Phương trình:
có bao nhiêu nghiệm?
Điều kiện:
Kết hợp với điều kiện ta được thỏa mãn
Vậy nghiệm của phương trình là
Phương trình:
có bao nhiêu nghiệm?
Điều kiện:
Kết hợp với điều kiện ta được thỏa mãn
Vậy nghiệm của phương trình là
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3.
Cho
. Điều kiện để
là:
Ta có:
.
Tổng các nghiệm của phương trình
là :
Ta có
Phương trình có nghiệm là và
.
Vậy tổng các nghiệm của phương trình là .
Cho f(x) = − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.
Ta có
.
Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Tập xác định của hàm số
là
Hàm số xác định khi .
Vậy tập xác định của hàm số là D = (1; 3].
Số các nghiệm của phương trình
là:
⇔
⇔ .
Vậy phương trình có ba nghiệm.
Chọn khẳng định đúng?
Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu ∀x1; x2 ∈ K, x1 < x2 ⇒ f(x1) < f(x2).
Cho một vật rơi từ trên cao xuống theo phương thẳng đứng với vận tốc ban đầu là 12 m/s. Hỏi lúc t = 7 s thì vật đã rơi được bao nhiêu mét, biết g = 9,8
, hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi.
Gọi vận tốc ban đầu của vật là .
Do đây là vật rơi nên vật sẽ chuyển động nhanh dần đều.
Suy ra hàm số biểu thị quãng đường rơi s theo thời gian t là:
Ta thấy hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi và thời gian là đại lượng không âm nên t ≥ 0.
Ta có hàm số:
Khi t = 7 thì vật đã rơi được quãng đường là:
.
Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.
+ Có a = 3; b = − 2; c = 4.
+ Trục đối xứng của parabol là .
Tìm tập xác định của hàm số ![]()
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Phương trình
có bao nhiêu nghiệm?
.
Vậy phương trình có 2 nghiệm.
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Hàm số nào sau đây có đỉnh
?
Hàm số có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Số giá trị nguyên của
để tam thức
nhận giá trị âm là:
Ta có: và
.
Phương trình có hai nghiệm
.
Do đó (5 giá trị).
Số nghiệm của phương trình
là:
ĐKXĐ: x > 0.
Phương trình tương đương với
.
Đặt
Phương trình trở thành:
Với ta có
Với ta có
Vậy phương trình có nghiệm là x = 1 và .