Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Nhận biết

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{EG}?

    Hình vẽ minh họa

    \overrightarrow{EG} =
\overrightarrow{AC} (AEGC là hình chữ nhật) nên \left(
\overrightarrow{AB};\overrightarrow{EG} ight) = \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = \widehat{BAC} =
45^{0}(AEGC là hình vuông)

  • Câu 3: Nhận biết

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{DH}?

    Hình vẽ minh họa

    \overrightarrow{DH} =
\overrightarrow{AE} (ADHE là hình vuông) nên \left(
\overrightarrow{AB};\overrightarrow{DH} ight) = \left(
\overrightarrow{AB};\overrightarrow{AE} ight) = \widehat{BAE} =
90^{0}

  • Câu 4: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2; - 2),B\left(
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Biết I(a;b;c) là tâm đường tròn nội tiếp tam giác OAB. Tính giá trị biểu thức U = a - b + c?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\overrightarrow{OA} = (1;2; - 2) \Rightarrow OA = 3 \\\overrightarrow{OB} = \left( \dfrac{8}{3};\dfrac{4}{3};\dfrac{8}{3} ight)\Rightarrow OB = 4 \\\end{matrix} ight.

    Gọi D là chân đường phân giác kẻ từ O ta có:

    \overrightarrow{DA} = -
\frac{DA}{DB}.\overrightarrow{DB} = -
\frac{OA}{OB}.\overrightarrow{DB}

    \Rightarrow \overrightarrow{DA} = -
\frac{3}{4}.\overrightarrow{DB} \Rightarrow \overrightarrow{OD} =
\frac{4\overrightarrow{OA} + 3\overrightarrow{OB}}{7}. Do đó D\left( \frac{12}{7};\frac{12}{7};0
ight)

    Ta có: \overrightarrow{AD} = \left(
\frac{5}{7}; - \frac{2}{7};2 ight) \Rightarrow AD =
\frac{15}{7}

    \overrightarrow{ID} = -
\frac{AD}{AO}.\overrightarrow{IO} = - \frac{5}{7}\overrightarrow{IO}
\Rightarrow \overrightarrow{OI} = \frac{7}{12}\overrightarrow{OD}
\Rightarrow D(1;1;0)

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 0 \\
\end{matrix} ight.\  \Rightarrow U = 0

  • Câu 5: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(1;0;1),B(2;1;2),D(1; -
1;1),C'(4;5; - 5). Tìm tọa độ điểm A'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    \Rightarrow \overrightarrow{AA'} =
\overrightarrow{AB} - \overrightarrow{AD} -
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (1;1;1) = \overrightarrow{i} + \overrightarrow{j}
+ \overrightarrow{k} \\
\overrightarrow{AD} = (0; - 1;0) = 0.\overrightarrow{i} -
\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AC'} = (3;5; - 6) = 3.\overrightarrow{i} +
5\overrightarrow{j} - 6\overrightarrow{k} \\
\end{matrix} ight. do đó \Rightarrow \overrightarrow{AA'} =
2\overrightarrow{i} + 5\overrightarrow{j} - 6\overrightarrow{k} hay \overrightarrow{AA'} = (3;5; -
6)

    Suy ra A'(3;5; - 6)

  • Câu 6: Vận dụng cao

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Đáp án là:

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Gọi hai lực tạo với nhau một góc 80^{\circ}\overrightarrow{F_{1}}\overrightarrow{F_{2}}, ta có \left| \overrightarrow{F_{1}} ight| = \left|
\overrightarrow{F_{2}} ight| = 50N.

    Lực còn lại là \overrightarrow{F_{3}}, ta có \left| \overrightarrow{F_{3}} ight| =
60N.

    Gọi \overrightarrow{F} là hợp lực của ba lực trên ta có

    \left| \overrightarrow{F} ight|^{2} =
\left( \overrightarrow{F_{1}} + \overrightarrow{F_{2}} +
\overrightarrow{F_{3}} ight)^{2}

    = \left| \overrightarrow{F_{1}}
ight|^{2} + \left| \overrightarrow{F_{2}} ight|^{2} + \left|
\overrightarrow{F_{3}} ight|^{2} + 2\lbrack\left|
\overrightarrow{F_{1}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{1}},\overrightarrow{F_{2}}
ight)

    + \left| \overrightarrow{F_{1}}
ight|.\left| \overrightarrow{F_{3}} ight|.cos\left(
\overrightarrow{F_{1}},\overrightarrow{F_{3}} ight) + \left|
\overrightarrow{F_{3}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{3}},\overrightarrow{F_{2}}
ight)brack

    = 50^{2} + 50^{2} + 60^{2} + 2\lbrack
50.50.cos80^{0}+ 50.60.cos60^{0} +
60.50.cos60^{0}brack \approx 15468.

    \Rightarrow |F| \approx 124 N

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (5;3; -
2);\overrightarrow{b} = (m; - 1;m + 3). Có tất cả bao nhiêu giá trị nguyên dương của tham số m để góc giữa hai vectơ \overrightarrow{a};\overrightarrow{b} là góc tù?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{3m -
9}{\sqrt{38}.\sqrt{2m^{2} + 6m + 10}}

    Góc giữa hai vectơ \overrightarrow{a};\overrightarrow{b} là góc tù khi và chỉ khi

    \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) < 0 \Leftrightarrow
\frac{3m - 9}{\sqrt{38}.\sqrt{2m^{2} + 6m + 10}} < 0

    \Leftrightarrow 3m - 9 < 0
\Leftrightarrow m < 3

    m \in \mathbb{Z}^{+} \Rightarrow m =
\left\{ 1;2 ight\}

    Suy ra có 2 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.

    Vậy đáp án cần tìm là 2.

  • Câu 8: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho các vectơ \overrightarrow{u} =2\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}\overrightarrow{v} = (m;2;m + 1) (với m là tham số thực). Có bao nhiêu giá trị của m để \left| \overrightarrow{u} ight| = \left|\overrightarrow{v} ight|?

    Ta có: \overrightarrow{u} = (2; -2;1)

    Khi đó \left\{ \begin{matrix}\left| \overrightarrow{u} ight| = \sqrt{2^{2} + ( - 2)^{2} + 1^{2}} =3 \\\left| \overrightarrow{v} ight| = \sqrt{m^{2} + 2^{2} + (m + 1)^{2}} =\sqrt{2m^{2} + 2m + 5} \\\end{matrix} ight.

    Do đó \left| \overrightarrow{u} ight| =\left| \overrightarrow{v} ight| \Leftrightarrow 9 = 2m^{2} + 2m +5

    \Leftrightarrow m^{2} + m - 2 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - 2 \\\end{matrix} ight.

    Vậy có 2 giá trị tham số m thỏa mãn yêu cầu bài toán.

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho điểm A(2;2;1). Tính độ dài đoạn thẳng OA?

    Ta có: \overrightarrow{OA} = (2;2;1)
\Rightarrow OA = \sqrt{2^{2} + 2^{2} + 1^{2}} = 3

  • Câu 11: Thông hiểu

    Cho tứ diện ABCD có trọng tâm G. Chọn mệnh đề đúng?

    Vì G là trọng tâm tứ diện ABCD nên suy ra:

    \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{AG} =
\overrightarrow{GB} + \overrightarrow{GC} +
\overrightarrow{GD}

    \Leftrightarrow \overrightarrow{AG} =
\left( \overrightarrow{GA} + \overrightarrow{AB} ight) + \left(
\overrightarrow{GA} + \overrightarrow{AC} ight) + \left(
\overrightarrow{GA} + \overrightarrow{AD} ight)

    \Leftrightarrow 4\overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AG} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight)

  • Câu 12: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABC với tọa độ các điểm A(1;0; - 2),B( - 2;3;4),C(4; - 6;1).

    Xác định tính đúng sai của các khẳng định sau:

    a) Tọa độ trọng tâm G của tam giác là (1; - 1;1). Đúng||Sai

    b) \overrightarrow{AB} = (3; -
3;6),\overrightarrow{AC} = ( - 3;6; - 3). Sai||Đúng

    c) Tam giác ABC là tam giác cân. Đúng||Sai

    d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7; - 9; - 5). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABC với tọa độ các điểm A(1;0; - 2),B( - 2;3;4),C(4; - 6;1).

    Xác định tính đúng sai của các khẳng định sau:

    a) Tọa độ trọng tâm G của tam giác là (1; - 1;1). Đúng||Sai

    b) \overrightarrow{AB} = (3; -
3;6),\overrightarrow{AC} = ( - 3;6; - 3). Sai||Đúng

    c) Tam giác ABC là tam giác cân. Đúng||Sai

    d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7; - 9; - 5). Sai||Đúng

    a) Đúng.

    Trọng tâm tam giác có tọa độ là:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = 1 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = - 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = 1 \\\end{matrix} ight.\  \Rightarrow G(1; - 1;1)

    b) Sai. Vì \overrightarrow{AB} = ( -
3;3;6),\overrightarrow{AC} = (3; - 6;3)

    c) Đúng. Do AB = AC = 3\sqrt{6} nên tam giác ABC cân tại A.

    d) Sai. Gọi D(x;y;z), vì ABCD là hình bình hành nên

    \overrightarrow{AB} =
\overrightarrow{CD} \Leftrightarrow ( - 3;3;6) = (x - 4;y + 6;z -
1)

    \Leftrightarrow (x;y;z) = (1; -
3;7)

  • Câu 13: Nhận biết

    Trong không gian Oxyz, cho hai điểm A( - 1;2; - 3)B(2; - 1;0). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (2 + 1; - 1 - 2;0
+ 3) = (3; - 3;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(3; - 3;3).

  • Câu 14: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

     

    a) Sai

     

    Ta thấy ABCD là hình chữ nhật nên AB//CD

    Suy ra hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, ngược hướng.

    b) Sai

    Ta có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.

    Suy ra \tan\widehat{SAC} = \frac{SA}{SC}
= \frac{2a}{a\sqrt{5}} \Rightarrow \widehat{SAC} \approx
41^{0}48'

    Ta có: \left(
\overrightarrow{SC};\overrightarrow{AC} ight) = \left(
\overrightarrow{CS};\overrightarrow{CA} ight) = \widehat{SAC} \approx
41^{0}48'

    c) Đúng

    Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.

    Suy ra SB = \sqrt{SA^{2} +
AB^{2}} = a\sqrt{5}

    Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:

    AM = \frac{1}{2}SB =
\frac{a\sqrt{5}}{2}

    Lại có M là trung điểm của SB nên MB =
\frac{1}{2}SB = \frac{a\sqrt{5}}{2}

    Ta tính được \cos MAB = \frac{MA^{2} +
AB^{2} - MB^{2}}{2MA.AB} = \frac{\sqrt{5}}{5}

    \left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\widehat{MAB}

    \Rightarrow
\overrightarrow{AM}.\overrightarrow{AB} = \left| \overrightarrow{AM}
ight|.\left| \overrightarrow{AB} ight|.cos\left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\frac{a\sqrt{5}}{2}.a.\frac{\sqrt{5}}{5} = \frac{a^{2}}{2}

    d) Sai

    Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD

    Do đó MN = \frac{1}{2}BD = \sqrt{AB^{2} +
AD^{2}} = \frac{a\sqrt{5}}{2}

    Suy ra \left| \overrightarrow{AM} -
\overrightarrow{AN} ight| = \left| \overrightarrow{MN} ight| =
\frac{a\sqrt{5}}{2}

  • Câu 15: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCCD.A'B'C'D'. Biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Tọa độ điểm B' là:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{BC} = ( - 5;4;7) \Rightarrow D( - 3;8; - 7)

    \overrightarrow{BD} =
\overrightarrow{B'D'} = ( - 7;8; - 7) \Rightarrow
B'(13;0;17)

  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
4;0);\overrightarrow{v} = ( - 1; - 2;1). Tìm tọa độ vectơ \overrightarrow{u} +
3\overrightarrow{v}?

    Ta có: 3\overrightarrow{v} = ( - 3; -
6;3) do đó \overrightarrow{u} +
3\overrightarrow{v} = ( - 2; - 10;3)

    Vậy đáp án cần tìm là ( - 2; -
10;3).

  • Câu 17: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1;0)B(0;1;2). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (0 - 1;1 - 1;2 -
0) = ( - 1;0; - 2)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(1;2;3).

  • Câu 18: Thông hiểu

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = - 2\overrightarrow{i} +4\overrightarrow{j} + 2\overrightarrow{k}. Các khẳng định sau là đúng hay sai?

    a) Tọa độ điểm A là (−2; 4; 2). Đúng||Sai

    b) Hình chiếu vuông góc của A lên trục OxA’(0; 4; 0). Sai||Đúng

    c) Trung điểm của OAM(−1; 2; 1). Đúng||Sai

    d) Hình chiếu vuông góc của A lên mặt phẳng (Oyz)H(−2; 0; 2). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = - 2\overrightarrow{i} +4\overrightarrow{j} + 2\overrightarrow{k}. Các khẳng định sau là đúng hay sai?

    a) Tọa độ điểm A là (−2; 4; 2). Đúng||Sai

    b) Hình chiếu vuông góc của A lên trục OxA’(0; 4; 0). Sai||Đúng

    c) Trung điểm của OAM(−1; 2; 1). Đúng||Sai

    d) Hình chiếu vuông góc của A lên mặt phẳng (Oyz)H(−2; 0; 2). Sai||Đúng

    a) Ta có A(−2; 4; 2).

    b) Hình chiếu vuông góc của A lên Ox là (−2; 0; 0).

    c) Trung điểm của OA là điểm M(−1; 2; 1).

    d) Hình chiếu vuông góc của A lên mặt phẳng (Oyz)H(0; 4; 2).

  • Câu 19: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz cho điểm M(x;y;z). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu M' đối xứng với M qua mặt phẳng (Oxz) thì M'(x; - y;z).

    Nếu M' đối xứng với M qua trục Oy thì M'( - x;y; - z).

    Nếu M' đối xứng với M qua gốc tọa độ thì M'( - x; - y; - z).

    Vậy mệnh đề đúng là: “Nếu M' đối xứng với M qua mặt phẳng (Oxy) thì M'(x;y; - z)”.

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, cho hình bình hành hình bình hành. Biết các điểm A(1;0;1),B(2;1;2),D(1; - 1;1). Xác định tọa độ điểm C?

    Giả sử điểm C(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{DC} =
\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 1 \\
y + 1 = 1 \\
z - 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm C(2;0;2).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 90 lượt xem
Sắp xếp theo