Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1;0)\overrightarrow{b} = ( - 1;0; -
2). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{-
2}{\sqrt{5}.\sqrt{5}} = - \frac{2}{5}

  • Câu 2: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Gọi N(x;y;z) là tọa độ của máy bay sau 10 phút tiếp theo.

    \overrightarrow{MQ} =
(400;200;2).

    \overrightarrow{NQ} = (1400 - x;800 -
y;16 - z).

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MQ}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ =
4NQ.

    Suy ra: \overrightarrow{MQ} =
4\overrightarrow{NQ}

    \Leftrightarrow \left\{ \begin{matrix}
400 = 4(1400 - x) \\
200 = 4(800 - y) \\
2 = 4(16 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1300 \\
y = 750 \\
z = 15,5 \\
\end{matrix} ight.

    \Rightarrow N(1300;750;15,5)

  • Câu 3: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3; - 1),B(1;2;4). Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng AB?

    Ta có \overrightarrow{BA} = (1;1; -
5)

    Vì điểm A(2;3; - 1) otin \frac{x +
2}{1} = \frac{y + 3}{1} = \frac{z - 1}{- 5} nên \frac{x + 2}{1} = \frac{y + 3}{1} = \frac{z - 1}{-
5} không phải là phương trình đường thẳng AB.

    Các đường thẳng còn lại đều có vectơ chỉ phương là (1; 1; −5) và đi qua điểm A(2; 3; −1) hoặc đi qua điểm B(1; 2; 4).

  • Câu 4: Vận dụng

    Trong không gian Oxyz, cho điểm M(3;2;1). Viết phương trình mặt phẳng đi qua M và cắt các trục x'Ox,\ y'Oy,\ z'Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC?

    Xét tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc với nhau.

    Ta có: \left\{
\begin{matrix}
AB\bot CM \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot(COM) \Rightarrow AB\bot
OM

    Chứng minh tương tự, ta được AC ⊥ OM.

    Từ đó OM ⊥ (ABC).

    Suy ra phương trình mặt phẳng (ABC) đi qua M(3; 2; 1) và nhận \overrightarrow{OM} = (3;2;1) làm vectơ pháp tuyến là:

    3(x - 3) + 2(y - 2) + z - 1 =
0

    \Leftrightarrow 3x + 2y + z - 14 = \
0

  • Câu 5: Nhận biết

    Tìm tọa độ trung điểm M của đoạn thẳng AB. Biết tọa độ hai điểm A(1;2;3)B(3; - 1;4).

    Ta có: M là trung điểm của AB nên tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M(2;1;3)

    Vậy đáp án đúng là: M(2;1;3).

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z
- 5}{4} và mặt phẳng (P):x - 3y +
2z - 5 = 0. Mệnh đề nào sau đây đúng?

    Ta có: d có vectơ chỉ phương là \overrightarrow{u} = (2; - 3;4), (P) có véc-tơ pháp tuyến là \overrightarrow{n} = (1; - 3;2).

    Do \overrightarrow{u} không cùng phương \overrightarrow{n} nên d cắt (P).

    Mặt khác \overrightarrow{u}.\overrightarrow{n} = 19 eq
0 nên d không vuông góc (P).

    Vậy d cắt nhưng không vuông góc với (P).

  • Câu 8: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho hai đường thẳng song song d:\left\{
\begin{matrix}
x = 2 - t \\
y = 1 + 2t \\
z = 4 - 2t \\
\end{matrix} ight.d':\frac{x - 4}{1} = \frac{y + 1}{- 2} =
\frac{z}{2}. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.

    Lấy M(2;1;4) \in d,N(4; - 1;0) \in
d'.

    Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.

    Phương trình đường thẳng cần tìm là: \frac{x - 3}{1} = \frac{y}{- 2} = \frac{z -
2}{2}

  • Câu 10: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(−1; 0; 1), B(1; 1; −1); C(5; 0; −2). Tìm tọa độ điểm H sao cho tứ giác ABCH lập thành hình thang cân với hai đáy AB, CH.

    Ta có \overrightarrow{AB} = (2;1; -
2);M\left( 0;\frac{1}{2};0 ight) là trung điểm AB.

    Gọi (α) là mặt phẳng trung trực của AB \Rightarrow (\alpha):2x + y - 2z - \frac{1}{2} =
0

    Gọi d là đường thẳng qua C và song song AB \Rightarrow d:\left\{ \begin{matrix}
x = 5 + 2t \\
y = t \\
z = - 2 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Gọi I là hình chiếu của C lên (α).

    Tọa độ I là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}x = 5 + 2t \\y = t \\z = - 2 - 2t \\2x + y - 2z - \dfrac{1}{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{3}{2} \\z = 1 \\t = - \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow I\left( 2; - \dfrac{3}{2};1ight)

    Do ABCH là hình thang cân nên H và C đối xứng nhau qua mp(α).

    ⇒ I là trung điểm CH

    ⇒ H(−1; −3; 4).

  • Câu 11: Thông hiểu

    Cho hình chóp OABCOA = OB = OC = 1, các cạnh OA;OB;OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vectơ \overrightarrow{OC};\overrightarrow{MA}.

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{OM}.\overrightarrow{BC}
= \frac{1}{2}\left( \overrightarrow{OA} + \overrightarrow{OB}
ight)\left( \overrightarrow{OC} - \overrightarrow{OB}
ight)

    =
\overrightarrow{OM}.\overrightarrow{BC} = - \frac{BC^{2}}{2} = -
\frac{1}{2}

    Như vậy:

    \cos\left(
\overrightarrow{OM};\overrightarrow{BC} ight) =
\frac{\overrightarrow{OM}.\overrightarrow{BC}}{\left|
\overrightarrow{OM} ight|.\left| \overrightarrow{BC} ight|} =
\frac{1}{2}:\frac{\sqrt{2}.\sqrt{2}}{2} = - \frac{1}{2}

    \Rightarrow \left(
\overrightarrow{OM};\overrightarrow{BC} ight) = 120^{0}

  • Câu 12: Thông hiểu

    Trong không gian Oxyz khoảng cách giữa hai mặt phẳng (P):x + 2y + 2z - 10
= 0(Q):x + 2y + 2z - 3 =
0 bằng:

    Dựa vào phương trình (P);(Q) có vectơ pháp tuyến là \overrightarrow{n} =
(1;2;2) nên (P)//(Q)

    Ta có: \left\{ \begin{matrix}\left| \overrightarrow{n} ight| = \sqrt{1^{2} + 2^{2} + 2^{2}} = 3 \\d\left( O;(P) ight) = \dfrac{10}{3} \\d\left( O;(Q) ight) = \dfrac{3}{3} = 1 \\\end{matrix} ight. suy ra d\left( (P);(Q) ight) = d\left( O;(P) ight) -
d\left( O;(Q) ight) = \frac{7}{3}

  • Câu 13: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
2}{2}. Tìm tọa độ hình chiếu vuông góc của M lên đường thẳng d.

    Gọi (P) là mặt phẳng đi qua M(2;0;1) và vuông góc với đường thẳng d.

    Suy ra (P) nhận \overrightarrow{u_{d}} =
(1;2;1) làm vectơ pháp tuyến.

    Phương trình mặt phẳng

    (P):(x - 2) + 2y + z - 1 =
0

    \Leftrightarrow x + 2y + z - 3 =
0.

    Gọi H là hình chiếu vuông góc của M lên đường thẳng d, suy ra H = d \cap (P).

    Tọa độ điểm H là nghiệm của hệ

    \left\{ \begin{matrix}\dfrac{x - 1}{1} = \dfrac{y}{2} = \dfrac{z - 2}{2} \\x + 2y + z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2x - y = 2 \\y - 2z = - 4 \\x + 2y + z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 1 \\y = 0 \\z = 2 \\\end{matrix} ight.

  • Câu 14: Nhận biết

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 15: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho ba mặt phẳng (P):x - 2y + z - 1 = 0,(Q):x - 2y + z + 8 =0,(R):x - 2y + z - 4 = 0. Một đường thẳng d thay đổi cắt ba mặt phẳng (P),(Q),(R) lần lượt tại A,B,C. Tìm giá trị nhỏ nhất của T = AB^{2} + \frac{144}{AC}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba mặt phẳng (P):x - 2y + z - 1 = 0,(Q):x - 2y + z + 8 =0,(R):x - 2y + z - 4 = 0. Một đường thẳng d thay đổi cắt ba mặt phẳng (P),(Q),(R) lần lượt tại A,B,C. Tìm giá trị nhỏ nhất của T = AB^{2} + \frac{144}{AC}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Nhận biết

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 17: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;6;0),B(0;0; - 2);C( - 3;0;0). Phương trình mặt phẳng (P) đi qua ba điểm A;B;C là:

    Phương trình mặt phẳng theo đoạn chắn \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Ta có \frac{x}{3} + \frac{y}{- 6} +
\frac{z}{2} = 1

    \Leftrightarrow - 2x + y - 3z =
6

    \Leftrightarrow 2x - y + 3z + 6 =
0

  • Câu 18: Thông hiểu

    Cho tứ diện ABCD và điểm G thỏa mãn \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0} (G là trọng tâm của tứ diện). Gọi G_{0} là giao điểm của GA và mặt phẳng (BCD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    G_{0} là giao điểm của GA và mặt phẳng (BCD) suy ra G_{0} là trọng tâm tam giác BCD suy ra \overrightarrow{G_{0}B} + \overrightarrow{G_{0}C}
+ \overrightarrow{G_{0}D} = \overrightarrow{0}

    Theo bài ra ta có: \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{GA} +
3\overrightarrow{GG_{0}} + \overrightarrow{G_{0}B} +
\overrightarrow{G_{0}C} + \overrightarrow{G_{0}D} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{GA} +
3\overrightarrow{GG_{0}} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{GA} = 3\overrightarrow{G_{0}G}

  • Câu 19: Thông hiểu

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tìm tọa độ của C để ABC là tam giác đều?

     Tam giác ABC đều

    \begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}AC = AB\\BC = AB\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} - 6x - 2y + 9 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 ight)\\{x^2} + {y^2} - 4x - 2y + 3 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 ight)\end{array} ight.\\\left( 2 ight) - \left( 1 ight):2x - 6 = 0 \Leftrightarrow x = 3 \Rightarrow {y^2} - 2y = 0 \Leftrightarrow y = 2 \vee y = 0\end{array}

    Suy ra tọa độ điểm C là có 2 nghiệm C thỏa mãn: 

    C\left( {3;2; - 1} ight);C'\left( {3;0; - 1} ight)

  • Câu 20: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(3; - 4;0),B( - 1;1;3),C(3;1;0). Xác định tọa độ điểm D \in Ox sao cho AD = BC?

    Ta có: D(x;0;0) \in Ox

    AD = BC \Leftrightarrow \sqrt{(x -
3)^{2} + 16} = 5

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow D(0;0;0) \\
x = 6 \Rightarrow D(6;0;0) \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: D(0;0;0) hoặc D(6;0;0)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo