Biết ba đường thẳng d1 : y = 2x − 1, d2 : y = 8 − x, d3 : y = (3−2m)x + 2 đồng quy. Giá trị của m bằng
+ Gọi M là giao điểm của d1 và d2.
Xét hệ: .
+ M ∈ d3 nên ta có: 5 = (3−2m).3 + 2 ⇔ 5 = 9 − 6m + 2 ⇔ 6m = 6 ⇔ m = 1.
Biết ba đường thẳng d1 : y = 2x − 1, d2 : y = 8 − x, d3 : y = (3−2m)x + 2 đồng quy. Giá trị của m bằng
+ Gọi M là giao điểm của d1 và d2.
Xét hệ: .
+ M ∈ d3 nên ta có: 5 = (3−2m).3 + 2 ⇔ 5 = 9 − 6m + 2 ⇔ 6m = 6 ⇔ m = 1.
Cho hàm số y = f(x) có tập xác định là [ − 1; 5] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?
Trên khoảng (−1;1) và (2;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−1;1) và (2;3).
Trên khoảng (1;2) và (3;5) đồ thị hàm số đi xuống từ trái sang phải
Hàm số nghịch biến trên khoảng (1;2) và (3;5).
Cho hàm số
. Khẳng định nào sau đây đúng?
Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.
Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.
Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng và đồng biến trên khoảng
. Khẳng định "Hàm số đồng biến trên ℝ." sai.
Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Tập xác định của hàm số
là
Ta có :
• Khi x < 2: xác định khi
.
Suy ra D1 = (−∞;2).
• Khi x ≥ 2: xác định khi x + 7 ≥ 0 ⇔ x ≥ − 7.
Suy ra D1 = [2; + ∞).
Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.
Trong các hàm số sau, hàm số nào nghịch biến trên ℝ?
Hàm số y = ax + b với a ≠ 0 nghịch biến trên ℝ khi và chỉ khi a < 0.
Hàm số nào sau đây nghịch biến trên khoảng (−1;+∞)?
Xét đáp án , ta có
nên
và có a < 0 nên hàm số đồng biến trên khoảng (−∞;−1) và nghịch biến trên khoảng (−1;+∞).
Hàm số y = 2x2 + 4x − 1
Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng , nghịch biến trên khoảng
.
Áp dụng: Ta có . Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)
Thay tọa độ và
vào hàm số, ta được:
.
Vậy đó là hàm số .
Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.
Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).
Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1
⇔ (1) có 2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1
.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

Nhận xét: Từ hình vẽ suy ra đỉnh .
Thay tọa độ đỉnh vào các hàm số ở các đáp án, chỉ có hàm số
thỏa mãn.
Tập xác định của hàm số
là:
Hàm số xác định ⇔ x − 1 ≥ 0 ⇔ x ≥ 1.
Tập xác định của hàm số
là
Hàm số xác định khi .
Vậy tập xác định của hàm số là D = (1; 3].
Tập xác định của hàm số
là
Hàm số có nghĩa khi
⇔ x ∈ [ − 1; 3) ∖ {2}.
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).
Trong các hàm số sau, hàm số nào là nghịch biến:
Ta có:
Hàm số có a = -2 < 0
=> Hàm số nghịch biến.
Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?
Ta có đáp án có:
Vậy x = 1 là trục đối xứng của đồ thị hàm số .
Cho hàm số
. Tính f(4), ta được kết quả:
Với , ta có:
.