Giá trị nguyên dương lớn nhất của x để hàm số
xác định là
Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].
Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.
Giá trị nguyên dương lớn nhất của x để hàm số
xác định là
Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].
Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện: .
Ta có: .
Loại . Do đó phương trình có 1 nghiệm.
Biết rằng hàm số y = ax2 + bx + c (a≠0) đạt cực tiểu bằng 4 tại x = 2 và có đồ thị hàm số đi qua điểm A(0;6). Tính tích P = abc.
Nhận xét: Hàm số đi qua điểm A(0;6); đạt cực tiểu bằng 4 tại x = 2 nên đồ thị hàm số đi qua I(2;4) và nhận x = 2 làm trục đối xứng, hàm số cũng đi qua điểm A(0;6) suy ra:
.
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Trong các hàm số sau, hàm số nào nghịch biến trên ℝ?
Hàm số y = ax + b với a ≠ 0 nghịch biến trên ℝ khi và chỉ khi a < 0.
Biết rằng (P) : y = ax2 − 4x + c có hoành độ đỉnh bằng − 3 và đi qua điểm M(−2;1). Tính tổng S = a + c.
Vì (P) có hoành độ đỉnh bằng − 3 và đi qua M(−2;1) nên ta có hệ
Cho hàm số
. Tính P = f(2) + f(−2).
Ta có: .
Tổng các nghiệm của phương trình
là :
Ta có
Phương trình có nghiệm là và
.
Vậy tổng các nghiệm của phương trình là .
Tổng các nghiệm của phương trình
?
Đặt . Khi đó phương trình đã cho trở thành:
Vì t ≥ 0 ⇒ t = 6, thay vào ta có .
x2 + 11 = 36 ⇔ x = ± 5.
Vậy phương trình có nghiệm là x = ± 5.
Tổng các nghiệm của phương trình là 0.
Tam thức bậc hai f(x) = − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Cho hàm số bậc hai
có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Biết phương trình
có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔
.
Hàm số y = 2x2 + 4x − 1
Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng , nghịch biến trên khoảng
.
Áp dụng: Ta có . Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).
Tìm
để hàm số
luôn đồng biến biến trên tập số thực.
Để hàm số nghịch biến trên tập số thực thì
.
Phương trình
có nghiệm thuộc khoảng:
Đặt . Phương trình đã cho trở thành:
Ta được thuộc [1 ; 2).
Tam thức nào sau đây nhận giá trị âm với x < 2
Bảng xét dấu của − x2 + 5x − 6

Số nghiệm của phương trình
là:
.
Vậy phương trình vô nghiệm.
Xét sự biến thiên của hàm số
trên khoảng (0;+∞). Khẳng định nào sau đây đúng?
Vậy hàm số nghịch biến trên khoảng (0;+∞).
Cho bất phương trình
(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Để thì
nghiệm đúng với
.
Nghĩa là: