Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Số giá trị nguyên của x để tam thức f(x)=2x^{2}−7x−9 nhận giá trị âm là:

     Ta có: \Delta >0a=2>0.

    Phương trình f(x)=0 có hai nghiệm x=-1;x=\frac92.

    Do đó f(x)<0 \Leftrightarrow  -1 < x < \frac92 \Leftrightarrow x=\{0;1;2;3;4\} (5 giá trị).

  • Câu 2: Thông hiểu

    Cho bất phương trình m{x^2} - (2m - 1)x + m + 1 < 0 (1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.

    Để m{x^2} - (2m - 1)x + m + 1 < 0 thì m{x^2} - (2m - 1)x + m + 1 \geqslant 0 nghiệm đúng với \forall x \in \mathbb{R}.

    Nghĩa là:\left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  \leqslant 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( {2m - 1} ight)}^2} - 4m\left( {m + 1} ight) \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4{m^2} - 4m + 1 - 4{m^2} - 4m \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   { - 8m + 1 \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {m \geqslant \dfrac{1}{8}} \end{array}} ight. \Leftrightarrow m \geqslant \frac{1}{8} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Số nghiệm của phương trình 3x + \sqrt{x - 8} = \sqrt{4 - x} là:

    Xét phương trình: 3x + \sqrt{x - 8} =\sqrt{4 - x}.

    Điều kiện: \left\{ \begin{matrix}x - 8 \geq 0 \\4 - x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 8 \\x \leq 4 \\\end{matrix} ight.\  \Leftrightarrow x \in \varnothing.

    Vậy phương trình vô nghiệm.

  • Câu 4: Nhận biết

    Số nghiệm của phương trình x = \sqrt{\sqrt{3x^{2} + 1} - 1} là bao nhiêu?

    x = \sqrt{\sqrt{3x^{2} + 1} - 1}\Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} = \sqrt{3x^{2} + 1} - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\sqrt{3x^{2} + 1} = x^{2} + 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\3x^{2} + 1 = (x^{2} + 1)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{4} - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2}\left( x^{2} - 1 ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
\end{matrix} ight.\  \\
\end{matrix} \Leftrightarrow ight.\ \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight. .

    Vậy phương trình có hai nghiệm.

  • Câu 5: Thông hiểu

    Tập xác định của hàm số y = \frac{\sqrt{3 - x} + \sqrt{x + 1}}{x^{2} - 5x +
6}

    Hàm số y = \frac{\sqrt{3 - x} + \sqrt{x +
1}}{x^{2} - 5x + 6} có nghĩa khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 1 \geq 0 \\
x^{2} - 5x + 6 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 \leq x \leq 3 \\
x eq 2;x eq 3 \\
\end{matrix} ight.

     ⇔ x ∈ [ − 1; 3) ∖ {2}.

  • Câu 6: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 7: Thông hiểu

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 8: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với  2< x < 3f(x) < 0với x < 2 ∨ x > 3.

  • Câu 9: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3)O(0;0).

    (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ

    \left\{ \begin{matrix}
a + b + c = 1 \\
a - b + c = - 3 \\
c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
c = 0 \\
\end{matrix} ight..

    Vậy (P) : y =  − x2 + 2x.

  • Câu 10: Vận dụng

    Số nghiệm của phương trình \sqrt{7 - x} + \sqrt{x - 5} = x^{2} - 12x +38 là:

    ĐK: x ∈ [5; 7]

    Đặt t = x − 6 , t ∈ [ − 1; 1].

    Phương trình trở thành \sqrt{1 - t} +\sqrt{t - 1} = t^{2} + 2 \Leftrightarrow 2 + 2\sqrt{1 - t^{2}} = \left(t^{2} + 2 ight)^{2}(*) .

    Ta có VT(*) ≤ 4, VP(*) ≥ 4 nên (*) ⇔ VT(*) = VP(*) = 4 ⇔ t = 0 ⇒ x = 6(TM).

    Vậy phương trình có một nghiệm.

  • Câu 11: Vận dụng

    Cho hàm số y = f(x) = ax2 + bx + c. Biểu thức f(x+3) − 3f(x+2) + 3f(x+1) có giá trị bằng

    f(x+3) = a(x+3)2 + b(x+3) + c = ax2 + (6a+b)x + 9a + 3b + c.

    f(x+2) = a(x+2)2 + b(x+2) + c = ax2 + (4a+b)x + 4a + 2b + c.

    f(x+1) = a(x+1)2 + b(x+1) + c = ax2 + (2a+b)x + a + b + c.

     ⇒ f(x+3) − 3f(x+2) + 3f(x+1) = ax2 + bx + c.

  • Câu 12: Nhận biết

    Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).

    Đỉnh Parabol là I\left( -
\frac{b}{2a};\  - \frac{\Delta}{4a} ight) = \left( - \frac{b}{2a};\  -
\frac{b^{2} - 4ac}{4a} ight).

    Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.

  • Câu 13: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng?

    Trên khoảng (−3;−1)(1;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (−3;−1)(1;3).

  • Câu 14: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số bậc hai?

    Đáp án y = x^{2} + 2x – 1 là đáp án đúng vì hàm số bậc hai có dạng y = a{x^2} + bx + c;\left( {a e 0} ight)

  • Câu 15: Thông hiểu

    Biết rằng (P) : y = ax2 + bx + 2 (a>1) đi qua điểm M(−1;6) và có tung độ đỉnh bằng - \frac{1}{4}. Tính tích P = ab.

    (P) đi qua điểm M(−1;6) và có tung độ đỉnh bằng - \frac{1}{4} nên ta có hệ

    \left\{ \begin{matrix}
a - b + 2 = 6 \\
- \frac{\Delta}{4a} = - \frac{1}{4} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a - b = 4 \\
b^{2} - 4ac = a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 4 + b \\
b^{2} - 8(4 + b) = 4 + b \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 4 + b \\
b^{2} - 9b - 36 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 16 \\
b = 12 \\
\end{matrix} ight. (thỏa mãn a > 1) hoặc \left\{ \begin{matrix}
a = 1 \\
b = - 3 \\
\end{matrix} ight. (loại).

    Suy ra P = ab = 16.12 = 192.

  • Câu 16: Thông hiểu

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =3 có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq \frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3\Leftrightarrow t + t + 3 +2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}3 - t \geq 0 \\t(t + 3) = (3 - t)^{2} \\\end{matrix} ight. \left\{ \begin{matrix}t \leq 3 \\t = 1 \\\end{matrix} ight.  ⇔ t = 1(thỏa mãn)

     ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}x = 1 = x_{1} \\x = 2 = x_{2} \\\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

  • Câu 17: Nhận biết

    Khẳng định nào về hàm số y = 3x + 5 là sai?

    Hàm số y = 3x + 5 có hệ số a = 3 > 0 nên đồng biến trên , suy ra chọn đáp án Hàm số nghịch biến trên .

  • Câu 18: Nhận biết

    Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

    f(x) = 2x^{2} - 7x - 9 \Leftrightarrow\left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{9}{2} \\\end{matrix} ight.

    Dựa vào bảng xét dấu, f(x) < 0\Leftrightarrow - 1 < x < \frac{9}{2}.

    x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).

  • Câu 19: Vận dụng cao

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =
\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}
3m - 1 eq 0 \\
x = \frac{5m + 1}{3m - 1} > - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq \frac{1}{3} \\
\frac{8m}{3m - 1} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > \frac{1}{3} \\
m < 0 \\
\end{matrix} ight..

  • Câu 20: Nhận biết

    Phương trình sau có bao nhiêu nghiệm \sqrt{x - 1} = \sqrt{1 - x}?

    Điều kiện xác định: \left\{
\begin{matrix}
x \geq 1 \\
x \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow x = 1.

    Với x = 1thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo