Đề kiểm tra 15 phút Chương 3 Hàm số bậc hai và đồ thị CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số bậc hai và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm tập xác định D của hàm số f(x) = \sqrt{x + 1} + \frac{1}{x}.

    Điều kiện xác định: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x eq 0 \\
\end{matrix} ight.. Vậy tập xác định: D = [ − 1;  + ∞) ∖ {0}.

  • Câu 2: Thông hiểu

    Quan sát đồ thị hàm số sau:

    Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?

    Ta có:

    Đồ thị cắt trục Oy tại - 1 nên ta loại đáp án y = x^{2} + 2x - 2y = x^{2} - 2x - 1.

    Dễ thấy đồ thị có đỉnh là ( - 1; -
2)

    Xét hàm số y = x^{2} + 2x - 1 có đỉnh là ( - 1; - 2).

    Vậy hàm số tương ứng với đồ thị là: y =
x^{2} + 2x - 1.

  • Câu 3: Vận dụng

    Cho parabol (P):y=ax^{2}+bx+c (aeq 0). Xét dấu hệ số a và biệt thức \Delta khi (P) hoàn toàn nằm phía trên trục hoành.

     Khi đồ thị hàm số hoàn toàn nằm phía trên trục hoành thì phương trình y=0 vô nghiệm Suy ra \Delta <0a>0 (bề lõm hướng lên trên).

     

  • Câu 4: Nhận biết

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 5: Nhận biết

    Cho hàm số y = f(x) = |-5x|. Khẳng định nào sau đây là sai?

    Ta có: f(\frac{1}{5})=|-5.\frac{1}{5}|=1 e-1

    Khẳng định sai là: f(\frac{1}{5})=-1

  • Câu 6: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 7: Nhận biết

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng có phương trình

    Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng x = -
\frac{b}{2a}.

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng x = \frac{5}{2}.

  • Câu 8: Thông hiểu

    Cho hàm số: f(x) =
\left\{ \begin{matrix}
- 2(x - 3) & khi & - 1 \leq x \leq 1 \\
\sqrt{x^{2} - 1} & khi & x > 1 \\
\end{matrix} ight.. Giá trị của f(−1); f(1) là:

    Ta có: f(−1) =  − 2(−1−3) = 8; f(1) = \sqrt{1^{2} - 1} = 0.

    Chọn đáp án 80.

  • Câu 9: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3)O(0;0).

    (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ

    \left\{ \begin{matrix}
a + b + c = 1 \\
a - b + c = - 3 \\
c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
c = 0 \\
\end{matrix} ight..

    Vậy (P) : y =  − x2 + 2x.

  • Câu 10: Nhận biết

    Tìm tất cả các giá trị của m để hàm số y = f(x) = (2-m)x+x + 2 nghịch biến trên \mathbb{R}.

     Điều kiện để hàm số y=ax+b nghịch biến trên \mathbb {R}a<0.

    Suy ra 2-m<0 \Leftrightarrow m>2.

  • Câu 11: Nhận biết

    Điểm nào sau đây thuộc đồ thị của hàm số y = \frac{x - 2}{x(x - 1)}?

    Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.

  • Câu 12: Vận dụng

    Đường gấp khúc trong hình vẽ là dạng đồ thị của một trong bốn hàm số được liệt kê trong các phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Đồ thị hàm số đi qua các điểm (0;1)(1;0) nên chỉ có hàm số y = 1 − |x| thỏa mãn.

    Chọn y = 1 − |x|.

  • Câu 13: Nhận biết

    Điểm nào không thuộc đồ thị hàm số đồ thị y = f(x) = 5x - 1?

     Thay tọa độ (1;2) vào hàm số ta được: 2 eq4. Do đó điểm này không thuộc đồ thị hàm số.

  • Câu 14: Thông hiểu

    Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hường lên.

    Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.

  • Câu 15: Thông hiểu

    Tìm tập xác định của hàm số y = \sqrt{x+2}-\sqrt{x+3}.

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{x \ge  - 2}\\{x \ge  - 3}\end{array} \Leftrightarrow x \ge  - 2} ight..

    Vậy D=[-2;+\infty).

  • Câu 16: Thông hiểu

    Tìm tập xác định của hàm số y = f(x) = \left\{\begin{matrix}\frac{1}{x}\text{  khi  } x\geq 1\\ \sqrt{x+1} \text{  khi  } x <1\end{matrix}ight.

    Xét  f(x)=\frac1x, ta có: D_1=[1;+\infty).

    Điều kiện xác định của \sqrt{x+1}x\ge-1. Kết hợp với x<1 ta được D_2=[-1;1).

    Vậy D=D_1\cup D_2=[-1;+\infty).

  • Câu 17: Nhận biết

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 18: Nhận biết

    Tìm hàm số bậc hai trong các hàm số dưới đây?

    Theo định nghĩa ta có:

    Hàm số bậc hai là y = - 2x^{2} -
3.

  • Câu 19: Thông hiểu

    Hàm số y = 2x^{2} – 4x + 1 đồng biến và nghịch biến trên khoảng nào?

    Ta có hàm số y = 2x^{2} – 4x + 1a=2>0

    => Hàm số nghịch biến trên khoảng \left( { - \infty ;1} ight), đồng biến trên khoảng \left( {1; + \infty } ight)

  • Câu 20: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3
= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -
\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -
\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số bậc hai và đồ thị CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo