Trong không gian
, cho điểm
. Hình chiếu vuông góc của
trên mặt phẳng
là điểm
. Khi đó giá trị
bằng:
Hình chiếu vuông góc của trên mặt phẳng
là
Suy ra .
Trong không gian
, cho điểm
. Hình chiếu vuông góc của
trên mặt phẳng
là điểm
. Khi đó giá trị
bằng:
Hình chiếu vuông góc của trên mặt phẳng
là
Suy ra .
Trong không gian với hệ tọa độ
, cho ba điểm
. Đường thẳng
đi qua
và song song với
có phương trình là:
Một vectơ chỉ phương của đường thẳng ∆ là
Vậy phương trình tham số của đường thẳng ∆ là .
Trong không gian
, điểm đối xứng của điểm
qua trục
có tọa độ là
Gọi là điểm đối xứng của
qua trục
.
Hình chiếu vuông góc của lên trục
là
Khi đó là trung điểm của
. Do đó tọa độ của
là
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
mà tổng
có giá trị nhỏ nhất có tọa độ là:
Vì nên ta có tọa độ điểm
.
Ta có:
Vậy giá trị nhỏ nhất của là
khi
.
Trong không gian
có điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Ta có: . Khi đó
Vậy giá trị cần tìm là .
Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:
: vectơ chỉ phương của trục Ox:
.
: Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng
, qua A nên:
Vậy ta có phương trình mp cần tìm là:
Trong không gian với hệ tọa độ
, cho mặt phẳng
có phương trình
. Gọi
lần lượt là giao điểm của mặt phẳng
với các trục tọa độ
. Tính thể tích
của khối chóp
.
Ta có:
cắt các trục tọa độ tại
Do đôi một vuông góc nên
Trong không gian với hệ tọa độ
, cho hai điểm
. Viết phương trình đường thẳng
?
Vectơ chỉ phương của đường thẳng là
. Suy ra phương trình đường thẳng
là:
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Trong không gian với hệ tọa độ
có bao nhiêu mặt phẳng song song với mặt phẳng
, cách điểm
một khoảng bằng
biết rằng tồn tại một điểm
trên mặt phẳng đó thỏa mãn
?
Mặt phẳng song song với (Q) có dạng mà
Với m = −15 thì với mọi ta có
Do đó không có mặt phẳng nào thỏa mãn đề bài
Trong không gian tọa độ
, cho hai mặt phẳng
,
. Xét các vectơ
,
.
a)
là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b)
không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c)
. Đúng||Sai
d) Góc giữa hai mặt phẳng
và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
,
. Xét các vectơ
,
.
a) là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b) không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c) . Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
b) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
c) .
d) Gọi là góc giữa hai mặt phẳng
và
.
Trong không gian
, cho ba điểm
với
là những số thực dương sao cho
. Tính
sao cho khoảng cách từ
đến mặt phẳng
là lớn nhất
Phương trình mặt phẳng
Xét ta có:
Dấu "=" xảy ra khi và chỉ khi
⇒ , khi đó
.
Trong không gian tọa độ
, hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và đường thẳng
. Viết phương trình đường thẳng
đi qua
, đồng thời vuông góc với cả hai đường thẳng
và
.
Đường thẳng và
có vectơ chỉ phương lần lượt là
Gọi là vectơ chỉ phương của đường thẳng ∆.
Do
Mà ∆ đi qua do đó ∆ có phương trình là
.
Trong không gian
, phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm
và song song với mặt phẳng
?
Mặt phẳng có phương trình là
nên có một vectơ pháp tuyến là
.
Phương trình của mặt phẳng cần tìm có dạng
.
Trong không gian với hệ trục tọa độ
cho vectơ
. Khi đó tọa độ của
là.
Do .
Trong hệ tục toạ độ không gian
, cho
, biết
, phương trình mặt phẳng
. Tính
biết
?
Ta có
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Vì nên
.
Theo giả thiết
(vì
).
Suy ra . Vậy
.
Trong không gian với hệ tọa độ
, cho hai vectơ
. Gọi
là vectơ cùng hướng với vectơ
(tích có hướng của hai vectơ
và
. Biết
, tìm tọa độ vectơ
.
Ta thấy
Vì là vectơ cùng hướng với vectơ
nên
.
Mặt khác
Vậy .
Trong không gian
, cho hai điểm
. Điểm
nằm trên mặt phẳng
sao cho
nhỏ nhất là:
Thay tọa độ của A, B vào vế trái của phương trình mặt phẳng ta được:
Suy ra A, B nằm về hai phía của mặt phẳng (P).
Vậy dấu “ = ” xảy ra khi
.
Ta có chọn vtcp của đường thẳng AB:
.
Vậy phương trình đường thẳng AB: .
Tọa độ của M là nghiệm hệ:
Cho tam giác
vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.