Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian Oxyz, phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm E(1;2;3) và song song với mặt phẳng (Oxy)?

    Mặt phẳng (Oxy) có phương trình là z = 0 nên có một vectơ pháp tuyến là \overrightarrow{k} =
(0;0;1).

    Phương trình của mặt phẳng cần tìm có dạng

    0(x - 1) + 0(y - 2) + 1(z - 3) = 0
\Leftrightarrow z = 3.

  • Câu 2: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1;4;3) và mặt phẳng (P):2y - z = 0. Tìm điểm C thuộc (P), điểm B thuộc mặt phẳng (Oxy) sao cho chu vi tam giác ABC bé nhất. Giá trị chu vi tam giác ABC bé nhất là:

    Hình vẽ minh họa:

    Gọi H;K lần lượt là hình chiếu của A lên các mặt phẳng (P) và (Oxy) ta được H(1;2;4),K(1;4;0).

    Gọi M, N lần lượt là các điểm đối xứng với A qua các mặt phẳng (P) và (Oxy).

    Khi đó ta có AB = NB,CA = CM nên AB + BC + CA = NB + BC + CM \geq MN = 2KH =
4\sqrt{5}

    Dấu đẳng thức xảy ra khi và chỉ khi B, C lần lượt là giao điểm của đường thẳng MN với các mặt phẳng (Oxy) và (P).

  • Câu 3: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là:

    Mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là: \overrightarrow{n}
= (2;0;1).

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:\bigtriangleup_{1}:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z - 3}{- 2}\bigtriangleup_{2}:\frac{x - 4}{- 1} = \frac{y -
5}{- 2} = \frac{z - 6}{2}

    a) Vectơ có tọa độ (1;2;3) là một vectơ chỉ phương của \bigtriangleup_{1}. Sai||Đúng

    b) Đường thẳng \bigtriangleup_{2} đi qua điểm A(0; - 3;14). Đúng||Sai

    c) Đường thẳng \bigtriangleup_{3} đi qua B(1;1; - 2) và vuông góc với \bigtriangleup_{1} có phương trình tham số là \bigtriangleup_{3}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = 1 - 2t \\
z = - 2 - 3t \\
\end{matrix} ight.. Đúng||Sai

    d) Góc giữa hai đường thẳng \bigtriangleup_{1}\bigtriangleup_{2} khoảng 132^{0}. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:\bigtriangleup_{1}:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z - 3}{- 2}\bigtriangleup_{2}:\frac{x - 4}{- 1} = \frac{y -
5}{- 2} = \frac{z - 6}{2}

    a) Vectơ có tọa độ (1;2;3) là một vectơ chỉ phương của \bigtriangleup_{1}. Sai||Đúng

    b) Đường thẳng \bigtriangleup_{2} đi qua điểm A(0; - 3;14). Đúng||Sai

    c) Đường thẳng \bigtriangleup_{3} đi qua B(1;1; - 2) và vuông góc với \bigtriangleup_{1} có phương trình tham số là \bigtriangleup_{3}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = 1 - 2t \\
z = - 2 - 3t \\
\end{matrix} ight.. Đúng||Sai

    d) Góc giữa hai đường thẳng \bigtriangleup_{1}\bigtriangleup_{2} khoảng 132^{0}. Sai||Đúng

    a) Vectơ có tọa độ (2;1; - 2) là một vectơ chỉ phương của \bigtriangleup_{1} nên mệnh đề sai

    b) Mệnh đề đúng

    c) Gọi B = \bigtriangleup_{1} \cap
\bigtriangleup_{3} \Rightarrow B(1 + 2t;2 + t;3 - 2t)

    \begin{matrix}
\overrightarrow{AB} = ( - 2t; - 1 - t; - 5 + 2t\ ) \\
\overrightarrow{AB}\bot u_{\bigtriangleup_{1}} \Rightarrow t = 1 \\
\Rightarrow \overrightarrow{AB} = ( - 2; - 2; - 3\ ) \\
\end{matrix} nên mệnh đề đúng

    d) Góc giữa hai đường thẳng luôn là góc nhọn nên mệnh đề sai

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{2} = \frac{y - 3}{- 1} = \frac{z -
1}{1} cắt mặt phẳng (P):2x - 3y + z
- 2 = 0 tại điểm I(a;b;c). Khi đó a + b + c bằng:

    Ta có \left\{ I ight\} = d \cap
(P) suy ra \left\{ \begin{matrix}
I \in d \\
I \in (P) \\
\end{matrix} ight.

    I \in d nên tọa độ của I có dạng (1 + 2t;3 - t;1 + t),t\mathbb{\in
R}.

    I \in (P) nên ta có phương trình:

    2(1 + 2t) - 3(3 - t) + 1 + t - 2 = 0
\Leftrightarrow t = 1

    Vậy I(3;2;2) suy ra a + b + c = 3 + 2 + 2 = 7.

  • Câu 6: Nhận biết

    Trong không gian Oxyz, cho điểm M(1;0;2). Mệnh đề nào sau đây đúng?

    Vì tọa độ điểm M(1;0;2)x = 1;y = 0;z = 2 nên M \in (Oxz).

  • Câu 7: Vận dụng

    Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;5;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y}{1} = \frac{z -
2}{2}. Gọi (P) là mặt phẳng chứa d sao cho khoảng cách từ điểm A đến (P) là lớn nhất. Khoảng cách từ gốc tọa độ O đến (P) bằng:

    Gọi K là hình chiếu vuông góc của A trên d và H là hình chiếu vuông góc của A trên (P) thì d(A,(P)) = AH ≤ AK không đổi.

    Vậy d(A,(P)) lớn nhất khi và chỉ khi H ≡ K, khi đó (P) là mặt phẳng chứa d và vuông góc với AK.

    Ta tìm được (P):x - 4y + z - 3 = 0
\Rightarrow d\left( O;(P) ight) = \frac{3}{\sqrt{18}} =
\frac{1}{\sqrt{2}}.

  • Câu 8: Vận dụng

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;2;3),B(3;4;4),C(2;6;6)I(a;b;c) là trực tâm tam giác ABC. Tính a +
b + c?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BC} = ( - 1;2;2);\overrightarrow{AC} = (1;4;3) \\
\overrightarrow{AI} = (a - 1;b - 2;c - 3) \\
\overrightarrow{BI} = (a - 3;b - 4;c - 4) \\
(ABC):2x - 5y + 6z - 10 = 0 \\
\end{matrix} ight.

    Lại có:

    \left\{ \begin{matrix}
\overrightarrow{BI}.\overrightarrow{AC} = 0 \\
\overrightarrow{AI}.\overrightarrow{BC} = 0 \\
I \in (ABC) \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}- 1(a - 1) + 2(b - 2) + 2(c - 3) = 0 \\1(a - 3) + 4(b - 4) + 3(c - 4) = 0 \\2a - 5b + 6c - 10 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{27}{5} \\b = 4 \\c = \dfrac{16}{5} \\\end{matrix} ight.\  \Rightarrow a + b + c = \dfrac{63}{5}

  • Câu 9: Vận dụng

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi điểm I \in CC' sao cho \overrightarrow{C'I} =
\frac{1}{3}\overrightarrow{C'C}, G là trọng tâm tứ diện BAB'C'. Biểu diễn vectơ \overrightarrow{IG} qua các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Đáp án nào dưới đây đúng?

    Ta có G là trọng tâm của tứ diện BA'B'C' nên

    4\overrightarrow{IG} =
\overrightarrow{IB} + \overrightarrow{IA'} +
\overrightarrow{IB'} + \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\left( \overrightarrow{IC} + \overrightarrow{CB} ight) + \left(
\overrightarrow{IC'} + \overrightarrow{C'A'} ight) +
\left( \overrightarrow{IC'} + \overrightarrow{C'B'} ight)
+ \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\overrightarrow{IC'} + \left( 2\overrightarrow{IC'} +
\overrightarrow{IC} ight) + \left( \overrightarrow{CB} +
\overrightarrow{C'B'} ight) +
\overrightarrow{C'A'}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{CC'} + \overrightarrow{0} +
2\overrightarrow{CB} - \overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{AA'} + 2\overrightarrow{CB} -
\overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{a} + 2\left( \overrightarrow{b} -
\overrightarrow{c} ight) - \overrightarrow{c}

    \Leftrightarrow \overrightarrow{IG} =
\frac{1}{4}\left( \frac{1}{3}\overrightarrow{a} + \overrightarrow{b} -
2\overrightarrow{c} ight)

  • Câu 10: Thông hiểu

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tính x, y để G\left( {2, - 1, - \frac{2}{3}} ight) là trọng tâm tam giác ABC?

     Vì G là trọng tâm tam giác ABC nên áp dụng công thức, ta có:

    \left\{ \begin{array}{l}{x_A} + {x_B} + {x_c} = 3.{x_G}\\{y_A} + {y_B} + {y_c} = 3.{y_G}\\{z_A} + {z_B} + {z_c} = 3.{z_G}\end{array} ight.

    Thay tọa độ các điểm vào ta được hệ sau:

    \left\{ \begin{array}{l}3 + 2 + x = 3.2 = 6\\1 + 1 + y = 3\left( { - 1} ight) =  - 3\\0 - 1 - 1 = 3\left( { - \dfrac{2}{3}} ight) =  - 2\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y =  - 5\end{array} ight.

  • Câu 11: Nhận biết

    Trong không gian Oxyz, đường thẳng đi qua A(2; - 1;3) và nhận \overrightarrow{a} = (1;1; - 1) làm vectơ chỉ phương có phương trình là:

    Đường thẳng đi qua A(2; - 1;3) và nhận \overrightarrow{a} = (1;1; -
1) làm vectơ chỉ phương có phương trình là \left\{ \begin{matrix}
x = 2 + t \\
y = - 1 + t \\
z = 3 - t \\
\end{matrix} ight..

  • Câu 12: Thông hiểu

    Trong không gian Oxyz, cho điểm A( - 3; - 1; - 1). Hình chiếu vuông góc của A trên mặt phẳng (Oyz) là điểm A'(x;y;z). Khi đó giá trị 2x + y + z bằng:

    Hình chiếu vuông góc của A( - 3; - 1; -
1) trên mặt phẳng (Oyz)A'(0; - 1; - 1)

    Suy ra 2x + y + z = - 2.

  • Câu 13: Nhận biết

    Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(1;1;2)B(2; - 1;0) là:

    Ta có \overrightarrow{AB} = (1, - 2, -
2)

    Phương trình đường thẳng AB đi qua B(2; -
1;0) nhận vectơ \overrightarrow{AB} làm vectơ chỉ phương nên có phương trình là: \frac{x - 2}{- 1} =
\frac{y + 1}{2} = \frac{z}{2}.

  • Câu 14: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân

    giác trong góc A là \frac{x}{1}=\frac{y-6}{-4}=\frac{z-6}{-3}.  Biết rằng điểm M(0; 5; 3) thuộc đường thẳng AB và điểm N(1;1;0)thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?

    Giả sử , A(t; 6-4t; 6-3t), ta có:

    \vec{u_d}=(1; -4; -3),

    \vec{AM}=(-t;4t-1;-3+3t)

    \vec{AN}=(1-t;-5+4t;3t-6)

    Theo bài ra: Vì d là đường phân giác của góc A nên:

    \left | \cos(\vec{u_d}, \vec{AM}) ight |= \left | \cos(\vec{u_d}, \vec{AN}) ight |

    \Leftrightarrow \dfrac{\left | 26t-13 ight |}{\sqrt{26t^2 -26t+10} } =\dfrac{\left | 26t-39 ight |}{\sqrt{26t^2 -78t+62} }

    \Leftrightarrow \dfrac{\left | 2t-1 ight |}{\sqrt{13t^2 -13t+5} } =\dfrac{\left | 2t-3 ight |}{\sqrt{13t^2 -39t+31} }

    Từ đây ta bình phương 2 vế được:

    (4t^2-4t+1)(13t^2-39t+31)=(4t^2-12t+9)(13t^2-13t+5)

    \Leftrightarrow 14t=14

    \Leftrightarrow t=1

    \Rightarrow A(1;2;3)\Rightarrow \vec{AN}=(0; -1; -3)

    Vậy một véc tơ chỉ phương của AC  là  \vec{u}(0;1;3).

  • Câu 15: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(4;9;8),N(1; - 3;4),P(2;5; - 1). Mặt phẳng (\alpha) đi qua ba điểm M,N,P có phương trình tổng quát Ax + By + Cz + D = 0. Biết A = 92, tìm giá trị của D?

    Do A = 92 nên mặt phẳng (P) có phương trình 92x + By + Cz + D = 0

    Do (P) đi qua các điểm A;B;C nên ta có hệ:

    \left\{ \begin{matrix}
92.4 + B.9 + C.8 + D = 0 \\
92.1 + B.( - 3) + C.4 + D = 0 \\
92.2 + B.5 + C.( - 1) + D = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
B = - 19 \\
C = - 12 \\
D = - 101 \\
\end{matrix} ight.

    Vậy D = - 101.

  • Câu 16: Thông hiểu

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Gọi M là trung điểm của AD. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{C_{1}M} =
\overrightarrow{C_{1}C} + \overrightarrow{CM} = \overrightarrow{C_{1}C}
+ \frac{1}{2}\left( \overrightarrow{CA} + \overrightarrow{CD}
ight)

    = \overrightarrow{C_{1}C} +
\frac{1}{2}\left( \overrightarrow{C_{1}A_{1}} +
\overrightarrow{C_{1}D_{1}} ight)

    = \overrightarrow{C_{1}C} +
\frac{1}{2}\left( \overrightarrow{C_{1}B_{1}} +
\overrightarrow{C_{1}D_{1}} + \overrightarrow{C_{1}D_{1}}
ight)

    = \overrightarrow{C_{1}C} +
\overrightarrow{C_{1}D_{1}} +
\frac{1}{2}\overrightarrow{C_{1}B_{1}}

  • Câu 17: Vận dụng

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight). Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng \frac{1}{27} .

    Tỷ số thể tích hai khối AMNE và ABCD: {\left( {\frac{{AM}}{{AB}}} ight)^3} = \frac{1}{{27}}

    \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow M chia cạnh BA theo tỷ số -2

    \Rightarrow E\left\{ \begin{array}{l}x=\dfrac{{1 + 2.0}}{3} = \dfrac{1}{3}\\y = \dfrac{{1 + 2.1}}{3} = 1\\z = \dfrac{{2 + 2\left( { - 1} ight)}}{3} = 0\end{array} ight.;\,\,

    \overrightarrow {BC}  =  - 2\left( {0,1,1} ight);\,\,\overrightarrow {BD}  =  - \left( {1,1,1} ight)

    Vecto pháp tuyến của \left( Q ight):\overrightarrow n  = \left( {0,1, - 1} ight)

    \begin{array}{l} \Rightarrow M \in \left( Q ight) \Rightarrow \left( Q ight):\left( {x - \frac{1}{3}} ight)0 + \left( {y - 1} ight)1 + \left( {z - 0} ight)\left( { - 1} ight) = 0\\ \Rightarrow \left( P ight):y - z - 1 = 0\end{array}

  • Câu 18: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt \overrightarrow{AC'} =
\overrightarrow{u};\overrightarrow{CA'} =
\overrightarrow{v};\overrightarrow{BD'} =
\overrightarrow{x};\overrightarrow{DB'} =
\overrightarrow{y}. Chọn khẳng định đúng?

    I là tâm hình bình hành ABCD nên

    4\overrightarrow{OI} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}

    \Leftrightarrow 4\overrightarrow{OI} =
\frac{1}{2}\left( \overrightarrow{C'A} + \overrightarrow{D'B} +
\overrightarrow{A'C} + \overrightarrow{B'D} ight)

    \Leftrightarrow 4\overrightarrow{OI} = -
\frac{1}{2}\left( \overrightarrow{AC'} + \overrightarrow{BD'} +
\overrightarrow{CA'} + \overrightarrow{DB'} ight)

    \Leftrightarrow 2\overrightarrow{OI} = -
\frac{1}{4}\left( \overrightarrow{u} + \overrightarrow{v} +
\overrightarrow{x} + \overrightarrow{y} ight)

  • Câu 19: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 20: Nhận biết

    Trong không gian hệ trục tọa độ Oxyzcho \overrightarrow{u} = 2\overrightarrow{i} +
\overrightarrow{k}. Khi đó tọa độ \overrightarrow{u} với hệ Oxyz là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}
+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow
\overrightarrow{u} = (x;y;z)

    Lại có \overrightarrow{u} =
2\overrightarrow{i} + \overrightarrow{k} \Leftrightarrow
\overrightarrow{u} = (2;0;1)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo