Đề kiểm tra 15 phút Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm

Mô tả thêm: Bài kiểm tra 15 phút Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 2: Thông hiểu

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [14; 15)

    [15; 16)

    [16; 17)

    [17; 18)

    [18; 19)

    Tần số

    1

    3

    8

    6

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện của nhóm [15;16) là 15,5. Đúng||Sai

    b) Số trung bình của mẫu số liệu trên là 16,25. Sai||Đúng

    c) Phương sai của mẫu số liệu trên là 0,9875. Đúng||Sai

    d) Độ lệch chuẩn của mẫu số liệu trên là \frac{\sqrt{395}}{20}. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [14; 15)

    [15; 16)

    [16; 17)

    [17; 18)

    [18; 19)

    Tần số

    1

    3

    8

    6

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện của nhóm [15;16) là 15,5. Đúng||Sai

    b) Số trung bình của mẫu số liệu trên là 16,25. Sai||Đúng

    c) Phương sai của mẫu số liệu trên là 0,9875. Đúng||Sai

    d) Độ lệch chuẩn của mẫu số liệu trên là \frac{\sqrt{395}}{20}. Đúng||Sai

    a) Đúng: Giá trị đại diện của nhóm [15;16) là \frac{15 + 16}{2} = 15,5

     

    b) Sai: Số trung bình của mẫu số liệu trên là:

    \overline{x} = \frac{14,5.1 + 15,5.3 +
16,5.8 + 17,5.6 + 18,5.2}{20} = 16,75

    c) Đúng: Phương sai của mẫu số liệu trên là

    s^{2} = \frac{1}{20}\lbrack(14,5 -
16,75)^{2}.1 + (15,5 - 16,75)^{2}.3

    + (16,5 - 16,75)^{2}.8 + (17,5 -
16,75)^{2}.6 + (18,5 - 16,75)^{2}.2brack = 0,9875

    d) Đúng: Độ lệch chuẩn của mẫu số liệu trên là s = \sqrt{s^{2}} =
\frac{\sqrt{395}}{20}.

  • Câu 3: Thông hiểu

    Cho bảng thống kê kết quả đo cân nặng của một số trẻ em như sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số trẻ em

    6

    12

    19

    9

    4

    Xác định phương sai của mẫu số liệu đã cho?

    Ta có: N = 50

    Suy ra số trung bình của mẫu số liệu là:

    \overline{x} = \frac{6.5 + 12.7 + 19.9 +
9.11 + 4.13}{50} = 8,72

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{50}\left( 6.5^{2} +
12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{3} ight) - 8,72^{2} \approx
4,8

  • Câu 4: Thông hiểu

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 1.

    Nhóm

    Giá trị đại diện

    Tần số

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    42,5

    47,5

    52,5

    57,5

    62,5

    67,5

    4

    14

    8

    10

    6

    2

    N = 44

    Bảng 1

    Phương sai của mẫu số liệu ghép nhóm trên là:

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,5 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{4\left( 42,5 -\frac{585}{11} ight)^{2} + 14\left( 47,5 - \frac{585}{11}ight)^{2}}{44}+ \frac{8\left( 52,5 - \frac{585}{11} ight)^{2} +10\left( 57,5 - \frac{585}{11} ight)^{2}}{44}

    + \frac{+ 6\left( 62,5 - \frac{585}{11}
ight)^{2} + 2.\left( 67,5 - \frac{585}{11} ight)^{2}}{44} \approx
46,12

  • Câu 5: Nhận biết

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Đáp án là:

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

     Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

  • Câu 6: Thông hiểu

    Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn A được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số ngày

    6

    6

    4

    1

    1

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Ta có:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số ngày

    6

    6

    4

    1

    1

    Tần số tích lũy

    6

    12

    16

    17

    28

    Cỡ mẫu N = 18

    Cỡ mẫu \Rightarrow \frac{N}{4} =
\frac{18}{4}

    => Nhóm chứa Q_{1} là [20;25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 6;c =
5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \dfrac{\dfrac{18}{4} - 0}{6}.5 =23,75

    Cỡ mẫu N = 18 \Rightarrow \frac{3N}{4} =
\frac{3.18}{4}

    => Nhóm chứa Q_{3} là [30;35)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 30;m = 12,f = 4;c =
5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 30 + \dfrac{\dfrac{3.18}{4} - 12}{4}.5 =31,875.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 8,125

  • Câu 7: Vận dụng

    Một công ty sản xuất bóng đèn LED đã kiểm tra chất lượng sản phẩm của một lô hàng và ghi nhận thời gian sử dụng của 250 bóng đèn như sau:

    Khoảng thời gian (giờ)

    Giá trị đại diện

    Số lượng bóng đèn

    [0, 1000)

    500

    5

    [1000, 2000)

    1500

    46

    [2000, 3000)

    2500

    162

    [3000, 4000)

    3500

    25

    [4000, 5000)

    4500

    12

      N = 250

    Nếu độ lệch chuẩn của của bảng số liệu trên vượt quá 500 thì lô hàng không đạt tiêu chuẩn. Qua tính toán người ta thấy lô hàng đã không đạt tiêu chuẩn để đưa ra thị trường. Hỏi độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là bao nhiêu? (kết quả lấy phần nguyên).

    Đáp án: 245

    Đáp án là:

    Một công ty sản xuất bóng đèn LED đã kiểm tra chất lượng sản phẩm của một lô hàng và ghi nhận thời gian sử dụng của 250 bóng đèn như sau:

    Khoảng thời gian (giờ)

    Giá trị đại diện

    Số lượng bóng đèn

    [0, 1000)

    500

    5

    [1000, 2000)

    1500

    46

    [2000, 3000)

    2500

    162

    [3000, 4000)

    3500

    25

    [4000, 5000)

    4500

    12

      N = 250

    Nếu độ lệch chuẩn của của bảng số liệu trên vượt quá 500 thì lô hàng không đạt tiêu chuẩn. Qua tính toán người ta thấy lô hàng đã không đạt tiêu chuẩn để đưa ra thị trường. Hỏi độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là bao nhiêu? (kết quả lấy phần nguyên).

    Đáp án: 245

    Tính giá trị trung bình

    \overline{x} =
\frac{5.500 + 46.1500 + 162.2500 + 25.3500 + 12.4500}{250} =
\frac{618000}{250} = 2472

    Tính phương sai:

    s^{2} = \frac{5.500^{2} + 46.1500^{2} +
162.2500^{2} + 25.3500^{2} + 12.4500^{2}}{250} - 2472^{2} =
555216

    Tính độ lệch chuẩn: s = \sqrt{s^{2}} =
\sqrt{555216} \approx 745,13

    Độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là: 745,13 - 500 = 245,13

  • Câu 8: Nhận biết

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Tính chiều cao trung bình của 50 cây keo trên?

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

  • Câu 9: Thông hiểu

    Xác định \Delta_{Q} của mẫu số liệu ghép nhóm sau đây?

    Nhóm dữ liệu

    Tần số

    (10; 20]

    15

    (20; 30]

    25

    (30; 40]

    20

    (40; 50]

    12

    (50; 60]

    8

    (60; 70]

    5

    (70; 80]

    3

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (10; 20]

    15

    15

    (20; 30]

    25

    40

    (30; 40]

    20

    60

    (40; 50]

    12

    72

    (50; 60]

    8

    80

    (60; 70]

    5

    85

    (70; 80]

    3

    88

    Tổng

    N = 88

     

    Ta có: \frac{N}{4} = \frac{88}{4} =
22

    => Nhóm chứa tứ phân vị thứ nhất là: (20; 30]

    Khi đó: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 22;m = 15 \\f = 25;d = 30 - 20 = 10 \\\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{22 -
15}{25}.10 = \frac{114}{5}

    Ta có: \frac{3N}{4} = \frac{3.88}{4} =
66

    => Nhóm chứa tứ phân vị thứ ba là: (40; 50]

    Khi đó: \left\{ \begin{matrix}l = 40;\dfrac{3N}{4} = 66;m = 60 \\f = 12;d = 50 - 40 = 10 \\\end{matrix} ight.

    Vậy tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 40 + \frac{66 -
60}{12}.10 = 45

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
45 - \frac{114}{5} = 22,2

  • Câu 10: Vận dụng

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tìm khoảng biến thiên của mẫu số liệu đã cho?

    Khoảng biến thiên của mẫu số liệu bằng R
= 100 - 0 = 100.

  • Câu 12: Thông hiểu

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    Đáp án là:

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    a) Đúng: Giá trị đại diện nhóm [50;60) là 55

    b) Đúng: Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50;60) .

    c) Đúng: Nhóm chứa mốt là nửa khoảng [30;40).

    d) Sai: Khi đó

    u_{m} = 30;n_{m} = 16;n_{m- 1} = 12;n_{m + 1} = 7;u_{m + 1} - u_{m} = 40 - 30 = 10

    Ta có mốt là:

    M_{0} = 30 + \frac{16 - 12}{(16 - 2) +
(16 - 7)}.10 = \frac{430}{13} \approx 33,08

    Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 33 tuổi.

  • Câu 13: Thông hiểu

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tìm giá trị ngoại lệ của mẫu số liệu?

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\frac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Suy ra khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

    Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu \left\lbrack \begin{matrix}
x < Q_{1} - 1,5\Delta_{Q} \\
x > Q_{3} + 1,5\Delta_{Q} \\
\end{matrix} ight.

    Ta có: x < Q_{1} - 1,5\Delta_{Q} =
8,435

    Vậy giá trị ngoại lệ cần tìm là 8,4.

  • Câu 15: Nhận biết

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Ta có: \frac{n}{4} = \frac{20}{4} =
51 + 3 < 5 < 1 + 3 +
8 nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \lbrack 16;17)

  • Câu 16: Vận dụng

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Đáp án là:

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Lập mẫu số liệu ghép nhóm bao gồm cả tần số tích luỹ nhu ở Báng 8 .

    Số phần tử của mẫu là n = 40. Ta có: \frac{n}{2} = \frac{40}{2} = 2015 < 20 < 22. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20 . Xét nhóm 3 có r = 50;d = 5;n_{3} = 7 và nhóm 2 có

    Nhóm

    Tần sồ

    Tần số tích luỹ

    \lbrack 40;45)

    4

    4

    \lbrack 45;50)

    11

    15

    \lbrack 50;55)

    7

    22

    \lbrack 55;60)

    8

    30

    \lbrack 60;65)

    8

    38

    \lbrack 65;70)

    2

    2

     

    n = 40

     

    cf_{2} = 15.

    Trung vị của mẫu số liệu ghép nhóm đó là:

    M_{e} = 50 + \left( \frac{20 - 15}{7}
ight) \cdot 5 = \frac{375}{7}(\ km/h).

    Suy ra a = 375.

  • Câu 17: Nhận biết

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng biến thiên của mẫu số liệu ghép nhóm?

    Ta có:

    Tổng lượng mưa (mm)

    [140; 240)

    [240; 340)

    [340; 440)

    [440; 540)

    Số năm

    3

    7

    7

    3

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = 400.

  • Câu 18: Thông hiểu

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Độ lệch chuẩn S_{A} bằng: 2,3

    Độ lệch chuẩn S_{B} bằng: 2,7

    (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án là:

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Độ lệch chuẩn S_{A} bằng: 2,3

    Độ lệch chuẩn S_{B} bằng: 2,7

    (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +20.35 + 10.37 + 7.39}{100} = 33,72

    {S_{A}}^{2} = \frac{1}{100}\left(25.31^{2} + 38.33^{2} + 20.35^{2} + 10.37^{2} + 7.39^{2} ight) -33,72^{2} \approx 5,402

    \Rightarrow S_{A} \approx2,3

    \overline{x_{B}} = \frac{25.31 + 27.33 +19.35 + 18.37 + 14.39}{100} = 34,2

    {S_{B}}^{2} = \frac{1}{100}\left(25.31^{2} + 27.33^{2} + 19.35^{2} + 18.37^{2} + 14.39^{2} ight) -34,2^{2} \approx 7,31

    \Rightarrow S_{B} \approx2,7

  • Câu 19: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên của mẫu số liệu đã cho là R = 75 - 45 = 30.

  • Câu 20: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{3} của mẫu dữ liệu ghép nhóm trên?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;m = 9,f = 7;c = 11 - 9 =
2

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 9 + \dfrac{15 - 9}{7}.2 = \dfrac{75}{7}\approx 10,7

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 40 lượt xem
Sắp xếp theo