Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
. Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vectơ chỉ phương .
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
. Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vectơ chỉ phương .
Trong không gian
, cho hai điểm
và
. Trung điểm
của
có tọa độ là:
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Trong không gian
, cho điểm
. Gọi
là mặt phẳng đi qua điểm
và cách gốc tọa độ
một khoảng cách lớn nhất, khi đó mặt phẳng
cắt các trục tọa độ tại các điểm
. Tính thể tích
của khối chóp
.
Trong không gian , cho điểm
. Gọi
là mặt phẳng đi qua điểm
và cách gốc tọa độ
một khoảng cách lớn nhất, khi đó mặt phẳng
cắt các trục tọa độ tại các điểm
. Tính thể tích
của khối chóp
.
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian với hệ toạ độ
, cho điểm
và đường thẳng
. Gọi
là mặt phẳng chứa
sao cho khoảng cách từ điểm
đến
là lớn nhất. Khoảng cách từ gốc tọa độ
đến
bằng:
Gọi K là hình chiếu vuông góc của A trên d và H là hình chiếu vuông góc của A trên (P) thì d(A,(P)) = AH ≤ AK không đổi.
Vậy d(A,(P)) lớn nhất khi và chỉ khi H ≡ K, khi đó (P) là mặt phẳng chứa d và vuông góc với AK.
Ta tìm được .
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức
. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.
Ta có
Từ giả thiết
Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm và mặt cầu tâm
Dễ thấy
Cho tứ diện
có
. Tính độ dài đường cao của tứ diện
kẻ từ đỉnh
?
Phương trình mặt phẳng là:
Khoảng cách từ đỉnh D đến mặt phẳng (ABC) là
.
Trong hệ tọa độ
, điểm nào dưới đây thuộc đường thẳng
?
Dựa vào phương trình đường thẳng ta thấy đường thẳng đã cho đi qua điểm .
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ
.
Cho bốn điểm
và
. Câu nào sau đây đúng? ABDC là:
Ta có
Do đó cùng phương
ABDC là hình thang.
Trong không gian
, cho điểm
và mặt phẳng
. Điểm
thay đổi thuộc
; điểm
thay đổi thuộc mặt phẳng
. Biết rằng tam giác
có chu vi nhỏ nhất. Tọa độ điểm
là:
Hình vẽ minh họa
Gọi B1 là điểm đối xứng với B qua (P).
Gọi M là hình chiếu của A lên trục Oz, M1 là điểm đối xứng của M qua (P)
(hằng số).
Vậy PABC nhỏ nhất khi B ≡ M và C là giao điểm của AM1 với (P).
Từ đó suy ra tọa độ của điểm B là .
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Gọi
Ta có:
Theo bài ra ta có:
Vậy điểm E có tọa độ là .
Trong không gian
, cho mặt phẳng
. Tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm M đến mặt phẳng (P) là:
Cho tứ diện đều
cạnh
Tính
theo ![]()
Hình vẽ minh họa
Gọi là trọng tâm của
Do đó
Ta có
Mà là tứ diện đều nên
Suy ra
Vậy
Trong không gian
, mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Trong không gian với hệ trục tọa độ
, giao điểm của mặt phẳng
và đường thẳng
là:
Gọi là giao điểm của đường thẳng d và mặt phẳng (P).
Ta có:
Suy ra .
Trong không gian với hệ trục tọa độ
, cho hình hộp chữ nhật
có điểm
trùng với gốc tọa độ
,
. Gọi
là trung điểm của cạnh
. Giá trị của tỉ số
để hai mặt phẳng
và
vuông góc với nhau bằng bao nhiêu?
Trong không gian với hệ trục tọa độ , cho hình hộp chữ nhật
có điểm
trùng với gốc tọa độ
,
. Gọi
là trung điểm của cạnh
. Giá trị của tỉ số
để hai mặt phẳng
và
vuông góc với nhau bằng bao nhiêu?
Trong không gian với hệ tọa độ
, cho 2 đường thẳng
:
và điểm
. Đường thẳng
đi qua
, cắt
và vuông góc với
có một vectơ chỉ phương là
. Tính ![]()
Hình vẽ minh họa
Gọi là mặt phẳng chứa
và
.
Lấy .
Mặt phẳng có véc-tơ pháp tuyến vuông góc với các véc-tơ
và
.
Ta có .
Một trong các véc-tơ pháp tuyến của mặt phẳng là
.
Đường thẳng nằm trong mặt phẳng
và vuông góc với
có
Vậy .
Trong không gian
, cho điểm
. Phương trình mặt phẳng
cắt trục
lần lượt tại
(không trùng với gốc tọa độ
) sao cho
là tâm đường tròn ngoại tiếp tam giác
?
Trong không gian , cho điểm
. Phương trình mặt phẳng
cắt trục
lần lượt tại
(không trùng với gốc tọa độ
) sao cho
là tâm đường tròn ngoại tiếp tam giác
?
Cho ba điểm
.
Tìm điểm N trên
cách đều A và B.
Gọi trên
Ta có