Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P):x - 2y + z - 1 = 0;(Q):x - 2y + z + 8 =0;(R):x - 2y + z - 4 = 0. Một đường thẳng d thay đổi cắt ba mặt (P),(Q),(R) lần lượt tại A,B,C. Tìm giá trị nhỏ nhất của T = AB^{2} + \frac{144}{AC^{2}}.

    Dễ dàng nhận thấy (P)//(Q)//(R).

    Kẻ đường thẳng qua B vuông góc với cả 3 mặt phẳng (P),(Q),(R) cắt (P) tại H và cắt (Q) tại K.

    Ta có BH = d\left( (Q),(P) ight) = 9;HK
= d\left( (P),(R) ight) = 3

    Khi đó ta có:

    T = AB^{2} + \frac{144}{AC^{2}} \geq
2\sqrt{AB^{2}.\frac{144}{AC^{2}}} = 24.\frac{AB}{AC} = 24.\frac{BH}{HK}
= 24.\frac{9}{3} = 72

    Vậy T_{\min} = 72.

  • Câu 2: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, điểm nào sau đây không thuộc mặt phẳng (P):x + y + z - 1 = 0?

    Dễ thấy điểm O(0;0;0) không thuộc mặt phẳng (P).

  • Câu 3: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; -1). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +3\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; -1). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +3\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu

    Cho tứ diện ABCD đều cạnh bằng a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Góc giữa AOCD bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Vì ABCD là tứ diện đều nên AM\bot
CD;OM\bot CD

    Ta có: \overrightarrow{CD}.\overrightarrow{AO} =
\overrightarrow{CD}.\left( \overrightarrow{AM} + \overrightarrow{MO}
ight)

    =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MO} =
\overrightarrow{0}

    Suy ra \overrightarrow{CD}\bot\overrightarrow{AO} nên số đo góc giữa hai đường thẳng bằng 90^{0}.

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;0; - 2), B( - 2;3;4), ,\ C(4; - 6;1). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j}. Sai||Đúng

    b) \overrightarrow{AB} = (3\ ;\  - 3\
;\  - 6). Sai||Đúng

    c) Hình chiếu vuông góc của điểm B trên mặt phẳng tọa độ (Oxy) là điểm B( - 2\ ;\ 3\ ;\ 0). Đúng||Sai

    d) NếuABCD là hình bình hành thì tọa độ điểm D(1; -
3;7). Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;0; - 2), B( - 2;3;4), ,\ C(4; - 6;1). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j}. Sai||Đúng

    b) \overrightarrow{AB} = (3\ ;\  - 3\
;\  - 6). Sai||Đúng

    c) Hình chiếu vuông góc của điểm B trên mặt phẳng tọa độ (Oxy) là điểm B( - 2\ ;\ 3\ ;\ 0). Đúng||Sai

    d) NếuABCD là hình bình hành thì tọa độ điểm D(1; -
3;7). Sai||Đúng

    Ta có:

    A(1;0; - 2) \Rightarrow \overrightarrow{OA} =
\overrightarrow{i} + 0\overrightarrow{j} - 2\overrightarrow{k} \Rightarrow a) sai.

    \overrightarrow{AB} = \left( x_{B} -
x_{A}\ ;\ y_{B} - y_{A}\ ;\ z_{B} - z_{A} ight)

    \Rightarrow \overrightarrow{AB} = ( - 3\
;\ 3\ ;\ 6) \Rightarrow b) sai.

    c) đúng

    d) Gọi D(x;y;z),

    \overrightarrow{AB} = ( -
3;3;6), \overrightarrow{DC} = (4 -
x; - 6 - y;1 - z)

    ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
4 - x = - 3 \\
- 6 - y = 3 \\
1 - z = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 7 \\
y = - 9 \\
z = - 5 \\
\end{matrix} ight.

    \Rightarrow D(7\ ;\  - 9\ ;\  -
5).

    Vậy d) sai

  • Câu 6: Vận dụng

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 8: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + mt \\
y = t \\
z = - 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\left\{ \begin{matrix}
x = 1 - t' \\
y = 2 + 2t' \\
z = 3 - t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Giá trị của m để hai đường thẳng d_{1}d_{2} cắt nhau là

    Đường thẳng d_{1} đi qua A(1; 0; −1), có vectơ chỉ phương \overrightarrow{u_{1}} = (m;1;2)

    Đường thẳng d_{2} đi qua B(1; 2; 3), có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 1;2; -
1)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 5;m -
2;2m + 1)\overrightarrow{AB} =
(0;2;4)

    Hai đường thẳng d và d 0 cắt nhau \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{AB} = 0 \Leftrightarrow m = 0

  • Câu 9: Nhận biết

    Cho A( - 1;2;1) và hai mặt phẳng (P):2x + 4y - 6z - 5 = 0;(Q):x + 2y - 3z =
0. Khi đó:

    Thay tọa độ điểm A vào phương trình mặt phẳng (Q) thỏa mãn, do đó A ∈ (Q).

    {\overrightarrow{n}}_{(P)} = (2;4; -
6) = 2(1;2; - 3) = {\overrightarrow{n}}_{(Q)} nên (Q)//(P).

  • Câu 10: Nhận biết

    Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(1;1;2)B(2; - 1;0) là:

    Ta có \overrightarrow{AB} = (1, - 2, -
2)

    Phương trình đường thẳng AB đi qua B(2; -
1;0) nhận vectơ \overrightarrow{AB} làm vectơ chỉ phương nên có phương trình là: \frac{x - 2}{- 1} =
\frac{y + 1}{2} = \frac{z}{2}.

  • Câu 11: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính tích vô hướng \overrightarrow{AC}.\overrightarrow{B'C'}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC} =
\overrightarrow{B'C'} nên \left(
\overrightarrow{AC};\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC};\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}

    Suy ra \overrightarrow{AC}.\overrightarrow{B'C'}= \left| \overrightarrow{AC} ight|.\left|\overrightarrow{B'C'} ight|.\cos\left(\overrightarrow{AC};\overrightarrow{B'C'} ight)

    =a\sqrt{2}.a.\cos45^{0} =a^{2}

  • Câu 12: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{u}\overrightarrow{v} tạo với nhau một góc 120^{0}. Biết rằng \left| \overrightarrow{u} ight| = 2;\left|
\overrightarrow{v} ight| = 5, tính \left| \overrightarrow{u} + \overrightarrow{v}
ight|?

    Ta có: \left( \left| \overrightarrow{u} +
\overrightarrow{v} ight| ight)^{2} = \left( \overrightarrow{u} +
\overrightarrow{v} ight)^{2} = {\overrightarrow{u}}^{2} +
2\overrightarrow{u}.\overrightarrow{v} +
{\overrightarrow{v}}^{2}

    = \left| \overrightarrow{u} ight|^{2}
+ 2\left| \overrightarrow{u} ight|.\left| \overrightarrow{v}
ight|\cos\left( \overrightarrow{u};\overrightarrow{v} ight) + \left|
\overrightarrow{v} ight|^{2} = 2^{2} + 2.2.5.\left( - \frac{1}{2}
ight) + 5^{2} = 19

    \Rightarrow \left| \overrightarrow{u} +
\overrightarrow{v} ight| = \sqrt{19}

    Vậy đáp án đúng là: \left|
\overrightarrow{u} + \overrightarrow{v} ight| =
\sqrt{19}.

  • Câu 13: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) qua hai điểm M(1;8;0), C(0;0;3) cắt các nửa trục dương Ox, Oy lần lượt tại A, B sao cho OG nhỏ nhất (G là trọng tâm tam giác ABC). Biết G( a, b ,c). Tính P=a+b+c.

    Gọi A(m;0;0), B(0;n;0) mà  C(0;0;3) nên G(\frac{m}{3};\frac{n}{3};1)OG^2=\frac{1}{9} (m^2+n^2)+1.

    (P):\frac{x}{m}+\frac{y}{n}+\frac{z}{3}=1.(P) qua hai điểm M(1; 8; 0) nên  \frac{1}{m}+\frac{8}{n}=1.

    Ta có:  1=\frac{1}{m}+\frac{8}{n}=\frac{1}{m}+\frac{16}{2n} \geq\frac{(1+4)^2}{m+2n}

    \Rightarrow m+2n \geq25

    Suy ra

    25 \leq m+2n \leq \sqrt{5(m^2+n^2)} \Leftrightarrow m^2+n^2 \geq 125

    \Rightarrow OG^2 \geq \frac{134}{9}

    Dấu bằng xảy ra khi và chỉ khi: 

    \left\{\begin{matrix} \dfrac{1}{m}+ \dfrac{8}{n}=1 \\ \dfrac{m}{1}= \dfrac{n}{2} \end{matrix}ight. \Leftrightarrow \left\{\begin{matrix} m=5 \\  n=10 \end{matrix}ight. \Rightarrow G(\frac{5}{3}; \frac{10}{3}; 1)

  • Câu 14: Thông hiểu

    Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa Oz và đi qua điểm P(3; - 4;7)?

    Mặt phẳng (P) có cặp véc-tơ chỉ phương là \overrightarrow{k} =
(0;0;1),\overrightarrow{OP} = (3; - 4;7)

    Suy ra mặt phẳng có (P) một véc-tơ pháp tuyến là \overrightarrow{n} =
\overrightarrow{k} \land \overrightarrow{OP} = ( - 4; - 3;0) = -
1(4;3;0).

    Mặt phẳng (P) đi qua O(0;0;0) có vectơ pháp tuyến (4; 3; 0).

    Vậy mặt phẳng (P) có phương trình tổng quát là 4x + 3y = 0.

  • Câu 15: Nhận biết

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{DH}?

    Hình vẽ minh họa

    \overrightarrow{DH} =
\overrightarrow{AE} (ADHE là hình vuông) nên \left(
\overrightarrow{AB};\overrightarrow{DH} ight) = \left(
\overrightarrow{AB};\overrightarrow{AE} ight) = \widehat{BAE} =
90^{0}

  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2). Phương trình tham số của đường thẳng \Delta

    đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{u} = (2; - 3;1) nên có phương trình tham số \left\{
\begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 17: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân

    giác trong góc A là \frac{x}{1}=\frac{y-6}{-4}=\frac{z-6}{-3}.  Biết rằng điểm M(0; 5; 3) thuộc đường thẳng AB và điểm N(1;1;0)thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?

    Giả sử , A(t; 6-4t; 6-3t), ta có:

    \vec{u_d}=(1; -4; -3),

    \vec{AM}=(-t;4t-1;-3+3t)

    \vec{AN}=(1-t;-5+4t;3t-6)

    Theo bài ra: Vì d là đường phân giác của góc A nên:

    \left | \cos(\vec{u_d}, \vec{AM}) ight |= \left | \cos(\vec{u_d}, \vec{AN}) ight |

    \Leftrightarrow \dfrac{\left | 26t-13 ight |}{\sqrt{26t^2 -26t+10} } =\dfrac{\left | 26t-39 ight |}{\sqrt{26t^2 -78t+62} }

    \Leftrightarrow \dfrac{\left | 2t-1 ight |}{\sqrt{13t^2 -13t+5} } =\dfrac{\left | 2t-3 ight |}{\sqrt{13t^2 -39t+31} }

    Từ đây ta bình phương 2 vế được:

    (4t^2-4t+1)(13t^2-39t+31)=(4t^2-12t+9)(13t^2-13t+5)

    \Leftrightarrow 14t=14

    \Leftrightarrow t=1

    \Rightarrow A(1;2;3)\Rightarrow \vec{AN}=(0; -1; -3)

    Vậy một véc tơ chỉ phương của AC  là  \vec{u}(0;1;3).

  • Câu 18: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;5; - 1),B(1;1;3). Tìm tọa độ điểm M thuộc (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| ngắn nhất.

    Gọi J(x; y; z) là điểm sao cho \overrightarrow{JA} + \overrightarrow{JB} =
\overrightarrow{0} Suy ra J(2; 3; 1).

    Khi đó \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MJ} +
\overrightarrow{JA} + \overrightarrow{MJ} + \overrightarrow{JB} ight|
= 2\left| \overrightarrow{MJ} ight|

    Vậy \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| đạt GTNN khi và chỉ khi \left| \overrightarrow{MJ} ight| đạt GTNN hay M là hình chiếu của J lên mặt phẳng (Oxy).

    Vậy M(2; 3; 0).

  • Câu 19: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu giá của ba vectơ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, cho điểm A(0;1;1) và hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 \\
y = - 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{3} = \frac{y - 2}{1} =
\frac{z}{1}. Gọi d là đường thẳng đi qua điểm A, cắt đường thẳng d_{1} và vuông góc với đường thẳng d_{2}. Đường thẳng d đi qua điểm nào trong các điểm dưới đây?

    Gọi \left\{ \begin{matrix}
B = d_{1} \cap d \\
B \in d_{1} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
B( - 1; - 1 + t;t) \\
\overrightarrow{AB} = ( - 1;t - 2;t - 1) \\
\end{matrix} ight.

    d_{2} có một vectơ chỉ phương \overrightarrow{u} = (3;1;1).

    Do d\bot d_{2} nên \overrightarrow{u}.\overrightarrow{AB} = 0
\Leftrightarrow - 3 + t - 2 + t - 1 = 0

    \Leftrightarrow t = 3 \Rightarrow
\overrightarrow{AB} = ( - 1;1;2)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AN} = (2;0;6);\overrightarrow{AQ} = (3;1;4) \\
\overrightarrow{AP} = ( - 2; - 4;10);\overrightarrow{AM} = (1; - 1; - 2)
\\
\end{matrix} ight.

    Suy ra đường thẳng d đi qua M.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 33 lượt xem
Sắp xếp theo