Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( -
4;7;5). Tọa độ chân đường phân giác của góc B trong tam giác ABC là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 1; - 3;4) \Rightarrow BA = \sqrt{26} \\
\overrightarrow{BC} = ( - 6;8;2) \Rightarrow BC = 2\sqrt{26} \\
\end{matrix} ight.

    Gọi D(a;b;c) là chân đường phân giác kẻ từ B lên AC của tam giác ABC.

    Suy ra \frac{DA}{DC} = \frac{BA}{BC}
\Rightarrow \overrightarrow{DA} = -
\frac{1}{2}\overrightarrow{DC}(*)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{DA} = (1 - x;2 - y; - 1 - z) \\
\overrightarrow{DC} = ( - 4 - x;7 - y;5 - z) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1 - x = - \dfrac{1}{2}( - 4 - x) \\2 - y = - \dfrac{1}{2}(7 - y) \\- 1 - z = - \dfrac{1}{2}(5 - z) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{2}{3} \\y = \dfrac{11}{3} \\z = 1 \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{2}{3};\dfrac{11}{3};1ight)

  • Câu 2: Nhận biết

    Biết rằng \overrightarrow{a} =
(0;1;3)\overrightarrow{b} = ( -
2;3;1). Tính \overrightarrow{x} =3\overrightarrow{a} + 2\overrightarrow{b}?

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{a} = (0;3;9) \\
2\overrightarrow{b} = ( - 4;6;2) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
3\overrightarrow{a} + 2\overrightarrow{b} = ( - 4;9;11)

  • Câu 3: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(1;3; - 1),B(3; - 1;5). Tìm tọa độ điểm M thỏa mãn hệ thức \overrightarrow{MA} =
3\overrightarrow{MB}?

    Ta có: \overrightarrow{MA} =3\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} - 3x_{B}}{1 - 3} = 4 \\y_{M} = \dfrac{y_{A} - 3y_{B}}{1 - 3} = - 3 \\z_{M} = \dfrac{z_{A} - 3z_{B}}{1 - 3} = 8 \\\end{matrix} ight.\  \Rightarrow M(4; - 3;8)

  • Câu 4: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;0),B(1;1;0),C(0;1;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = - 1 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.. Vậy tọa độ điểm D(0;0;1).

  • Câu 5: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABCA(1;0;0),B(0;0;1),C(2;1;1). Tính diện tích tam giác ABC?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;0;1) \\
\overrightarrow{AC} = (1;1;1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{AC} = ( - 1).1 + 0.1 + 1.1 =
0

    Suy ra \overrightarrow{AB}\bot\overrightarrow{AC}. Lại có: \left\{ \begin{matrix}
\left| \overrightarrow{AB} ight| = \sqrt{2} \\
\left| \overrightarrow{AC} ight| = \sqrt{3} \\
\end{matrix} ight.

    Suy ra diện tích tam giác ABC là: S = \frac{1}{2}AB.AC =
\frac{\sqrt{6}}{2}

  • Câu 6: Vận dụng cao

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Đáp án là:

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Ta có \overrightarrow{AH} = (a;b;c -
1),\overrightarrow{BC} = (3;3; - 1),\overrightarrow{BH} = (a + 1;b +
2;c).

    H là chân đường cao nên ta có

    \left\{ \begin{matrix}\overrightarrow{AH}\bot\overrightarrow{BC} \\\overrightarrow{BH} = k\overrightarrow{BC} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}3a + 3b - (c - 1) = 0 \\\dfrac{a + 1}{3} = \dfrac{b + 2}{3} = \dfrac{c}{- 1} = k \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 3k - 1 \\
b = 3k - 2 \\
c = - k \\
\end{matrix} ight.3(3k - 1)
+ 3(3k - 2) - ( - k - 1) = 0 \Leftrightarrow k =
\frac{8}{19}.

    Do đó H\left( \frac{5}{19}; -
\frac{14}{19}; - \frac{8}{19} ight)

    Vậy \left( \frac{5}{19} - \frac{14}{19} -
\frac{8}{19} ight).19 = - 17.

  • Câu 7: Nhận biết

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là:

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là điểm có tọa độ (2;0;0).

  • Câu 8: Thông hiểu

    Tứ giác MNPQ là hình bình hành biết tọa độ các điểm M(1;2;3),N(2; -
3;1),P(3;1;2). Tìm tọa độ điểm Q?

    Giả sử điểm Q(x;y;z) khi đó \left\{ \begin{matrix}
\overrightarrow{QP} = (x - 3;y - 1;z - 2) \\
\overrightarrow{MN} = ( - 1;5;2) \\
\end{matrix} ight.

    ta có MNPQ là hình bình hành nên \overrightarrow{QP} =
\overrightarrow{MN}

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 = - 1 \\
y - 1 = 5 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 6 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm Q(2;6;4).

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Điểm G là điểm thỏa mãn \overrightarrow{GS} + \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O là tâm hình bình hành ABCD suy ra \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    Ta có:

    \overrightarrow{GS} +
\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} +
\overrightarrow{GD} = \overrightarrow{GS} + 4\overrightarrow{GO} +
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{GS} +
4\overrightarrow{GO} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{GS} = 4\overrightarrow{OG} suy ra ba điểm G;S;O thẳng hàng.

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = \dfrac{2 + 2}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{- 4 + 2}{2} = - 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = \dfrac{3 + 7}{2} = 5 \\\end{matrix} ight.\  \Rightarrow M(2; - 1;5)

    Vậy tọa độ trung điểm của AB là: (2; -
1;5).

  • Câu 11: Vận dụng

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    a) Đúng: Gọi I là trung điểm AB.

    Ta có \left\{ \begin{matrix}
  {x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{1 + 2}}{2} = \dfrac{3}{2} \hfill \\
  {y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2} \hfill \\
  {z_I} = \dfrac{{{z_A} + {z_B}}}{2} = \dfrac{{3 + 5}}{2} = 4 \hfill \\ 
\end{matrix}  ight. \Rightarrow I\left( {\dfrac{3}{2};\dfrac{3}{2};4} ight)

    b) Đúng: Ta có \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10).

    c) Đúng: Ta có \overrightarrow{AB} = (1;
- 1;2),\overrightarrow{AC} = (1;2; - 1).

    \cos(AB,AC) =\cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{|\overrightarrow{AB} \cdot\overrightarrow{AC}|}{|\overrightarrow{AB}| \cdot|\overrightarrow{AC}|}

    = \frac{|1 \cdot 1 + ( - 1) \cdot 2 + 2
\cdot ( - 1)|}{\sqrt{1^{2} + ( - 1)^{2} + 2^{2}} \cdot \sqrt{1^{2} +
2^{2} + ( - 1)^{2}}} = \frac{1}{2}

    Suy ra (AB,AC) = 60^{\circ}.

    d) Sai: Gọi K(x;y;z) thỏa mãn 3\overrightarrow{KB} - \overrightarrow{KC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - (2 - x) = 0 \\3(1 - y) - (4 - y) = 0 \\3(5 - z) - (2 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{1}{2} \\z = \dfrac{13}{2} \\\end{matrix} ight.\  ight.

    Suy ra K\left( 2; -
\frac{1}{2};\frac{13}{2} ight).

    Khi đó T = |3\overrightarrow{IB} -
\overrightarrow{IC}| = |3\overrightarrow{IK} + 3\overrightarrow{KB} -
\overrightarrow{IK} - \overrightarrow{KC}| = |2\overrightarrow{IK}| =
2IK.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của K trên (Oxz) suy ra I(2;0;\frac{13}{2} )..

    Suy ra a = 2,b = 0,c =
\frac{13}{2}.

    Vậy a - 2b + 2c = 15.

  • Câu 13: Nhận biết

    Cho hình hộp ABCD.EFFH. Tính tổng \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE}?

    Hình vẽ minh họa

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AC} +
\overrightarrow{AE} = \overrightarrow{AG}

  • Câu 14: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = - \overrightarrow{i} +
2\overrightarrow{j} - 3\overrightarrow{k}. Tọa độ vectơ \overrightarrow{a} là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} = -
\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k} suy ra tọa độ vectơ \overrightarrow{a} = ( -
1;2; - 3).

  • Câu 15: Thông hiểu

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    a) Vì M, N là trung điểm của ABCD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}\overrightarrow{NA} + \overrightarrow{NB} =
2\overrightarrow{NM}

    Nên \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
\overrightarrow{0}.

    b) Ta có:

    \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AM} + \overrightarrow{MC} +
\overrightarrow{BM} + \overrightarrow{MD}

    = \left( \overrightarrow{AM} +
\overrightarrow{BM} ight) + \left( \overrightarrow{MC} +
\overrightarrow{MD} ight)

    = \overrightarrow{0} +
2\overrightarrow{MN} = 2\overrightarrow{MN}

    c) Ta có:

    \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{CD} +
\overrightarrow{BD} + \overrightarrow{DC}

    = \left( \overrightarrow{AC} +
\overrightarrow{BD} ight) + \left( \overrightarrow{CD} +
\overrightarrow{DC} ight) = \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{MN}

    d) Do N là trung điểm của CD nên \overrightarrow{AC} + \overrightarrow{AD} =
2\overrightarrow{AN}

  • Câu 16: Nhận biết

    Trong không gian cho ba vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w} có giá không cùng nằm trên một mặt phẳng. Mệnh đề nào sau đây đúng?

    Vì ba vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w} có giá không cùng nằm trên một mặt phẳng nên

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v};\overrightarrow{v};\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v};\overrightarrow{v};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v}; - 2\overrightarrow{u};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá của các vectơ 2\left(
\overrightarrow{u} + \overrightarrow{v} ight); - \overrightarrow{u}; -
\overrightarrow{v} cùng nằm trên một mặt phẳng

    Vậy mệnh đề đúng là: “Giá các vectơ \overrightarrow{u} + \overrightarrow{v}; -
2\overrightarrow{u};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.”

  • Câu 17: Vận dụng cao

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đáp án là:

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đặt \overrightarrow{F} ={\overrightarrow{F}}_{1} + {\overrightarrow{F}}_{2} +{\overrightarrow{F}}_{3} thì \left|\overrightarrow{F} ight| = 2000(N).

    Chú ý thêm là: \left|{\overrightarrow{F}}_{1} ight| = \left| {\overrightarrow{F}}_{2}ight| = \left| {\overrightarrow{F}}_{3} ight|

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AC}+ \overrightarrow{AD} = 3\overrightarrow{AG} với G là trọng tâm \Delta BCD.

    Vì hình chóp A.BCD đều nên AG\bot mp(BCD)

    Do đó \widehat{ABG} = 30^{0}, suy ra AG = AB.sin30^{0} = \frac{AB}{2}\Rightarrow AB = 2AG.

    Khi gắn các lực vào ta có:

    \overrightarrow{F} =\overrightarrow{F_{1}} + \overrightarrow{F_{2}} + \overrightarrow{F_{3}}= - \overrightarrow{F_{AB}} - \overrightarrow{F_{AC}} -\overrightarrow{F_{AD}} = - 3\overrightarrow{F_{AG}}

    \Rightarrow \left| {\overrightarrow F } ight| = 3\left| {\overrightarrow {{F_{AG}}} } ight| \Rightarrow \left| {\overrightarrow {{F_{AG}}} } ight| = \frac{{2000}}{3}\left( N ight)

    Từ đó: \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{AB}} ight| = 2\left|\overrightarrow{F_{AG}} ight| = \frac{4000}{3}(N).

    Vậy lực căng mỗi sợi dây là \frac{4000}{3}\ N \approx 1333\ N.

  • Câu 18: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;3),B(2;3; - 4),C( - 3;1;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
- 3 - x = 1 \\
1 - y = 3 \\
2 - z = - 7 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = 9 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2;9).

  • Câu 19: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(0;1; - 2),B(3; - 1;1). Tìm tọa độ điểm M sao cho \overrightarrow{AM} =
3\overrightarrow{AB}?

    Gọi tọa độ độ điểm M(x;y;z).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x;y - 1;z + 2) \\
\overrightarrow{AB} = (3; - 2;3) \\
\end{matrix} ight.

    Lại có: \overrightarrow{AM} =
3\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x = 9 \\
y - 1 = - 6 \\
z + 2 = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 9 \\
y = - 5 \\
z = 7 \\
\end{matrix} ight.\  \Rightarrow M(9; - 5;7)

    Vậy đáp án cần tìm là: M(9; -
5;7).

  • Câu 20: Vận dụng

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 90 lượt xem
Sắp xếp theo