Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = ( - 2;2;0);\overrightarrow{b}
= (2;2;0);\overrightarrow{c} = (2;2;2). Khi đó giá trị của \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| bằng bao nhiêu?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = ( - 2 + 2 + 2;2 + 2 + 2;0 + 0
+ 2) = (2;6;2).

    Khi đó \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| = \sqrt{2^{2} + 6^{2} +
2^{2}} = 2\sqrt{11}

    Vậy đáp án cần tìm là: 2\sqrt{11}

  • Câu 2: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình đường thẳng đi qua hai điểm A( - 2;3;2)B(5;4; - 1)

    Vectơ chỉ phương của đường thẳng cần tìm là \overrightarrow{AB} = (7;1; - 3) và đường thẳng đi qua điểm A( - 2;3;2).

    Vậy phương trình đường thẳng cần tìm là: \frac{x + 2}{7} = \frac{y - 3}{1} = \frac{z - 2}{-
3}.

  • Câu 3: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(2;3; - 1),N( - 1;1;1),P(1;m - 1;2). Tìm giá trị của tham số m để tam giác MNP vuông tại N?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = ( - 3; - 2;2) \\
\overrightarrow{NP} = (2;m - 2;1) \\
\end{matrix} ight..

    Tam giác MNP vuông tại N \Leftrightarrow
\overrightarrow{MN}.\overrightarrow{NP} = 0 \Leftrightarrow - 6 - 2(m -
2) + 2 = 0 \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m = 0.

  • Câu 4: Thông hiểu

    Trong không gian với hệ trục toạ độ Oxyz, tìm tất cả giá trị tham số m để đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
1}{1} song song với mặt phẳng (P):2x + y - m^{2}z + m = 0.

    Ta có:

    d qua điểm M(1; 0; 1) và có VTCP là \overrightarrow{u} = (1;2;1)

    (P) có VTPT là \overrightarrow{n} =
\left( 2;1; - m^{2} ight)

    Vì d // (P) nên \overrightarrow{u}\bot\overrightarrow{n}
\Rightarrow \overrightarrow{u}.\overrightarrow{n} = 0 \Leftrightarrow m
= \pm 2

    Với m = 2, (P): 2x + y − 4z + 2 = 0 ⇒ M ∈ (P) (loại).

    Với m = −2, (P): 2x + y − 4z − 2 = 0\Rightarrow M otin (P) (thỏa mãn).

  • Câu 5: Nhận biết

    Trong không gian tọa độ Oxyz, cho vectơ \overrightarrow{a} = (1;0; -
2). Trong các vectơ dưới đây, vectơ nào không cùng phương với \overrightarrow{a}?

    Ta có: \overrightarrow{0} =
(0;0;0) cùng phương với mọi vectơ

    Lại có \left\{ \begin{matrix}\overrightarrow{c} = (2;0; - 4) = 2\overrightarrow{a} \\\overrightarrow{d} = \left( - \dfrac{1}{2};0;1 ight) = -\dfrac{1}{2}\overrightarrow{a} \\\end{matrix} ight.

    Vậy vectơ không cùng phương với \overrightarrow{a}\overrightarrow{b} = (1;0;2).

  • Câu 6: Vận dụng

    Trong không gian Oxyz cho điểm H(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm H và cắt các trục tọa độ tại ba điểm phân biệt A;B;C sao cho H là trực tâm của tam giác ABC?

    Giả sử (P) cắt các trục tọa độ tại A(a;0;0),B(0;b;0),C(0;0;c);(abc eq
0)

    Khi đó (P):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2; - 3) \\
\overrightarrow{HB} = ( - 1;b - 2; - 3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. mà H là trực tâm của tam giác ABC nên

    \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = \overrightarrow{0} \\
\overrightarrow{HB}.\overrightarrow{AC} = \overrightarrow{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b - 3c = 0 \\
a - 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = 3c

    Mặt khác H \in (P) \Rightarrow
\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1 \Rightarrow \frac{1}{3c} +
\frac{4}{3c} + \frac{3}{c} = 1

    \Rightarrow 14 = 3c \Leftrightarrow c =
\frac{14}{3} \Leftrightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    \Rightarrow (P):\dfrac{x}{14} +\dfrac{y}{7} + \dfrac{z}{\dfrac{14}{3}} = 1 \Rightarrow (P):x + 2y + 3z -14 = 0

  • Câu 7: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

     

    a) Sai

     

    Ta thấy ABCD là hình chữ nhật nên AB//CD

    Suy ra hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, ngược hướng.

    b) Sai

    Ta có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.

    Suy ra \tan\widehat{SAC} = \frac{SA}{SC}
= \frac{2a}{a\sqrt{5}} \Rightarrow \widehat{SAC} \approx
41^{0}48'

    Ta có: \left(
\overrightarrow{SC};\overrightarrow{AC} ight) = \left(
\overrightarrow{CS};\overrightarrow{CA} ight) = \widehat{SAC} \approx
41^{0}48'

    c) Đúng

    Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.

    Suy ra SB = \sqrt{SA^{2} +
AB^{2}} = a\sqrt{5}

    Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:

    AM = \frac{1}{2}SB =
\frac{a\sqrt{5}}{2}

    Lại có M là trung điểm của SB nên MB =
\frac{1}{2}SB = \frac{a\sqrt{5}}{2}

    Ta tính được \cos MAB = \frac{MA^{2} +
AB^{2} - MB^{2}}{2MA.AB} = \frac{\sqrt{5}}{5}

    \left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\widehat{MAB}

    \Rightarrow
\overrightarrow{AM}.\overrightarrow{AB} = \left| \overrightarrow{AM}
ight|.\left| \overrightarrow{AB} ight|.cos\left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\frac{a\sqrt{5}}{2}.a.\frac{\sqrt{5}}{5} = \frac{a^{2}}{2}

    d) Sai

    Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD

    Do đó MN = \frac{1}{2}BD = \sqrt{AB^{2} +
AD^{2}} = \frac{a\sqrt{5}}{2}

    Suy ra \left| \overrightarrow{AM} -
\overrightarrow{AN} ight| = \left| \overrightarrow{MN} ight| =
\frac{a\sqrt{5}}{2}

  • Câu 8: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;0),B(1;1;0),C(0;1;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = - 1 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.. Vậy tọa độ điểm D(0;0;1).

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P),(Q) lần lượt có phương trình là x + y - z = 0,\ x - 2y + 3z = 4 và cho điểm M(1; - 2;5). Tìm phương trình mặt phẳng (\alpha) đi qua điểm M và đồng thời vuông góc với hai mặt phẳng (P),(Q)?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (1;1; - 1) \\
\overrightarrow{n_{(Q)}} = (1; - 2;3) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack = (1; -
4; - 3)

    Do (\alpha) vuông góc với (P),(Q) nên \left\{ \begin{matrix}
\overrightarrow{n_{(\alpha)}}\bot\overrightarrow{n_{(P)}} \\
\overrightarrow{n_{(\alpha)}}\bot\overrightarrow{n_{(Q)}} \\
\end{matrix} ight.

    Chọn \overrightarrow{n_{(\alpha)}} =
\left\lbrack \overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}}
ightbrack = (1; - 4; - 3)

    Hơn nữa (\alpha) đi qua M(1; - 2;5) nên có phương trình là:

    (x - 1) - 4(y + 2) - 3(z - 5) =
0

    \Leftrightarrow x - 4y - 3z + 6 =
0

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x + y - z - 3 = 0(Q):x + y + z - 1 = 0. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P),(Q) là:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + y - z - 3 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 2z - 2 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2z + 2 \\
y = - 3z - 1 \\
\end{matrix} ight.. Đặt z =
t ta suy ra x = 2t + 2,y = - 3t -
1.

    Từ đó ta thu được phương trình đường thẳng: d:\frac{x - 2}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}

    Xét điểm A(2; - 1;0) \in d, ta thấy A chỉ thuộc đường thẳng: \frac{x}{2} = \frac{y - 2}{3} = \frac{z +
1}{1}

  • Câu 11: Vận dụng

    Trong không gian Oxyz, cho hai đường thẳng cắt nhau \Delta_{1}:\frac{x +1}{1} = \frac{y - 2}{2} = \frac{z + 1}{3},\Delta_{2}:\frac{x + 1}{1} =\frac{y - 2}{2} = \frac{z + 1}{- 3}. Trong mặt phẳng \left( \Delta_{1};\Delta_{2} ight), hãy viết phương trình đường phân giác d của góc nhọn tạo bởi \Delta_{1};\Delta_{2}

    Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là \overrightarrow{u_{1}} =
(1;2;3),\overrightarrow{u_{2}} = (1;2; - 3)

    Ta có \overrightarrow{u_{1}}.\overrightarrow{u_{2}} = -
4 < 0, suy ra góc giữa hai vectơ \overrightarrow{u_{1}}\overrightarrow{u_{2}} là góc tù.

    Lại có \left| \overrightarrow{u_{1}}
ight| = \left| \overrightarrow{u_{2}} ight|

    Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là \overrightarrow{u} = \overrightarrow{u_{1}} -
\overrightarrow{u_{2}} = (0;0;6) = 6(0;0;1)

    Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là \overrightarrow{u} =
(0;0;1)

    Vậy phương trình đường thẳng d là: \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 12: Thông hiểu

    Trong không gian Oxyz, cho hình chóp S.ABCD có đáy là hình vuông và SA vuông góc với đáy. Biết B(2;3;7),D(4;1;3), lập phương trình mặt phẳng (SAC).

    Dễ dàng chứng minh được (SAC) là mặt phẳng trung trực của BD.

    Chọn vectơ pháp tuyến của mặt phẳng (SAC)\overrightarrow{BD} = (2; - 2; - 4).

    Mặt phẳng (SAC) đi qua trung điểm I(3;2;5) của BD và có vtcp \overrightarrow{BD} nên có phương trình: x - y - 2z + 9 = 0.

  • Câu 13: Vận dụng cao

    Cho điểm {m{A(2, - 1,1)}} và đường thẳng (\Delta ):\left\{ \begin{array}{l}y + z - 4 = 0\\2x - y - z + 2 = 0\end{array} ight.. Gọi A'  là điểm đối xứng của A qua (\triangle) . Tọa độ điểm A'  là:

    Đưa phương trình (\triangle) về dạng tham số: \left\{ \begin{array}{l}x = 1\\y = 4 - t\\z = t\end{array} ight.

    Gọi (P) là mặt phẳng qua A và vuông góc với (\triangle).

    Phương trình mp (P) có dạng - y + z + D = 0 , qua A nên D =  -2

    Phương trình (P) là: y - z + 2 = 0

    Thế x, y, z từ phương trình (\triangle) vào phương trình (P) được t=1

    \Rightarrow (\triangle ) \cap (\alpha ) = (1,3,1).

    I là trung điểm của AA' nên: {x_{A'}} + 2 = 2;{y_{A'}} - 1 = 6;{z_{A'}} + 1 = 2

    \Rightarrow A'(0,7,1).

  • Câu 14: Thông hiểu

    Cho các mệnh đề sau:

    (I) Vectơ \overrightarrow{x} =\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} luôn đồng phẳng với hai vectơ \overrightarrow{a};\overrightarrow{b}.

    (II) Nếu có m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0} và ít nhất một trong ba số m;n;p khác không thì ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng.

    (III) Nếu ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} không đồng phẳng và m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0} thì m = n = p = 0.

    Hỏi có bao nhiêu mệnh đề đúng?

    Do \overrightarrow{x} được biểu thị qua hai vectơ \overrightarrow{a};\overrightarrow{b} nên (I) đúng.

    Xét mệnh đề (II): Giả sử m eq
0, khi đó:

    m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0}\Leftrightarrow \overrightarrow{a} = - \frac{n}{m}\overrightarrow{b} -\frac{p}{m}\overrightarrow{c}

    Suy ra ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng. Vậy mệnh đề (II) đúng.

    Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD =\frac{a\sqrt{17}}{2}, hình chiếu vuông góc Hcủa S trên mặt phẳng (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm đoạn AD (tham khảo hình vẽ)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD =\frac{a\sqrt{17}}{2}, hình chiếu vuông góc Hcủa S trên mặt phẳng (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm đoạn AD (tham khảo hình vẽ)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y + z - 6 = 0. Điểm nào dưới đây không thuộc mặt phẳng (\alpha)?

    Điểm M(1; - 1;1) không thuộc mặt phẳng (\alpha):x + y + z - 6 =
0.

  • Câu 17: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 3 + 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Vectơ nào dưới đây là vectơ chỉ phương của d?

    Ta có: d:\left\{ \begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 3 + 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) suy ra vectơ chỉ phương của đường thẳng d là \overrightarrow{u} = (2; - 3;5)

  • Câu 18: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình dạng Ax + By + Cz + D = 0, (A,B,C,D \in Z) và có UCLN\left( |A|,|B|,|C|,|D| ight) = 1. Để mặt phẳng (P) đi qua điểm B(1;2; - 1) và cách gốc tọa độ O một khoảng lớn nhất thì đẳng thức nào sau đây đúng?

    Mặt phẳng (P) đi qua điểm B(1; 2; −1) suy ra A + 2B − C + D = 0 (1).

    Khi đó:

    d\left( O;(P) ight) =
\frac{|D|}{\sqrt{A^{2} + B^{2} + C^{2}}} = \frac{|A + 2B -
C|}{\sqrt{A^{2} + B^{2} + C^{2}}}

     

    \leq \frac{\sqrt{\left\lbrack 1^{2} +
2^{2} + ( - 1)^{2} ightbrack\left( A^{2} + B^{2} + C^{2}
ight)}}{\sqrt{A^{2} + B^{2} + C^{2}}} = \sqrt{6}

    Đẳng thức xảy ra khi và chỉ khi:

    \left\{ \begin{matrix}A + 2B - C + D = 0 \\\dfrac{A}{1} = \dfrac{B}{2} = \dfrac{C}{- 1} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}D = - 3B \\B = 2A = - 2C \\A;B;C\mathbb{\in Z} \\\end{matrix} ight.

    Từ đó tìm được A = - C = 1,B = 2,D = -
6 hoặc A = - C = - 1,B = - 2,D =
6.

    Vậy A^{2} + B^{2} + C^{2} + D^{2} =
42.

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0. Mệnh đề nào dưới đây đúng?

    Ta có điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0 nên:

    2a - b + 1 - 3 = 0 \Leftrightarrow 2a -
b = 2

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{k} \Leftrightarrow A(0;1; -
2)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo