Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong hệ tục toạ độ không gian Oxyz, cho A(1;0;0),B(0;b;0),C(0;0;c), biết b,c > 0, phương trình mặt phẳng (P):y - z + 1 = 0. Tính M = b + c biết (ABC)\bot(P),d\left( O;(ABC) ight) =
\frac{1}{3}?

    Ta có (ABC):\frac{x}{1} + \frac{y}{b} +
\frac{z}{c} = 1

    \Rightarrow (ABC):bcx + cy + bz - bc =
0

    Hai mặt phẳng(ABC);(P) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{1}} =
(bc;c;b),\overrightarrow{n_{2}} = (0;1; - 1)

    (P)\bot(ABC) nên c - b = 0 \Leftrightarrow b = c.

    Theo giả thiết

    d\left( O;(ABC) ight) = \frac{1}{3}
\Leftrightarrow \frac{| - bc|}{\sqrt{bc^{2} + c^{2} + b^{2}}} =
\frac{1}{3}

    \Leftrightarrow 3b^{2} = \sqrt{b^{4} +
2b^{2}} \Leftrightarrow 3b^{2} = b\sqrt{b^{2} + 2}

    \Leftrightarrow 3b = \sqrt{b^{2} + 2}
\Leftrightarrow 9b^{2} = b^{2} + 2 \Leftrightarrow b =
\frac{1}{2} (vì b >
0).

    Suy ra c = 2. Vậy M = b + c = 1.

  • Câu 2: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(2;0;0),M(1;1;1). Gọi (P) là mặt phẳng thay đổi qua A,M và cắt các trục Oy,Oz lần lượt tại B(0;b;0),C(0;0;c) với b > 0,c > 0. Khi diện tích tam giác ABC nhỏ nhất, hãy tính giá trị của tích bc?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm A(2;0;0),M(1;1;1). Gọi (P) là mặt phẳng thay đổi qua A,M và cắt các trục Oy,Oz lần lượt tại B(0;b;0),C(0;0;c) với b > 0,c > 0. Khi diện tích tam giác ABC nhỏ nhất, hãy tính giá trị của tích bc?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz cho điểm H(2;1;1). Gọi (P) là mặt phẳng đi qua H và cắt các trục tọa độ tại A;B;C sao cho H là trực tâm tam giác ABC. Hãy viết trình mặt phẳng (P).

    Hình vẽ minh họa

    Ta có: \left| \begin{matrix}
AB\bot OC \\
AB\bot CH \\
\end{matrix} ight.\  \Rightarrow AB\bot OH

    Chứng minh tương tự BC ⊥ OH.

    Do đó OH\bot(ABC) \Rightarrow
\overrightarrow{n_{ABC}} = \overrightarrow{OH} = (2;;1)

    Suy ra (P):2x + y + z - 6 =
0.

  • Câu 4: Thông hiểu

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tổng quát của cạnh AC.

    (AC) là đường thẳng đi qua 2 điểm A và C nên nhận \overrightarrow {AC}  = 2\left( {1, - 2,4} ight) làm 1 VTCP.

    (AC) đi qua C (3,-2,5) và có 1 VTCP là (1,-2,4) có phương trình chính tắc:

    \begin{array}{l}x - 3 = \frac{{y + 2}}{{ - 2}} = \frac{{z - 5}}{4}\\ \Rightarrow PTTQ\,\,\,(AC):\left\{ \begin{array}{l}2x + y - 4 = 0\\4x - z - 7 = 0\end{array} ight. \vee \left\{ \begin{array}{l}2x + y - 4 = 0\\2y + z - 1 = 0\end{array} ight.\end{array}

     

  • Câu 5: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + z - 3 = 0 và điểm A(1;2;0). Viết phương trình đường thẳng qua A và vuông góc với (P).

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; -
2;1) nên đường thẳng cần tìm có vectơ chỉ phương là \overrightarrow{n} = (1; - 2;1).

    Vậy phương trình đường thẳng đi qua A và vuông góc với (P) là: \frac{x - 1}{1} = \frac{y - 2}{- 2} =
\frac{z}{1}

  • Câu 6: Thông hiểu

    Trong không gian Oxyz, cho các điểm A( - 1;2;1),B(2; -
1;4),C(1;1;4). Đường thẳng nào dưới đây vuông góc với mặt phẳng (ABC)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (3; - 3;3)//\overrightarrow{a} = (1; - 1;1) \\
\overrightarrow{AC} = (2; - 1;3) \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{n_{(ABC)}} =
\left\lbrack \overrightarrow{a};\overrightarrow{AC} ightbrack = ( -
2; - 1;1) là 1 VTPT của mặt phẳng (ABC).

    Do đó đường thẳng vuông góc với mặt phẳng (ABC) có VTPT cùng phương với vectơ (−2; −1; 1).

    Dựa vào các đáp án ta thấy ở đáp án D đường thẳng \frac{x}{2} = \frac{y}{1} = \frac{z}{- 1} có 1 VTPT là (−2; 1; 1) cùng phương với (−2; −1; 1).

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, cho hình bình hành hình bình hành. Biết các điểm A(1;0;1),B(2;1;2),D(1; - 1;1). Xác định tọa độ điểm C?

    Giả sử điểm C(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{DC} =
\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 1 \\
y + 1 = 1 \\
z - 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm C(2;0;2).

  • Câu 8: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 9: Nhận biết

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):(m - 1)x + y - 2z + m
= 0(Q):2x - z + 3 = 0. Tìm m để (P) vuông góc với (Q)?

    Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là (m - 1;1; -
2).(2;0; - 1) = 0 \Leftrightarrow m = 0.

  • Câu 10: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm M(1;0;0),N(0; - 2;0),P(0;0;1). Tính khoảng cách h từ gốc toạ độ O đến mặt phẳng (MNP)?

    Phương trình tổng quát của mặt phẳng (MNP) có dạng:

    \frac{x}{1} + \frac{y}{- 2} +
\frac{z}{1} = 1 \Leftrightarrow 2x - y + 2z - 2 = 0

    Khoảng cách từ gốc tọa độ (0;0;0) đến (MNP) là: h =
\frac{| - 2|}{\sqrt{4 + 1 + 4}} = \frac{2}{3}

  • Câu 11: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng

    Phương trình tổng quát của mặt phẳng là : 2x + y = 0.

  • Câu 12: Vận dụng

    Trong không gian với hệ toạ độ Oxyz, cho bốn đường thẳng \left( d_{1} ight):\frac{x - 3}{1} = \frac{y +1}{- 2} = \frac{z + 1}{1},\left( d_{2} ight):\frac{x}{1} = \frac{y}{-2} = \frac{z - 1}{1},\left( d_{3} ight):\frac{x - 1}{2} = \frac{y +1}{1} = \frac{z - 1}{1},\left( d_{4} ight):\frac{x}{1} = \frac{y -1}{- 1} = \frac{z - 1}{1}. Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:

    Kiểm tra vị trí tương đối giữa hai đường thẳng ta thấy (d1) // (d2); (d4) cắt (d2), (d3).

    Gọi (P) là mặt phẳng chứa (d1) và (d2); (Q) là mặt phẳng chứa (d3) và (d4).

    Gọi (∆) là đường thẳng cắt cả 4 đường thẳng trên.

    Ta thấy, (∆) cắt cả (d1), (d2) suy ra (∆) ⊂ (P).

    (∆) cắt cả (d3),(d4) suy ra (∆) ⊂ (Q).

    Mà (d2), (d4) có điểm chung nên (∆) là giao tuyến của (P) và (Q), do đó có duy nhất một đường thẳng thỏa mãn.

  • Câu 13: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Xác định tọa độ B’?

    Hình vẽ minh họa

    Giả sử điểm D(a;b;c),B'(a';b';c')

    Gọi O = AC \cap BD \Rightarrow O\left(
\frac{1}{2};4; - \frac{7}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 8 \\
c = - 7 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{DD'} = (9;0;17) \\
\overrightarrow{BB'} = (a' - 4;b';c') \\
\end{matrix} ight.. Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{DD'} =
\overrightarrow{BB'}

    \Leftrightarrow \left\{ \begin{matrix}
a' = 13 \\
b' = 0 \\
c' = 17 \\
\end{matrix} ight.\  \Rightarrow B'(13;0;17)

  • Câu 14: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - x_{0}}{a} = \frac{y - y_{0}}{b} =
\frac{z - z_{0}}{c}. Điểm M nằm trên đường thẳng \Delta thì điểm M có dạng nào sau đây?

    Đường thẳng \Delta đi qua điểm M\left( x_{0};y_{0};z_{0} ight) và có vectơ chỉ phương \overrightarrow{u} =
(a;b;c) nên đường thẳng \Delta có phương trình tham số là \Delta:\left\{ \begin{matrix}
x = x_{0} + at \\
y = y_{0} + bt \\
z = z_{0} + ct \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Điểm M nằm trên đường thẳng \Delta nên điểm M có dạng M\left( x_{0} + at;y_{0} + bt;z_{0} + ct
ight)

  • Câu 15: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(0;1; - 2),B(3; - 1;1). Tìm tọa độ điểm M sao cho \overrightarrow{AM} =
3\overrightarrow{AB}?

    Gọi tọa độ độ điểm M(x;y;z).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x;y - 1;z + 2) \\
\overrightarrow{AB} = (3; - 2;3) \\
\end{matrix} ight.

    Lại có: \overrightarrow{AM} =
3\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x = 9 \\
y - 1 = - 6 \\
z + 2 = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 9 \\
y = - 5 \\
z = 7 \\
\end{matrix} ight.\  \Rightarrow M(9; - 5;7)

    Vậy đáp án cần tìm là: M(9; -
5;7).

  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (2; -
1;1)\overrightarrow{v} = (0; -
3; - m). Xác định giá trị tham số m để \overrightarrow{u}.\overrightarrow{v} =
1?

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 17: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'M là trung điểm của BB'. Đặt \overrightarrow{CA} =
\overrightarrow{a};\overrightarrow{CB} =
\overrightarrow{b};\overrightarrow{AA'} =
\overrightarrow{c}. Đẳng thức nào sau đây đúng?

    Ta có: M là trung điểm của BB’ khi đó \overrightarrow{AM} =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB'}

    Khi đó:

    \overrightarrow{AM} =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB'}

    = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BB'}

    = \overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AA'} = \overrightarrow{AC} +
\overrightarrow{CB} + \frac{1}{2}\overrightarrow{AA'}

    = - \overrightarrow{a} +
\overrightarrow{b} + \frac{1}{2}\overrightarrow{c}

    Vậy đẳng thức đúng là \overrightarrow{AM}
= \overrightarrow{b} - \overrightarrow{a} +
\frac{1}{2}\overrightarrow{c}.

  • Câu 18: Vận dụng

    Trong không gian Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;1) và cắt các tia Ox,Oy,Oz lần lượt tại A,B,C sao cho độ dài OA,OB,OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (\alpha).

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.

    Phương trình mặt phẳng (α) có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    Ta có (α) đi qua điểm M(1; 2; 1) nên ta có \frac{1}{a} + \frac{2}{b} + \frac{1}{c} =
1 (∗)

    OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên c = 2b = 4a.

    Thay vào (∗), ta được \frac{1}{a} +
\frac{2}{2a} + \frac{1}{4a} = 1 \Leftrightarrow a =
\frac{9}{4}

    Suy ra phương trình mặt phẳng (α) là \frac{x}{1} + \frac{y}{2} + \frac{z}{4} =
\frac{9}{4} hay 4x + 2y + z - 9 =
0

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{| - 9|}{\sqrt{4^{2} + 2^{2} + 1^{2}}} =
\frac{3\sqrt{21}}{7}.

  • Câu 19: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    a) Sai: Do tọa độ trung điểm M của đoạn thẳng AB

    M\left( \frac{- 4 + ( - 4)}{2};\frac{2 +0}{2};\frac{4 + 1}{2} ight) hay M\left( - 4;1;\frac{5}{2}ight)

    b) Đúng: Do tọa độ trọng tâm G của tam giác ABC

    G\left( \frac{2 + ( - 4) + ( -4)}{3};\frac{- 2 + 2 + 0}{3};\frac{1 + 4 + 1}{3} ight) hay G(- 2;0;2)

    c) Đúng: N là điểm đối xứng của B qua A thì B là trung điểm AN.

    \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{N}}{2} \\y_{B} = \dfrac{y_{A} + y_{N}}{2} \\z_{B} = \dfrac{z_{A} + z_{N}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{N} = 2x_{B} - x_{A} \\y_{N} = 2y_{B} - y_{A} \\z_{N} = 2z_{B} - z_{A} \\\end{matrix} ight.\  ight.

     \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 8 \\
y_{N} = - 6 \\
z_{N} = - 2 \\
\end{matrix} ight. \Rightarrow N(8; - 6; - 2) 

    d) Đúng: B là trọng tâm tam giác AOE.

     \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{O} + x_{E}}{3} \\y_{B} = \dfrac{y_{A} + y_{O} + y_{E}}{3} \\z_{B} = \dfrac{z_{A} + z_{O} + z_{E}}{3} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x_{E} = 3x_{B} - x_{A} - x_{O} \\
y_{E} = 2y_{B} - y_{A} - y_{O} \\
z_{E} = 3z_{B} - z_{A} - z_{O} \\
\end{matrix} ight. 

    \Leftrightarrow \left\{ \begin{matrix}
x_{E} = - 14 \\
y_{E} = 8 \\
z_{E} = 11 \\
\end{matrix} \Rightarrow E( - 14;8;11) ight.

  • Câu 20: Vận dụng cao

    Trong không gian Oxyz, cho tam giác ABC vuông tại A, \widehat{ABC} = 30^{0}, BC = 3\sqrt{2}, đường thẳng BC có phương trình \frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{-
4}, đường thẳng AB nằm trong mặt phẳng (\alpha):x + z - 3 =
0. Biết rằng đỉnh C có cao độ âm. Tìm hoành độ của đỉnh A.

    Hình vẽ minh họa:

    Tọa độ điểm B là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
\frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{- 4} \\
x + z - 3 = 0 \\
\end{matrix} ight.\  \Rightarrow B(2;3;1)

    Do C ∈ BC nên C(4 + c;5 + c; - 7 -
4c)

    Theo giả thiết BC = 3\sqrt{2} nên: 18(2 + c)^{2} = 18 \Leftrightarrow
\left\lbrack \begin{matrix}
c = - 1 \Rightarrow C(3;4; - 3) \\
c = - 3 \Rightarrow C(1;2;5) \\
\end{matrix} ight.

    Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).

    Gọi A(x;y;3 - x) \in (\alpha). Do \widehat{ABC} = 30^{0} nên:

    \left\{ \begin{matrix}
AB = \frac{3\sqrt{6}}{2} \\
AC = \frac{3\sqrt{2}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(x - 2)^{2} + (y - 3)^{2} + (2 - z)^{2} = \frac{27}{2} \\
(x - 3)^{2} + (y - 4)^{2} + (6 - z)^{2} = \frac{9}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
2x^{2} - 18x + y^{2} - 8y + \frac{113}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10x + 2y - 53 = 0 \\
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
2x^{2} - 8x + \left( \frac{53 - 10x}{2} ight)^{2} - 6.\left( \frac{53
- 10x}{2} ight) + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 4 \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Rightarrow A\left( \frac{9}{2};4; - \frac{3}{2}
ight)

    Vậy đáp án cần tìm là \frac{9}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo