Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tam thức f(x) = 3x2 + 2(2m−1)x + m + 4 dương với mọi x khi:

    f(x) > 0,\ \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 7m - 11 <
0\  \Leftrightarrow - 1 < x < \frac{11}{4}.

  • Câu 2: Nhận biết

    Chọn khẳng định đúng?

    Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu x1; x2 ∈ Kx1 < x2 ⇒ f(x1) < f(x2).

  • Câu 3: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 - 2x}  là

    Điều kiện: \left\{ \begin{matrix}x + 4 \geq 0 \\1 - x \geq 0 \\1 - 2x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow - 4 \leq x \leq\frac{1}{2}.

    \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 -2x} \Leftrightarrow \sqrt{(1 - x)(1 - 2x)} = 2x + 1

    \left\{\begin{matrix}2x + 1 \geq 0 \\(1 - x)(1 - 2x) = (2x + 1)^{2} \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - \frac{1}{2} \\2x^{2} + 7x = 0 \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - 1/2 \\\left\lbrack \begin{matrix}x = 0 \\x = - 7/2 \\\end{matrix} ight.\  \\\end{matrix} ight.  ⇔ x = 0(TM).

    Vậy, phương trình có một nghiệm.

  • Câu 4: Vận dụng cao

    Tất cả các giá trị của tham số m để các nghiệm của phương trình \sqrt{x+1}-2=0\;(1) cũng là nghiệm của phương trình x2 − 2mx − m2 − 2 = 0 (2) là:

    \sqrt{x + 1} = 2 \Leftrightarrow x + 1 = 4
\Leftrightarrow x = 3

    Do đó, để mọi nghiệm của (1) cũng là nghiệm của (2) điều kiện là x = 3 cũng là nghiệm của (2), tức là: 9 -
6m - m^{2} - 2 = 0 \Leftrightarrow m^{2} + 6m - 7 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = 1 \\
m = - 7 \\
\end{matrix} ight..

  • Câu 5: Nhận biết

    Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?

    Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).

  • Câu 6: Thông hiểu

    Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2}.

    Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 c = 1.

    (P)có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2} nên:

    \left\{ \begin{matrix}
y\left( \frac{1}{2} ight) = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b + 1 = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b = - \frac{1}{4} \\
a + b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
\end{matrix} ight..

    Vậy (P): y = x2 − x + 1.

  • Câu 7: Nhận biết

    Phương trình sau có bao nhiêu nghiệm \sqrt{x - 1} = \sqrt{1 - x}?

    Điều kiện xác định: \left\{
\begin{matrix}
x \geq 1 \\
x \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow x = 1.

    Với x = 1thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.

  • Câu 8: Nhận biết

    Tam thức bậc hai f(x) = x^{2} + \left( 1 - \sqrt{3} ight)x - 8 -
5\sqrt{3}:

    f(x) = x^{2} + \left( 1 - \sqrt{3}
ight)x - 8 - 5\sqrt{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 - \sqrt{3} \\
x = 1 + 2\sqrt{3} \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án Âm với mọi x \in \left( - 2 - \sqrt{3};1 + 2\sqrt{3}
ight).

  • Câu 9: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 10: Thông hiểu

    Tập xác định của hàm số y = \frac{\sqrt{x + 1}}{x - 3} là:

    Hàm số y = \frac{\sqrt{x + 1}}{x -
3}.

    Điều kiện xác định: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x - 3 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x eq 3 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).

  • Câu 11: Vận dụng

    Tính tổng bình phương các nghiệm của phương trình: \sqrt{x + 2} + \sqrt{5 - x} + \sqrt{(x+ 2)(5 - x)} = 4 là:

    ĐK x ∈ [ − 2; 5] Đặt t = \sqrt{x + 2} + \sqrt{5 - x} ,t ≥ 0.

    \Rightarrow \sqrt{(x + 2)(5 - x)} =\frac{t^{2} - 7}{2}

    Phương trình trở thành t + \frac{t^{2} -7}{2} = 4 \Leftrightarrow t^{2} + 2t- 15 = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 3(TM) \\t = - 5(KTM) \\\end{matrix} ight.

    \Rightarrow - x^{2} + 3x + 10 = 9\Leftrightarrow \left\lbrack \begin{matrix}x = \frac{3 + \sqrt{13}}{2} = x_{1}(TM) \\x = \frac{3 - \sqrt{13}}{2} = x_{2}(TM) \\\end{matrix} ight.  ⇒ x12 + x22 = 11.

  • Câu 12: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).

  • Câu 13: Nhận biết

    Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?

    Ta có đáp án y=-2x^{2}+4x+1 có: x =  - \frac{b}{{2a}} =  - \frac{4}{{2.\left( { - 2} ight)}} = 1

    Vậy x = 1 là trục đối xứng của đồ thị hàm số y=-2x^{2}+4x+1.

  • Câu 14: Thông hiểu

    Tam thức bậc hai :

    Ta có .

    Bảng xét dấu

    Dựa vào bảng xét dấu .

  • Câu 15: Nhận biết

    Tìm tập nghiệm của phương trình \sqrt{4x+1}+5=0

     Nhận xét: \sqrt{4x+1} \ge 0 \Leftrightarrow \sqrt{4x+1}+5 >0

    Do đó \sqrt{4x+1}+5=0 vô lí. 

    Vậy S=\varnothing.

  • Câu 16: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 7; 7] để phương trình mx2 − 2(m+2)x + m − 1 = 0 có hai nghiệm phân biệt?

    TH1:m = 0 \Leftrightarrow - 4x - 1 = 0
\Leftrightarrow x = - \frac{1}{4}; phương trình chỉ có một nghiệm duy nhất nên loại m = 0

    TH2: m ≠ 0

    Để mx2 − 2(m+2)x + m − 1 = 0với m ∈ [ − 7; 7]có hai nghiệm phân biệt thì

    \Delta' = (m + 2)^{2} - m(m - 1) > 0
\Leftrightarrow 5m > - 4 \Leftrightarrow m > -
\frac{4}{5}đồng thời m ∈ [ − 7; 7].

    Vậy m = {1; 2;3;4;5;6;7}→7 giá trị nguyên của m thỏa mãn.

  • Câu 17: Thông hiểu

    Cho hàm số: y = f(x) = |2x-3|. Tìm x để f(x) = 3

    Ta có:

    \begin{matrix}  f\left( x ight) = 3 \hfill \\   \Leftrightarrow \left| {2x - 3} ight| = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x - 3 = 3} \\   {2x - 3 =  - 3} \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 3} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy x = 3 hoặc x = 0

  • Câu 18: Vận dụng

    Tìm giá trị thực của tham số m để parabol (P) : y = mx2 − 2mx − 3m − 2 (m≠0) có đỉnh thuộc đường thẳng y = 3x − 1.

    Hoành độ đỉnh của (P)x = - \frac{b}{2a} = \frac{2m}{2m} =
1.

    Suy ra tung độ đỉnh y =  − 4m − 2. Do đó tọa độ đỉnh của (P)I(1;−4m−2).

    Theo giả thiết, đỉnh I thuộc đường thẳng y = 3x − 1 nên  − 4m − 2 = 3.1 − 1 ⇔ m =  − 1.

  • Câu 19: Nhận biết

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 20: Thông hiểu

    Tập nghiệm của phương trình \sqrt{2x - 3} = x - 3?

    Ta có:

    \sqrt{2x - 3} = x - 3

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \geq 0 \\
2x - 3 = (x - 3)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 3 \\
\left\lbrack \begin{matrix}
x = 2 \\
x = 6 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow x = 6

    Vậy tập nghiệm phương trình là: S =
\left\{ 6 ight\}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo