Trong các hàm số sau, hàm số nào là nghịch biến:
Ta có:
Hàm số có a = -2 < 0
=> Hàm số nghịch biến.
Trong các hàm số sau, hàm số nào là nghịch biến:
Ta có:
Hàm số có a = -2 < 0
=> Hàm số nghịch biến.
Quan sát đồ thị hàm số, chọn nhận xét đúng?

Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0
Parabol cắt trục tung tại điểm có tọa độ nằm phía trên trục hoành nên
.
Đỉnh parabol nằm bên trái trục tung nên có hoành độ mà
suy ra
.
Kết luận: .
Tìm tập xác định của hàm số
.
Hàm số xác định .
Vậy tập xác định: .
Tổng tất cả các giá trị nguyên dương của tham số m để hàm số
y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1 ; 5) là:
Hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng .
Để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1 ; 5) thì ta phải có
.
Các giá trị nguyên dương của tham số m để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5) là m = 1, m = 2, m = 3.
Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5) là S = 1 + 2 + 3 = 6.
Tìm tập xác định của hàm số
.
Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).
Do đó tập xác định D = ℝ.
Parabol y = − x2 + 2x + 3 có phương trình trục đối xứng là
Parabol y = − x2 + 2x + 3 có trục đối xứng là đường thẳng ⇔ x = 1.
Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3 (m≠1)(P). Đỉnh của (P) là S(−1;−2) thì m bằng bao nhiêu:
Do đỉnh của (P) là S(−1;−2) suy ra
.
Cho hàm số bậc hai
có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?
Ta có bảng biến thiên:

Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng
(2;+∞).
Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên. Hỏi với những giá trị nào của tham số thực m thì phương trình |f(x)| = m có đúng 4 nghiệm phân biệt.

Ta có . Từ đó suy ra cách vẽ đồ thị hàm số (C) từ đồ thị hàm số y = f(x) như sau:
Giữ nguyên đồ thị y = f(x) phía trên trục hoành.
Lấy đối xứng phần đồ thị y = f(x) phía dưới trục hoành qua trục hoành ( bỏ phần dưới ).
Kết hợp hai phần ta được đồ thị hàm số y = |f(x)| như hình vẽ.

Phương trình |f(x)| = m là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m (song song hoặc trùng với trục hoành).
Dựa vào đồ thị, ta có ycbt ⇔ 0 < m < 1.
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Cho hàm số
. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ℝ?
Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên ℝ khi và chỉ khi
. Mặt khác do m ∈ ℤ nên m ∈ {−1; 0; 1; 2}. Vậy có 4 giá trị nguyên của m.
Trong các hàm số sau, hàm số nào tăng trên khoảng (-1;0)?
Lấy hai điểm sao cho
khi đó
Xét đáp án ta có:
Vậy hàm số tăng trên .
Xét đáp án ta có:
Vậy hàm số không tăng trên .
Xét đáp án ta có:
Vậy hàm số không tăng trên .
Xét đáp án ta có:
Vậy hàm số không tăng trên .
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Một của hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120−x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?
Gọi y là số tiền lãi của cửa hàng bán giày.
Ta có y = (120−x)(x−40) = − x2 + 160x − 4800 = − (x−80)2 + 1600 ≤ 1600.
Dấu xảy ra ⇔ x = 80.
Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Hàm số nào dưới đây đồng biến trên (3;4)?
+ Hàm số đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.
+ Hàm số y = x2 − 7x + 2 đồng biến trên . Loại.
+ Hàm số y = − 3x + 1 nghịc biến trên ℝ. Loại.
+ Hàm số đồng biến trên (−∞;1). Loại.
Tập hợp nào sau đây là tập xác định của hàm số
?
Hàm số xác đinh khi và chỉ khi .
Tập xác định của hàm số
là:
Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) có đỉnh I(2;−1) và cắt trục tung tại điểm có tung độ bằng − 3.
Vì (P) có đỉnh I(2;−1) nên ta có . (1)
Gọi A là giao điểm của (P) với Oy tại điểm có tung độ bằng − 3. Suy ra A(0;−3).
Theo giả thiết, A(0;−3) thuộc (P) nên a.0 + b.0 + c = − 3 ⇔ c = − 3. (2)
Từ (1) và (2), ta có .
Vậy .