Trong không gian
, cho tọa độ ba điểm
. Tính cosin góc
?
Ta có: .
Trong không gian
, cho tọa độ ba điểm
. Tính cosin góc
?
Ta có: .
Trong không gian với hệ tọa độ
, cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Vì M ∈ (Oxy) nên .
Gọi G là trọng tâm của tam giác ABC.
Ta có G(2; 1; 3).
Khi đó:
Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).
Vậy P = 3
Trong không gian
, cho ba điểm
. Mặt phẳng
đi qua điểm nào dưới đây?
Ta có: suy ra
Mặt phẳng đi qua điểm
, có 1 vectơ pháp tuyến
nên có phương trình là:
Vì nên
.
Trong không gian Oxyz, cho mặt phẳng
và hai điểm
. Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

Gọi (Q) là mặt phẳng qua A và song song (P).
Ta có: nằm về hai phía với (P).
Gọi H là hình chiếu vuông góc của B lên (Q) BH cố định và
.
Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay .
Ta có: bé nhất bằng BH khi K trùng với điểm H.
Gọi là VTPT của (ABH)
Ta có đường thẳng d cần lập qua A, H và có VTCP là
Vậy phương trình đường thẳng d cần lập là:
Xác định tọa độ trọng tâm
của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Cho bốn điểm
trong không gian. Hỏi có bao nhiêu vectơ khác
có điểm đầu và điểm cuối là
điểm?
Lấy làm gốc ta được 3 vectơ
. Tương tự đối với
ta được
vectơ.
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Trong không gian với hệ tọa độ
, cho mặt phẳng
và đường thẳng
. Viết phương trình đường thẳng
nằm trong mặt phẳng
cắt đồng thời vuông góc với
?
Giao điểm I của d và (α) là nghiệm của hệ phương trình:
Mặt phẳng (α) có một vectơ pháp tuyến , đường thẳng d có một vectơ chỉ phương
Khi đó đường thẳng ∆ có một vectơ chỉ phương là
Đường thẳng ∆ qua điểm I (2; 4; −2) và có một vectơ chỉ phương nên có phương trình chính tắc:
Viết phương trình tổng quát của đường thẳng (d) qua A (2, 3, 1) cắt đường thẳng
và vuông góc đường thẳng ![]()
Lấy điểm nằm trên đường thẳng (d1).
Theo đề bài, ta có (d1) qua có vecto chỉ phương là
Ta có:
Vecto pháp tuyến của mặt phẳng (P) chứa A và
(1)
Xét tiếp đường thẳng có vecto chỉ phương của là vecto pháp tuyến của mặt phẳng qua A và vuông góc với . Ta có phương trình mp (Q) là
(2)
Từ (1) và (2) ta suy ra:
Viết phương trình tổng quát của mặt phẳng (P) qua hai điểm
và có một vectơ chỉ phương
.
Theo đề bài ta có:
Như vậy, VTPT của (P) là tích có hướng của 2 vecto chỉ phương
Mp (P) đi qua và nhận vecto
làm 1 VTPT có phương trình là:
Trong không gian
, cho hai điểm
. Các khẳng định sau đúng hay sai?
a)
. Sai||Đúng
b) Tọa độ của vectơ
. Đúng||Sai
c) Điểm
là hình chiếu của điểm
trên mặt phẳng tọa độ
thì
. Sai||Đúng
d) Tọa độ điểm
để tứ giác
là hình bình hành là
. Sai||Đúng
Trong không gian , cho hai điểm
. Các khẳng định sau đúng hay sai?
a) . Sai||Đúng
b) Tọa độ của vectơ . Đúng||Sai
c) Điểm là hình chiếu của điểm
trên mặt phẳng tọa độ
thì
. Sai||Đúng
d) Tọa độ điểm để tứ giác
là hình bình hành là
. Sai||Đúng
a) Điểm .
b) .
c) là hình chiếu của điểm
trên mặt phẳng tọa độ
nên
.
Suy ra .
d) Gọi .
Ta có .
Tứ giác là hình bình hành nên
Tứ giác
là hình bình hành biết tọa độ các điểm
. Tìm tọa độ điểm
?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho hình hộp chữ nhật OABC.DEFG có
. Gọi L là tâm hình hộp. Biểu thị vectơ
theo ba vectơ
và
?

Vì I là tâm hình hộp theo giả thiết nên I là trung điểm đường chéo OF. Từ đây, suy ra
Cho tứ diện
trọng tâm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Vì G là trọng tâm tứ diện ABCD nên suy ra:
Suy ra mệnh đề sai là .
Trong không gian với hệ tọa độ
, cho ba điểm
. Gọi
là mặt phẳng đi qua
sao cho tổng khoảng cách từ
và
đến
lớn nhất, biết rằng
không cắt đoạn
. Khi đó vectơ pháp tuyến của mặt phẳng
là:
Kiểm tra : Mặt phẳng (P) có phương trình 2x − 2y − z − 1 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại .
Kiểm tra : Mặt phẳng (P) có phương trình x+ 2z −3 = 0.
Thay tọa độ B, C vào (P) ta thấy B ∈ (P) nên loại .
Kiểm tra : Mặt phẳng (P) có phương trình −x + 2y − z + 2 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại .
Kiểm tra v: Mặt phẳng (P) có phương trình x − 2z + 1 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về cùng phía (P) nên chọn .
Cho tứ diện
, có
đôi một vuông góc,
là điểm thuộc miền trong của tam giác
. Gọi khoảng cách từ
đến các mặt phẳng
lần lượt là
. Tính độ dài đoạn
sao cho tứ diện
có thể tích nhỏ nhất.
Xét hệ trục tọa độ Oxyz sao cho A thuộc tia Ox; B thuộc tia Oy và C thuộc tia Oz.
Ta có
Ta có:
Đẳng thức xảy ra khi chỉ khi
Trong không gian
, cho các điểm
. Đường thẳng nào dưới đây vuông góc với mặt phẳng
?
Ta có
là 1 VTPT của mặt phẳng (ABC).
Do đó đường thẳng vuông góc với mặt phẳng (ABC) có VTPT cùng phương với vectơ (−2; −1; 1).
Dựa vào các đáp án ta thấy ở đáp án D đường thẳng có 1 VTPT là (−2; 1; 1) cùng phương với (−2; −1; 1).
Trong không gian
, cho đường thẳng
. Điểm nào sau đây không thuộc đường thẳng
?
Thay vào
ta được:
Thay vào
ta được:
Thay vào
ta được:
hệ vô nghiệm nên
.
Thay vào
ta được:
Trong không gian với hệ tọa độ
, đường thẳng
đi qua điểm nào dưới đây?
Nếu một điểm nằm trên một đường thẳng thì khi thay tọa độ điểm đó vào phương trình đường thẳng thì sẽ thỏa mãn phương trình đường thẳng.
Lần lượt thay tọa độ M từ các phương án vào phương trình đường thẳng d ta được M(−3; 5; 3) thỏa mãn yêu cầu bài toán.
Trong không gian tọa độ
, cho hai mặt phẳng
và
. Tìm
để
vuông góc với
?
Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là .