Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian
, cho ba mặt phẳng
lần lượt có phương trình là
. Mệnh đề nào dưới đây đúng?
Mặt phẳng (P) có một vectơ pháp tuyến là và mặt phẳng (R) có một vectơ pháp tuyến là
Do nên vectơ
không cùng phương với vectơ
.
Vậy mặt phẳng (R) cắt mặt phẳng (P).
Trong không gian hệ trục tọa độ
, cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ .
Trong không gian với hệ tọa độ
, cho điểm
và hai đường thẳng
. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm
, cắt
và vuông góc với
.
Gọi là đường thẳng đi qua điểm
, cắt
và vuông góc với
.
Giả sử .
Cho hình hộp
có tâm
. Đặt
. Điểm
xác định bởi đẳng thức
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Gọi lần lượt là tâm các mặt đáy
suy ra
là trung điểm của
Do là hình hộp nên
Theo giả thiết ta có:
Vì là hình hộp nên từ đẳng thức
suy ra M là trung điểm của
.
Trong không gian
, cho đường thẳng
vuông góc với mặt phẳng
. Một vectơ chỉ phương của
là:
Mặt phẳng (α) có một vectơ pháp tuyến là .
Đường thẳng vuông góc với mặt phẳng (α) nên có vectơ chỉ phương là
.
Một khối lập phương lớn tạo bởi 27 khối lập phương đơn vị. Một mặt phẳng vuông góc với đường chéo của khối lập phương lớn tại trung điểm của nó. Mặt phẳng này cắt ngang bao nhiêu khối lập phương đơn vị?
Giả sử các đỉnh của khối lập phương đơn vị là , với
và đường chéo đang xét của khối lập phương lớn nối hai đỉnh là
Phương trình mặt trung trực của OA là
Mặt phẳng này cắt khối lập phương đơn vị khi và và chỉ khi các đầu mút và
của đường chéo của khối lập phương đơn vị nằm về hai phía đối với (α).
Do đó bài toán quy về đếm trong số 27 bộ , với
, có bao nhiêu bộ ba thỏa mãn:
Các bộ ba không thỏa điều kiện (1), tức là là:
Vậy có khối lập phương đơn vị bị cắt bởi (α).
Cho hai đường thẳng (d1 ):
và ![]()
Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?
Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :
có vectơ chỉ phương
và qua
.
có vectơ chỉ phương
và hệ phương trình
vô nghiệm.
.
Trong hệ tục toạ độ không gian
, cho
, biết
, phương trình mặt phẳng
. Tính
biết
?
Ta có
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Vì nên
.
Theo giả thiết
(vì
).
Suy ra . Vậy
.
Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:
Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).
Gọi
lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Gọi lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Trong không gian với hệ tọa độ
, mặt phẳng
đi qua
và chứa trục
có phương trình là:
Ta có: (P) có cặp véc-tơ chỉ phương
Khi đó véc-tơ pháp tuyến của (P) là , ta chọn
.
Mặt phẳng (P) đi qua và có véc-tơ pháp tuyến
nên có phương trình
hay
.
Trong không gian
, cho hai điểm
. Viết phương trình đường thẳng
đi qua tâm đường tròn ngoại tiếp tam giác
và vuông góc với mặt phẳng
.
Tam giác OAB vuông tại O nên tâm đường tròn ngoại tiếp là trung điểm AB có tọa độ I(0; 1; 1).
Mặt phẳng (OAB) có véc-tơ pháp tuyến .
Suy ra đường thẳng ∆ có và đi qua I(0; 1; 1).
Vậy phương trình đường thẳng ∆ là .
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Ta có N là trung điểm của CD nên
M là trung điểm của AB nên
Suy ra
Mệnh đề nào sau đây sai?
Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.
Trong không gian với hệ tọa độ
, cho đường thẳng
là giao tuyến của hai mặt phẳng
và
. Phương trình tham số của
là:
Nhận thấy đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng
.
Ta có là một vectơ chỉ phương của
.
Khi đó phương trình tham số của là:
.
Mặt phẳng
và đường thẳng
:
Theo đề bài, ta có vecto pháp tuyến của
Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: và
cũng có 2 VTPT lần lượt
Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT:
và tọa độ của A không thỏa mãn phương trình của (P).
Vậy (d) // (P) .
Trong không gian với hệ trục tọa độ
, cho
và mặt phẳng
. Hình chiếu vuông góc của
lên mặt phẳng
là
Đường thẳng đi qua
và vuông góc với mặt phẳng
có phương trình
.
Gọi
Trong không gian
, cho hai điểm
. Biết mặt phẳng
đi qua điểm
và cách
một khoảng lớn nhất. Phương trình mặt phẳng
là
Hình vẽ minh họa
Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.
Ta có BH ≤ AB.
Dấu “=” xảy ra ⇔ H ≡ A
⇒ BHmax = AB khi AB ⊥ (P).
Ta có:
Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:
Theo đề bài, ta có được các vecto sau:
Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của và
.
Chọn làm một vectơ pháp tuyến.
Phương trình mp có dạng
là mp qua A
Vậy phương trình .