Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tam thức f(x) =  − 2x2 + (m−2)x − m + 4 không dương với mọi x khi:

    f(x) \leq 0,\ \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m^{2} - 12m + 36 \leq 0\
\  \Leftrightarrow \ \ m = 6.

  • Câu 2: Nhận biết

    Tổng các nghiệm của phương trình \sqrt{x^{2} + 2x + 4} = \sqrt{2 - x} bằng:

    \sqrt{x^{2} + 2x + 4} = \sqrt{2 - x}\Leftrightarrow \left\{ \begin{matrix}2 - x \geq 0 \\x^{2} + 2x + 4 = 2 - x \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 2 \\\end{matrix} ight..

    Vậy, tổng các nghiệm của phương trình là ( - 1) + ( - 2) = - 3.

  • Câu 3: Thông hiểu

    Tìm tập xác định của hàm số y = f(x) = \left\{\begin{matrix}\frac{1}{x}\text{  khi  } x\geq 1\\ \sqrt{x+1} \text{  khi  } x <1\end{matrix}ight.

    Xét  f(x)=\frac1x, ta có: D_1=[1;+\infty).

    Điều kiện xác định của \sqrt{x+1}x\ge-1. Kết hợp với x<1 ta được D_2=[-1;1).

    Vậy D=D_1\cup D_2=[-1;+\infty).

  • Câu 4: Thông hiểu

    Tập nghiệm của phương trình 2x-\sqrt{x-8}=\sqrt{8-x}+16 là:

    Xét phương trình: 2x - \sqrt{x - 8} =\sqrt{8 - x} + 16. (1)

    Điều kiện : \left\{ \begin{matrix}x - 8 \geq 0 \\8 - x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 8 \\x \leq 8 \\\end{matrix} ight.\  \Leftrightarrow x = 8.

    Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.

  • Câu 5: Nhận biết

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng có phương trình

    Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng x = -
\frac{b}{2a}.

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng x = \frac{5}{2}.

  • Câu 6: Nhận biết

    Tập nghiệm của bất phương trình 2{x^2} - 7x - 15 \geqslant 0 là:

    Tam thức f(x)=2{x^2} - 7x - 15 có hai nghiệm phân biệt {x_1} = 5;{x_2} =  - \frac{3}{2}

    a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng \left( { - \infty  - \frac{3}{2}} ight],\left[ {5, + \infty } ight)

    Vậy tập nghiệm của bất phương trình là: S=(-∞;-\frac{3}{2})∪[5;+∞)

  • Câu 7: Nhận biết

    Cho f(x)=ax^{2}+bx+c(a≠0). Điều kiện để f(x)>0 \forall x \in \mathbb{R} là:

     Ta có: f(x)=ax^{2}+bx+c>0 \forall x \in \mathbb{R} \Leftrightarrow\left\{\begin{matrix}a>0\\ \Delta < 0\end{matrix}ight..

  • Câu 8: Vận dụng

    Số nghiệm của phương trình \sqrt{60 - 24x - 5x^{2}} = x^{2} + 5x - 10 là:

    ĐKXĐ: 60 − 24x − 5x2 ≥ 0

    Đặt t = \sqrt{60 - 24x - 5x^{2}}, (t≥0)pt trở thành \frac{1}{6}t^{2} + t - \frac{1}{6}x^{2} - x =0

    \Leftrightarrow t^{2} + 6t - x^{2} - 6x= 0 \Leftrightarrow \left\lbrack \begin{matrix}t = x \\t = - x - 6 \\\end{matrix} ight.

    \bullet \sqrt{60 - 24x - 5x^{2}} = x\Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} + 4x - 10 = 0 \\\end{matrix} ight.

    \Leftrightarrow x = - 2 +\sqrt{14}

    \bullet \sqrt{60 - 24x - 5x^{2}} = - x -6 \Leftrightarrow \left\{ \begin{matrix}- x - 6 \geq 0 \\x^{2} + 6x - 4 = 0 \\\end{matrix} ight.

    \Leftrightarrow x = - 3 -\sqrt{13}

    Vậy pt ban đầu có hai nghiệm x_{1} = - 2 -\sqrt{14},x_{2} = - 3 - \sqrt{13}.

  • Câu 9: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 10: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{3 - x}{\sqrt{4 - 3x -
x^{2}}}.

    Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.

    Phương trình 4 - 3x - x^{2} = 0
\Leftrightarrow (x - 1)(x + 4) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - \ 4 \\
\end{matrix} ight.\ .

    Bảng xét dấu:

    Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).

    Vậy tập xác định của hàm số là D = (− 4;1).

  • Câu 11: Nhận biết

    Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….

    Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến

  • Câu 12: Vận dụng

    Cho hàm số bậc nhất y = (m2−4m−4)x + 3m − 2 có đồ thị là (d). Tìm số giá trị nguyên dương của m để đường thẳng (d) cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB là tam giác cân (O là gốc tọa độ).

    Đường thẳng (d) tạo với trục hoành và trục tung một tam giác OAB là tam giác vuông cân đường thẳng (d) tạo với chiều dương trục hoành bằng 45 hoặc 135 hệ số góc tạo của (d) bằng 1 hoặc - 1
\Leftrightarrow \left\lbrack \begin{matrix}
m^{2} - 4m - 4 = 1 \\
m^{2} - 4m - 4 = - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 4m - 3 = 0 \\
m^{2} - 4m - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 5 \\
m = 2 \pm \sqrt{7} \\
\end{matrix} ight..

    Thử lại: m = 5 thì d không đi qua O.

    Vậy có duy nhất một giá trị m = 5 nguyên dương thỏa ycbt.

  • Câu 13: Thông hiểu

    Tập nghiệm S của phương trình \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2là:

     Điều kiện: x \ge1.

    Ta có: \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+2\Leftrightarrow \frac{\sqrt{x-1}}{x+2}=\frac{-x-11}{x+2}+\frac{2(x+2)}{x+2}\Leftrightarrow \sqrt {x - 1}  =  - x - 11 + 2x + 4 \Leftrightarrow \sqrt {x - 1}=x-7\Rightarrow x-1=(x-7)^2 \Leftrightarrow x^2-15x+50=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 5}\\{x = 10}\end{array}} ight..

    Thử lại x=5 không thỏa mãn.

    Vậy S=\{10\}

  • Câu 14: Nhận biết

    Tập nghiệm S của phương trình \sqrt{2x-3}=x-3 là:

    Ta có: \sqrt{2x-3}=x-3  \Rightarrow{2x-3}= (x-3)^2 \Leftrightarrow x^2-8x+12=0 \Leftrightarrow\left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = 6}\end{array}} ight.

    Thử lại thấy x=2 không thỏa mãn.

    Vậy S= \{6\}.

     

  • Câu 15: Thông hiểu

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng lên.

    Parabol cắt trục hoành tại 2 điểm phân biệt có hoành độ âm. Xét các đáp án, đáp án y = 3x2 + 6x + 1 thỏa mãn.

  • Câu 16: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{4x^{2} - 4x + 1}.

    Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).

    Do đó tập xác định D = ℝ.

  • Câu 17: Vận dụng cao

    Với giá trị nào của tham số a thì phương trình: \left( x^{2} - 5x + 4 ight)\sqrt{x - a} =0 có đúng hai nghiệm phân biệt.

     \left( x^{2} - 5x + 4 ight)\sqrt{x - a} =0  \Leftrightarrow \left\lbrack \begin{matrix}x = a \\\left\{ \begin{matrix}x > a \\x^{2} - 5x + 4 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = a \\\left\{ \begin{matrix}x > a \\\left\lbrack \begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight..

    Phương trình có hai nghiệm phân biệt  ⇔ 1 ≤ a < 4.

  • Câu 18: Thông hiểu

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    \begin{matrix}
\forall x_{1},\ x_{2} \in (0; + \infty):\ x_{1} eq x_{2} \\
f\left( x_{2} ight) - f\left( x_{1} ight) = \frac{3}{x_{2}} -
\frac{3}{x_{1}} = \frac{- 3\left( x_{2} - x_{1} ight)}{x_{2}x_{1}}
\Rightarrow \frac{f\left( x_{2} ight) - f\left( x_{1} ight)}{x_{2} -
x_{1}} = - \frac{3}{x_{2}x_{1}} < 0 \\
\end{matrix}

    Vậy hàm số nghịch biến trên khoảng (0;+∞).

  • Câu 19: Thông hiểu

    Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

     Nhận xét: Đồ thị có đỉnh (1;-3).

    Thay tọa độ (1;-3) vào hàm số y=2x^{2}−4x−1 ta thấy thỏa mãn. 

  • Câu 20: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo