Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Ta có
Trục đối xứng
Vậy (P) : y = 2x2 − 4x + 4.
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Ta có
Trục đối xứng
Vậy (P) : y = 2x2 − 4x + 4.
Tập nghiệm của phương trình:
là:
Điều kiện: =>
Phương trình tương đương
Ta có:
Vậy tập nghiệm của phương trình là:
Các giá trị m làm cho biểu thức
luôn dương là
Biểu thức luôn dương
Cho hàm số
. Tính f(4), ta được kết quả:
Với , ta có:
.
Phương trình
có mấy nghiệm nguyên dương ?
Đặt
Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên dương.
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng có phương trình
Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng .
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng .
Biết rằng (P) : y = ax2 − 4x + c có hoành độ đỉnh bằng − 3 và đi qua điểm M(−2;1). Tính tổng S = a + c.
Vì (P) có hoành độ đỉnh bằng − 3 và đi qua M(−2;1) nên ta có hệ
Cho hàm số
. Ta có kết quả nào sau đây đúng?
;
.
Giải bất phương trình ![]()
Ta có: .
Cho tam thức bậc hai
. Kết luận nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là .
Tìm m để hàm số y = x2 − 2x + 2m + 3 có giá trị nhỏ nhất trên đoạn [2 ; 5] bằng − 3.
Ta có bảng biến thiên của hàm số y = x2 − 2x + 2m + 3 trên đoạn [2 ; 5]:

Do đó giá trị nhỏ nhất trên đoạn [2 ; 5] của hàm số y = x2 − 2x + 2m + 3 bằng 2m + 3.
Theo giả thiết 2m + 3 = − 3 ⇔ m = − 3.
Parabol y = − x2 + 2x + 3 có phương trình trục đối xứng là
Parabol y = − x2 + 2x + 3 có trục đối xứng là đường thẳng ⇔ x = 1.
Cho hàm số có đồ thị như hình vẽ
Khẳng định nào sau đây đúng:
Hàm số đồng biến trên khoảng (1;3).
Tam thức bậc hai f(x) = − x2 − 1 nhận giá trị âm khi và chỉ khi
f(x) = − x2 − 1 = 0 vô nghiệm

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.
Tập nghiệm
của phương trình
là:
Ta có: .
Vậy .
Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?
Bất phương trình bậc hai một ẩn là:
Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.
Số nghiệm của phương trình
là:
ĐKXĐ: 2x(x2+1) ≥ 0 ⇔ x ≥ 0
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = 2x + x2 + 1 = (x+1)2
Phương trình trở thành a2 + b2 − 2ab = 0 ⇔ (a−b)2 = 0 ⇔ a = b
Suy ra (thỏa mãn)
Vậy phương trình có một nghiệm là x = 1 .
Cho hàm số có đồ thị như hình bên dưới.
Khẳng định nào sau đây là đúng?
Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.
Tập nghiệm
của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn.
Vậy .