Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = - 2\overrightarrow{i} +4\overrightarrow{j} + 2\overrightarrow{k}. Các khẳng định sau là đúng hay sai?

    a) Tọa độ điểm A là (−2; 4; 2). Đúng||Sai

    b) Hình chiếu vuông góc của A lên trục OxA’(0; 4; 0). Sai||Đúng

    c) Trung điểm của OAM(−1; 2; 1). Đúng||Sai

    d) Hình chiếu vuông góc của A lên mặt phẳng (Oyz)H(−2; 0; 2). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = - 2\overrightarrow{i} +4\overrightarrow{j} + 2\overrightarrow{k}. Các khẳng định sau là đúng hay sai?

    a) Tọa độ điểm A là (−2; 4; 2). Đúng||Sai

    b) Hình chiếu vuông góc của A lên trục OxA’(0; 4; 0). Sai||Đúng

    c) Trung điểm của OAM(−1; 2; 1). Đúng||Sai

    d) Hình chiếu vuông góc của A lên mặt phẳng (Oyz)H(−2; 0; 2). Sai||Đúng

    a) Ta có A(−2; 4; 2).

    b) Hình chiếu vuông góc của A lên Ox là (−2; 0; 0).

    c) Trung điểm của OA là điểm M(−1; 2; 1).

    d) Hình chiếu vuông góc của A lên mặt phẳng (Oyz)H(0; 4; 2).

  • Câu 2: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;2; - 3),\ \ B(3; - 2;1). Tọa độ trung điểm của AB là.

    Tọa độ trung điểm I của AB là:

    I = \left( \frac{1 + 3}{2};\frac{2 -
2}{2};\frac{- 3 + 1}{2} ight) = (2;0; - 1)

  • Câu 3: Thông hiểu

    Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    S = v.t = 890.\frac{1}{2} = 445\ \
(km).

    Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).

  • Câu 4: Nhận biết

    Trong không gian Oxyz, viết phương trình của mặt phẳng (P) đi qua điểm M( - 3; - 2;3) và vuông góc với trục Ox.

    Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ \overrightarrow{i} =
(1;0;0).

    Phương trình tổng quát của mặt phẳng (P) là

    1\left( x - ( - 3) ight) + 0\left( y -
( - 2) ight) + 0(z - 3) = 0

    \Leftrightarrow x + 3 = 0.

  • Câu 5: Vận dụng

    Trong không gian Oxyz, cho hai điểm A (2; 1; 1), B (0; 3; −1). Điểm M nằm trên mặt phẳng (P) : 2x + y + z − 4 = 0 sao cho MA + MB nhỏ nhất là:

    Thay tọa độ của A, B vào vế trái của phương trình mặt phẳng (P) : 2x + y + z − 4 = 0 ta được: (2.2 + 1 + 1 − 4) (2.0 + 3 − 1 − 4) = −4 < 0

    Suy ra A, B nằm về hai phía của mặt phẳng (P).

    Vậy MA + MB ≥ AB dấu “ = ” xảy ra khi M = AB ∩ (P).

    Ta có \overrightarrow{AB} = ( - 2;2; -
2) chọn vtcp của đường thẳng AB: \overrightarrow{u} = (1; - 1;1).

    Vậy phương trình đường thẳng AB: \left\{
\begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Tọa độ (x; y; z) của M là nghiệm hệ:

    \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
2x + y + z - 4 = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
2(2 + t) + (1 - t) + (1 + t) - 4 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 0 \\
t = - 1 \\
\end{matrix} ight.\  \Rightarrow M(1;2;0)

  • Câu 6: Vận dụng

    Trong không gian Oxyz, tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây: 4x - y - 2z - 3 = 0;4x - y - 2z - 5 =
0.

    Gọi điểm

    A (0; −3; 0) ∈ 4x − y − 2z − 3 = 0 (α)

    B (0; −5; 0) ∈ 4x − y − 2z − 5 = 0 (β)

    Mặt phẳng cách đều hai mặt phẳng trên có dạng: 4x − y − 2z + m = 0 (γ).

    Để mp (γ) cách đều hai mp trên thì d (A; (β)) = 2d (A; (γ)) ⇔ |m + 3| = 1

    ⇔ m = −2 hoặc m = −4

    Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).

    Với m = −2 ta có (4 .0 + 3 – 2.0 − 2) (4.0 + 5 – 2.0 − 2) > 0 nên A; B cùng phía.

    Với m = −4 ta có (4 .0 + 3 – 2.0 − 4) (4.0 + 5 – 2.0 − 4) < 0 nên A; B khác phía.

    Vậy phương trình mặt phẳng cần tìm là 4x − y − 2z − 4 = 0 (γ).

  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, gọi (\alpha) là mặt phẳng chứa đường thẳng (\beta):\frac{x - 2}{1} = \frac{y - 3}{1} =
\frac{z}{2} và vuông góc với mặt phẳng (\beta):x + y - 2z + 1 = 0. Hỏi giao tuyến của (\alpha)(\beta) đi qua điểm nào dưới đây?

    Ta có: (\alpha):\left\{ \begin{matrix}
d \subset (\alpha)\  \\
(\beta)\bot(\alpha) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
A(2;3;0) \in d \Rightarrow A \in (\alpha)\  \\
\overrightarrow{n_{\alpha}}\bot\overrightarrow{u_{d}} = (1;1;2)\  \\
\overrightarrow{n_{\alpha}}\bot\overrightarrow{n_{\beta}} = (1;1; - 2)
\\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
A(2;3;0) \in (\alpha)\  \\
\overrightarrow{n_{\alpha}} = \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{\beta}} ightbrack = ( -
4;4;0) \\
\end{matrix} ight.

    Suy ra (\alpha):x - y + 1 =
0

    Khi đó giao tuyến thỏa hệ \left\{
\begin{matrix}
x - y + 1 = 0 \\
x + y - 2z + 1 = 0 \\
\end{matrix} ight.

    Thay các phương án vào hệ, ta nhận phương án (2;3;3).

  • Câu 8: Vận dụng cao

    Trong không gian Oxyz cho ba điểm A(1;1;0),B( - 2;0;1),C(0;0;2) và mặt phẳng (P):x + 2y + z + 4 =
0. Gọi M(a;b;c) là điểm thuộc mặt phẳng (P) sao cho S = \overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Tính tổng Q = a + b + 6c.

    Gọi G là trọng tâm tam giác ABC ta có: G\left( - \frac{1}{3};\frac{1}{3};1
ight)

    Lại có

    S =
\overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
\overrightarrow{MC}.\overrightarrow{MA}

    = 3MG^{2} + 2\overrightarrow{MG}.\left(
\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} ight)
+ \overrightarrow{GA}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GA}

    = 3MG^{2} +
\overrightarrow{GA}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GA}

    \overrightarrow{GA}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GB} +
\overrightarrow{GC}.\overrightarrow{GA} là một hằng số nên S nhỏ nhất khi MG nhỏ nhất, hay M là hình chiếu của G lên (P).

    Từ đó ta tìm được M\left( - \frac{11}{9};
- \frac{13}{9};\frac{1}{9} ight)Q = a + b + 6c = - 2

  • Câu 9: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz cho điểm M(x;y;z). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu M' đối xứng với M qua mặt phẳng (Oxz) thì M'(x; - y;z).

    Nếu M' đối xứng với M qua trục Oy thì M'( - x;y; - z).

    Nếu M' đối xứng với M qua gốc tọa độ thì M'( - x; - y; - z).

    Vậy mệnh đề đúng là: “Nếu M' đối xứng với M qua mặt phẳng (Oxy) thì M'(x;y; - z)”.

  • Câu 10: Vận dụng

    Trong không gian Oxyz. Cho A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0. Biết mặt phẳng (ABC) qua điểm I(1;3;3) và thể tích tứ diện O.ABC đạt giá trị nhỏ nhất. Khi đó phương trình (ABC):

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    I(1;3;3) \in (ABC) \Rightarrow
(ABC):\frac{1}{a} + \frac{3}{b} + \frac{3}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{3}{b} +
\frac{3}{c} \geq \sqrt[3]{\frac{3^{2}}{abc}} \Rightarrow abc \geq
9

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq \frac{3}{2}

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{3}{b} = \frac{3}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = c = 9 \\
\end{matrix} ight.

    Phương trình mặt phẳng (ABC)\frac{x}{3} + \frac{y}{9} + \frac{z}{9} = 1
\Rightarrow 3x + y + z - 9 = 0

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. bằng:

    Đường thẳng \Delta đi qua N(0;2;3), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1;2).

    Ta có \overrightarrow{MN} = ( -
2;6;4)\left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack = (16;8; -
4).

    Vậy khoảng cách từ M đến đường thẳng \Delta là:

    d(M;\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}

  • Câu 12: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm A(1;2;3) và vuông góc với mặt phẳng (\alpha):4x + 3y - 7z + 1 = 0. Phương trình tham số của d là:

    Đường thẳng d vuông góc với mặt phẳng (\alpha) nên nhận vectơ \overrightarrow{n_{(\alpha)}} làm véc-tơ chỉ phương.

    Suy ra, phương trình đường thẳng: \left\{
\begin{matrix}
x = 1 + 4t \\
y = 2 + 3t \\
z = 3 - 7t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng cao

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Ta có: \overrightarrow{BC} =
(100;0;50)

    Đường thẳng (BC) đi qua điểm B có VTCP \overrightarrow{u} = (2;0;1)có dạng (BC):\left\{ \begin{matrix}
x = 50 + 2t \\
y = 100 \\
z = 50 + t \\
\end{matrix} ight.

    Điểm W \in (BC) \Rightarrow W(50 +
2t;100;50 + t) \overrightarrow{AW} = (2t - 50;50;t -
50)

    Ta có: \overrightarrow{AW}.\overrightarrow{BC} =
0

    \Rightarrow 2(2t - 50) + (t - 50) = 0
\Rightarrow t = 30

    Vậy H(110;100;80) \Rightarrow a + b - 2c
= 50.

  • Câu 15: Thông hiểu

    Trong không gian Oxyz, cho A(1;2;0),B(3; - 1;1),C(1;1;1). Tính diện tích tam giác ABC?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3;1) \\
\overrightarrow{AC} = (0; - 1;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 2; - 2; -
2)

    Lại có diện tích tam giác ABC là:

    S_{ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\sqrt{3}

  • Câu 16: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(2,-1,3),  B (3, 1, 2) và song song với vectơ \overrightarrow a  = \left( {3, - 1, - 4} ight) là:

    Theo đề bài, ta có: \overrightarrow {AB}  = \left( {1,2, - 1} ight);\left[ {\overrightarrow {AB} \overrightarrow {,a} } ight] = \overrightarrow n  = \left( { - 9,1, - 7} ight)

    Chọn \overrightarrow n  = \left( {9, - 1,7} ight) làm 1 vectơ pháp tuyến.

    Phương trình mặt phẳng cần tìm có dạng : 9x - y + 7z + D = 0

    Mà mp lại qua A nên 9.2 - ( - 1) + 7.3 + D = 0 \Leftrightarrow D =  - 40

    Phương trình cần tìm là: 9x - y + 7z - 40 = 0.

  • Câu 17: Vận dụng

    Trong không gian Oxyz, cho vectơ \vec a hợp với \overrightarrow {Ox} góc 60^0, hợp với \overrightarrow {Oz} góc 60^0 . Tính góc hợp bởi \vec a\overrightarrow {Oy}.

    Gọi \alpha  = {60^0},\beta  và  \gamma  = {60^0} lần lượt là các góc hợp bởi \vec a với ba trục \overrightarrow {Ox} ,\overrightarrow {Oy} ,\overrightarrow {Oz}. Đặt \left| {\overrightarrow a } ight| = a

    Ta có:

    \overrightarrow a  = \left( {a\cos {{60}^0};a\cos \beta ;a\cos {{60}^0}} ight)

    \Rightarrow {\left| {\overrightarrow a } ight|^2} = {a^2} = {a^2}\left( {{{\cos }^2}{{60}^0} + {{\cos }^2}\beta  + {{\cos }^2}{{60}^0}} ight)

       \Leftrightarrow \dfrac{1}{4} + {\cos ^2}\beta  + \dfrac{1}{4} = 1

       \Leftrightarrow {\cos ^2}\beta  = \dfrac{1}{2}

       \Rightarrow \cos \beta  =  \pm \frac{{\sqrt 2 }}{2} \Rightarrow \beta  = {45^0} \vee \beta  = {135^0}

  • Câu 18: Nhận biết

    Trong không gian hệ trục tọa độ Oxyzcho \overrightarrow{u} = 2\overrightarrow{i} +
\overrightarrow{k}. Khi đó tọa độ \overrightarrow{u} với hệ Oxyz là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}
+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow
\overrightarrow{u} = (x;y;z)

    Lại có \overrightarrow{u} =
2\overrightarrow{i} + \overrightarrow{k} \Leftrightarrow
\overrightarrow{u} = (2;0;1)

  • Câu 19: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) là:

    Phương trình đường thẳng đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) nên có phương trình: \frac{x - 2}{2} = \frac{y}{-
3} = \frac{z + 1}{1}.

  • Câu 20: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;2;0),B(2; - 1;1). Tìm tọa độ điểm C có hoành độ dương thuộc trục Ox sao cho tam giác ABC vuông tại C?

    Ta có: C có hoành độ dương thuộc trục Ox \Rightarrow C(x;0;0);x >
0

    Theo bài ra ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (x - 1; - 2;0) \\
\overrightarrow{BC} = (x - 2;1; - 1) \\
\end{matrix} ight. và tam giác ABC vuông tại C nên

    \Leftrightarrow
\overrightarrow{AC}.\overrightarrow{BC} = 0 \Leftrightarrow (x - 1)(x -
2) - 2 = 0

    \Leftrightarrow x^{2} - 3x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0(L) \\
x = 3(tm) \\
\end{matrix} ight.

    Vậy C(3;0;0)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo