Tính góc của hai vectơ ![]()
Áp dụng công thức tính góc giữa 2 vecto, ta có:
Thay số suy ra được:
Tính góc của hai vectơ ![]()
Áp dụng công thức tính góc giữa 2 vecto, ta có:
Thay số suy ra được:
Cho hai đường thẳng (d1 ):
và ![]()
Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?
Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :
có vectơ chỉ phương
và qua
.
có vectơ chỉ phương
và hệ phương trình
vô nghiệm.
.
Xác định tọa độ trọng tâm
của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Cho tứ giác ABCD có
. Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng
.
Tỷ số thể tích hai khối AMNE và ABCD:
M chia cạnh BA theo tỷ số -2
Vecto pháp tuyến của
Cho tứ diện
có
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Ta có:
Mà
Trong không gian
, cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Trong không gian , cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Trong không gian
, cho điểm
. Gọi
là mặt phẳng đi qua điểm
và cách gốc tọa độ
một khoảng cách lớn nhất, khi đó mặt phẳng
cắt các trục tọa độ tại các điểm
. Tính thể tích
của khối chóp
.
Trong không gian , cho điểm
. Gọi
là mặt phẳng đi qua điểm
và cách gốc tọa độ
một khoảng cách lớn nhất, khi đó mặt phẳng
cắt các trục tọa độ tại các điểm
. Tính thể tích
của khối chóp
.
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Trong không gian với hệ tọa độ
,cho mặt phẳng
và điểm
. Gọi
là điểm thuộc tia
, gọi
là hình chiếu của
lên
. Biết rằng tam giác
cân tại
. Diện tích của tam giác
bằng:
Gọi
Đường thẳng AB qua A và vuông góc với (α) nên có phương trình
B là hình chiếu của A lên (α) nên tọa độ B thỏa mãn hệ
Suy ra
Tam giác MAB cân tại M nên
Nếu a = 3 thì tọa độ . Diện tích tam giác MAB là
Nếu a = −3 thì tọa độ A (0; 0; −3) và B (0; 0; −3) trùng nhau nên không thỏa mãn.
Vậy diện tích của tam giác bằng:
.
Trong không gian với hệ toạ độ
, cho tam giác
có phương trình đường phân giác trong góc
là
. Biết rằng điểm
thuộc đường thẳng
và điểm
thuộc đường thẳng
. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng
.
Hình chiếu H của M trên đường phân giác trong góc A có tọa độ:
M’ là điểm đối xứng của M qua H. Từ đây ta tìm được tọa độ M’(1; 3; 6).
Vectơ chỉ phương của đường thẳng AC chính là vecto .
Suy ra, đường thẳng AC có một vectơ chỉ phương là (0; 1; 3)
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)

Đáp án: N(1300; 750; 15,5)
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)
Đáp án: N(1300; 750; 15,5)
Gọi là tọa độ của máy bay sau 10 phút tiếp theo.
.
.
Vì máy bay giữ nguyên hướng bay nên và
cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ đến
gấp 4 lần thời gian bay từ
đến
nên
.
Suy ra:
Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm ![]()
Theo đề bài, ta có cặp vecto chỉ phương của
Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của
Mp (P) đi qua và nhận vecto có tọa độ
làm 1 VTPT có phương trình là:
Cho tứ diện đều
cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ
) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ
và
bằng
. Sai||Đúng
c) Nếu
thì
. Sai||Đúng
d) Tích vô hướng
. Đúng||Sai
Cho tứ diện đều cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ và
bằng
. Sai||Đúng
c) Nếu thì
. Sai||Đúng
d) Tích vô hướng . Đúng||Sai
Hình vẽ minh họa
a) Sai: Các vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là:
.
Do đó có 12 vectơ thỏa mãn yêu cầu.
b) Sai:
c) Sai: .
Do đó suy ra
.
d) Đúng: Ta có:
Suy ra
Trong không gian với hệ tọa độ
, trục
có phương trình tham số là
Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương nên có phương trình tham số là
.
Trong không gian với hệ trục tọa độ
, cho hình hộp chữ nhật
có điểm
trùng với gốc tọa độ
,
. Gọi
là trung điểm của cạnh
. Giá trị của tỉ số
để hai mặt phẳng
và
vuông góc với nhau bằng bao nhiêu?
Trong không gian với hệ trục tọa độ , cho hình hộp chữ nhật
có điểm
trùng với gốc tọa độ
,
. Gọi
là trung điểm của cạnh
. Giá trị của tỉ số
để hai mặt phẳng
và
vuông góc với nhau bằng bao nhiêu?
Trong không gian với hệ tọa độ
, viết phương trình mặt phẳng đi qua ba điểm
và
.
Ta có:
Mặt phẳng đi qua điểm
và nhận
làm vectơ pháp tuyến có phương trình là:
Cho tứ diện đều
,
là trung điểm cạnh
. Khi đó
bằng:
Hình vẽ minh họa
Giả sử cạnh tứ diện bằng a
Tam giác BCD đều suy ra
Tam giác ABC đều suy ra
Ta có:
Mặt khác
Cho tam giác ABC có
.
Viết phương trình chính tắc của cạnh AB.
(AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:
(AB) đi qua A (1, 2, -3) và nhận vecto làm 1 VTCP có phương trình chính tắc là:
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình mặt phẳng trung trực của đoạn thẳng
là:
Gọi (P) là mặt phẳng trung trực của đoạn thẳng AB.
Ta có
Suy ra một vectơ pháp tuyến của là
Hơn nữa, trung điểm của AB là I(2; 4; −3) thuộc mặt phẳng (P) nên
.
Trong không gian
, cho tọa độ các điểm
. Cho các khẳng định sau:
(I)
.
(II)
.
(III) Ba điểm
tạo thành một tam giác.
(IV) Ba điểm
thẳng hàng.
Trong các khẳng định trên, có bao nhiêu khẳng định đúng.
Ta có: nên
là trung điểm của
và ba điểm
thẳng hàng.
Vậy có 2 khẳng định sai và 2 khẳng định đúng.