Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hình vuông ABCD, B(3;0;8),D( - 5; - 4;0). Biết đỉnh A thuộc mặt phẳng (Oxy) và có tọa độ là những số nguyên, khi đó \left|
\overrightarrow{CA} + \overrightarrow{CB} ight| bằng:

    Ta có trung điểm BD là I( - 1; - 2;4),BD
= 12 và điểm A thuộc mặt phẳng (Oxy) nên A(a;b;0). Lại có: ABCD là hình vuông \Rightarrow \left\{ \begin{matrix}
AB^{2} = AD^{2} \\
AI^{2} = \left( \frac{1}{2}BD ight)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 3)^{2} + b^{2} + 8^{2} = (a + 5)^{2} + (b + 4)^{2} \\
(a + 1)^{2} + (b + 2)^{2} + 4^{2} = 36 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 4 - 2a \\
(a + 1)^{2} + (6 - 2a)^{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight. hoặc \left\{\begin{matrix}a = \frac{17}{5} \\b = \dfrac{- 14}{5} \\\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}A(1;2;0)(tm) \\A\left( \dfrac{17}{5};\dfrac{- 14}{5};0 ight)(ktm) \\\end{matrix} ight.

    \Rightarrow A(1;2;0) \Rightarrow C( - 3;
- 6;8) \Rightarrow \overrightarrow{CA} = (4;8; - 8);\overrightarrow{CB}
= (6;6;0)

    \Rightarrow \overrightarrow{CA} +
\overrightarrow{CB} = (10;14; - 8) \Rightarrow \left|
\overrightarrow{CA} + \overrightarrow{CB} ight| =
6\sqrt{10}

  • Câu 2: Vận dụng

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Nhận biết

    Trong không gian Oxyz, đường thẳng \Delta:\frac{x - 1}{2} = \frac{y +
2}{1} = \frac{z}{- 1} không đi qua điểm nào dưới đây?

    Ta có \frac{- 1 - 1}{2} eq \frac{2 +
2}{1} eq \frac{0}{- 1} nên điểm (
- 1;2;0) không thuộc đường thẳng \Delta.

  • Câu 4: Nhận biết

    Trong không gian Oxyz, phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm E(1;2;3) và song song với mặt phẳng (Oxy)?

    Mặt phẳng (Oxy) có phương trình là z = 0 nên có một vectơ pháp tuyến là \overrightarrow{k} =
(0;0;1).

    Phương trình của mặt phẳng cần tìm có dạng

    0(x - 1) + 0(y - 2) + 1(z - 3) = 0
\Leftrightarrow z = 3.

  • Câu 5: Nhận biết

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 6: Vận dụng

    Cho tam giác ABC có A\left( {3, - 1, - 1} ight);\,\,\,\,B\left( {1,2, - 7} ight);\,\,\,\,C\left( { - 5,14, - 3} ight). Viết phương trình tổng quát của đường trung trực (d) của cạnh BC của tam giác ABC. 

    Theo đề bài, ta tính được \overrightarrow {BA}  = \left( {2, - 3,6} ight),\overrightarrow {BC}  = 2\left( { - 3,6,2} ight)

    Từ đó, suy ra VTPT của mặt phẳng (ABC) là: \overrightarrow n  = \left[ {\overrightarrow {BA} ,\overrightarrow {BC} } ight] =  - \left( {42,22, - 3} ight)

    Phương trình (ABC) là:

    \begin{array}{l}\left( {x - 3} ight)42 + \left( {y + 1} ight)22 + \left( {z + 1} ight)\left( { - 3} ight) = 0\\ \Leftrightarrow \left( {ABC} ight):42x + 22y - 3z - 107 = 0\end{array}

    Mặt khác, ta có M là trung điểm của BC nên M có tọa độ là M (-2, 8, -5)

    Phương trình mặt phẳng trung trực (P) của cạnh BC là:

    \left( P ight):\,\,\left( {x + 2} ight)\left( { - 3} ight) + \left( {y - 8} ight)6 + \left( {z + 5} ight)2 = 0

    \begin{array}{l} \Leftrightarrow \left( P ight):3x - 6y - 2z + 44 = 0\\ \Rightarrow \left( d ight):42x + 22y - 3z - 107 = 0;\,\,3x - 6y - 2z + 44 = 0\end{array}

    Phương trình tổng quát của đường trung trực (d) của cạnh BC:

    (d):\,\,\left\{ \begin{array}{l}42x + 22y - 3z - 107 = 0\\3x - 6y - 2z + 44 = 0\end{array} ight.

  • Câu 7: Vận dụng

    Trong không gian Oxyz, cho hai điểm A(1;2; - 1),B(3;0;3). Biết mặt phẳng (P) đi qua điểm A và cách B một khoảng lớn nhất. Phương trình mặt phẳng (P)

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.

    Ta có BH ≤ AB.

    Dấu “=” xảy ra ⇔ H ≡ A

    ⇒ BHmax = AB khi AB ⊥ (P).

    Ta có:

    \left\{ \begin{matrix}
AB\bot(P) \\
A \in (P) \\
\end{matrix} ight.\  \Rightarrow (P):2x - 2y + 4z + 6 = 0

    \Leftrightarrow x - y + 2z + 3 =
0

  • Câu 8: Thông hiểu

    Cho hai điểmA\left( {1, - 4,5} ight),B\left( { - 2,3, - 4} ight) và vectơ \overrightarrow a  = \left( {2, - 3, - 1} ight). Mặt phẳng chứa hai điểm A, B và song song với vectơ \vec{a} có phương trình:

    Theo đề bài, ta có: A\left( {1, - 4,5} ight);B\left( { - 2,3, - 4} ight)

    \Rightarrow \overrightarrow {AB}  = \left( { - 3,7, - 9} ight);\overrightarrow a  = \left( {2, - 3, - 1} ight)

    Như vậy, \vec{AB}\vec{a} sẽ là cặp vectơ chỉ phương của (\beta)

    \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow a } ight] = \left( { - 34, - 21, - 5} ight) =\vec{n}

    Chọn \overrightarrow n  = \left( {34,21,5} ight) làm vectơ pháp tuyến của  (\beta)

    Phương trình mặt phẳng (\beta) có dạng 34x + 21y + 5z + D = 0

    Mặt khác, vì điểm A \in (\beta) nên thay tọa độ điểm A vào phương trình mặt phẳng (\beta)  được: 34 - 84 + 25 + D = 0 \Leftrightarrow D = 25

    Vậy (\beta) có phương trình là: 34x + 21y + 5z + 25 = 0

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho hình bình hành ABCD với A(1;1;0),B(1;1;2),D(1;0;2). Diện tích hình bình hành ABCD bằng:

    Gọi S là diện tích hình bình hành ABCD khi đó S = \left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack
ight|

    \overrightarrow{AB} =
(0;0;2);\overrightarrow{AD} = (0; - 1;2)

    \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack =
(2;0;0)

    \Rightarrow \left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack ight| = 2
\Rightarrow S = 2

    Vậy diện tích hình bình hành ABCD bằng 2.

  • Câu 10: Thông hiểu

    Trong không gian Oxyz , cho vectơ \overrightarrow{OA} = (2; - 1;5),B(5; -
5;7). Xét sự đúng sai của các khẳng định sau:

    a) Tọa độ của điểm A(2; - 1;5). Đúng||Sai

    b) Gọi C(a;b;c) thỏa mãn ∆ABC nhận G(1;1;1) làm trọng tâm. Khi đó a + b +
c = - 4 . Đúng||Sai

    c) Nếu A;B;M(x;y;1) thẳng hàng thì tổng x + y = 3 . Đúng||Sai

    d) Cho N \in (Oxy) để ∆ABN vuông cân tại A. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz , cho vectơ \overrightarrow{OA} = (2; - 1;5),B(5; -
5;7). Xét sự đúng sai của các khẳng định sau:

    a) Tọa độ của điểm A(2; - 1;5). Đúng||Sai

    b) Gọi C(a;b;c) thỏa mãn ∆ABC nhận G(1;1;1) làm trọng tâm. Khi đó a + b +
c = - 4 . Đúng||Sai

    c) Nếu A;B;M(x;y;1) thẳng hàng thì tổng x + y = 3 . Đúng||Sai

    d) Cho N \in (Oxy) để ∆ABN vuông cân tại A. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng

    a) Ta có:

    Tọa độ của điểm A(2; - 1;5).

    b) G là trọng tâm tam giác ABC

    \Leftrightarrow \left\{ \begin{matrix}1 = \dfrac{2 + 5 + x_{C}}{3} \\1 = \dfrac{- 1 - 5 + y_{C}}{3} \\1 = \dfrac{5 + 7 + x_{C}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{C} = - 4 \\y_{C} = 9 \\x_{C} = - 9 \\\end{matrix} ight.\  \Rightarrow C( - 4;9; - 9)

    \Rightarrow a + b + c = - 4

    c) Ta có: \overrightarrow{AB} = (3; -
4;2);\overrightarrow{AC} = (x - 2;y + 1; - 4)

    Ba điểm A, B, M thằng hàng khi và chỉ khi

    \overrightarrow{AM} =
k\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x - 2 = 3k \\
y + 1 = k.( - 4) \\
- 4 = k.2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 7 \\
k = - 2 \\
\end{matrix} ight.

    Suy ra x + y = 3

    d) Ta có: N \in (Oxy) \Rightarrow N =
(x;y;0)

    \Rightarrow \overrightarrow{AN} = (x -
2;y + 1; - 5),\overrightarrow{AB} = (3; - 4;2)

    Ta có ∆ABN vuông cân tại A \Leftrightarrow \left\{ \begin{matrix}
AN\bot AB(*) \\
AN = AB(**) \\
\end{matrix} ight.

    Từ (*) \Leftrightarrow
\overrightarrow{AN}\bot\overrightarrow{AB} \Leftrightarrow 3(x - 2) -
4(y + 1) - 10 = 0

    \Leftrightarrow 3x - 4y = 20
\Leftrightarrow y = \frac{3}{4}x - 5

    Từ (**) AN^{2} = AB^{2} \Leftrightarrow
(x - 2)^{2} + (y + 1)^{2} + 25 = 9 + 16 + 4

    \Leftrightarrow (x - 2)^{2} + \left(
\frac{3x}{4} - 4 ight)^{2} = 4 \Leftrightarrow x =
\frac{16}{5}

    \Rightarrow y = - \frac{13}{5}
\Rightarrow N\left( \frac{16}{5}; - \frac{13}{5};0 ight)

    Vậy x_{N} + y_{N} =
\frac{3}{5}

  • Câu 11: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:\frac{x}{2} = \frac{y}{- 1} = \frac{z +
1}{1} và mặt phẳng (P):x - 2y - 2z
+ 5 = 0. Điểm A nào dưới đây thuộc d và thỏa mãn khoảng cách từ A đến mặt phẳng (P) bằng 3?

    Vì A ∈ (d) nên ta có tọa độ điểm A(2a; −a; a − 1).

    Khoảng cách từ A đến (P) là

    \frac{\left| 2a + 2a - 2(a - 1) + 5
ight|}{\sqrt{9}} = 3

    \Leftrightarrow |2a + 9| = 9\Leftrightarrow \left\lbrack \begin{matrix}a = 0 \\a = - \dfrac{9}{2} \\\end{matrix} ight.

    Với a = 0 \Rightarrow A(0;\ 0; -
1)

  • Câu 12: Nhận biết

    Cho hai mặt phẳng \left( P ight):x - 2y + 3z - 5 = 0;\,\,\left( Q ight):3x + 4y - z + 3 = 0. Đường thẳng (D) qua M (1, -2, 3) song song với (P) và (Q):

     Vì (D) song song với (P) và (Q)

    => Một vectơ chỉ phương của (D) là:

    \overrightarrow {{a_P}}  = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } ight] = 10\left( { - 1,1,1} ight) \Rightarrow \overrightarrow a  = \left( { - 1,1,1} ight)

    Xét vecto pháp tuyến của (R), có:

    \overrightarrow {{n_R}}  = \left( {3,1,2} ight) \Rightarrow \overrightarrow a .\overrightarrow {{n_R}}  =  - 3 + 1 + 2 = 0 \Rightarrow \left( D ight)//\left( R ight)

    Xét đáp án có điểm N

    \overrightarrow {NM}  = \left( { - 2,2,2} ight) = 2\left( { - 1,1,1} ight) = 2\overrightarrow a  \Rightarrow \left( D ight)qua\,\,N\left( {3, - 4,1} ight)

    \overrightarrow {{n_s}}  = \left( {2, - 2, - 2} ight) \Rightarrow \frac{2}{{ - 1}} = \frac{{ - 2}}{1} = \frac{{ - 2}}{1} =  - 2 \Rightarrow \overrightarrow acùng phương với \overrightarrow {{n_s}}

    => (D) vuông góc với (S).

  • Câu 13: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y - 2z + 1 = 0 đi qua điểm M(1; - 2;0) và cắt đường thẳng d:\left\{ \begin{matrix}
x = 11 + 2t \\
y = 2t \\
z = - 4t \\
\end{matrix}\ (t \in \mathbb{R}) ight. tại N. Tính độ dài đoạn MN.

    Điểm N \in (d) \Rightarrow N(11 + 2t;2t;
- 4t). Mặt khác N \in
(\alpha) nên

    11 + 2t + 2t - 2( - 4t) + 1 = 0
\Leftrightarrow t = - 1

    Điểm N(9; - 2;4) \Rightarrow
\overrightarrow{MN} = (8;0;4) \Rightarrow MN = 4\sqrt{5}.

  • Câu 14: Nhận biết

    Trong không gian Oxyz, cho hai điểm M(0;3; - 2)N(2; - 1;0). Vectơ \overrightarrow{MN} có tọa độ là:

    Ta có:

    \overrightarrow{MN} = (2 - 0; - 1 - 3;0
+ 2) = (2; - 4;2)

    Vậy đáp án đúng là: \overrightarrow{MN} =
(2; - 4;2).

  • Câu 15: Thông hiểu

    Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    S = v.t = 890.\frac{1}{2} = 445\ \
(km).

    Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).

  • Câu 16: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;2;5),B(0;4; - 3),C(2; - 3;7). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tính tổng P = x + y + z.

    Vì M ∈ (Oxy) nên M(x;y;0).

    Gọi G là trọng tâm của tam giác ABC.

    Ta có G(2; 1; 3).

    Khi đó:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \left|
\overrightarrow{MG} + \overrightarrow{GA} + \overrightarrow{MG} +
\overrightarrow{GB} + \overrightarrow{MG} + \overrightarrow{GC}
ight|

    = \left| 3\overrightarrow{MG} ight| =
3MG = 3\sqrt{(x - 2)^{2} + (y - 1)^{2} + 3^{2}} \geq 9

    Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).

    Vậy P = 3

  • Câu 17: Thông hiểu

    Cho các mệnh đề sau:

    (I) Vectơ \overrightarrow{x} =\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} luôn đồng phẳng với hai vectơ \overrightarrow{a};\overrightarrow{b}.

    (II) Nếu có m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0} và ít nhất một trong ba số m;n;p khác không thì ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng.

    (III) Nếu ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} không đồng phẳng và m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0} thì m = n = p = 0.

    Hỏi có bao nhiêu mệnh đề đúng?

    Do \overrightarrow{x} được biểu thị qua hai vectơ \overrightarrow{a};\overrightarrow{b} nên (I) đúng.

    Xét mệnh đề (II): Giả sử m eq
0, khi đó:

    m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0}\Leftrightarrow \overrightarrow{a} = - \frac{n}{m}\overrightarrow{b} -\frac{p}{m}\overrightarrow{c}

    Suy ra ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng. Vậy mệnh đề (II) đúng.

    Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.

  • Câu 18: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;3; -
2);\overrightarrow{v} = (2;1; - 1). Vectơ \overrightarrow{u} - \overrightarrow{v} có tọa độ là:

    Ta có: \overrightarrow{u} -
\overrightarrow{v} = (1 - 2;3 - 1; - 2 + 1) = ( - 1;2; - 1)

    Vậy đáp án cần tìm là ( - 1;2 -
1).

  • Câu 19: Vận dụng cao

    Cho đường thẳng d:\left\{\begin{matrix} x=-t \\ y=2t-1 \\ z=t+2\end{matrix}ight. và mặt phẳng (\alpha): 2x-y-2z-2=0. Mặt phẳng (P) qua d  và tạo với (\alpha ) một góc nhỏ nhất. Một véc tơ pháp tuyến của (P)  là:

    Tìm vecto pháp tuyến

    Gọi \triangle = (\alpha)\cap (P), A =d \cap(\alpha), B \in d(Beq A);

    H là hình chiếu vuông góc của B lên (\alpha ); K là hình chiếu của H lên \triangle.

    Suy ra: (\widehat{(d),(\alpha)})=\widehat{BAH} cố định; (\widehat{(\alpha),(P)})=\widehat{BKH}.

    \widehat{BKH} \geqslant \widehat{BAH} (vì HK \leq HA)  \Rightarrow (\widehat{d, (\alpha)}) \leq (\widehat{(P),(\alpha)} )

    Suy ra (\widehat{(P),(\alpha)}) nhỏ nhất bằng (\widehat{d, (\alpha)}) khi K\equiv A .

    Khi đó \triangle \perp dvà có một VTCP \vec{u_\triangle} = [\vec{u_d}, \vec{u_\alpha}]=-3(1;0;1) .

    Vậy (P) có một VTPT là \vec{n_p} = [\vec{u_\triangle}, \vec{u_d}]=2(-1;1;1).

  • Câu 20: Vận dụng cao

    Trong không gian Oxyz cho mặt phẳng (P):2x + y + z - 3 = 0 và hai điểm A(m;1;0),B(1; - m;2). Gọi E;F lần lượt là hình chiếu của A;B lên mặt phẳng (P). Biết EF = \sqrt{5}. Tổng tất cả các giá trị của tham số m là

    Hình vẽ minh họa

    Xét trường hợp m = 1. Khi đó cả A;B đều thuộc (P). Trong trường hợp này EF = AB = 2\sqrt{2} (loại).

    Khi m eq 1. Ta tính toán các đại lượng:

    d\left( A;(P) ight) = \frac{|2m -
2|}{\sqrt{6}};d\left( B;(P) ight) = \frac{|1 -
m|}{\sqrt{6}}

    Từ đó suy ra A;B khác phía với (P) và d\left( A;(P) ight) = 2d\left(
B;(P) ight)

    Gọi H là giao điểm của AB với (P).

    Theo Thales ta có:

    EH = \frac{2\sqrt{5}}{3};AH =
\frac{2}{3}AB = \frac{2}{3}\sqrt{(1 - m)^{2} + (m + 1)^{2} +
2^{2}}

    Áp dụng định lý Pythagore cho tam giác AEH ta có:

    AE^{2} + EH^{2} = AH^{2}

    \Leftrightarrow \frac{(2m - 2)^{2}}{6} +
\left( \frac{2\sqrt{5}}{3} ight)^{2} = \frac{4}{9}\left\lbrack (1 -
m)^{2} + (m + 1)^{2} + 4 ightbrack

    \Leftrightarrow \frac{3\left( 4m^{2} -
8m + 4 ight)}{18} + \frac{40}{18} = \frac{8\left( 2m^{2} + 6
ight)}{18}

    \Leftrightarrow 4m^{2} + 24m - 4 =
0

    Phương trình này có hai nghiệm và tổng hai nghiệm đó bằng: - \frac{24}{4} = - 6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo