Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Biểu diễn vectơ \overrightarrow{B'C} qua các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Chọn đáp án đúng?

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{B'C} =
\overrightarrow{B'C'} + \overrightarrow{BB'} =
\overrightarrow{BC} - \overrightarrow{AA'}

    = - \overrightarrow{AA'} +
\overrightarrow{BA} + \overrightarrow{AC} = - \overrightarrow{AA'} -
\overrightarrow{AB} + \overrightarrow{AC} = - \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}

    Vậy đáp án đúng là: \overrightarrow{B'C} = - \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}.

  • Câu 2: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

  • Câu 3: Vận dụng

    Trong không gian Oxyz, cho hai đường thẳng cắt nhau \Delta_{1}:\frac{x +1}{1} = \frac{y - 2}{2} = \frac{z + 1}{3},\Delta_{2}:\frac{x + 1}{1} =\frac{y - 2}{2} = \frac{z + 1}{- 3}. Trong mặt phẳng \left( \Delta_{1};\Delta_{2} ight), hãy viết phương trình đường phân giác d của góc nhọn tạo bởi \Delta_{1};\Delta_{2}

    Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là \overrightarrow{u_{1}} =
(1;2;3),\overrightarrow{u_{2}} = (1;2; - 3)

    Ta có \overrightarrow{u_{1}}.\overrightarrow{u_{2}} = -
4 < 0, suy ra góc giữa hai vectơ \overrightarrow{u_{1}}\overrightarrow{u_{2}} là góc tù.

    Lại có \left| \overrightarrow{u_{1}}
ight| = \left| \overrightarrow{u_{2}} ight|

    Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là \overrightarrow{u} = \overrightarrow{u_{1}} -
\overrightarrow{u_{2}} = (0;0;6) = 6(0;0;1)

    Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là \overrightarrow{u} =
(0;0;1)

    Vậy phương trình đường thẳng d là: \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 4: Vận dụng cao

    Trong không gian Oxyz, cho các điểm A(1;0;0),B(0;1;0),C(0;0;1). Số điểm cách đều bốn mặt phẳng (ABC),(BCO),(COA),(OAB)

    Gọi I(m; n; p) là điểm cách đều bốn mặt phẳng đã cho.

    Dễ thấy các mặt phẳng (OAB), (OBC), (OCA) lần lượt là các mặt phẳng (Oxy), (Oyz), (Ozx).

    Mặt phẳng (ABC) có phương trình tổng quát là x + y + z = 1.

    Do I cách đều các mặt phẳng này nên ta có:

    |m| = |n| = |p| = \frac{|m + n + p -
1|}{\sqrt{3}}\ \ \ (1)

    Ta có các trường hợp

    Trường hợp 1. m = n = p. Khi đó (1) tương đương:

    |m| = \frac{|3m - 1|}{\sqrt{3}}
\Leftrightarrow m = \frac{3 \pm \sqrt{3}}{6}

    Ta được hai điểm thỏa mãn bài toán.

    Trường hợp 2. Trong ba số m, n, p có hai số bằng nhau và bằng số đối của số còn lại.

    Khi đó, không mất tính tổng quát ta có thể giả sử m = n = − p (các trường hợp còn lại tương tự) và (1) tương đương:

    |m| = \frac{|m - 1|}{\sqrt{3}}
\Leftrightarrow m = \frac{- 1 \pm \sqrt{3}}{2}

    Ta được hai điểm thỏa mãn bài toán.

    Vậy số điểm cách đều bốn mặt phẳng đã cho là 2 + 2.3 = 8.

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi M là trung điểm của BC. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hình vẽ minh họa

    Vì M là trung điểm của BC nên suy ra \overrightarrow{BM} =
\frac{1}{2}\overrightarrow{BC}

    Ta có: \overrightarrow{DM} =
\overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BM} =
\overrightarrow{AB} - \overrightarrow{AD} +
\frac{1}{2}\overrightarrow{BC}

    = \overrightarrow{AB} -
\overrightarrow{AD} + \frac{1}{2}\left( \overrightarrow{BA} +
\overrightarrow{AC} ight) = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} - \overrightarrow{AD}

    = \frac{1}{2}\overrightarrow{a} +
\frac{1}{2}\overrightarrow{b} - \overrightarrow{c} = \frac{1}{2}\left(
\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}
ight)

  • Câu 6: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(2; - 4;1) và chắn trên các trục tọa độ Ox,Oy,Oz theo ba đoạn có độ dài đại số lần lượt là a;b;c. Phương trình tổng quát của mặt phẳng (P) khi a;b;c theo thứ tự tạo thành một cấp số nhân có công bội bằng 2 là:

    Do giả thiết suy ra \left\{
\begin{matrix}
a,b,c eq 0\  \\
b = 2a,c = 2b \\
\end{matrix} ight..

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) khi đó phương trình mặt phẳng\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1.

    Do M thuộc (P) nên \frac{2}{a} -
\frac{4}{b} + \frac{1}{c} = 1 \Leftrightarrow \frac{2}{a} - \frac{4}{2a}
+ \frac{1}{4a} = 1 \Leftrightarrow a = \frac{1}{4}

    Suy ra b = \frac{1}{2};c = 1 do đó phương trình mặt phẳng (P):4x + 2y + z -
1 = 0.

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, cho hai điểm M(2;1;2), N(4; 2; 1), tọa độ điểm P thuộc trục Oz sao cho M;N; Pthẳng hàng là

    Vì điểm Pthuộc trục Oz nên P có tọa độ P(0;0;z).

    Ta có \overrightarrow{MN}(2;1; -
1); \overrightarrow{NP}( - 4; - 2;z
- 1)

    M;\ N;\ P thẳng hàng\Leftrightarrow\overrightarrow{MN};\overrightarrow{NP} cùng phương

    \Leftrightarrow \frac{- 4}{2} = \frac{-
2}{1} = \frac{z - 1}{- 1} \Leftrightarrow z - 1 = 2 \Leftrightarrow z =
3

    Vậy điểm P(0;0;3).

  • Câu 8: Vận dụng

    Trong không gian Oxyz, tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây: 4x - y - 2z - 3 = 0;4x - y - 2z - 5 =
0.

    Gọi điểm

    A (0; −3; 0) ∈ 4x − y − 2z − 3 = 0 (α)

    B (0; −5; 0) ∈ 4x − y − 2z − 5 = 0 (β)

    Mặt phẳng cách đều hai mặt phẳng trên có dạng: 4x − y − 2z + m = 0 (γ).

    Để mp (γ) cách đều hai mp trên thì d (A; (β)) = 2d (A; (γ)) ⇔ |m + 3| = 1

    ⇔ m = −2 hoặc m = −4

    Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).

    Với m = −2 ta có (4 .0 + 3 – 2.0 − 2) (4.0 + 5 – 2.0 − 2) > 0 nên A; B cùng phía.

    Với m = −4 ta có (4 .0 + 3 – 2.0 − 4) (4.0 + 5 – 2.0 − 4) < 0 nên A; B khác phía.

    Vậy phương trình mặt phẳng cần tìm là 4x − y − 2z − 4 = 0 (γ).

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x + 1}{1} = \frac{y + 4}{2} =
\frac{z}{1} và điểm A(2;0;1). Hình chiếu vuông góc của A trên (∆) là điểm nào dưới đây?

    Đường thẳng (∆) đi qua M(−1; −4; 0), có vectơ chỉ phương \overrightarrow{u_{(\Delta)}} = (1;\ 2;\
1)

    Phương trình tham số của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + t \\
y = - 4 + 2t \\
z = t \\
\end{matrix} ight.

    Gọi P là hình chiếu vuông góc của A trên (∆).

    Khi đó P \in (\Delta) \Rightarrow P( - 1
+ t; - 4 + 2t;t)

    Ta có \overrightarrow{AP} = ( - 3 + t; -
4 + 2t;t - 1). Vì \overrightarrow{AP}\bot\overrightarrow{u_{(\Delta)}}
\Rightarrow \overrightarrow{AP}.\overrightarrow{u_{(\Delta)}} =
0 nên

    \Leftrightarrow 1.( - 3 + t)
+ 2.( - 4 + 2t) + 1.(t - 1) = 0 \Leftrightarrow t = 2 \Rightarrow
P(1;0;2)

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1;3)B( - 1;2;3). Trung điểm của đoạn thẳng AB có tọa độ là:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 0 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{3}{2} \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M\left( 0;\dfrac{3}{2};3ight)

    Vậy tọa độ trung điểm của AB là: \left(
0;\frac{3}{2};3 ight).

  • Câu 11: Thông hiểu

    Trong không gian Oxyz có điểm A(4;2;1),B( - 2; - 1;4). Tìm tọa độ điểm M thỏa mãn đẳng thức \overrightarrow{AM} =
2\overrightarrow{MB}?

    Ta có: M(x;y;z). Khi đó \overrightarrow{AM} =
2\overrightarrow{MB}

    \overrightarrow{AM} =
2\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}
x - 4 = 2( - 2 - x) \\
y - 2 = 2( - 1 - y) \\
z - 1 = 2(4 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 3 \\
\end{matrix} ight.\  \Rightarrow M(0;0;3)

    Vậy giá trị cần tìm là M(0;0;3).

  • Câu 12: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 3;4), đường thẳng d:\frac{x + 2}{3} = \frac{y - 5}{- 5} = \frac{z -
2}{- 1} và mặt phẳng (P):2x + z - 2
= 0. Viết phương trình đường thẳng \Delta qua M vuông góc với d và song song với (P).

    Đường thẳng d:\frac{x + 2}{3} = \frac{y -
5}{- 5} = \frac{z - 2}{- 1} có vec tơ chỉ phương \overrightarrow{u_{d}} = (3; - 5; -
1).

    Mặt phẳng (P):2x + z - 2 = 0 có vec tơ pháp tuyến \overrightarrow{n_{(P)}} =
(2;0;1).

    Đường thẳng ∆ vuông góc với d nên vectơ chỉ phương \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Đường thẳng ∆ song song với (P) nên \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Ta có \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ightbrack = ( - 5; -
5;10)

    Suy ra vec tơ chỉ phương của đường thẳng ∆ là \overrightarrow{u_{\Delta}} = \frac{-
1}{5}.\left\lbrack \overrightarrow{u_{d}};\overrightarrow{n_{(P)}}
ightbrack = (1;1; - 2)

    Vậy phương trình đường thẳng ∆ là \Delta:\frac{x - 1}{1} = \frac{y + 3}{1} = \frac{z
- 4}{- 2}.

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 14: Vận dụng

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P):x + y + z - 9 = 0. Hỏi có bao nhiêu điểm M(a;b;c) thuộc mặt phẳng (P) với a,b,c là các số nguyên không âm.

    Ta có (P):x + y + z - 9 = 0 \Rightarrow
\frac{x}{9} + \frac{y}{9} + \frac{z}{9} = 1 nên mặt phẳng (P) đi qua các điểm A(9; 0; 0), B(0; 9; 0), C(0; 0; 9).

    Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.

    Tam giác ABC đều có các cạnh bằng 9\sqrt{2}, chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.

    Mà số điểm có toạ độ nguyên của tam giác OAB bằng 1\  + \ 2\  + \ ...\  + \ 10\  = \ 55

  • Câu 15: Vận dụng cao

    Cho điểm P(-3 , 1, -1)  và đường thẳng (d): \left\{ \begin{array}{l}4x - 3y - 13 = 0\\y - 2z + 5 = 0\end{array} ight.

    Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:

    Chuyển (d) về dạng tham số : \left\{ \begin{array}{l}x =  - \frac{1}{2} + 3t\\y =  - 5 + 4t\\z = 2t\end{array} ight.

    Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: 3x + 4y + 2z + D = 0, cho qua P tính được D=7 .

    Ta có (Q): 3x + 4y + 2z + 7 = 0 .

    Thế x, y, z  theo t từ phương trình của (d) vào phương trình (Q) được t = \frac{1}{2}

    Giao điểm I của (d) và (Q)  là I (1, -3, 1) .

    Vì I là trung điểm của PP’ nên \Rightarrow P'\left( {5, - 7,3} ight).

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M, nhận vectơ \overrightarrow{a} làm vectơ chỉ phương và đường thẳng d' đi qua điểm M', nhận vectơ \overrightarrow{a'} làm vectơ chỉ phương. Điều kiện để đường thẳng d song song với d' là:

    Điều kiện để d//d' là: \left\{ \begin{matrix}
\overrightarrow{a} = k.\overrightarrow{a'};(k eq 0) \\
M otin d' \\
\end{matrix} ight..

  • Câu 17: Nhận biết

    Trong không gian Oxyz cho mặt phẳng (P):x + y - 2z + 4 = 0. Một vectơ pháp tuyến của mặt phẳng (P) là:

    Một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n} = (1;1; - 2).

  • Câu 18: Thông hiểu

    Trong không gian Oxyz cho điểm H(1;2; - 3). Viết phương trình mặt phẳng (\alpha) đi qua H và cắt các trục tọa độ Ox,Oy,Oz tại A,B,C sao cho H là trực tâm của tam giác ABC?

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c),abc
eq 0.

    Khi đó: (\alpha):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1

    Ta có: \frac{x}{1} + \frac{y}{2} +
\frac{z}{- 3} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2;3) \\
\overrightarrow{HB} = ( - 1;b - 2;3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. vì H là trực tâm của tam giác ABC suy ra \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = 0 \\
\overrightarrow{HB}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b + 3c = 0 \\
a + 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = - 3c

    Mặt khác H \in (\alpha) \Rightarrow
\frac{1}{a} + \frac{2}{b} - \frac{3}{c} = 1 \Rightarrow \frac{1}{- 3c} +
\frac{4}{- 3c} - \frac{3}{c} = 1

    \Leftrightarrow 14 = - 3c
\Leftrightarrow c = \frac{- 14}{3} \Rightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    Vậy (\alpha):\frac{x}{14} + \frac{y}{7} +\dfrac{z}{- \dfrac{14}{3}} = 1 hay (\alpha):x + 2y - 3z - 14 = 0.

  • Câu 19: Nhận biết

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Hãy phân tích vectơ \overrightarrow{BD} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA_{1}}?

    Hình vẽ minh họa

    Theo quy tắc hình bình hành ta có:

    \overrightarrow{BD} =
\overrightarrow{AD} - \overrightarrow{AB} \Rightarrow
\overrightarrow{BD} = - \overrightarrow{AB} + \overrightarrow{AD} +
0.\overrightarrow{AA_{1}}

  • Câu 20: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;1),\overrightarrow{b} =
(1;1;2),\overrightarrow{c} = (x;3x;x + 2). Nếu ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng thì:

    Ta có: \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack = (3; -
3;3)

    Ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng

    \Leftrightarrow \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack.\overrightarrow{c} =
0

    \Leftrightarrow 3x - 3(3x) + 3(x + 2) =
0

    \Leftrightarrow x = 2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo