Trong không gian với hệ tọa độ
, cho mặt phẳng
và hai điểm
. Điểm
sao cho tam giác
có diện tích nhỏ nhất. Tính
.
Trong không gian với hệ tọa độ , cho mặt phẳng
và hai điểm
. Điểm
sao cho tam giác
có diện tích nhỏ nhất. Tính
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
và hai điểm
. Điểm
sao cho tam giác
có diện tích nhỏ nhất. Tính
.
Trong không gian với hệ tọa độ , cho mặt phẳng
và hai điểm
. Điểm
sao cho tam giác
có diện tích nhỏ nhất. Tính
.
Trong không gian cho hai đường thẳng
lần lượt có vectơ chỉ phương
. Gọi
là góc giữa hai đường thẳng
. Khẳng định nào sau đây đúng?
Khẳng định đúng: “Nếu thì
”.
Trong không gian với hệ tọa độ
, gọi
là mặt phẳng song song với mặt phẳng
và cách điểm
một khoảng
. Phương trình mặt phẳng
là:
Vì suy ra
Theo giả thiết ta có:
Vậy hoặc
.
Trong không gian tọa độ
, cho đường thẳng
và điểm
. Điểm đối xứng với điểm
qua đường thẳng
có tọa độ là:
Gọi
Vectơ chỉ phương của d là
Vì
Suy ra M(1; 1; 2), gọi A’(x; y; z) là điểm đối xứng của A qua d thì:
Điểm đối xứng với điểm qua đường thẳng
có tọa độ là:
.
Trong không gian
, cho các điểm
. Tích
bằng:
Ta có: . Khi đó
.
Trong không gian
, cho điểm
. Gọi
là mặt phẳng thay đổi qua
và cắt các trục
lần lượt tại
với
. Khi diện tích tam giác
nhỏ nhất, hãy tính giá trị của tích
?
Trong không gian , cho điểm
. Gọi
là mặt phẳng thay đổi qua
và cắt các trục
lần lượt tại
với
. Khi diện tích tam giác
nhỏ nhất, hãy tính giá trị của tích
?
Trong không gian
, cho hai điểm
. Viết phương trình đường thẳng
đi qua tâm đường tròn ngoại tiếp tam giác
và vuông góc với mặt phẳng
.
Tam giác OAB vuông tại O nên tâm đường tròn ngoại tiếp là trung điểm AB có tọa độ I(0; 1; 1).
Mặt phẳng (OAB) có véc-tơ pháp tuyến .
Suy ra đường thẳng ∆ có và đi qua I(0; 1; 1).
Vậy phương trình đường thẳng ∆ là .
Trong không gian với hệ trục tọa độ
cho vectơ
. Khi đó tọa độ của
là.
Do .
Trong không gian
, cho đường thẳng
đi qua điểm
và có vectơ chỉ phương
. Phương trình tham số của đường thẳng
là:
Do cũng là vectơ chỉ phương nên phương trình tham số là:
.
Trong không gian với hệ trục tọa độ
, cho các điểm
. Xác định tọa độ điểm
sao cho
?
Ta có:
Mà
Vậy đáp án cần tìm là: hoặc
Trong không gian với hệ tọa độ
, cho ba điểm
và đường thẳng
. Tìm điểm
thuộc đường thẳng
để thể tích của tứ diện
bằng
.
Ta có
Phương trình mặt phẳng
Dễ thấy tam giác ABC vuông tại A suy ra
Mà
Với
Với
Cho
và
. Điểm
sao cho
và đoạn
bằng 3 lần khoảng cách từ
đến
. Khẳng định nào sau đây đúng?
Ta có:
.
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Ta có N là trung điểm của CD nên
M là trung điểm của AB nên
Suy ra
Trong không gian
, cho hai điểm
,
, tọa độ điểm
thuộc trục
sao cho
thẳng hàng là
Vì điểm thuộc trục
nên
có tọa độ
.
Ta có ;
thẳng hàng
cùng phương
Vậy điểm .
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
. Phương trình tham số của
là:
Đường thẳng vuông góc với mặt phẳng
nên nhận vectơ
làm véc-tơ chỉ phương.
Suy ra, phương trình đường thẳng: .
Trong không gian
cho
. Viết phương trình mặt phẳng
?
Phương trình mặt phẳng là
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
. Xác định
để hai mặt phẳng
và
song song với nhau?
Hai mặt phẳng đã cho song song với nhau khi và chỉ khi
Tập xác định
Vậy thì hai mặt phẳng
song song với nhau.
Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ
lên
, trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc
và
lần lượt biểu diễn bởi hai vectơ
và
với
. Tính giá trị của
(Làm tròn kết quả đến chữ số thập phân thứ hai).
Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.
Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ lên
, trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc
và
lần lượt biểu diễn bởi hai vectơ
và
với
. Tính giá trị của
(Làm tròn kết quả đến chữ số thập phân thứ hai).
Trong không gian
, cho bốn điểm
và
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm
?
Hình vẽ minh họa
Ta có mặt phẳng (ABC): .
Suy ra thuộc mặt phẳng (ABC).
Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.
Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là .
Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm là
.