Phương trình
có mấy nghiệm nguyên ?
Điều kiện: x ≥ − 2
PT đã cho tương đương với:
Do x = − 2 không là nghiệm của PT đã cho nên chia hai vế cho x + 2 ta được:
Đặt ta có:
Với t = 2 ta được
Vậy phương trình có 0 nghiệm nguyên.
Phương trình
có mấy nghiệm nguyên ?
Điều kiện: x ≥ − 2
PT đã cho tương đương với:
Do x = − 2 không là nghiệm của PT đã cho nên chia hai vế cho x + 2 ta được:
Đặt ta có:
Với t = 2 ta được
Vậy phương trình có 0 nghiệm nguyên.
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Cho hàm số có đồ thị như hình bên dưới.
Khẳng định nào sau đây là đúng?
Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.
Xác định m để biểu thức
là tam thức bậc hai.
Để biểu thức là tam thức bậc hai ta có:
Đồ thị hình bên dưới là đồ thị của hàm số nào?

Đồ thị cắt trục tung tại điểm có tung độ bằng 1.
Đồ thị cắt trục hoành tại điểm có hoành độ bằng 1, phương trình hoành độ giao điểm phải có nghiệm x = 1, ta chỉ có phương trình .
Số nghiệm của phương trình
là:
.
Vậy phương trình có 1 nghiệm.
Tổng các nghiệm của phương trình
là:
Đặt . Phương trình trở thành:
t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t = − 2
Ta được
.
Tổng các nghiệm của phương trình là − 5.
Tập xác định của hàm số
là
Hàm số có nghĩa khi
⇔ x ∈ [ − 1; 3) ∖ {2}.
Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi
f(x) = 2x2 + 2x + 5 = 0 có: nên f(x) > 0∀x ∈ ℝ.
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3 .
Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3 (m≠1)(P). Đỉnh của (P) là S(−1;−2) thì m bằng bao nhiêu:
Do đỉnh của (P) là S(−1;−2) suy ra
.
Tìm tất cả các giá trị của m để bất phương trình
với mọi x ∈ ℝ
Để bất phương trình với mọi x ∈ ℝ thì:
Tìm tất cả các giá trị của tham số
để bất phương trình
vô nghiệm.
Để bất phương trình vô nghiệm thì
.
.
Cho parabol
(
). Xét dấu hệ số
và biệt thức
khi
cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía trên trục hoành.
Nhận xét: Đồ thị hàm số bậc hai cắt trục hoành tại 2 điểm phân biệt nên suy ra phương trình có 2 nghiệm phân biệt. Suy ra
.
Đỉnh nằm phía trên trục hoành nên suy ra (bề lõm hướng xuống).
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Phương trình
có bao nhiêu nghiệm?
ĐKXĐ: .
Thay x = 1 vào , ta được:
.
Vậy phương trình vô nghiệm.
Cặp bất phương trình nào sau đây là tương đương?
Ta có: .
Ta có: (Vì
với mọi giá trị
). Do đó
.
Số nghiệm của phương trình
là bao nhiêu?
Xét phương trình:
Điều kiện: .
Vậy phương trình vô nghiệm.
Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.
y = x2 − 4x + 1 = (x−2)2 − 3 ≥ − 3.
Dấu xảy ra khi và chỉ khi x = 2.
Vậy hàm số đã cho đạt giá trị nhỏ nhất là − 3 tại x = 2.