Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian với hệ tọa độ
, cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Vì M ∈ (Oxy) nên .
Gọi G là trọng tâm của tam giác ABC.
Ta có G(2; 1; 3).
Khi đó:
Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).
Vậy P = 3
Trong không gian
, cho mặt phẳng
. Đường thẳng
vuông góc với mặt phẳng
có một vectơ chỉ phương có tọa độ là:
Mặt phẳng có một vectơ pháp tuyến là
.
Do nên vectơ
cũng là một vectơ chỉ phương của
.
Trong không gian với hệ tọa độ
, cho hai điểm
. Độ dài của đoạn
là
Ta có:
khi đó độ dài đoạn
bằng:
Trong không gian
, cho tọa độ ba điểm
. Góc giữa hai đường thẳng
và
là
Ta có: .
Trong không gian với hệ toạ độ
, cho hai điểm
. Gọi
là mặt phẳng đi qua
sao cho khoảng cách từ
đến
là lớn nhất. Khi đó, khoảng cách
từ
đến mặt phẳng
bằng bao nhiêu?
Trong không gian với hệ toạ độ , cho hai điểm
. Gọi
là mặt phẳng đi qua
sao cho khoảng cách từ
đến
là lớn nhất. Khi đó, khoảng cách
từ
đến mặt phẳng
bằng bao nhiêu?
Cho hình hộp
. Điểm
được xác định bởi đẳng thức vectơ
. Mệnh đề nào sau đây đúng?
Gọi
Khi đó
Ta có:
Tương tự ta cũng có:
Từ đó suy ra
Vậy điểm M cần tìm là trung điểm của .
Trong không gian với hệ tọa độ
, cho bốn điểm
,
và M thay đổi sao cho hình chiếu của M lên mặt phẳng
nằm trong tam giác ABC và các mặt phẳng
hợp với mặt phẳng
các góc bằng nhau. Tính giá trị nhỏ nhất của OM.
Hình vẽ minh họa
Gọi H là hình chiếu của M lên mặt phẳng (ABC).
Giả thiết suy ra H là tâm đường tròn nội tiếp tam giác ABC nên thỏa mãn
Ta có , suy ra
Phương trình đường thẳng MH nhận làm vectơ chỉ phương nên MH là:
Khi đó:
Trong không gian với hệ tọa độ
, cho đường thẳng
và hai điểm
. Tìm điểm
thuộc
sao cho
vuông tại
.
Điểm thuộc đường thẳng
nên
.
Ta có và
.
Tam giác vuông tại
khi và chỉ khi
Khi đó tọa độ điểm .
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Viết phương trình mặt phẳng đi qua ba điểm
.
Ta có:
Theo giả thiết mặt phẳng cần tìm qua A(2; 0; −1) và nhận làm vectơ pháp tuyến.
Vậy phương trình mặt phẳng qua là
Cho tứ diện
. Gọi
lần lượt là trung điểm của
, các điểm
lần lượt nằm trên
sao cho
. Biết biểu diễn
. Tính tổng giá trị
?
Hình vẽ minh họa
Ta có:
Suy ra
Viết phương trình tổng quát của đường thẳng (d) qua A (2, 3, 1) cắt đường thẳng
và vuông góc đường thẳng ![]()
Lấy điểm nằm trên đường thẳng (d1).
Theo đề bài, ta có (d1) qua có vecto chỉ phương là
Ta có:
Vecto pháp tuyến của mặt phẳng (P) chứa A và
(1)
Xét tiếp đường thẳng có vecto chỉ phương của là vecto pháp tuyến của mặt phẳng qua A và vuông góc với . Ta có phương trình mp (Q) là
(2)
Từ (1) và (2) ta suy ra:
Cho ba điểm
.
Tìm điểm N trên
cách đều A và B.
Gọi trên
Ta có
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Tìm giá trị tham số
để
?
Theo bài ra ta có:
Vậy đáp án cần tìm là .
Trong không gian
, cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian
cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Trong không gian với hệ trục tọa độ
, giao điểm của mặt phẳng
và đường thẳng
là:
Gọi là giao điểm của đường thẳng d và mặt phẳng (P).
Ta có:
Suy ra .
Trong không gian với hệ tọa độ
, cho ba điểm
. Đường thẳng
đi qua
và song song với
có phương trình là:
Một vectơ chỉ phương của đường thẳng ∆ là
Vậy phương trình tham số của đường thẳng ∆ là .
Cho hai điểm
. Viết phương trình tổng quát của mặt phẳng
vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp
bằng
đvtt.
Vecto pháp tuyến của
Phương trình
cắt 3 trục tọa độ tại
Thể tích hình chóp là:
Trong không gian với hệ trục tọa độ
, cho tứ diện
có
. Trên các cạnh
lần lượt lấy các điểm
sao cho
. Viết phương trình mặt phẳng
biết tứ diện
có thể tích nhỏ nhất.
Trong không gian với hệ trục tọa độ , cho tứ diện
có
. Trên các cạnh
lần lượt lấy các điểm
sao cho
. Viết phương trình mặt phẳng
biết tứ diện
có thể tích nhỏ nhất.