Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng ?
Hàm số là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số
đồng biến trên tập số thực.
Vậy hàm số đồng biến trên khoảng
.
Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng ?
Hàm số là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số
đồng biến trên tập số thực.
Vậy hàm số đồng biến trên khoảng
.
Tập xác định của hàm số là:
Điều kiện xác định: . Suy ra
.
Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3 (m≠1)(P). Đỉnh của (P) là S(−1;−2) thì m bằng bao nhiêu:
Do đỉnh của (P) là S(−1;−2) suy ra
.
Trong các hàm số sau, hàm số nào là nghịch biến:
Ta có:
Hàm số có a = -2 < 0
=> Hàm số nghịch biến.
Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).
Đỉnh Parabol là .
Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.
Cho hàm số . Biết f(x0) = 5 thì x0 là
TH1. x0 ≤ − 3: Với f(x0) = 5 ⇔ − 2x0 + 1 = 5 ⇔ x0 = − 2 (Loại).
TH2. x0 > − 3: Với (thỏa mãn).
Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng [ − 10; − 4) để đường thẳng d : y = − (m+1)x + m + 2 cắt Parabol (P) : y = x2 + x − 2 tại hai điểm phân biệt cùng phía với trục tung?
Xét phương trình: − (m+1)x + m + 2 = x2 + x − 2 ⇔ x2 + x(m+2) − m − 4 = 0
Để đường thẳng d cắt Parabol(P) tại hai điểm phân biệt cùng phía với trục tung vậy điều kiện là
Vậy trong nửa khoảng[ − 10; − 4) có 6 giá trị nguyên m.
Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên khoảng (−∞;2) và trên khoảng (2;+∞). Khẳng định nào sau đây đúng?
Ta có : f(x1) − f(x2) = (x12−4x1+5) − (x22−4x2+5) = (x12−x22) − 4(x1−x2) = (x1−x2)(x1+x2−4).
● Với mọi x1, x2 ∈ (−∞;2) và x1 < x2. Ta có .
Suy ra .
Vậy hàm số nghịch biến trên (−∞;2).
● Với mọi x1, x2 ∈ (2;+∞) và x1 < x2. Ta có .
Suy ra .
Vậy hàm số đồng biến trên (2;+∞).
Điểm nào không thuộc đồ thị hàm số đồ thị ?
Thay tọa độ vào hàm số ta được:
. Do đó điểm này không thuộc đồ thị hàm số.
Tập xác định của hàm số là
Ta có 9 − x2 ≥ 0 ⇔ (3−x)(3+x) ≥ 0 ⇔ − 3 ≤ x ≤ 3.
Hàm số xác định khi và chỉ khi
. Vậy x ∈ [ − 3; 3] ∖ {2}.
Tìm parabol , biết rằng parabol có đỉnh
.
Vì hàm số bậc hai có đỉnh nên:
và
.
Suy ra .
Trong các hàm số sau, hàm số nào nghịch biến trên ℝ?
Hàm số y = ax + b với a ≠ 0 nghịch biến trên ℝ khi và chỉ khi a < 0.
Tìm tất cả các giá trị thực của tham số m để phương trình x2 − 5x + 7 + 2m = 0 có nghiệm thuộc đoạn [1; 5].
Ta có x2 − 5x + 7 + 2m = 0 ⇔ x2 − 5x + 7 = − 2m. (*)
Phương trình (*) là phương trình hoành độ giao điểm của parabol (P) : x2 − 5x + 7 và đường thẳng y = − 2m (song song hoặc trùng với trục hoành).
Ta có bảng biến thiên của hàm số y = x2 − 5x + 7 trên [1; 5] như sau:
Dựa vào bảng biến ta thấy x ∈ [1; 5] thì .
Do đo để phương trình (*) có nghiệm
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Cho hàm số: . Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.
Hệ số góc của đồ thị hàm số y = 2018x − 2019 bằng
Hệ số góc a = 2018.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 7; 7] để phương trình mx2 − 2(m+2)x + m − 1 = 0 có hai nghiệm phân biệt?
TH1:; phương trình chỉ có một nghiệm duy nhất nên loại m = 0
TH2: m ≠ 0
Để mx2 − 2(m+2)x + m − 1 = 0với m ∈ [ − 7; 7]có hai nghiệm phân biệt thì
đồng thời m ∈ [ − 7; 7].
Vậy m = {1; 2;3;4;5;6;7}→ có 7 giá trị nguyên của m thỏa mãn.
Tìm tọa độ đỉnh S của parabol: ?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.
Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hướng lên.
Đỉnh của parabol là điểm (1;−3). Xét các đáp án, đáp án y = 2x2 − 4x − 1 thỏa mãn.
Hàm số y = 2x2 + 4x − 1
Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng , nghịch biến trên khoảng
.
Áp dụng: Ta có . Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).