Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Vectơ và hệ trục tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 1; - 1;3), B(0;2;0) C(5; - 2;1). Điểm D(a;b;c) sao cho tứ giác ABCD là hình bình hành. Tính S = a + b + c?

    Đáp án: 3

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 1; - 1;3), B(0;2;0) C(5; - 2;1). Điểm D(a;b;c) sao cho tứ giác ABCD là hình bình hành. Tính S = a + b + c?

    Đáp án: 3

    Gọi D = (x;y;z) \Rightarrow \overrightarrow{DC} = (5 - x; - 2 -
y;1 - z)

    Ta có: \overrightarrow{AB} = (1;3; -
3)

    ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Rightarrow \left\{ \begin{matrix}
5 - x = 1 \\
- 2 - y = 3 \\
1 - z = - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
z = 4 \\
\end{matrix} ight.\  \Rightarrow D(4; - 5;4).

    Vậy S = a + b + c = 3.

  • Câu 2: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(1;0;1),B(2;1;2),D(1; -
1;1),C'(4;5; - 5). Tìm tọa độ điểm A'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    \Rightarrow \overrightarrow{AA'} =
\overrightarrow{AB} - \overrightarrow{AD} -
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (1;1;1) = \overrightarrow{i} + \overrightarrow{j}
+ \overrightarrow{k} \\
\overrightarrow{AD} = (0; - 1;0) = 0.\overrightarrow{i} -
\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AC'} = (3;5; - 6) = 3.\overrightarrow{i} +
5\overrightarrow{j} - 6\overrightarrow{k} \\
\end{matrix} ight. do đó \Rightarrow \overrightarrow{AA'} =
2\overrightarrow{i} + 5\overrightarrow{j} - 6\overrightarrow{k} hay \overrightarrow{AA'} = (3;5; -
6)

    Suy ra A'(3;5; - 6)

  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho hai điểm A( - 1;2; - 3)B(2; - 1;0). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (2 + 1; - 1 - 2;0
+ 3) = (3; - 3;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(3; - 3;3).

  • Câu 4: Thông hiểu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (5;3; -
2);\overrightarrow{b} = (m; - 1;m + 3). Có tất cả bao nhiêu giá trị nguyên dương của tham số m để góc giữa hai vectơ \overrightarrow{a};\overrightarrow{b} là góc tù?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{3m -
9}{\sqrt{38}.\sqrt{2m^{2} + 6m + 10}}

    Góc giữa hai vectơ \overrightarrow{a};\overrightarrow{b} là góc tù khi và chỉ khi

    \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) < 0 \Leftrightarrow
\frac{3m - 9}{\sqrt{38}.\sqrt{2m^{2} + 6m + 10}} < 0

    \Leftrightarrow 3m - 9 < 0
\Leftrightarrow m < 3

    m \in \mathbb{Z}^{+} \Rightarrow m =
\left\{ 1;2 ight\}

    Suy ra có 2 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.

    Vậy đáp án cần tìm là 2.

  • Câu 5: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Gọi N(x;y;z) là tọa độ của máy bay sau 10 phút tiếp theo.

    \overrightarrow{MQ} =
(400;200;2).

    \overrightarrow{NQ} = (1400 - x;800 -
y;16 - z).

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MQ}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ =
4NQ.

    Suy ra: \overrightarrow{MQ} =
4\overrightarrow{NQ}

    \Leftrightarrow \left\{ \begin{matrix}
400 = 4(1400 - x) \\
200 = 4(800 - y) \\
2 = 4(16 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1300 \\
y = 750 \\
z = 15,5 \\
\end{matrix} ight.

    \Rightarrow N(1300;750;15,5)

  • Câu 6: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho lăng trụ tam giác ABC.A'B'C' có tọa độ các điểm B( - 1;2;1),B'( -
2;1;0),C'(5;3;2). Xác định tọa độ điểm C?

    Hình vẽ minh họa

    Gọi tọa độ điểm C(x;y;z)

    ABC.A'B'C' là hình lăng trụ nên

    \overrightarrow{CC'} =
\overrightarrow{BB'} \Leftrightarrow \left\{ \begin{matrix}
5 - x = - 2 - ( - 1) \\
3 - y = 1 - 2 \\
2 - z = 0 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 6 \\
y = 4 \\
z = 3 \\
\end{matrix} ight.

    Vậy tọa độ C(6;4;3).

  • Câu 7: Nhận biết

    Cho ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?

    Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.

  • Câu 8: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
2;3);\overrightarrow{v} = ( - 1;2;0). Vectơ \overrightarrow{u} + \overrightarrow{v} có tọa độ là:

    Ta có: \overrightarrow{u} +
\overrightarrow{v} = \left( 1 + ( - 1); - 2 + 2;3 + 0 ight) =
(0;0;3)

    Vậy đáp án cần tìm là (0;0;3)

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Ta có \overrightarrow{AB} = (1;5; -
2),\overrightarrow{AC} = (5;4; - 1),\overrightarrow{AC} = (4; -
1;1).

    Ta có:

    \overrightarrow{AB}.\overrightarrow{AC} = 5 + 20 +
2 = 27.

    Ta có:

    \overrightarrow{AC}.\overrightarrow{CB} = 5.( - 4)
+ 4.1 + ( - 1).( - 1) = - 15.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB} ight|.|\overrightarrow{AC}|} =\frac{27}{\sqrt{30}.\sqrt{42}} = \frac{9}{2\sqrt{35}}.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{\overrightarrow{AB}.\overrightarrow{BC}}{\left|\overrightarrow{AB} ight||\overrightarrow{BC}|} =\frac{15}{\sqrt{42}.\sqrt{18}} = \frac{5}{2\sqrt{21}}.

  • Câu 10: Vận dụng cao

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Đáp án là:

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Ta có: \left\{ \begin{matrix}\overrightarrow{EA_{1}} = (0;1; - 6) \\\overrightarrow{EA_{2}} = \left( \frac{\sqrt{3}}{2}; - \frac{1}{2}; - 6ight) \\\overrightarrow{EA_{3}} = \left( - \frac{\sqrt{3}}{2}; - \frac{1}{2}; -6 ight) \\\end{matrix} ight.

    \Rightarrow EA_{1} = EA_{2} = EA_{3} =\sqrt{37}.

    Suy ra, \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{2}} ight| = \left|\overrightarrow{F_{3}} ight| (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).

    Do đó: \left\{ \begin{matrix}\overrightarrow{F_{1}} = k\overrightarrow{EA_{1}} = (0;k; - 6k) \\\overrightarrow{F_{2}} = k\overrightarrow{EA_{2}} = \left(\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\overrightarrow{F_{3}} = k\overrightarrow{EA_{3}} = \left( -\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\end{matrix} ight.

    \Rightarrow \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = (0;0; -18k).

    \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = \overrightarrow{P} =(0;0; - 240).

    Suy ra - 18k = - 240 \Leftrightarrow k =\frac{40}{3}.

    Từ đó \left\{ \begin{matrix}\overrightarrow{F_{1}} = \left( 0;\frac{40}{3}; - 80 ight) \\\overrightarrow{F_{2}} = \left( \frac{20\sqrt{3}}{3}; - \frac{20}{3}; -80 ight) \\\overrightarrow{F_{3}} = \left( - \frac{20\sqrt{3}}{3}; - \frac{20}{3};- 80 ight) \\\end{matrix} ight..

    Vậy \overrightarrow{F_{1}}.\overrightarrow{F_{3}} =0.\left( \frac{- 20\sqrt{3}}{3} ight) + \frac{40}{3}\left( -\frac{20}{3} ight) + ( - 80).( - 80) \approx 6311.

  • Câu 11: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(3; - 1;5),B(m;2;7). Tìm giá trị tham số m để AB
= 7?

    Theo bài ra ta có:

    AB = 7 \Leftrightarrow \sqrt{(m - 3)^{2}
+ 3^{2} + 2^{2}} = 7

    \Leftrightarrow (m - 3)^{2} = 36
\Leftrightarrow \left\lbrack \begin{matrix}
m - 3 = 6 \\
m - 3 = - 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 3 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m = 9 \\
m = - 3 \\
\end{matrix} ight..

  • Câu 12: Thông hiểu

    Hãy chọn mệnh đề đúng trong các mệnh đề sau đây?

    Nếu \overrightarrow{SB} +
\overrightarrow{SD} = \overrightarrow{SA} + \overrightarrow{SC} thì

    \overrightarrow{SB} -
\overrightarrow{SA} = \overrightarrow{SC} - \overrightarrow{SD}
\Leftrightarrow \overrightarrow{AB} = \overrightarrow{DC}

    Suy ra tứ giác ABCD là hình bình hành

    Mệnh đề sai \overrightarrow{AB} +
\overrightarrow{AC} = \overrightarrow{AD} vì:

    \overrightarrow{AB} +
\overrightarrow{AC} = \overrightarrow{AD} \Leftrightarrow
\overrightarrow{AB} = \overrightarrow{AD} - \overrightarrow{AC}
\Leftrightarrow \overrightarrow{AB} = \overrightarrow{CD}

  • Câu 13: Thông hiểu

    Cho tứ diện ABCD và điểm G thỏa mãn \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0} (G là trọng tâm của tứ diện). Gọi G_{0} là giao điểm của GA và mặt phẳng (BCD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    G_{0} là giao điểm của GA và mặt phẳng (BCD) suy ra G_{0} là trọng tâm tam giác BCD suy ra \overrightarrow{G_{0}B} + \overrightarrow{G_{0}C}
+ \overrightarrow{G_{0}D} = \overrightarrow{0}

    Theo bài ra ta có: \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{GA} +
3\overrightarrow{GG_{0}} + \overrightarrow{G_{0}B} +
\overrightarrow{G_{0}C} + \overrightarrow{G_{0}D} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{GA} +
3\overrightarrow{GG_{0}} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{GA} = 3\overrightarrow{G_{0}G}

  • Câu 14: Vận dụng cao

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}?

    Đặt \overrightarrow{OA} =
\overrightarrow{a};\overrightarrow{OB} =
\overrightarrow{b};\overrightarrow{OC} = \overrightarrow{c}. Khi đó \overrightarrow{OM} =
x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} với x;y;z là ba số có tổng bằng 1.

    Ta có:

    \overrightarrow{AM} =
\overrightarrow{OM} - \overrightarrow{OA} = (x - 1)\overrightarrow{a} +
y\overrightarrow{b} + z\overrightarrow{c}

    \Rightarrow {\overrightarrow{AM}}^{2} =
(x - 1)^{2}{\overrightarrow{a}}^{2} + y^{2}{\overrightarrow{b}}^{2} +
z^{2}{\overrightarrow{c}}^{2}

    \Rightarrow \frac{MA^{2}}{OA^{2}} = (x -
1)^{2} + y^{2}.\frac{b^{2}}{a^{2}} +
z^{2}.\frac{c^{2}}{a^{2}}

    Tương tự ta được

    \Rightarrow \left\{ \begin{matrix}\dfrac{MB^{2}}{OB^{2}} = (y - 1)^{2} + z^{2}.\dfrac{c^{2}}{b^{2}} +x^{2}.\dfrac{a^{2}}{b^{2}} \\\dfrac{MC^{2}}{OC^{2}} = (z - 1)^{2} + x^{2}.\dfrac{a^{2}}{c^{2}} +y^{2}.\dfrac{b^{2}}{c^{2}} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    + (x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight)

    - \left( x^{2} + y^{2} + z^{2} ight) +
(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight) - 2(x + y + z) + 3

    Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa \left\{ \begin{matrix}\dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} + \dfrac{1}{c^{2}} = \dfrac{1}{OH^{2}}\\x^{2}a^{2} + y^{2}b^{2} + z^{2}c^{2} = OM^{2} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}} = \frac{OM^{2}}{OH^{2}} +
1 \geq 1 + 1 = 2

    Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.

    Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.

  • Câu 15: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu

    Tìm m để góc giữa hai vectơ \overrightarrow{u} = \left(1;\log_{3}5;\log_{m}2 ight),\overrightarrow{v} = \left( 3;\log_{5}3;4ight) là góc nhọn.

    Để \left( {\widehat {\vec u,\vec v}} ight) < {90^0} \Rightarrow \cos \left( {\widehat {\vec u,\vec v}} ight) > 0

    \Rightarrow\overrightarrow{u}.\overrightarrow{v} > 0 \Leftrightarrow 3 +\log_{3}5.\log_{5}3 + 4\log_{m}2 > 0

    \Leftrightarrow 4 + 4log_{m}2 > 0
\Leftrightarrow log_{m}2 > - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m > 1 \\
m < \frac{1}{2} \\
\end{matrix} ight..

    Kết hợp điều kiện m > 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}
  {m > 1} \\ 
  {0 < m < \frac{1}{2}} 
\end{array}} ight.

  • Câu 17: Nhận biết

    Trong không gian cho tứ diện đều ABCD. Khẳng định nào sau đây sai?

    Tứ diện ABCD đều nên \overrightarrow{AD} không thể vuông góc với \overrightarrow{DC}.

    Vậy khẳng định sai là: “\overrightarrow{AD}\bot\overrightarrow{DC}”.

  • Câu 18: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

     

    a) Sai

     

    Ta thấy ABCD là hình chữ nhật nên AB//CD

    Suy ra hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, ngược hướng.

    b) Sai

    Ta có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.

    Suy ra \tan\widehat{SAC} = \frac{SA}{SC}
= \frac{2a}{a\sqrt{5}} \Rightarrow \widehat{SAC} \approx
41^{0}48'

    Ta có: \left(
\overrightarrow{SC};\overrightarrow{AC} ight) = \left(
\overrightarrow{CS};\overrightarrow{CA} ight) = \widehat{SAC} \approx
41^{0}48'

    c) Đúng

    Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.

    Suy ra SB = \sqrt{SA^{2} +
AB^{2}} = a\sqrt{5}

    Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:

    AM = \frac{1}{2}SB =
\frac{a\sqrt{5}}{2}

    Lại có M là trung điểm của SB nên MB =
\frac{1}{2}SB = \frac{a\sqrt{5}}{2}

    Ta tính được \cos MAB = \frac{MA^{2} +
AB^{2} - MB^{2}}{2MA.AB} = \frac{\sqrt{5}}{5}

    \left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\widehat{MAB}

    \Rightarrow
\overrightarrow{AM}.\overrightarrow{AB} = \left| \overrightarrow{AM}
ight|.\left| \overrightarrow{AB} ight|.cos\left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\frac{a\sqrt{5}}{2}.a.\frac{\sqrt{5}}{5} = \frac{a^{2}}{2}

    d) Sai

    Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD

    Do đó MN = \frac{1}{2}BD = \sqrt{AB^{2} +
AD^{2}} = \frac{a\sqrt{5}}{2}

    Suy ra \left| \overrightarrow{AM} -
\overrightarrow{AN} ight| = \left| \overrightarrow{MN} ight| =
\frac{a\sqrt{5}}{2}

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(2;3; - 1)B( - 4;1;9). Tìm tọa độ vectơ \overrightarrow{AB} ?

    Ta có:

    \overrightarrow{AB} = ( - 4 - 2;1 - 3;9
+ 1) = ( - 6; - 2;10)

    Vậy đáp án đúng là: \overrightarrow{AB} =
( - 6; - 2;10).

  • Câu 20: Nhận biết

    Trong không gian hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;2;3),B( - 1;2;1),C(3; - 1; - 2). Tính tích vô hướng của \overrightarrow{AB}.\overrightarrow{AC}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2;0; - 2) \\
\overrightarrow{AC} = (2; - 3; - 5) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{AC} = 6

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo