Cho điểm
và mặt phẳng
. Xét điểm
thay đổi trên
, giá trị lớn nhất của
bằng:
Hình vẽ minh họa
Xét là điểm thỏa mãn
thế thì
hay .
Ta có
=
Dấu " " xảy ra khi
là hình chiếu của
lên
.
Cho điểm
và mặt phẳng
. Xét điểm
thay đổi trên
, giá trị lớn nhất của
bằng:
Hình vẽ minh họa
Xét là điểm thỏa mãn
thế thì
hay .
Ta có
=
Dấu " " xảy ra khi
là hình chiếu của
lên
.
Trong không gian hệ trục tọa độ
, cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ .
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Trong không gian
, cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Trong không gian
, đường thẳng đi qua hai điểm
và
có phương trình tham số là:
Ta có:
Đường thẳng đi qua hai điểm A(1; 2; −3) và B(2; −3; 1) có phương trình tham số là
Với t = −2, ta được M(3; −8; 5) thuộc đường thẳng AB. Khi đó, đường thẳng AB có phương trình tham số .
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Trong không gian với hệ tọa độ
, cho hai điểm
. Đường thẳng
đi qua tâm đường tròn nội tiếp tam giác
và vuông góc với mặt phẳng
. Hỏi
đi qua điểm nào dưới đây?
Ta có:
Gọi I là tâm đường tròn nội tiếp tam giác .
Phương trình đường thẳng
Đường thẳng ∆ đi qua điểm M(1; −1; 1).
Trong không gian với hệ tọa độ
cho ba điểm
và
là trực tâm tam giác
. Tính
?
Ta có:
Lại có:
Trong không gian hệ trục tọa độ
, cho
. Gọi
là trọng tâm tam giác
. Tính độ dài đoạn thẳng
?
Vì là trọng tâm tam giác
nên tọa độ điểm
hay
Vậy .
Trong không gian với hệ tọa độ
, cho mặt phẳng
cắt ba trục tọa độ
lần lượt tại ba điểm
. Lúc đó thể tích
của khối tứ diện
là:
Gọi lần lượt là giao của mặt phẳng
với ba trục tọa độ
.
Khi đó và tứ diện
có
đôi một vuông góc tại O.
Do đó
Trong không gian với hệ toạ độ
, cho điểm
, đường thẳng
và mặt phẳng
. Viết phương trình đường thẳng
qua
vuông góc với d và song song với
.
Đường thẳng có vec tơ chỉ phương
.
Mặt phẳng có vec tơ pháp tuyến
.
Đường thẳng ∆ vuông góc với nên vectơ chỉ phương
Đường thẳng ∆ song song với (P) nên
Ta có
Suy ra vec tơ chỉ phương của đường thẳng ∆ là
Vậy phương trình đường thẳng ∆ là .
Cho tứ diện
có
. Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:
Theo đề bài, ta có các vecto là
Có thể chọn làm một vectơ pháp tuyến cho mặt phẳng.
Phương trình mặt phẳng này có dạng .
Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên:
Vậy phương trình cần tìm .
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là
và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.
Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.
Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)
Ta có
OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0
⟺13906t - 76483 = 0 ⟺
Suy ra
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
Trong không gian
, cho mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại các điểm
(khác
). Viết phương trình mặt phẳng
sao cho
là trực tâm của tam giác
.
Hình vẽ minh họa
Ta có:
Ta có:
Vậy nên
nhận
làm vectơ pháp tuyến.
Do đi qua
nên
Cho hai điểm
và mặt phẳng
Mặt phẳng
chứa hai điểm A,B và vuông góc với mặt phẳng
có phương trình:
Theo đề bài, ta có: ;
Suy ra ;
có vectơ pháp tuyến
Ta có cùng phương với vectơ
Chọn làm 1 vectơ pháp tuyến cho mặt phẳng
.
Phương trình mặt phẳng có dạng:
Mặt phẳng :
Trong không gian
, cho điểm
. Tính độ dài đoạn thẳng
?
Ta có:
Đường thẳng (d):
có phương trình tham số là:
Ta có đường thẳng (d) qua A ( 2, -1, 4) và có vectơ chỉ phương là có phương trình tham số là:
=> (d)
Biết rằng
và
. Tính
?
Ta có:
Trong không gian
, cho vectơ
. Xét sự đúng sai của các khẳng định sau:
a) Tọa độ của điểm
là
. Đúng||Sai
b) Gọi
thỏa mãn
nhận
làm trọng tâm. Khi đó
. Đúng||Sai
c) Nếu
thẳng hàng thì tổng
. Đúng||Sai
d) Cho
để
vuông cân tại
. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng
Trong không gian , cho vectơ
. Xét sự đúng sai của các khẳng định sau:
a) Tọa độ của điểm là
. Đúng||Sai
b) Gọi thỏa mãn
nhận
làm trọng tâm. Khi đó
. Đúng||Sai
c) Nếu thẳng hàng thì tổng
. Đúng||Sai
d) Cho để
vuông cân tại
. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng
a) Ta có:
Tọa độ của điểm là
.
b) G là trọng tâm tam giác ABC
c) Ta có:
Ba điểm A, B, M thằng hàng khi và chỉ khi
Suy ra
d) Ta có:
Ta có ∆ABN vuông cân tại A
Từ (*)
Từ (**)
Vậy
Trong không gian tọa độ
cho ba điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành
Minh họa bằng hình vẽ sau:
Ta có .
là hình bình hành
.
Vậy .