Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Giá trị của
bằng
Ta có:
Diện tích hình phẳng H được giới hạn bởi hai đồ thị
và
được tính theo công thức
Phương trình hoành độ giao điểm của và
là:
Vậy diện tích hình phẳng được giới hạn bởi hai đồ thị
và
được tính theo công thức
.
Cho hình phẳng
được giới hạn bởi đồ thị các hàm số ![]()
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Tìm nguyên hàm của hàm số
bằng:
Cho F(x) là một nguyên hàm của hàm số
. Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Một khối cầu có bán kính
, người ta cắt bỏ
phần bằng
mặt phẳng song song và vuông góc với bán kính, hai mặt phẳng đó đều cách tâm của khối cầu
để làm một chiếc lu đựng nước. Tính thể tích nước mà chiếc lu chứa được (coi độ dày của bề mặt không đáng kể).
Hình vẽ minh họa
Đặt trục tọa độ như hình vẽ. Thể tích cái được tính bằng cách cho đường tròn có phương trình quay quanh trục Ox.
Thể tích cái lu bằng;
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Kí hiệu
là hình phẳng giới hạn bởi đồ thị
với trục hoành (
). Quay hình
xung quanh trục hoành ta thu được khối tròn xoay có thể tích
. Tìm
?
Phương trình hoành độ giao điểm
Trường hợp 1: Với thì thể tích khối tròn xoay là:
Trường hợp 2: Với thì thể tích khối tròn xoay là:
Vậy .
Cho các hàm số
có đạo hàm cấp một, đạo hàm cấp hai liên tục trên
và thỏa mãn
. Giá trị của biểu thức
bằng:
Đặt
Ta có:
Ta có:
Vậy
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Cho
là một nguyên hàm của hàm số
thỏa mãn
. Tìm
?
Ta có:
Lại có
Vậy .
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vì là một nguyên hàm của hàm số
trên khoảng
nên hàm số
có công thức dạng
với mọi
Xét hàm số xác định và liên tục trên
Ta có:
Trên khoảng phương trình
có một nghiệm
Ta có bảng biến thiên như sau:
. Theo bài ra ta có:
Do đó suy ra
.
Xét hình phẳng
giới hạn bởi các đường như hình vẽ (phần gạch sọc).

Diện tích hình phẳng
được tính theo công thức
Ta có:
Cho hàm số
có đạo hàm và liên tục trên
. Biết rằng đồ thị hàm số
như hình bên. Lập hàm số
. Mệnh đề nào sau đây đúng?

Hình vẽ minh họa:

Đặt
Gọi là đồ thị của hàm số
Từ đồ thị ta thấy
Ta thấy
=> sai
=> đúng
Cho hàm số
xác định trên
thỏa mãn
;
. Tính
?
Trên khoảng ta có:
Mà
Trên khoảng ta có:
Mà
Vậy
.
Cho hàm số
liên tục trên
và có đồ thị
là đường cong như hình vẽ:

Diện tích hình phẳng giới hạn bởi đồ thị
, trục hoành và hai đường thẳng
(phần tô đen) là:
Dựa vào hình vẽ ta thấy thì
Vậy
Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là: