Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian hệ trục tọa độ
, cho tọa độ ba điểm
thẳng hàng. Khi đó giá trị của biểu thức
là:
Ta có: . Vì A; B; C thẳng hàng nên
cùng phương
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) song song khi và chỉ khi:
Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:
và (d) cùng nằm trong một mặt phẳng
Để (D) và d song song, ta sẽ xét tỉ số chứng minh chúng cùng phương rồi kiểm tra rằng d không nằm trong (D):
và (d) cùng phương
và
và (d) song song.
Trong không gian với hệ tọa độ
, cho tứ diện đều
có
với
. Tính
?
Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).
Ta có:
Đường thẳng đi qua G vuông góc với (ABC) có phương trình
Do đó
Mà
Vì
Trong không gian với hệ tọa độ Oxyz, cho hai điểm
và mặt phẳng
. Gọi M là điểm thuộc (P) sao cho
vuông tại M . Khoảng cách từ M đến (Oxy) bằng:
Ta có: suy ra M thuộc mặt cầu (S) đường kính AB.
Gọi I là trung điểm AB , khi đó và
.
Ta tính được suy ra (P) và mặt cầu (S) tiếp xúc nhau hay M là tiếp điểm của (P) và (S). Vậy M là hình chiếu của I trên (P) .
Phương trình đường thẳng qua I và vuông góc với (P) là:
Tọa độ của M là nghiệm của hệ phương trình:
suy ra .
Suy ra .
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian tọa độ
, hình chiếu vuông góc của điểm
trên trục
có tọa độ là:
Hình chiếu vuông góc của điểm trên trục
là điểm có tọa độ
.
Trong không gian với hệ trục tọa độ
, cho điểm
và mặt phẳng
. Gọi
là hình chiếu vuông góc của
lên
. Tìm tọa độ điểm
?
Vì H là hình chiếu vuông góc của M lên (P) nên
Điểm H thuộc mặt phẳng (P) nên ta có phương trình:
Điều kiện cần và đủ để ba vectơ
không đồng phẳng là:
Ba vectơ đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.
Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng
và vuông góc với mặt phẳng ![]()
Theo đề bài, qua giao tuyến của hai mặt phẳng
nên
có dạng là
Chọn làm vectơ pháp tuyến của
, ta có:
Cho hai điểm
và vectơ
. Mặt phẳng chứa hai điểm A, B và song song với vectơ
có phương trình:
Theo đề bài, ta có:
Như vậy, và
sẽ là cặp vectơ chỉ phương của
Chọn làm vectơ pháp tuyến của
Phương trình mặt phẳng có dạng
Mặt khác, vì điểm nên thay tọa độ điểm A vào phương trình mặt phẳng
được:
Vậy có phương trình là:
Trong không gian với hệ tọa độ
, phương trình chính tắc của đường thẳng
đi qua điểm
có vectơ chỉ phương
là:
Phương trình đường thẳng đi qua điểm có vectơ chỉ phương
nên có phương trình:
.
Cho hình lập phương
có cạnh bằng
. Tính tích vô hướng
?
Hình vẽ minh họa
Ta có: nên
Suy ra
Trong không gian
, tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm đến mặt phẳng
là:
Trong không gian
, cho hai điểm
,
, tọa độ điểm
thuộc trục
sao cho
thẳng hàng là
Vì điểm thuộc trục
nên
có tọa độ
.
Ta có ;
thẳng hàng
cùng phương
Vậy điểm .
Trong không gian với hệ tọa độ
, cho hai đường thẳng ![]()
?
Gọi lần lượt là vectơ chỉ phương của d1 và d2 ta chọn
Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn suy ra
Khi đó và
. Do đó (d1) và (d2) chéo nhau.
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức
. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.
Ta có
Từ giả thiết
Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm và mặt cầu tâm
Dễ thấy
Trong không gian với hệ tọa độ
, cho mặt phẳng
có phương trình
. Gọi
lần lượt là giao điểm của mặt phẳng
với các trục tọa độ
. Tính thể tích
của khối chóp
.
Ta có:
cắt các trục tọa độ tại
Do đôi một vuông góc nên
Cho tứ giác ABCD có
. Viết phương trình của mặt phẳng (P) qua A, B và chia tứ diện thành hai khối ABCE và ABDE có tỉ số thể tích bằng 3.

Theo đề bài, ta có mp (P) cắt cạnh CD tại E, E chia đoạn CD theo tỷ số -3
Từ đó, ta suy ra:
Như vậy, VTPT mp (P) là: