Số nghiệm của phương trình
là
Điều kiện:
Phương trình tương đương:
Kết hợp điều kiện ta được: thỏa mãn điều kiện
Vậy phương trình đã cho có một nghiệm.
Số nghiệm của phương trình
là
Điều kiện:
Phương trình tương đương:
Kết hợp điều kiện ta được: thỏa mãn điều kiện
Vậy phương trình đã cho có một nghiệm.
Tập xác định của hàm số
là:
Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].
Tổng tất cả các nghiệm của phương trình
bằng:
.
Phương trình chỉ có nghiệm nên tổng các nghiệm bằng
.
Bảng xét dấu sau đây là của tam thức bậc hai nào?

Từ bảng xét dấu ta có:
có hai nghiệm phân biệt
và
khi
Do đó
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ: x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Phương trình
có mấy nghiệm ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 2 nghiệm.
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định
?
Hàm số có tập xác định khi và chỉ khi
Xét thì
, loại giá trị
Xét ta có:
Vậy
Tập nghiệm của bất phương trình
là?
Ta có
Bảng xét dấu:
Dựa vào bảng xét dấu .
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Khẳng định nào sau đây là đúng?

Nhìn vào đồ thị ta có:
Bề lõm hướng xuống ⇒ a < 0.
Hoành độ đỉnh .
Đồ thị hàm số cắt trục tung tại điểm có tung độ âm ⇒ c < 0.
Do đó: a < 0, b > 0, c < 0.
Dưới đây là bảng giá cước của hãng taxi A
|
Giá khởi điểm |
Giá km tiếp theo |
|
11 000 đồng/ 0,7km |
16 000 /1km |
Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.
Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?
Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là .
Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:
(đồng)
Vậy mối liên hệ giữa y và x là: .
Trong các hàm số sau, hàm số nào là hàm số bậc hai?
Đáp án là đáp án đúng vì hàm số bậc hai có dạng
Tam thức f(x) = x2 − 2x − 3 nhận giá trị dương khi và chỉ khi
Ta có:

Dựa vào bảng xét dấu, chọn đáp án x ∈ (−∞;−1) ∪ (3;+∞).
Tìm tập xác định D của hàm số
.
Điều kiện: .
Vậy tập xác định của hàm số là D = [ − 1; + ∞) ∖ {0}.
Cho tam thức
. Tìm m để f(x) ≥ 0 với mọi x ∈ ℝ.
Để f(x) ≥ 0 với mọi x ∈ ℝ
Số các nghiệm của phương trình
là:
⇔
⇔ .
Vậy phương trình có ba nghiệm.
Khẳng định nào về hàm số y = 3x + 5 là sai?
Hàm số y = 3x + 5 có hệ số a = 3 > 0 nên đồng biến trên ℝ, suy ra chọn đáp án Hàm số nghịch biến trên ℝ.
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hường lên.
Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.
Phương trình
có nghiệm thuộc khoảng:
Đặt . Phương trình đã cho trở thành:
Ta được thuộc [1 ; 2).