Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm Mtrong không gian thỏa mãn M eq A,M eq B,M eq C\widehat{AMB} = \widehat{BMC} =\widehat{CMA} = 90^{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;1; -
2);\overrightarrow{v} = (1;0;m). Tìm tất cả các giá trị của tham số m để \left( \overrightarrow{u};\overrightarrow{v}
ight) = 45^{0}?

    Ta có: \left(
\overrightarrow{u};\overrightarrow{v} ight) = 45^{0} \Leftrightarrow
\cos\left( \overrightarrow{u};\overrightarrow{v} ight) =
\frac{\sqrt{2}}{2} \Leftrightarrow
\frac{\overrightarrow{u}.\overrightarrow{v}}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{v} ight|} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{1 -
2m}{\sqrt{6}.\sqrt{1 + m^{2}}} = \frac{\sqrt{2}}{2} \Leftrightarrow
\sqrt{3\left( m^{2} + 1 ight)} = 1 - 2m

    \Leftrightarrow \left\{ \begin{matrix}1 - 2m \geq 0 \\3m^{2} + 3 = 1 - 4m + 4m^{2} \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}m \leq \dfrac{1}{2} \\m^{2} - 4m - 2 = 0 \\\end{matrix} ight.\  \Leftrightarrow m = 2 - \sqrt{6}

    Vậy đáp án cần tìm là m = 2 -
\sqrt{6}.

  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho điểm M(1;2;3). Tìm tọa độ hình chiếu M lên trục Ox.

    Tọa độ hình chiếu của điểm M trên trục Ox là (1;0;0)

  • Câu 4: Nhận biết

    Cho hai đường thẳng aa' lần lượt có vectơ chỉ phương là \overrightarrow{u}\overrightarrow{u'}. Nếu \varphi là góc giữa hai đường thẳng aa' thì:

    Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là \cos\varphi = \left| \cos\left(
\overrightarrow{u};\overrightarrow{u'} ight) ight|.

  • Câu 5: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1;0)B(0;1;2). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (0 - 1;1 - 1;2 -
0) = ( - 1;0; - 2)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(1;2;3).

  • Câu 6: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = \dfrac{2 + 2}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{- 4 + 2}{2} = - 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = \dfrac{3 + 7}{2} = 5 \\\end{matrix} ight.\  \Rightarrow M(2; - 1;5)

    Vậy tọa độ trung điểm của AB là: (2; -
1;5).

  • Câu 7: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Xác định tọa độ B’?

    Hình vẽ minh họa

    Giả sử điểm D(a;b;c),B'(a';b';c')

    Gọi O = AC \cap BD \Rightarrow O\left(
\frac{1}{2};4; - \frac{7}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 8 \\
c = - 7 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{DD'} = (9;0;17) \\
\overrightarrow{BB'} = (a' - 4;b';c') \\
\end{matrix} ight.. Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{DD'} =
\overrightarrow{BB'}

    \Leftrightarrow \left\{ \begin{matrix}
a' = 13 \\
b' = 0 \\
c' = 17 \\
\end{matrix} ight.\  \Rightarrow B'(13;0;17)

  • Câu 8: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ).

    Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Đúng||Sai

    b) \overrightarrow{AC'} =
\overrightarrow{AD} + \overrightarrow{AB} +
\overrightarrow{AA'}. Đúng||Sai

    c) \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) =
45^{\circ}. Đúng||Sai

    d) \overrightarrow{AC}.\overrightarrow{B'C'}
= \frac{\sqrt{2}a^{2}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ).

    Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Đúng||Sai

    b) \overrightarrow{AC'} =
\overrightarrow{AD} + \overrightarrow{AB} +
\overrightarrow{AA'}. Đúng||Sai

    c) \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) =
45^{\circ}. Đúng||Sai

    d) \overrightarrow{AC}.\overrightarrow{B'C'}
= \frac{\sqrt{2}a^{2}}{2}. Sai||Đúng

    a) Vì ABCD là hình bình hành nên \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC}.

    b) Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{AD} +
\overrightarrow{AB} + \overrightarrow{AA'} =
\overrightarrow{AC'}.

    c) Vì \overrightarrow{B'C'} =
\overrightarrow{AD} nên \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC},\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}.

    d) Tam giác ADC vuông tại D nên AC =
\sqrt{AD^{2} + DC^{2}} = \sqrt{2}a.

    Ta có

    \overrightarrow{AC}.\overrightarrow{B'C'}
= \left| \overrightarrow{AC} ight|.\left|
\overrightarrow{B'C'} ight|.cos\left(
\overrightarrow{AC},\overrightarrow{B'C'} ight)

    = \sqrt{2}a.a.cos45^{0} =
a^{2}.

  • Câu 9: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hình hộp ABCD.A^{'}B^{'}C^{'}D^{'} với các điểm A( - 1;1;2), B( - 3;2;1), D(0; - 1;2)A^{'}(2;1;2). Tìm tọa độ đỉnh C^{'}.

    Hình vẽ minh họa

    .

    Theo quy tắc hình hộp ta có: \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} = \overrightarrow{AC'}.

    \Rightarrow \left\{ \begin{matrix}
x_{C^{'}} + 1 = 2 \\
y_{C^{'}} - 1 = - 1 \\
z_{C^{'}} - 2 = - 1 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x_{C^{'}} = 1 \\
y_{C^{'}} = 0 \\
z_{C^{'}} = 1 \\
\end{matrix} \Rightarrow C'(1;0;1) ight.\  ight.

  • Câu 10: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;0),B(1;1;0),C(0;1;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = - 1 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.. Vậy tọa độ điểm D(0;0;1).

  • Câu 11: Vận dụng cao

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Đáp án là:

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Hình vẽ minh họa

    Ta có: A(0;\ 0;\ 0), B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) nên \overrightarrow{AB} = (m;0;0)

    AB = m (do m;n > 0); AD = m; AA' = n.

    V_{ACB'D'} =\frac{1}{3}V_{ABCD.A'B'C'D'} =\frac{1}{3}.m.m.n

    V_{ACB'D'} = \frac{1}{3}.m.m.n =\frac{1}{3}m^{2}(4 - m).

    Xét hàm số f(m) = \frac{1}{3}m^{2}(4 - m)= - \frac{1}{3}m^{3} + \frac{4}{3}m^{2} trên (0;4)

    f'(m) = - m^{2} + \frac{8}{3}m =0\left\lbrack \begin{matrix}m = 0 \\m = \frac{8}{3} \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy MaxV_{ACB'D'} =\frac{256}{81} \simeq 3,16.

  • Câu 12: Vận dụng cao

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Nhận biết

    Trong không gian, cho hai vectơ \overrightarrow{AB}\overrightarrow{BC}. Vectơ \overrightarrow{AC} bằng

    Theo quy tắc ba điểm: \overrightarrow{AC}\  = \ \overrightarrow{\
AB}\  + \ \overrightarrow{BC}.

  • Câu 14: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; - 1;5),B(5; - 5;7),M(x;y;1). Với giá trị nào của x;y thì ba điểm đã cho thẳng hàng?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (3; - 4;2) \\
\overrightarrow{AM} = (x - 2;y + 1; - 4) \\
\end{matrix} ight.

    Vì ba điểm A; B; M thẳng hàng nên \overrightarrow{AB};\overrightarrow{AM} cùng phương

    \Leftrightarrow \frac{x - 2}{3} =
\frac{y + 1}{- 4} = \frac{- 4}{2} \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 7 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là x = - 4;y =
7.

  • Câu 15: Thông hiểu

    Cho tứ diện ABCD. Gọi M;N lần lượt là trung điểm các cạnh AC;BD, G là trọng tâm của tứ diện ABCDO là một điểm bất kì trong không gian. Tìm giá trị của k thỏa mãn đẳng thức k.\left( \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} ight)
= \overrightarrow{OG}?

    Vì G là trọng tâm tứ diện nên

    \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \left(
\overrightarrow{GO} + \overrightarrow{OA} ight) + \left(
\overrightarrow{GO} + \overrightarrow{OB} ight) + \left(
\overrightarrow{GO} + \overrightarrow{OC} ight) + \left(
\overrightarrow{GO} + \overrightarrow{OD} ight) =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{GO} +
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
4\overrightarrow{OG}

    \Leftrightarrow k = \dfrac{1}{4}.

  • Câu 16: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( - 2;3;3). Điểm M(a;b;c) là đỉnh thứ tư của hình bình hành ABCM. Khi đó giá trị biểu thức T = a + b - c có giá trị bằng bao nhiêu?

    Gọi tọa độ điểm M(x;y;z)

    Ta có: ABCM là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{MC}

    \Leftrightarrow \left\{ \begin{matrix}
- 2 - x = 1 \\
3 - y = - 3 \\
3 - z = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = 6 \\
z = - 1 \\
\end{matrix} ight. suy ra điểm M( - 3;6; - 1)

    Khi đó T = a + b - c = - 3 + 6 - ( - 1) =
4.

  • Câu 17: Vận dụng

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi điểm I \in CC' sao cho \overrightarrow{C'I} =
\frac{1}{3}\overrightarrow{C'C}, G là trọng tâm tứ diện BAB'C'. Biểu diễn vectơ \overrightarrow{IG} qua các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Đáp án nào dưới đây đúng?

    Ta có G là trọng tâm của tứ diện BA'B'C' nên

    4\overrightarrow{IG} =
\overrightarrow{IB} + \overrightarrow{IA'} +
\overrightarrow{IB'} + \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\left( \overrightarrow{IC} + \overrightarrow{CB} ight) + \left(
\overrightarrow{IC'} + \overrightarrow{C'A'} ight) +
\left( \overrightarrow{IC'} + \overrightarrow{C'B'} ight)
+ \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\overrightarrow{IC'} + \left( 2\overrightarrow{IC'} +
\overrightarrow{IC} ight) + \left( \overrightarrow{CB} +
\overrightarrow{C'B'} ight) +
\overrightarrow{C'A'}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{CC'} + \overrightarrow{0} +
2\overrightarrow{CB} - \overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{AA'} + 2\overrightarrow{CB} -
\overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{a} + 2\left( \overrightarrow{b} -
\overrightarrow{c} ight) - \overrightarrow{c}

    \Leftrightarrow \overrightarrow{IG} =
\frac{1}{4}\left( \frac{1}{3}\overrightarrow{a} + \overrightarrow{b} -
2\overrightarrow{c} ight)

  • Câu 18: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    a) Đúng: Gọi I là trung điểm AB.

    Ta có \left\{ \begin{matrix}
  {x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{1 + 2}}{2} = \dfrac{3}{2} \hfill \\
  {y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2} \hfill \\
  {z_I} = \dfrac{{{z_A} + {z_B}}}{2} = \dfrac{{3 + 5}}{2} = 4 \hfill \\ 
\end{matrix}  ight. \Rightarrow I\left( {\dfrac{3}{2};\dfrac{3}{2};4} ight)

    b) Đúng: Ta có \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10).

    c) Đúng: Ta có \overrightarrow{AB} = (1;
- 1;2),\overrightarrow{AC} = (1;2; - 1).

    \cos(AB,AC) =\cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{|\overrightarrow{AB} \cdot\overrightarrow{AC}|}{|\overrightarrow{AB}| \cdot|\overrightarrow{AC}|}

    = \frac{|1 \cdot 1 + ( - 1) \cdot 2 + 2
\cdot ( - 1)|}{\sqrt{1^{2} + ( - 1)^{2} + 2^{2}} \cdot \sqrt{1^{2} +
2^{2} + ( - 1)^{2}}} = \frac{1}{2}

    Suy ra (AB,AC) = 60^{\circ}.

    d) Sai: Gọi K(x;y;z) thỏa mãn 3\overrightarrow{KB} - \overrightarrow{KC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - (2 - x) = 0 \\3(1 - y) - (4 - y) = 0 \\3(5 - z) - (2 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{1}{2} \\z = \dfrac{13}{2} \\\end{matrix} ight.\  ight.

    Suy ra K\left( 2; -
\frac{1}{2};\frac{13}{2} ight).

    Khi đó T = |3\overrightarrow{IB} -
\overrightarrow{IC}| = |3\overrightarrow{IK} + 3\overrightarrow{KB} -
\overrightarrow{IK} - \overrightarrow{KC}| = |2\overrightarrow{IK}| =
2IK.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của K trên (Oxz) suy ra I(2;0;\frac{13}{2} )..

    Suy ra a = 2,b = 0,c =
\frac{13}{2}.

    Vậy a - 2b + 2c = 15.

  • Câu 19: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;2;3),B(2; - 1;5),C(3;2; - 1). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 3 - 2 \\
y - 3 = 2 + 1 \\
z - 2 = - 1 - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 6 \\
z = - 4 \\
\end{matrix} ight.. Vậy tọa độ điểm D(2;6; - 4).

  • Câu 20: Nhận biết

    Xác định tọa độ trọng tâm G của tam giác ABC, biết rằng A(1;3;4),B(2; - 1;0),C(3;1;2)?

    Tọa độ trọng tâm G của tam giác được xác định như sau:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{1 + 2 + 3}{3} = 2 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{3 - 1 + 1}{3} = 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{4 + 0 + 2}{3} = 2 \\\end{matrix} ight.\  \Rightarrow G(2;1;2)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo