Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh I\left( -
\frac{1}{2}; - \frac{11}{4} ight).

    (P) có đỉnh I\left( - \frac{1}{2}; - \frac{11}{4}
ight) nên ta có \left\{
\begin{matrix}
- \frac{b}{2a} = - \frac{1}{2} \\
f\left( - \frac{1}{2} ight) = - \frac{11}{4} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = a \\
\Delta = 11a \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3 = a \\
9 + 8a = 11a \\
\end{matrix} ight.\  \Leftrightarrow a = 3. Vậy (P) : y = 3x2 + 3x − 2.

  • Câu 2: Nhận biết

    Tập xác định của hàm số y = \frac{3x-1}{2x-2} là:

     Điều kiện xác định: 2x-2 eq 0 \Leftrightarrow x eq 1. Suy ra D= \mathbb {R} \setminus \{1\}.

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ. Đặt Δ = b2 − 4ac, tìm dấu của aΔ.

    Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 4 nên Δ > 0, dựa vào hình dạng parabol nên suy a > 0

  • Câu 4: Nhận biết

    Tổng các nghiệm của phương trình \sqrt{2x - 1} + x^{2} - 3x + 1 = 0 là :

    Ta có \sqrt{2x - 1} + x^{2} - 3x + 1 = 0\Leftrightarrow \sqrt{2x - 1} = - x^{2} + 3x - 1

    \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\2x - 1 = \left( - x^{2} + 3x - 1 ight)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\(x - 1)^{2}(x^{2} - 4x + 2) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\\left\lbrack \begin{matrix}x = 1 \\x^{2} - 4x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \pm \sqrt{2} \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 2 - \sqrt{2} \\\end{matrix} ight.

    Phương trình có nghiệm là x = 1x = 2 - \sqrt{2}.

    Vậy tổng các nghiệm của phương trình là 1+ 2 - \sqrt{2} = 3 - \sqrt{2}.

  • Câu 5: Thông hiểu

    Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

     Nhận xét: Từ hình vẽ suy ra đỉnh (-1;-2).

    Thay tọa độ đỉnh (-1;-2) vào các hàm số ở các đáp án, chỉ có hàm số y=3x^{2}+6x+1 thỏa mãn.

  • Câu 6: Nhận biết

    Bất phương trình (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−5 có tập nghiệm là:

     Ta có: (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−52x^2+2x-2 \le2x^2+2x-8 \Leftrightarrow -2 \le -8 (vô lí).

    Vậy S = \varnothing.

  • Câu 7: Vận dụng

    Số nghiệm của phương trình (3x + 1)\sqrt{x^{2} + 3} = 3x^{2} + 2x + 3 là:

    Ta thấy x = - \frac{1}{3} không là nghiệm của phương trình

    Xét x eq - \frac{1}{3}, phương trình đã cho \Leftrightarrow \sqrt{x^{2} + 3}= \frac{3x^{2} + 2x + 3}{3x + 1}

    Đến đây, chú ý 3x^{2} + 2x + 3 = 3(x +\frac{1}{3})^{2} + \frac{8}{3} > 0

    Nên phương trình có nghiệm phải thỏa mãn x> - \frac{1}{3} \Rightarrow \sqrt{x^{2} + 3} + 2x > 0

    Do đó phương trình đã cho\Leftrightarrow\sqrt{x^{2} + 3} - 2x = \frac{3x^{2} + 2x + 3}{3x + 1} - 2x

    \Leftrightarrow \frac{x^{2} + 3 -4x^{2}}{\sqrt{x^{2} + 3} + 2x} = \frac{3x^{2} + 2x + 3 - 6x^{2} - 2x}{3x+ 1}

    \Leftrightarrow \frac{3\left( 1 - x^{2}ight)}{\sqrt{x^{2} + 3} + 2x} = \frac{3\left( 1 - x^{2} ight)}{3x +1}

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} = 1 \\\sqrt{x^{2} + 3} + 2x = 3x + 1 \\\end{matrix} ight.

    Nhưng x =  − 1 không thoả mãn x > - \frac{1}{3} nên phương trình có nghiệm x = 1

    * TH2: \sqrt{x^{2} + 3} + 2x = 3x + 1\Leftrightarrow \sqrt{x^{2} + 3} = x + 1

    \Leftrightarrow \left\{ \begin{matrix}x \geq - 1 \\x^{2} + 3 = x^{2} + 1 + 2x \\\end{matrix} ight.\ \ \  \Leftrightarrow x = 1 (thỏa mãn)

    Vậy phương trình có nghiệm duy nhất x = 1.

  • Câu 8: Thông hiểu

    Phương trình \left( x^{2} + 5x + 4 ight)\sqrt{x + 3} =0 có bao nhiêu nghiệm?

    Điều kiện xác định của phương trình là x ≥  − 3.

    Phương trình tương đương với \Leftrightarrow \left\{ \begin{matrix}x \geq - 3 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 4 \\x = - 3 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 9: Nhận biết

    Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi

    f(x) = 2x2 + 2x + 5 = 0 có: \left\{ \begin{matrix}
\Delta' = 1 - 10 = - 9 < 0 \\
a = 2 > 0 \\
\end{matrix} ight. nên f(x) > 0∀x ∈ ℝ.

  • Câu 10: Thông hiểu

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số

    y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) là:

    Hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng \left( \frac{m +
1}{4}\ \ ;\ \  + \infty ight).

    Để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) thì ta phải có (1\ \ ;\ \ 5) \subset \left(
\frac{m + 1}{4}\ \ ;\ \  + \infty ight) \Leftrightarrow \frac{m + 1}{4} \leq 1
\Leftrightarrow m \leq 3.

    Các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)m = 1,  m = 2,  m = 3.

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)S = 1 + 2 + 3 = 6.

  • Câu 11: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 12: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?

    Bất phương trình bậc hai một ẩn là: 3x^{2} – 12x + 1 ≤ 0

  • Câu 13: Vận dụng

    Biết đường thẳng d : y = mx cắt Parabol (P) : y = x2 − x + 1 tại hai điểm phân biệt A, B. Khi đó tọa độ trung điểm I của đoạn thẳng AB

    Xét phương trình hoành độ giao điểm của d(P):

    mx = x2 − x + 1 ⇔ x2 − (m+1)x + 1 = 0

    Vì hoành độ giao điểm xA, xB là hai nghiệm của phương trình nên ta có tọa độ trung điểm I\left\{ \begin{matrix}
x_{I} = \frac{x_{A} + x_{B}}{2} \\
y_{I} = \frac{y_{A} + y_{B}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{x_{A} + x_{B}}{2} \\
y_{I} = \frac{m\left( x_{A} + x_{B} ight)}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{m + 1}{2} \\
y_{I} = \frac{m^{2} + m}{2} \\
\end{matrix} ight.\  \Rightarrow I\left( \frac{1 + m}{2};\frac{m^{2} +
m}{2} ight).

  • Câu 14: Thông hiểu

    Hàm số nào sau đây có đỉnh S(1; 0)?

    Hàm số y = x^2 – 2x + 1 có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh S(1; 0)

  • Câu 15: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 16: Thông hiểu

    Tam thức bậc hai f(x)=x^{2}+(\sqrt{5}-1)x-\sqrt{5} nhận giá trị dương khi và chỉ khi:

     Ta có: \Delta >0a=1>0.

     Phương trình f(x)=0 có hai nghiệm phân biệt x=-\sqrt5 ;x=1.

    Do đó f(x)>0 khi x∈(−∞;-\sqrt{5})∪(1;+∞).

  • Câu 17: Vận dụng cao

    Phương trình 2x +
1 + x\sqrt{x^{2} + 2} + (x + 1)\sqrt{x^{2} + 2x + 3} = 0 có mấy nghiệm nguyên dương ?

    Đặt a = \sqrt{x^{2} + 2}\ \ ;\ b =
\sqrt{x^{2} + 2x + 3}\ \ \ \ (a,\ b > 0)\

    \Rightarrow x = \frac{b^{2} - a^{2} -
1}{2}

    Phương trình đã cho trở thành:

    \begin{matrix}
(b - a)\left\lbrack (a + b) + \frac{(a + b)^{2}}{2} + \frac{1}{2}
ightbrack = 0 \\
\Leftrightarrow a = b \Leftrightarrow x = - \frac{1}{2}. \\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên dương.

  • Câu 18: Thông hiểu

    Phương trình: x^{2} + 5x + 2 + 2\sqrt{x^{2} + 5x + 10} =0 có mấy nghiệm ?

    Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.

    Khi đó phương trình \Leftrightarrow x^{2}+ 5x + 10 + 2\sqrt{x^{2} + 5x + 10} - 8 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x^{2} + 5x + 10} = 2 \\\sqrt{x^{2} + 5x + 10} = - 4 \\\end{matrix} ight. \Leftrightarrow \sqrt{x^{2} + 5x + 10} =2

    \Leftrightarrow x^{2} + 5x + 6 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3 \\x = - 2 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 19: Nhận biết

    Điểm nào sau đây thuộc đồ thị của hàm số y = \frac{x - 2}{x(x - 1)}?

    Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.

  • Câu 20: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo