Cho hình chóp
có đáy
là hình bình hành. Đặt
. Khẳng định nào sau đây đúng?
Gọi là tâm hình bình hành
. Khi đó:
Vậy .
Cho hình chóp
có đáy
là hình bình hành. Đặt
. Khẳng định nào sau đây đúng?
Gọi là tâm hình bình hành
. Khi đó:
Vậy .
Cho điểm
và hai mặt phẳng ![]()
Gọi
là mặt phẳng chứa điểm M , vuông góc với cả hai mặt phẳng
và
. Phương trình mặt phẳng
:
Theo đề bài, ta có:
có vectơ pháp tuyến
có vectơ pháp tuyến
Suy ra tích có hướng giữa 2 vecto là
Ta chọn làm vectơ pháp tuyến cho mặt phẳng
Phương trình có dạng
Mặt khác, ta có
Vậy phương trình cần tìm là:
Trong không gian
, cho tam giác
có
, đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình
. Biết
, khi đó
bằng
Hình vẽ minh họa
Giả sử đường cao là ta có vectơ chỉ phương của CH là
.
B thuộc đường trung tuyến nên
.
Suy ra
Vì nên
.
Vậy .
Trong không gian với hệ trục tọa độ
cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ toạ độ
, cho hai điểm
. Gọi
là mặt phẳng đi qua
sao cho khoảng cách từ
đến
là lớn nhất. Khi đó, khoảng cách
từ
đến mặt phẳng
bằng bao nhiêu?
Trong không gian với hệ toạ độ , cho hai điểm
. Gọi
là mặt phẳng đi qua
sao cho khoảng cách từ
đến
là lớn nhất. Khi đó, khoảng cách
từ
đến mặt phẳng
bằng bao nhiêu?
Trong không gian với hệ tọa độ
, gọi
là mặt phẳng chứa đường thẳng
và vuông góc với mặt phẳng
. Hỏi giao tuyến của
và
đi qua điểm nào dưới đây?
Ta có:
Suy ra
Khi đó giao tuyến thỏa hệ
Thay các phương án vào hệ, ta nhận phương án .
Trong không gian với hệ tọa độ
, tính thể tích tứ diện
, biết
lần lượt là giao điểm của mặt phẳng
với trục
.
Theo giả thiết ta có: suy ra
Trong không gian
, cho điểm
và mặt phẳng
. Đường thẳng
qua điểm
, song song với mặt phẳng
, đồng thời cắt trục
. Viết phương trình tham số của đường thẳng
.
Gọi
Lại có
Do đó
Do đó, (d) là đường thẳng qua B(0; 0; 2) và nhận làm vectơ chỉ phương. Nên (d) có phương trình:
.
Trong không gian
, cho điểm
và mặt phẳng
. Mặt phẳng
đi qua
và song song với mặt phẳng
có phương trình là:
Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là
Phương trình mặt phẳng (Q) là:
Cho tứ diện
đều cạnh bằng
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi M là trung điểm của CD
Vì ABCD là tứ diện đều nên
Ta có:
Suy ra nên số đo góc giữa hai đường thẳng bằng
.
Trong không gian Oxyz, cho mặt phẳng
và hai điểm
. Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

Gọi (Q) là mặt phẳng qua A và song song (P).
Ta có: nằm về hai phía với (P).
Gọi H là hình chiếu vuông góc của B lên (Q) BH cố định và
.
Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay .
Ta có: bé nhất bằng BH khi K trùng với điểm H.
Gọi là VTPT của (ABH)
Ta có đường thẳng d cần lập qua A, H và có VTCP là
Vậy phương trình đường thẳng d cần lập là:
Trong không gian với hệ tọa độ
, cho hai điểm
. Viết phương trình đường thẳng
?
Vectơ chỉ phương của đường thẳng là
. Suy ra phương trình đường thẳng
là:
Trong không gian tọa độ
, cho hai mặt phẳng
và ![]()
a) Vectơ có tọa độ
là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ
là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ
và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng
và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
và
a) Vectơ có tọa độ là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) nên mệnh đề sai
b) nên mệnh đề đúng
c) mệnh đề đúng
d) Góc hai mặt phẳng không thể tù nên mệnh đề sai
Trong không gian với hệ tọa độ
, đường thẳng
đi qua điểm nào dưới đây?
Nếu một điểm nằm trên một đường thẳng thì khi thay tọa độ điểm đó vào phương trình đường thẳng thì sẽ thỏa mãn phương trình đường thẳng.
Lần lượt thay tọa độ M từ các phương án vào phương trình đường thẳng d ta được M(−3; 5; 3) thỏa mãn yêu cầu bài toán.
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Cho ba vectơ
không đồng phẳng. Xét các vectơ ![]()
![]()
. Khẳng định nào dưới đây đúng?
Giả sử ba vectơ đồng phẳng, khi đó
Ta có:
Khi đó:
Vậy ba vectơ đồng phẳng.
Vậy khẳng định đúng là: “Ba vectơ đồng phẳng”.
Cho hình hộp
. Gọi
là trung điểm của
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:
: vectơ chỉ phương của trục Ox:
.
: Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng
, qua A nên:
Vậy ta có phương trình mp cần tìm là:
Cho hình chóp
có đáy
là hình vuông cạnh
,
, hình chiếu vuông góc
của S trên mặt phẳng
là trung điểm của đoạn
. Gọi
là trung điểm đoạn
(tham khảo hình vẽ)

Cho hình chóp có đáy
là hình vuông cạnh
,
, hình chiếu vuông góc
của S trên mặt phẳng
là trung điểm của đoạn
. Gọi
là trung điểm đoạn
(tham khảo hình vẽ)
Cho hai điểm
và mặt phẳng
Mặt phẳng
chứa hai điểm A,B và vuông góc với mặt phẳng
có phương trình:
Theo đề bài, ta có: ;
Suy ra ;
có vectơ pháp tuyến
Ta có cùng phương với vectơ
Chọn làm 1 vectơ pháp tuyến cho mặt phẳng
.
Phương trình mặt phẳng có dạng:
Mặt phẳng :