Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 2;3;1),B(4;2; - 1),C(5; - 2;0). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD. Khi đó giá trị biểu thức H = 2a + b + c có giá trị bằng bao nhiêu?

    Gọi tọa độ điểm D(a;b;c)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (6; - 1; - 2) \\
\overrightarrow{DC} = (5 - a; - 2 - b; - c) \\
\end{matrix} ight.

    Ta có: ABCM là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
5 - a = 6 \\
- 2 - b = - 1 \\
- c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
c = 2 \\
\end{matrix} ight. suy ra điểm D( - 1; - 1;2)

    Khi đó H = 2a + b + c = 2.( - 1) - 1 + 2
= - 1.

  • Câu 2: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Giả sử điểm C'(a;b;c). Tính giá trị biểu thức T=a+b+2c?

    Gọi điểm C'(x;y;z)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +2\overrightarrow{j} + 0.\overrightarrow{k} \\\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +0.\overrightarrow{j} + 1.\overrightarrow{k} \\\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +2\overrightarrow{j} + 3\overrightarrow{k} \\\end{matrix} ight.

    \overrightarrow{AB} +\overrightarrow{AD} + \overrightarrow{AA'} =\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =10\overrightarrow{i} + 4\overrightarrow{j} +4\overrightarrow{k}

    Suy ra \left\{ \begin{matrix}x = 10 + 3 \\y = 4 - 0 \\z = 4 - 0 \\\end{matrix} ight.\  \Rightarrow C'(13;4;4) suy ra a=13;b=4;c=4

    Vậy  T=25

  • Câu 3: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân

    giác trong góc A là \frac{x}{1}=\frac{y-6}{-4}=\frac{z-6}{-3}.  Biết rằng điểm M(0; 5; 3) thuộc đường thẳng AB và điểm N(1;1;0)thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?

    Giả sử , A(t; 6-4t; 6-3t), ta có:

    \vec{u_d}=(1; -4; -3),

    \vec{AM}=(-t;4t-1;-3+3t)

    \vec{AN}=(1-t;-5+4t;3t-6)

    Theo bài ra: Vì d là đường phân giác của góc A nên:

    \left | \cos(\vec{u_d}, \vec{AM}) ight |= \left | \cos(\vec{u_d}, \vec{AN}) ight |

    \Leftrightarrow \dfrac{\left | 26t-13 ight |}{\sqrt{26t^2 -26t+10} } =\dfrac{\left | 26t-39 ight |}{\sqrt{26t^2 -78t+62} }

    \Leftrightarrow \dfrac{\left | 2t-1 ight |}{\sqrt{13t^2 -13t+5} } =\dfrac{\left | 2t-3 ight |}{\sqrt{13t^2 -39t+31} }

    Từ đây ta bình phương 2 vế được:

    (4t^2-4t+1)(13t^2-39t+31)=(4t^2-12t+9)(13t^2-13t+5)

    \Leftrightarrow 14t=14

    \Leftrightarrow t=1

    \Rightarrow A(1;2;3)\Rightarrow \vec{AN}=(0; -1; -3)

    Vậy một véc tơ chỉ phương của AC  là  \vec{u}(0;1;3).

  • Câu 4: Thông hiểu

    Trong không gian tọa độ Oxyz, góc giữa hai vectơ \overrightarrow{i}\overrightarrow{u} = \left( - \sqrt{3};0;1
ight) là:

    Ta có: \overrightarrow{i} =
(1;0;0)

    \Rightarrow \cos\left(
\overrightarrow{i};\overrightarrow{u} ight) =
\frac{\overrightarrow{i}.\overrightarrow{u}}{\left| \overrightarrow{i}
ight|.\left| \overrightarrow{u} ight|} = \frac{1.\left( - \sqrt{3} +
0.0 + 0.1 ight)}{1.\sqrt{\left( - \sqrt{3} ight)^{2} + 0^{2} +
1^{2}}} = \frac{- \sqrt{3}}{2}

    \Rightarrow \left(
\overrightarrow{i};\overrightarrow{u} ight) = 150^{0}

  • Câu 5: Vận dụng

    Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi \alpha ,\,\,\beta ,\,\,\gamma lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là ( OH = p):

    Theo đề bài, ta có: H\left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight) \Rightarrow \overrightarrow {OH}  = \left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight)

    Gọi M\left( {x,y,z} ight) \in \left( P ight)

    \Rightarrow \overrightarrow {HM}  = \left( {x - p\cos \alpha ,y - p\cos \beta ,z - c\cos \gamma } ight)

    Ta có:

    \overrightarrow {OH}  \bot \overrightarrow {HM}

    \Leftrightarrow \left( {x - p\cos \alpha } ight)p\cos \alpha  + \left( {y - p\cos \beta } ight)p\cos \beta  + \left( {z - p\cos \gamma } ight)p\cos \gamma \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,

    \Leftrightarrow \left( P ight):x\cos \alpha  + y\cos \beta  + z\cos \gamma  - p = 0

  • Câu 6: Vận dụng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 - t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{2} = \frac{y - m}{1} = \frac{z
+ 2}{- 1}, (với m là tham số). Tìm m để hai đường thẳng d_{1}d_{2} cắt nhau

    Ta có:

    d_{1} đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(1; - 1;2)

    d_{2} đi qua điểm M2(1; m; −2) và có vectơ chỉ phương \overrightarrow{u_{2}} = (2;1; - 1)

    Ta có: \left\{ \begin{matrix}
\left\lbrack \overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack
= ( - 1;5;3) \\
\overrightarrow{M_{1}M_{2}} = (0;m - 2; - 5) \\
\end{matrix} ight.

    d_{1}d_{2} cắt nhau \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0

    \Leftrightarrow - 1\ .0 + 5(m - 2) - 15
= 0 \Leftrightarrow m = 5

  • Câu 8: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm M(1;8;0),C(0;0;3) cắt các tia Ox,Oy lần lượt tại A;B sao cho OG nhỏ nhất, với G là trọng tâm tam giác ABC. Biết G(a;b;c), hãy tính T = a + b + c.

    Gọi A(m;0;0),B(0;n;0) với m,n > 0.

    Khi đó phương trình của (ABC):\frac{x}{m}
+ \frac{y}{n} + \frac{z}{3} = 1.

    M \in (ABC) nên \frac{1}{m} + \frac{8}{n} = 1. Kết hợp với điều kiện m > 0,n > 0 suy ra m > 1n > 8.

    Cũng từ trên ta có m = \frac{n}{n -
8}.

    Trọng tâm G của tam giác ABC có tọa độ \left( \frac{m}{3};\frac{n}{3};1
ight).

    OG^{2} = |\overrightarrow{OG}|^{2} =
\left( \frac{m}{3} ight)^{2} + \left( \frac{n}{3} ight)^{2} + 1^{2}
= \frac{1}{9}\left\lbrack \left( \frac{n}{n - 8} ight)^{2} + n^{2}
ightbrack + 1

    Xét hàm số f(n) = \left( \frac{n}{n - 8}
ight)^{2} + n^{2} với n >
8.

    Ta có f^{'}(n) = 2 \cdot \frac{n}{n -
8} \cdot \frac{- 8}{(n - 8)^{2}} + 2n = 2n\left\lbrack \frac{- 8}{(n -
8)^{3}} + 1 ightbrack.

    f^{'}(n) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 0 \\
n = 10 \\
\end{matrix} \Leftrightarrow n = 10 ight.

    Bảng biến thiên

    OG đạt giá trị nhỏ nhất khi và chỉ khi f(n) đạt giá trị nhỏ nhất. Điều này xảy ra khi n = 10; lúc đó m = 5G\left( \frac{5}{3};\frac{10}{3};1
ight).

    Vậy T = a + b + c = 6

  • Câu 9: Vận dụng

    Trong không gian Oxyz cho điểm H(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm H và cắt các trục tọa độ tại ba điểm phân biệt A;B;C sao cho H là trực tâm của tam giác ABC?

    Giả sử (P) cắt các trục tọa độ tại A(a;0;0),B(0;b;0),C(0;0;c);(abc eq
0)

    Khi đó (P):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2; - 3) \\
\overrightarrow{HB} = ( - 1;b - 2; - 3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. mà H là trực tâm của tam giác ABC nên

    \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = \overrightarrow{0} \\
\overrightarrow{HB}.\overrightarrow{AC} = \overrightarrow{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b - 3c = 0 \\
a - 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = 3c

    Mặt khác H \in (P) \Rightarrow
\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1 \Rightarrow \frac{1}{3c} +
\frac{4}{3c} + \frac{3}{c} = 1

    \Rightarrow 14 = 3c \Leftrightarrow c =
\frac{14}{3} \Leftrightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    \Rightarrow (P):\dfrac{x}{14} +\dfrac{y}{7} + \dfrac{z}{\dfrac{14}{3}} = 1 \Rightarrow (P):x + 2y + 3z -14 = 0

  • Câu 10: Thông hiểu

    Viết phương trình tổng quát của mặt phẳng (P) qua hai điểm E\left( {\,3,\,\, - 2,\,\,4\,} ight);\,\,\,F\left( {\,1,\,\,\,3,\,\,6\,} ight) và song song với trục y'Oy

     Vì  \left( P ight)//y'Oy \Rightarrow Vecto chỉ phương của (P)  là: \overrightarrow {{e_2}}  = \left( {0,1,0} ight)

    Theo đề bài, ta có vecto chỉ phương thứ hai của (P) là: \overrightarrow {EF}  = \left( { - 2,5,2} ight)
    Từ 2 VTCP, ta suy ra được VTPT của (P) là tích có hướng của 2 VTCT

    \Rightarrow \overrightarrow n  = \left[ {\overrightarrow {{e_2}} ,\overrightarrow {EF} } ight] = 2\left( {1,0,1} ight)

    Mp (P) đi qua E (3,-2,4) và nhận vecto \vec{n_p}(1, 0, 1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 3} ight).1 + \left( {y + 2} ight).0 + \left( {z - 4} ight).1

    \Leftrightarrow x + z - 7 = 0

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;0; - 2), B( - 2;3;4), ,\ C(4; - 6;1). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j}. Sai||Đúng

    b) \overrightarrow{AB} = (3\ ;\  - 3\
;\  - 6). Sai||Đúng

    c) Hình chiếu vuông góc của điểm B trên mặt phẳng tọa độ (Oxy) là điểm B( - 2\ ;\ 3\ ;\ 0). Đúng||Sai

    d) NếuABCD là hình bình hành thì tọa độ điểm D(1; -
3;7). Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;0; - 2), B( - 2;3;4), ,\ C(4; - 6;1). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j}. Sai||Đúng

    b) \overrightarrow{AB} = (3\ ;\  - 3\
;\  - 6). Sai||Đúng

    c) Hình chiếu vuông góc của điểm B trên mặt phẳng tọa độ (Oxy) là điểm B( - 2\ ;\ 3\ ;\ 0). Đúng||Sai

    d) NếuABCD là hình bình hành thì tọa độ điểm D(1; -
3;7). Sai||Đúng

    Ta có:

    A(1;0; - 2) \Rightarrow \overrightarrow{OA} =
\overrightarrow{i} + 0\overrightarrow{j} - 2\overrightarrow{k} \Rightarrow a) sai.

    \overrightarrow{AB} = \left( x_{B} -
x_{A}\ ;\ y_{B} - y_{A}\ ;\ z_{B} - z_{A} ight)

    \Rightarrow \overrightarrow{AB} = ( - 3\
;\ 3\ ;\ 6) \Rightarrow b) sai.

    c) đúng

    d) Gọi D(x;y;z),

    \overrightarrow{AB} = ( -
3;3;6), \overrightarrow{DC} = (4 -
x; - 6 - y;1 - z)

    ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
4 - x = - 3 \\
- 6 - y = 3 \\
1 - z = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 7 \\
y = - 9 \\
z = - 5 \\
\end{matrix} ight.

    \Rightarrow D(7\ ;\  - 9\ ;\  -
5).

    Vậy d) sai

  • Câu 12: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;2;0),B(2; - 1;1). Tìm tọa độ điểm C có hoành độ dương thuộc trục Ox sao cho tam giác ABC vuông tại C?

    Ta có: C có hoành độ dương thuộc trục Ox \Rightarrow C(x;0;0);x >
0

    Theo bài ra ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (x - 1; - 2;0) \\
\overrightarrow{BC} = (x - 2;1; - 1) \\
\end{matrix} ight. và tam giác ABC vuông tại C nên

    \Leftrightarrow
\overrightarrow{AC}.\overrightarrow{BC} = 0 \Leftrightarrow (x - 1)(x -
2) - 2 = 0

    \Leftrightarrow x^{2} - 3x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0(L) \\
x = 3(tm) \\
\end{matrix} ight.

    Vậy C(3;0;0)

  • Câu 13: Nhận biết

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 7}{1} = \frac{y - 3}{2} = \frac{z- 9}{- 1};d_{2}:\frac{x - 3}{- 1} = \frac{y - 1}{2} = \frac{z -1}{3}?

    Gọi \overrightarrow{u_{1}};\overrightarrow{u_{2}} lần lượt là vectơ chỉ phương của d1 và d2 ta chọn \overrightarrow{u_{1}} = (1;2; -
1);\overrightarrow{u_{2}} = ( - 1;2;3)

    Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn M_{1}(7;\ 3;\
9);M_{2}( - 1;2;3) suy ra \overrightarrow{M_{1}M_{2}} = ( - 8; - 1; -
6)

    Khi đó \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = (8; -
2;4)\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0. Do đó (d1) và (d2) chéo nhau.

  • Câu 15: Nhận biết

    Trong không gian Oxyz cho mặt phẳng (P):x + y - 2z + 4 = 0. Một vectơ pháp tuyến của mặt phẳng (P) là:

    Một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n} = (1;1; - 2).

  • Câu 16: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, điểm M(a;b;c) thuộc mặt phẳng (P):x + y + z - 6 = 0 và cách đều các điểm A(1;6;0),B( - 2;2; - 1),C(5; -
1;3). Tích T = a.b.c bằng

    Do M \in (P)MA^{2} = MB^{2} = MC^{2}, nên ta được hệ:

    \left\{ \begin{matrix}
a + b + c = 6 \\
(a - 1)^{2} + (b - 6)^{2} + c^{2} = (a + 2)^{2} + (b - 2)^{2} + (c +
1)^{2} \\
(a - 1)^{2} + (b - 6)^{2} + c^{2} = (a - 5)^{2} + (b + 1)^{2} + (c -
3)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a + b + c = 6 \\
3a + 4b + c = 14 \\
4a - 7b + 3c = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
\end{matrix} ight.\  \Rightarrow T = 6

  • Câu 17: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P):2x - 2y + z + 5 = 0. Tính khoảng cách từ điểm M( - 1;2; - 3) đến mặt phẳng (P)?

    Khoảng cách từ điểm M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{| - 2 - 4
- 3 + 5|}{\sqrt{9}} = \frac{4}{3}

  • Câu 18: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, đường thẳng đi qua điểm M(1;2;3) và song song với trục Oy có phương trình tham số là:

    Gọi d là đường thẳng cần tìm.

    Ta có d//Oy nên d có vectơ chỉ phương là \overrightarrow{u} = (0;1;0).

    Do đó \left\{ \begin{matrix}
x = 1 \\
y = 2 + t \\
z = 3 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 19: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 1;3),B( - 3;0; - 4). Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm AB?

    Ta có \overrightarrow{BA} = (4; -
1;7) là vectơ chỉ phương của đường thẳng AB. Phương trình chính tắc của đường thẳng AB là: \frac{x + 3}{4} = \frac{y}{- 1} = \frac{z +
4}{7}.

  • Câu 20: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 34 lượt xem
Sắp xếp theo