Giải bất phương trình ![]()
Ta có: .
Giải bất phương trình ![]()
Ta có: .
Tích các nghiệm của phương trình
là:
ĐKXĐ: x ≥ − 3
Phương trình
Đặt , (t≥0) phương trình trở thành − 27t2 − 3t + 3x2 + 31x + 80 = 0(1)
Có Δt = (18x+93)2 suy ra
Vô nghiệm vì với x ≥ − 3 thì
hoặc x = − 2
Vậy phương trình ban đầu có hai nghiệm x = 1 và x = − 2, tích các nghiệm của phương trình là 1.(−2) = − 2.
Xét sự biến thiên của hàm số
trên khoảng (0;+∞). Khẳng định nào sau đây đúng?
Vậy hàm số nghịch biến trên khoảng (0;+∞).
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.
Phương trình
Bảng xét dấu:

Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).
Vậy tập xác định của hàm số là D = (− 4;1).
Phương trình
có mấy nghiệm ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 2 nghiệm.
Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) = − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên ℝ là:
Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.
Cho hàm số y = f(x) = ax2 + bx + c. Biểu thức f(x+3) − 3f(x+2) + 3f(x+1) có giá trị bằng
f(x+3) = a(x+3)2 + b(x+3) + c = ax2 + (6a+b)x + 9a + 3b + c.
f(x+2) = a(x+2)2 + b(x+2) + c = ax2 + (4a+b)x + 4a + 2b + c.
f(x+1) = a(x+1)2 + b(x+1) + c = ax2 + (2a+b)x + a + b + c.
⇒ f(x+3) − 3f(x+2) + 3f(x+1) = ax2 + bx + c.
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện: .
Ta có: .
Loại . Do đó phương trình có 1 nghiệm.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Tìm tất cả các giá trị của m để hàm số
nghịch biến trên
.
Điều kiện để hàm số nghịch biến trên
là
.
Suy ra .
Bảng biến thiên của hàm số y = − 2x2 + 4x + 1 là bảng nào trong các bảng được cho sau đây ?
Hệ số bề lõm hướng xuống.
Ta có và y(1) = 3. Do đó chọn
.
Tam thức bậc hai f(x) = − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).
Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Cho hàm số có đồ thị như hình vẽ
Khẳng định nào sau đây đúng:
Hàm số đồng biến trên khoảng (1;3).
Tập nghiệm của phương trình
là:
Phương trình .
Vậy S = {2}.
Tập hợp nào sau đây là tập xác định của hàm số
?
Hàm số xác đinh khi và chỉ khi .
Một chiếc cổng parabol dạng
có chiều rộng
. Hỏi chiều cao của chiếc cổng là?

Đáp án: 8
Một chiếc cổng parabol dạng có chiều rộng
. Hỏi chiều cao của chiếc cổng là?
Đáp án: 8
Khoảng cách từ chân cổng đến trục đối xứng Oy là .
Hoành độ hai chân cổng là
Tung độ chân cổng là:
Vậy chiều cao của cổng là mét.
Tam thức nào sau đây nhận giá trị không âm với mọi x ∈ ℝ?
*x2 − x − 5 = 0 có 2 nghiệm phân biệt
* − x2 − x − 1 = 0vô nghiệm, a = − 1 < 0 nên − x2 − x − 1 < 0, ∀x ∈ ℝ
*2x2 + x = 0 có 2 nghiệm phân biệt
*x2 + x + 1 = 0 vô nghiệm, a = 1 > 0 nên x2 + x + 1 > 0, ∀x ∈ ℝ thỏa ycbt.
Phương trình sau có bao nhiêu nghiệm
?
Điều kiện xác định: .
Với thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.
Tam thức bậc hai
:

Dựa vào bảng xét dấu, chọn đáp án Âm với mọi .