Cho hình chóp
có
theo thứ tự là trung điểm của
. Biết rằng
. Tính góc giữa hai đường thẳng
?
Hình vẽ minh họa
Ta có:
Do đó
Vậy góc giữa hai đường thẳng cần tìm là .
Cho hình chóp
có
theo thứ tự là trung điểm của
. Biết rằng
. Tính góc giữa hai đường thẳng
?
Hình vẽ minh họa
Ta có:
Do đó
Vậy góc giữa hai đường thẳng cần tìm là .
Trong không gian
cho mặt phẳng
và hai điểm
. Gọi
lần lượt là hình chiếu của
lên mặt phẳng (P). Biết
. Tổng tất cả các giá trị của tham số m là
Hình vẽ minh họa
Xét trường hợp m = 1. Khi đó cả đều thuộc (P). Trong trường hợp này
(loại).
Khi . Ta tính toán các đại lượng:
Từ đó suy ra khác phía với (P) và
Gọi H là giao điểm của AB với (P).
Theo Thales ta có:
Áp dụng định lý Pythagore cho tam giác AEH ta có:
Phương trình này có hai nghiệm và tổng hai nghiệm đó bằng: .
Trong không gian
cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Cho hai điểm
. Mặt phẳng chứa đường thẳng
và song song với
có phương trình :
Theo đề bài ta có
cùng phương với vectơ
Mặt khác, trục có vectơ chỉ phương
cùng phương với vectơ
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa
và song song với trục
. Phương trình mặt phẳng này có dạng :
Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có:
Vậy phương trình mặt phẳng cần tìm :
Trong không gian với hệ tọa độ
cho ba điểm
và mặt phẳng
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất.
Trong không gian với hệ tọa độ cho ba điểm
và mặt phẳng
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất.
Trong không gian hệ trục tọa độ
, điểm nào dưới đây thuộc trục
?
Điểm . Suy ra trong bốn điểm đã cho điểm
.
Trong không gian với hệ tọa độ
, cho ba điểm
. Điểm
thuộc mặt phẳng
sao cho
đạt giá trị nhỏ nhất là:
Gọi G là trọng tâm của tam giác ABC.
Ta có:
Dễ thấy nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).
Dễ thấy .
Trong không gian với hệ tọa độ
, cho điểm
và hai đường thẳng
. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm
, cắt
và vuông góc với
.
Gọi là đường thẳng đi qua điểm
, cắt
và vuông góc với
.
Giả sử .
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) chéo nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:
Suy ra (D) và (d) chéo nhau.
Trong không gian với hệ tọa độ
, cho điểm
và vectơ
. Viết phương trình mặt phẳng
đi qua điểm
và có vectơ pháp tuyến
.
Phương trình tổng quát của mặt phẳng (P) có dạng:
Trong không gian
, cho hai vectơ
. Tìm tất cả các giá trị của tham số
để
?
Ta có:
Vậy đáp án cần tìm là .
Trong không gian với hệ trục tọa độ
, cho đường thẳng
và mặt phẳng
. Điểm
nào dưới đây thuộc
và thỏa mãn khoảng cách từ
đến mặt phẳng
bằng
?
Vì A ∈ (d) nên ta có tọa độ điểm A(2a; −a; a − 1).
Khoảng cách từ A đến (P) là
Với
Trong không gian tọa độ
, cho vectơ
. Trong các vectơ dưới đây, vectơ nào không cùng phương với
?
Ta có: cùng phương với mọi vectơ
Lại có
Vậy vectơ không cùng phương với là
.
Cho hai đường thẳng: ![]()
và mặt phẳng
.
Hình chiếu của
theo phương của
lên mặt phẳng
có phương trình tổng quát:
Vectơ chỉ phương của Vectơ chỉ phương của
Phương trình của mặt phẳng chứa và có phương của
có dạng:
Điểm A (7, 3, 9) thuộc mặt phẳng này
=> D = -53
Giao tuyến của mặt phẳng này với mặt phẳng là hình chiếu của
theo phương của
lên
:
Trong không gian
, cho mặt phẳng
. Viết phương trình mặt phẳng
sao cho phép đối xứng qua mặt phẳng
biến mặt phẳng
thành mặt phẳng
.
Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là .
Ta có và
.
Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.
Ta có , (ảnh của A, B trùng với chính nó vì
).
Do C’ đối xứng với qua mặt phẳng Oxy, suy ra
Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:
Cho lập phương
có cạnh bằng
. Gọi
là trọng tâm tam giác
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Do G là trọng tâm tam giác suy ra
Trong không gian với hệ tọa độ
, cho tứ diện đều
có
với
. Tính
?
Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).
Ta có:
Đường thẳng đi qua G vuông góc với (ABC) có phương trình
Do đó
Mà
Vì
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
. Trong các đường thẳng sau, đường thẳng nào vuông góc với
.
Mặt phẳng có một vectơ pháp tuyến là
.
Đường thẳng có một vectơ chỉ phương là
Suy ra .
Cho hình chóp
có
và
. Góc giữa cặp vectơ
và
là:
Ta có:
Vậy góc giữa cặp vectơ và
là
.
Cho tam giác
vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.