Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3) và O(0;0).
Vì (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ
.
Vậy (P) : y = − x2 + 2x.
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3) và O(0;0).
Vì (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ
.
Vậy (P) : y = − x2 + 2x.
Cho f(x) = − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.
Ta có
.
Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.
+ Có a = 3; b = − 2; c = 4.
+ Trục đối xứng của parabol là .
Xác định m để biểu thức
là tam thức bậc hai.
Để biểu thức là tam thức bậc hai ta có:
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Cho
. Điều kiện để
là:
Ta có:
.
Tập nghiệm của phương trình
là:
Điều kiện .
Ta có: .
Loại . Do đó
.
Tính tổng bình phương các nghiệm của phương trình:
là:
ĐK x ∈ [ − 2; 5] Đặt ,t ≥ 0.
Phương trình trở thành
⇒ x12 + x22 = 11.
Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) = − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên ℝ là:
Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.
Tìm tập xác định của hàm số
.
Điều kiện xác định: .
Vậy .
Tập xác định của hàm số
là:
Điều kiện xác định: . Suy ra
.
Giả sử đồ thị parabol
đi qua điểm
và có trục đối xứng là đường thẳng
. Tính tổng các giá trị
và
?
Ta có:
Trục đối xứng của là:
Biết phương trình
có nghiệm duy nhất là
. Hãy chọn khẳng định đúng.
ĐK
.
Tập nghiệm của phương trình
là:
Phương trình .
Vậy S = {2}.
Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.
Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)
Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt ⇔ Δ = 4 − m > 0 ⇔ m < 4.
Theo giả thiết
TH1:
TH2: : không thỏa mãn (*).
Do đó (P) Chọn A.
Tổng các nghiệm của phương trình
là:
Đặt .
Ta có .
Phương trình trở thành
Thay vào ta được . Vậy tổng các nghiệm của phương trình là
.
Cho hàm số:
. Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.
Số nghiệm của phương trình
là:
.
Vậy phương trình có 1 nghiệm.
Tìm tập xác định của hàm số
.
Hàm số xác định .
Vậy tập xác định: .
Tam thức nào sau đây nhận giá trị âm với x < 2
Bảng xét dấu của − x2 + 5x − 6
