Cho hàm số liên tục trên
thỏa mãn
. Giá trị của biểu thức
bằng
Ta có:
Cho hàm số liên tục trên
thỏa mãn
. Giá trị của biểu thức
bằng
Ta có:
Gọi là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc . Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc
. Tính quãng đường
đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?
Quãng đường xe đi được trong 12s đầu là
Sau khi đi được 12s vật đạt vận tốc , sau đó vận tốc của vật có phương trình
Vật dừng hẳn sau 2s kể từ khi phanh.
Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là
Vậy tổng quãng đường ô tô đi được là
Nguyên hàm của hàm số là:
Ta có:
.
Giả sử với
là hằng số. Tổng các nghiệm của phương trình
bằng:
Ta có:
Đặt
Theo định lí Vi – et ta thấy phương trình có hai nghiệm
và
.
Tìm nguyên hàm của hàm số ?
Ta có:
Tính thể tích của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Đặt với
là tham số thực. Tìm giá trị của tham số
để
?
Ta có:
Do .
Tính diện tích hình phẳng giới hạn bởi các đường và trục hoành?
Phương trình hoành độ giao điểm
Khi đó diện tích hình phẳng theo yêu cầu bài toán là:
.
Biết luôn có hai số để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Cho hai hàm số và
. Biết
là các số thực để
là một nguyên hàm của
. Tính
?
Từ giả thiết ta có:
Đồng nhất hai vế ta có: .
Cho hàm số liên tục trên
thỏa mãn điều kiện
với
và
với
. Tính giá trị
?
Cho hàm số liên tục trên
thỏa mãn điều kiện
với
và
với
. Tính giá trị
?
Tìm một nguyên hàm của hàm số
, biết rằng
?
Ta có:
Theo bài ra ta có:
. Vậy
.
Tính thể tích của vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường
quay quanh
.
Xét phương trình hoành độ giao điểm:
Thể tích khối tròn xoay cần tính là:
Tích phân có giá trị là:
Ta có:
Đặt
Đổi cận
Họ nguyên hàm của hàm số là:
Ta có:
.
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc thời gian là
. Biết vận tốc ban đầu bằng
, hỏi trong 6 giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?
Vận tốc của vật được tính theo công thức
=> Quãng đường vật di chuyển được tính theo công thức:
Ta có:
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Khi xe dừng hẳn thì vận tốc bằng m/s.
Khi xe dừng hẳn thì m/s nên
s.
Nguyên hàm của hàm số vận tốc ,
.
Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là
m.
Cho là nguyên hàm của hàm số
thỏa mãn
. Tổng các nghiệm của phương trình
là:
Ta có:
Đặt
Theo bài ra ta có:
Ta có:
Vậy tổng các nghiệm của phương trình bằng 2.
Cho hàm số thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy