Trong không gian
, cho hai điểm
. Tìm tọa độ điểm
thỏa mãn hệ thức
?
Ta có:
Trong không gian
, cho hai điểm
. Tìm tọa độ điểm
thỏa mãn hệ thức
?
Ta có:
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian
, cho hình chóp
có đáy
là hình thoi cạnh bằng 5, giao điểm của hai đường chéo
và
trùng với gốc tọa độ
. Các véc tơ
,
,
lần lượt cùng hướng với các véc tơ
,
,
và
,
. Gọi
là trung điểm cạnh
. Tọa độ của véc tơ
là
Hình vẽ minh họa
Ta có .
Khi đó .
Vì là trung điểm của
nên ta có
.
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?

Đáp án: 1223
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Gọi là tọa độ của máy bay sau 5 phút tiếp theo.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ gấp 4 lần thời gian bay từ
nên
Mặt khác, máy bay giữ nguyên hướng bay nên và
cùng hướng.
Suy ra
Tọa độ của máy bay sau 5 phút tiếp theo là .
Do đó,
Cho hai đường thẳng
và
lần lượt có vectơ chỉ phương là
và
. Nếu
là góc giữa hai đường thẳng
và
thì:
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là .
Trong không gian với hệ trục tọa độ
, cho điểm
. Với giá trị nào của
thì ba điểm đã cho thẳng hàng?
Ta có:
Vì ba điểm A; B; M thẳng hàng nên cùng phương
Vậy đáp án cần tìm là .
Cho
, góc giữa
bằng
. Chọn khẳng định sai trong các khẳng định sau?
Ta có:
Khi đó:
Vậy khẳng định sai là .
Cho lăng trụ tam giác
. Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Trong không gian
, cho hai điểm
,
, tọa độ điểm
thuộc trục
sao cho
thẳng hàng là
Vì điểm thuộc trục
nên
có tọa độ
.
Ta có ;
thẳng hàng
cùng phương
Vậy điểm .
Trong không gian
, cho vectơ
. Tọa độ điểm
là:
Ta có:
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian tọa độ
, hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực
, được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).

Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Đặt thì
.
Chú ý thêm là:
Ta có:
với
là trọng tâm
.
Vì hình chóp đều nên
Do đó , suy ra
.
Khi gắn các lực vào ta có:
Từ đó: .
Vậy lực căng mỗi sợi dây là .
Trong các mệnh đề sau, mệnh đề nào sai?
Bằng quy tắc 3 điểm ta nhận thấy rằng: đúng với mọi điểm
nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.
Trong không gian
, cho hai điểm
. Tọa độ tâm đường tròn nội tiếp tam giác
là:
Ta có bài toán sau
Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: với
Hình vẽ minh họa
Gọi A’ là chân đường phân giác kẻ từ A
Áp dụng công thức trong tam giác OMN ta có:
Vậy đáp án cần tìm là
Trong không gian
, cho hai vectơ
và
. Tính tích vô hướng
?
Ta có:
Cho hình hộp chữ nhật
có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Cho hình lập phương
có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Cho hình lập phương có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Hình vẽ minh họa
Vì nên
Ta có:
Vậy
Trong không gian
, cho điểm
. Hình chiếu vuông góc của
trên mặt phẳng
là điểm
. Khi đó giá trị
bằng:
Hình chiếu vuông góc của trên mặt phẳng
là
Suy ra .