Trong không gian
,cho hai đường thẳng
và
. Khoảng cách giữa hai đường thẳng
và
là:
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Khoảng cách giữa hai đường thẳng và
là:
Trong không gian
,cho hai đường thẳng
và
. Khoảng cách giữa hai đường thẳng
và
là:
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Khoảng cách giữa hai đường thẳng và
là:
Trong không gian
, cho điểm
. Gọi
là mặt phẳng thay đổi qua
và cắt các trục
lần lượt tại
với
. Khi diện tích tam giác
nhỏ nhất, hãy tính giá trị của tích
?
Trong không gian , cho điểm
. Gọi
là mặt phẳng thay đổi qua
và cắt các trục
lần lượt tại
với
. Khi diện tích tam giác
nhỏ nhất, hãy tính giá trị của tích
?
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Ta có N là trung điểm của CD nên
M là trung điểm của AB nên
Suy ra
Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(3; -1; 0) và đường thẳng d:
. Mặt phẳng
chứa d sao cho khoảng cách từ A đến lớn nhất có phương trình là:

Gọi H là hình chiếu vuông góc của A lên , K là hình chiếu vuông góc của A lên d.
Ta có: cố định và
Suy ra lớn nhất bằng AK khi
.
Ta có (d): qua M(2; -1; 1) , có VTCP
.
Gọi (P) là mặt phẳng qua A và chứa có VTPT .
Mặt phẳng có một VTPT là
và
qua M (2; -1; 1) có phương trình:
Cho hình lập phương
. Phân tích vectơ
theo các vectơ
?
Ta có phép cộng vectơ đối với hình vuông :
Khi đó ta có:
Viết phương trình tổng quát của đường thẳng (d) qua A (2, 3, 1) cắt đường thẳng
và vuông góc đường thẳng ![]()
Lấy điểm nằm trên đường thẳng (d1).
Theo đề bài, ta có (d1) qua có vecto chỉ phương là
Ta có:
Vecto pháp tuyến của mặt phẳng (P) chứa A và
(1)
Xét tiếp đường thẳng có vecto chỉ phương của là vecto pháp tuyến của mặt phẳng qua A và vuông góc với . Ta có phương trình mp (Q) là
(2)
Từ (1) và (2) ta suy ra:
Ba mặt phẳng
cắt nhau tại điểm A.Tọa độ của A là:
Tọa độ của A là nghiệm của hệ phương trình :
Giải (1),(2) tính x,y theo z được
Thế vào phương trình (3) được , từ đó có
.
Vậy .
Trong không gian
, mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Cho lăng trụ tam giác
. Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Cho tam giác ABC có
.
Viết phương trình chính tắc của cạnh AB.
(AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:
(AB) đi qua A (1, 2, -3) và nhận vecto làm 1 VTCP có phương trình chính tắc là:
Trong không gian với hệ tọa độ
có bao nhiêu mặt phẳng song song với mặt phẳng
, cách điểm
một khoảng bằng
biết rằng tồn tại một điểm
trên mặt phẳng đó thỏa mãn
?
Mặt phẳng song song với (Q) có dạng mà
Với m = −15 thì với mọi ta có
Do đó không có mặt phẳng nào thỏa mãn đề bài
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian với hệ tọa độ
, cho mặt phẳng
và
với
là tham số thực. Tổng các giá trị của m để
và
vuông góc nhau bằng bao nhiêu?
Ta có:
có vectơ pháp tuyến
có véc-tơ pháp tuyến
(P) và (Q) vuông góc với nhau khi và chỉ khi
Điều này tương đương với
.
Trong không gian
, cho đường thẳng
. Điểm nào sau đây không thuộc đường thẳng
?
Thay vào
ta được:
Thay vào
ta được:
Thay vào
ta được:
hệ vô nghiệm nên
.
Thay vào
ta được:
Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với ![]()
Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là:
Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận làm 1 VTPT. Ta có VTPT của
Cho hai điểm
và
. Tọa độ điểm
đối xứng với
qua
là:
Vì điểm đối xứng với
qua
nên
là trung điểm của
Cho hai điểm
và mặt phẳng
Mặt phẳng
chứa hai điểm A,B và vuông góc với mặt phẳng
có phương trình:
Theo đề bài, ta có: ;
Suy ra ;
có vectơ pháp tuyến
Ta có cùng phương với vectơ
Chọn làm 1 vectơ pháp tuyến cho mặt phẳng
.
Phương trình mặt phẳng có dạng:
Mặt phẳng :
Cho hình chóp
có
theo thứ tự là trung điểm của
. Biết rằng
. Tính góc giữa hai đường thẳng
?
Hình vẽ minh họa
Ta có:
Do đó
Vậy góc giữa hai đường thẳng cần tìm là .
Trong không gian Oxyz cho tam giác ABC, biết:
. Tìm tọa độ vectơ trung tuyến ![]()
Ta có nên suy ra được tọa độ 2 điểm tương ứng là:
Vậy ta được: .
Vì là vecto trung tuyến của tam giác ABC nên M là trung điểm của BC. Suy ra M có tọa độ là:
.
Suy ra ta có
Vậy .
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) chéo nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:
Suy ra (D) và (d) chéo nhau.