Trong không gian tọa độ
, cho hai mặt phẳng
và
. Tìm
để
vuông góc với
?
Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là .
Trong không gian tọa độ
, cho hai mặt phẳng
và
. Tìm
để
vuông góc với
?
Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là .
Cho tứ diện
. Gọi
lần lượt là trung điểm của
. Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng .
Trong không gian
, cho hai điểm
và mặt phẳng
. Xét
là điểm thay đổi thuộc
, tính giá trị nhỏ nhất của
?
Trong không gian , cho hai điểm
và mặt phẳng
. Xét
là điểm thay đổi thuộc
, tính giá trị nhỏ nhất của
?
Trong không gian với hệ trục tọa độ
, giao điểm của mặt phẳng
và đường thẳng
là:
Gọi là giao điểm của đường thẳng d và mặt phẳng (P).
Ta có:
Suy ra .
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Trong không gian
, cho điểm
. Điểm đối xứng với
qua mặt phẳng
có tọa độ là:
Giữ nguyên y, z và đổi dấu x nên ta suy ra điểm đối xứng với A qua có tọa độ là
.
Hai đường thẳng
và ![]()
Ta có đường thẳng (d’) qua E (-1, -1, 0) có vecto chỉ phương
Hai pháp vecto của hai đường thẳng lần lượt là
Vecto chỉ phương của
Ta có: và tọa độ
thỏa mãn phương trình của
Trong không gian với hệ tọa độ
cho điểm
và mặt phẳng
, m là tham số. Gọi là hình chiếu vuông góc của điểm trên . Tính khi khoảng cách từ điểm đến lớn nhất ?
Ta có
Xét hàm số
Ta lập bảng biến thiên cho hàm số trên, được:

Qua bảng biến thiên, ta thấy hàm số đạt GTLN khi
Đường thẳng qua A và vuông góc với (P) có phương trình là
Ta có
Trong không gian
, hãy tính
và
lần lượt là khoảng cách từ điểm
đến mặt phẳng
và mặt phẳng
?
Do mặt phẳng có phương trình y = 0 nên
Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên
Trong không gian với hệ tọa độ
, cho mặt phẳng
và hai điểm
. Gọi
là mặt phẳng qua
và vuông góc với
. Phương trình nào là phương trình của mặt phẳng
?
Vì là mặt phẳng đi qua A, B và vuông góc với
nên mặt phẳng
nhận
làm hai vectơ chỉ phương.
Vectơ pháp tuyến của mặt phẳng là
Phương trình mặt phẳng
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)

Đáp án: N(1300; 750; 15,5)
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)
Đáp án: N(1300; 750; 15,5)
Gọi là tọa độ của máy bay sau 10 phút tiếp theo.
.
.
Vì máy bay giữ nguyên hướng bay nên và
cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ đến
gấp 4 lần thời gian bay từ
đến
nên
.
Suy ra:
Trong không gian hệ trục tọa độ
, cho tam giác
có tọa các điểm
và tam giác đó nhận điểm
làm trọng tâm. Xác định giá trị biểu thức
?
Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:
Cho ba điểm
. Tìm tọa độ của C để ABC là tam giác đều?
Tam giác ABC đều
Suy ra tọa độ điểm C là có 2 nghiệm C thỏa mãn:
Trong hệ tọa độ
, điểm nào dưới đây thuộc đường thẳng
?
Dựa vào phương trình đường thẳng ta thấy đường thẳng đã cho đi qua điểm .
Trong không gian
, điểm nào sau đây thuộc trục tung
?
Điểm thuộc trục tung Oy là .
Điều kiện cần và đủ để ba vectơ
không đồng phẳng là:
Ba vectơ đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.
Trong không gian với hệ trục tọa độ
, cho điểm
và mặt phẳng
. Gọi
là hình chiếu vuông góc của
lên
. Tìm tọa độ điểm
?
Vì H là hình chiếu vuông góc của M lên (P) nên
Điểm H thuộc mặt phẳng (P) nên ta có phương trình:
Trong không gian với hệ trục tọa độ
, cho hai đường thẳng
và
. Vị trí tương đối của
và
là
Đường thẳng d có vectơ chỉ phương và đi qua điểm M(−1; 0; 1).
Đường thẳng d’ có vectơ chỉ phương .
Hai vectơ và
cùng phương và điểm M không thuộc đường thẳng d’.
Do đó hai đường thẳng d và d’ song song với nhau.
Trong không gian với hệ tọa độ
, cho ba điểm
và mặt phẳng
. Điểm
nằm trên mặt phẳng
thỏa mãn
. Tính
?
Ta có
Với , ta có
Với , ta có
Từ (1); (2); (3) ta có hệ phương trình:
Trong không gian tọa độ
, mặt phẳng
đi qua
và chắn trên tia
một đoạn thẳng dài gấp đôi các đoạn thẳng mà nó chắn trên các tia
và
. Giả sử
, với
. Tính
.
Từ giả thiết, ta suy ra các giao điểm của (α) với các tia lần lượt là
.
Suy ra phương trình (đoạn chắn) của (α) là .
Do (α) đi qua M nên .
Suy ra .
Từ đó, ta tính được: .