Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3 .
Số nghiệm của phương trình
là:
Ta thấy không là nghiệm của phương trình
Xét , phương trình đã cho
Đến đây, chú ý
Nên phương trình có nghiệm phải thỏa mãn
Do đó phương trình đã cho
Nhưng x = − 1 không thoả mãn nên phương trình có nghiệm x = 1
* TH2:
(thỏa mãn)
Vậy phương trình có nghiệm duy nhất x = 1.
Cho f(x) = − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.
Ta có .
Tìm tập xác định của ![]()
Điều kiện xác định: .
Vậy .
Cho phương trình
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Từ yêu cầu bài toán
Suy ra
Vậy có 20 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tìm tập xác định của hàm số 
Xét , ta có:
.
Điều kiện xác định của là
. Kết hợp với
ta được
.
Vậy .
Biết phương trình
có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn)
⇒ x2 − 3x + 3 = 1⇔ .
Nghiệm của phương trình:
là bao nhiêu?
Điều kiện: .
Thay vào phương trình ta được
hay
là nghiệm của phương trình.
Cho hai hàm số y1 = x2 + (m−1)x + m, y2 = 2x + m + 1. Khi đồ thị hai hàm số cắt nhau tại hai điểm phân biệt thì m có giá trị là
Phương trình hoành độ giao điểm: x2 + (m−1)x + m = 2x + m + 1 ⇔ x2 + (m−3)x − 1 = 0 (1).
Khi đồ thị hai hàm số cắt nhau tại hai điểm phân biệt thì pt(1) có hai nghiệm phân biệt
⇔ Δ = (m−3)2 + 4 > 0 luôn đúng ∀m ∈ ℝ.
Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi
Chọn Ta có:

Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng có phương trình
Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng .
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng .
Giả sử đồ thị parabol
đi qua điểm
và có trục đối xứng là đường thẳng
. Tính tổng các giá trị
và
?
Ta có:
Trục đối xứng của là:
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Cho tam thức bậc hai
. Kết luận nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là .
Phương trình
có bao nhiêu nghiệm
Đkxđ: .
.
Vậy phương trình có hai nghiệm.
Bất phương trình
có tập nghiệm là:
Ta có: (vô lí).
Vậy .
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Bảng biến thiên của hàm số y = − 2x2 + 4x + 1 là bảng nào trong các bảng được cho sau đây ?
Hệ số bề lõm hướng xuống.
Ta có và y(1) = 3. Do đó chọn
.