Cho tứ diện
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là đỉnh thứ tư của hình bình hành
.
Cho tứ diện
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là đỉnh thứ tư của hình bình hành
.
Trong không gian
, mặt phẳng
đi qua điểm nào sau đây?
Xét điểm ta có:
đúng nên
.
Trong không gian với hệ trục tọa độ
cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Trong không gian với hệ trục tọa độ cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Cho tứ diện
trọng tâm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Vì G là trọng tâm tứ diện ABCD nên suy ra:
Suy ra mệnh đề sai là .
Trong không gian hệ trục tọa độ
, cho tam giác
có tọa các điểm
. Tính số đo góc
?
Ta có:
Tứ giác
là hình bình hành biết tọa độ các điểm
. Tìm tọa độ điểm
?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian
, cho điểm
. Hình chiếu vuông góc của
trên mặt phẳng
là điểm
. Khi đó giá trị
bằng:
Hình chiếu vuông góc của trên mặt phẳng
là
Suy ra .
Trong không gian
, cho điểm
. Tọa độ trung điểm của
là.
Tọa độ trung điểm I của AB là:
Trong không gian
, cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 5 là giá trị cần tìm.
Trong không gian hệ trục tọa độ
, cho hai vectơ
và
. Tính độ dài vectơ
?
Ta có:
Khi đó
Trong không gian
, cho các điểm
. Tích
bằng:
Ta có: . Khi đó
.
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Trong không gian
, cho hai điểm
. Tọa độ tâm đường tròn nội tiếp tam giác
là:
Ta có bài toán sau
Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: với
Hình vẽ minh họa
Gọi A’ là chân đường phân giác kẻ từ A
Áp dụng công thức trong tam giác OMN ta có:
Vậy đáp án cần tìm là
Cho tứ diện
. Gọi
là trọng tâm của tam giác
.Phân tích nào sau đây là đúng?
Ta có: là trọng tâm tam giác
khi
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí
cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ
với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

a) Vị trí của khinh khí cầu thứ hai có tọa độ là
. Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá
km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ
. Đúng||Sai
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).
a) Vị trí của khinh khí cầu thứ hai có tọa độ là . Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ . Đúng||Sai
a) Sai
Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là .
b) Đúng
Chiếc khinh khí cầu thứ nhất có tọa độ là .
Khoảng cách giữa hai chiếc khinh khí cầu là
c) Sai
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:
Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.
d) Đúng
Vị trí của chiếc flycam là
.
Khoảng cách bay của flycam là:
Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ là
Vậy flycam không đến được vị trí có tọa độ .
Cho tứ diện
và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho hình hộp
có tâm
. Gọi
là tâm hình bình hành
. Đặt
. Chọn khẳng định đúng?
Vì là tâm hình bình hành
nên
Cho tứ diện
có
đôi một vuông góc.
là một điểm bất kì thuộc miền trong tam giác
. Tìm giá trị nhỏ nhất của biểu thức
?
Đặt . Khi đó
với
là ba số có tổng bằng 1.
Ta có:
Tương tự ta được
Do đó
Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa
Do đó
Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.
Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là
và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.
Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.
Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)
Ta có
OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0
⟺13906t - 76483 = 0 ⟺
Suy ra
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
Tìm tọa độ trung điểm
của đoạn thẳng
. Biết tọa độ hai điểm
và
.
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .