrow{a};\overrightarrow{SB} =
\overrightarrow{b};\overrightarrow{SC} =
\overrightarrow{c};\overrightarrow{SD} = \overrightarrow{d}. Khẳng định nào sau đây đúng?

    Gọi O là tâm hình bình hành ABCD. Khi đó:

    \overrightarrow{SA} +
\overrightarrow{SC} = \overrightarrow{SB} + \overrightarrow{SD} =
2\overrightarrow{SO}

    Vậy \overrightarrow{a} +
\overrightarrow{c} = \overrightarrow{d} +
\overrightarrow{b}.

  • Câu 5: Vận dụng cao

    Trong không gian Oxyz, cho hai điểm M(2;2;1),N\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Tọa độ tâm đường tròn nội tiếp tam giác OMN là:

    Ta có bài toán sau

    Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: a\overrightarrow{IA} + b\overrightarrow{IB}
+ c\overrightarrow{IC} = \overrightarrow{0} với BC = a;AC = b;AB = c

    Hình vẽ minh họa

    Gọi A’ là chân đường phân giác kẻ từ A

    \Rightarrow \overrightarrow{BA} =
\frac{c}{b}\overrightarrow{A'C} \Leftrightarrow
b\overrightarrow{BA'} + c\overrightarrow{CA'} =
\overrightarrow{0}\ \ \ (1)

    \overrightarrow{IA} =\dfrac{c}{A'B}\overrightarrow{A'I} = \dfrac{c}{\dfrac{ac}{b +c}}\overrightarrow{A'I} = \dfrac{b +c}{a}\overrightarrow{A'I}

    \Leftrightarrow a\overrightarrow{IA} +
(b + c)\overrightarrow{IA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} + b\overrightarrow{BA'}
+ c\overrightarrow{CA'} = \overrightarrow{0}

    \Leftrightarrow a\overrightarrow{IA} +
b\overrightarrow{IB} + c\overrightarrow{IC} =
\overrightarrow{0}

    Áp dụng công thức trong tam giác OMN ta có:

    OM.\overrightarrow{IN} +
ON.\overrightarrow{IM} + MN.\overrightarrow{IO} =
\overrightarrow{0}

    \Rightarrow \left\{ \begin{matrix}x_{I} = \dfrac{OM.x_{n} + ON.x_{M} + MN.x_{O}}{OM + ON + MN} = 0 \\y_{I} = \dfrac{OM.y_{n} + ON.y_{M} + MN.y_{O}}{OM + ON + MN} = 1 \\z_{I} = \dfrac{OM.z_{n} + ON.z_{M} + MN.z_{O}}{OM + ON + MN} = 1 \\\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy đáp án cần tìm là (0;1;1)

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    a) Vì M, N là trung điểm của ABCD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}\overrightarrow{NA} + \overrightarrow{NB} =
2\overrightarrow{NM}

    Nên \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
\overrightarrow{0}.

    b) Ta có:

    \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AM} + \overrightarrow{MC} +
\overrightarrow{BM} + \overrightarrow{MD}

    = \left( \overrightarrow{AM} +
\overrightarrow{BM} ight) + \left( \overrightarrow{MC} +
\overrightarrow{MD} ight)

    = \overrightarrow{0} +
2\overrightarrow{MN} = 2\overrightarrow{MN}

    c) Ta có:

    \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{CD} +
\overrightarrow{BD} + \overrightarrow{DC}

    = \left( \overrightarrow{AC} +
\overrightarrow{BD} ight) + \left( \overrightarrow{CD} +
\overrightarrow{DC} ight) = \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{MN}

    d) Do N là trung điểm của CD nên \overrightarrow{AC} + \overrightarrow{AD} =
2\overrightarrow{AN}

  • Câu 7: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;3),\overrightarrow{b} =
( - 2;0;1),\overrightarrow{c} = ( - 1;0;1). Tọa độ vectơ \overrightarrow{n} = \overrightarrow{a} +
\overrightarrow{b} + 2\overrightarrow{c} - 3\overrightarrow{i} là:

    Ta có:

    \overrightarrow{n} = \overrightarrow{a}
+ \overrightarrow{b} + 2\overrightarrow{c} -
3\overrightarrow{i}

    \Rightarrow \overrightarrow{n} = (1;2;3)
+ ( - 2;0;1) + 2( - 1;0;1) - 3(1;0;0)

    \Rightarrow \overrightarrow{n} = ( -
6;2;6)

  • Câu 8: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1; - 1;0),B(0;2;0),C(2;1;3). Xác định tọa độ điểm M thỏa mãn \overrightarrow{MA} - \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}?

    Ta có: \overrightarrow{MA} -
\overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}
(1 - x) - (0 - x) + (2 - x) = 0 \\
( - 1 - y) - (2 - y) + (1 - y) = 0 \\
(0 - z) - (0 - z) + (3 - z) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - 2 \\
z = 3 \\
\end{matrix} ight.

    \Rightarrow M(3; - 2;3)

  • Câu 10: Thông hiểu

    Trong không gian Oxyz, cho tọa độ các điểm A(1;2;0),B(2;1;1),C(0;3; -
1). Cho các khẳng định sau:

    (I) BC = 2AB.

    (II) B \in AC.

    (III) Ba điểm A;B;C tạo thành một tam giác.

    (IV) Ba điểm A;B;C thẳng hàng.

    Trong các khẳng định trên, khẳng định nào sai?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;1) \\
\overrightarrow{AC} = ( - 1;1; - 1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AC} = -
\overrightarrow{AB} nên A là trung điểm của BC và ba điểm A;B;C thẳng hàng

    Vậy các khẳng định sai là: (II);(III).

  • Câu 11: Nhận biết

    Trong không gian Oxyz, điểm nào sau đây thuộc mặt phẳng (Oyz)?

    Ta có: A(x;y;z) \in (Oyz) \Rightarrow x =
0 nên điểm cần tìm là Q(0;4; -
1).

  • Câu 12: Thông hiểu

    Cho \left| \overrightarrow{a} ight| =
3;\left| \overrightarrow{b} ight| = 5, góc giữa \overrightarrow{a};\overrightarrow{b} bằng 120^{0}. Chọn khẳng định sai trong các khẳng định sau?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|\cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = 3.5.cos120^{0} = -
\frac{15}{2}

    Khi đó:

    \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 -
15 + 25 = 19

    \left( \overrightarrow{a} -
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 +
15 + 25 = 49

    \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 +
30 + 100 = 139

    \left( \overrightarrow{a} +
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 -
30 + 100 = 79

    Vậy khẳng định sai là \left| \overrightarrow{a} +
2\overrightarrow{b} ight| = 9.

  • Câu 13: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(0; - 1;1),B( - 2;1; - 1),C( - 1;3;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
x + 1 = 2 \\
y - 3 = - 2 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;1;4)

  • Câu 14: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Giả sử \overrightarrow{u} =
(x,y,z).

    Ta có \overrightarrow{i}(1,0,0);\overrightarrow{j}(0,1,0);\overrightarrow{k}(0,0,1)

    cos^{2}(\overrightarrow{u},\overrightarrow{i}) +
cos^{2}(\overrightarrow{u},\overrightarrow{j}) +
cos^{2}(\overrightarrow{u},\overrightarrow{k})

    = \left( \frac{x}{\sqrt{x^{2} + y^{2} +
z^{2}}} ight)^{2} + \left( \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2} + \left( \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2}

    = \frac{x^{2} + y^{2} + z^{2}}{x^{2} +
y^{2} + z^{2}} = 1

    Vậy T = 1

  • Câu 15: Vận dụng

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC}(1),\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}(2). Tìm x để các đường thẳng AD;BC;MN cùng song song với một mặt phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC}(1),\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}(2). Tìm x để các đường thẳng AD;BC;MN cùng song song với một mặt phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho điểm \overrightarrow{u} = \overrightarrow{i} -
2\overrightarrow{k} + \overrightarrow{j}. Tìm tọa độ của \overrightarrow{u} là.

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{i} = (1;0;0) \\
\overrightarrow{k} = (0;0;1) \\
\overrightarrow{j} = (0;1;0) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u} =
\overrightarrow{i} - 2\overrightarrow{k} + \overrightarrow{j} = (1;1; -
2)

  • Câu 17: Nhận biết

    Biết rằng vectơ \overrightarrow{a} = (1;
- 2;0)\overrightarrow{b} =
2\overrightarrow{a}. Tìm tọa độ vectơ \overrightarrow{b}?

    Ta có: \overrightarrow{b} =
2\overrightarrow{a} = (2; - 4;0)

  • Câu 18: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCCD.A'B'C'D'. Biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Tọa độ điểm B' là:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{BC} = ( - 5;4;7) \Rightarrow D( - 3;8; - 7)

    \overrightarrow{BD} =
\overrightarrow{B'D'} = ( - 7;8; - 7) \Rightarrow
B'(13;0;17)

  • Câu 19: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; - 1;5),B(5; - 5;7),M(x;y;1). Với giá trị nào của x;y thì ba điểm đã cho thẳng hàng?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (3; - 4;2) \\
\overrightarrow{AM} = (x - 2;y + 1; - 4) \\
\end{matrix} ight.

    Vì ba điểm A; B; M thẳng hàng nên \overrightarrow{AB};\overrightarrow{AM} cùng phương

    \Leftrightarrow \frac{x - 2}{3} =
\frac{y + 1}{- 4} = \frac{- 4}{2} \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 7 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là x = - 4;y =
7.

  • Câu 20: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    a) Đúng: Gọi I là trung điểm AB.

    Ta có \left\{ \begin{matrix}
  {x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{1 + 2}}{2} = \dfrac{3}{2} \hfill \\
  {y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2} \hfill \\
  {z_I} = \dfrac{{{z_A} + {z_B}}}{2} = \dfrac{{3 + 5}}{2} = 4 \hfill \\ 
\end{matrix}  ight. \Rightarrow I\left( {\dfrac{3}{2};\dfrac{3}{2};4} ight)

    b) Đúng: Ta có \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10).

    c) Đúng: Ta có \overrightarrow{AB} = (1;
- 1;2),\overrightarrow{AC} = (1;2; - 1).

    \cos(AB,AC) =\cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{|\overrightarrow{AB} \cdot\overrightarrow{AC}|}{|\overrightarrow{AB}| \cdot|\overrightarrow{AC}|}

    = \frac{|1 \cdot 1 + ( - 1) \cdot 2 + 2
\cdot ( - 1)|}{\sqrt{1^{2} + ( - 1)^{2} + 2^{2}} \cdot \sqrt{1^{2} +
2^{2} + ( - 1)^{2}}} = \frac{1}{2}

    Suy ra (AB,AC) = 60^{\circ}.

    d) Sai: Gọi K(x;y;z) thỏa mãn 3\overrightarrow{KB} - \overrightarrow{KC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - (2 - x) = 0 \\3(1 - y) - (4 - y) = 0 \\3(5 - z) - (2 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{1}{2} \\z = \dfrac{13}{2} \\\end{matrix} ight.\  ight.

    Suy ra K\left( 2; -
\frac{1}{2};\frac{13}{2} ight).

    Khi đó T = |3\overrightarrow{IB} -
\overrightarrow{IC}| = |3\overrightarrow{IK} + 3\overrightarrow{KB} -
\overrightarrow{IK} - \overrightarrow{KC}| = |2\overrightarrow{IK}| =
2IK.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của K trên (Oxz) suy ra I(2;0;\frac{13}{2} )..

    Suy ra a = 2,b = 0,c =
\frac{13}{2}.

    Vậy a - 2b + 2c = 15.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 93 lượt xem
Sắp xếp theo