Đề kiểm tra 15 phút Chương 3 Hàm số bậc hai và đồ thị CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số bậc hai và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    \begin{matrix}
\forall x_{1},\ x_{2} \in (0; + \infty):\ x_{1} eq x_{2} \\
f\left( x_{2} ight) - f\left( x_{1} ight) = \frac{3}{x_{2}} -
\frac{3}{x_{1}} = \frac{- 3\left( x_{2} - x_{1} ight)}{x_{2}x_{1}}
\Rightarrow \frac{f\left( x_{2} ight) - f\left( x_{1} ight)}{x_{2} -
x_{1}} = - \frac{3}{x_{2}x_{1}} < 0 \\
\end{matrix}

    Vậy hàm số nghịch biến trên khoảng (0;+∞).

  • Câu 2: Nhận biết

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 3: Nhận biết

    Tập xác định của hàm số y = \sqrt{8 - 2x} - x là:

    Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].

  • Câu 4: Vận dụng

    Đồ thị hàm số y = |2x + 3| là hình nào trong các hình sau:

    Tập xác định của hàm số D = \mathbb{R}

    Ta có: y = \left| {2x + 3} ight| = \geqslant \left\{ {\begin{array}{*{20}{c}}{2x + 3{\text{ khi }}x \geqslant - \frac{3}{2}} \\{ - 2x - 3{\text{ khi }}x < - \frac{3}{2}}\end{array}} ight.

    Ta vẽ đồ thị y = 2x + 3 với {x \geqslant - \frac{3}{2}} (d_1)

    Ta có bảng sau:

    x

    0

    - \frac{3}{2}

    y = f(x)

    3

    0

    Suy ra đồ thị hàm số y = f(x) = 2x + 3 với {x \geqslant - \frac{3}{2}} là phần đồ thị nằm bên trên trục Ox và đi qua các điểm A(- \frac{3}{2}; 0) và B(0; 3).

    Ta có đồ thị như sau:

    Xác định đồ thị của hàm số

    Tương tự ta có đồ thị hàm số y = f(x) = - 2x - 3 với x <- \frac{3}{2} là phần đồ thị nằm bên trên trục Ox và đi qua các điểm C(-2; 1) và D(-3; 3).

    Kết hợp 2 đồ thị ta có đồ thị hàm số y = |2x + 3| là phần đồ thị nét liền nằm trên trục Ox.

    Xác định đồ thị của hàm số

  • Câu 5: Thông hiểu

    Giá trị lớn nhất của hàm số f(x) = \frac{2}{x^{2} - 5x + 9} bằng:

    Ta có x^{2} - 5x + 9 = \left( x -
\frac{5}{2} ight)^{2} + \frac{11}{4} \geq \frac{11}{4} \Rightarrow
\frac{2}{x^{2} - 5x + 9} \leq \frac{2}{\frac{11}{4}} =
\frac{8}{11}

    \frac{2}{x^{2} - 5x + 9} = \frac{8}{11}
\Leftrightarrow x = \frac{5}{2}

    Vậy giá trị lớn nhất của hàm số f(x) =
\frac{2}{x^{2} - 5x + 9} bằng \frac{8}{11}.

  • Câu 6: Nhận biết

    Chọn khẳng định đúng?

    Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu x1; x2 ∈ Kx1 < x2 ⇒ f(x1) < f(x2).

  • Câu 7: Thông hiểu

    Quan sát đồ thị hàm số, chọn nhận xét đúng?

    Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0

    Parabol cắt trục tung tại điểm có tọa độ (0;c) nằm phía trên trục hoành nên c > 0.

    Đỉnh parabol nằm bên trái trục tung nên có hoành độ - \frac{b}{2a} < 0a > 0 suy ra b > 0.

    Kết luận: a > 0,b > 0,c >
0.

  • Câu 8: Thông hiểu

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 9: Thông hiểu

    Tìm tập xác định của hàm số y = f(x) = \left\{\begin{matrix}\frac{1}{x}\text{  khi  } x\geq 1\\ \sqrt{x+1} \text{  khi  } x <1\end{matrix}ight.

    Xét  f(x)=\frac1x, ta có: D_1=[1;+\infty).

    Điều kiện xác định của \sqrt{x+1}x\ge-1. Kết hợp với x<1 ta được D_2=[-1;1).

    Vậy D=D_1\cup D_2=[-1;+\infty).

  • Câu 10: Vận dụng cao

    Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.

    Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)

    Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt  ⇔ Δ = 4 − m > 0 ⇔ m < 4.

    Theo giả thiết OA =
3OB\overset{}{ightarrow}\left| x_{A} ight| = 3\left| x_{B} ight|
\Leftrightarrow \left\lbrack \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} = - 3x_{B} \\
\end{matrix} ight.\ .

    TH1: x_{A} =
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
3.

    TH2: x_{A} = -
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = - 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
12: không thỏa mãn (*).

    Do đó T = 3.

  • Câu 11: Vận dụng

    Một của hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120−x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?

    Gọi y là số tiền lãi của cửa hàng bán giày.

    Ta có y = (120−x)(x−40) =  − x2 + 160x − 4800 =  − (x−80)2 + 1600 ≤ 1600.

    Dấu " = " xảy ra  ⇔ x = 80.

    Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.

  • Câu 12: Thông hiểu

    Theo tài liệu dân số và phát triển của Tổng cục dân số và kế hoạch hóa gia đình thì:

    Dựa trên số liệu về dân số, kinh tế, xã hội của 85 nước trên thế giới, người ta xây dựng được hàm nêu lên mối quan hệ giữa tuổi thọ trung bình của phụ nữ (y) và tỷ lệ biết chữ của họ (x) như sau: y = 47,17 + 0,307x. Trong đó y là số năm (tuổi thọ), x là tỷ lệ phần trăm biết chữ của phụ nữ. Theo báo cáo của Bộ Giáo dục và Đào tạo năm học 2015 ‒ 2016, tỷ lệ biết chữ đã đạt 96,83% trong nhóm phụ nữ Việt Nam tuổi từ 15 đến 60. Hỏi với tỉ lệ biết chữ của phụ nữ Việt Nam như trên thì nhóm này có tuổi thọ bao nhiêu?

    Thay x = 96,83 vào công thức y = 47,17 + 0,307x ta được:

    y = 47,17 + 0,307. 96,83 = 47,17 + 29,72 = 76,89 (năm)

    Vậy nhóm này có tuổi thọ 76,89 tuổi.

  • Câu 13: Nhận biết

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 14: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{x + 2} + \sqrt{2 - x} là:

    Điều kiện xác định của hàm số y = \sqrt{x
+ 2} + \sqrt{2 - x} là:

    \left\{ \begin{matrix}
x + 2 \geq 0 \\
2 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 2 \leq x \leq 2

    Vậy tập xác định của hàm số đã cho là D =
\lbrack - 2;2brack

  • Câu 15: Nhận biết

    Khẳng định nào về hàm số y = 3x + 5 là sai?

    Hàm số y = 3x + 5 có hệ số a = 3 > 0 nên đồng biến trên , suy ra chọn đáp án Hàm số nghịch biến trên .

  • Câu 16: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số bậc hai?

    Đáp án y = x^{2} + 2x – 1 là đáp án đúng vì hàm số bậc hai có dạng y = a{x^2} + bx + c;\left( {a e 0} ight)

  • Câu 17: Nhận biết

    Tìm hàm số bậc hai trong các hàm số dưới đây?

    Theo định nghĩa ta có:

    Hàm số bậc hai là y = - 2x^{2} -
3.

  • Câu 18: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    (P) có trục đối xứng x =  − 3 nên - \frac{b}{2a} = - 3 \Leftrightarrow - \frac{3}{2a}
= - 3 \Leftrightarrow a = \frac{1}{2}.

    Vậy (P):y = \frac{1}{2}x^{2} + 3x -
2.

  • Câu 19: Thông hiểu

    Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.

    Ta có M \in (P)\overset{}{ightarrow}c =
4.

    Trục đối xứng - \frac{b}{2a} =
1\overset{}{ightarrow}b = - 4.

    Vậy (P) : y = 2x2 − 4x + 4.

  • Câu 20: Thông hiểu

    Cho hàm số y = x^{2} – 3x + 2. Khẳng định nào sau đây đúng?

    Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.

    Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng \left( { - \infty ;\frac{3}{2}} ight) và đồng biến trên khoảng \left( {\frac{3}{2}; + \infty } ight). Khẳng định "Hàm số đồng biến trên ℝ." sai.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số bậc hai và đồ thị CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo