Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai mặt phẳng \left( \alpha  ight):x + 5y - z + 1 = 0,\left( \beta  ight):2x - y + z + 4 = 0.

    Gọi \varphi là góc nhọn tạo bởi (\alpha)(\beta) thì giá trị đúng của cos \varphi là:

    Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:

    (\alpha) có vectơ pháp tuyến \overrightarrow a  = \left( {1,5, - 2} ight)

    (\beta) có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1,1} ight)

    Áp dụng công thức tính cosin giữa 2 vecto, ta có:

    \cos \varphi  = \frac{{\left| {1.2 + 5\left( { - 1} ight) + \left( { - 2} ight).1} ight|}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} ight)}^2}} .\sqrt {{2^2} + {{\left( { - 1} ight)}^2} + {1^2}} }} = \frac{{\sqrt 5 }}{6}

  • Câu 2: Nhận biết

    Biết rằng \overrightarrow{a} =
(0;1;3)\overrightarrow{b} = ( -
2;3;1). Tính \overrightarrow{x} =3\overrightarrow{a} + 2\overrightarrow{b}?

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{a} = (0;3;9) \\
2\overrightarrow{b} = ( - 4;6;2) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
3\overrightarrow{a} + 2\overrightarrow{b} = ( - 4;9;11)

  • Câu 3: Thông hiểu

    Cho hai điểm C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight). Mặt phẳng chứa đường thẳng CD và song song với Oz có phương trình :

    Theo đề bài ta có C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight)

    \Rightarrow \overrightarrow {CD}  = \left( {3, - 9,3} ight) cùng phương với vectơ \overrightarrow a  = \left( {1, - 3,1} ight)

    Mặt khác, trục Oz có vectơ chỉ phương \overrightarrow k  = \left( {0,0,1} ight)

    \Rightarrow \left[ {\overrightarrow a ,\overrightarrow k } ight] = \left( { - 3, - 1,0} ight) cùng phương với vectơ \overrightarrow n  = \left( {3,1,0} ight)

    Chọn \overrightarrow n  = \left( {3,1,0} ight) làm vectơ pháp tuyến cho mặt phẳng chứa CD và song song với trục Oz. Phương trình mặt phẳng này có dạng : 3x + y + D = 0

    Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có: 

    - 3 + 4 + D = 0 \Leftrightarrow D =  - 1

    Vậy phương trình mặt phẳng cần tìm : 3x + y - 1 = 0

  • Câu 4: Nhận biết

    Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A\left( {\,2,\,\,0,\,\,3\,} ight);\,\,\,B\left( {\,4,\,\, - 3,\,\,2\,} ight);\,\,\,C\left( {\,0,\,\,2,\,\,5\,} ight)

    Theo đề bài, ta có cặp vecto chỉ phương của \left( P ight):\overrightarrow {AB}  = \left( {2, - 3, - 1} ight);\overrightarrow {AC}  = \left( { - 2,2,2} ight)

    Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của

    \left( P ight):\overrightarrow n  = \left( { - 4, - 2, - 2} ight) =  - 2\left( {2,1,1} ight)

    Mp (P) đi qua A (2,0,3) và nhận vecto có tọa độ (2,1,1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 2} ight)2 + y.1 + \left( {z - 3} ight).1 = 0

    \Leftrightarrow 2x + y + z - 7 = 0

  • Câu 5: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 6: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{1} = \frac{y + 2}{1} = \frac{z- 3}{- 1},d_{2}:\frac{x}{1} = \frac{y - 1}{2} = \frac{z - 6}{3} chéo nhau. Viết phương trình đường vuông góc chung của d_{1},d_{2}.

    Đường thẳng d_{1},d_{2} lần lượt có vectơ chỉ phương là \overrightarrow{u_{1}} = (1;1; -
1),\overrightarrow{u_{2}} = (1;2;3)

    Giả sử ∆ giao với d_{1},d_{2} lần lượt tại \left\{ \begin{matrix}
A(1 + s; - 2 + s;3 - s) \\
B(t;1 + 2t;6 + 3t) \\
\end{matrix} ight., khi đó ta có \overrightarrow{AB} = ( - 1 - s + t;3 - s + 2t;3 +
s + 3t)

    Do ∆ là đường vuông góc chung, suy ra:

    \left\{ \begin{matrix}
\overrightarrow{u_{1}}.\overrightarrow{AB} = 0 \\
\overrightarrow{u_{2}.}\overrightarrow{AB} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
1( - 1 - s + t) + 1(3 - s + 2t) - 1(3 + s + 3t) = 0 \\
1( - 1 - s + t) + 2(3 - s + 2t) + 3(3 + s + 3t) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- 3s = 1 \\14t = - 14 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}s = - \dfrac{1}{3} \\t = - 1 \\\end{matrix} ight.

    Đường vuông góc chung của d_{1},d_{2} nhận \overrightarrow{AB} = \left( -
\frac{5}{3};\frac{4}{3}; - \frac{1}{3} ight) làm VTCP và đi qua điểm B( - 1; - 1;3)

    Vậy ta có phương trình đường thẳng: \frac{x + 1}{5} = \frac{y + 1}{- 1} = \frac{z -
3}{1}

  • Câu 7: Thông hiểu

    Cho tứ diện SABCSA = SB = SC = AB = AC = aBC = a\sqrt{2}. Tính góc giữa hai đường thẳng SCAB?

    Hình vẽ minh họa

    Ta có: \left(\overrightarrow{SA};\overrightarrow{AB} ight) = 120^{0}; AC^{2} + AB^{2} = BC^{2} suy ra AC\bot AB. Ta có:

    \cos\left(\overrightarrow{SC};\overrightarrow{AB} ight) =\frac{\overrightarrow{SC}.\overrightarrow{AB}}{\left|\overrightarrow{SC} ight|.\left| \overrightarrow{AB} ight|} =\frac{\left( \overrightarrow{SA} + \overrightarrow{AC}ight).\overrightarrow{AB}}{\left| \overrightarrow{SC} ight|.\left|\overrightarrow{AB} ight|}

    =\dfrac{\overrightarrow{SA}.\overrightarrow{AB} +\overrightarrow{AC}.\overrightarrow{AB}}{a^{2}} = \dfrac{-\dfrac{a^{2}}{2} + 0}{a^{2}} = - \dfrac{1}{2}

    \Rightarrow \left(\overrightarrow{SC};\overrightarrow{AB} ight) = 120^{0}. Vậy góc giữa hai đường thẳng cần tìm là 180^{0}- 120^{0} = 60^{0}

  • Câu 8: Thông hiểu

    Trong không gian Oxyz, cho A(1;2;0),B(3; - 1;1),C(1;1;1). Tính diện tích tam giác ABC?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3;1) \\
\overrightarrow{AC} = (0; - 1;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 2; - 2; -
2)

    Lại có diện tích tam giác ABC là:

    S_{ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\sqrt{3}

  • Câu 9: Vận dụng

    Trong không gian Oxyz, cho hai điểm A(1;2; - 1),B(3;0;3). Biết mặt phẳng (P) đi qua điểm A và cách B một khoảng lớn nhất. Phương trình mặt phẳng (P)

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.

    Ta có BH ≤ AB.

    Dấu “=” xảy ra ⇔ H ≡ A

    ⇒ BHmax = AB khi AB ⊥ (P).

    Ta có:

    \left\{ \begin{matrix}
AB\bot(P) \\
A \in (P) \\
\end{matrix} ight.\  \Rightarrow (P):2x - 2y + 4z + 6 = 0

    \Leftrightarrow x - y + 2z + 3 =
0

  • Câu 10: Nhận biết

    Cho 3 vectơ \vec a,\,\,\vec b,\,\,\,\vec c đều khác \vec{0}. Ba vectơ \vec a,\,\,\vec b,\,\,\,\vec c đồng phẳng khi và chỉ khi (có thể chọn 2 đáp án):

    Áp dụng Điều kiện để 3 vecto đồng phẳng là:

    \vec a,\,\,\vec b,\,\,\,\vec c cùng vuông góc với \vec{d} eq  \vec{0} và có giá vuông góc với mp(P)

  • Câu 11: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ).

    Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Đúng||Sai

    b) \overrightarrow{AC'} =
\overrightarrow{AD} + \overrightarrow{AB} +
\overrightarrow{AA'}. Đúng||Sai

    c) \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) =
45^{\circ}. Đúng||Sai

    d) \overrightarrow{AC}.\overrightarrow{B'C'}
= \frac{\sqrt{2}a^{2}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ).

    Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Đúng||Sai

    b) \overrightarrow{AC'} =
\overrightarrow{AD} + \overrightarrow{AB} +
\overrightarrow{AA'}. Đúng||Sai

    c) \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) =
45^{\circ}. Đúng||Sai

    d) \overrightarrow{AC}.\overrightarrow{B'C'}
= \frac{\sqrt{2}a^{2}}{2}. Sai||Đúng

    a) Vì ABCD là hình bình hành nên \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC}.

    b) Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{AD} +
\overrightarrow{AB} + \overrightarrow{AA'} =
\overrightarrow{AC'}.

    c) Vì \overrightarrow{B'C'} =
\overrightarrow{AD} nên \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC},\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}.

    d) Tam giác ADC vuông tại D nên AC =
\sqrt{AD^{2} + DC^{2}} = \sqrt{2}a.

    Ta có

    \overrightarrow{AC}.\overrightarrow{B'C'}
= \left| \overrightarrow{AC} ight|.\left|
\overrightarrow{B'C'} ight|.cos\left(
\overrightarrow{AC},\overrightarrow{B'C'} ight)

    = \sqrt{2}a.a.cos45^{0} =
a^{2}.

  • Câu 12: Thông hiểu

    Cho hình hộp chữ nhật ABCD.EFGHAB = AE = 2,AD = 3 và đặt \overrightarrow{a} =
\overrightarrow{AB},\overrightarrow{b} =
\overrightarrow{AD},\overrightarrow{c} = \overrightarrow{AE}. Lấy điểm M thỏa \overrightarrow{AM} =
\frac{1}{5}\overrightarrow{AD} và điểm N thỏa \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC}. (Quan sát hình vẽ).

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MA} = -
\frac{1}{5}\overrightarrow{b} Đúng||Sai

    b) \overrightarrow{EN} =
\frac{2}{5}\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} ight) Sai||Đúng

    c) \left( m\overrightarrow{a} +
n\overrightarrow{b} + p\overrightarrow{c} ight)^{2} =
m^{2}\overrightarrow{a^{2}} + n^{2}\overrightarrow{b^{2}} +
p^{2}\overrightarrow{c^{2}}, với m;n;p là các số thực. Đúng||Sai

    d) MN = \frac{\sqrt{61}}{5}. Đúng||Sai

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.EFGHAB = AE = 2,AD = 3 và đặt \overrightarrow{a} =
\overrightarrow{AB},\overrightarrow{b} =
\overrightarrow{AD},\overrightarrow{c} = \overrightarrow{AE}. Lấy điểm M thỏa \overrightarrow{AM} =
\frac{1}{5}\overrightarrow{AD} và điểm N thỏa \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC}. (Quan sát hình vẽ).

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MA} = -
\frac{1}{5}\overrightarrow{b} Đúng||Sai

    b) \overrightarrow{EN} =
\frac{2}{5}\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} ight) Sai||Đúng

    c) \left( m\overrightarrow{a} +
n\overrightarrow{b} + p\overrightarrow{c} ight)^{2} =
m^{2}\overrightarrow{a^{2}} + n^{2}\overrightarrow{b^{2}} +
p^{2}\overrightarrow{c^{2}}, với m;n;p là các số thực. Đúng||Sai

    d) MN = \frac{\sqrt{61}}{5}. Đúng||Sai

    a) Đúng: Ta có

    \overrightarrow{MA} = -
\overrightarrow{AM} = - \frac{1}{5}\overrightarrow{AD} = -
\frac{1}{5}\overrightarrow{b}

    b) Sai:

    \overrightarrow{EN} =
\frac{2}{5}\overrightarrow{EC} = \frac{2}{5}(\overrightarrow{EF} +
\overrightarrow{EH} + \overrightarrow{EA}) =
\frac{2}{5}(\overrightarrow{a} + \overrightarrow{b} -
\overrightarrow{c})

    c) Đúng:

    (m.\overrightarrow{a} +n.\overrightarrow{b} + p.\overrightarrow{c})^{2} =m^{2}.{\overrightarrow{a}}^{2} + n^{2}.{\overrightarrow{b}}^{2}+p^{2}.{\overrightarrow{c}}^{2} +2mn.\overrightarrow{a}.\overrightarrow{b}+2np\overrightarrow{b}.\overrightarrow{c} +2mp.\overrightarrow{a}.\overrightarrow{c}= m^{2}.{\overrightarrow{a}}^{2} +
n^{2}.{\overrightarrow{b}}^{2} + p^{2}.{\overrightarrow{c}}^{2}

    (vì \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đôi một vuông góc nên \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{b}.\overrightarrow{c} =
\overrightarrow{a}.\overrightarrow{c} = 0).

    Ta có

    \overrightarrow{MN} =\overrightarrow{MA} + \overrightarrow{AE} + \overrightarrow{EN}

    = -\frac{1}{5}\overrightarrow{b} + \overrightarrow{c} +\frac{2}{5}(\overrightarrow{a} + \overrightarrow{b} -\overrightarrow{c})

    = \frac{2}{5}\overrightarrow{a} +\frac{1}{5}\overrightarrow{b} +\frac{3}{5}\overrightarrow{c}.

    d) Đúng:

    MN^{2} =
{\overrightarrow{MN}}^{2} = \left( \frac{2}{5}\overrightarrow{a} +
\frac{1}{5}\overrightarrow{b} + \frac{3}{5}\overrightarrow{c}
ight)^{2}

    = \frac{4}{25}{\overrightarrow{a}}^{2} +\frac{1}{25}{\overrightarrow{b}}^{2} +\frac{9}{25}{\overrightarrow{c}}^{2}= \frac{4}{25}.4 + \frac{1}{25}.9 +\frac{9}{25}.4 = \frac{61}{25}

    Suy ra MN =
\frac{\sqrt{61}}{5}.

  • Câu 13: Vận dụng

    Trong không gian Oxyz, cho vectơ \vec a hợp với \overrightarrow {Ox} góc 60^0, hợp với \overrightarrow {Oz} góc 60^0 . Tính góc hợp bởi \vec a\overrightarrow {Oy}.

    Gọi \alpha  = {60^0},\beta  và  \gamma  = {60^0} lần lượt là các góc hợp bởi \vec a với ba trục \overrightarrow {Ox} ,\overrightarrow {Oy} ,\overrightarrow {Oz}. Đặt \left| {\overrightarrow a } ight| = a

    Ta có:

    \overrightarrow a  = \left( {a\cos {{60}^0};a\cos \beta ;a\cos {{60}^0}} ight)

    \Rightarrow {\left| {\overrightarrow a } ight|^2} = {a^2} = {a^2}\left( {{{\cos }^2}{{60}^0} + {{\cos }^2}\beta  + {{\cos }^2}{{60}^0}} ight)

       \Leftrightarrow \dfrac{1}{4} + {\cos ^2}\beta  + \dfrac{1}{4} = 1

       \Leftrightarrow {\cos ^2}\beta  = \dfrac{1}{2}

       \Rightarrow \cos \beta  =  \pm \frac{{\sqrt 2 }}{2} \Rightarrow \beta  = {45^0} \vee \beta  = {135^0}

  • Câu 14: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P):x - 2y - 3z - 2 = 0. Đường thẳng d vuông góc với mặt phẳng (P) có một vectơ chỉ phương có tọa độ là:

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 2; -
3).

    Do d\bot(P) nên vectơ \overrightarrow{n} = (1; - 2; - 3) cũng là một vectơ chỉ phương của d.

  • Câu 15: Thông hiểu

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình chính tắc của cạnh AB.

    (AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:  \overrightarrow {AB}  = \left( {1, - 3,7} ight)

    (AB) đi qua A (1, 2, -3) và nhận vecto \overrightarrow {AB}  = \left( {1, - 3,7} ight) làm 1 VTCP có phương trình chính tắc là:

     \begin{array}{l}AB:x - 1 = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{7}\\ \Leftrightarrow {m{ }}x - 2 = \frac{{y + 1}}{{ - 3}} = \frac{{z - 4}}{7}\\ \Leftrightarrow \,\,x - 1 = \frac{{2 - y}}{3} = \frac{{z + 3}}{7}\end{array}

  • Câu 16: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Điểm G là điểm thỏa mãn \overrightarrow{GS} + \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O là tâm hình bình hành ABCD suy ra \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    Ta có:

    \overrightarrow{GS} +
\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} +
\overrightarrow{GD} = \overrightarrow{GS} + 4\overrightarrow{GO} +
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{GS} +
4\overrightarrow{GO} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{GS} = 4\overrightarrow{OG} suy ra ba điểm G;S;O thẳng hàng.

  • Câu 18: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(0;0;1),B( - 3;2;0),C(2; - 2;3). Đường cao kẻ từ B của tam giác ABC đi qua điểm nào trong các điểm sau?

    Ta có: \overrightarrow{AB} = ( -
3;2;1),\overrightarrow{AC} = (2; - 2;2)

    \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(2;4;2)

    Một vectơ chỉ phương của đường cao kẻ từ B của tam giác ABC\overrightarrow{u} = \frac{1}{12}.\left\lbrack
\overrightarrow{n};\overrightarrow{AC} ightbrack = (1;0; -
1)

    Phương trình đường cao kẻ từ B là: \left\{ \begin{matrix}
x = - 3 + t \\
y = 2 \\
z = - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Ta thấy điểm P( - 1;2; - 2) thuộc đường thẳng trên.

  • Câu 19: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(4;9;1), phương trình mặt phẳng (\alpha):\frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1 qua điểm M và cắt ba tia Ox,Oy,Oz lần lượt tại A,B,C sao cho OA + OB + OC nhỏ nhất. Tính P = a + b + c.

    Mặt phẳng (\alpha) cắt ba trục tọa độ lần lượt tại A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0.

    Do (\alpha) đi qua điểm M(4;9;1) nên:

    1 = \frac{4}{a} + \frac{9}{b} +
\frac{1}{c} = \frac{2^{2}}{a} + \frac{3^{2}}{b} + \frac{1^{2}}{c} \geq
\frac{(2 + 3 + 1)^{2}}{a + b + c} = \frac{36}{a + b + c}

    \Rightarrow a + b + c \geq
36

    Mà OA + OB + OC = a + b + c nên OA + OB + OC nhỏ nhất khi a + b + c nhỏ nhất và bằng 36.

  • Câu 20: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
z = 1 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) đi qua điểm nào dưới đây?

    Nếu một điểm nằm trên một đường thẳng thì khi thay tọa độ điểm đó vào phương trình đường thẳng thì sẽ thỏa mãn phương trình đường thẳng.

    Lần lượt thay tọa độ M từ các phương án vào phương trình đường thẳng d ta được M(−3; 5; 3) thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 25 lượt xem
Sắp xếp theo