Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x + 3}{1} = \frac{y - 2}{- 1} = \frac{z -
1}{2}. Viết phương trình mặt phẳng (P) đi qua điểm M(2;0; - 1) và vuông góc với d.

    Phương trình mặt phẳng (P):

    1(x - 2) - 1(y - 0) + 2(z + 1) =
0

    \Leftrightarrow x - y + 2z =
0

  • Câu 2: Nhận biết

    Phương trình tổng quát của mặt phẳng (\alpha) qua điểm B (3, 4, -5) và có cặp vectơ chỉ phương \overrightarrow a  = \left( {3,1, - 1} ight),\,\,\,\overrightarrow b  = \left( {1, - 2,1} ight)  là:

    Vectơ pháp tuyến của (\alpha) là tích có hướng của 2 vecto chỉ phương \overrightarrow n  = \left[ {\overrightarrow a \overrightarrow {,b} } ight] = \left( { - 1, - 4, - 7} ight) có thể thay thế bởi \overrightarrow n  = \left( {1,4,7} ight)

    Phương trình  (\alpha) có dạng x + 4y + 7z + D = 0

    B \in \left( \alpha  ight) \Leftrightarrow 3 + 16 - 35 + D = 0 \Leftrightarrow D = 16

    Vậy (\alpha): x + 4y +7z +16 = 0

  • Câu 3: Vận dụng

    Trong không gian Oxyz, cho vectơ \vec a hợp với \overrightarrow {Ox} góc 60^0, hợp với \overrightarrow {Oz} góc 60^0 . Tính góc hợp bởi \vec a\overrightarrow {Oy}.

    Gọi \alpha  = {60^0},\beta  và  \gamma  = {60^0} lần lượt là các góc hợp bởi \vec a với ba trục \overrightarrow {Ox} ,\overrightarrow {Oy} ,\overrightarrow {Oz}. Đặt \left| {\overrightarrow a } ight| = a

    Ta có:

    \overrightarrow a  = \left( {a\cos {{60}^0};a\cos \beta ;a\cos {{60}^0}} ight)

    \Rightarrow {\left| {\overrightarrow a } ight|^2} = {a^2} = {a^2}\left( {{{\cos }^2}{{60}^0} + {{\cos }^2}\beta  + {{\cos }^2}{{60}^0}} ight)

       \Leftrightarrow \dfrac{1}{4} + {\cos ^2}\beta  + \dfrac{1}{4} = 1

       \Leftrightarrow {\cos ^2}\beta  = \dfrac{1}{2}

       \Rightarrow \cos \beta  =  \pm \frac{{\sqrt 2 }}{2} \Rightarrow \beta  = {45^0} \vee \beta  = {135^0}

  • Câu 4: Vận dụng

    Trong không gian Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;1) và cắt các tia Ox,Oy,Oz lần lượt tại A,B,C sao cho độ dài OA,OB,OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (\alpha).

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.

    Phương trình mặt phẳng (α) có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    Ta có (α) đi qua điểm M(1; 2; 1) nên ta có \frac{1}{a} + \frac{2}{b} + \frac{1}{c} =
1 (∗)

    OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên c = 2b = 4a.

    Thay vào (∗), ta được \frac{1}{a} +
\frac{2}{2a} + \frac{1}{4a} = 1 \Leftrightarrow a =
\frac{9}{4}

    Suy ra phương trình mặt phẳng (α) là \frac{x}{1} + \frac{y}{2} + \frac{z}{4} =
\frac{9}{4} hay 4x + 2y + z - 9 =
0

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{| - 9|}{\sqrt{4^{2} + 2^{2} + 1^{2}}} =
\frac{3\sqrt{21}}{7}.

  • Câu 5: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(0; −1; 2), B(2; −3; 0), C(−2; 1; 1), D(0; −1; 3). Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức \overrightarrow{MA}.\overrightarrow{MB} =
\overrightarrow{MC}.\overrightarrow{MD} = 1. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?

    Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.

    Ta có \left\{ \begin{matrix}
\overrightarrow{AM} = (x;y + 1;z - 2) \\
\overrightarrow{BM} = (x - 2;y + 3;z) \\
\overrightarrow{CM} = (x + 2;y - 1;z - 1) \\
\overrightarrow{DM} = (x;y + 1;z - 3) \\
\end{matrix} ight.

    Từ giả thiết \overrightarrow{MA}.\overrightarrow{MB} =
\overrightarrow{MC}.\overrightarrow{MD} = 1 \Leftrightarrow \left\{
\begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = 1 \\
\overrightarrow{MC}.\overrightarrow{MD} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x(x - 2) + (y + 1)(y + 3) + z(z - 2) = 1 \\
x(x + 2) + (y + 1)(y - 1) + (z - 1)(z - 3) = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x + 4y - 2z + 2 = 0 \\
x^{2} + y^{2} + z^{2} + 2x - 4z + 1 = 0 \\
\end{matrix} ight.

    Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm I_1(1; −2; 1), R_1 = 2 và mặt cầu tâm I_2(−1; 0; 2), R_2 = 2

    I_{1}I_{2} = \sqrt{5}

    Dễ thấy r = \sqrt{{R_{1}}^{2} - \left(
\frac{I_{1}I_{2}}{2} ight)^{2}} = \frac{\sqrt{11}}{2}

  • Câu 6: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;1;0),B(2;2;2),C( - 2;3;1) và đường thẳng d:\frac{x - 1}{2} = \frac{y + 2}{- 1}
= \frac{z - 3}{2}. Tìm điểm M thuộc đường thẳng d để thể tích của tứ diện MABC bằng 3.

    Ta có \overrightarrow{AB} =
(2;1;2),\overrightarrow{AC}( - 2;2;1)

    \Rightarrow \overrightarrow{n_{(ABC)}} =
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack = ( -
3; - 6;6)

    Phương trình mặt phẳng (ABC):x + 2(y - 1)
- 2z = 0

    \Leftrightarrow x + 2y - 2z - 2 =
0

    Dễ thấy tam giác ABC vuông tại A suy ra

    S_{ABC} = \frac{1}{2}AB.AC = \frac{9}{2}
\Rightarrow d\left( M;(ABC) ight) = \frac{3V_{M.ABC}}{S_{ABC}} =
2

    M \in d \Rightarrow M(2t + 1; - t -
2;2t + 3)

    d\left( M;(ABC) ight) = \frac{| - 4t -10|}{3} \Leftrightarrow \left\lbrack \begin{matrix}t = - \dfrac{5}{4} \\t = - \dfrac{17}{4} \\\end{matrix} ight.

    Với t = - \frac{5}{4} \Rightarrow M\left(
- \frac{3}{2}; - \frac{3}{4};\frac{1}{2} ight)

    Với t = - \frac{17}{4} \Rightarrow
M\left( \frac{15}{2};\frac{9}{4}; - \frac{11}{2} ight)

  • Câu 7: Thông hiểu

    Cho hình chóp OABCOA = OB = OC = 1, các cạnh OA;OB;OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vectơ \overrightarrow{OC};\overrightarrow{MA}.

    Hình vẽ minh họa

    Ta có: \overrightarrow{OA}.\overrightarrow{MA} =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{BA} =
\frac{1}{2}\overrightarrow{OC}.\left( \overrightarrow{OA} -
\overrightarrow{OB} ight)

    =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OA} -
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OB} = 0 - 0 =
0

    Vậy \overrightarrow{OA}.\overrightarrow{MA} =
0

  • Câu 8: Vận dụng cao

    Trong không gian Oxyz, cho bốn điểm A( - 4; - 1;3),B( - 1; - 2; - 1),C(3;2;
- 3)D(0; - 3; - 5). Gọi (\alpha) là mặt phẳng đi qua D và tổng khoảng cách từ A;B;C đến (\alpha) lớn nhất, đồng thời ba điểm A;B;C nằm cùng phía so với (\alpha). Trong các điểm sau, điểm nào thuộc mặt phẳng (\alpha).

    Hình vẽ minh họa

    Gọi E là trung điểm BC, F là điểm đối xứng với D qua E và M là trung điểm AF.

    Ta có E(1;0; - 2),F(2;3;1),M( -
1;1;2).

    Gọi A',B',C',E',F',M' tương ứng là hình chiếu của A,B,C,E,F,M lên mặt phẳng (\alpha).

    Ta có: d\left( A,(\alpha) ight) +
d\left( B,(\alpha) ight) + d\left( C,(\alpha) ight) = AA' +
BB' + CC'

    = AA' + 2EE' = AA' + FF'
= 2MM' \leq 2MD

    Do đó (\alpha)\bot MD.

    \overrightarrow{MD} = (1; - 4; -
7) nên phương trình (\alpha):x - 4y
- 7z - 47 = 0.

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    a) Sai: Do tọa độ trung điểm M của đoạn thẳng AB

    M\left( \frac{- 4 + ( - 4)}{2};\frac{2 +0}{2};\frac{4 + 1}{2} ight) hay M\left( - 4;1;\frac{5}{2}ight)

    b) Đúng: Do tọa độ trọng tâm G của tam giác ABC

    G\left( \frac{2 + ( - 4) + ( -4)}{3};\frac{- 2 + 2 + 0}{3};\frac{1 + 4 + 1}{3} ight) hay G(- 2;0;2)

    c) Đúng: N là điểm đối xứng của B qua A thì B là trung điểm AN.

    \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{N}}{2} \\y_{B} = \dfrac{y_{A} + y_{N}}{2} \\z_{B} = \dfrac{z_{A} + z_{N}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{N} = 2x_{B} - x_{A} \\y_{N} = 2y_{B} - y_{A} \\z_{N} = 2z_{B} - z_{A} \\\end{matrix} ight.\  ight.

     \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 8 \\
y_{N} = - 6 \\
z_{N} = - 2 \\
\end{matrix} ight. \Rightarrow N(8; - 6; - 2) 

    d) Đúng: B là trọng tâm tam giác AOE.

     \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{O} + x_{E}}{3} \\y_{B} = \dfrac{y_{A} + y_{O} + y_{E}}{3} \\z_{B} = \dfrac{z_{A} + z_{O} + z_{E}}{3} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x_{E} = 3x_{B} - x_{A} - x_{O} \\
y_{E} = 2y_{B} - y_{A} - y_{O} \\
z_{E} = 3z_{B} - z_{A} - z_{O} \\
\end{matrix} ight. 

    \Leftrightarrow \left\{ \begin{matrix}
x_{E} = - 14 \\
y_{E} = 8 \\
z_{E} = 11 \\
\end{matrix} \Rightarrow E( - 14;8;11) ight.

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;6;0),B(0;0; - 2);C( - 3;0;0). Phương trình mặt phẳng (P) đi qua ba điểm A;B;C là:

    Phương trình mặt phẳng theo đoạn chắn \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Ta có \frac{x}{3} + \frac{y}{- 6} +
\frac{z}{2} = 1

    \Leftrightarrow - 2x + y - 3z =
6

    \Leftrightarrow 2x - y + 3z + 6 =
0

  • Câu 11: Thông hiểu

    Hai đường thẳng \left( {d'} ight):\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 3m - t\\z = 2t - 1\end{array} ight.\left( d ight):\left\{ \begin{array}{l}x = 4 - 2m\\y = m + 2\\z =  - m\end{array} ight.với cắt nhau tại M có tọa độ là :

     

    Để (d’) cắt (d) tại M \Leftrightarrow \left\{ \begin{array}{l}2 + 4t = 4 - 2m\\ - 3 - t = m + 2\\2t - 1 =  - m\end{array} ight. \\\Leftrightarrow \left\{ \begin{array}{l}2t + m = 1\\t + m =  - 5\end{array} ight. \\\Leftrightarrow t = 6;m =  - 11

    \Rightarrow M\left( {26, - 9,11} ight)

     

  • Câu 12: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),B( - 2;0;3),M(0;0;1)N(0;3;1). Mặt phẳng (P) đi qua các điểm M;N sao cho khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Hỏi có bao nhiêu mặt phẳng (P) thỏa mãn đề bài?

    Gọi \overrightarrow{n} = (a;b;c) là vectơ pháp tuyến của (P). Khi đó (P): ax + by + cz + d = 0.

    M(0; 0; 1) ∈ (P) ⇔ c + d = 0 ⇔ c = −d.

    N(0; 3; 1) ∈ (P) ⇔ 3b + c + d = 0 ⇔ 3b = 0 ⇔ b = 0.

    Do đó (P): ax − dz + d = 0

    Khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P)

    \frac{| - 2a - 3d + d|}{\sqrt{a^{2} +
d^{2}}} = 2.\frac{|a + d|}{\sqrt{a^{2} + d^{2}}}

    \Leftrightarrow \frac{\left| - 2(a + d)
ight|}{\sqrt{a^{2} + d^{2}}} = 2.\frac{|a + d|}{\sqrt{a^{2} +
d^{2}}} (luôn đúng)

    Vậy có vô số mặt phẳng (P).

  • Câu 13: Nhận biết

    Tìm tọa độ trung điểm M của đoạn thẳng AB. Biết tọa độ hai điểm A(1;2;3)B(3; - 1;4).

    Ta có: M là trung điểm của AB nên tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M(2;1;3)

    Vậy đáp án đúng là: M(2;1;3).

  • Câu 14: Vận dụng

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;2;3),B(3;4;4),C(2;6;6)I(a;b;c) là trực tâm tam giác ABC. Tính a +
b + c?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BC} = ( - 1;2;2);\overrightarrow{AC} = (1;4;3) \\
\overrightarrow{AI} = (a - 1;b - 2;c - 3) \\
\overrightarrow{BI} = (a - 3;b - 4;c - 4) \\
(ABC):2x - 5y + 6z - 10 = 0 \\
\end{matrix} ight.

    Lại có:

    \left\{ \begin{matrix}
\overrightarrow{BI}.\overrightarrow{AC} = 0 \\
\overrightarrow{AI}.\overrightarrow{BC} = 0 \\
I \in (ABC) \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}- 1(a - 1) + 2(b - 2) + 2(c - 3) = 0 \\1(a - 3) + 4(b - 4) + 3(c - 4) = 0 \\2a - 5b + 6c - 10 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{27}{5} \\b = 4 \\c = \dfrac{16}{5} \\\end{matrix} ight.\  \Rightarrow a + b + c = \dfrac{63}{5}

  • Câu 15: Nhận biết

    Biết rằng \overrightarrow{a} =
(0;1;3)\overrightarrow{b} = ( -
2;3;1). Tính \overrightarrow{x} =3\overrightarrow{a} + 2\overrightarrow{b}?

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{a} = (0;3;9) \\
2\overrightarrow{b} = ( - 4;6;2) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
3\overrightarrow{a} + 2\overrightarrow{b} = ( - 4;9;11)

  • Câu 16: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;4;2),B( - 1;2;4) và đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + t \\
z = 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm M \in \Delta mà tổng MA^{2} + MB^{2} có giá trị nhỏ nhất có tọa độ là:

    M \in \Delta nên ta có tọa độ điểm M(1 - t; - 2 + t;2t).

    Ta có:

    MA^{2} + MB^{2} = ( - t)^{2} + (t -
6)^{2} + (2t - 2)^{2} + (2 - t)^{2} + (t - 4)^{2} + (2t - 4)^{2}

    = 12t^{2} - 48t + 76 = 12(t - 2)^{2} +
28 \geq 28

    Vậy giá trị nhỏ nhất của MA^{2} +
MB^{2}28 khi t = 2 \Rightarrow M( - 1;0;4).

  • Câu 17: Thông hiểu

    Trong không gian Oxyz. cho điểm M(3; - 1;2). Tìm tọa độ điểm N đối xứng với điểm M qua mặt phẳng (Oyz)?

    Lấy đối xứng qua mặt phẳng (Oyz) thì x đổi dấu còn y;z giữ nguyên nên điểm N có tọa độ là N( - 3; - 1;2).

  • Câu 18: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x + 3y - 5z + 6 = 0(\beta):x - y + 3z - 6 = 0. Phương trình tham số của d là:

    Nhận thấy A(1;1;2),B(2; - 1;1) đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng d.

    Ta có \overrightarrow{AB} = (1; - 2; -
1) là một vectơ chỉ phương của d.

    Khi đó phương trình tham số của d là: \left\{
\begin{matrix}
x = 1 + t \\
y = 1 - 2t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 19: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x - 2y - 2z + 4 = 0(\beta): - x + 2y + 2z - 7 = 0. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?

    Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).

    \Rightarrow d\left\lbrack
(\alpha);(\beta) ightbrack = d\left( A;(\beta) ight) = \frac{|4 -
7|}{\sqrt{1 + 4 + 4}} = 1.

  • Câu 20: Thông hiểu

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tìm tọa độ của C để ABC là tam giác đều?

     Tam giác ABC đều

    \begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}AC = AB\\BC = AB\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} - 6x - 2y + 9 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 ight)\\{x^2} + {y^2} - 4x - 2y + 3 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 ight)\end{array} ight.\\\left( 2 ight) - \left( 1 ight):2x - 6 = 0 \Leftrightarrow x = 3 \Rightarrow {y^2} - 2y = 0 \Leftrightarrow y = 2 \vee y = 0\end{array}

    Suy ra tọa độ điểm C là có 2 nghiệm C thỏa mãn: 

    C\left( {3;2; - 1} ight);C'\left( {3;0; - 1} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 25 lượt xem
Sắp xếp theo