Trong không gian tọa độ
, góc giữa hai vectơ
và
là:
Ta có:
Trong không gian tọa độ
, góc giữa hai vectơ
và
là:
Ta có:
Cho tứ diện đều
với
lần lượt là trung điểm của
. Tính cosin của góc giữa hai đường thẳng
?
Hình vẽ minh họa
Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Do đó:
Ta lại có suy ra
Vậy đáp án cần tìm là .
Trong không gian với hệ toạ độ
, phương trình đường thẳng đi qua hai điểm
và
là
Vectơ chỉ phương của đường thẳng cần tìm là và đường thẳng đi qua điểm
.
Vậy phương trình đường thẳng cần tìm là: .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
. Xác định
để hai mặt phẳng
và
song song với nhau?
Hai mặt phẳng đã cho song song với nhau khi và chỉ khi
Tập xác định
Vậy thì hai mặt phẳng
song song với nhau.
Trong không gian với hệ tọa độ
, tính thể tích tứ diện
, biết
lần lượt là giao điểm của mặt phẳng
với trục
.
Theo giả thiết ta có: suy ra
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của
là
. Đúng||Sai
b)
. Đúng||Sai
c) Góc giữa hai đường thẳng
và
bằng
. Đúng||Sai
d) Điểm
nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian với hệ trục tọa độ , cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của là
. Đúng||Sai
b) . Đúng||Sai
c) Góc giữa hai đường thẳng và
bằng
. Đúng||Sai
d) Điểm nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Đúng: Gọi là trung điểm
.
Ta có
b) Đúng: Ta có .
c) Đúng: Ta có .
Suy ra .
d) Sai: Gọi thỏa mãn
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
suy ra
.
Suy ra .
Vậy .
Trong không gian
,cho hai đường thẳng
và
. Khoảng cách giữa hai đường thẳng
và
là:
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Khoảng cách giữa hai đường thẳng và
là:
Trong không gian
, cho đường thẳng
. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng
?
Đường thẳng có 1 vectơ chỉ phương là
. Do đó vectơ
không là vectơ chỉ phương của
.
Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(3; -1; 0) và đường thẳng d:
. Mặt phẳng
chứa d sao cho khoảng cách từ A đến lớn nhất có phương trình là:

Gọi H là hình chiếu vuông góc của A lên , K là hình chiếu vuông góc của A lên d.
Ta có: cố định và
Suy ra lớn nhất bằng AK khi
.
Ta có (d): qua M(2; -1; 1) , có VTCP
.
Gọi (P) là mặt phẳng qua A và chứa có VTPT .
Mặt phẳng có một VTPT là
và
qua M (2; -1; 1) có phương trình:
Trong không gian tọa độ
, cho hai điểm
. Tìm tọa độ điểm
có hoành độ dương thuộc trục
sao cho tam giác
vuông tại
?
Ta có: có hoành độ dương thuộc trục
Theo bài ra ta có: và tam giác
vuông tại
nên
Vậy
Biết rằng có n mặt phẳng với phương trình tương ứng là ![]()
đi qua
(nhưng không đi qua O) và cắt các trục tọa độ
theo thứ tự tại
sao cho hình chóp
là hình chóp đều. Tính tổng
.
Giả sử , với
. Khi đó trọng tâm của tam giác ABC là
mặt phẳng (Pi) có dạng
.
Theo bài ra (Pi) đi qua M(1; 2; 3) nên ta có:
Mặt khác, vì O.ABC là hình chóp đều nên tam giác ABC đều nên:
kết hợp với (1) ta có các trường hợp sau:
nên
không thỏa yêu cầu.
nên
nên
, không thỏa yêu cầu
nên
trùng với (P2)
nên
trùng với (P3)
nên
trùng với (P1)
Vậy .
Trong không gian
, cho mặt phẳng
. Viết phương trình mặt phẳng
sao cho phép đối xứng qua mặt phẳng
biến mặt phẳng
thành mặt phẳng
.
Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là .
Ta có và
.
Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.
Ta có , (ảnh của A, B trùng với chính nó vì
).
Do C’ đối xứng với qua mặt phẳng Oxy, suy ra
Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:
Hai đường thẳng
và ![]()
Ta có đường thẳng (d’) qua E (-1, -1, 0) có vecto chỉ phương
Hai pháp vecto của hai đường thẳng lần lượt là
Vecto chỉ phương của
Ta có: và tọa độ
thỏa mãn phương trình của
Cho tứ diện
có
. Tính độ dài đường cao của tứ diện
kẻ từ đỉnh
?
Phương trình mặt phẳng là:
Khoảng cách từ đỉnh D đến mặt phẳng (ABC) là
.
Trong không gian
, cho hai đường thẳng song song
và
. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.
Lấy .
Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.
Phương trình đường thẳng cần tìm là:
Trong không gian
, cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Trong không gian với hệ tọa độ
cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục tọa độ tại
sao cho
là trực tâm tam giác
. Hãy viết trình mặt phẳng
.
Hình vẽ minh họa
Ta có:
Chứng minh tương tự BC ⊥ OH.
Do đó
Suy ra .
Trong không gian
, cho tam giác
có
. Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?
a)
là trung điểm của
. Sai||Đúng
b)
là trọng tâm tam giác
. Đúng||Sai
c)
là điểm đối xứng của
qua
. Đúng||Sai
d) Tọa độ điểm
thỏa
là trọng tâm tam giác
. Đúng||Sai
Trong không gian , cho tam giác
có
. Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?
a) là trung điểm của
. Sai||Đúng
b) là trọng tâm tam giác
. Đúng||Sai
c) là điểm đối xứng của
qua
. Đúng||Sai
d) Tọa độ điểm thỏa
là trọng tâm tam giác
. Đúng||Sai
a) Sai: Do tọa độ trung điểm của đoạn thẳng
là
hay
b) Đúng: Do tọa độ trọng tâm của tam giác
là
hay
c) Đúng: là điểm đối xứng của
qua
thì
là trung điểm
.
d) Đúng: là trọng tâm tam giác
.
Trong không gian
, cho mặt phẳng
đi qua điểm
và cắt các tia
lần lượt tại
sao cho độ dài
theo thứ tự lập thành một cấp số nhân có công bội bằng
. Tính khoảng cách từ gốc tọa độ
đến mặt phẳng
.
Giả sử với
.
Phương trình mặt phẳng có dạng
Ta có đi qua điểm
nên ta có
(∗)
Vì theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên
.
Thay vào (∗), ta được
Suy ra phương trình mặt phẳng (α) là hay
.
Trong không gian tọa độ
, hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.