Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm tất cả các giá trị của m để tam thức f(x) = m{x^2} - x + m luôn dương với ∀x ∈ \mathbb{ℝ}.

    Để tam thức f(x) = m{x^2} - x + m luôn dương với ∀x ∈ \mathbb{ℝ}:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( { - 1} ight)}^2} - 4{m^2} < 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( { - 1} ight)}^2} - 4{m^2} < 0} \end{array}} ight. \hfill \\ \end{matrix}

    Xét g\left( x ight) = 1 - 4{x^2} ta có bảng xét dấu như sau:

    Tìm m để tam thức bậc hai luôn dương với mọi x

    g\left( x ight) < 0 \Rightarrow x \in \left( { - \infty ; - \frac{1}{2}} ight) \cup \left( {\frac{1}{2}; + \infty } ight)

    Kết hợp các điều kiện ta được m \in \left( {\frac{1}{2}; + \infty } ight)

  • Câu 2: Thông hiểu

    Phương trình \sqrt{3x} + \sqrt{2x - 2} = \sqrt{1 - x} +2 có bao nhiêu nghiệm?

    ĐKXĐ: \left\{ \begin{matrix}3x \geq 0 \\2x - 2 \geq 0 \\1 - x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x \geq 1 \\x \leq 1 \\\end{matrix} ight.\  \Leftrightarrow x = 1.

    Thay x = 1 vào \sqrt{3x} + \sqrt{2x - 2} = \sqrt{1 - x} +2, ta được: \sqrt{3} = 2 .

    Vậy phương trình vô nghiệm.

  • Câu 3: Nhận biết

    Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?

    Ta có đáp án y=-2x^{2}+4x+1 có: x =  - \frac{b}{{2a}} =  - \frac{4}{{2.\left( { - 2} ight)}} = 1

    Vậy x = 1 là trục đối xứng của đồ thị hàm số y=-2x^{2}+4x+1.

  • Câu 4: Thông hiểu

    Quan sát đồ thị hàm số, chọn nhận xét đúng?

    Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0

    Parabol cắt trục tung tại điểm có tọa độ (0;c) nằm phía trên trục hoành nên c > 0.

    Đỉnh parabol nằm bên trái trục tung nên có hoành độ - \frac{b}{2a} < 0a > 0 suy ra b > 0.

    Kết luận: a > 0,b > 0,c >
0.

  • Câu 5: Thông hiểu

    Tập xác định của hàm số y = \frac{\sqrt{9 - x^{2}}}{x^{2} - 6x + 8}

    Ta có 9 − x2 ≥ 0 ⇔ (3−x)(3+x) ≥ 0 ⇔  − 3 ≤ x ≤ 3.

    Hàm số xác định khi và chỉ khi

    \left\{ \begin{matrix}
9 - x^{2} \geq 0 \\
x^{2} - 6x + 8 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 4 \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.. Vậy x ∈ [ − 3; 3] ∖ {2}.

  • Câu 6: Vận dụng

    Số nghiệm của phương trình (x + 1)^{2} - 2\sqrt{2x(x^{2} + 1)} = 0 là:

    ĐKXĐ: 2x(x2+1) ≥ 0 ⇔ x ≥ 0

    Đặt \sqrt{2x} = a,\ \sqrt{x^{2} + 1} =b, a  ≥ 0, b ≥ 0

    Suy ra a2 + b2 = 2x + x2 + 1 = (x+1)2

    Phương trình trở thành a2 + b2 − 2ab = 0 ⇔ (ab)2 = 0 ⇔ a = b

    Suy ra \sqrt{2x} = \sqrt{x^{2} + 1}\Leftrightarrow 2x = x^{2} + 1 \Leftrightarrow (x - 1)^{2} = 0\Leftrightarrow x = 1 (thỏa mãn)

    Vậy phương trình có một nghiệm là x = 1 .

  • Câu 7: Thông hiểu

    Tập nghiệm S của bất phương trình 5(x+1)−x(7−x)>−2x là:

     Ta có: 5(x+1)−x(7−x)>−2x \Leftrightarrow x^2+5>0 (hiển nhiên).

    Vậy S = \mathbb{R}.

  • Câu 8: Nhận biết

    Cho hàm số có đồ thị như hình bên dưới.

    Khẳng định nào sau đây là đúng?

    Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.

  • Câu 9: Nhận biết

    Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi

    Chọn Ta có: f(x) = 4x^{2} - 12x + 9 = 0
\Leftrightarrow x = \frac{3}{2}

    Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.

  • Câu 10: Nhận biết

    Tập xác định của hàm số y = \sqrt{x - 1} là:

    Hàm số y = \sqrt{x - 1} xác định  ⇔ x − 1 ≥ 0  ⇔ x ≥ 1.

  • Câu 11: Nhận biết

    Xác định m để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai.

     Để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai ta có:

    m + 2 e 0 \Leftrightarrow m e  - 2

  • Câu 12: Thông hiểu

    Tìm parabol (P):y=ax^{2}+3x-2, biết rằng parabol có đỉnh I(-\frac{1}{2};-\frac{11}{4}).

     Vì hàm số bậc hai có đỉnh I(-\frac{1}{2};-\frac{11}{4}) nên:

    \frac{-b}{2a}= \frac {-1}2 \Leftrightarrow b=a-\frac {11}4=a{(\frac{-1}2})^{2}+3.(-\frac1{2})-2.

    Suy ra a=3.

  • Câu 13: Vận dụng cao

    Tìm m để phương trình \sqrt{x^{2} + mx + 2} = 2x + 1 có hai nghiệm phân biệt là:

    Phương trình \Leftrightarrow \left\{
\begin{matrix}
x \geq - \frac{1}{2} \\
3x^{2} + (4 - m)x - 1 = 0(*) \\
\end{matrix} ight..

    Phương trình đã cho có hai nghiệm  ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng - \frac{1}{2} \Leftrightarrow đồ thị hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; + \infty) cắt trục hoành tại hai điểm phân biệt.

    Xét hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; +
\infty). Ta có - \frac{b}{2a} =
\frac{m - 4}{6}

    + TH1: Nếu \frac{m - 4}{6} \leq -
\frac{1}{2} \Leftrightarrow m \leq 1 thì hàm số đồng biến trên \lbrack - \frac{1}{2}; + \infty) nên m ≤ 1 không thỏa mãn yêu cầu bài toán.

    + TH2: Nếu \frac{m - 4}{6} > -
\frac{1}{2} \Leftrightarrow m > 1 :

    Ta có bảng biến thiên

    Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; + \infty) cắt trục hoành tại hai điểm phân biệt \Leftrightarrow y{(-\frac12)}\geq0>y{(\frac{m-4}6)}

    \Leftrightarrow\frac{2m-9}4\geq0>\frac1{12}{(-m^2+8m-28)\;}(1)

     − m2 + 8m − 28 =  − (m−4)2 − 12 < 0,  ∀m nên

    (1) \Leftrightarrow 2m - 9 \geq 0
\Leftrightarrow m \geq \frac{9}{2} (thỏa mãn m > 1).

    Vậy m \geq \frac{9}{2} là giá trị cần tìm.

  • Câu 14: Nhận biết

    Số nghiệm của phương trình \sqrt{2x-4}=\sqrt{x^{2}-3x} là:

    Điều kiện: \left\{ {\begin{array}{*{20}{c}}  {2x - 4 \geqslant 0} \\   {{x^2} - 3x \geqslant 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {x \in \left( { - \infty ;0} ight] \cup \left[ {3; + \infty } ight)} \end{array}} ight. \hfill \\   \Leftrightarrow x \geqslant 3 \hfill \\ \end{matrix}

    \begin{matrix}  \sqrt {2x - 4}  = \sqrt {{x^2} - 3x}  \hfill \\   \Leftrightarrow 2x - 4 = {x^2} - 3x \hfill \\   \Leftrightarrow {x^2} - 5x + 4 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {ktm} ight)} \\   {x = 4\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy phương trình đã cho có tất cả 1 nghiệm.

  • Câu 15: Nhận biết

    Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên các khoảng (−∞; 2)(2; +∞). Khẳng định nào sau đây đúng?

    Xét f(x) = x2 − 4x + 5.

    TXĐ: D = ℝ.

    Tọa độ đỉnh I(2; 1).

    Hàm số nghịch biến trên (−∞; 2), đồng biến trên (2; +∞).

  • Câu 16: Thông hiểu

    Cho f(x) =  − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.

    Ta có f(x)<0,\forall x\in R\Leftrightarrow(m+2)^2+8(m-4)<0

    \Leftrightarrow m^2+12m-28<0\Leftrightarrow-14<m<2.

  • Câu 17: Vận dụng

    Một của hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120−x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?

    Gọi y là số tiền lãi của cửa hàng bán giày.

    Ta có y = (120−x)(x−40) =  − x2 + 160x − 4800 =  − (x−80)2 + 1600 ≤ 1600.

    Dấu " = " xảy ra  ⇔ x = 80.

    Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.

  • Câu 18: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 19: Thông hiểu

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số

    y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) là:

    Hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng \left( \frac{m +
1}{4}\ \ ;\ \  + \infty ight).

    Để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) thì ta phải có (1\ \ ;\ \ 5) \subset \left(
\frac{m + 1}{4}\ \ ;\ \  + \infty ight) \Leftrightarrow \frac{m + 1}{4} \leq 1
\Leftrightarrow m \leq 3.

    Các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)m = 1,  m = 2,  m = 3.

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)S = 1 + 2 + 3 = 6.

  • Câu 20: Nhận biết

    Nghiệm của phương trình \sqrt{-10x+10}=x-1 là:

     Ta có: \sqrt{-10x+10}=x-1 \Rightarrow -10x+10=x^2-2x+1\Leftrightarrow x^2+8x-9=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  - 9}\end{array}} ight..

    Thử lại thấy x=9 không thỏa mãn. Do đó x=1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo