Điểm cuối của góc lượng giác ở góc phần tư thứ mấy nếu
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Điểm cuối của góc lượng giác ở góc phần tư thứ mấy nếu
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Điểm cuối của thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho tam giác có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm).
Bán kính của chiếc đĩa này bằng (kết quả làm tròn đến chữ số thập phân thứ hai):
Ta có: Bán kính của chiếc đĩa bằng bán kính đường tròn ngoại tiếp tam giác ABC.
Nửa chu vi tam giác ABC:
Áp dụng công thức Hê - rông tính diện tích tam giác ABC:
Mặt khác
Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30' (hình vẽ).
Ngọn núi đó có độ cao CH so với mặt đất gần nhất với giá trị nào sau đây?
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Xét tam giác ACH vuông tại H ta có:
Cho có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)
Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Tam giác ABC có BC = 10 và . Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Giá trị biểu thức bằng:
Ta có:
Cho góc thỏa mãn
Tính
Từ giả thiết, ta có
.
Cho góc thoả mãn
và
. Giá trị của
là:
Ta có:
.
Do đó .
Vì nên
.
Cho có
Diện tích của tam giác là:
Ta có:
Cho . Xác định dấu của biểu thức
Ta có:
và
.
Tam giác có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Tam giác có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Diện tích tam giác có ba cạnh lần lượt là và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Cho tam giác ABC có b = 7; c = 5, . Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Giá trị là:
Ta có: .
Điểm cuối của góc lượng giác ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc