Phương trình
có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Phương trình
có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Tìm
để hàm số
luôn đồng biến biến trên tập số thực.
Để hàm số nghịch biến trên tập số thực thì
.
Đồ thị của hàm số
đi qua điểm nào sau đây:
Thử lần lượt từng phương án với chú ý về điều kiện ta được:
f(0) = 2.0 + 1 = 1 ≠ − 3, đồ thị không đi qua điểm (0; −3).
f(3) = − 3 ≠ 7, đồ thị không đi qua điểm (3; 7).
f(2) = 2.2 + 1 = 5 ≠ − 3, đồ thị không đi qua điểm (2; −3).
f(0) = 2.0 + 1 = 1, đồ thị đi qua điểm (0; 1).
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?
*a = 0thì bpt trở thành − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.
* a ≠ 0 thì .
Phương trình
có nghiệm là bao nhiêu?
.
Vậy phương trình vô nghiệm.
Cho tam thức
. Tìm m để f(x) ≥ 0 với mọi x ∈ ℝ.
Để f(x) ≥ 0 với mọi x ∈ ℝ
Số nghiệm của phương trình
là:
ĐKXĐ: 60 − 24x − 5x2 ≥ 0
Đặt , (t≥0)pt trở thành
Vậy pt ban đầu có hai nghiệm .
Gọi S là tập nghiệm của bất phương trình
. Trong các tập hợp sau, tập nào không là tập con của S?
Tam thức bậc hai có hai nghiệm phân biệt là:
Vì a = 1 > 0 nên khi
.
Tập không phải tập con của S là:
Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5) và N(−2;8).
Vì (P) đi qua hai điểm M(1;5) và N(−2;8) nên ta có hệ
. Vậy (P) : y = 2x2 + x + 2.
Tìm tất cả các giá trị của m để hàm số
nghịch biến trên
.
Điều kiện để hàm số nghịch biến trên
là
.
Suy ra .
Phương trình
có bao nhiêu nghiệm?
Điều kiện xác định của phương trình là x ≥ − 3.
Phương trình tương đương với .
Vậy phương trình có hai nghiệm.
Số nghiệm của phương trình:
là
Điều kiện xác định của phương trình x ≥ 4.
Phương trình tương đương với
.
Kết hợp điều kiện suy ra .
Vậy phương trình có hai nghiệm.
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét:
Bảng biến thiên có bề lõm hướng lên. Loại đáp án y = − x2 + 4x − 9 và y = − x2 + 4x.
Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) có đỉnh I(−1;−2).
Trục đối xứng
Do
Vậy (P) : y = 2x2 + 4x.
Cho hàm số
. Rút gọn biểu thức
ta được:
Ta có:
Suy ra:
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Tam thức bậc hai
:

Dựa vào bảng xét dấu, chọn đáp án Âm với mọi .
Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.
+ Có a = 3; b = − 2; c = 4.
+ Trục đối xứng của parabol là .
Số nghiệm của phương trình
là bao nhiêu?
.
Vậy phương trình có hai nghiệm.