Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Ta có
Trục đối xứng
Vậy (P) : y = 2x2 − 4x + 4.
Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.
+ Có a = 3; b = − 2; c = 4.
+ Trục đối xứng của parabol là .
Cho hàm số bậc hai
có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Đồ thị của hàm số
đi qua điểm nào sau đây:
Thử lần lượt từng phương án với chú ý về điều kiện ta được:
f(0) = 2.0 + 1 = 1 ≠ − 3, đồ thị không đi qua điểm (0; −3).
f(3) = − 3 ≠ 7, đồ thị không đi qua điểm (3; 7).
f(2) = 2.2 + 1 = 5 ≠ − 3, đồ thị không đi qua điểm (2; −3).
f(0) = 2.0 + 1 = 1, đồ thị đi qua điểm (0; 1).
Hàm số nào sau đây có đỉnh
?
Hàm số có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh
Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.
Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)
Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt ⇔ Δ = 4 − m > 0 ⇔ m < 4.
Theo giả thiết
TH1:
TH2: : không thỏa mãn (*).
Do đó (P) Chọn A.
Tìm tất cả các giá trị của m để hàm số
nghịch biến trên
.
Điều kiện để hàm số nghịch biến trên
là
.
Suy ra .
Tìm tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là
Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên. Hỏi với những giá trị nào của tham số thực m thì phương trình |f(x)| = m có đúng 4 nghiệm phân biệt.

Ta có . Từ đó suy ra cách vẽ đồ thị hàm số (C) từ đồ thị hàm số y = f(x) như sau:
Giữ nguyên đồ thị y = f(x) phía trên trục hoành.
Lấy đối xứng phần đồ thị y = f(x) phía dưới trục hoành qua trục hoành ( bỏ phần dưới ).
Kết hợp hai phần ta được đồ thị hàm số y = |f(x)| như hình vẽ.

Phương trình |f(x)| = m là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m (song song hoặc trùng với trục hoành).
Dựa vào đồ thị, ta có ycbt ⇔ 0 < m < 1.
Hàm số nào sau đây nghịch biến trên khoảng (−1;+∞)?
Xét đáp án , ta có
nên
và có a < 0 nên hàm số đồng biến trên khoảng (−∞;−1) và nghịch biến trên khoảng (−1;+∞).
Đường gấp khúc trong hình vẽ là dạng đồ thị của một trong bốn hàm số được liệt kê trong các phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Đồ thị hàm số đi qua các điểm (0;1) và (1;0) nên chỉ có hàm số y = 1 − |x| thỏa mãn.
Chọn y = 1 − |x|.
Hàm số nào dưới đây đồng biến trên (3;4)?
+ Hàm số đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.
+ Hàm số y = x2 − 7x + 2 đồng biến trên . Loại.
+ Hàm số y = − 3x + 1 nghịc biến trên ℝ. Loại.
+ Hàm số đồng biến trên (−∞;1). Loại.
Cho hàm số y = f(x) có tập xác định là [ − 3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng?
Trên khoảng (−3;−1) và (1;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−3;−1) và (1;3).
Giả sử đồ thị parabol
đi qua điểm
và có trục đối xứng là đường thẳng
. Tính tổng các giá trị
và
?
Ta có:
Trục đối xứng của là:
Xác định điểm không thuộc đồ thị của hàm số
?
Ta thấy các điểm nằm trên đồ thị của hàm số là: ;
;
.
Vậy điểm không thuộc đồ thị hàm số đã cho là: .
Cho hàm số y = x2 − 2x + 3. Chọn câu đúng.
Ta có a = 1 > 0, b = − 2, c = 3 nên hàm số có đỉnh là I(1;2). Từ đó suy ra hàm số nghịch biến trên khoảng (−∞;1) và đồng biến trên khoảng (1;+∞).
Cho hàm số
. Tính P = f(2) + f(−2).
Ta có: .
Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng
?
Hàm số là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số
đồng biến trên tập số thực.
Vậy hàm số đồng biến trên khoảng
.