Trong không gian với hệ tọa độ
, khoảng cách từ điểm
tới đường thẳng
bằng:
Đường thẳng đi qua
, có véc-tơ chỉ phương
.
Ta có và
.
Vậy khoảng cách từ đến đường thẳng
là:
Trong không gian với hệ tọa độ
, khoảng cách từ điểm
tới đường thẳng
bằng:
Đường thẳng đi qua
, có véc-tơ chỉ phương
.
Ta có và
.
Vậy khoảng cách từ đến đường thẳng
là:
Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi
lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
):
Theo đề bài, ta có:
Gọi
Ta có:
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?

Đáp án: 1223
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Gọi là tọa độ của máy bay sau 5 phút tiếp theo.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ gấp 4 lần thời gian bay từ
nên
Mặt khác, máy bay giữ nguyên hướng bay nên và
cùng hướng.
Suy ra
Tọa độ của máy bay sau 5 phút tiếp theo là .
Do đó,
Trong không gian
, phương trình của mặt phẳng
đi qua điểm
, đồng thời vuông góc với hai mặt phẳng
là:
Ta có lần lượt là vectơ pháp tuyến của các mặt phẳng
.
Do mặt phẳng vuông góc với hai mặt phẳng
nên
là một vectơ pháp tuyến của
.
Từ đó suy ra mặt phẳng có phương trình
.
Cho hình hộp
. Tính tổng
?
Hình vẽ minh họa
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và vuông góc với hai mặt phẳng
và
. Phương trình của mặt phẳng
là
Ta có các vectơ pháp tuyến của (P) và (Q) là
Theo giả thiết mặt phẳng (α) vuông góc với (P) và (Q) do đó
Suy ra, phương trình mặt phẳng (α) có dạng
Hay
Trong không gian
, mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Cho điểm
và mặt phẳng
Gọi A’ là điểm đối xứng của A qua (P).Tọa độ điểm A’ là :
Phương trình tham số của đường thẳng (d) qua A vuông góc với (P): .
Thế x, y, z theo t vào phương trình của (P), ta được:
Thế tiếp vào phương trình của (d) được giao điểm I của (d) và (P):
Mặt khác, I là trung điểm của AA' nên suy ra được:
Trong không gian với hệ tọa độ
, cho tam giác
với
,
,
. Các khẳng định sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c) Hình chiếu vuông góc của điểm
trên mặt phẳng tọa độ
là điểm
. Đúng||Sai
d) Nếu
là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Trong không gian với hệ tọa độ , cho tam giác
với
,
,
. Các khẳng định sau đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) Hình chiếu vuông góc của điểm trên mặt phẳng tọa độ
là điểm
. Đúng||Sai
d) Nếu là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Ta có:
a) sai.
b) sai.
c) đúng
d) Gọi ,
,
Vì là hình bình hành nên
.
Vậy d) sai
Trong không gian
, cho tam giác
với tọa độ các điểm ![]()
.
Xác định tính đúng sai của các khẳng định sau:
a) Tọa độ trọng tâm G của tam giác là
. Đúng||Sai
b)
. Sai||Đúng
c) Tam giác
là tam giác cân. Đúng||Sai
d) Nếu
là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Trong không gian , cho tam giác
với tọa độ các điểm
.
Xác định tính đúng sai của các khẳng định sau:
a) Tọa độ trọng tâm G của tam giác là . Đúng||Sai
b) . Sai||Đúng
c) Tam giác là tam giác cân. Đúng||Sai
d) Nếu là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
a) Đúng.
Trọng tâm tam giác có tọa độ là:
b) Sai. Vì
c) Đúng. Do nên tam giác ABC cân tại A.
d) Sai. Gọi , vì ABCD là hình bình hành nên
Trong không gian với hệ tọa độ
, cho hai điểm
. Tìm tọa độ điểm
thuộc
sao cho
ngắn nhất.
Gọi là điểm sao cho
Suy ra J(2; 3; 1).
Khi đó
Vậy đạt GTNN khi và chỉ khi
đạt GTNN hay M là hình chiếu của J lên mặt phẳng (Oxy).
Vậy M(2; 3; 0).
Cho điểm
và đường thẳng
. Gọi A' là điểm đối xứng của A qua
. Tọa độ điểm A' là:
Đưa phương trình về dạng tham số:
Gọi (P) là mặt phẳng qua A và vuông góc với .
Phương trình mp (P) có dạng , qua A nên D = -2
Phương trình (P) là:
Thế x, y, z từ phương trình vào phương trình (P) được t=1
I là trung điểm của AA' nên:
.
Cho đường thẳng
có một vec-tơ chỉ phương là:
Ta có vectơ pháp tuyến của hai mặt phẳng
và
lần lượt là
Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:
Trong không gian
, cho hai điểm
và
. Trung điểm
của
có tọa độ là:
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Trong không gian
, cho
. Nếu ba vectơ
đồng phẳng thì:
Ta có:
Ba vectơ đồng phẳng
Trong không gian
, cho tọa độ ba điểm
. Tính cosin góc
?
Ta có: .
Trong không gian
, cho điểm
và mặt phẳng
. Tìm điểm
thuộc
, điểm
thuộc mặt phẳng
sao cho chu vi tam giác
bé nhất. Giá trị chu vi tam giác
bé nhất là:
Hình vẽ minh họa:
Gọi lần lượt là hình chiếu của
lên các mặt phẳng (P) và (Oxy) ta được
.
Gọi M, N lần lượt là các điểm đối xứng với qua các mặt phẳng (P) và (Oxy).
Khi đó ta có nên
Dấu đẳng thức xảy ra khi và chỉ khi B, C lần lượt là giao điểm của đường thẳng MN với các mặt phẳng (Oxy) và (P).
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ
.
Cho tam giác ABC có
.
Viết phương trình tổng quát của cạnh AC.
(AC) là đường thẳng đi qua 2 điểm A và C nên nhận làm 1 VTCP.
(AC) đi qua C (3,-2,5) và có 1 VTCP là (1,-2,4) có phương trình chính tắc: