Cho hàm số là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Cho hàm số là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Cho hai hàm số và
liên tục trên tập số thực và thỏa mãn
. Tính tích phân
?
Đặt
Đổi cận
Theo bài ra ta có:
Đặt
Đổi cận
Họ nguyên hàm của hàm số là:
Ta có: .
Cho hàm số liên tục trên
thỏa mãn điều kiện
với
và
với
. Tính giá trị
?
Cho hàm số liên tục trên
thỏa mãn điều kiện
với
và
với
. Tính giá trị
?
Diện tích hình phẳng giới hạn bởi các đường , trục hoành,
và
bằng
Hình vẽ minh họa
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Nguyên hàm của hàm số là:
Ta có:
Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số
Diện tích hình phẳng giới hạn bởi , trục hoành,
và
là:
Ta có: nên ta có:
Cho F(x) là nguyên hàm của hàm số thỏa mãn
. Tìm tập nghiệm S của phương trình
Đặt
Ta có:
Xét hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?
Cho hình phẳng giới hạn với các đường
. Tính thể tích
của khối tròn xoay thu được khi
quay quanh trục
?
Thể tích cần tìm là:
Tính tích phân bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra
Tính diện tích của hình phẳng
được giới hạn bởi các đường
, trục hoành và các đường thẳng
?
Diện tích hình phẳng cần tìm là:
Một chất điểm đang chuyển động với vận tốc thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian
kể từ lúc bắt đầu tăng tốc.
Ta có: .
Khi đó
Khi đó quãng đường đi được bằng:
Cho hình phẳng giới hạn bởi đường parabol
và tiếp tuyến của đồ thị hàm số
tại điểm có tọa độ
. Diện tích của hình (H) là:
Xét hàm số trên
. Ta có:
Khi đó phương trình tiếp tuyến tại điểm của đồ thị hàm số
là
Gọi ∆ là đường thẳng có phương trình . Xét phương trình tương giao của (P) và ∆
Gọi là diện tích hình phẳng
khi đó
Vì nên
Biết rằng . Mệnh đề nào sau đây đúng?
Ta có:
Khi đó
Suy ra suy ra
.
Hàm số có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Tìm nguyên hàm của hàm của hàm số
Tìm một nguyên hàm của hàm số ?
Ta có:
Đặt
Khi đó .
Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và