Trong không gian hệ trục tọa độ
cho
. Khi đó tọa độ
với hệ
là:
Ta có:
Lại có
Trong không gian hệ trục tọa độ
cho
. Khi đó tọa độ
với hệ
là:
Ta có:
Lại có
Trong không gian với hệ tọa độ
, gọi
là mặt phẳng chứa đường thẳng
và vuông góc với mặt phẳng
. Hỏi giao tuyến của
và
đi qua điểm nào dưới đây?
Ta có:
Suy ra
Khi đó giao tuyến thỏa hệ
Thay các phương án vào hệ, ta nhận phương án .
Trong không gian với hệ tọa độ
, cho
. Viết phương trình mặt phẳng trung trực của
.
Mặt phẳng trung trực nhận
làm vectơ pháp tuyến và đi qua trung điểm
của
nên ta có phương trình mặt phẳng
là:
.
Cho tứ diện
và điểm
thỏa mãn
(
là trọng tâm của tứ diện). Gọi
là giao điểm của
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì là giao điểm của
và mặt phẳng
suy ra
là trọng tâm tam giác
suy ra
Theo bài ra ta có:
Trong không gian với hệ toạ độ
, cho điểm
, đường thẳng
và mặt phẳng
. Viết phương trình đường thẳng
qua
vuông góc với d và song song với
.
Đường thẳng có vec tơ chỉ phương
.
Mặt phẳng có vec tơ pháp tuyến
.
Đường thẳng ∆ vuông góc với nên vectơ chỉ phương
Đường thẳng ∆ song song với (P) nên
Ta có
Suy ra vec tơ chỉ phương của đường thẳng ∆ là
Vậy phương trình đường thẳng ∆ là .
Cho hai mặt phẳng
và
. Tìm tham số
để hai mặt phẳng
và
vuông góc với nhau.
Đáp án: 4
Cho hai mặt phẳng và
. Tìm tham số
để hai mặt phẳng
và
vuông góc với nhau.
Đáp án: 4
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
.
Cho điểm P(-3 , 1, -1) và đường thẳng (d): ![]()
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Trong không gian
có điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Ta có: . Khi đó
Vậy giá trị cần tìm là .
Cho tam giác
. Lấy điểm
nằm ngoài mặt phẳng
. Trên đoạn
lấy điểm
sao cho
và trên đoạn
lấy điểm
sao cho
. Biết biểu diễn
là duy nhất. Tính giá trị biểu thức
?
Hình vẽ minh họa
Theo giả thiết ta có: ;
Lấy điểm P trên cạnh AC sao cho . Khi đó:
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Cho hình chóp
có đáy
là hình vuông cạnh
,
, hình chiếu vuông góc
của S trên mặt phẳng
là trung điểm của đoạn
. Gọi
là trung điểm đoạn
(tham khảo hình vẽ)

Cho hình chóp có đáy
là hình vuông cạnh
,
, hình chiếu vuông góc
của S trên mặt phẳng
là trung điểm của đoạn
. Gọi
là trung điểm đoạn
(tham khảo hình vẽ)
Trong không gian với tọa độ
cho
và mặt phẳng
. Tìm phương trình mặt phẳng
đi qua
sao cho
vuông góc với (α) và
song song với trục
?
Vì nên
và
nên
Chọn
Phương trình mặt phẳng là
.
Cho ba vectơ
. Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?
Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.
Cho hình chóp
có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ
là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ
bằng
. Sai||Đúng
c) Tích vô hướng của
bằng
. Đúng||Sai
d) Độ dài vectơ
là
. Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
a) Sai
Ta thấy ABCD là hình chữ nhật nên
Suy ra hai vectơ là hai vectơ cùng phương, ngược hướng.
b) Sai
Ta có ABCD là hình chữ nhật nên
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra
Ta có:
c) Đúng
Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:
Lại có M là trung điểm của SB nên
Ta tính được
Mà
d) Sai
Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD
Do đó
Suy ra
Trong không gian
, cho điểm
và mặt phẳng
. Điểm
thay đổi thuộc
; điểm
thay đổi thuộc mặt phẳng
. Biết rằng tam giác
có chu vi nhỏ nhất. Tìm tọa độ điểm
.
Trong không gian , cho điểm
và mặt phẳng
. Điểm
thay đổi thuộc
; điểm
thay đổi thuộc mặt phẳng
. Biết rằng tam giác
có chu vi nhỏ nhất. Tìm tọa độ điểm
.
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) song song khi và chỉ khi:
Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:
và (d) cùng nằm trong một mặt phẳng
Để (D) và d song song, ta sẽ xét tỉ số chứng minh chúng cùng phương rồi kiểm tra rằng d không nằm trong (D):
và (d) cùng phương
và
và (d) song song.
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và điểm
. Tính khoảng cách
từ
đến
.
Khoảng cách từ M đến mặt phẳng (P) là:
Trong không gian với hệ tọa độ
, phương trình mặt phẳng
đi qua điểm
và cắt các tia
lần lượt tại các điểm
sao cho
đạt giá trị nhỏ nhất là:
Giả sử với
là các số thực dương do
khác 0.
Khi đó phương trình mặt phẳng qua
có phương trình là
Mà nên
, do đó theo bất đẳng thức Bunhiacopski ta có:
T đạt giá trị nhỏ nhất nên ta có dấu bằng xảy ra, tức là:
Vậy phương trình mặt phẳng (P) là .
Trong không gian với hệ tọa độ
,cho mặt phẳng
và điểm
. Gọi
là điểm thuộc tia
, gọi
là hình chiếu của
lên
. Biết rằng tam giác
cân tại
. Diện tích của tam giác
bằng:
Gọi
Đường thẳng AB qua A và vuông góc với (α) nên có phương trình
B là hình chiếu của A lên (α) nên tọa độ B thỏa mãn hệ
Suy ra
Tam giác MAB cân tại M nên
Nếu a = 3 thì tọa độ . Diện tích tam giác MAB là
Nếu a = −3 thì tọa độ A (0; 0; −3) và B (0; 0; −3) trùng nhau nên không thỏa mãn.
Vậy diện tích của tam giác bằng:
.