Trong không gian
, cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Trong không gian
, cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Trong không gian
, cho hai điểm
. Biết mặt phẳng
đi qua điểm
và cách
một khoảng lớn nhất. Phương trình mặt phẳng
là
Hình vẽ minh họa
Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.
Ta có BH ≤ AB.
Dấu “=” xảy ra ⇔ H ≡ A
⇒ BHmax = AB khi AB ⊥ (P).
Ta có:
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng ![]()
. Viết phương trình của mặt phẳng
song song với trục
và chứa giao tuyến của
và
?
Mặt phẳng chứa giao tuyến của hai mặt phẳng
và
nên có dạng:
Mặt phẳng song song với trục
nên
.
Chọn n = 1 ta có
Trong không gian
, cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 2 là giá trị cần tìm.
Trong không gian với hệ trục tọa độ
cho vectơ
. Khi đó tọa độ của
là.
Do .
Trong không gian
, cho hai điểm
và
. Tìm tọa độ vectơ
?
Ta có:
Vậy đáp án đúng là: .
Cho hình hộp chữ nhật ABCD.EFGH có
trong hệ trục Oxyz sao cho A trùng với
lần lượt trùng với Ox, Oy, Oz. Gọi M, N, P lần lượt là trung điểm BC, EF, DH. Tính khoảng cách giữa NP và CG.
Ta biểu diễn các điểm N, P, C, G theo a, b, c được:
Từ đó, ta tính được các vecto tương ứng:
Để tính khoảng cách giữa NP và CG, ta cần tính tích có hướng và tích độ dài giữa chúng rồi áp dụng CT tính khoảng cách:
Trong không gian với hệ trục tọa độ
, cho điểm
và mặt phẳng
. Gọi
là hình chiếu vuông góc của
lên
. Tìm tọa độ điểm
?
Vì H là hình chiếu vuông góc của M lên (P) nên
Điểm H thuộc mặt phẳng (P) nên ta có phương trình:
Trong không gian
, cho hai đường thẳng
,
. Đường thẳng
đi qua điểm
vuông góc với
và cắt đường thẳng
có phương trình là:
Đường thẳng có phương trình tham số là:
Gọi giao điểm của ∆ và d2 là
Đường thẳng
là 1 vectơ chỉ phương của đường thẳng ∆.
Phương trình
Cho hai đường thẳng chéo nhau
và ![]()
Mặt phẳng song song và cách đều và có phương trình tổng quát:
Phương trình (d) cho biết và (d) có vectơ chỉ phương
Chuyển về dạng tham số
để có
và vectơ chỉ phương
.
Gọi I là trung điểm AB thì I (2, 2, 0), M(x, y, z) bất kỳ .
là phương trình của mặt phẳng (P).
Phương trình tổng quát của mặt phẳng
qua điểm
và có cặp vectơ chỉ phương
là:
Vectơ pháp tuyến của là tích có hướng của 2 vecto chỉ phương
có thể thay thế bởi
Phương trình có dạng
Vậy
Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm ![]()
Theo đề bài, ta có cặp vecto chỉ phương của
Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của
Mp (P) đi qua và nhận vecto có tọa độ
làm 1 VTPT có phương trình là:
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
. Trong các đường thẳng sau, đường thẳng nào vuông góc với
.
Mặt phẳng có một vectơ pháp tuyến là
.
Đường thẳng có một vectơ chỉ phương là
Suy ra .
Trong không gian
. Cho
với
. Biết mặt phẳng
qua điểm
và thể tích tứ diện
đạt giá trị nhỏ nhất. Khi đó phương trình
:
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Trong không gian tọa độ
, góc giữa hai vectơ
và
là:
Ta có:
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
và
. Tìm
để hai mặt phẳng
và
song song với nhau.
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến
Để thì
Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Cho hình lập phương
. Tính
.
Hình vẽ minh họa
Ta có:
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
và có vectơ chỉ phương
. Viết phương trình đường thẳng
?
Đường thẳng đi qua điểm
và có vectơ chỉ phương
là:
Biết rằng trong không gian với hệ tọa độ
có hai mặt phẳng
và
cùng thỏa mãn các điều kiện sau: đi qua hai điểm
đồng thời cắt các trục tọa độ
tại hai điểm cách đều
. Giả sử
có phương trình
và
có phương trình
. Tính giá trị biểu thức
.
Biết rằng trong không gian với hệ tọa độ có hai mặt phẳng
và
cùng thỏa mãn các điều kiện sau: đi qua hai điểm
đồng thời cắt các trục tọa độ
tại hai điểm cách đều
. Giả sử
có phương trình
và
có phương trình
. Tính giá trị biểu thức
.
Cho tứ diện
. Gọi
lần lượt là trung điểm các cạnh
,
là trọng tâm của tứ diện
và
là một điểm bất kì trong không gian. Tìm giá trị của
thỏa mãn đẳng thức
?
Vì G là trọng tâm tứ diện nên
.