Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    \overrightarrow{BC} + \overrightarrow{BA}
= \overrightarrow{B_{1}A_{1}} + \overrightarrow{B_{1}C_{1}} đúng vì \left\{ \begin{matrix}
\overrightarrow{BC} = \overrightarrow{B_{1}C_{1}} \\
\overrightarrow{BA} = \overrightarrow{B_{1}A_{1}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{BC} +
\overrightarrow{BA} = \overrightarrow{B_{1}A_{1}} +
\overrightarrow{B_{1}C_{1}}

    \overrightarrow{AD} +
\overrightarrow{D_{1}C_{1}} + \overrightarrow{D_{1}A_{1}} =
\overrightarrow{DC} đúng vì \overrightarrow{AD} + \overrightarrow{D_{1}C_{1}}
+ \overrightarrow{D_{1}A_{1}} = \overrightarrow{AD} +
\overrightarrow{DC} + \overrightarrow{DA} = \overrightarrow{AC} +
\overrightarrow{DA} = \overrightarrow{DC}

    \overrightarrow{BC} + \overrightarrow{BA}
+ \overrightarrow{BB_{1}} = \overrightarrow{BD_{1}} đúng vì \overrightarrow{BD_{1}} =
\overrightarrow{BC} + \overrightarrow{BA} +
\overrightarrow{BB_{1}}

    \overrightarrow{BA} +
\overrightarrow{DD_{1}} + \overrightarrow{BD_{1}} =
\overrightarrow{BC} sai vì

    \overrightarrow{BA} +
\overrightarrow{DD_{1}} + \overrightarrow{BD_{1}} = \overrightarrow{BA}
+ \overrightarrow{BB_{1}} + \overrightarrow{BD_{1}} =
\overrightarrow{BA_{1}} + \overrightarrow{BD_{1}} eq
\overrightarrow{BC}

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1; - 1;0),B(0;2;0),C(2;1;3). Xác định tọa độ điểm M thỏa mãn \overrightarrow{MA} - \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}?

    Ta có: \overrightarrow{MA} -
\overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}
(1 - x) - (0 - x) + (2 - x) = 0 \\
( - 1 - y) - (2 - y) + (1 - y) = 0 \\
(0 - z) - (0 - z) + (3 - z) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - 2 \\
z = 3 \\
\end{matrix} ight.

    \Rightarrow M(3; - 2;3)

  • Câu 3: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) là:

    Phương trình đường thẳng đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) nên có phương trình: \frac{x - 2}{2} = \frac{y}{-
3} = \frac{z + 1}{1}.

  • Câu 4: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P):2x - y + 3 = 0. Một véc tơ pháp tuyến của (P) có tọa độ là?

    Mặt phẳng (P) có VTPT là: \overrightarrow{n} = (2; - 1;0)

  • Câu 5: Thông hiểu

    Trong không gian Oxyz, cho điểm A(0;1;1) và hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 \\
y = - 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{3} = \frac{y - 2}{1} =
\frac{z}{1}. Gọi d là đường thẳng đi qua điểm A, cắt đường thẳng d_{1} và vuông góc với đường thẳng d_{2}. Đường thẳng d đi qua điểm nào trong các điểm dưới đây?

    Gọi \left\{ \begin{matrix}
B = d_{1} \cap d \\
B \in d_{1} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
B( - 1; - 1 + t;t) \\
\overrightarrow{AB} = ( - 1;t - 2;t - 1) \\
\end{matrix} ight.

    d_{2} có một vectơ chỉ phương \overrightarrow{u} = (3;1;1).

    Do d\bot d_{2} nên \overrightarrow{u}.\overrightarrow{AB} = 0
\Leftrightarrow - 3 + t - 2 + t - 1 = 0

    \Leftrightarrow t = 3 \Rightarrow
\overrightarrow{AB} = ( - 1;1;2)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AN} = (2;0;6);\overrightarrow{AQ} = (3;1;4) \\
\overrightarrow{AP} = ( - 2; - 4;10);\overrightarrow{AM} = (1; - 1; - 2)
\\
\end{matrix} ight.

    Suy ra đường thẳng d đi qua M.

  • Câu 6: Vận dụng cao

    Trong không gian hệ tọa độ Oxyz, cho điểm A(1;4;5), B(3;4;0), C(2;-1;0) và mặt phẳng (P): 3x-3y-2z-12=0. Gọi M(a; b; c) thuộc (P) sao cho MA^2+MB^2+3MC^2 đạt giá trị nhỏ nhất. Tính tổng a+b+c.

    Giả sử I(x;y;z) là điểm thỏa mãn \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\vec{0} .

    Khi đó \overrightarrow{IA}(1-x;4-y;5-z), \overrightarrow{IB}(3-x;4-y;-z), \overrightarrow{IC}(2-x;-1-y;-z) ;

    \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=(10-5x;5-5y;5-5z); ;

    \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0} \Rightarrow \left\{\begin{matrix} x=2 \\ y=1 \\ z=1 \end{matrix}ight. \Rightarrow I (2;1;1);

    MA^2+MB^2+3MC^2 = \overrightarrow{MA}^2+\overrightarrow{MB}^2+3\overrightarrow{MC}^2

    = (\overrightarrow{MI}+\overrightarrow{IA})^2+(\overrightarrow{MI}+\overrightarrow{IB})^2+3(\overrightarrow{MI}+\overrightarrow{IC})^2

    =5MI^2+2\vec{MI}(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC})+IA^2+IB^2+IC^2

    =5MI^2+IA^2+IB^2+IC^2   (vì \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\vec{0})

    Vì I cố định nên MA^2+MB^2+3MC^2 đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên (P) .

    Gọi \triangle là đường thẳng qua I và vuông góc với (P)

    Phương trình đường thẳng \triangle:\left\{\begin{matrix} x=2+3t \\ y=1-3t \\ z=1-2t \end{matrix}ight..

    Tọa độ của M là nghiệm hệ phương trình:

     \left\{\begin{matrix} x=2+3t \\ 1-3t \\ z=1-2t \\3x-3y-2z-12=0 \end{matrix}ight. \Leftrightarrow\left\{\begin{matrix} t=\dfrac{1}{2} \\ x=\dfrac{7}{2} \\ y=\dfrac{-1}{2} \\ z=0\end{matrix}ight.

    \Rightarrow M(\frac{7}{2};\frac{-1}{2};0)  \Rightarrow a+b+c=3.

  • Câu 7: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình đường thẳng đi qua hai điểm A( - 2;3;2)B(5;4; - 1)

    Vectơ chỉ phương của đường thẳng cần tìm là \overrightarrow{AB} = (7;1; - 3) và đường thẳng đi qua điểm A( - 2;3;2).

    Vậy phương trình đường thẳng cần tìm là: \frac{x + 2}{7} = \frac{y - 3}{1} = \frac{z - 2}{-
3}.

  • Câu 8: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;1),\overrightarrow{b} =
(1;1;2),\overrightarrow{c} = (x;3x;x + 2). Nếu ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng thì:

    Ta có: \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack = (3; -
3;3)

    Ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng

    \Leftrightarrow \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack.\overrightarrow{c} =
0

    \Leftrightarrow 3x - 3(3x) + 3(x + 2) =
0

    \Leftrightarrow x = 2

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng cao

    Trong không gian Oxyz, cho tam giác ABC vuông tại A, \widehat{ABC} = 30^{0}, BC = 3\sqrt{2}, đường thẳng BC có phương trình \frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{-
4}, đường thẳng AB nằm trong mặt phẳng (\alpha):x + z - 3 =
0. Biết rằng đỉnh C có cao độ âm. Tìm hoành độ của đỉnh A.

    Hình vẽ minh họa:

    Tọa độ điểm B là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
\frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{- 4} \\
x + z - 3 = 0 \\
\end{matrix} ight.\  \Rightarrow B(2;3;1)

    Do C ∈ BC nên C(4 + c;5 + c; - 7 -
4c)

    Theo giả thiết BC = 3\sqrt{2} nên: 18(2 + c)^{2} = 18 \Leftrightarrow
\left\lbrack \begin{matrix}
c = - 1 \Rightarrow C(3;4; - 3) \\
c = - 3 \Rightarrow C(1;2;5) \\
\end{matrix} ight.

    Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).

    Gọi A(x;y;3 - x) \in (\alpha). Do \widehat{ABC} = 30^{0} nên:

    \left\{ \begin{matrix}
AB = \frac{3\sqrt{6}}{2} \\
AC = \frac{3\sqrt{2}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(x - 2)^{2} + (y - 3)^{2} + (2 - z)^{2} = \frac{27}{2} \\
(x - 3)^{2} + (y - 4)^{2} + (6 - z)^{2} = \frac{9}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
2x^{2} - 18x + y^{2} - 8y + \frac{113}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10x + 2y - 53 = 0 \\
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
2x^{2} - 8x + \left( \frac{53 - 10x}{2} ight)^{2} - 6.\left( \frac{53
- 10x}{2} ight) + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 4 \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Rightarrow A\left( \frac{9}{2};4; - \frac{3}{2}
ight)

    Vậy đáp án cần tìm là \frac{9}{2}.

  • Câu 11: Nhận biết

    Trong không gian Oxyz, mặt phẳng (\alpha):x - y + 2z - 3 = 0 đi qua điểm nào sau đây?

    Xét điểm \left( 1;1;\frac{3}{2}
ight) ta có: 1 - 1 +
2.\frac{3}{2} - 3 = 0 đúng nên \left( 1;1;\frac{3}{2} ight) \in
(\alpha).

  • Câu 12: Vận dụng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{2} = \frac{y}{1} =
\frac{z - 2}{- 1} và hai điểm A( -
1;3;1),B(0;2; - 1). Gọi C(m;n;p) là điểm thuộc đường thẳng d sao cho diện tích tam giác ABC bằng 2\sqrt{2}. Giá trị của tổng m + n + p bằng:

    Phương trình tham số của đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
x = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Vì C thuộc d nên tọa độ của C có dạng C(
- 1 + 2t;t;2 - t)

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1; - 2) \\
\overrightarrow{AC} = (2t;t - 3;1 - t) \\
\end{matrix} ight.

    Suy ra \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3t - 7; - 3t -
1;3t - 3)

    Diện tích tam giác ABC là

    S_{\Delta ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\frac{1}{2}\sqrt{(3t - 7)^{2} + ( - 3t - 1)^{2} + (3t -
3)^{2}}

    Theo bài ra ta có

    S_{\Delta ABC} = 2\sqrt{2}
\Leftrightarrow \frac{1}{2}\sqrt{27t^{2} - 54t + 59} =
2\sqrt{2}

    \Leftrightarrow 27t^{2} - 54t + 59 = 32
\Leftrightarrow (t - 1)^{2} = 0 \Leftrightarrow t = 1

    Với t = 1 thì C (1; 1; 1) nên m = 1;n =
1;p = 1

    Vậy giá trị của tổng m + n + p =
3

  • Câu 13: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;6; - 7);B(3;2;1). Phương trình mặt phẳng trung trực của đoạn thẳng AB là:

    Gọi (P) là mặt phẳng trung trực của đoạn thẳng AB.

    Ta có \overrightarrow{AB} = (2; -
4;8)

    Suy ra một vectơ pháp tuyến của (P)\overrightarrow{n_{(P)}} = (1; - 2;4)

    Hơn nữa, trung điểm của AB là I(2; 4; −3) thuộc mặt phẳng (P) nên

    (P):(x - 2) - 2(y - 4) + 4(z + 3) = 0

    \Leftrightarrow x - 2y + 4z + 18 =
0.

  • Câu 14: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    a) Đúng: Gọi I là trung điểm AB.

    Ta có \left\{ \begin{matrix}
  {x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{1 + 2}}{2} = \dfrac{3}{2} \hfill \\
  {y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2} \hfill \\
  {z_I} = \dfrac{{{z_A} + {z_B}}}{2} = \dfrac{{3 + 5}}{2} = 4 \hfill \\ 
\end{matrix}  ight. \Rightarrow I\left( {\dfrac{3}{2};\dfrac{3}{2};4} ight)

    b) Đúng: Ta có \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10).

    c) Đúng: Ta có \overrightarrow{AB} = (1;
- 1;2),\overrightarrow{AC} = (1;2; - 1).

    \cos(AB,AC) =\cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{|\overrightarrow{AB} \cdot\overrightarrow{AC}|}{|\overrightarrow{AB}| \cdot|\overrightarrow{AC}|}

    = \frac{|1 \cdot 1 + ( - 1) \cdot 2 + 2
\cdot ( - 1)|}{\sqrt{1^{2} + ( - 1)^{2} + 2^{2}} \cdot \sqrt{1^{2} +
2^{2} + ( - 1)^{2}}} = \frac{1}{2}

    Suy ra (AB,AC) = 60^{\circ}.

    d) Sai: Gọi K(x;y;z) thỏa mãn 3\overrightarrow{KB} - \overrightarrow{KC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - (2 - x) = 0 \\3(1 - y) - (4 - y) = 0 \\3(5 - z) - (2 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{1}{2} \\z = \dfrac{13}{2} \\\end{matrix} ight.\  ight.

    Suy ra K\left( 2; -
\frac{1}{2};\frac{13}{2} ight).

    Khi đó T = |3\overrightarrow{IB} -
\overrightarrow{IC}| = |3\overrightarrow{IK} + 3\overrightarrow{KB} -
\overrightarrow{IK} - \overrightarrow{KC}| = |2\overrightarrow{IK}| =
2IK.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của K trên (Oxz) suy ra I(2;0;\frac{13}{2} )..

    Suy ra a = 2,b = 0,c =
\frac{13}{2}.

    Vậy a - 2b + 2c = 15.

  • Câu 15: Nhận biết

    Trong không gian Oxyz cho hai vectơ\vec a = \left( {{a_1},{a_2},{a_3}} ight),\,\,\,\vec b = \left( {{b_1},{b_2},{b_3}} ight)  khác \vec 0cùng phương. Câu nào sau đây sai? (có thể chọn 2 đáp án)

     Ta xét đáp án \frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}}:  sai vì thiếu điều kiện {b_1},{b_2},{b_3} e 0.

    Xét đáp án \left\{ \begin{array}{l}{a_1}{b_2} - {a_2}{b_1} = 0\\{a_2}{b_3} - {a_3}{b_2} = 0\\{a_3}{b_1} - {a_1}{b_3} = 0\end{array} ight.: luôn đúng vì 2 vecto cùng phương với nhau.

    Ta xét tiếp: \left\{ \begin{array}{l}{a_1} = k{b_1}\\{a_2} = k{b_2}\\{a_3} = k{b_3}\end{array} ight.,\,\,\,k \in \mathbb{R}: cũng sai, vì thiếu điều kiện k \in \mathbb{R} \backslash \left\{ 0 ight\}. 

    Như vậy ta sẽ chọn 2 đáp án có 2 ý  sai.

  • Câu 16: Thông hiểu

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tính x và y để ba điểm A, B, C đã cho thẳng hàng với nhau?

     A, B, C thẳng hàng \Leftrightarrow \overrightarrow {AB} cùng phương với \overrightarrow {AC}

    \Leftrightarrow \left\{ \begin{array}{l}{a_1}{b_2} - {a_2}{b_1} = 0\\{a_2}{b_3} - {a_3}{b_2} = 0\\{a_3}{b_1} - {a_1}{b_3} = 0\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l} - 1\left( {y - 1} ight) - 0\left( {x - 3} ight) = 0\\0\left( { - 1} ight) - \left( { - 1} ight)\left( {y - 1} ight) = 0\\ - 1\left( {x - 3} ight) - \left( { - 1} ight)\left( { - 1} ight) = 0\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} ight.

  • Câu 17: Vận dụng

    Trong không gian tọa độ Oxyz, mặt phẳng (\alpha) đi qua M(1; - 3;8) và chắn trên tia Oz một đoạn thẳng dài gấp đôi các đoạn thẳng mà nó chắn trên các tia OxOy. Giả sử (P):ax + by + cz + d = 0, với a,b,c,d\mathbb{\in Z},d eq 0. Tính S = \frac{a + b + c}{d}.

    Từ giả thiết, ta suy ra các giao điểm của (α) với các tia Ox, Oy, Oy lần lượt là A(a; 0; 0), B(0; a; 0) ,C(0; 0; 2a),  a > 0.

    Suy ra phương trình (đoạn chắn) của (α) là \frac{x}{a} + \frac{y}{a} + \frac{z}{2a} =
1.

    Do (α) đi qua M nên a = 2.

    Suy ra (α): 2x + 2y + z − 4 = 0.

    Từ đó, ta tính được: S = \frac{a + b +
c}{d} = \frac{2 + 2 + 1}{- 4} = - \frac{5}{4}.

  • Câu 18: Thông hiểu

    Trong không gian Oxyz, cho tọa độ ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Góc giữa hai đường thẳng ABAC

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;2) \\
\overrightarrow{AC} = (1;2; - 1) \\
\end{matrix} ight..

    \Rightarrow \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{1}{2}

    \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = (AB;AC) =
60^{0}

  • Câu 19: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 20: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(0;0;1),B( - 3;2;0),C(2; - 2;3). Đường cao kẻ từ B của tam giác ABC đi qua điểm nào trong các điểm sau?

    Ta có: \overrightarrow{AB} = ( -
3;2;1),\overrightarrow{AC} = (2; - 2;2)

    \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(2;4;2)

    Một vectơ chỉ phương của đường cao kẻ từ B của tam giác ABC\overrightarrow{u} = \frac{1}{12}.\left\lbrack
\overrightarrow{n};\overrightarrow{AC} ightbrack = (1;0; -
1)

    Phương trình đường cao kẻ từ B là: \left\{ \begin{matrix}
x = - 3 + t \\
y = 2 \\
z = - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Ta thấy điểm P( - 1;2; - 2) thuộc đường thẳng trên.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo