Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho A(1;\ \ 1;\  - 2)B(2;\ \  - 1;\ \ 0). Hãy xác định tọa độ của \overrightarrow{AB}?

    Ta có:

    \overrightarrow{AB} = (1;\  - \ 2;\ \
2)

  • Câu 2: Thông hiểu

    Cho hình hộp ABCD.EFGH\overrightarrow{AB} =\overrightarrow{a};\overrightarrow{AD} =\overrightarrow{b};\overrightarrow{AE} = \overrightarrow{c}. Gọi I là trung điểm của đoạn BG. Biểu thị \overrightarrow{AI} theo ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AI} =
\overrightarrow{AB} + \overrightarrow{BI} = \overrightarrow{a} +
\frac{1}{2}\overrightarrow{BG}

    = \overrightarrow{a} + \frac{1}{2}\left(
\overrightarrow{BF} + \overrightarrow{BC} ight) = \overrightarrow{a} +
\frac{1}{2}\left( \overrightarrow{b} + \overrightarrow{c}
ight)

  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = ( -
3;4;0)\overrightarrow{b} =
(5;0;12). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 15}{\sqrt{( -
3)^{2} + 4^{2} + 0^{2}}.\sqrt{5^{2} + 0^{2} + 12^{2}}} = -
\frac{3}{13}

  • Câu 4: Nhận biết

    Tính chất nào sau đây sai?

    Tính chất sai là: \overrightarrow{a} -
\overrightarrow{b} = \overrightarrow{b} -
\overrightarrow{a}

  • Câu 5: Vận dụng cao

    Cho hình chóp S.ABC. Lấy các điểm A';B';C' lần lượt thuộc các tia SA;SB;SC sao cho \frac{SA}{SA'} = a;\frac{SB}{SB'} =
b;\frac{SC}{SC'} = c trong đó a;b;c là các hệ số biến thiên. Để mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC thì tổng các hệ số bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi G là trọng tâm tam giác ABC suy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Khi đó 3\overrightarrow{GS} +
\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =
\overrightarrow{0}\overrightarrow{SA} =
a\overrightarrow{SA'};\overrightarrow{SB} =
b\overrightarrow{SB'};\overrightarrow{SC} =
c\overrightarrow{SC'}

    Suy ra 3\overrightarrow{SG} =
a\overrightarrow{SA'} + b\overrightarrow{SB'} +
c\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'}

    Vì mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC suy ra \overrightarrow{GA'};\overrightarrow{GB'};\overrightarrow{GC'} đồng phẳng.

    Do đó tồn tại ba số l;m;n sao cho l^{2} + m^{2} + n^{2} eq 0) và l\overrightarrow{GA'} +
m\overrightarrow{GB'} + n\overrightarrow{GC'} =
\overrightarrow{0}

    \Leftrightarrow l\left(
\overrightarrow{GS} + \overrightarrow{SA'} ight) + m\left(
\overrightarrow{GS} + \overrightarrow{SB'} ight) + n\left(
\overrightarrow{GS} + \overrightarrow{SC'} ight) =
\overrightarrow{0}s

    \Leftrightarrow (l + m +
n)\overrightarrow{SG} = l\overrightarrow{SA'} +
m\overrightarrow{SB'} + n\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{l}{l + m + n}\overrightarrow{SA'} + \frac{m}{l + m +
n}\overrightarrow{SB'} + \frac{n}{l + m +
n}\overrightarrow{SC'}

    \Leftrightarrow
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'} = \frac{l}{l + m +
n}\overrightarrow{SA'} + \frac{m}{l + m + n}\overrightarrow{SB'}
+ \frac{n}{l + m + n}\overrightarrow{SC'}

    Suy ra \frac{a}{3} + \frac{b}{3} +
\frac{c}{3} = \frac{l}{l + m + n} + \frac{m}{l + m + n} + \frac{n}{l + m
+ n} = 1

    \Rightarrow a + b + c = 3

  • Câu 6: Thông hiểu

    Tứ giác MNPQ là hình bình hành biết tọa độ các điểm M(1;2;3),N(2; -
3;1),P(3;1;2). Tìm tọa độ điểm Q?

    Giả sử điểm Q(x;y;z) khi đó \left\{ \begin{matrix}
\overrightarrow{QP} = (x - 3;y - 1;z - 2) \\
\overrightarrow{MN} = ( - 1;5;2) \\
\end{matrix} ight.

    ta có MNPQ là hình bình hành nên \overrightarrow{QP} =
\overrightarrow{MN}

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 = - 1 \\
y - 1 = 5 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 6 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm Q(2;6;4).

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Điểm G là điểm thỏa mãn \overrightarrow{GS} + \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O là tâm hình bình hành ABCD suy ra \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    Ta có:

    \overrightarrow{GS} +
\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} +
\overrightarrow{GD} = \overrightarrow{GS} + 4\overrightarrow{GO} +
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{GS} +
4\overrightarrow{GO} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{GS} = 4\overrightarrow{OG} suy ra ba điểm G;S;O thẳng hàng.

  • Câu 8: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; - 1;5),B(5; - 5;7) và điểm M \in (Oxy). Tìm tọa độ điểm M để ba điểm A;B;M thẳng hàng?

    Ta có: M \in (Oxy) \Rightarrow
M(x;y;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2;3;1) \\
\overrightarrow{AM} = (x - 2;y + 2; - 1) \\
\end{matrix} ight.

    Vì ba điểm A; B; M thẳng hàng nên \overrightarrow{AB};\overrightarrow{AM} cùng phương

    \Leftrightarrow \frac{x - 2}{- 2} =
\frac{y + 2}{3} = \frac{- 1}{1} \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
\end{matrix} ight.\  \Rightarrow M(4; - 5;0)

    Vậy đáp án cần tìm là M(4; -
5;0).

  • Câu 9: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;0),B(1;1;0),C(0;1;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = - 1 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.. Vậy tọa độ điểm D(0;0;1).

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1; - 1; - 3)B( - 2;2;1). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = ( - 2 - 1;2 + 1;1
+ 3) = ( - 3;3;4)

    Vậy đáp án đúng là: \overrightarrow{AB} =
( - 3;3;4).

  • Câu 11: Thông hiểu

    Trong không gian Oxyz, cho điểm A(2; - 3;5). Tìm tọa độ điểm A' đối xứng với A qua trục Oy?

    Gọi H là hình chiếu vuông góc của A(2; -
3;5) lên Oy suy ra H(0; - 3;0)

    Khi đó H là trung điểm của AA' nên

    \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} \\
y_{A'} = 2y_{H} - y_{A} \\
z_{A'} = 2z_{H} - z_{A} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{A'} = 2 \\
y_{A'} = - 3 \\
z_{A'} = - 5 \\
\end{matrix} ight.\  \Rightarrow A'( - 2; - 3; - 5)

  • Câu 12: Nhận biết

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 13: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A( - 2;3;1),B(3;0; - 1),C(6;5;0). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
6 - x = 3 + 2 \\
5 - y = 0 - 3 \\
- z = - 1 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 8 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;8;2).

  • Câu 14: Vận dụng cao

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Đáp án là:

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Ta có \overrightarrow{AH} = (a;b;c -
1),\overrightarrow{BC} = (3;3; - 1),\overrightarrow{BH} = (a + 1;b +
2;c).

    H là chân đường cao nên ta có

    \left\{ \begin{matrix}\overrightarrow{AH}\bot\overrightarrow{BC} \\\overrightarrow{BH} = k\overrightarrow{BC} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}3a + 3b - (c - 1) = 0 \\\dfrac{a + 1}{3} = \dfrac{b + 2}{3} = \dfrac{c}{- 1} = k \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 3k - 1 \\
b = 3k - 2 \\
c = - k \\
\end{matrix} ight.3(3k - 1)
+ 3(3k - 2) - ( - k - 1) = 0 \Leftrightarrow k =
\frac{8}{19}.

    Do đó H\left( \frac{5}{19}; -
\frac{14}{19}; - \frac{8}{19} ight)

    Vậy \left( \frac{5}{19} - \frac{14}{19} -
\frac{8}{19} ight).19 = - 17.

  • Câu 15: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(0;0;0),B(a;0;0),D(0;2a;0),A'(0;0;2a) với a eq 0. Độ dài đoạn thẳng AC' là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (a;0;0) \\
\overrightarrow{AD} = (0;2a;0) \\
\overrightarrow{AA'} = (0;0;2a) \\
\end{matrix} ight.

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =
(a;2a;2a)

    Suy ra AC' = \left|
\overrightarrow{AC'} ight| = \sqrt{a^{2} + (2a)^{2} + (2a)^{2}} =
3|a|

    Vậy độ dài AC’ bằng 3|a|.

  • Câu 16: Vận dụng

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Tính giá trị của biểu thức T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight|?

    Vì các vectơ \frac{\overrightarrow{AB}}{AB};\frac{\overrightarrow{AC}}{AC};\frac{\overrightarrow{AD}}{AD} có độ dài bằng 1 và đôi một vuông góc với nhau nên

    \left( \frac{\overrightarrow{AB}}{AB} +
\frac{\overrightarrow{AC}}{AC} + \frac{\overrightarrow{AD}}{AD}
ight)^{2} = 3 \Leftrightarrow T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight| = \sqrt{3}

  • Câu 17: Vận dụng

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    a) Sai

    Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là ( -
1,5\ ;\  - 1\ ;\ 0,5).

    b) Đúng

    Chiếc khinh khí cầu thứ nhất có tọa độ là (2,5\ ;\ 1\ ;\ 0,7).

    Khoảng cách giữa hai chiếc khinh khí cầu là

    \sqrt{(2,5 + 1,5)^{2} + (1 + 1)^{2} +
(0,7 + 0,5)^{2}}

    = \frac{2\sqrt{134}}{5} \approx
4,6(km)

    c) Sai

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:

    \sqrt{2,5^{2} + 1^{2} + 0,7^{2}} =
\frac{3\sqrt{86}}{10} \approx 2,8(km)

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:

    \sqrt{( - 1,5)^{2} + ( - 1)^{2} +
0,5^{2}} = \frac{\sqrt{14}}{2} \approx 1,9(km)

    Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.

    d) Đúng

    Vị trí của chiếc flycam là

    \left( \frac{2,5 - 1,5}{2}\ ;\ \frac{1 -
1}{2}\ ;\ \frac{0,7 + 0,5}{2} ight) = (0,5\ ;\ 0\ ;\
0,6).

    Khoảng cách bay của flycam là:

    \sqrt{0,5^{2} + 0^{2} + 0,6^{2}} =
\frac{\sqrt{61}}{10} \approx 0,8(km)

    Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ (3\ ;\ 1\ ;\  - 1)

    \sqrt{3^{2} + 1^{2} + ( - 1)^{2}} =
\sqrt{11} \approx 3,3(km) > 0,8(km)

    Vậy flycam không đến được vị trí có tọa độ (3\ ;\ 1\ ;\  - 1).

  • Câu 18: Nhận biết

    Trong không gian Oxyz, cho điểm M(1;0;2). Mệnh đề nào sau đây đúng?

    Vì tọa độ điểm M(1;0;2)x = 1;y = 0;z = 2 nên M \in (Oxz).

  • Câu 19: Vận dụng

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Cách 1. Gọi P là trung điểm CD, I = MP \cap AD, J = IN \cap DD', K = AC \cap MP.

    Ta có MP//BD \Rightarrow MP//B'D'
\Rightarrow d(B'D';MN) = d\left\lbrack B'D';(MNP)
ightbrack = d\left\lbrack D';(MNP) ightbrack.

    Lại có d\left\lbrack D';(MNP)
ightbrack = \frac{D'J}{DJ}d\left\lbrack D;(MNP) ightbrack =
5.d\left\lbrack D;(MNP) ightbrack.

    Mặt khác d\left\lbrack D;(MNP)
ightbrack = \frac{DI}{AI}d\left\lbrack A;(MNP) ightbrack =
\frac{1}{3}d\left\lbrack A;(MNP) ightbrack.

    Dễ thấy \left\{ \begin{matrix}
(NAK)\bot(MNP) \\
(NAK) \cap (MNP) = AK \\
AH\bot NK\ (H \in NK)\ trong\ (NAK) \\
\end{matrix} ight.

    \Rightarrow AH\bot(MNP) \Rightarrow
d\left\lbrack A;(MNP) ightbrack = AH.

    Suy ra d(MN;B'D') =
\frac{5}{3}d\left\lbrack A;(MNP) ightbrack = \frac{5}{3}AH với AN = \frac{AA'}{2} = 2 ; AK = \frac{3}{4}\sqrt{2}AB =
\frac{3\sqrt{2}}{2}.

    Vậy d(MN;B'D') = \frac{5}{3}AH =
\frac{5}{3}.\frac{AN.AK}{\sqrt{AN^{2} + AK^{2}}} =
\frac{5}{3}.\frac{\frac{3\sqrt{2}}{2}.2}{\sqrt{\left(
\frac{3\sqrt{2}}{2} ight)^{2} + 2^{2}}} = \frac{10.\sqrt{17}}{17}
\simeq 2,43.

    Cách 2. Đặt các trục Ox, OyOz vào hình như sau

    Ta có M(1;2;0), N(0;0;2), B'(0;2;4)D'(2;0;4).

    Ta có \overrightarrow{MN} = ( - 1; -
2;2), \overrightarrow{B'D'}
= (2; - 2;0)\overrightarrow{MB'} = ( - 1;0;4) \Rightarrow
\left\lbrack \overrightarrow{MN},\overrightarrow{B'D'}
ightbrack = (4;4;6).

    Khi đó :

    d\left( MN;B^{'}D^{'} ight) =
\frac{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}}
ightbrack.\overrightarrow{MB^{'}} ight|}{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}} ightbrack
ight|}

    = \frac{\left| ( - 1).4 + 0.4 + 4.6
ight|}{\sqrt{4^{2} + 4^{2} + 6^{2}}} = \frac{10\sqrt{17}}{17} \simeq
2,43.

  • Câu 20: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo