Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Đáp án là:

    Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.\A'B'C'D'A trùng với gốc tọa độ O Biết rằng B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) với m, n là các số dương và m + n = 4. Tính thể tích lớn nhất của tứ diện ACB'D'? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 3,16

    Hình vẽ minh họa

    Ta có: A(0;\ 0;\ 0), B(m;\ 0;\ 0), D(0;\ m;\ 0), A'(0;\ 0;\ n) nên \overrightarrow{AB} = (m;0;0)

    AB = m (do m;n > 0); AD = m; AA' = n.

    V_{ACB'D'} =\frac{1}{3}V_{ABCD.A'B'C'D'} =\frac{1}{3}.m.m.n

    V_{ACB'D'} = \frac{1}{3}.m.m.n =\frac{1}{3}m^{2}(4 - m).

    Xét hàm số f(m) = \frac{1}{3}m^{2}(4 - m)= - \frac{1}{3}m^{3} + \frac{4}{3}m^{2} trên (0;4)

    f'(m) = - m^{2} + \frac{8}{3}m =0\left\lbrack \begin{matrix}m = 0 \\m = \frac{8}{3} \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy MaxV_{ACB'D'} =\frac{256}{81} \simeq 3,16.

  • Câu 2: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 3: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} =
\overrightarrow{c};\overrightarrow{BC} = \overrightarrow{d}. Trong các mệnh đề sau, mệnh đề nào đúng?

    Ta có: \overrightarrow{d} =
\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} =
\overrightarrow{c} - \overrightarrow{b}

    Do đó \overrightarrow{b} -
\overrightarrow{c} + \overrightarrow{d} =
\overrightarrow{0}

  • Câu 4: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hình hộp ABCD.A^{'}B^{'}C^{'}D^{'} với các điểm A( - 1;1;2), B( - 3;2;1), D(0; - 1;2)A^{'}(2;1;2). Tìm tọa độ đỉnh C^{'}.

    Hình vẽ minh họa

    .

    Theo quy tắc hình hộp ta có: \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} = \overrightarrow{AC'}.

    \Rightarrow \left\{ \begin{matrix}
x_{C^{'}} + 1 = 2 \\
y_{C^{'}} - 1 = - 1 \\
z_{C^{'}} - 2 = - 1 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x_{C^{'}} = 1 \\
y_{C^{'}} = 0 \\
z_{C^{'}} = 1 \\
\end{matrix} \Rightarrow C'(1;0;1) ight.\  ight.

  • Câu 5: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;2; - 3),B(2;5;7),C( - 3;1;4). Xác định tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 3 - x \\
3 = 1 - y \\
20 = 4 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = - 6 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2; - 6).

  • Câu 6: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Nhận biết

    Trong không gian cho hai đường thẳng a;b lần lượt có vectơ chỉ phương \overrightarrow{u};\overrightarrow{v}. Gọi \alpha là góc giữa hai đường thẳng a;b. Khẳng định nào sau đây đúng?

    Khẳng định đúng: “Nếu a\bot b thì \overrightarrow{u}.\overrightarrow{v} =
\overrightarrow{0}”.

  • Câu 8: Vận dụng

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Tính giá trị của biểu thức T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight|?

    Vì các vectơ \frac{\overrightarrow{AB}}{AB};\frac{\overrightarrow{AC}}{AC};\frac{\overrightarrow{AD}}{AD} có độ dài bằng 1 và đôi một vuông góc với nhau nên

    \left( \frac{\overrightarrow{AB}}{AB} +
\frac{\overrightarrow{AC}}{AC} + \frac{\overrightarrow{AD}}{AD}
ight)^{2} = 3 \Leftrightarrow T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight| = \sqrt{3}

  • Câu 9: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 10: Vận dụng cao

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu

    Trong không gian Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} +
4\overrightarrow{j} - 5\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{i} = (3;0;0) \\
4\overrightarrow{j} = (0;4;0) \\
5\overrightarrow{k} = (0;0;5) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{OA} =
3\overrightarrow{i} + 4\overrightarrow{j} - 5\overrightarrow{k}
\Rightarrow A(3;4; - 5)

  • Câu 12: Thông hiểu

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Ta có \overrightarrow{AB} = (1;5; -
2),\overrightarrow{AC} = (5;4; - 1),\overrightarrow{AC} = (4; -
1;1).

    Ta có:

    \overrightarrow{AB}.\overrightarrow{AC} = 5 + 20 +
2 = 27.

    Ta có:

    \overrightarrow{AC}.\overrightarrow{CB} = 5.( - 4)
+ 4.1 + ( - 1).( - 1) = - 15.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB} ight|.|\overrightarrow{AC}|} =\frac{27}{\sqrt{30}.\sqrt{42}} = \frac{9}{2\sqrt{35}}.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{\overrightarrow{AB}.\overrightarrow{BC}}{\left|\overrightarrow{AB} ight||\overrightarrow{BC}|} =\frac{15}{\sqrt{42}.\sqrt{18}} = \frac{5}{2\sqrt{21}}.

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho hai điểm M(2;1;2), N(4; 2; 1), tọa độ điểm P thuộc trục Oz sao cho M;N; Pthẳng hàng là

    Vì điểm Pthuộc trục Oz nên P có tọa độ P(0;0;z).

    Ta có \overrightarrow{MN}(2;1; -
1); \overrightarrow{NP}( - 4; - 2;z
- 1)

    M;\ N;\ P thẳng hàng\Leftrightarrow\overrightarrow{MN};\overrightarrow{NP} cùng phương

    \Leftrightarrow \frac{- 4}{2} = \frac{-
2}{1} = \frac{z - 1}{- 1} \Leftrightarrow z - 1 = 2 \Leftrightarrow z =
3

    Vậy điểm P(0;0;3).

  • Câu 14: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1;3)B( - 1;2;3). Trung điểm của đoạn thẳng AB có tọa độ là:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 0 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{3}{2} \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M\left( 0;\dfrac{3}{2};3ight)

    Vậy tọa độ trung điểm của AB là: \left(
0;\frac{3}{2};3 ight).

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho điểm M(1;2;3). Tìm tọa độ hình chiếu M lên trục Ox.

    Tọa độ hình chiếu của điểm M trên trục Ox là (1;0;0)

  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;2; - 3),\ \ B(3; - 2;1). Tọa độ trung điểm của AB là.

    Tọa độ trung điểm I của AB là:

    I = \left( \frac{1 + 3}{2};\frac{2 -
2}{2};\frac{- 3 + 1}{2} ight) = (2;0; - 1)

  • Câu 17: Thông hiểu

    Cho hình hộp ABCD.EFGH\overrightarrow{AB} =\overrightarrow{a};\overrightarrow{AD} =\overrightarrow{b};\overrightarrow{AE} = \overrightarrow{c}. Gọi I là trung điểm của đoạn BG. Biểu thị \overrightarrow{AI} theo ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AI} =
\overrightarrow{AB} + \overrightarrow{BI} = \overrightarrow{a} +
\frac{1}{2}\overrightarrow{BG}

    = \overrightarrow{a} + \frac{1}{2}\left(
\overrightarrow{BF} + \overrightarrow{BC} ight) = \overrightarrow{a} +
\frac{1}{2}\left( \overrightarrow{b} + \overrightarrow{c}
ight)

  • Câu 18: Nhận biết

    Trong không gian Oxyz, cho tọa độ các vectơ \overrightarrow{a} = ( -
1;1;0); \overrightarrow{b} =
(1;1;0)\overrightarrow{c} =
(1;1;1). Mệnh đề nào sau đây sai?

    Ta có: \overrightarrow{c}.\overrightarrow{b} = 1.1 + 1.1
+ 1.0 = 2 eq 0 suy ra “\overrightarrow{c}\bot\overrightarrow{b}” là mệnh đề sai.

  • Câu 19: Thông hiểu

    Trong không gian Oxyz, cho ba điểm A(5;1;5),B(4;3;2),C( - 3; -
2;1) và điểm I(a;b;c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính giá trị biểu thức H = a + 2b + c?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2; - 3) \\
\overrightarrow{BC} = ( - 7; - 5; - 1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 0 nên tam giác ABC vuông tại B

    Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.

    \Rightarrow I\left( 1; - \frac{1}{2};3ight) \Rightarrow \left\{ \begin{matrix}a = 1 \\b = - \dfrac{1}{2} \\c = 3 \\\end{matrix} ight.\  \Rightarrow H = a + 2b + c = 3

    Vậy đáp án cần tìm là H = 3

  • Câu 20: Thông hiểu

    Trong không gian cho hình hộp ABCD.A'B'C'D'\overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AC} =
\overrightarrow{b};\overrightarrow{AA'} =
\overrightarrow{c}. Gọi I là trung điểm của B'C', K là giao điểm của A'IB'D'. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Vì I là trung điểm của B’C’ suy ra \overrightarrow{A'B'} +
\overrightarrow{A'C'} = 2\overrightarrow{A'I}

    Và K là giao điểm của A'I';B'D' nên theo định lí Talet \Rightarrow
\overrightarrow{A'K} =
\frac{2}{3}\overrightarrow{A'I}

    Ta có: \overrightarrow{AK} =
\overrightarrow{AA'} + \overrightarrow{A'K} =
\overrightarrow{AA'} +
\frac{2}{3}\overrightarrow{A'I}

    = \overrightarrow{AA'} +
\frac{1}{3}\left( \overrightarrow{A'B'} +
\overrightarrow{A'C'} ight) = \frac{1}{3}\overrightarrow{a} +
\frac{1}{3}\overrightarrow{b} + \overrightarrow{c}

    Khi đó

    \overrightarrow{DK} =
\overrightarrow{DA} + \overrightarrow{AK} = \overrightarrow{CB} +
\overrightarrow{AK} = \left( \overrightarrow{AB} - \overrightarrow{AC}
ight) + \overrightarrow{AK}

    = \overrightarrow{a} -
\overrightarrow{b} + \frac{1}{3}\overrightarrow{a} +
\frac{1}{3}\overrightarrow{b} + \overrightarrow{c} =
\frac{4}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b} +
\overrightarrow{c}

    Vậy \overrightarrow{DK} =
\frac{1}{3}\left( 4\overrightarrow{a} - 2\overrightarrow{b} +
3\overrightarrow{c} ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo