Đề kiểm tra 15 phút Chương 3 Hàm số bậc hai và đồ thị CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số bậc hai và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng lên.

    Đỉnh của parabol là điểm (1;−3). Xét các đáp án, đáp án y = 2x2 − 4x − 1 thỏa mãn.

  • Câu 2: Thông hiểu

    Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hường lên.

    Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.

  • Câu 3: Thông hiểu

    Dưới đây là bảng giá cước của hãng taxi A

    Giá khởi điểm

    Giá km tiếp theo

    11 000 đồng/ 0,7km

    16 000 /1km

    Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.

    Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?

    Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là y = 11000.

    Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:

    y = 11000 + (x - 0,7).16000

    \Rightarrow y = 16000x - 200 (đồng)

    Vậy mối liên hệ giữa y và x là: y =
\left\{ \begin{matrix}
11000\ \ \ \ \ \ \ \ \ \ \ khi\ x \leq 0,7 \\
16000x - 200\ \ khi\ x > 0,7 \\
\end{matrix} ight..

  • Câu 4: Thông hiểu

    Tìm tập xác định của hàm số y = \sqrt{x+2}-\sqrt{x+3}.

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{x \ge  - 2}\\{x \ge  - 3}\end{array} \Leftrightarrow x \ge  - 2} ight..

    Vậy D=[-2;+\infty).

  • Câu 5: Vận dụng cao

    Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

    Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).

    Khi đó:

    Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .

    Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .

    Lợi nhuận mà doanh nghiệp thu được trong một năm là

    f(x) = (4−x)(600+200x) =  − 200x2 + 200x + 2400.

    Xét hàm số f(x) =  − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên

    Vậy \max_{\lbrack 0;4brack}f(x) = 2\ 450
\Leftrightarrow x = \frac{1}{2}.

    Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.

  • Câu 6: Nhận biết

    Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?

    Ta có đáp án y=-2x^{2}+4x+1 có: x =  - \frac{b}{{2a}} =  - \frac{4}{{2.\left( { - 2} ight)}} = 1

    Vậy x = 1 là trục đối xứng của đồ thị hàm số y=-2x^{2}+4x+1.

  • Câu 7: Thông hiểu

    Tìm tập xác định của hàm số y=\sqrt{x+2}-\frac{2}{x-3}

    Điều kiện xác định của hàm số là: \left\{ {\begin{array}{*{20}{c}}  {x + 2 \geqslant 0} \\   {x - 3 e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant  - 2} \\   {x e 3} \end{array}} ight.

    => Tập xác định của hàm số là: D = \left[ {2; + \infty } ight)\backslash \left\{ 3 ight\}

  • Câu 8: Nhận biết

    Cho hàm số y = f(x) xác định trên và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;+∞).

    Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).

  • Câu 9: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) có đỉnh I(2;−1) và cắt trục tung tại điểm có tung độ bằng  − 3.

    (P) có đỉnh I(2;−1) nên ta có \left\{ \begin{matrix}
- \frac{b}{2a} = 2 \\
f(2) = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = 4a \\
4a + 2b + c = - 1 \\
\end{matrix} ight.. (1)

    Gọi A là giao điểm của (P) với Oy tại điểm có tung độ bằng  − 3. Suy ra A(0;−3).

    Theo giả thiết, A(0;−3) thuộc (P) nên a.0 + b.0 + c =  − 3 ⇔ c =  − 3. (2)

    Từ (1)(2), ta có \left\{
\begin{matrix}
a = \frac{1}{6} \\
b = \frac{2}{3} \\
c = - 3 \\
\end{matrix} ight..

    Vậy (P):y = \frac{1}{6}x^{2} +
\frac{2}{3}x - 3.

  • Câu 10: Nhận biết

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 11: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Hàm số xác định \Leftrightarrow 2x^{2} -
5x + 2 \geq 0 \Leftrightarrow \left\lbrack \begin{matrix}
x \leq \frac{1}{2} \\
x \geq 2 \\
\end{matrix} ight..

    Vậy tập xác định: D = \left( - \infty;\
\frac{1}{2} ightbrack \cup \lbrack 2;\  + \infty).

  • Câu 12: Nhận biết

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 13: Nhận biết

    Cho hàm số có đồ thị như hình vẽ.

    Chọn đáp án sai.

    Từ đồ thị hàm số ta thấy:

    Hàm số nghịch biến trong các khoảng: (−∞;−1)(0;1).

    Hàm số đồng biến trong các khoảng: (−1;0)(1;+∞).

    Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).

  • Câu 14: Vận dụng

    Đồ thị hàm số y = x2 − 6|x| + 5:

    Ta có: y = x^{2} - 6|x| + 5 = \left\{
\begin{matrix}
y_{1} = x^{2} - 6x + 5\ \ \ khi\ x \geq 0\ \ \left( C_{1} ight) \\
y_{2} = x^{2} + 6x + 5\ \ \ khi\ x < 0\ \ \left( C_{2} ight) \\
\end{matrix} ight.

    Đồ thị  (C)của hàm số y = x2 − 6|x| + 5 gồm hai phần

    Phần đồ thị (C1): là phần đồ thị của hàm số y1 = x2 − 6x + 5 nằm bên phải trục tung

    Phần đồ thị  (C2): là phần đồ thị của hàm số y2 = x2 + 6x + 5 có được bằng cách lấy đối xứng phần đồ thị (C1) qua trục tung

    Ta có đồ thị  (C) như hình vẽ

    Vậy đồ thị  (C) có trục đối xứng có phương trình x = 0.

  • Câu 15: Thông hiểu

    Tìm tập xác định D của hàm số f(x) = \sqrt{x + 1} + \frac{1}{x}.

    Điều kiện: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x eq 0 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số là D = [ − 1;  + ∞) ∖ {0}.

  • Câu 16: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    (P) có trục đối xứng x =  − 3 nên - \frac{b}{2a} = - 3 \Leftrightarrow - \frac{3}{2a}
= - 3 \Leftrightarrow a = \frac{1}{2}.

    Vậy (P):y = \frac{1}{2}x^{2} + 3x -
2.

  • Câu 17: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng?

    Trên khoảng (−3;−1)(1;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (−3;−1)(1;3).

  • Câu 18: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh I\left( -
\frac{1}{2}; - \frac{11}{4} ight).

    (P) có đỉnh I\left( - \frac{1}{2}; - \frac{11}{4}
ight) nên ta có \left\{
\begin{matrix}
- \frac{b}{2a} = - \frac{1}{2} \\
f\left( - \frac{1}{2} ight) = - \frac{11}{4} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = a \\
\Delta = 11a \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3 = a \\
9 + 8a = 11a \\
\end{matrix} ight.\  \Leftrightarrow a = 3. Vậy (P) : y = 3x2 + 3x − 2.

  • Câu 19: Vận dụng

    Đồ thị của hàm số y = \frac{2}{3}x + \frac{1}{3}

    Từ giả thiết hàm số đồng biến nên loại đáp án có đồ thị đi xuống từ trái sang phải.

    Mặt khác cho x = 0 vào y = \frac{2}{3}x + \frac{1}{3} =
\frac{1}{3} nên chọn đáp án đồ thị hàm số đi qua điểm \left( 0\ ;\ \frac{1}{3} ight).

  • Câu 20: Thông hiểu

    Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

     Nhận xét: Từ hình vẽ suy ra đỉnh (-1;-2).

    Thay tọa độ đỉnh (-1;-2) vào các hàm số ở các đáp án, chỉ có hàm số y=3x^{2}+6x+1 thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số bậc hai và đồ thị CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo