Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….
Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến
Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….
Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3) và O(0;0).
Vì (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ
.
Vậy (P) : y = − x2 + 2x.
Một chiếc cổng hình parabol có phương trình
. Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.

Gọi Avà Blà hai điểm ứng với hai chân cổng như hình vẽ.
Vì cổng hình parabol có phương trình và cổng có chiều rộng d = 5 mét nên:
AB = 5 và .
Vậy chiều cao của cổng làmét.
Tìm tập xác định của hàm số
.
Điều kiện xác định: .
Vậy .
Tìm tập xác định của hàm số
.
Hàm số xác định .
Vậy tập xác định: .
Cho hai đường thẳng
và
. Mệnh đề nào sau đây đúng?
Cách 1: Gọi k1, k2 lần lượt là hệ số gốc của (d1)và (d2). Khi đó nên (d1)và (d2) không vuông góc nhau.
Xét hệ:
Vậy (d1)và (d2) cắt nhau.
Cách 2: Ta thấy nên (d1)và (d2) cắt nhau.
Cho hàm số
. Tính f(4), ta được kết quả:
Với , ta có:
.
Cho hàm số
. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.
Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng − 2.
Khi đó: .
Hàm số y = 2x2 + 4x − 1
Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng , nghịch biến trên khoảng
.
Áp dụng: Ta có . Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).
Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5) và N(−2;8).
Vì (P) đi qua hai điểm M(1;5) và N(−2;8) nên ta có hệ
. Vậy (P) : y = 2x2 + x + 2.
Xác định điểm không thuộc đồ thị của hàm số
?
Ta thấy các điểm nằm trên đồ thị của hàm số là: ;
;
.
Vậy điểm không thuộc đồ thị hàm số đã cho là: .
Đồ thị của hàm số
đi qua điểm nào sau đây:
Thử lần lượt từng phương án với chú ý về điều kiện ta được:
f(0) = 2.0 + 1 = 1 ≠ − 3, đồ thị không đi qua điểm (0; −3).
f(3) = − 3 ≠ 7, đồ thị không đi qua điểm (3; 7).
f(2) = 2.2 + 1 = 5 ≠ − 3, đồ thị không đi qua điểm (2; −3).
f(0) = 2.0 + 1 = 1, đồ thị đi qua điểm (0; 1).
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Điểm nào sau đây thuộc đồ thị của hàm số
?
Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.
Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng (0; 2017] để phương trình |x2−4|x|−5| − m = 0 có hai nghiệm phân biệt?
PT: |x2−4|x|−5| − m = 0 ⇔ |x2−4|x|−5| = m .
Số nghiệm phương trình (1)⇔ số giao điểm của đồ thị hàm số y = |x2−4|x|−5| (P) và đường thẳng y = m .
Xét hàm số y = x2 − 4x − 5 (P1) có đồ thị như hình 1.

Xét hàm số y = x2 − 4|x| − 5 (P2) là hàm số chẵn nên có đồ thị nhận Oy làm trục đối xứng. Mà y = x2 − 4|x| − 5 = x2 − 4x − 5 nếu x ≥ 0. Suy ra đồ thị hàm số (P2) gồm hai phần:
Phần 1: Giữ nguyên đồ thị hàm số (P1) phần bên phải Oy.
Phần 2: Lấy đối xứng phần 1 qua trục Oy.
Ta được đồ thị (P2) như hình 2.
Xét hàm số y = |x2−4|x|−5| (P), ta có: .
Suy ra đồ thị hàm số (P) gồm hai phần:
Phần 1: Giữ nguyên đồ thị hàm số (P2) phần trên Ox.
Phần 2: Lấy đối xứng đồ thị hàm số (P2) phần dưới Ox qua trục Ox.
Ta được đồ thị (P) như hình 3.
Quan sát đồ thị hàm số (P) ta có: Để |x2−4|x|−5| = m (1) có hai nghiệm phân biệt.
Mà . Vậy có 2008 giá trị.
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Cho hàm số
xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng
Đặt .
Hoành độ đỉnh của đồ thị hàm số là .
Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên .
Suy ra, hàm số nghịch biến [ − 1; 1].
.
.
Theo đề bài ta có: y1 − y2 = 8
⇔ m2 − 2m + 1 = 0 ⇔ m = 1.
Một chiếc cổng parabol dạng
có chiều rộng
. Hỏi chiều cao của chiếc cổng là?

Đáp án: 8
Một chiếc cổng parabol dạng có chiều rộng
. Hỏi chiều cao của chiếc cổng là?
Đáp án: 8
Khoảng cách từ chân cổng đến trục đối xứng Oy là .
Hoành độ hai chân cổng là
Tung độ chân cổng là:
Vậy chiều cao của cổng là mét.
Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là − 1 và 2, cắt trục Oy tại điểm có tung độ bằng − 2.
Gọi A và B là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là − 1 và 2. Suy ra A(−1;0), B(2;0).
Gọi C là giao điểm của (P) với trục Oy có tung độ bằng − 2. Suy ra C(0;−2).
Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:
.
Vậy (P) : y = x2 − x − 2.