Trong không gian
, tìm phương trình mặt phẳng
cắt ba trục
lần lượt tại ba điểm
?
Phương trình mặt phẳng :
Trong không gian
, tìm phương trình mặt phẳng
cắt ba trục
lần lượt tại ba điểm
?
Phương trình mặt phẳng :
Tích tất cả giá trị của
để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Gọi là góc giữa hai đường thẳng đã cho.
Đường thẳng có vectơ chỉ phương là
.
Đường thẳng có vectơ chỉ phương là
.
Ta có:
Vậy tích tất cả các giá trị của tham số a bằng -4.
Trong không gian
, phương trình đường thẳng
đi qua hai điểm
là:
Ta có là một vectơ chỉ phương của đường thẳng
.
đi qua điểm
, nên có phương trình là:
.
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Trong không gian tọa độ Oxyz, cho ba vectơ
. Gọi
là vectơ thoả mãn:
. Tọa độ của vectơ
là:
Đặt .
Ta có:
Vậy .
Trong không gian
, cho điểm
và mặt phẳng
. Mặt phẳng
đi qua
và song song với mặt phẳng
có phương trình là:
Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là
Phương trình mặt phẳng (Q) là:
Phân tích vectơ
theo ba vectơ không đồng phẳng
![]()
Ta có 3 vecto không đồng phẳng. Khi đó luôn có :
Trong không gian
cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian tọa độ
, cho vectơ
. Trong các vectơ dưới đây, vectơ nào không cùng phương với
?
Ta có: cùng phương với mọi vectơ
Lại có
Vậy vectơ không cùng phương với là
.
Trong hệ tọa độ
, cho mặt phẳng
và ba điểm
. Điểm M ∈ (α) sao cho
đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?
Xét điểm I(a; b; c) thỏa mãn:
Khi đó
Khi đó:
Do đó đạt giá trị nhỏ nhất thì M là hình chiếu của I trên mặt phẳng
.
Do là hình chiếu của I trên mặt phẳng
nên ta có:
Vậy .
Trong không gian với hệ tọa độ Oxyz, cho hai điểm
và mặt phẳng
. Gọi M là điểm thuộc (P) sao cho
vuông tại M . Khoảng cách từ M đến (Oxy) bằng:
Ta có: suy ra M thuộc mặt cầu (S) đường kính AB.
Gọi I là trung điểm AB , khi đó và
.
Ta tính được suy ra (P) và mặt cầu (S) tiếp xúc nhau hay M là tiếp điểm của (P) và (S). Vậy M là hình chiếu của I trên (P) .
Phương trình đường thẳng qua I và vuông góc với (P) là:
Tọa độ của M là nghiệm của hệ phương trình:
suy ra .
Suy ra .
Trong không gian với hệ tọa độ
, gọi
là mặt phẳng chứa đường thẳng
và vuông góc với mặt phẳng
. Hỏi giao tuyến của
và
đi qua điểm nào dưới đây?
Ta có:
Suy ra
Khi đó giao tuyến thỏa hệ
Thay các phương án vào hệ, ta nhận phương án .
Trong không gian với hệ tọa độ
, cho hai điểm
. Tìm tọa độ điểm
thuộc
sao cho
ngắn nhất.
Gọi là điểm sao cho
Suy ra J(2; 3; 1).
Khi đó
Vậy đạt GTNN khi và chỉ khi
đạt GTNN hay M là hình chiếu của J lên mặt phẳng (Oxy).
Vậy M(2; 3; 0).
Cho hai đường thẳng chéo nhau
và ![]()
Mặt phẳng song song và cách đều và có phương trình tổng quát:
Phương trình (d) cho biết và (d) có vectơ chỉ phương
Chuyển về dạng tham số
để có
và vectơ chỉ phương
.
Gọi I là trung điểm AB thì I (2, 2, 0), M(x, y, z) bất kỳ .
là phương trình của mặt phẳng (P).
Trong hệ tọa độ
, cho hai điểm
. Phương trình mặt phẳng trung trực của đoạn thẳng
là
Gọi là mặt phẳng trung trực của
.
Tọa độ trung điểm của là
Vectơ pháp tuyến của là
Phương trình mặt phẳng
Trong không gian với hệ trục toạ độ
, cho mặt phẳng
. Hỏi có bao nhiêu điểm
thuộc mặt phẳng
với
là các số nguyên không âm.
Ta có nên mặt phẳng
đi qua các điểm
Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.
Tam giác ABC đều có các cạnh bằng , chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.
Mà số điểm có toạ độ nguyên của tam giác OAB bằng
Cho hình lập phương
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Theo quy tắc hình bình hành ta có:
Trong không gian
, cho mặt phẳng
. Đường thẳng
vuông góc với mặt phẳng
có một vectơ chỉ phương có tọa độ là:
Mặt phẳng có một vectơ pháp tuyến là
.
Do nên vectơ
cũng là một vectơ chỉ phương của
.
Trong không gian
, cho hai đường thẳng
và
, (với
là tham số). Tìm
để hai đường thẳng
và
cắt nhau
Ta có:
đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương
đi qua điểm M2(1; m; −2) và có vectơ chỉ phương
Ta có:
và
cắt nhau