Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Các giá trị m để tam thức f(x)=x^{2}-(m+2)x+8m+1 đổi dấu 2 lần là:

     Để f(x) đổi dấu 2 lần thì \Delta >0.

    Ta có: (m+2)^2-4 (8m+1)>0 \Leftrightarrow m^2-28m>0 \Leftrightarrow m<0 hoặc m>28.

     

  • Câu 2: Nhận biết

    Cho tam thức bậc hai f(x) = ax^{2} + bx + c;(a eq 0). Khẳng định nào sau đây đúng?

    Ta có: f(x) > 0,\forall x
\Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta < 0 \\
\end{matrix} ight.

  • Câu 3: Nhận biết

    Phương trình \sqrt{4x^{2}-3}=x có nghiệm là:

    Điều kiện: 4{x^2} - 3 \geqslant 0

    Phương trình tương đương:

    \begin{matrix}  \sqrt {4{x^2} - 3}  = x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {4{x^2} - 3 = {x^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {3{x^2} = 3} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {\left[ {\begin{array}{*{20}{c}}  {x =  - 1\left( {ktm} ight)} \\   {x = 1\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được: x=1 thỏa mãn điều kiện

    Vậy phương trình có nghiệm x=1

  • Câu 4: Nhận biết

    Số nghiệm của phương trình x - \sqrt{3x + 4} = 2 là:

    x - \sqrt{3x + 4} = 2 \Leftrightarrow\sqrt{3x + 4} = x - 2\Leftrightarrow \left\{ \begin{matrix}x - 2 \geq 0 \\3x + 4 = (x - 2)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\3x + 4 = x^{2} - 4x + 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x^{2} - 7x = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\\left\lbrack \begin{matrix}x = 0 \\x = 7 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 7.

    Vậy phương trình có 1 nghiệm.

  • Câu 5: Vận dụng

    Số nghiệm của phương trình 3x^{2} + 15x + 2\sqrt{x^{2} + 5x + 1} = 2 là:

    Đặt t = \sqrt{x^{2} + 5x + 1} (t≥0).Phương trình trở thành: 3t^{2} + 2t - 5 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 1\ \ (t/m) \\t = - \frac{5}{3}\ \ (l) \\\end{matrix} ight.

    Với t = 1 ta được \sqrt{x^{2} + 5x + 1} =1 \Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = - 5 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 6: Thông hiểu

    Hàm số y = 2x^{2} – 4x + 1 đồng biến và nghịch biến trên khoảng nào?

    Ta có hàm số y = 2x^{2} – 4x + 1a=2>0

    => Hàm số nghịch biến trên khoảng \left( { - \infty ;1} ight), đồng biến trên khoảng \left( {1; + \infty } ight)

  • Câu 7: Thông hiểu

    Tìm tập xác định của hàm số y=\sqrt{x+2}-\frac{2}{x-3}

    Điều kiện xác định của hàm số là: \left\{ {\begin{array}{*{20}{c}}  {x + 2 \geqslant 0} \\   {x - 3 e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant  - 2} \\   {x e 3} \end{array}} ight.

    => Tập xác định của hàm số là: D = \left[ {2; + \infty } ight)\backslash \left\{ 3 ight\}

  • Câu 8: Nhận biết

    Cho hàm số có đồ thị như hình vẽ

    Khẳng định nào sau đây đúng:

    Hàm số đồng biến trên khoảng (1;3).

  • Câu 9: Thông hiểu

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ: x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}3m - 1 eq 0 \\x = \frac{5m + 1}{3m - 1} > - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq \frac{1}{3} \\\frac{8m}{3m - 1} > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m > \frac{1}{3} \\m < 0 \\\end{matrix} ight..

  • Câu 10: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) có đỉnh I(2;−1) và cắt trục tung tại điểm có tung độ bằng  − 3.

    (P) có đỉnh I(2;−1) nên ta có \left\{ \begin{matrix}
- \frac{b}{2a} = 2 \\
f(2) = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = 4a \\
4a + 2b + c = - 1 \\
\end{matrix} ight.. (1)

    Gọi A là giao điểm của (P) với Oy tại điểm có tung độ bằng  − 3. Suy ra A(0;−3).

    Theo giả thiết, A(0;−3) thuộc (P) nên a.0 + b.0 + c =  − 3 ⇔ c =  − 3. (2)

    Từ (1)(2), ta có \left\{
\begin{matrix}
a = \frac{1}{6} \\
b = \frac{2}{3} \\
c = - 3 \\
\end{matrix} ight..

    Vậy (P):y = \frac{1}{6}x^{2} +
\frac{2}{3}x - 3.

  • Câu 11: Vận dụng

    Tìm tất cả các giá trị thực của m để phương trình x4 − 2x2 + 3 − m = 0 có nghiệm.

    Đặt t = x2    (t≥0).

    Khi đó, phương trình đã cho trở thành: t2 − 2t + 3 − m = 0. (*)

    Để phương trình đã cho có nghiệm khi và chỉ khi (*) có nghiệm không âm.

    Phương trình (*) vô nghiệm khi và chỉ khi Δ′ < 0 ⇔ m − 2 < 0 ⇔ m < 2.

    Phương trình (*) có 2 nghiệm âm khi và chỉ khi \left\{ \begin{matrix}
\Delta' = m - 2 \geq 0 \\
S = 2 < 0 \\
P = 3 - m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \varnothing.

    Do đó, phương trình (*) có nghiệm không âm khi và chỉ khi m ≥  − 2.

  • Câu 12: Nhận biết

    Hàm số nào sau đây đồng biến trên tập xác định của nó?

    y = 3x + 1a = 3 > 0 nên hàm số đồng biến trên TXĐ.

  • Câu 13: Nhận biết

    Tam thức f(x) = x2 − 2x − 3 nhận giá trị dương khi và chỉ khi

    Ta có: f(x) = x^{2} - 2x - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án x ∈ (−∞;−1) ∪ (3;+∞).

  • Câu 14: Thông hiểu

    Tập nghiệm S của phương trình \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2là:

     Điều kiện: x \ge1.

    Ta có: \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2\Leftrightarrow \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+\frac{2(x+2)}{x+2}\Leftrightarrow \sqrt {x - 1}  =  - x - 11 + 2x + 4 \Leftrightarrow \sqrt {x - 1}=x-7\Rightarrow x-1=(x-7)^2 \Leftrightarrow x^2-15x+50=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 5}\\{x = 10}\end{array}} ight..

    Thử lại x=5 không thỏa mãn.

    Vậy S=\{10\}

  • Câu 15: Vận dụng cao

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =
\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}
3m - 1 eq 0 \\
x = \frac{5m + 1}{3m - 1} > - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq \frac{1}{3} \\
\frac{8m}{3m - 1} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > \frac{1}{3} \\
m < 0 \\
\end{matrix} ight..

  • Câu 16: Nhận biết

    Tam thức bậc hai f(x) = x^{2} + \left( 1 - \sqrt{3} ight)x - 8 -
5\sqrt{3}:

    f(x) = x^{2} + \left( 1 - \sqrt{3}
ight)x - 8 - 5\sqrt{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 - \sqrt{3} \\
x = 1 + 2\sqrt{3} \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án Âm với mọi x \in \left( - 2 - \sqrt{3};1 + 2\sqrt{3}
ight).

  • Câu 17: Thông hiểu

    Tập xác định của hàm số y = f(x) = \left\{ \begin{matrix}
\sqrt{- 3x + 8} + x & khi & x < 2 \\
\sqrt{x + 7} + 1 & khi & x \geq 2 \\
\end{matrix} ight.

    Ta có :

    • Khi x < 2: y = f(x) = \sqrt{- 3x + 8} + x xác định khi - 3x + 8 \geq 0 \Leftrightarrow x \leq
\frac{8}{3}.

    Suy ra D1 = (−∞;2).

    • Khi x ≥ 2: y = f(x) = \sqrt{x + 7} + 1 xác định khi x + 7 ≥ 0 ⇔ x ≥  − 7.

    Suy ra D1 = [2;  + ∞).

    Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.

  • Câu 18: Thông hiểu

    Tập nghiệm của bất phương trình x(x + 5) \leqslant 2({x^2} + 2) là:

    Ta có:

    \begin{matrix}  x(x + 5) \leqslant 2({x^2} + 2) \hfill \\   \Leftrightarrow {x^2} + 5x \leqslant 2{x^2} + 4 \hfill \\   \Leftrightarrow  - {x^2} + 5x - 4 \leqslant 0 \hfill \\   \Leftrightarrow x \in \left( { - \infty ;1} ight] \cup \left[ {4; + \infty } ight) \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số bậc hai?

    Đáp án y = x^{2} + 2x – 1 là đáp án đúng vì hàm số bậc hai có dạng y = a{x^2} + bx + c;\left( {a e 0} ight)

  • Câu 20: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo