Trong các hàm số sau, hàm số nào là hàm số bậc hai?
Đáp án là đáp án đúng vì hàm số bậc hai có dạng
Trong các hàm số sau, hàm số nào là hàm số bậc hai?
Đáp án là đáp án đúng vì hàm số bậc hai có dạng
Tìm tập xác định của hàm số 
Xét , ta có:
.
Điều kiện xác định của là
. Kết hợp với
ta được
.
Vậy .
Tìm tập xác định của hàm số
.
Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).
Do đó tập xác định D = ℝ.
Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng
?
Hàm số là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số
đồng biến trên tập số thực.
Vậy hàm số đồng biến trên khoảng
.
Hàm số nào sau đây nghịch biến trên khoảng (−1;+∞)?
Xét đáp án , ta có
nên
và có a < 0 nên hàm số đồng biến trên khoảng (−∞;−1) và nghịch biến trên khoảng (−1;+∞).
Tìm parabol
, biết rằng parabol có đỉnh
.
Vì hàm số bậc hai có đỉnh nên:
và
.
Suy ra .
Điểm nào sau đây thuộc đồ thị của hàm số
?
Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.
Cho hàm số bậc hai
có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Ta có
Trục đối xứng
Vậy (P) : y = 2x2 − 4x + 4.
Cho parabol
(
). Xét dấu hệ số
và biệt thức
khi
cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía trên trục hoành.
Nhận xét: Đồ thị hàm số bậc hai cắt trục hoành tại 2 điểm phân biệt nên suy ra phương trình có 2 nghiệm phân biệt. Suy ra
.
Đỉnh nằm phía trên trục hoành nên suy ra (bề lõm hướng xuống).
Cho hàm số y = f(x) có tập xác định là [ − 3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng?
Trên khoảng (−3;−1) và (1;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−3;−1) và (1;3).
Xét sự biến thiên của hàm số
trên khoảng (0;+∞). Khẳng định nào sau đây đúng?
Vậy hàm số nghịch biến trên khoảng (0;+∞).
Điểm nào không thuộc đồ thị hàm số đồ thị
?
Thay tọa độ vào hàm số ta được:
. Do đó điểm này không thuộc đồ thị hàm số.
Cho hàm số
. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ℝ?
Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên ℝ khi và chỉ khi
. Mặt khác do m ∈ ℤ nên m ∈ {−1; 0; 1; 2}. Vậy có 4 giá trị nguyên của m.
Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).
Đỉnh Parabol là .
Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.
Điểm A có hoành độ xA = 1 và thuộc đồ thị hàm số y = mx + 2m − 3. Tìm m để điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành).
Từ giả thiết điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành) nên yA > 0 ta có yA = mx + 2m − 3 = m.1 + 2m − 3 = 3m − 3 > 0 ⇔ m > 1.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay tọa độ vào
ta được
thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số
.
Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng
khi
.
Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 ⇒ c = 1.
(P)có giá trị nhỏ nhất bằng khi
nên:
⇔
.
Vậy (P): y = x2 − x + 1.