Cho hình hộp
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ ![]()
Hình vẽ minh họa
Ta có:
.
Vậy .
Cho hình hộp
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ ![]()
Hình vẽ minh họa
Ta có:
.
Vậy .
Trong không gian với hệ tọa độ
, cho hai đường thẳng:
và ![]()
a) Vectơ có tọa độ
là một vectơ chỉ phương của
. Sai||Đúng
b) Đường thẳng
đi qua điểm
. Đúng||Sai
c) Đường thẳng
đi qua
và vuông góc với
có phương trình tham số là
. Đúng||Sai
d) Góc giữa hai đường thẳng
và
khoảng
. Sai||Đúng
Trong không gian với hệ tọa độ , cho hai đường thẳng:
và
a) Vectơ có tọa độ là một vectơ chỉ phương của
. Sai||Đúng
b) Đường thẳng đi qua điểm
. Đúng||Sai
c) Đường thẳng đi qua
và vuông góc với
có phương trình tham số là
. Đúng||Sai
d) Góc giữa hai đường thẳng và
khoảng
. Sai||Đúng
a) Vectơ có tọa độ là một vectơ chỉ phương của
nên mệnh đề sai
b) Mệnh đề đúng
c) Gọi
nên mệnh đề đúng
d) Góc giữa hai đường thẳng luôn là góc nhọn nên mệnh đề sai
Cho biết có n mặt phẳng với phương trình tương ứng là
với
đi qua điểm
và không đi qua gốc tọa độ O , đồng thời cắt các trục tọa độ
theo thứ tự tại A, B, C sao cho hình chóp OABC là hình chóp đều. Khi đó giá trị
bằng?
Giả sử mặt phẳng thỏa mãn yêu cầu bài toán
+) Ta có:
.
Vì hình chóp OABC là hình chóp đều, suy ra
Nên ta có (do (P) không đi qua gốc tọa độ nên
)
+) Vì điểm nên suy ra:
Nhận thấy nếu thì
, trường hợp này không thỏa mãn do
Như vậy ta sẽ có 3 mặt phẳng thỏa mãn yêu cầu bài toán lần lượt ứng với các trường hợp và
Vậy suy ra
.
Trong không gian
, cho hai điểm
. Mặt phẳng đi qua
và vuông góc với đường thẳng
là:
Gọi (α) là mặt phẳng đi qua và vuông góc với đường thẳng
.
Do (α) vuông góc với AB nên vectơ pháp tuyến của mặt phẳng (α) là
Vậy phương trình mặt phẳng (α) là:
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức
. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.
Ta có
Từ giả thiết
Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm và mặt cầu tâm
Dễ thấy
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Trong không gian
, cho hai điểm
. Biết mặt phẳng
đi qua điểm
và cách
một khoảng lớn nhất. Phương trình mặt phẳng
là
Hình vẽ minh họa
Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.
Ta có BH ≤ AB.
Dấu “=” xảy ra ⇔ H ≡ A
⇒ BHmax = AB khi AB ⊥ (P).
Ta có:
Trong không gian
, điểm đối xứng của điểm
qua trục
có tọa độ là
Gọi là điểm đối xứng của
qua trục
.
Hình chiếu vuông góc của lên trục
là
Khi đó là trung điểm của
. Do đó tọa độ của
là
Trong không gian với hệ tọa độ
, cho phương trình đường thẳng
. Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng
?
Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:
.
Cho các mệnh đề sau:
(I) Vectơ
luôn đồng phẳng với hai vectơ
.
(II) Nếu có
và ít nhất một trong ba số
khác không thì ba vectơ
đồng phẳng.
(III) Nếu ba vectơ
không đồng phẳng và
thì
.
Hỏi có bao nhiêu mệnh đề đúng?
Do được biểu thị qua hai vectơ
nên (I) đúng.
Xét mệnh đề (II): Giả sử , khi đó:
Suy ra ba vectơ đồng phẳng. Vậy mệnh đề (II) đúng.
Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.
Cho hình chóp
có
và
. Góc giữa cặp vectơ
và
là:
Ta có:
Vậy góc giữa cặp vectơ và
là
.
Trong không gian với hệ tọa độ
, cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Vì M ∈ (Oxy) nên .
Gọi G là trọng tâm của tam giác ABC.
Ta có G(2; 1; 3).
Khi đó:
Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).
Vậy P = 3
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Cho hai điểm
. Mặt phẳng chứa đường thẳng
và song song với
có phương trình :
Theo đề bài ta có
cùng phương với vectơ
Mặt khác, trục có vectơ chỉ phương
cùng phương với vectơ
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa
và song song với trục
. Phương trình mặt phẳng này có dạng :
Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có:
Vậy phương trình mặt phẳng cần tìm :
Hai đường thẳng
và
với cắt nhau tại M có tọa độ là :
Để (d’) cắt (d) tại
Trong không gian với hệ trục tọa độ
cho vectơ
có độ dài
, gọi
lần lượt là góc tạo bởi ba vectơ đơn vị
trên ba trục
và vectơ
. Khi đó tọa độ điểm
là:
Gọi và
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian với hệ tọa độ
, cho các điểm
. Tìm tọa độ điểm H sao cho tứ giác
lập thành hình thang cân với hai đáy
.
Ta có là trung điểm AB.
Gọi (α) là mặt phẳng trung trực của AB
Gọi d là đường thẳng qua C và song song AB
Gọi I là hình chiếu của C lên (α).
Tọa độ I là nghiệm của hệ phương trình:
Do ABCH là hình thang cân nên H và C đối xứng nhau qua mp(α).
⇒ I là trung điểm CH
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Cho tứ diện đều
với
là trung điểm của
. góc giữa hai đường thẳng
có cosin bằng:
Hình vẽ minh họa
Giả sử cạnh tứ diện đều bằng a. Khi đó:
Tương tự
Ta có:
Do đó
Mà nên