Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Theo tài liệu dân số và phát triển của Tổng cục dân số và kế hoạch hóa gia đình thì:

    Dựa trên số liệu về dân số, kinh tế, xã hội của 85 nước trên thế giới, người ta xây dựng được hàm nêu lên mối quan hệ giữa tuổi thọ trung bình của phụ nữ (y) và tỷ lệ biết chữ của họ (x) như sau: y = 47,17 + 0,307x. Trong đó y là số năm (tuổi thọ), x là tỷ lệ phần trăm biết chữ của phụ nữ. Theo báo cáo của Bộ Giáo dục và Đào tạo năm học 2015 ‒ 2016, tỷ lệ biết chữ đã đạt 96,83% trong nhóm phụ nữ Việt Nam tuổi từ 15 đến 60. Hỏi với tỉ lệ biết chữ của phụ nữ Việt Nam như trên thì nhóm này có tuổi thọ bao nhiêu?

    Thay x = 96,83 vào công thức y = 47,17 + 0,307x ta được:

    y = 47,17 + 0,307. 96,83 = 47,17 + 29,72 = 76,89 (năm)

    Vậy nhóm này có tuổi thọ 76,89 tuổi.

  • Câu 2: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

     Nhận xét: Từ bảng biến thiên ta suy ra đỉnh (2;-5).

    Chỉ có hàm số y=x^{2}−4x−1 thỏa mãn tọa độ đỉnh này khi thay vào.

  • Câu 3: Nhận biết

    Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?

    Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).

  • Câu 4: Nhận biết

    Tam thức f(x) = x2 − 2x − 3 nhận giá trị dương khi và chỉ khi

    Ta có: f(x) = x^{2} - 2x - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án x ∈ (−∞;−1) ∪ (3;+∞).

  • Câu 5: Nhận biết

    Tam thức bậc hai f(x) = \left( 1 - \sqrt{2} ight)x^{2} + \left( 5
- 4\sqrt{2} ight)x - 3\sqrt{2} + 6

    f(x) = \left( 1 - \sqrt{2} ight)x^{2}
+ \left( 5 - 4\sqrt{2} ight)x - 3\sqrt{2} + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \sqrt{2} \\
x = - 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi x \in \left( - 3;\sqrt{2} ight).

  • Câu 6: Nhận biết

    Hệ số góc của đồ thị hàm số y = 2018x − 2019 bằng

    Hệ số góc a = 2018.

  • Câu 7: Nhận biết

    Tam thức bậc hai f(x) = x^{2} + \left( \sqrt{5} - 1 ight)x -
\sqrt{5} nhận giá trị dương khi và chỉ khi

    f(x) = x^{2} + \left( \sqrt{5} - 1
ight)x - \sqrt{5} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - \sqrt{5} \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x \in
\left( - \infty; - \sqrt{5} ight) \cup (1; + \infty).

  • Câu 8: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{3 - x}{\sqrt{4 - 3x -
x^{2}}}.

    Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.

    Phương trình 4 - 3x - x^{2} = 0
\Leftrightarrow (x - 1)(x + 4) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - \ 4 \\
\end{matrix} ight.\ .

    Bảng xét dấu:

    Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).

    Vậy tập xác định của hàm số là D = (− 4;1).

  • Câu 9: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 10: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x +1}

    ĐK x ≥ 3.

    \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x+ 1}

    \Leftrightarrow \sqrt{x + 12} = \sqrt{x- 3} + \sqrt{2x + 1}

    \Leftrightarrow \sqrt{(x - 3)(2x + 1)} =- x + 7

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\2x^{2} - 5x - 3 = x^{2} - 14x + 49 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\x^{2} + 9x - 52 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4(TM) \\x = - 13(KTM) \\\end{matrix} ight..

    Vậy phương trình có một nghiệm.

  • Câu 11: Nhận biết

    Giải bất phương trình x(x+5)≤2(x^{2}+2)

     Ta có: x(x+5)≤2(x^{2}+2)  \Leftrightarrow -x^2+5x-4 \le 0\Leftrightarrow x\in (-∞;1]\cup [4;+∞).

  • Câu 12: Vận dụng cao

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =
\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}
3m - 1 eq 0 \\
x = \frac{5m + 1}{3m - 1} > - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq \frac{1}{3} \\
\frac{8m}{3m - 1} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > \frac{1}{3} \\
m < 0 \\
\end{matrix} ight..

  • Câu 13: Vận dụng

    Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Khẳng định nào sau đây là đúng?

    Nhìn vào đồ thị ta có:

    Bề lõm hướng xuống  ⇒ a < 0.

    Hoành độ đỉnh x = - \frac{b}{2a} > 0\Rightarrow \frac{b}{2a} < 0 \Rightarrow b > 0 .

    Đồ thị hàm số cắt trục tung tại điểm có tung độ âm  ⇒ c < 0.

    Do đó: a < 0, b > 0, c < 0.

  • Câu 14: Thông hiểu

    Số các nghiệm của phương trình \sqrt{x + 1} = 1 - x^{2} là:

    pt \Leftrightarrow \left\{\begin{matrix}1 - x^{2} \geq 0 \\x + 1 = (1 - x^{2})^{2} \\\end{matrix} ight.

    \left\{ \begin{matrix}|x| \leq 1 \\x(x + 1)(\ x^{2} - x - 1) = 0 \\\end{matrix} ight.

    \left\lbrack \begin{matrix}x = 0\  \\x = - 1 \\x = \frac{1 - \sqrt{5}}{2} \\\end{matrix} ight..

    Vậy phương trình có ba nghiệm.

  • Câu 15: Thông hiểu

    Phương trình x2 + 2(m+2)x − 2m − 1 = 0 (m là tham số) có nghiệm khi

    Xét phương trình x2 + 2(m+2)x − 2m − 1 = 0,Δx = (m+2)2 + 2m + 1.

    Yêu cầu bài toán ⇔  Δx ≥ 0 ⇔ m2 + 4m + 4 + 2m + 1 ≥ 0 ⇔ m2 + 6m + 5 ≥ 0

    \Leftrightarrow (m + 1)(m + 5) \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
m \geq - \ 1 \\
m \leq - \ 5 \\
\end{matrix} ight. là giá trị cần tìm.

  • Câu 16: Vận dụng

    Số nghiệm của phương trình (3x + 1)\sqrt{x^{2} + 3} = 3x^{2} + 2x + 3 là:

    Ta thấy x = - \frac{1}{3} không là nghiệm của phương trình

    Xét x eq - \frac{1}{3}, phương trình đã cho \Leftrightarrow \sqrt{x^{2} + 3}= \frac{3x^{2} + 2x + 3}{3x + 1}

    Đến đây, chú ý 3x^{2} + 2x + 3 = 3(x +\frac{1}{3})^{2} + \frac{8}{3} > 0

    Nên phương trình có nghiệm phải thỏa mãn x> - \frac{1}{3} \Rightarrow \sqrt{x^{2} + 3} + 2x > 0

    Do đó phương trình đã cho\Leftrightarrow\sqrt{x^{2} + 3} - 2x = \frac{3x^{2} + 2x + 3}{3x + 1} - 2x

    \Leftrightarrow \frac{x^{2} + 3 -4x^{2}}{\sqrt{x^{2} + 3} + 2x} = \frac{3x^{2} + 2x + 3 - 6x^{2} - 2x}{3x+ 1}

    \Leftrightarrow \frac{3\left( 1 - x^{2}ight)}{\sqrt{x^{2} + 3} + 2x} = \frac{3\left( 1 - x^{2} ight)}{3x +1}

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} = 1 \\\sqrt{x^{2} + 3} + 2x = 3x + 1 \\\end{matrix} ight.

    Nhưng x =  − 1 không thoả mãn x > - \frac{1}{3} nên phương trình có nghiệm x = 1

    * TH2: \sqrt{x^{2} + 3} + 2x = 3x + 1\Leftrightarrow \sqrt{x^{2} + 3} = x + 1

    \Leftrightarrow \left\{ \begin{matrix}x \geq - 1 \\x^{2} + 3 = x^{2} + 1 + 2x \\\end{matrix} ight.\ \ \  \Leftrightarrow x = 1 (thỏa mãn)

    Vậy phương trình có nghiệm duy nhất x = 1.

  • Câu 17: Nhận biết

    Cho hàm số có đồ thị như hình vẽ

    Khẳng định nào sau đây đúng:

    Hàm số đồng biến trên khoảng (1;3).

  • Câu 18: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 19: Nhận biết

    Số nghiệm của phương trình x - \sqrt{3x + 4} = 2 là:

    x - \sqrt{3x + 4} = 2 \Leftrightarrow\sqrt{3x + 4} = x - 2\Leftrightarrow \left\{ \begin{matrix}x - 2 \geq 0 \\3x + 4 = (x - 2)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\3x + 4 = x^{2} - 4x + 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x^{2} - 7x = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\\left\lbrack \begin{matrix}x = 0 \\x = 7 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 7.

    Vậy phương trình có 1 nghiệm.

  • Câu 20: Thông hiểu

    Một chiếc cổng parabol dạng y = -
\frac{1}{2}x^{2} có chiều rộng d =
8m. Hỏi chiều cao của chiếc cổng là?

    Đáp án: 8

    Đáp án là:

    Một chiếc cổng parabol dạng y = -
\frac{1}{2}x^{2} có chiều rộng d =
8m. Hỏi chiều cao của chiếc cổng là?

    Đáp án: 8

    Khoảng cách từ chân cổng đến trục đối xứng Oy là \frac{8}{2} = 4.

    Hoành độ hai chân cổng là -
4;4

    Tung độ chân cổng là: y = -
\frac{1}{2}.4^{2} = - 8

    Vậy chiều cao của cổng là | - 8| =
8 mét.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo