Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi

    Chọn Ta có: f(x) = 4x^{2} - 12x + 9 = 0
\Leftrightarrow x = \frac{3}{2}

    Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.

  • Câu 2: Nhận biết

    Tổng các bình phương của các nghiệm của phương trình(x - 1)(x - 3) + 3\sqrt{x^{2} -
4x + 5} - 2 = 0 bằng bao nhiêu?

    Ta có (x - 1)(x - 3) + 3\sqrt{x^{2} - 4x
+ 5} - 2 = 0

    \Leftrightarrow x^{2} - 4x + 5 +3\sqrt{x^{2} - 4x + 5} - 4 = 0\Leftrightarrow \sqrt{x^{2} - 4x + 5} =1

    \Leftrightarrow x^{2} - 4x + 5 = 1
\Leftrightarrow x^{2} - 4x + 4 = 0 \Leftrightarrow x = 2.

    Tổng các bình phương của các nghiệm của phương trình là 4.

  • Câu 3: Nhận biết

    Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?

    Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0,  ∀x ∈ ℝ.

  • Câu 4: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 5: Thông hiểu

    Tập hợp nào sau đây là tập xác định của hàm số y = \sqrt{1 + 5x} + \frac{|x|}{\sqrt{7 -
2x}}?

    Hàm số xác đinh khi và chỉ khi \left\{
\begin{matrix}
1 + 5x \geq 0 \\
7 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - \frac{1}{5} \\
x < \frac{7}{2} \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{5} \leq x <
\frac{7}{2}.

  • Câu 6: Vận dụng

    Cho hàm số y=f(x)=ax^{2}+bx+c. Rút gọn biểu thức f(x + 3) - 3f(x + 2) + 3f(x + 1) ta được:

    Ta có:

    \begin{matrix}  f\left( {x + 3} ight) = a{\left( {x + 3} ight)^2} + b\left( {x + 3} ight) + c \hfill \\   = a\left( {{x^2} + 6x + 9} ight) + bx + 3b + c \hfill \\   = a{x^2} + 6ax + 9a + bx + 3b + c \hfill \\   = a{x^2} + \left( {6a + b} ight)x + 9a + 3b + c \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {x + 2} ight) = a{\left( {x + 2} ight)^2} + b\left( {x + 2} ight) + c \hfill \\   = a\left( {{x^2} + 4x + 4} ight) + bx + 2b + c \hfill \\   = a{x^2} + 4ax + 4a + bx + 2b + c \hfill \\   = a{x^2} + \left( {4a + b} ight)x + 4a + 2b + c \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {x + 1} ight) = a{\left( {x + 1} ight)^2} + b\left( {x + 1} ight) + c \hfill \\   = a\left( {{x^2} + 2x + 1} ight) + bx + b + c \hfill \\   = a{x^2} + 2ax + a + bx + b + c \hfill \\   = a{x^2} + \left( {2a + b} ight)x + a + b + c \hfill \\ \end{matrix}

    Suy ra:

    \begin{matrix}  f(x + 3) - 3f(x + 2) + 3f(x + 1) \hfill \\   = a{x^2} + \left( {6a + b} ight)x + 9a + 3b + c \hfill \\   - 3\left[ {a{x^2} + \left( {4a + b} ight)x + 4a + 2b + c} ight] \hfill \\   + 3\left[ {a{x^2} + \left( {2a + b} ight)x + a + b + c} ight] \hfill \\   = a{x^2} + bx + c \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Gọi S là tập nghiệm của bất phương trình {x^2} - 8x + 7 \geqslant 0. Trong các tập hợp sau, tập nào không là tập con của S?

    Tam thức bậc hai f\left( x ight) = {x^2} - 8x + 7 có hai nghiệm phân biệt là: {x_1} = 1;{x_2} = 7

    Vì a = 1 > 0 nên f\left( x ight) \geqslant 0 khi x \in \left( { - \infty ;1} ight] \cup \left[ {7; + \infty } ight).

    Tập không phải tập con của S là: [6; + ∞)

  • Câu 8: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Điều kiện 2x^{2} - 5x + 2 \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq \frac{1}{2} \\
\end{matrix} ight..

    Vậy tập xác định của hàm số là \left( -
\infty;\frac{1}{2} ightbrack \cup \lbrack 2; + \infty).

  • Câu 9: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là  − 12, cắt trục Oy tại điểm có tung độ bằng  − 2.

    Gọi AB là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là  − 12. Suy ra A(−1;0), B(2;0).

    Gọi C là giao điểm của (P) với trục Oy có tung độ bằng  − 2. Suy ra C(0;−2).

    Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:

    \left\{ \begin{matrix}
a - b + c = 0 \\
4a + 2b + c = 0 \\
c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
c = - 2 \\
\end{matrix} ight..

    Vậy (P) : y = x2 − x − 2.

  • Câu 10: Nhận biết

    Số nghiệm của phương trình x - \sqrt{3x + 4} = 2 là:

    x - \sqrt{3x + 4} = 2 \Leftrightarrow\sqrt{3x + 4} = x - 2\Leftrightarrow \left\{ \begin{matrix}x - 2 \geq 0 \\3x + 4 = (x - 2)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\3x + 4 = x^{2} - 4x + 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x^{2} - 7x = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\\left\lbrack \begin{matrix}x = 0 \\x = 7 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 7.

    Vậy phương trình có 1 nghiệm.

  • Câu 11: Vận dụng

    Số nghiệm của phương trình 3x^{2} + 15x + 2\sqrt{x^{2} + 5x + 1} = 2 là:

    Đặt t = \sqrt{x^{2} + 5x + 1} (t≥0).Phương trình trở thành: 3t^{2} + 2t - 5 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 1\ \ (t/m) \\t = - \frac{5}{3}\ \ (l) \\\end{matrix} ight.

    Với t = 1 ta được \sqrt{x^{2} + 5x + 1} =1 \Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = - 5 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 12: Vận dụng cao

    Tập tất cả các giá trị của tham số m để phương trình \sqrt{x^{2} - 2mx + 1} = m - 2 có nghiệm thực là

    * Với m < 2 ⇒ phương trình vô nghiệm

    * Với m ≥ 2, \sqrt{x^2-2mx+1}=m-2

    \Leftrightarrow x^2-2mx+1=m^2-4m+4

    \Leftrightarrow x^2-2mx-m^2+4m-3=0.

    Phương trình có nghiệm Δ′ = 2(m−1)2 + 1 > 0 đúng mọi m.

    Vậy m ≥ 2 là những giá trị cần tìm hay m thuộc [2;  + ∞).

  • Câu 13: Nhận biết

    Điểm nào sau đây thuộc đồ thị của hàm số y = \frac{x - 2}{x(x - 1)}?

    Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.

  • Câu 14: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

     Nhận xét: Từ bảng biến thiên ta suy ra đỉnh (2;-5).

    Chỉ có hàm số y=x^{2}−4x−1 thỏa mãn tọa độ đỉnh này khi thay vào.

  • Câu 15: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 1; 5] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Trên khoảng (−1;1)(2;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (−1;1)(2;3).

    Trên khoảng (1;2)(3;5) đồ thị hàm số đi xuống từ trái sang phải

    \overset{}{ightarrow} Hàm số nghịch biến trên khoảng (1;2)(3;5).

  • Câu 16: Thông hiểu

    Cho hàm số y=\left\{\begin{matrix}\frac{2}{x-1},x\in (-∞;0) \\ \sqrt{x+1},x\in [0;2]\\ x^{2}-1,x\in (2;5]\end{matrix}ight.. Tính f(4), ta được kết quả:

     Với x=4 \in (2;5], ta có: f(4)=4^2-1=15.

  • Câu 17: Nhận biết

    Hàm số y = 2x2 + 4x − 1

    Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), nghịch biến trên khoảng \left( - \infty; - \frac{b}{2a}
ight).

    Áp dụng: Ta có - \frac{b}{2a} = -
1. Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).

  • Câu 18: Thông hiểu

    Phương trình: \sqrt{x+2}=4-x có bao nhiêu nghiệm?

     Điều kiện: x + 2 \geqslant 0 \Leftrightarrow x \geqslant  - 2

    \begin{matrix}  \sqrt {x + 2}  = 4 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {4 - x \geqslant 0} \\   {x + 2 = {{\left( {4 - x} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {x + 2 = 16 - 8x + {x^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {{x^2} - 9x + 14 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x = 7\left( {ktm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta được x=2 thỏa mãn

    Vậy nghiệm của phương trình là x=2

  • Câu 19: Thông hiểu

    Cặp bất phương trình nào sau đây là tương đương?

    Ta có: x-2 \le 0 \Leftrightarrow x \le2.

    Ta có: x^{2}(x-2)\leq 0 \Leftrightarrow x-2 \le0 (Vì x^2\ge0 với mọi giá trị x). Do đó x \le 2.

  • Câu 20: Thông hiểu

    Cho tam thức f(x) = x^{2} + 2mx + 3m – 2. Tìm m để f(x) ≥ 0 với mọi x ∈ ℝ.

     Để f(x) ≥ 0 với mọi x ∈ ℝ

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {{m^2} - \left( {3m - 2} ight) \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {{m^2} - 3m + 2 \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {m \in \left[ {1;2} ight]} \end{array}} ight. \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo