Hàm số nào sau đây có đỉnh
?
Hàm số có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh
Hàm số nào sau đây có đỉnh
?
Hàm số có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Tam thức f(x) = − 2x2 + (m−2)x − m + 4 không dương với mọi x khi:
.
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Tập nghiệm của bất
là:
Ta có: .
Vậy
Tìm tập xác định của hàm số ![]()
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).
Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi
f(x) = 2x2 + 2x + 5 = 0 có: nên f(x) > 0∀x ∈ ℝ.
Xác định điểm không thuộc đồ thị của hàm số
?
Ta thấy các điểm nằm trên đồ thị của hàm số là: ;
;
.
Vậy điểm không thuộc đồ thị hàm số đã cho là: .
Tìm m để hàm số y = x2 − 2x + 2m + 3 có giá trị nhỏ nhất trên đoạn [2 ; 5] bằng − 3.
Ta có bảng biến thiên của hàm số y = x2 − 2x + 2m + 3 trên đoạn [2 ; 5]:

Do đó giá trị nhỏ nhất trên đoạn [2 ; 5] của hàm số y = x2 − 2x + 2m + 3 bằng 2m + 3.
Theo giả thiết 2m + 3 = − 3 ⇔ m = − 3.
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) có đỉnh I(−1;−2).
Trục đối xứng
Do
Vậy (P) : y = 2x2 + 4x.
Số các nghiệm của phương trình
là:
⇔
⇔ .
Vậy phương trình có ba nghiệm.
Cho hàm số:
. Tập xác định của hàm số là tập hợp nào sau đây?
Với x ≤ 0 ta có: xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.
Với x > 0 ta có: xác định với mọi x ≥ − 2 nên xác định với mọi x > 0.
Vậy tập xác định của hàm số là D = ℝ.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Cho phương trình
. Tìm
để phương trình có 3 nghiệm phân biệt?
Đáp án: 9
Cho phương trình . Tìm
để phương trình có 3 nghiệm phân biệt?
Đáp án: 9
Đặt thì phương trình
trở thành:
(1)
Để phương trình có 3 nghiệm phân biệt thì phương trình (1) phải có nghiệm
và một nghiệm
.
Khi thì
.
Vậy
Phương trình
có bao nhiêu nghiệm?
ĐKXĐ: .
Thay x = 1 vào , ta được:
.
Vậy phương trình vô nghiệm.
Phương trình
có mấy nghiệm ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 2 nghiệm.
Số nghiệm của phương trình
là bao nhiêu?
.
Vậy phương trình có hai nghiệm.
Số nghiệm của phương trình
là:
vô số.
Ta thấy x = − 3 không là nghiệm của phương trình.
Xét x ≠ − 3, phương trình
Phương trình (*)
(thỏa mãn)
Vậy phương trình đã cho có hai nghiệm x = 0 và .