Hàm số y = 2x2 + 4x − 1
Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng , nghịch biến trên khoảng
.
Áp dụng: Ta có . Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).
Hàm số y = 2x2 + 4x − 1
Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng , nghịch biến trên khoảng
.
Áp dụng: Ta có . Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).
Tổng các nghiệm của phương trình
là:
.
Vậy tổng các nghiệm của phương trình là − 1.
Cho hàm số
. Tính P = f(2) + f(−2).
Ta có: .
Xác định m để biểu thức
là tam thức bậc hai.
Để biểu thức là tam thức bậc hai ta có:
Số nghiệm của phương trình:
là
Điều kiện xác định của phương trình x ≥ 4.
Phương trình tương đương với
.
Kết hợp điều kiện suy ra .
Vậy phương trình có hai nghiệm.
Các giá trị m để tam thức f(x) = x2– (m + 2)x + 8m + 1 đổi dấu 2 lần là
Tam thức đổi dấu 2 lần khi tam thức có 2 nghiệm pb
⇔ Δ > 0 ⇔ m2 − 28m > 0 ⇔ m < 0 ∨ m > 28.
Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi
f(x) = 2x2 + 2x + 5 = 0 có: nên f(x) > 0∀x ∈ ℝ.
Tìm tập xác định của hàm số
.
Hàm số xác định .
Vậy tập xác định: .
Hàm số
đồng biến và nghịch biến trên khoảng nào?
Ta có hàm số có
=> Hàm số nghịch biến trên khoảng , đồng biến trên khoảng
Tập nghiệm
của phương trình
là:
Điều kiện: .
Ta có:
.
Thử lại không thỏa mãn.
Vậy
Tìm tập xác định của hàm số
.
Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).
Do đó tập xác định D = ℝ.
Tổng các nghiệm của phương trình
bằng:
.
Vậy, tổng các nghiệm của phương trình là .
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3 .
Phương trình
có mấy nghiệm nguyên dương ?
Đặt . Ta có hệ phương trình:
Vậy phương trình có 2 nghiệm x = 2 và x = 3.
Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Phương trình sau có bao nhiêu nghiệm
?
Điều kiện xác định: .
Với thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.
Tam thức bậc hai
.
Ta có .
Bảng xét dấu

Dựa vào bảng xét dấu .
Tìm m để Parabol (P) : y = x2 − 2(m+1)x + m2 − 3 cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1.
Phương trình hoành độ giao điểm của (P) với trục hoành: x2 − 2(m+1)x + m2 − 3 = 0 (1).
Parabol (P) cắt trục hoành tại 2 điểm phân biệt có hoành độ x1, x2 sao cho x1.x2 = 1
⇔ (1) có 2 nghiệm phân biệt x1, x2 thỏa x1.x2 = 1
.
Bảng biến thiên của hàm số y = − 2x2 + 4x + 1 là bảng nào trong các bảng được cho sau đây ?
Hệ số bề lõm hướng xuống.
Ta có và y(1) = 3. Do đó chọn
.
Cho hàm số:
. Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.