Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian Oxyz, cho điểm A(1; -
1;2) và vectơ \overrightarrow{n} =
(2;4; - 6). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến.

    Phương trình mặt phẳng có dạng:

    A\left( x - x_{A} ight) + B\left( y -
y_{A} ight) + C\left( z - z_{A} ight) = 0 .

    2(x - 1) + 4(y + 1) + 6(z - 2) =
0

    \Leftrightarrow x + 2y - 3z + 7 =
0.

  • Câu 2: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho M(3;4;5) và mặt phẳng (P):x - y + 2z - 3 = 0. Hình chiếu vuông góc của M lên mặt phẳng (P)

    Đường thẳng \Delta đi qua M(3;4;5) và vuông góc với mặt phẳng (P) có phương trình \left\{ \begin{matrix}
x = 3 + t \\
y = 4 - t \\
z = 5 + 2t \\
\end{matrix} ight..

    Gọi H = \Delta \cap (P) \Rightarrow H(3 +
t;4 - t;5 + 2t)

    H \in (P)\  \Rightarrow 3 + t - (4 - t)
+ 2(5 + 2t) - 3 = 0

    \Leftrightarrow t = - 1 \Rightarrow
H(2;5;3)

  • Câu 3: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, trục Ox có phương trình tham số là

    Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương \overrightarrow{i} = (1;0;0) nên có phương trình tham số là \left\{
\begin{matrix}
x = 0 + 1t \\
y = 0 + 0t \\
z = 0 + 0t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 4: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hình bình hành ABCD. Biết A(2;1; - 3),B(0; - 2;5)C(1;1;3). Diện tích hình bình hành ABCD là:

    Ta có: \overrightarrow{AB} = ( - 2; -
3;8),\overrightarrow{AC} = ( - 1;0;6)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 18;4; -
3)

    Suy ra diện tích ABCD là:

    S_{ABCD} = \left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\sqrt{349}

  • Câu 5: Vận dụng

    Cho tam giác ABC có A\left( { - 3,7,2} ight);\,\,B\left( {3, - 1,0} ight);\,\,\,C\left( {2,2, - 4} ight). Gọi BD và BE lần lượt là phân giác trong và phân giác ngoài của góc B với D và E là chân của hai phân giác này trên AC. Tính tọa độ của D.

    Theo đề bài, ta có: .\overrightarrow {AB} (6, - 8, - 2);\,\,\overrightarrow {BC} ( - 1,3, - 4)

    Áp dụng kiến thức: Bình phương tích vô hướng bằng bình phương độ dài, được:

    \left. \begin{array}{l}\overrightarrow {A{B^2}}  = A{B^2} = 36 + 64 + 4 = 104 \Rightarrow AB = 2\sqrt {26} \\{\overrightarrow {BC} ^2} = B{C^2} = 1 + 9 + 16 = 26 \Rightarrow BC = \sqrt {26} \end{array} ight\} \Rightarrow \frac{{BA}}{{BC}} = 2

    Mặt khác, D chia đoạn AC theo tỉ số k =  - 2

    Tọa đô của D là:

    x = \frac{{{x_A} - k{x_C}}}{{1 - k}} = \frac{{ - 3 + 4}}{3} = \frac{1}{3};\,

    \,y = \frac{{7 + 4}}{3} = \frac{{11}}{3};\,

    \,z = \frac{{2 - 8}}{3} =  - 2.

  • Câu 6: Nhận biết

    Trong không gian Oxyz, đường thẳng đi qua hai điểm A(1;2; - 3)B(2; - 3;1) có phương trình tham số là:

    Ta có: \overrightarrow{AB} = (1; -
5;4)

    Đường thẳng đi qua hai điểm A(1; 2; −3) và B(2; −3; 1) có phương trình tham số là \left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 5t \\
z = - 3 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Với t = −2, ta được M(3; −8; 5) thuộc đường thẳng AB. Khi đó, đường thẳng AB có phương trình tham số \left\{
\begin{matrix}
x = 3 - t \\
y = - 8 + 5t \\
z = 5 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 7: Vận dụng cao

    Trong không gian Oxyz cho mặt phẳng (P):2x + y + z - 3 = 0 và hai điểm A(m;1;0),B(1; - m;2). Gọi E;F lần lượt là hình chiếu của A;B lên mặt phẳng (P). Biết EF = \sqrt{5}. Tổng tất cả các giá trị của tham số m là

    Hình vẽ minh họa

    Xét trường hợp m = 1. Khi đó cả A;B đều thuộc (P). Trong trường hợp này EF = AB = 2\sqrt{2} (loại).

    Khi m eq 1. Ta tính toán các đại lượng:

    d\left( A;(P) ight) = \frac{|2m -
2|}{\sqrt{6}};d\left( B;(P) ight) = \frac{|1 -
m|}{\sqrt{6}}

    Từ đó suy ra A;B khác phía với (P) và d\left( A;(P) ight) = 2d\left(
B;(P) ight)

    Gọi H là giao điểm của AB với (P).

    Theo Thales ta có:

    EH = \frac{2\sqrt{5}}{3};AH =
\frac{2}{3}AB = \frac{2}{3}\sqrt{(1 - m)^{2} + (m + 1)^{2} +
2^{2}}

    Áp dụng định lý Pythagore cho tam giác AEH ta có:

    AE^{2} + EH^{2} = AH^{2}

    \Leftrightarrow \frac{(2m - 2)^{2}}{6} +
\left( \frac{2\sqrt{5}}{3} ight)^{2} = \frac{4}{9}\left\lbrack (1 -
m)^{2} + (m + 1)^{2} + 4 ightbrack

    \Leftrightarrow \frac{3\left( 4m^{2} -
8m + 4 ight)}{18} + \frac{40}{18} = \frac{8\left( 2m^{2} + 6
ight)}{18}

    \Leftrightarrow 4m^{2} + 24m - 4 =
0

    Phương trình này có hai nghiệm và tổng hai nghiệm đó bằng: - \frac{24}{4} = - 6.

  • Câu 8: Thông hiểu

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Điểm đối xứng với A qua mặt phẳng (Oyz) có tọa độ là:

    Giữ nguyên y, z và đổi dấu x nên ta suy ra điểm đối xứng với A qua (Oyz) có tọa độ là ( - 3; - 1;1).

  • Câu 9: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2;3),B(1;0; - 1),C(2; -
1;2). Điểm D thuộc tia Oz sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện ABCD bằng \frac{3\sqrt{30}}{10} có tọa độ là

    Ta có D thuộc tia Oz nên D(0; 0; d) với d > 0.

    Tính \left\{ \begin{matrix}
\overrightarrow{AB} = (0; - 2; - 4) \\
\overrightarrow{AC} = (1; - 3; - 1) \\
\end{matrix} ight.

    Mặt phẳng (ABC): có vectơ pháp tuyến \overrightarrow{n_{(ABC)}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 10; -
4;2) và đi qua điểm A(1; 2; 3).

    \Rightarrow (ABC): - 10(x - 1) - 4(y -
2) + 2(z - 3) = 0

    \Leftrightarrow 5x + 2y - y - 6 =
0

    Ta có d\left( D;(ABC) ight) =
\frac{3\sqrt{30}}{10} \Leftrightarrow \frac{|d + 6|}{\sqrt{30}} =
\frac{3\sqrt{30}}{10}

    \Leftrightarrow |d + 6| = 9
\Leftrightarrow \left\lbrack \begin{matrix}
d = 3(tm) \\
d = - 15(ktm) \\
\end{matrix} ight.

    Vậy D(0;0;3).

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (2; -
1;1)\overrightarrow{v} = (0; -
3; - m). Xác định giá trị tham số m để \overrightarrow{u}.\overrightarrow{v} =
1?

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 11: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân

    giác trong góc A là \frac{x}{1}=\frac{y-6}{-4}=\frac{z-6}{-3}.  Biết rằng điểm M(0; 5; 3) thuộc đường thẳng AB và điểm N(1;1;0)thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?

    Giả sử , A(t; 6-4t; 6-3t), ta có:

    \vec{u_d}=(1; -4; -3),

    \vec{AM}=(-t;4t-1;-3+3t)

    \vec{AN}=(1-t;-5+4t;3t-6)

    Theo bài ra: Vì d là đường phân giác của góc A nên:

    \left | \cos(\vec{u_d}, \vec{AM}) ight |= \left | \cos(\vec{u_d}, \vec{AN}) ight |

    \Leftrightarrow \dfrac{\left | 26t-13 ight |}{\sqrt{26t^2 -26t+10} } =\dfrac{\left | 26t-39 ight |}{\sqrt{26t^2 -78t+62} }

    \Leftrightarrow \dfrac{\left | 2t-1 ight |}{\sqrt{13t^2 -13t+5} } =\dfrac{\left | 2t-3 ight |}{\sqrt{13t^2 -39t+31} }

    Từ đây ta bình phương 2 vế được:

    (4t^2-4t+1)(13t^2-39t+31)=(4t^2-12t+9)(13t^2-13t+5)

    \Leftrightarrow 14t=14

    \Leftrightarrow t=1

    \Rightarrow A(1;2;3)\Rightarrow \vec{AN}=(0; -1; -3)

    Vậy một véc tơ chỉ phương của AC  là  \vec{u}(0;1;3).

  • Câu 12: Vận dụng

    Hai đường thẳng \left( {d'} ight):x = 8t - 1;\,\,y =  - 1 - 14t;\,\,z =  - 12t và  \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight)

    Ta có đường thẳng (d’) qua E (-1, -1, 0) có vecto chỉ phương \overrightarrow a  = \left( {8, - 14, - 12} ight)

    Hai pháp vecto của hai đường thẳng \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight) lần lượt là \overrightarrow {{n_1}}  = \left( {1, - 2,3} ight);\overrightarrow {{n_2}}  = \left( {2,2, - 1} ight)

    Vecto chỉ phương của \left( d ight):\overrightarrow b  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 4,7,6} ight)

    Ta có: \frac{8}{{ - 4}} = \frac{{ - 14}}{7} = \frac{{ - 12}}{6} =  - 2 và tọa độ E\left( { - 1, - 1,0} ight) thỏa mãn phương trình của \left( d ight) \Rightarrow \left( D ight) \equiv \left( d ight)

  • Câu 13: Thông hiểu

    Đường thẳng (d): \frac{{x - 2}}{3} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 4}}{4}có phương trình tham số là:

    Ta có đường thẳng (d) qua A ( 2, -1, 4) và có vectơ chỉ phương là \overrightarrow a  = \left( {3, - 2,4} ight) =  - \left( { - 3,2, - 4} ight) có phương trình tham số là:

    => (d) \left\{ \begin{array}{l}x = 2 - 3m\\y =  - 1 + 2m\\z = 4 - 4m\end{array} ight.\,\,;m \in \mathbb{R}  

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + 1 = 0. Trong các mệnh đề sau, mệnh đề nào sai?

    Mặt phẳng (P) có một véc-tơ pháp tuyến \overrightarrow{n_{P}} = (2; - 1;0).

    Ta có \frac{2}{2} = \frac{- 1}{1} eq
\frac{0}{1} nên \overrightarrow{n_{P}} không cùng phương với \overrightarrow{n} = (2; -
1;1).

    Suy ra \overrightarrow{n} = (2; -
1;1) không là vectơ pháp tuyến của (P).

    Vậy khẳng định sai là: “Vectơ \overrightarrow{n} = (2; - 1;1) là một véc-tơ pháp tuyến của (P)”.

  • Câu 15: Thông hiểu

    Trong không gian tọa độ Oxyz, góc giữa hai vectơ \overrightarrow{i}\overrightarrow{u} = \left( - \sqrt{3};0;1
ight) là:

    Ta có: \overrightarrow{i} =
(1;0;0)

    \Rightarrow \cos\left(
\overrightarrow{i};\overrightarrow{u} ight) =
\frac{\overrightarrow{i}.\overrightarrow{u}}{\left| \overrightarrow{i}
ight|.\left| \overrightarrow{u} ight|} = \frac{1.\left( - \sqrt{3} +
0.0 + 0.1 ight)}{1.\sqrt{\left( - \sqrt{3} ight)^{2} + 0^{2} +
1^{2}}} = \frac{- \sqrt{3}}{2}

    \Rightarrow \left(
\overrightarrow{i};\overrightarrow{u} ight) = 150^{0}

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(1; - 1;2),B( - 2;0;3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}. Sai||Đúng

    b) Tọa độ của vectơ \overrightarrow{AB} =
( - 3;1;1). Đúng||Sai

    c) Điểm A' là hình chiếu của điểm A trên mặt phẳng tọa độ (Oxy) thì \overrightarrow{AA'} = (0;0;2). Sai||Đúng

    d) Tọa độ điểm C để tứ giác OABC là hình bình hành là C(1;1; - 3). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A(1; - 1;2),B( - 2;0;3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}. Sai||Đúng

    b) Tọa độ của vectơ \overrightarrow{AB} =
( - 3;1;1). Đúng||Sai

    c) Điểm A' là hình chiếu của điểm A trên mặt phẳng tọa độ (Oxy) thì \overrightarrow{AA'} = (0;0;2). Sai||Đúng

    d) Tọa độ điểm C để tứ giác OABC là hình bình hành là C(1;1; - 3). Sai||Đúng

    a) Điểm A(1; - 1;2) \Rightarrow
\overrightarrow{OA} = (1; - 1;2) \Rightarrow \overrightarrow{OA} =
\overrightarrow{i} - \overrightarrow{j} +
2\overrightarrow{k}.

    b) \overrightarrow{AB} = ( - 2 - 1;0 +
1;3 - 2) = ( - 3;1;1).

    c) A' là hình chiếu của điểm A trên mặt phẳng tọa độ (Oxy) nên A'(1; - 1;0).

    Suy ra \overrightarrow{AA'} = (0;0; -
2).

    d) Gọi C(x;y;z) \Rightarrow
\overrightarrow{OC} = (x;y;z).

    Ta có \overrightarrow{AB} = ( -
3;1;1).

    Tứ giác OABC là hình bình hành nên \overrightarrow{OC} =
\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = 1 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow C( - 3;1;1).

  • Câu 17: Vận dụng

    Trong không gian Oxyz, cho bốn điểm A(2;0;0),B(0;3;0),C(0;0;3)D\left( 1;1;\frac{1}{2} ight). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm O,A,B,C,D?

    Hình vẽ minh họa

    Ta có mặt phẳng (ABC): \frac{x}{2} +
\frac{y}{3} + \frac{z}{3} = 1.

    Suy ra D\left( 1;1;\frac{1}{2}
ight) thuộc mặt phẳng (ABC).

    Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.

    Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là C_{4}^{2} = 6.

    Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm O,A,B,C,D1 + 6 = 7.

  • Câu 18: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;3),B(2;3; - 4),C( - 3;1;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
- 3 - x = 1 \\
1 - y = 3 \\
2 - z = - 7 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = 9 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2;9).

  • Câu 19: Nhận biết

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 20: Thông hiểu

    Viết phương trình tham số của đường thẳng \left( d ight):\,\left\{ \begin{array}{l}2x - 3y + z - 4 = 0\\2x + 5y - 3z + 4 = 0\end{array} ight.

     Theo đề bài, đường thẳng d là giao của 2 mặt phẳng, ta gọi 2 mặt phẳng (P) và (Q) tương ứng lần lượt là:\left( P ight):2x - 3y + z - 4 = 0;\,\left( Q ight):2x + 5y - 3z + 4 = 0

    Mp (P) và (Q) có 2 vecto pháp tuyến tương ứng là: \overrightarrow {{n_1}}  = \left( {2, - 3,1} ight);\overrightarrow {{n_2}}  = \left( {2,5, - 3} ight)

    Từ đây ta suy ra vecto chỉ phương của đường thẳng (d) là tích có hướng của 2 VTPT:

    \overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( {4,8,16} ight) \Leftrightarrow \overrightarrow a  = 4\left( {1,2,4} ight)

    Cho y = 0, ta có:

    y = 0 \Rightarrow \left\{ \begin{array}{l}2x + z = 4\\2x - 3z =  - 4\end{array} ight.\, \Leftrightarrow x = 1;z = 2

    Đường thẳng (d) đi qua A( 1, 0, 2) và nhận vecto (1,2,4) làm 1 VTCP có PTTS là:

    A\left( {1,0,2} ight) \in \left( d ight) \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = 2 + 4t\end{array} ight.\,\,;t \in R

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 25 lượt xem
Sắp xếp theo