Trong không gian với hệ tọa độ
, cho đường thẳng
. Viết phương trình mặt phẳng
đi qua điểm
và vuông góc với
.
Phương trình mặt phẳng (P):
Trong không gian với hệ tọa độ
, cho đường thẳng
. Viết phương trình mặt phẳng
đi qua điểm
và vuông góc với
.
Phương trình mặt phẳng (P):
Phương trình tổng quát của mặt phẳng
qua điểm
và có cặp vectơ chỉ phương
là:
Vectơ pháp tuyến của là tích có hướng của 2 vecto chỉ phương
có thể thay thế bởi
Phương trình có dạng
Vậy
Trong không gian Oxyz, cho vectơ
hợp với
góc
, hợp với
góc
. Tính góc hợp bởi
và
.
Gọi và
lần lượt là các góc hợp bởi
với ba trục
. Đặt
Ta có:
Trong không gian
, cho mặt phẳng
đi qua điểm
và cắt các tia
lần lượt tại
sao cho độ dài
theo thứ tự lập thành một cấp số nhân có công bội bằng
. Tính khoảng cách từ gốc tọa độ
đến mặt phẳng
.
Giả sử với
.
Phương trình mặt phẳng có dạng
Ta có đi qua điểm
nên ta có
(∗)
Vì theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên
.
Thay vào (∗), ta được
Suy ra phương trình mặt phẳng (α) là hay
.
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức
. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.
Ta có
Từ giả thiết
Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm và mặt cầu tâm
Dễ thấy
Trong không gian với hệ tọa độ
, cho ba điểm
và đường thẳng
. Tìm điểm
thuộc đường thẳng
để thể tích của tứ diện
bằng
.
Ta có
Phương trình mặt phẳng
Dễ thấy tam giác ABC vuông tại A suy ra
Mà
Với
Với
Cho hình chóp
có
, các cạnh
đôi một vuông góc. Gọi
là trung điểm của
. Tính tích vô hướng của hai vectơ
.
Hình vẽ minh họa
Ta có:
Vậy
Trong không gian
, cho bốn điểm
và
. Gọi
là mặt phẳng đi qua
và tổng khoảng cách từ
đến
lớn nhất, đồng thời ba điểm
nằm cùng phía so với
. Trong các điểm sau, điểm nào thuộc mặt phẳng
.
Hình vẽ minh họa
Gọi E là trung điểm BC, F là điểm đối xứng với D qua E và M là trung điểm AF.
Ta có .
Gọi tương ứng là hình chiếu của
lên mặt phẳng
.
Ta có:
Do đó .
Mà nên phương trình
.
Trong không gian
, cho tam giác
có
. Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?
a)
là trung điểm của
. Sai||Đúng
b)
là trọng tâm tam giác
. Đúng||Sai
c)
là điểm đối xứng của
qua
. Đúng||Sai
d) Tọa độ điểm
thỏa
là trọng tâm tam giác
. Đúng||Sai
Trong không gian , cho tam giác
có
. Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?
a) là trung điểm của
. Sai||Đúng
b) là trọng tâm tam giác
. Đúng||Sai
c) là điểm đối xứng của
qua
. Đúng||Sai
d) Tọa độ điểm thỏa
là trọng tâm tam giác
. Đúng||Sai
a) Sai: Do tọa độ trung điểm của đoạn thẳng
là
hay
b) Đúng: Do tọa độ trọng tâm của tam giác
là
hay
c) Đúng: là điểm đối xứng của
qua
thì
là trung điểm
.
d) Đúng: là trọng tâm tam giác
.
Trong không gian với hệ tọa độ
, cho ba điểm
. Phương trình mặt phẳng
đi qua ba điểm
là:
Phương trình mặt phẳng theo đoạn chắn .
Ta có
Hai đường thẳng
và
với cắt nhau tại M có tọa độ là :
Để (d’) cắt (d) tại
Trong không gian
, cho các điểm
và
. Mặt phẳng
đi qua các điểm
sao cho khoảng cách từ điểm
đến
gấp hai lần khoảng cách từ điểm
đến
. Hỏi có bao nhiêu mặt phẳng
thỏa mãn đề bài?
Gọi là vectơ pháp tuyến của
. Khi đó
.
Do đó
Khoảng cách từ điểm B đến gấp hai lần khoảng cách từ điểm A đến
(luôn đúng)
Vậy có vô số mặt phẳng .
Tìm tọa độ trung điểm
của đoạn thẳng
. Biết tọa độ hai điểm
và
.
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Trong không gian với hệ tọa độ
cho ba điểm
và
là trực tâm tam giác
. Tính
?
Ta có:
Lại có:
Biết rằng
và
. Tính
?
Ta có:
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
mà tổng
có giá trị nhỏ nhất có tọa độ là:
Vì nên ta có tọa độ điểm
.
Ta có:
Vậy giá trị nhỏ nhất của là
khi
.
Trong không gian
. cho điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua mặt phẳng
?
Lấy đối xứng qua mặt phẳng thì
đổi dấu còn
giữ nguyên nên điểm
có tọa độ là
.
Trong không gian với hệ tọa độ
, cho đường thẳng
là giao tuyến của hai mặt phẳng
và
. Phương trình tham số của
là:
Nhận thấy đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng
.
Ta có là một vectơ chỉ phương của
.
Khi đó phương trình tham số của là:
.
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Cho ba điểm
. Tìm tọa độ của C để ABC là tam giác đều?
Tam giác ABC đều
Suy ra tọa độ điểm C là có 2 nghiệm C thỏa mãn: