Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Vì (P) có trục đối xứng x = − 3 nên .
Vậy .
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Vì (P) có trục đối xứng x = − 3 nên .
Vậy .
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) có đỉnh I(2;−1) và cắt trục tung tại điểm có tung độ bằng − 3.
Vì (P) có đỉnh I(2;−1) nên ta có . (1)
Gọi A là giao điểm của (P) với Oy tại điểm có tung độ bằng − 3. Suy ra A(0;−3).
Theo giả thiết, A(0;−3) thuộc (P) nên a.0 + b.0 + c = − 3 ⇔ c = − 3. (2)
Từ (1) và (2), ta có .
Vậy .
Hàm số nào sau đây có đồ thị như hình bên
Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Tìm tập xác định của hàm số .
Điều kiện xác định: .
Vậy .
Hàm số nào dưới đây đồng biến trên (3;4)?
+ Hàm số đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.
+ Hàm số y = x2 − 7x + 2 đồng biến trên . Loại.
+ Hàm số y = − 3x + 1 nghịc biến trên ℝ. Loại.
+ Hàm số đồng biến trên (−∞;1). Loại.
Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.
y = x2 − 4x + 1 = (x−2)2 − 3 ≥ − 3.
Dấu xảy ra khi và chỉ khi x = 2.
Vậy hàm số đã cho đạt giá trị nhỏ nhất là − 3 tại x = 2.
Tìm tập xác định D của hàm số .
Điều kiện: .
Vậy tập xác định của hàm số là D = [ − 1; + ∞) ∖ {0}.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 7; 7] để phương trình mx2 − 2(m+2)x + m − 1 = 0 có hai nghiệm phân biệt?
TH1:; phương trình chỉ có một nghiệm duy nhất nên loại m = 0
TH2: m ≠ 0
Để mx2 − 2(m+2)x + m − 1 = 0với m ∈ [ − 7; 7]có hai nghiệm phân biệt thì
đồng thời m ∈ [ − 7; 7].
Vậy m = {1; 2;3;4;5;6;7}→ có 7 giá trị nguyên của m thỏa mãn.
Tìm tất cả các giá trị của m để hàm số nghịch biến trên .
Điều kiện để hàm số nghịch biến trên là .
Suy ra .
Cho hàm số có đồ thị như hình vẽ.
Chọn đáp án sai.
Từ đồ thị hàm số ta thấy:
Hàm số nghịch biến trong các khoảng: (−∞;−1) và (0;1).
Hàm số đồng biến trong các khoảng: (−1;0) và (1;+∞).
Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).
Tổng tất cả các giá trị nguyên dương của tham số m để hàm số
y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1 ; 5) là:
Hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng .
Để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1 ; 5) thì ta phải có .
Các giá trị nguyên dương của tham số m để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5) là m = 1, m = 2, m = 3.
Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5) là S = 1 + 2 + 3 = 6.
Cho hàm số y = f(x) có tập xác định là [ − 1; 3] và đồ thị của nó được biểu diễn bởi hình bên.
Khẳng định nào sau đây là sai?
Trên khoảng (0;2) đồ thị hàm số đi ngang từ trái sang phải
Hàm số không đổi trên khoảng (0;2).
Trên khoảng (2;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (2;3).
Chọn đáp án Hàm số đồng biến trên khoảng (2;3).
Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5) và N(−2;8).
Vì (P) đi qua hai điểm M(1;5) và N(−2;8) nên ta có hệ
. Vậy (P) : y = 2x2 + x + 2.
Xác định parabol , biết rằng đi qua điểm và có trục đối xứng .
Vì hàm số có trục đối xứng và đi qua điểm nên:
và .
Nhận xét: Trong 4 đáp án, chỉ có thỏa mãn 2 điều kiện trên.
Điểm A có hoành độ xA = 1 và thuộc đồ thị hàm số y = mx + 2m − 3. Tìm m để điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành).
Từ giả thiết điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành) nên yA > 0 ta có yA = mx + 2m − 3 = m.1 + 2m − 3 = 3m − 3 > 0 ⇔ m > 1.
Tập xác định của hàm số là:
Điều kiện xác định: . Suy ra .
Một chiếc cổng hình parabol có phương trình . Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.
Gọi Avà Blà hai điểm ứng với hai chân cổng như hình vẽ.
Vì cổng hình parabol có phương trình và cổng có chiều rộng d = 5 mét nên:
AB = 5 và .
Vậy chiều cao của cổng làmét.
Trong các hàm số sau, hàm số nào là nghịch biến:
Ta có:
Hàm số có a = -2 < 0
=> Hàm số nghịch biến.
Biết rằng hàm số y = ax2 + bx + c (a≠0) đạt cực tiểu bằng 4 tại x = 2 và có đồ thị hàm số đi qua điểm A(0;6). Tính tích P = abc.
Nhận xét: Hàm số đi qua điểm A(0;6); đạt cực tiểu bằng 4 tại x = 2 nên đồ thị hàm số đi qua I(2;4) và nhận x = 2 làm trục đối xứng, hàm số cũng đi qua điểm A(0;6) suy ra:
.
Cho hàm số . Tính f(4), ta được kết quả:
Với , ta có: .