Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. bằng:

    Đường thẳng \Delta đi qua N(0;2;3), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1;2).

    Ta có \overrightarrow{MN} = ( -
2;6;4)\left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack = (16;8; -
4).

    Vậy khoảng cách từ M đến đường thẳng \Delta là:

    d(M;\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}

  • Câu 2: Vận dụng

    Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi \alpha ,\,\,\beta ,\,\,\gamma lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là ( OH = p):

    Theo đề bài, ta có: H\left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight) \Rightarrow \overrightarrow {OH}  = \left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight)

    Gọi M\left( {x,y,z} ight) \in \left( P ight)

    \Rightarrow \overrightarrow {HM}  = \left( {x - p\cos \alpha ,y - p\cos \beta ,z - c\cos \gamma } ight)

    Ta có:

    \overrightarrow {OH}  \bot \overrightarrow {HM}

    \Leftrightarrow \left( {x - p\cos \alpha } ight)p\cos \alpha  + \left( {y - p\cos \beta } ight)p\cos \beta  + \left( {z - p\cos \gamma } ight)p\cos \gamma \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,

    \Leftrightarrow \left( P ight):x\cos \alpha  + y\cos \beta  + z\cos \gamma  - p = 0

  • Câu 3: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

  • Câu 4: Thông hiểu

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 5: Nhận biết

    Cho hình hộp ABCD.EFFH. Tính tổng \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE}?

    Hình vẽ minh họa

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AC} +
\overrightarrow{AE} = \overrightarrow{AG}

  • Câu 6: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha) đi qua điểm A(2; - 1;5) và vuông góc với hai mặt phẳng (P):3x - 2y + z + 7 = 0(Q):5x - 4y + 3z + 1 = 0. Phương trình của mặt phẳng (\alpha)

    Ta có các vectơ pháp tuyến của (P) và (Q) là \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (3; - 2;1) \\
\overrightarrow{n_{(Q)}} = (5; - 4;3) \\
\end{matrix} ight.

    Theo giả thiết mặt phẳng (α) vuông góc với (P) và (Q) do đó

    \overrightarrow{n_{(\alpha)}}\bot\left(
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ight) \Rightarrow
\overrightarrow{n_{(\alpha)}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack =
(1;2;1)

    Suy ra, phương trình mặt phẳng (α) có dạng 1(x - 2) + 2(y + 1) + 1(z - 5) = 0

    Hay x + 2y + z - 5 = 0

  • Câu 7: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là:

    Mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là: \overrightarrow{n}
= (2;0;1).

  • Câu 8: Vận dụng

    Cho điểm A\left( {2,3,5} ight) và mặt phẳng \left( P ight):2x + 3y + z - 17 = 0. Gọi A’ là điểm đối xứng của A qua (P).Tọa độ điểm A’ là :

    Phương trình tham số của đường thẳng (d) qua A vuông góc với (P): \left\{ \begin{array}{l}x = 2 + 2t\\y = 3 + 3t\\z = 5 + t\end{array} ight..

    Thế x, y, z theo t vào phương trình của (P), ta được:

    \begin{array}{l}2.(2 + 2t) + 3(3 + 3t) + 5 + t - 17 = 0\\ \Leftrightarrow 4 + 4t + 9 + 9t + 5 + t - 17 = 0\\ \Leftrightarrow 14t + 1 = 0\\ \Leftrightarrow t = \frac{{ - 1}}{{14}}\end{array}

    Thế tiếp t =  - \frac{1}{{14}} vào phương trình của (d) được giao điểm I của  (d) và (P): I\left( {\frac{{26}}{{14}},\frac{{39}}{{14}},\frac{{69}}{{14}}} ight)

    Mặt khác, I là trung điểm của AA' nên suy ra được: \Rightarrow A'\left( {\frac{{12}}{7},\frac{{18}}{7},\frac{{34}}{7}} ight)

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;0; - 2), B( - 2;3;4), ,\ C(4; - 6;1). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j}. Sai||Đúng

    b) \overrightarrow{AB} = (3\ ;\  - 3\
;\  - 6). Sai||Đúng

    c) Hình chiếu vuông góc của điểm B trên mặt phẳng tọa độ (Oxy) là điểm B( - 2\ ;\ 3\ ;\ 0). Đúng||Sai

    d) NếuABCD là hình bình hành thì tọa độ điểm D(1; -
3;7). Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;0; - 2), B( - 2;3;4), ,\ C(4; - 6;1). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j}. Sai||Đúng

    b) \overrightarrow{AB} = (3\ ;\  - 3\
;\  - 6). Sai||Đúng

    c) Hình chiếu vuông góc của điểm B trên mặt phẳng tọa độ (Oxy) là điểm B( - 2\ ;\ 3\ ;\ 0). Đúng||Sai

    d) NếuABCD là hình bình hành thì tọa độ điểm D(1; -
3;7). Sai||Đúng

    Ta có:

    A(1;0; - 2) \Rightarrow \overrightarrow{OA} =
\overrightarrow{i} + 0\overrightarrow{j} - 2\overrightarrow{k} \Rightarrow a) sai.

    \overrightarrow{AB} = \left( x_{B} -
x_{A}\ ;\ y_{B} - y_{A}\ ;\ z_{B} - z_{A} ight)

    \Rightarrow \overrightarrow{AB} = ( - 3\
;\ 3\ ;\ 6) \Rightarrow b) sai.

    c) đúng

    d) Gọi D(x;y;z),

    \overrightarrow{AB} = ( -
3;3;6), \overrightarrow{DC} = (4 -
x; - 6 - y;1 - z)

    ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
4 - x = - 3 \\
- 6 - y = 3 \\
1 - z = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 7 \\
y = - 9 \\
z = - 5 \\
\end{matrix} ight.

    \Rightarrow D(7\ ;\  - 9\ ;\  -
5).

    Vậy d) sai

  • Câu 10: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABC với tọa độ các điểm A(1;0; - 2),B( - 2;3;4),C(4; - 6;1).

    Xác định tính đúng sai của các khẳng định sau:

    a) Tọa độ trọng tâm G của tam giác là (1; - 1;1). Đúng||Sai

    b) \overrightarrow{AB} = (3; -
3;6),\overrightarrow{AC} = ( - 3;6; - 3). Sai||Đúng

    c) Tam giác ABC là tam giác cân. Đúng||Sai

    d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7; - 9; - 5). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABC với tọa độ các điểm A(1;0; - 2),B( - 2;3;4),C(4; - 6;1).

    Xác định tính đúng sai của các khẳng định sau:

    a) Tọa độ trọng tâm G của tam giác là (1; - 1;1). Đúng||Sai

    b) \overrightarrow{AB} = (3; -
3;6),\overrightarrow{AC} = ( - 3;6; - 3). Sai||Đúng

    c) Tam giác ABC là tam giác cân. Đúng||Sai

    d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7; - 9; - 5). Sai||Đúng

    a) Đúng.

    Trọng tâm tam giác có tọa độ là:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = 1 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = - 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = 1 \\\end{matrix} ight.\  \Rightarrow G(1; - 1;1)

    b) Sai. Vì \overrightarrow{AB} = ( -
3;3;6),\overrightarrow{AC} = (3; - 6;3)

    c) Đúng. Do AB = AC = 3\sqrt{6} nên tam giác ABC cân tại A.

    d) Sai. Gọi D(x;y;z), vì ABCD là hình bình hành nên

    \overrightarrow{AB} =
\overrightarrow{CD} \Leftrightarrow ( - 3;3;6) = (x - 4;y + 6;z -
1)

    \Leftrightarrow (x;y;z) = (1; -
3;7)

  • Câu 11: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;5; - 1),B(1;1;3). Tìm tọa độ điểm M thuộc (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| ngắn nhất.

    Gọi J(x; y; z) là điểm sao cho \overrightarrow{JA} + \overrightarrow{JB} =
\overrightarrow{0} Suy ra J(2; 3; 1).

    Khi đó \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MJ} +
\overrightarrow{JA} + \overrightarrow{MJ} + \overrightarrow{JB} ight|
= 2\left| \overrightarrow{MJ} ight|

    Vậy \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| đạt GTNN khi và chỉ khi \left| \overrightarrow{MJ} ight| đạt GTNN hay M là hình chiếu của J lên mặt phẳng (Oxy).

    Vậy M(2; 3; 0).

  • Câu 12: Vận dụng cao

    Cho điểm {m{A(2, - 1,1)}} và đường thẳng (\Delta ):\left\{ \begin{array}{l}y + z - 4 = 0\\2x - y - z + 2 = 0\end{array} ight.. Gọi A'  là điểm đối xứng của A qua (\triangle) . Tọa độ điểm A'  là:

    Đưa phương trình (\triangle) về dạng tham số: \left\{ \begin{array}{l}x = 1\\y = 4 - t\\z = t\end{array} ight.

    Gọi (P) là mặt phẳng qua A và vuông góc với (\triangle).

    Phương trình mp (P) có dạng - y + z + D = 0 , qua A nên D =  -2

    Phương trình (P) là: y - z + 2 = 0

    Thế x, y, z từ phương trình (\triangle) vào phương trình (P) được t=1

    \Rightarrow (\triangle ) \cap (\alpha ) = (1,3,1).

    I là trung điểm của AA' nên: {x_{A'}} + 2 = 2;{y_{A'}} - 1 = 6;{z_{A'}} + 1 = 2

    \Rightarrow A'(0,7,1).

  • Câu 13: Nhận biết

    Cho đường thẳng \left( D ight):\left\{ \begin{array}{l}2x - y + 4z - 1 = 0\\2x + 4y - z + 5 = 0\end{array} ight. có một vec-tơ chỉ phương là:

     Ta có vectơ pháp tuyến của hai mặt phẳng

    \left( P ight):2x - y + 4z - 1 = 0\left( Q ight):2x + 4y - z + 5 = 0 lần lượt là  \overrightarrow {{n_1}}  = \left( {2, - 1,4} ight);\overrightarrow {{n_2}}  = \left( {2,4, - 1} ight).

    Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:

    \overrightarrow {{a_D}}  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] =  - 5\left( {3, - 2, - 2} ight) = 5\left( { - 3,2,2} ight)

    \Rightarrow \overrightarrow a  = \left( {3, - 2, - 2} ight) \vee \overrightarrow a  = \left( { - 3,2,2} ight)

  • Câu 14: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Trung điểm M của AB có tọa độ là:

    Ta có: M là trung điểm của AB nên tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = - 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 5 \\\end{matrix} ight.\  \Rightarrow M(2; - 1;5)

    Vậy đáp án đúng là: (2; -
1;5).

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;1),\overrightarrow{b} =
(1;1;2),\overrightarrow{c} = (x;3x;x + 2). Nếu ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng thì:

    Ta có: \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack = (3; -
3;3)

    Ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng

    \Leftrightarrow \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack.\overrightarrow{c} =
0

    \Leftrightarrow 3x - 3(3x) + 3(x + 2) =
0

    \Leftrightarrow x = 2

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, cho tọa độ ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Tính cosin góc \widehat{BAC}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1;5; - 2) \\
\overrightarrow{AC} = (5;4; - 1) \\
\end{matrix} ight..

    \cos\widehat{BAC} = \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{5 + 20 + 2}{\sqrt{30}.\sqrt{42}} =
\frac{9}{2\sqrt{35}}

  • Câu 17: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1;4;3) và mặt phẳng (P):2y - z = 0. Tìm điểm C thuộc (P), điểm B thuộc mặt phẳng (Oxy) sao cho chu vi tam giác ABC bé nhất. Giá trị chu vi tam giác ABC bé nhất là:

    Hình vẽ minh họa:

    Gọi H;K lần lượt là hình chiếu của A lên các mặt phẳng (P) và (Oxy) ta được H(1;2;4),K(1;4;0).

    Gọi M, N lần lượt là các điểm đối xứng với A qua các mặt phẳng (P) và (Oxy).

    Khi đó ta có AB = NB,CA = CM nên AB + BC + CA = NB + BC + CM \geq MN = 2KH =
4\sqrt{5}

    Dấu đẳng thức xảy ra khi và chỉ khi B, C lần lượt là giao điểm của đường thẳng MN với các mặt phẳng (Oxy) và (P).

  • Câu 18: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) và mặt phẳng (P):2x - y + 3z + 1 = 0. Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình là:

    Do đường thẳng \Delta cần tìm vuông góc với mặt phẳng (P) nên vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = (2; - 1;3) cũng là vectơ chỉ phương của \Delta.

    Mặt khác \Delta đi qua điểm M(1;1;2) nên phương trình chính tắc của \Delta là: \frac{x - 1}{2} = \frac{y - 1}{- 1} = \frac{z -
2}{3}

  • Câu 19: Thông hiểu

    Trong không gian Oxyz, cho \overrightarrow{OM} = 2\overrightarrow{i} +
\overrightarrow{k} - 3\overrightarrow{j}. Tọa độ điểm M là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{OM} =
2\overrightarrow{i} + \overrightarrow{k} - 3\overrightarrow{j} suy ra tọa độ M(2; - 3;1).

  • Câu 20: Thông hiểu

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tổng quát của cạnh AC.

    (AC) là đường thẳng đi qua 2 điểm A và C nên nhận \overrightarrow {AC}  = 2\left( {1, - 2,4} ight) làm 1 VTCP.

    (AC) đi qua C (3,-2,5) và có 1 VTCP là (1,-2,4) có phương trình chính tắc:

    \begin{array}{l}x - 3 = \frac{{y + 2}}{{ - 2}} = \frac{{z - 5}}{4}\\ \Rightarrow PTTQ\,\,\,(AC):\left\{ \begin{array}{l}2x + y - 4 = 0\\4x - z - 7 = 0\end{array} ight. \vee \left\{ \begin{array}{l}2x + y - 4 = 0\\2y + z - 1 = 0\end{array} ight.\end{array}

     

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo