Đề kiểm tra 15 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST

Mô tả thêm: Bài kiểm tra 15 phút Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có tốc độ làm bài ít đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có tốc độ làm bài ít đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Ta có:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Tần số tích lũy

    3

    16

    34

    45

    50

    Cỡ mẫu N = 50

    Cỡ mẫu \Rightarrow \frac{N}{4} =
12,5

    => Nhóm chứa Q_{1} là [290; 330)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 290;m = 3,f = 13;c = 330
- 290 = 40

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 290 + \dfrac{12,5 - 3}{13}.40 =\dfrac{4150}{13}

    Cỡ mẫu N = 50 \Rightarrow \frac{3N}{4} =
37,5

    => Nhóm chứa Q_{3} là [370; 410)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 370;m = 34,f = 11;c =
410 - 370 = 40

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 370 + \dfrac{37,5 - 34}{11}.40 =\dfrac{4210}{11}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = \frac{4210}{11} - \frac{4150}{13} =
\frac{9080}{143} \approx 63,5

  • Câu 3: Nhận biết

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 4: Thông hiểu

    Cho mẫu số liệu ghép nhóm như sau:

    Đối tượng

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    Tần số

    6

    7

    6

    6

    5

    Kết luận nào dưới đây đúng?

    Ta có:

    Đối tượng

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    Giá trị đại diện

    4

    6

    8

    10

    12

    Tần số

    6

    7

    6

    6

    5

    Giá trị trung bình là:

    \overline{x} = \frac{6.4 + 7.6 + 6.8 +
6.10 + 5.12}{30} = 7,8

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{30}\left( 6.4^{2} +
7.6^{2} + 6.8^{2} + 6.10^{2} + 5.12^{2} ight) - 7,8^{2} =
7,56

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S = \sqrt{S^{2}} = \sqrt{7,56} \approx
2,75.

    Vậy kết luận đúng là: \overline{x} =
7,8;S \approx 2,75.

  • Câu 5: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 6: Nhận biết

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 7: Nhận biết

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Ta có: \frac{n}{4} = \frac{20}{4} =
51 + 3 < 5 < 1 + 3 +
8 nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \lbrack 16;17)

  • Câu 8: Nhận biết

    Cho bảng thống kê thời gian (đơn vị: phút) và số ngày tập thể dục của hai người A và B trong 30 ngày như sau:

    Thời gian

    [15; 20)

    [25; 30)

    [30; 35)

    Số ngày tập của A

    10

    15

    5

    Số ngày tập của B

    9

    21

    0

    Chọn kết luận đúng dưới đây?

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của A là: 35 – 15 = 20 (phút).

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của B là: 30 – 15 = 15 (phút).

    Do đó căn cứ theo khoảng biến thiên thì thời gian tập của A có độ phân tán lớn hơn.

  • Câu 9: Vận dụng

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Nhận biết

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Số xe

    3

    7

    4

    3

    3

    Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là R = 62 - 42 = 20.

  • Câu 11: Thông hiểu

    Thu nhập theo tháng (đơn vị: triệu đồng) của 20 người lao động ở ba nhà máy như sau:

    Thu nhập

    [5; 8)

    [8; 11)

    [11; 14)

    [14; 17)

    [17; 20)

    [20; 23)

    Số người nhà máy A

    2

    5

    4

    4

    5

    0

    Số người nhà máy B

    0

    6

    4

    3

    7

    0

    Số người nhà máy C

    1

    5

    8

    6

    0

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng. Đúng||Sai

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng. Sai|| Đúng

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B. Đúng||Sai

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A. Sai|| Đúng

    Đáp án là:

    Thu nhập theo tháng (đơn vị: triệu đồng) của 20 người lao động ở ba nhà máy như sau:

    Thu nhập

    [5; 8)

    [8; 11)

    [11; 14)

    [14; 17)

    [17; 20)

    [20; 23)

    Số người nhà máy A

    2

    5

    4

    4

    5

    0

    Số người nhà máy B

    0

    6

    4

    3

    7

    0

    Số người nhà máy C

    1

    5

    8

    6

    0

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng. Đúng||Sai

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng. Sai|| Đúng

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B. Đúng||Sai

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A. Sai|| Đúng

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy A là 20 - 5 = 15 triệu đồng.

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy B là 20 - 8 = 12 triệu đồng.

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy C là 17 – 5 = 12 triệu đồng.

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng.

    Chọn ĐÚNG.

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng.

    Chọn SAI.

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B.

    Chọn ĐÚNG.

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A.

    Chọn SAI.

  • Câu 12: Nhận biết

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 13: Nhận biết

    Kết quả điều tra thời gian xem tivi của một số người được ghi trong bảng sau:

    Thời gian (phút)

    [30; 60)

    [60; 90)

    [90; 120)

    [120; 150)

    [150; 180)

    Số người

    2

    4

    10

    5

    3

    Khoảng biến thiên của mẫu số liệu bằng:

    Khoảng biến thiên của mẫu số liệu là: R =
180 - 30 = 150.

  • Câu 14: Vận dụng

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tìm giá trị ngoại lệ của mẫu số liệu?

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\frac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Suy ra khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

    Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu \left\lbrack \begin{matrix}
x < Q_{1} - 1,5\Delta_{Q} \\
x > Q_{3} + 1,5\Delta_{Q} \\
\end{matrix} ight.

    Ta có: x < Q_{1} - 1,5\Delta_{Q} =
8,435

    Vậy giá trị ngoại lệ cần tìm là 8,4.

  • Câu 15: Thông hiểu

    Cho bảng thống kê số bước chân đi trong 1 tháng của A và B như sau:

    Số bước (nghìn bước)

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    A

    6

    7

    6

    6

    5

    B

    2

    5

    13

    8

    2

    Giả sử so sánh theo độ lệch chuẩn, em có nhận xét gì về số lượng bước chân đi mỗi ngày của hai người?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê số bước chân đi trong 1 tháng của A và B như sau:

    Số bước (nghìn bước)

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    A

    6

    7

    6

    6

    5

    B

    2

    5

    13

    8

    2

    Giả sử so sánh theo độ lệch chuẩn, em có nhận xét gì về số lượng bước chân đi mỗi ngày của hai người?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Nhận biết

    Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là R = 180 - 150 = 30.

  • Câu 17: Thông hiểu

    Kết quả cự li ném bóng của học sinh lớp 12 được thống kê lại ở bảng sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số học sinh

    13

    45

    24

    12

    6

    Tính số trung bình của mẫu số liệu ghép nhóm?

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số học sinh

    13

    45

    24

    12

    6

    Số trung bình:

    \overline{x} = \frac{19,25.13 + 19,75.45
+ 20,25.24 + 20,75.12 + 21,25.6}{100} = 20,015

  • Câu 18: Thông hiểu

    Một mẫu số liệu ghép nhóm có tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là 254,9 và 417,25 thì điều kiện giá trị ngoại lệ của mẫu số liệu ghép nhóm đó là:

    Gọi giá trị ngoại lệ của mẫu số liệu ghép nhóm là x

    Ta có khoảng tứ phân vị \Delta Q = 417,25
- 254,9 = 162,35

    Nên giá trị ngoại lệ 

    \left[ \begin{gathered}
  x > {Q_3} + 1,5\Delta Q = 417,25 + 1,5.162,35 = \frac{{26431}}{{40}} \approx 660,775 \hfill \\
  x < {Q_1} - 1,5\Delta Q = 254,25 - 1,5.162,35 = \frac{{91}}{8} \approx 11,375 \hfill \\ 
\end{gathered}  ight.

    Vậy \left\lbrack \begin{matrix}
x > 660,775 \\
x < 11,375 \\
\end{matrix} ight.

  • Câu 19: Nhận biết

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 20: Thông hiểu

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Bảng số liệu ghép nhóm:

    Số lỗi

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

    [100; 110)

    Tần số

    2

    5

    7

    5

    0

    0

    1

    Vậy R = 110 – 40 = 70

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo