Đề kiểm tra 15 phút Chương 3 Hàm số bậc hai và đồ thị CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số bậc hai và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng lên.

    Đỉnh của parabol là điểm (1;−3). Xét các đáp án, đáp án y = 2x2 − 4x − 1 thỏa mãn.

  • Câu 2: Vận dụng

    Trong các hàm số sau, hàm số nào tăng trên khoảng (-1;0)?

    Lấy hai điểm x_1,x_2\in (-1;0) sao cho - 1 < {x_1} < {x_2} < 0 khi đó {x_2} - {x_1} > 0

    Xét đáp án y = x ta có: 

    \begin{matrix}  \dfrac{{f\left( {{x_2}} ight) - f\left( {{x_1}} ight)}}{{{x_2} - {x_1}}} = \dfrac{{{x_2} - {x_1}}}{{{x_2} - {x_1}}} = 1 > 0 \hfill \\  \forall {x_1},{x_2} \in \left( { - 1;0} ight) \hfill \\ \end{matrix}

    Vậy hàm số tăng trên (-1,0).

    Xét đáp án y=\frac{1}{x} ta có: 

    \begin{matrix}  \dfrac{{f\left( {{x_2}} ight) - f\left( {{x_1}} ight)}}{{{x_2} - {x_1}}} = \dfrac{{\dfrac{1}{{{x_2}}} - \dfrac{1}{{{x_1}}}}}{{{x_2} - {x_1}}} =  - \dfrac{1}{{{x_2}.{x_1}}} < 0 \hfill \\  \forall {x_1},{x_2} \in \left( { - 1;0} ight) \hfill \\ \end{matrix}

    Vậy hàm số không tăng trên (-1,0).

    Xét đáp án y = |x| ta có: 

    \begin{matrix}  \dfrac{{f\left( {{x_2}} ight) - f\left( {{x_1}} ight)}}{{{x_2} - {x_1}}} = \dfrac{{\left| {{x_2}} ight| - \left| {{x_1}} ight|}}{{{x_2} - {x_1}}} = \dfrac{{ - {x_2} + {x_1}}}{{{x_2} - {x_1}}} =  -  < 0 \hfill \\  \forall {x_1},{x_2} \in \left( { - 1;0} ight) \hfill \\ \end{matrix}

    Vậy hàm số không tăng trên (-1,0).

    Xét đáp án y=x^{2} ta có: 

    \begin{matrix}  \dfrac{{f\left( {{x_2}} ight) - f\left( {{x_1}} ight)}}{{{x_2} - {x_1}}} = \dfrac{{{{\left( {{x_2}} ight)}^2} - {{\left( {{x_1}} ight)}^2}}}{{{x_2} - {x_1}}} = \left( {{x_2} - {x_1}} ight) < 0 \hfill \\  \forall {x_1},{x_2} \in \left( { - 1;0} ight) \hfill \\ \end{matrix}

    Vậy hàm số không tăng trên (-1,0).

  • Câu 3: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−1;+∞)?

    Xét đáp án y = - \sqrt{2}(x +
1)^{2}, ta có y = - \sqrt{2}(x +
1)^{2} = - \sqrt{2}x^{2} - 2\sqrt{2}x - \sqrt{2} nên - \frac{b}{2a} = - 1 và có a < 0 nên hàm số đồng biến trên khoảng (−∞;−1) và nghịch biến trên khoảng (−1;+∞).

  • Câu 4: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = mx cắt đồ thị hàm số (P) : y = x3 − 6x2 + 9x tại ba điểm phân biệt.

    Phương trình hoành độ giao điểm của (P) với dx3 − 6x2 + 9x = mx

    \overset{}{\leftrightarrow}x\left( x^{2}
- 6x + 9 - m ight) = 0\overset{}{\leftrightarrow}\left\lbrack
\begin{matrix}
x = 0 \\
x^{2} - 6x + 9 - m = 0.(1) \\
\end{matrix} ight.

    Để (P) cắt d tại ba điểm phân biệt khi và chỉ (1) có hai nghiệm phân biệt khác 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
0^{2} - 6.0 + 9 - m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
9 - m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m eq 9 \\
\end{matrix} ight..

  • Câu 5: Thông hiểu

    Biết rằng (P) : y = ax2 − 4x + c có hoành độ đỉnh bằng  − 3 và đi qua điểm M(−2;1). Tính tổng S = a + c.

    (P) có hoành độ đỉnh bằng  − 3 và đi qua M(−2;1) nên ta có hệ

    \left\{ \begin{matrix}
- \frac{b}{2a} = - 3 \\
4a + 8 + c = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 6a \\
4a + c = - 7 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{3} \\
c = - \frac{13}{3} \\
\end{matrix} ight.

    \overset{}{ightarrow}S = a + c = -
5.

  • Câu 6: Nhận biết

    Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên các khoảng (−∞; 2)(2; +∞). Khẳng định nào sau đây đúng?

    Xét f(x) = x2 − 4x + 5.

    TXĐ: D = ℝ.

    Tọa độ đỉnh I(2; 1).

    Hàm số nghịch biến trên (−∞; 2), đồng biến trên (2; +∞).

  • Câu 7: Vận dụng

    Cho một vật rơi từ trên cao xuống theo phương thẳng đứng với vận tốc ban đầu là 12 m/s. Hỏi lúc t = 7 s thì vật đã rơi được bao nhiêu mét, biết g = 9,8 m/s^{2}, hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi.

    Gọi vận tốc ban đầu của vật là v_0 = 12 m/s.

    Do đây là vật rơi nên vật sẽ chuyển động nhanh dần đều.

    Suy ra hàm số biểu thị quãng đường rơi s theo thời gian t là:

    s = {v_0}t + \frac{1}{2}g{t^2}

    Ta thấy hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi và thời gian là đại lượng không âm nên t ≥ 0.

    Ta có hàm số: s = f\left( t ight) = 12t + \frac{1}{2}.9,8.{t^2} = 12t + 4,9{t^2}

    Khi t = 7 thì vật đã rơi được quãng đường là:

    s = f(7) = 12.7 + 4,9. 72 = 324,1 (m).

  • Câu 8: Nhận biết

    Chọn khẳng định đúng?

    Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu x1; x2 ∈ Kx1 < x2 ⇒ f(x1) < f(x2).

  • Câu 9: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 10: Nhận biết

    Cho hàm số có đồ thị như hình vẽ

    Khẳng định nào sau đây đúng:

    Hàm số đồng biến trên khoảng (1;3).

  • Câu 11: Nhận biết

    Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….

    Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến

  • Câu 12: Nhận biết

    Điểm nào sau đây thuộc đồ thị hàm số y = 4x + 1?

     Thay tọa độ (0;1) vào y=4x+1 ta được 1=1 thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số y=4x+1.

  • Câu 13: Thông hiểu

    Cho hàm số y=\left\{\begin{matrix}\frac{2}{x-1},x\in (-∞;0) \\ \sqrt{x+1},x\in [0;2]\\ x^{2}-1,x\in (2;5]\end{matrix}ight.. Tính f(4), ta được kết quả:

     Với x=4 \in (2;5], ta có: f(4)=4^2-1=15.

  • Câu 14: Thông hiểu

    Cho hàm số y =
\frac{x + 1}{x - 1}. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.

    Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng  − 2.

    Khi đó: \frac{x_{0} + 1}{x_{0} - 1} = - 2
\Leftrightarrow x_{0} + 1 = 2\left( 1 - x_{0} ight) \Leftrightarrow
3x_{0} = 1 \Leftrightarrow x_{0} = \frac{1}{3} \Rightarrow M\left(
\frac{1}{3}; - 2 ight).

  • Câu 15: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2x + 3}{x + 1} & khi & x \geq 0 \\
\frac{\sqrt[3]{2 + 3x}}{x - 2} & khi & - 2 \leq x < 0 \\
\end{matrix} ight.. Ta có kết quả nào sau đây đúng?

    f( - 1) = \frac{\sqrt[3]{2 - 3}}{- 1 - 2}
= \frac{1}{3}; f(2) = \frac{2.2 +
3}{2 + 1} = \frac{7}{3}.

  • Câu 16: Thông hiểu

    Hàm số y = 2x^{2} – 4x + 1 đồng biến và nghịch biến trên khoảng nào?

    Ta có hàm số y = 2x^{2} – 4x + 1a=2>0

    => Hàm số nghịch biến trên khoảng \left( { - \infty ;1} ight), đồng biến trên khoảng \left( {1; + \infty } ight)

  • Câu 17: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 18: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 19: Nhận biết

    Xác định điểm không thuộc đồ thị của hàm số y = \frac{1}{2}x^{2}?

    Ta thấy các điểm nằm trên đồ thị của hàm số là: (0;0); (2;2); ( -
2;2).

    Vậy điểm không thuộc đồ thị hàm số đã cho là: (1;2).

  • Câu 20: Thông hiểu

    Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3  (m≠1)(P). Đỉnh của (P)S(−1;−2) thì m bằng bao nhiêu:

    Do đỉnh của (P)S(−1;−2) suy ra - 1 = \frac{m - 2}{m - 1} \Leftrightarrow m = \frac{3}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số bậc hai và đồ thị CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 25 lượt xem
Sắp xếp theo