Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số và đồ thị gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh I\left( -
\frac{1}{2}; - \frac{11}{4} ight).

    (P) có đỉnh I\left( - \frac{1}{2}; - \frac{11}{4}
ight) nên ta có \left\{
\begin{matrix}
- \frac{b}{2a} = - \frac{1}{2} \\
f\left( - \frac{1}{2} ight) = - \frac{11}{4} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = a \\
\Delta = 11a \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3 = a \\
9 + 8a = 11a \\
\end{matrix} ight.\  \Leftrightarrow a = 3. Vậy (P) : y = 3x2 + 3x − 2.

  • Câu 2: Thông hiểu

    Nghiệm của phương trình \sqrt{5x^{2}-6x-4}=2(x-1)

    Điều kiện: 5{x^2} - 6x - 4 \geqslant 0

    Phương trình tương đương

    \begin{matrix}  \sqrt {5{x^2} - 6x - 4}  = 2\left( {x - 1} ight) \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2\left( {x - 1} ight) \geqslant 0} \\   {5{x^2} - 6x - 4 = 4{{\left( {x - 1} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được x=2 thỏa mãn

    Vậy nghiệm của phương trình là: x=2

  • Câu 3: Nhận biết

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 4: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    Tam thức bậc 2 là biểu thức f(x) có dạng  ax2bx + c (a≠0).

    f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c =  − 5.

  • Câu 5: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 6: Thông hiểu

    Phương trình \sqrt{-x^{2}+6x-5}=8-2x có nghiệm là:

    Điều kiện: - {x^2} + 6x - 5 \geqslant 0 \Leftrightarrow x \in \left[ { - 5,1} ight]

    Phương trình tương đương

    \begin{matrix}  \sqrt { - {x^2} + 6x - 5}  = 8 - 2x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {8 - 2x \geqslant 0} \\   { - {x^2} + 6x - 5 = {{\left( {8 - 2x} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   { - {x^2} + 6x - 5 = 64 - 32x + 4{x^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {5{x^2} - 38x + 69 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 3} \\   {x = \dfrac{{23}}{5}\left( {ltm} ight)} \end{array}} ight.} \end{array}} ight. \Leftrightarrow x = 3 \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta có: x=3 thỏa mãn 

    Vậy phương trình có nghiệm là x=3.

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 1; 5] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Trên khoảng (−1;1)(2;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (−1;1)(2;3).

    Trên khoảng (1;2)(3;5) đồ thị hàm số đi xuống từ trái sang phải

    \overset{}{ightarrow} Hàm số nghịch biến trên khoảng (1;2)(3;5).

  • Câu 8: Thông hiểu

    Cho hàm số y =
f(x) = \sqrt{(m - 2)x^{2} - 2(m - 3)x + m - 1}. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định D\mathbb{= R}?

    Hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi

    g(x) = (m - 2)x^{2} - 2(m - 3)x + m - 1
\geq 0,\forall x\mathbb{\in R}

    Xét m - 2 = 0 \Rightarrow m = 2 thì g(x) = 2x + 1 \geq 0, loại giá trị m = 2

    Xét m eq 2 ta có:

    (m - 2)x^{2} - 2(m - 3)x + m - 1 \geq
0,\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 > 0 \\
(m - 3)^{2} - (m - 2)(m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 2 \\
m \geq \frac{7}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{7}{3}

    Vậy m \geq \frac{7}{3}

  • Câu 9: Vận dụng

    Số nghiệm của phương trình \sqrt{4x - 1} + 4x^{2} - 6x + 1 = 0 là:

    ĐKXĐ: x \geq \frac{1}{4}

    Đặt t = \sqrt{4x - 1},\ \ t \geq 0\Rightarrow x = \frac{t^{2} + 1}{4}

    Phương trình trở thành t + 4\left(\frac{t^{2} + 1}{4} ight)^{2} - 6\frac{t^{2} + 1}{4} + 1 =0

    \begin{matrix}\Leftrightarrow 4t + t^{4} + 2t^{2} + 1 - 6\left( t^{2} + 1 ight) + 4= 0 \\\Leftrightarrow t^{4} - 4t^{2} + 4t - 1 = 0 \Leftrightarrow (t -1)\left( t^{3} + t^{2} - 3t + 1 ight) = 0 \\\end{matrix}

    \Leftrightarrow (t - 1)^{2}\left( t^{2} +2t - 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 1 \\\begin{matrix}t = - 1 - \sqrt{2} \\t = - 1 + \sqrt{2} \\\end{matrix} \\\end{matrix} ight. (đối chiếu ĐKXĐ loại t = - 1 - \sqrt{2} )

    Với t = 1 ta có 1 = \sqrt{4x - 1} \Leftrightarrow x =\frac{1}{2}

    Với t = - 1 + \sqrt{2} ta có - 1 + \sqrt{2} = \sqrt{4x - 1} \Leftrightarrow 4x -1 = 3 - 2\sqrt{2} \Leftrightarrow x = \frac{2 - \sqrt{2}}{2}

    Vậy phương trình có hai nghiệm x =\frac{1}{2}x = \frac{2 -\sqrt{2}}{2}.

  • Câu 10: Nhận biết

    Tìm tập xác định của y = \sqrt{6-3x}-\sqrt{x-1}

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{6 - 3x \ge 0}\\{x - 1 \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 2}\\{x \ge 1}\end{array}} ight.} ight. \Leftrightarrow 1 \le x \le 2.

    Vậy D=[1;2].

  • Câu 11: Thông hiểu

    Cho hàm số y=\left\{\begin{matrix}\frac{2}{x-1},x\in (-∞;0) \\ \sqrt{x+1},x\in [0;2]\\ x^{2}-1,x\in (2;5]\end{matrix}ight.. Tính f(4), ta được kết quả:

     Với x=4 \in (2;5], ta có: f(4)=4^2-1=15.

  • Câu 12: Vận dụng

    Tìm m để hàm số y = x2 − 2x + 2m + 3 có giá trị nhỏ nhất trên đoạn [2 ; 5] bằng  − 3.

    Ta có bảng biến thiên của hàm số y = x2 − 2x + 2m + 3 trên đoạn [2 ; 5]:

    Do đó giá trị nhỏ nhất trên đoạn [2 ; 5] của hàm số y = x2 − 2x + 2m + 3 bằng 2m + 3.

    Theo giả thiết 2m + 3 =  − 3 ⇔ m =  − 3.

  • Câu 13: Thông hiểu

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng lên.

    Parabol cắt trục hoành tại 2 điểm phân biệt có hoành độ âm. Xét các đáp án, đáp án y = 3x2 + 6x + 1 thỏa mãn.

  • Câu 14: Nhận biết

    Phương trình \sqrt{x^{2} + 4x - 1} = x - 3 có nghiệm là bao nhiêu?

    \sqrt{x^{2} + 4x - 1} = x - 3\Leftrightarrow \left\{ \begin{matrix}x - 3 \geq 0 \\x^{2} + 4x - 1 = x^{2} - 6x + 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x = 1\ \ (L) \\\end{matrix} ight..

    Vậy phương trình vô nghiệm.

  • Câu 15: Thông hiểu

    Các giá trị m để tam thức f(x) = x2– (m + 2)x + 8m + 1 đổi dấu 2 lần là

    Tam thức đổi dấu 2 lần khi tam thức có 2 nghiệm pb

    Δ > 0 ⇔ m2 − 28m > 0 ⇔ m < 0 ∨ m > 28.

  • Câu 16: Nhận biết

    Tổng các nghiệm của phương trình \sqrt{x^{2} + 2x + 4} = \sqrt{2 - x} bằng:

    \sqrt{x^{2} + 2x + 4} = \sqrt{2 - x}\Leftrightarrow \left\{ \begin{matrix}2 - x \geq 0 \\x^{2} + 2x + 4 = 2 - x \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 2 \\\end{matrix} ight..

    Vậy, tổng các nghiệm của phương trình là ( - 1) + ( - 2) = - 3.

  • Câu 17: Vận dụng cao

    Tất cả các giá trị của tham số m để phương trình 3\sqrt{x - 1} + m\sqrt{x + 1} = 2\sqrt[4]{x^{2} -
1} có nghiệm là:

    ĐKXĐ: x ≥ 1 .

    Chia cả hai vế cho \sqrt{x + 1} ta có

    pt \Leftrightarrow 3\frac{\sqrt{x -
1}}{\sqrt{x + 1}} + m = 2\frac{\sqrt[4]{x^{2} - 1}}{\sqrt{x + 1}}
\Leftrightarrow - 3\sqrt{\frac{x - 1}{x + 1}} + 2\sqrt[4]{\frac{x - 1}{x
+ 1}} = m

    Đặt t = \sqrt[4]{\frac{x - 1}{x + 1}} =
\sqrt[4]{1 - \frac{2}{x + 1}} \Rightarrow 0 \leq t < 1

    Phương trình trở thành  − 3t2 + 2t = m (*)

    Xét hàm số y =  − 3t2 + 2t trên [0; 1) , ta có - \frac{b}{2a} = \frac{1}{3}, y\left( \frac{1}{3} ight) =
\frac{1}{3}

    Bảng biến thiên

    Phương trình ban đầu có nghiệm phương trình (*) có nghiệm t∈ [0; 1)

    đồ thị hàm số y =  − 3t2 + 2t trên [0; 1) cắt đường thẳng y = m \Leftrightarrow - 1 < m \leq
\frac{1}{3}

    Vậy phương trình ban đầu có nghiệm khi và chỉ khi - 1 < m \leq \frac{1}{3}.

  • Câu 18: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 7; 7] để phương trình mx2 − 2(m+2)x + m − 1 = 0 có hai nghiệm phân biệt?

    TH1:m = 0 \Leftrightarrow - 4x - 1 = 0
\Leftrightarrow x = - \frac{1}{4}; phương trình chỉ có một nghiệm duy nhất nên loại m = 0

    TH2: m ≠ 0

    Để mx2 − 2(m+2)x + m − 1 = 0với m ∈ [ − 7; 7]có hai nghiệm phân biệt thì

    \Delta' = (m + 2)^{2} - m(m - 1) > 0
\Leftrightarrow 5m > - 4 \Leftrightarrow m > -
\frac{4}{5}đồng thời m ∈ [ − 7; 7].

    Vậy m = {1; 2;3;4;5;6;7}→7 giá trị nguyên của m thỏa mãn.

  • Câu 19: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 20: Nhận biết

    Tam thức nào sau đây nhận giá trị âm với x < 2

    Bảng xét dấu của  − x2 + 5x − 6

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo