Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Hàm số nào sau đây đồng biến trên tập xác định của nó?
y = 3x + 1 có a = 3 > 0 nên hàm số đồng biến trên TXĐ.
Xét sự biến thiên của hàm số
trên khoảng (0;+∞). Khẳng định nào sau đây đúng?
Ta có
Với mọi x1, x2 ∈ (0;+∞) và x1 < x2. Ta có .
Suy ra nghịch biến trên (0;+∞).
Hình nào sau đây là đồ thị của hàm số ![]()
Hàm số có các hệ số
Vì nên đồ thị hàm số có bề lõm quay xuống dưới, ta loại hai hình vẽ:

Đồ thị có toạ độ đỉnh tung độ
hay
. Do đó ta loại hình vẽ

Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….
Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến
Tìm khẳng định đúng trong các khẳng định sau?
* Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.
Cho hàm số
. Tính P = f(2) + f(−2).
Ta có: .
Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng
khi
.
Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 ⇒ c = 1.
(P)có giá trị nhỏ nhất bằng khi
nên:
⇔
.
Vậy (P): y = x2 − x + 1.
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay tọa độ vào
ta được
thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số
.
Tìm
để hàm số
luôn đồng biến biến trên tập số thực.
Để hàm số nghịch biến trên tập số thực thì
.
Bảng biến thiên của hàm số y = − 2x2 + 4x + 1 là bảng nào trong các bảng được cho sau đây ?
Hệ số bề lõm hướng xuống.
Ta có và y(1) = 3. Do đó chọn
.
Cho hàm số y = f(x) có tập xác định là [ − 3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng?
Trên khoảng (−3;−1) và (1;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−3;−1) và (1;3).
Cho hàm số:
. Tập xác định của hàm số là tập hợp nào sau đây?
Với x ≤ 0 ta có: xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.
Với x > 0 ta có: xác định với mọi x ≥ − 2 nên xác định với mọi x > 0.
Vậy tập xác định của hàm số là D = ℝ.
Quan sát đồ thị hàm số, chọn nhận xét đúng?

Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0
Parabol cắt trục tung tại điểm có tọa độ nằm phía trên trục hoành nên
.
Đỉnh parabol nằm bên trái trục tung nên có hoành độ mà
suy ra
.
Kết luận: .
Cho hàm số:
. Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng có phương trình
Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng .
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng .
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét:
Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1 và y = 2x2 + 2x + 2.
Đỉnh của parabol có tọa độ là . Xét các đáp án, y = − 2x2 − 2x + 1 thỏa mãn.
Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên dưới. Hỏi với những giá trị nào của tham số m thì phương trình f(|x|) − 1 = m có đúng 3 nghiệm phân biệt.

Hàm số f(x) = ax2 + bx + c có đồ thị là (C), lấy đối xứng phần đồ thị nằm bên phải Oy của (C) qua Oy ta được đồ thị (C′) của hàm số y = f(|x|).
Dựa vào đồ thị, phương trình f(|x|) − 1 = m ⇔ (|x|) = m + 1 có đúng 3 nghiệm phân biệt khi m + 1 = 3 ⇔ m = 2.
Cho tam thức bậc hai
. Khẳng định nào sau đây đúng?
Ta có: