Cho hàm số:
. Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.
Cho hàm số:
. Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.
Với giá trị nào của tham số a thì phương trình:
có đúng hai nghiệm phân biệt.
.
Phương trình có hai nghiệm phân biệt ⇔ 1 ≤ a < 4.
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3.
Phương trình
có bao nhiêu nghiệm
Đkxđ: .
.
Vậy phương trình có hai nghiệm.
Tập nghiệm S của bất phương trình
là:
Ta có: .
Suy ra .
Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi
f(x) = 2x2 + 2x + 5 = 0 có: nên f(x) > 0∀x ∈ ℝ.
Cho parabol
(
). Xét dấu hệ số
và biệt thức
khi
cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía trên trục hoành.
Nhận xét: Đồ thị hàm số bậc hai cắt trục hoành tại 2 điểm phân biệt nên suy ra phương trình có 2 nghiệm phân biệt. Suy ra
.
Đỉnh nằm phía trên trục hoành nên suy ra (bề lõm hướng xuống).
Phương trình
có nghiệm thuộc khoảng:
Đặt . Phương trình đã cho trở thành:
Ta được thuộc [1 ; 2).
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) có đỉnh I(2;−1) và cắt trục tung tại điểm có tung độ bằng − 3.
Vì (P) có đỉnh I(2;−1) nên ta có . (1)
Gọi A là giao điểm của (P) với Oy tại điểm có tung độ bằng − 3. Suy ra A(0;−3).
Theo giả thiết, A(0;−3) thuộc (P) nên a.0 + b.0 + c = − 3 ⇔ c = − 3. (2)
Từ (1) và (2), ta có .
Vậy .
Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….
Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến
Tam thức bậc hai
:

Dựa vào bảng xét dấu, chọn đáp án Âm với mọi .
Cho hàm số:
. Tập xác định của hàm số là tập hợp nào sau đây?
Với x ≤ 0 ta có: xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.
Với x > 0 ta có: xác định với mọi x ≥ − 2 nên xác định với mọi x > 0.
Vậy tập xác định của hàm số là D = ℝ.
Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.
+ Có a = 3; b = − 2; c = 4.
+ Trục đối xứng của parabol là .
Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên các khoảng (−∞; 2) và (2; +∞). Khẳng định nào sau đây đúng?
Xét f(x) = x2 − 4x + 5.
TXĐ: D = ℝ.
Tọa độ đỉnh I(2; 1).
Hàm số nghịch biến trên (−∞; 2), đồng biến trên (2; +∞).
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.
Phương trình
Bảng xét dấu:

Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).
Vậy tập xác định của hàm số là D = (− 4;1).
Số nghiệm của phương trình
là:
Xét phương trình:
Điều kiện:
Vậy phương trình vô nghiệm.
Số nghiệm nguyên dương của phương trình
là
.
Vậy phương trình có một nghiệm nguyên dương.
Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

Nhận xét: Đồ thị có đỉnh .
Thay tọa độ vào hàm số
ta thấy thỏa mãn.
Chọn khẳng định đúng?
Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu ∀x1; x2 ∈ K, x1 < x2 ⇒ f(x1) < f(x2).
Tam thức f(x) = − 2x2 + (m−2)x − m + 4 không dương với mọi x khi:
.