Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

Nhận xét: Đồ thị có đỉnh .
Thay tọa độ vào hàm số
ta thấy thỏa mãn.
Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

Nhận xét: Đồ thị có đỉnh .
Thay tọa độ vào hàm số
ta thấy thỏa mãn.
Cho hàm số
. Khẳng định nào sau đây đúng?
Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.
Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.
Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng và đồng biến trên khoảng
. Khẳng định "Hàm số đồng biến trên ℝ." sai.
Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Xác định parabol
, biết rằng
đi qua điểm
và có trục đối xứng
.
Vì hàm số có trục đối xứng và đi qua điểm
nên:
và
.
Nhận xét: Trong 4 đáp án, chỉ có thỏa mãn 2 điều kiện trên.
Tập xác định của hàm số
là:
Hàm số xác định ⇔ x − 1 ≥ 0 ⇔ x ≥ 1.
Tập xác định của hàm số
là:
Hàm số .
Điều kiện xác định: .
Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).
Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng
?
Hàm số là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số
đồng biến trên tập số thực.
Vậy hàm số đồng biến trên khoảng
.
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng có phương trình
Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng .
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng .
Tập hợp nào sau đây là tập xác định của hàm số
?
Hàm số xác đinh khi và chỉ khi .
Cho hàm số y = f(x) có tập xác định là [ − 1; 5] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?
Trên khoảng (−1;1) và (2;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−1;1) và (2;3).
Trên khoảng (1;2) và (3;5) đồ thị hàm số đi xuống từ trái sang phải
Hàm số nghịch biến trên khoảng (1;2) và (3;5).
Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.
+ Có a = 3; b = − 2; c = 4.
+ Trục đối xứng của parabol là .
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Trục đối xứng của (P) có dạng:
.
Vậy (P) có phương trình: .
Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Cho hàm số y = f(x) có tập xác định là [ − 3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng?
Trên khoảng (−3;−1) và (1;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−3;−1) và (1;3).
Tìm tất cả các giá trị của m để hàm số
nghịch biến trên
.
Điều kiện để hàm số nghịch biến trên
là
.
Suy ra .
Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?
Ta có đáp án có:
Vậy x = 1 là trục đối xứng của đồ thị hàm số .
Tìm giá trị thực của m để phương trình |2x2−3x+2| = 5m − 8x − 2x2 có nghiệm duy nhất.
Ta thấy 2x2 − 3x + 2 > 0, ∀x ∈ ℝ nên |2x2−3x+2| = 2x2 − 3x + 2.
Do đó phương trình đã cho tương đương với 4x2 + 5x + 2 − 5m = 0. (*)
Khi đó để phương trình đã cho có nghiệm duy nhất khi và chỉ khi (*) có nghiệm duy nhất .
Cho hàm số
với
là tham số. Tính tổng tất cả các giá trị nguyên dương của tham số
để hàm số đã cho nghịch biến trên khoảng
?
Hàm số nghịch biến trên khoảng
Để hàm số nghịch biến trên khoảng
thì ta phải có
khi đó:
.
Các giá trị nguyên dương của tham số m để hàm số nghịch biến trên khoảng
là
Tổng tất cả các giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán là: .
Cho hàm số:
. Tìm x để ![]()
Ta có:
Vậy x = 3 hoặc x = 0
Tìm giá trị thực của tham số m để parabol (P) : y = mx2 − 2mx − 3m − 2 (m≠0) có đỉnh thuộc đường thẳng y = 3x − 1.
Hoành độ đỉnh của (P) là .
Suy ra tung độ đỉnh y = − 4m − 2. Do đó tọa độ đỉnh của (P) là I(1;−4m−2).
Theo giả thiết, đỉnh I thuộc đường thẳng y = 3x − 1 nên − 4m − 2 = 3.1 − 1 ⇔ m = − 1.