Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(4;9;8),N(1; - 3;4),P(2;5; - 1). Mặt phẳng (\alpha) đi qua ba điểm M,N,P có phương trình tổng quát Ax + By + Cz + D = 0. Biết A = 92, tìm giá trị của D?

    Do A = 92 nên mặt phẳng (P) có phương trình 92x + By + Cz + D = 0

    Do (P) đi qua các điểm A;B;C nên ta có hệ:

    \left\{ \begin{matrix}
92.4 + B.9 + C.8 + D = 0 \\
92.1 + B.( - 3) + C.4 + D = 0 \\
92.2 + B.5 + C.( - 1) + D = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
B = - 19 \\
C = - 12 \\
D = - 101 \\
\end{matrix} ight.

    Vậy D = - 101.

  • Câu 2: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa điểm M(1;3; - 2), cắt các tia Ox,Oy,Oz lần lượt tại A;B;C (khác O) sao cho \frac{OA}{1} = \frac{OB}{2} =
\frac{OZ}{4}?

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0.

    Phương trình mặt phẳng (P) là \frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1. Theo giả thiết ta có:

    \left\{ \begin{matrix}\dfrac{a}{1} = \dfrac{b}{2} = \dfrac{c}{3} \\\frac{1}{a} + \dfrac{3}{b} - \dfrac{2}{c} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 4 \\c = 8 \\\end{matrix} ight.

    Vậy phương trình mặt phẳng (P)4x + 2y + z - 8 = 0.

  • Câu 3: Vận dụng

    Xét tính đúng sai của mỗi khẳng định. Trong không gian Oxyz, cho ba điểm A( - 3;0;1),B(2; - 4;6),C(1;2; - 7) và hai vecto \overrightarrow{u} = (3;0; -
1),\overrightarrow{v} = (3;5; - 7).

    a) Tích vô hướng của hai vecto \overrightarrow{u},\overrightarrow{v}bằng 15. Đúng||Sai

    b) Trung điểm của đoạn AC có tọa độ là (1;1; - 4). Sai||Đúng

    c) Tọa độ của vecto \overrightarrow{AB} +
\overrightarrow{u} - \overrightarrow{v}(5; - 9; - 3). Sai||Đúng

    d) Hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng (Oxz) O. Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định. Trong không gian Oxyz, cho ba điểm A( - 3;0;1),B(2; - 4;6),C(1;2; - 7) và hai vecto \overrightarrow{u} = (3;0; -
1),\overrightarrow{v} = (3;5; - 7).

    a) Tích vô hướng của hai vecto \overrightarrow{u},\overrightarrow{v}bằng 15. Đúng||Sai

    b) Trung điểm của đoạn AC có tọa độ là (1;1; - 4). Sai||Đúng

    c) Tọa độ của vecto \overrightarrow{AB} +
\overrightarrow{u} - \overrightarrow{v}(5; - 9; - 3). Sai||Đúng

    d) Hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng (Oxz) O. Đúng||Sai

    a) đúng, b) sai, c) sai, d) đúng.

    a) Ta có \overrightarrow{u}.\overrightarrow{v} = 3.3 + 0.5
+ ( - 1).( - 7) = 15.

    b) Ta có trung điểm của đoạnACcó tọa độ là \left( \frac{( - 3) +
1}{2};\frac{0 + 2}{2};\frac{1 + ( - 7)}{2} ight) = ( - 1;1; -
3).

    c) Ta có

    \begin{matrix}
\overrightarrow{AB} = (5; - 4;5). \\
\overrightarrow{u} = (3;0; - 1), \\
\overrightarrow{v} = (3;5; - 7). \\
\end{matrix}

    Suy ra \overrightarrow{AB} +
\overrightarrow{u} - \overrightarrow{v} = (5; - 9;11).

    d) Ta có G\left( 0;\frac{- 2}{3};0
ight) Suy ra hình chiếu vuông góc của trọng tâm tam giác ABC lên mặt phẳng (Oxz)O(0;0;0).

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng \Delta_{1} :\left\{ \begin{matrix}x = 3 + t \\y = 1 + t \\z = 1 + 2t \\\end{matrix}(t \in \mathbb{R}); ight. \Delta_{2}:\frac{x + 2}{2} =\frac{y - 2}{5} = \frac{z}{-1} và điểm M(0;3;0). Đường thẳng d đi qua M, cắt \Delta_{1} và vuông góc với \Delta_{2} có một vectơ chỉ phương là \overrightarrow{u} = (4;a;b). Tính T = a + b

    Hình vẽ minh họa

    Gọi (P) là mặt phẳng chứa M\Delta_{1}.

    Lấy A(3;1;1) \in \Delta_{1}.

    Mặt phẳng (P) có véc-tơ pháp tuyến vuông góc với các véc-tơ \overrightarrow{MA} = (3; - 2;1){\overrightarrow{u}}_{\Delta_{1}} =
(1;1;2).

    Ta có \left\lbrack
\overrightarrow{MA},{\overrightarrow{u}}_{\Delta_{1}} ightbrack = (
- 5; - 5;5).

    Một trong các véc-tơ pháp tuyến của mặt phẳng (P){\overrightarrow{n}}_{(P)} = (1;1; -
1).

    Đường thẳng d nằm trong mặt phẳng (P) và vuông góc với \Delta_{2}\overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{u_{\Delta_{2}}} ightbrack =
(4; - 1;3)

    Vậy a = - 1;b = 3 \Rightarrow T = a + b =
2.

  • Câu 5: Thông hiểu

    Trong không gian Oxyz,cho hai đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = t \\
z = - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\left\{ \begin{matrix}
x = 2t' \\
y = - 1 + t' \\
z = t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Khoảng cách giữa hai đường thẳng dd' là:

    Đường thẳng d đi qua điểm A(1;0;0) và có vectơ chỉ phương \overrightarrow{u_{d}} = ( - 1;1; -
1)

    Đường thẳng d' đi qua điểm B(0; - 1;0) và có vectơ chỉ phương \overrightarrow{u_{d'}} =
(2;1;1);\overrightarrow{AB} = ( - 1; - 1;0)

    \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}} ightbrack =
\left( \left| \begin{matrix}
1 & - 1 \\
1 & 1 \\
\end{matrix} ight|;\left| \begin{matrix}
- 1 & - 1 \\
1 & 2 \\
\end{matrix} ight|;\left| \begin{matrix}
- 1 & 1 \\
2 & 1 \\
\end{matrix} ight| ight) = (2; - 1; - 3)

    Khoảng cách giữa hai đường thẳng dd' là:

    d(d;d') = \frac{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}}
ightbrack.\overrightarrow{AB} ight|}{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}} ightbrack
ight|} = \frac{1}{\sqrt{14}}

  • Câu 6: Nhận biết

    Điều kiện cần và đủ để ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} không đồng phẳng là:

    Ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.

  • Câu 7: Thông hiểu

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{u};\overrightarrow{AB} =
\overrightarrow{v};\overrightarrow{AC} = \overrightarrow{w}. Biểu diễn vectơ \overrightarrow{BC'} qua các vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w}. Chọn đáp án đúng?

    Ta có:

    \overrightarrow{BC'} =
\overrightarrow{BC} + \overrightarrow{CC'} = \overrightarrow{BA} +
\overrightarrow{AC} + \overrightarrow{CC'}

    = - \overrightarrow{v} +
\overrightarrow{w} + \overrightarrow{u} = \overrightarrow{u} -
\overrightarrow{v} + \overrightarrow{w}

    Vậy đáp án đúng là: \overrightarrow{BC'} = \overrightarrow{u} -
\overrightarrow{v} + \overrightarrow{w}.

  • Câu 8: Vận dụng cao

    Cho điểm {m{A(2, - 1,1)}} và đường thẳng (\Delta ):\left\{ \begin{array}{l}y + z - 4 = 0\\2x - y - z + 2 = 0\end{array} ight.. Gọi A'  là điểm đối xứng của A qua (\triangle) . Tọa độ điểm A'  là:

    Đưa phương trình (\triangle) về dạng tham số: \left\{ \begin{array}{l}x = 1\\y = 4 - t\\z = t\end{array} ight.

    Gọi (P) là mặt phẳng qua A và vuông góc với (\triangle).

    Phương trình mp (P) có dạng - y + z + D = 0 , qua A nên D =  -2

    Phương trình (P) là: y - z + 2 = 0

    Thế x, y, z từ phương trình (\triangle) vào phương trình (P) được t=1

    \Rightarrow (\triangle ) \cap (\alpha ) = (1,3,1).

    I là trung điểm của AA' nên: {x_{A'}} + 2 = 2;{y_{A'}} - 1 = 6;{z_{A'}} + 1 = 2

    \Rightarrow A'(0,7,1).

  • Câu 9: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; - 1) và mặt phẳng (P):x + y - 2z - 3 =
0. Tìm điểm M \in (P) sao cho |\overrightarrow{MA} +
\overrightarrow{MB} + 2\overrightarrow{MC}| dạt giá trị nhỏ nhất.

    Gọi I là điểm sao cho \overrightarrow{IA} + \overrightarrow{IB} +
2\overrightarrow{IC} = 0 \Rightarrow I(0;0;0).

    Từ đó:

    |\overrightarrow{MA} +
\overrightarrow{MB} + 2\overrightarrow{MC}| = |4\overrightarrow{MI} +
(\overrightarrow{IA} + \overrightarrow{IB} + 2\overrightarrow{IC})| =
4IM \geq 4IH

    với H là hình chiếu của I trên mặt phẳng (P).

    Từ đó suy ra |\overrightarrow{MA} +
\overrightarrow{MB} + 2\overrightarrow{MC}| dạt giá trị nhỏ nhất khi và chỉ khi M \equiv H.

    Phương trình đường thẳng đi qua I và vuông góc với mặt phẳng (P) là: \left\{ \begin{matrix}
x = t \\
y = t \\
z = - 2t \\
\end{matrix} ight..

    Tọa độ diểm H là nghiệm (x;y;z) của hệ

    \left\{ \begin{matrix}x = t \\y = t \\z = - 2t \\x + y - 2z - 3 = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{1}{2} \\y = \dfrac{1}{2} \\z = - 1 \\t = \dfrac{1}{2} \\\end{matrix} ight.\  ight.

    Suy ra H = \left(
\frac{1}{2};\frac{1}{2}; - 1 ight).

    Vậy, tọa độ điểm M cần tìm là M = \left( \frac{1}{2};\frac{1}{2}; - 1
ight).

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;0; - 2), B( - 2;3;4), ,\ C(4; - 6;1). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j}. Sai||Đúng

    b) \overrightarrow{AB} = (3\ ;\  - 3\
;\  - 6). Sai||Đúng

    c) Hình chiếu vuông góc của điểm B trên mặt phẳng tọa độ (Oxy) là điểm B( - 2\ ;\ 3\ ;\ 0). Đúng||Sai

    d) NếuABCD là hình bình hành thì tọa độ điểm D(1; -
3;7). Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;0; - 2), B( - 2;3;4), ,\ C(4; - 6;1). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j}. Sai||Đúng

    b) \overrightarrow{AB} = (3\ ;\  - 3\
;\  - 6). Sai||Đúng

    c) Hình chiếu vuông góc của điểm B trên mặt phẳng tọa độ (Oxy) là điểm B( - 2\ ;\ 3\ ;\ 0). Đúng||Sai

    d) NếuABCD là hình bình hành thì tọa độ điểm D(1; -
3;7). Sai||Đúng

    Ta có:

    A(1;0; - 2) \Rightarrow \overrightarrow{OA} =
\overrightarrow{i} + 0\overrightarrow{j} - 2\overrightarrow{k} \Rightarrow a) sai.

    \overrightarrow{AB} = \left( x_{B} -
x_{A}\ ;\ y_{B} - y_{A}\ ;\ z_{B} - z_{A} ight)

    \Rightarrow \overrightarrow{AB} = ( - 3\
;\ 3\ ;\ 6) \Rightarrow b) sai.

    c) đúng

    d) Gọi D(x;y;z),

    \overrightarrow{AB} = ( -
3;3;6), \overrightarrow{DC} = (4 -
x; - 6 - y;1 - z)

    ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
4 - x = - 3 \\
- 6 - y = 3 \\
1 - z = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 7 \\
y = - 9 \\
z = - 5 \\
\end{matrix} ight.

    \Rightarrow D(7\ ;\  - 9\ ;\  -
5).

    Vậy d) sai

  • Câu 11: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; - 1;5),B(5; - 5;7) và điểm M \in (Oxy). Tìm tọa độ điểm M để ba điểm A;B;M thẳng hàng?

    Ta có: M \in (Oxy) \Rightarrow
M(x;y;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2;3;1) \\
\overrightarrow{AM} = (x - 2;y + 2; - 1) \\
\end{matrix} ight.

    Vì ba điểm A; B; M thẳng hàng nên \overrightarrow{AB};\overrightarrow{AM} cùng phương

    \Leftrightarrow \frac{x - 2}{- 2} =
\frac{y + 2}{3} = \frac{- 1}{1} \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
\end{matrix} ight.\  \Rightarrow M(4; - 5;0)

    Vậy đáp án cần tìm là M(4; -
5;0).

  • Câu 12: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, trục Ox có phương trình tham số là

    Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương \overrightarrow{i} = (1;0;0) nên có phương trình tham số là \left\{
\begin{matrix}
x = 0 + 1t \\
y = 0 + 0t \\
z = 0 + 0t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 13: Nhận biết

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 14: Vận dụng

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P):x + y + z - 9 = 0. Hỏi có bao nhiêu điểm M(a;b;c) thuộc mặt phẳng (P) với a,b,c là các số nguyên không âm.

    Ta có (P):x + y + z - 9 = 0 \Rightarrow
\frac{x}{9} + \frac{y}{9} + \frac{z}{9} = 1 nên mặt phẳng (P) đi qua các điểm A(9; 0; 0), B(0; 9; 0), C(0; 0; 9).

    Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.

    Tam giác ABC đều có các cạnh bằng 9\sqrt{2}, chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.

    Mà số điểm có toạ độ nguyên của tam giác OAB bằng 1\  + \ 2\  + \ ...\  + \ 10\  = \ 55

  • Câu 15: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{\left( P_{1}
ight)}} = (1;2; - 1) nên mệnh đề sai

    b) \overrightarrow{n_{\left( P_{1}
ight)}} = ( - 2;1;1) nên mệnh đề đúng

    c) \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) = \frac{1.( - 2) +
2.1 + ( - 1)1}{\sqrt{6}\sqrt{6}} = - \frac{1}{6} mệnh đề đúng

    d) Góc hai mặt phẳng không thể tù nên mệnh đề sai

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; - 1;1) và vectơ \overrightarrow{n} = (1;3;4). Viết phương trình mặt phẳng (P) đi qua điểm M(2; - 1;1) và có vectơ pháp tuyến \overrightarrow{n}.

    Phương trình tổng quát của mặt phẳng (P) có dạng:

    (x - 2) + 3(y - 1) + 4(z - 1) =
0

    \Leftrightarrow x + 3y + 4z - 3 =
0

  • Câu 17: Nhận biết

    Trong không gian Oxyz, cho điểm A(1; -
1;2) và vectơ \overrightarrow{n} =
(2;4; - 6). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến.

    Phương trình mặt phẳng có dạng:

    A\left( x - x_{A} ight) + B\left( y -
y_{A} ight) + C\left( z - z_{A} ight) = 0 .

    2(x - 1) + 4(y + 1) + 6(z - 2) =
0

    \Leftrightarrow x + 2y - 3z + 7 =
0.

  • Câu 18: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P):x - 2y - 3z - 2 = 0. Đường thẳng d vuông góc với mặt phẳng (P) có một vectơ chỉ phương có tọa độ là:

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 2; -
3).

    Do d\bot(P) nên vectơ \overrightarrow{n} = (1; - 2; - 3) cũng là một vectơ chỉ phương của d.

  • Câu 19: Vận dụng cao

    Trong không gian Oxyz, cho điểm P(1;1;2). Mặt phẳng (\alpha) đi qua P cắt các trục Ox,Oy, Oz lần lượt tại A,B,C khác gốc tọa độ sao cho T = \frac{R_{1}^{2}}{S_{1}^{2}} +
\frac{R_{2}^{2}}{S_{2}^{2}} + \frac{R_{3}^{2}}{S_{3}^{2}} đạt giá trị nhỏ nhất, trong đó S_{1},S_{2},S_{3} lần lượt là diện tích các tam giác OAB,OBC,OCAR_{1},R_{2},R_{3} lần lượt là diện tích các tam giác PAB,PBC,PCA. Điểm M nào dưới đây thuộc (\alpha) ?

    Ta có \overrightarrow{OP} = (1;1;2)
\Rightarrow OP = \sqrt{6}. Lại có d(P,(Oxy)) = 2, d(P,(Oxz)) = 1d(P,(Oyz)) = 1.

    Đặt d = d(O,(ABC)), ta có

    V_{P.OAB} = V_{O.PAB}

    \Leftrightarrow d(P,(Oxy)) \cdot
S_{\bigtriangleup OAB} = d(O,(ABC)) \cdot S_{\bigtriangleup
PAB}

    \Leftrightarrow 2S_{1} =
dR_{1}

    \Leftrightarrow \frac{R_{1}}{S_{1}} =
\frac{2}{d}

    Tương tự, ta có \frac{R_{2}}{S_{2}} =
\frac{1}{d}\frac{R_{3}}{S_{3}}
= \frac{1}{d}.

    Khi đó T = \frac{R_{1}^{2}}{S_{1}^{2}} +
\frac{R_{2}^{2}}{S_{2}^{2}} + \frac{R_{3}^{2}}{S_{3}^{2}} =
\frac{6}{d^{2}} \geq \frac{6}{OP^{2}} = 1.

    Dấu "=" xảy ra khi và chỉ khi d =
OP hay OP\bot(ABC).

    Từ đó suy ra (\alpha) nhận \overrightarrow{OP} = (1;1;2) làm vectơ pháp tuyến.

    Do đó (\alpha) có phương trình 1(x - 1) + 1(y - 1) + 2(z - 2) = 0
\Leftrightarrow x + y + 2z - 6 = 0.

    Vậy M(4;0;1) là điểm thuộc (\alpha).

  • Câu 20: Vận dụng

    Trong không gian Oxyz, cho bốn điểm A(2;0;0),B(0;3;0),C(0;0;3)D\left( 1;1;\frac{1}{2} ight). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm O,A,B,C,D?

    Hình vẽ minh họa

    Ta có mặt phẳng (ABC): \frac{x}{2} +
\frac{y}{3} + \frac{z}{3} = 1.

    Suy ra D\left( 1;1;\frac{1}{2}
ight) thuộc mặt phẳng (ABC).

    Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.

    Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là C_{4}^{2} = 6.

    Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm O,A,B,C,D1 + 6 = 7.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo