Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{BC} = \overrightarrow{b}. Điểm M xác định bởi đẳng thức \overrightarrow{OM} = \frac{1}{2}\left(
\overrightarrow{a} - \overrightarrow{b} ight). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi I;I' lần lượt là tâm các mặt đáy ABCD;A'B'C'D' suy ra O là trung điểm của II'

    Do ABCD.A'B'C'D' là hình hộp nên \overrightarrow{AB} =
\overrightarrow{DC}

    Theo giả thiết ta có:

    \overrightarrow{OM} = \frac{1}{2}\left(
\overrightarrow{a} - \overrightarrow{b} ight) = \frac{1}{2}\left(
\overrightarrow{AB} - \overrightarrow{BC} ight) = \frac{1}{2}\left(
\overrightarrow{DC} + \overrightarrow{CB} ight) =
\frac{1}{2}\overrightarrow{DB} = \overrightarrow{IB}

    ABCD.A'B'C'D' là hình hộp nên từ đẳng thức \overrightarrow{OM} = \overrightarrow{IB} suy ra M là trung điểm của BB'.

  • Câu 2: Nhận biết

    Trong không gian tọa độ Oxyz, hình chiếu vuông góc của điểm B( -
2;3;1) trên trục Ox có tọa độ là:

    Hình chiếu vuông góc của điểm B( -
2;3;1) trên trục Ox là điểm có tọa độ ( - 2;0;0).

  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;1; - 1). Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là:

    Mặt phẳng (P) có VTPT \overrightarrow{n}(0;1;1) và đi qua điểm A(1;1; - 1).

    Suy ra phương trình (P):y + z =
0.

  • Câu 4: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;2;0), B(1;0;-2) và mặt

    phẳng(P): x+2y-z-1=0. Gọi M(a;b;c) là điểm thuộc mặt phẳng (P) sao cho MA=MB

    và góc \widehat{ABM} có số đo lớn nhất. Khi đó giá trị a+4b+c bằng ?

    MA=MB nên M thuộc mặt phẳng mặt phẳng trung trực của đoạn thẳng AB. Ta có phương trình trung trực của AB là (Q); y+z=0

     M thuộc giao tuyến của hai mặt phẳng (P) và (Q) nên M thuộc đường thẳng

    (d): \left\{\begin{matrix} x=1+3t \\ y=-t \\ z=t \end{matrix}ight..

    Gọi M( 1+3t;-t;t) , ta có \cos\widehat{AMB}=\dfrac{\left | \vec{MA}.\vec{MB} ight | }{MA.MB}=\dfrac{11t^2-2t+1}{11t^2-2t+5}.

    Khảo sát hàm số f(t)=\dfrac{11t^2-2t+1}{11t^2-2t+5} , ta được f(t)=\frac{5}{27} khi t=\frac{1}{11} .

    Suy ra \widehat{AMB}  có số đo lớn nhất khi t=\frac{1}{11} , ta có M(\frac{14}{11}; \frac{-1}{11};\frac{1}{11}).

    Khi đó giá trị a+4b+c=1.

  • Câu 5: Vận dụng

    Cho mặt phẳng (P) qua điểm M\left( {2, - 4,1} ight) và chắn trên ba trục tọa độ Ox, Oy, Oz theo ba đoạn có số đo đại số a, b, c. Viết phương trình tổng quát của (P) khi a, b, c tạo thành một cấp số nhân có công bội bằng 2.

    Theo đề bài, ta có a, b, c là cấp số nhân với công bội q=2

    \Rightarrow a,\,b = 2a;c = 4a;\,a e 0

    Phương trình của \left( P ight):\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

    \Leftrightarrow \frac{x}{a} + \frac{y}{{2a}} + \frac{z}{{4a}} = 1 \Leftrightarrow 4x + 2y + z - 4a = 0

    (P) qua M\left( {2, - 4,1} ight) \Rightarrow 8 - 8 + 1 - 4a = 0 \Leftrightarrow a = \frac{1}{4}

    \Rightarrow \left( P ight):4x + 2y + z - 1 = 0

     

  • Câu 6: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;1;3),N(10;6;0) và mặt phẳng (P):x - 2y + 2z - 10 = 0. Biết rằng tồn tại điểm I( - 10;a;b) thuộc (P) sao cho |IM - IN| đạt giá trị lớn nhất. Tính T = a + b.

    Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có (0 - 2 + 3 - 10).(10 - 12 - 10) >
0 nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).

    Khi đó ta có |IM - IN| \leq MN và đẳng thức xảy ra khi I = MN \cap
(P)

    Phương trình tham số của đường thẳng MN là \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
\end{matrix} ight.

    Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình

    \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
x - 2y + 2z - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 10 \\
y = - 4 \\
z = 6 \\
\end{matrix} ight.

    Vậy T = a + b = 2

  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - 1}{1} = \frac{y - 2}{3} = \frac{z
- 3}{- 1}. Gọi ∆’ là đường thẳng đối xứng với đường thẳng ∆ qua (Oxy). Tìm một vectơ chỉ phương của đường thẳng ∆’.

    Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm A(4; 11; 0).

    Ta thấy B(1; 2; 3) ∈ ∆ và B’(1; 2; −3) là điểm đối xứng của điểm B qua mặt phẳng (Oxy).

    Đường thẳng ∆’ đi qua các điểm A, B’.

    Ta có \overrightarrow{AB} = ( - 3; - 9; -
3), từ đó suy ra \overrightarrow{u}
= (1;3;1) là một vectơ chỉ phương của đường thẳng ∆’.

  • Câu 8: Nhận biết

    Mệnh đề nào sau đây sai?

    Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.

  • Câu 9: Thông hiểu

    Viết phương trình tổng quát của mặt phẳng (P) qua hai điểm E\left( {\,3,\,\, - 2,\,\,4\,} ight);\,\,\,F\left( {\,1,\,\,\,3,\,\,6\,} ight) và song song với trục y'Oy

     Vì  \left( P ight)//y'Oy \Rightarrow Vecto chỉ phương của (P)  là: \overrightarrow {{e_2}}  = \left( {0,1,0} ight)

    Theo đề bài, ta có vecto chỉ phương thứ hai của (P) là: \overrightarrow {EF}  = \left( { - 2,5,2} ight)
    Từ 2 VTCP, ta suy ra được VTPT của (P) là tích có hướng của 2 VTCT

    \Rightarrow \overrightarrow n  = \left[ {\overrightarrow {{e_2}} ,\overrightarrow {EF} } ight] = 2\left( {1,0,1} ight)

    Mp (P) đi qua E (3,-2,4) và nhận vecto \vec{n_p}(1, 0, 1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 3} ight).1 + \left( {y + 2} ight).0 + \left( {z - 4} ight).1

    \Leftrightarrow x + z - 7 = 0

  • Câu 10: Vận dụng

    Cho hình lăng trụ ABCDEF.

    Gọi M, N, G, H, I, J, K lần lượt là trung điểm của DE, DF, AE, CE, CD, BC, BE.

    Có nhận xét gì về bộ ba vecto \overrightarrow {MN} ,\overrightarrow {GI} ,\overrightarrow {KH}?

    Bằng nhau || Đồng phẳng || Bằng nhau và đồng phẳng || bằng nhau và đồng phẳng || bằng nhau, đồng phẳng

    Đáp án là:

    Cho hình lăng trụ ABCDEF.

    Gọi M, N, G, H, I, J, K lần lượt là trung điểm của DE, DF, AE, CE, CD, BC, BE.

    Có nhận xét gì về bộ ba vecto \overrightarrow {MN} ,\overrightarrow {GI} ,\overrightarrow {KH}?

    Bằng nhau || Đồng phẳng || Bằng nhau và đồng phẳng || bằng nhau và đồng phẳng || bằng nhau, đồng phẳng

    Hình lăng trụ

    Theo giả thiết đề bài đã cho, M và N lần lượt là trung điểm của DE và DF

    Suy ra, MN là đường trung bình trong tam giác DEF: \overrightarrow {MN}  = \frac{1}{2}\overrightarrow {EF}  = \frac{1}{2}\overrightarrow {BC}

    Tương tự: \overrightarrow {GI}  = \frac{1}{2}\overrightarrow {BC}\overrightarrow {KH}  = \frac{1}{2}\overrightarrow {BC}

    Vậy \overrightarrow {MN}  = \overrightarrow {GI}  = \overrightarrow {KH}  \Rightarrow \overrightarrow {MN} ,\overrightarrow {GI} ,\overrightarrow {KH} đồng phẳng và bằng nhau.

  • Câu 11: Thông hiểu

    Trong không gian Oxyz,cho hai đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = t \\
z = - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\left\{ \begin{matrix}
x = 2t' \\
y = - 1 + t' \\
z = t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Khoảng cách giữa hai đường thẳng dd' là:

    Đường thẳng d đi qua điểm A(1;0;0) và có vectơ chỉ phương \overrightarrow{u_{d}} = ( - 1;1; -
1)

    Đường thẳng d' đi qua điểm B(0; - 1;0) và có vectơ chỉ phương \overrightarrow{u_{d'}} =
(2;1;1);\overrightarrow{AB} = ( - 1; - 1;0)

    \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}} ightbrack =
\left( \left| \begin{matrix}
1 & - 1 \\
1 & 1 \\
\end{matrix} ight|;\left| \begin{matrix}
- 1 & - 1 \\
1 & 2 \\
\end{matrix} ight|;\left| \begin{matrix}
- 1 & 1 \\
2 & 1 \\
\end{matrix} ight| ight) = (2; - 1; - 3)

    Khoảng cách giữa hai đường thẳng dd' là:

    d(d;d') = \frac{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}}
ightbrack.\overrightarrow{AB} ight|}{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}} ightbrack
ight|} = \frac{1}{\sqrt{14}}

  • Câu 12: Thông hiểu

    Trong không gian cho hình hộp ABCD.A'B'C'D'\overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AC} =
\overrightarrow{b};\overrightarrow{AA'} =
\overrightarrow{c}. Gọi I là trung điểm của B'C', K là giao điểm của A'IB'D'. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Vì I là trung điểm của B’C’ suy ra \overrightarrow{A'B'} +
\overrightarrow{A'C'} = 2\overrightarrow{A'I}

    Và K là giao điểm của A'I';B'D' nên theo định lí Talet \Rightarrow
\overrightarrow{A'K} =
\frac{2}{3}\overrightarrow{A'I}

    Ta có: \overrightarrow{AK} =
\overrightarrow{AA'} + \overrightarrow{A'K} =
\overrightarrow{AA'} +
\frac{2}{3}\overrightarrow{A'I}

    = \overrightarrow{AA'} +
\frac{1}{3}\left( \overrightarrow{A'B'} +
\overrightarrow{A'C'} ight) = \frac{1}{3}\overrightarrow{a} +
\frac{1}{3}\overrightarrow{b} + \overrightarrow{c}

    Khi đó

    \overrightarrow{DK} =
\overrightarrow{DA} + \overrightarrow{AK} = \overrightarrow{CB} +
\overrightarrow{AK} = \left( \overrightarrow{AB} - \overrightarrow{AC}
ight) + \overrightarrow{AK}

    = \overrightarrow{a} -
\overrightarrow{b} + \frac{1}{3}\overrightarrow{a} +
\frac{1}{3}\overrightarrow{b} + \overrightarrow{c} =
\frac{4}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b} +
\overrightarrow{c}

    Vậy \overrightarrow{DK} =
\frac{1}{3}\left( 4\overrightarrow{a} - 2\overrightarrow{b} +
3\overrightarrow{c} ight).

  • Câu 13: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 5z - 3 = 0 và hai điểm A(3;1;1),B(4;2;3). Gọi (Q) là mặt phẳng qua AB và vuông góc với (P). Phương trình nào là phương trình của mặt phẳng (Q)?

    (Q) là mặt phẳng đi qua A, B và vuông góc với (P) nên mặt phẳng (Q) nhận \overrightarrow{AB} =
(1;1;2);\overrightarrow{n_{(P)}} = (1;2; - 5) làm hai vectơ chỉ phương.

    Vectơ pháp tuyến của mặt phẳng (Q)\overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{n_{(P)}} ightbrack = ( -
9;7;1)

    Phương trình mặt phẳng

    (Q): - 9(x - 3) + 7(y - 1) + 1(z - 1) =
0

    \Leftrightarrow 9x - 7y - z - 19 =
0

  • Câu 14: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) và mặt phẳng (P):2x - y + 3z + 1 = 0. Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình là:

    Do đường thẳng \Delta cần tìm vuông góc với mặt phẳng (P) nên vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = (2; - 1;3) cũng là vectơ chỉ phương của \Delta.

    Mặt khác \Delta đi qua điểm M(1;1;2) nên phương trình chính tắc của \Delta là: \frac{x - 1}{2} = \frac{y - 1}{- 1} = \frac{z -
2}{3}

  • Câu 15: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các tia Ox,Oy,Oz lần lượt tại các điểm A;B;C sao cho T = \frac{1}{OA^{2}} + \frac{1}{OB^{2}} +
\frac{1}{OC^{2}} đạt giá trị nhỏ nhất là:

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c là các số thực dương do OA, OB, OC khác 0.

    Khi đó phương trình mặt phẳng (P) qua A, B, C có phương trình là \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    M ∈ (P) nên \frac{1}{a} + \frac{2}{b}
+ \frac{3}{c} = 1, do đó theo bất đẳng thức Bunhiacopski ta có:

    T = \frac{1}{a^{2}} + \frac{1}{b^{2}} +
\frac{1}{c^{2}} = \frac{1}{14}\left( 1^{2} + 2^{2} + 3^{2} ight)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} ight)

    \geq \frac{1}{14}\left( \frac{1}{a} +
\frac{2}{b} + \frac{3}{c} ight)^{2} = \frac{1}{14}

    T đạt giá trị nhỏ nhất nên ta có dấu bằng xảy ra, tức là: \left\{ \begin{matrix}a = 2b = 3c \\\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 14 \\b = \dfrac{14}{2} \\c = \dfrac{14}{3} \\\end{matrix} ight.

    Vậy phương trình mặt phẳng (P) là x + 2y
+ 3z - 14 = 0.

  • Câu 16: Vận dụng cao

    Cho điểm P(-3 , 1, -1)  và đường thẳng (d): \left\{ \begin{array}{l}4x - 3y - 13 = 0\\y - 2z + 5 = 0\end{array} ight.

    Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:

    Chuyển (d) về dạng tham số : \left\{ \begin{array}{l}x =  - \frac{1}{2} + 3t\\y =  - 5 + 4t\\z = 2t\end{array} ight.

    Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: 3x + 4y + 2z + D = 0, cho qua P tính được D=7 .

    Ta có (Q): 3x + 4y + 2z + 7 = 0 .

    Thế x, y, z  theo t từ phương trình của (d) vào phương trình (Q) được t = \frac{1}{2}

    Giao điểm I của (d) và (Q)  là I (1, -3, 1) .

    Vì I là trung điểm của PP’ nên \Rightarrow P'\left( {5, - 7,3} ight).

  • Câu 17: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
z = 1 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) đi qua điểm nào dưới đây?

    Nếu một điểm nằm trên một đường thẳng thì khi thay tọa độ điểm đó vào phương trình đường thẳng thì sẽ thỏa mãn phương trình đường thẳng.

    Lần lượt thay tọa độ M từ các phương án vào phương trình đường thẳng d ta được M(−3; 5; 3) thỏa mãn yêu cầu bài toán.

  • Câu 18: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABC có tọa các điểm A(1; - 3;3),B(2; - 4;5),C(a; - 2;b) và tam giác đó nhận điểm G(1;c;3) làm trọng tâm. Xác định giá trị biểu thức P = a
+ b + c?

    Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{1 + 2 + a}{3} = 1 \\\dfrac{- 3 - 4 - 2}{3} = c \\\dfrac{3 + 5 + b}{3} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 0 \\b = 1 \\c = - 3 \\\end{matrix} ight.\  \Rightarrow P = a + b + c = - 2

  • Câu 19: Nhận biết

    Cho hai mặt phẳng \left( \alpha  ight):x + 5y - z + 1 = 0,\left( \beta  ight):2x - y + z + 4 = 0.

    Gọi \varphi là góc nhọn tạo bởi (\alpha)(\beta) thì giá trị đúng của cos \varphi là:

    Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:

    (\alpha) có vectơ pháp tuyến \overrightarrow a  = \left( {1,5, - 2} ight)

    (\beta) có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1,1} ight)

    Áp dụng công thức tính cosin giữa 2 vecto, ta có:

    \cos \varphi  = \frac{{\left| {1.2 + 5\left( { - 1} ight) + \left( { - 2} ight).1} ight|}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} ight)}^2}} .\sqrt {{2^2} + {{\left( { - 1} ight)}^2} + {1^2}} }} = \frac{{\sqrt 5 }}{6}

  • Câu 20: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(3; - 1;5),B(m;2;7). Tìm giá trị tham số m để AB
= 7?

    Theo bài ra ta có:

    AB = 7 \Leftrightarrow \sqrt{(m - 3)^{2}
+ 3^{2} + 2^{2}} = 7

    \Leftrightarrow (m - 3)^{2} = 36
\Leftrightarrow \left\lbrack \begin{matrix}
m - 3 = 6 \\
m - 3 = - 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 3 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m = 9 \\
m = - 3 \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 34 lượt xem
Sắp xếp theo