Cho hàm số bậc hai
có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Cho hàm số bậc hai
có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Cho hai đường thẳng
và
. Mệnh đề nào sau đây đúng?
Cách 1: Gọi k1, k2 lần lượt là hệ số gốc của (d1)và (d2). Khi đó nên (d1)và (d2) không vuông góc nhau.
Xét hệ:
Vậy (d1)và (d2) cắt nhau.
Cách 2: Ta thấy nên (d1)và (d2) cắt nhau.
Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).
Đỉnh Parabol là .
Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.
Cho hàm số có đồ thị như hình bên dưới.
Khẳng định nào sau đây là đúng?
Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.
Hàm số nào dưới đây đồng biến trên (3;4)?
+ Hàm số đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.
+ Hàm số y = x2 − 7x + 2 đồng biến trên . Loại.
+ Hàm số y = − 3x + 1 nghịc biến trên ℝ. Loại.
+ Hàm số đồng biến trên (−∞;1). Loại.
Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

Nhận xét: Đồ thị có đỉnh .
Thay tọa độ vào hàm số
ta thấy thỏa mãn.
Tìm khẳng định đúng trong các khẳng định sau?
* Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.
Cho hàm số y = f(x) xác định trên ℝ và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?
Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (2;+∞).
Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).
Tìm
để hàm số
luôn đồng biến biến trên tập số thực.
Để hàm số nghịch biến trên tập số thực thì
.
Cho hàm số
. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.
Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng − 2.
Khi đó: .
Cho hàm số có đồ thị như hình vẽ.
Chọn đáp án sai.
Từ đồ thị hàm số ta thấy:
Hàm số nghịch biến trong các khoảng: (−∞;−1) và (0;1).
Hàm số đồng biến trong các khoảng: (−1;0) và (1;+∞).
Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).
Có bao nhiêu giá trị nguyên của tham số
sao cho hàm số
có hai nghiệm phân biệt thuộc khoảng
?
Ta có:
Từ yêu cầu bài toán
Suy ra
Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tìm tất cả các giá trị thực của m để phương trình x4 − 2x2 + 3 − m = 0 có nghiệm.
Đặt t = x2 (t≥0).
Khi đó, phương trình đã cho trở thành: t2 − 2t + 3 − m = 0. (*)
Để phương trình đã cho có nghiệm khi và chỉ khi (*) có nghiệm không âm.
Phương trình (*) vô nghiệm khi và chỉ khi Δ′ < 0 ⇔ m − 2 < 0 ⇔ m < 2.
Phương trình (*) có 2 nghiệm âm khi và chỉ khi .
Do đó, phương trình (*) có nghiệm không âm khi và chỉ khi m ≥ − 2.
Tập xác định của hàm số
là
Ta có :
• Khi x < 2: xác định khi
.
Suy ra D1 = (−∞;2).
• Khi x ≥ 2: xác định khi x + 7 ≥ 0 ⇔ x ≥ − 7.
Suy ra D1 = [2; + ∞).
Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.
Cho hàm số
. Tính P = f(2) + f(−2).
Ta có: .
Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

Nhận xét: Từ hình vẽ suy ra đỉnh .
Thay tọa độ đỉnh vào các hàm số ở các đáp án, chỉ có hàm số
thỏa mãn.
Tổng tất cả các giá trị nguyên dương của tham số m để hàm số
y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1 ; 5) là:
Hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng .
Để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1 ; 5) thì ta phải có
.
Các giá trị nguyên dương của tham số m để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5) là m = 1, m = 2, m = 3.
Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5) là S = 1 + 2 + 3 = 6.
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Cho parabol (P) : y = ax2 + bx + c(a≠0) có đồ thị như hình bên. Tìm các giá trị m để phương trình |ax2+bx+c| = m có bốn nghiệm phân biệt.

Quan sát đồ thị ta có đỉnh của parabol là I(2;3) nên .
Mặt khác (P) cắt trục tung tại (0;−1) nên c = − 1. Suy ra .
(P) : y = − x2 + 4x − 1 suy ra hàm số y = |−x2+4x−1| có đồ thị là là phần đồ thị phía trên trục hoành của (P) và phần có được do lấy đối xứng phần phía dưới trục hoành của (P), như hình vẽ sau:

Phương trình |ax2+bx+c| = m hay |−x2+4x−1| = m có bốn nghiệm phân biệt khi đường thẳng y = m cắt đồ thị hàm số hàm số y = |−x2+4x−1| tại bốn điểm phân biệt.
Suy ra 0 < m < 3.
Tìm tất cả các giá trị của m để hàm số
nghịch biến trên
.
Điều kiện để hàm số nghịch biến trên
là
.
Suy ra .