Cho lăng trụ tam giác
. Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Hình vẽ minh họa
Ta có:
Vậy đáp án đúng là: .
Cho lăng trụ tam giác
. Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Hình vẽ minh họa
Ta có:
Vậy đáp án đúng là: .
Trong không gian
, cho bốn điểm
và
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm
?
Hình vẽ minh họa
Ta có mặt phẳng (ABC): .
Suy ra thuộc mặt phẳng (ABC).
Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.
Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là .
Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm là
.
Cho bốn điểm
và
. Câu nào sau đây đúng? ABDC là:
Ta có
Do đó cùng phương
ABDC là hình thang.
Trong không gian với hệ tọa độ
, cho
. Viết phương trình mặt phẳng trung trực của
.
Mặt phẳng trung trực nhận
làm vectơ pháp tuyến và đi qua trung điểm
của
nên ta có phương trình mặt phẳng
là:
.
Trong không gian
, cho hình chóp
có đáy là hình vuông và
vuông góc với đáy. Biết
, lập phương trình mặt phẳng
.
Dễ dàng chứng minh được là mặt phẳng trung trực của
.
Chọn vectơ pháp tuyến của mặt phẳng là
.
Mặt phẳng đi qua trung điểm
của
và có vtcp
nên có phương trình:
.
Cho điểm
và đường thẳng
. Gọi A' là điểm đối xứng của A qua
. Tọa độ điểm A' là:
Đưa phương trình về dạng tham số:
Gọi (P) là mặt phẳng qua A và vuông góc với .
Phương trình mp (P) có dạng , qua A nên D = -2
Phương trình (P) là:
Thế x, y, z từ phương trình vào phương trình (P) được t=1
I là trung điểm của AA' nên:
.
Trong không gian
, cho mặt phẳng
đi qua điểm
và cắt các tia
lần lượt tại
sao cho độ dài
theo thứ tự lập thành một cấp số nhân có công bội bằng
. Tính khoảng cách từ gốc tọa độ
đến mặt phẳng
.
Giả sử với
.
Phương trình mặt phẳng có dạng
Ta có đi qua điểm
nên ta có
(∗)
Vì theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên
.
Thay vào (∗), ta được
Suy ra phương trình mặt phẳng (α) là hay
.
Trong không gian tọa độ
, cho vectơ
. Trong các vectơ dưới đây, vectơ nào không cùng phương với
?
Ta có: cùng phương với mọi vectơ
Lại có
Vậy vectơ không cùng phương với là
.
Trong không gian hệ trục tọa độ
, cho tọa độ ba điểm
thẳng hàng. Khi đó giá trị của biểu thức
là:
Ta có: . Vì A; B; C thẳng hàng nên
cùng phương
Trong không gian với hệ tọa độ
cho hai mặt phẳng
và
. Có bao nhiêu điểm
trên trục
thỏa mãn
cách đều hai mặt phẳng
và
?
Vì nên
Ta có: .
Theo giả thiết:
Vậy có 1 điểm thỏa mãn bài.
Trong không gian với hệ tọa độ
, cho đường thẳng
và điểm
. Hình chiếu vuông góc của A trên (∆) là điểm nào dưới đây?
Đường thẳng (∆) đi qua M(−1; −4; 0), có vectơ chỉ phương
Phương trình tham số của đường thẳng
Gọi P là hình chiếu vuông góc của A trên (∆).
Khi đó
Ta có . Vì
nên
Trong không gian với hệ toạ độ
, cho bốn đường thẳng ![]()
![]()
![]()
. Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
Kiểm tra vị trí tương đối giữa hai đường thẳng ta thấy (d1) // (d2); (d4) cắt (d2), (d3).
Gọi (P) là mặt phẳng chứa (d1) và (d2); (Q) là mặt phẳng chứa (d3) và (d4).
Gọi (∆) là đường thẳng cắt cả 4 đường thẳng trên.
Ta thấy, (∆) cắt cả (d1), (d2) suy ra (∆) ⊂ (P).
(∆) cắt cả (d3),(d4) suy ra (∆) ⊂ (Q).
Mà (d2), (d4) có điểm chung nên (∆) là giao tuyến của (P) và (Q), do đó có duy nhất một đường thẳng thỏa mãn.
Trong không gian với hệ toạ độ
, cho tam giác
có phương trình đường phân giác trong góc
là
. Biết rằng điểm
thuộc đường thẳng
và điểm
thuộc đường thẳng
. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng
.
Hình chiếu H của M trên đường phân giác trong góc A có tọa độ:
M’ là điểm đối xứng của M qua H. Từ đây ta tìm được tọa độ M’(1; 3; 6).
Vectơ chỉ phương của đường thẳng AC chính là vecto .
Suy ra, đường thẳng AC có một vectơ chỉ phương là (0; 1; 3)
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
sao cho
. Gọi
lần lượt là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
đồng phẳng sai vì
suy ra
không đồng phẳng.
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
và có vectơ chỉ phương
. Viết phương trình đường thẳng
?
Đường thẳng đi qua điểm
và có vectơ chỉ phương
là:
Trong hệ tọa độ
, điểm nào dưới đây thuộc đường thẳng
?
Dựa vào phương trình đường thẳng ta thấy đường thẳng đã cho đi qua điểm .
Cho hình lập phương
có cạnh bằng
(tham khảo hình vẽ).

Các khẳng định sau đúng hay sai?
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hình lập phương có cạnh bằng
(tham khảo hình vẽ).
Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
a) Vì là hình bình hành nên
.
b) Vì là hình hộp nên
.
c) Vì nên
.
d) Tam giác vuông tại
nên
.
Ta có
.
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Trong không gian
, cho các điểm
. Số điểm cách đều bốn mặt phẳng
là
Gọi là điểm cách đều bốn mặt phẳng đã cho.
Dễ thấy các mặt phẳng lần lượt là các mặt phẳng
.
Mặt phẳng (ABC) có phương trình tổng quát là .
Do I cách đều các mặt phẳng này nên ta có:
Ta có các trường hợp
Trường hợp 1. . Khi đó (1) tương đương:
Ta được hai điểm thỏa mãn bài toán.
Trường hợp 2. Trong ba số có hai số bằng nhau và bằng số đối của số còn lại.
Khi đó, không mất tính tổng quát ta có thể giả sử (các trường hợp còn lại tương tự) và (1) tương đương:
Ta được hai điểm thỏa mãn bài toán.
Vậy số điểm cách đều bốn mặt phẳng đã cho là .
Trong không gian với hệ tọa độ
, cho điểm
và vectơ
. Viết phương trình mặt phẳng
đi qua điểm
và có vectơ pháp tuyến
.
Phương trình tổng quát của mặt phẳng (P) có dạng: