Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;1),B(3; - 2;0),C(1;2; - 2). Gọi (P) là mặt phẳng đi qua A sao cho tổng khoảng cách từ BC đến (P) lớn nhất, biết rằng (P) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng (P) là:

    Kiểm tra \overrightarrow{n} = (2; - 2; -
1): Mặt phẳng (P) có phương trình 2x − 2y − z − 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = (2; - 2; -
1).

    Kiểm tra \overrightarrow{n} =
(1;0;2): Mặt phẳng (P) có phương trình x+ 2z −3 = 0.

    Thay tọa độ B, C vào (P) ta thấy B ∈ (P) nên loại \overrightarrow{n} = (1;0;2).

    Kiểm tra \overrightarrow{n} = ( - 1;2; -
1): Mặt phẳng (P) có phương trình −x + 2y − z + 2 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = ( - 1;2; -
1).

    Kiểm tra v: Mặt phẳng (P) có phương trình x − 2z + 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về cùng phía (P) nên chọn \overrightarrow{n} = (1;0; -
2).

  • Câu 2: Vận dụng

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    a) Sai

    Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là ( -
1,5\ ;\  - 1\ ;\ 0,5).

    b) Đúng

    Chiếc khinh khí cầu thứ nhất có tọa độ là (2,5\ ;\ 1\ ;\ 0,7).

    Khoảng cách giữa hai chiếc khinh khí cầu là

    \sqrt{(2,5 + 1,5)^{2} + (1 + 1)^{2} +
(0,7 + 0,5)^{2}}

    = \frac{2\sqrt{134}}{5} \approx
4,6(km)

    c) Sai

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:

    \sqrt{2,5^{2} + 1^{2} + 0,7^{2}} =
\frac{3\sqrt{86}}{10} \approx 2,8(km)

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:

    \sqrt{( - 1,5)^{2} + ( - 1)^{2} +
0,5^{2}} = \frac{\sqrt{14}}{2} \approx 1,9(km)

    Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.

    d) Đúng

    Vị trí của chiếc flycam là

    \left( \frac{2,5 - 1,5}{2}\ ;\ \frac{1 -
1}{2}\ ;\ \frac{0,7 + 0,5}{2} ight) = (0,5\ ;\ 0\ ;\
0,6).

    Khoảng cách bay của flycam là:

    \sqrt{0,5^{2} + 0^{2} + 0,6^{2}} =
\frac{\sqrt{61}}{10} \approx 0,8(km)

    Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ (3\ ;\ 1\ ;\  - 1)

    \sqrt{3^{2} + 1^{2} + ( - 1)^{2}} =
\sqrt{11} \approx 3,3(km) > 0,8(km)

    Vậy flycam không đến được vị trí có tọa độ (3\ ;\ 1\ ;\  - 1).

  • Câu 3: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A( - 1;3;0)B(2;0; - 3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} = ( -
1;3;0). Đúng||Sai

    b) \overrightarrow{OB} =
\overrightarrow{2i} - 3\overrightarrow{j}. Sai||Đúng

    c) \overrightarrow{AB} = ( -
3;3;3). Sai||Đúng

    d) Tứ giác OABC là hình bình hành khi \overrightarrow{OC} =
3\overrightarrow{i} - 3\overrightarrow{j} -
3\overrightarrow{k}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A( - 1;3;0)B(2;0; - 3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} = ( -
1;3;0). Đúng||Sai

    b) \overrightarrow{OB} =
\overrightarrow{2i} - 3\overrightarrow{j}. Sai||Đúng

    c) \overrightarrow{AB} = ( -
3;3;3). Sai||Đúng

    d) Tứ giác OABC là hình bình hành khi \overrightarrow{OC} =
3\overrightarrow{i} - 3\overrightarrow{j} -
3\overrightarrow{k}. Đúng||Sai

    a) Đúng

    \overrightarrow{OA} = ( -
1;3;0).

    b) Sai

    \overrightarrow{OB} = \overrightarrow{2i}
- 3\overrightarrow{k}.

    c) Sai

    \overrightarrow{AB} = \left( x_{B} -
x_{A}^{};y_{B} - y_{A};z_{B} - z_{A} ight) = (3; - 3; -
3).

    d) Đúng

    Ta có: \overrightarrow{AB} = (3; - 3; -
3),

    OABC là hình bình hành

    \Leftrightarrow \overrightarrow{OC} =
\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x_{C} = 3 \\
y_{C} = - 3 \\
z_{C} = - 3 \\
\end{matrix} ight.\  \Rightarrow C(3; - 3; - 3)

  • Câu 4: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình dạng Ax + By + Cz + D = 0, (A,B,C,D \in Z) và có UCLN\left( |A|,|B|,|C|,|D| ight) = 1. Để mặt phẳng (P) đi qua điểm B(1;2; - 1) và cách gốc tọa độ O một khoảng lớn nhất thì đẳng thức nào sau đây đúng?

    Mặt phẳng (P) đi qua điểm B(1; 2; −1) suy ra A + 2B − C + D = 0 (1).

    Khi đó:

    d\left( O;(P) ight) =
\frac{|D|}{\sqrt{A^{2} + B^{2} + C^{2}}} = \frac{|A + 2B -
C|}{\sqrt{A^{2} + B^{2} + C^{2}}}

     

    \leq \frac{\sqrt{\left\lbrack 1^{2} +
2^{2} + ( - 1)^{2} ightbrack\left( A^{2} + B^{2} + C^{2}
ight)}}{\sqrt{A^{2} + B^{2} + C^{2}}} = \sqrt{6}

    Đẳng thức xảy ra khi và chỉ khi:

    \left\{ \begin{matrix}A + 2B - C + D = 0 \\\dfrac{A}{1} = \dfrac{B}{2} = \dfrac{C}{- 1} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}D = - 3B \\B = 2A = - 2C \\A;B;C\mathbb{\in Z} \\\end{matrix} ight.

    Từ đó tìm được A = - C = 1,B = 2,D = -
6 hoặc A = - C = - 1,B = - 2,D =
6.

    Vậy A^{2} + B^{2} + C^{2} + D^{2} =
42.

  • Câu 5: Vận dụng

    Tính góc của hai đường thẳng \left( {d'} ight):\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z + 2}}{4}\left( d ight):x = 3 + 2t;\,\,y = 2t - 4;\,\,z = 2\,\,\,\left( {t \in R} ight).

    Theo đề bài, ta có (d’) và (d) có vec-tơ chỉ phương lần lượt là:\overrightarrow a  = \left( {2,4,4} ight);\overrightarrow b  = \left( {2,2,0} ight)

    Áp dụng công thức cosin của góc giữa 2 đường thẳng, ta có:

    \Rightarrow \cos \alpha  = \frac{{\left| {2.2 + 4.2 + 4.0} ight|}}{{6.2\sqrt 2 }} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = {45^0}

  • Câu 6: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x + 1}{1} = \frac{y + 4}{2} =
\frac{z}{1} và điểm A(2;0;1). Hình chiếu vuông góc của A trên (∆) là điểm nào dưới đây?

    Đường thẳng (∆) đi qua M(−1; −4; 0), có vectơ chỉ phương \overrightarrow{u_{(\Delta)}} = (1;\ 2;\
1)

    Phương trình tham số của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + t \\
y = - 4 + 2t \\
z = t \\
\end{matrix} ight.

    Gọi P là hình chiếu vuông góc của A trên (∆).

    Khi đó P \in (\Delta) \Rightarrow P( - 1
+ t; - 4 + 2t;t)

    Ta có \overrightarrow{AP} = ( - 3 + t; -
4 + 2t;t - 1). Vì \overrightarrow{AP}\bot\overrightarrow{u_{(\Delta)}}
\Rightarrow \overrightarrow{AP}.\overrightarrow{u_{(\Delta)}} =
0 nên

    \Leftrightarrow 1.( - 3 + t)
+ 2.( - 4 + 2t) + 1.(t - 1) = 0 \Leftrightarrow t = 2 \Rightarrow
P(1;0;2)

  • Câu 7: Thông hiểu

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Tính \overrightarrow{AC_{1}}.\overrightarrow{BD}.

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC_{1}}.\overrightarrow{BD} =
\left( \overrightarrow{AA_{1}} + \overrightarrow{AC} ight)\left(
\overrightarrow{AD} - \overrightarrow{AB} ight)

    =
\overrightarrow{AC}.\overrightarrow{AD} -
\overrightarrow{AC}.\overrightarrow{AB} =
\overrightarrow{AC}.\overrightarrow{BD} = 0

    \Rightarrow
\overrightarrow{AC_{1}}.\overrightarrow{BD} = 0

  • Câu 8: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD với A( -
3;1; - 1),B(1;2;m), C(0;2; -
1),D(4;3;0). Tìm tất cả các giá trị thực của m để thể tích khối tứ diện ABCD bằng 10.

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (3;1;0) \\
\overrightarrow{AD} = (7;2;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = (1; - 3; -
1)

    Lại có: \overrightarrow{AB} = (4;1;m + 1)
\Rightarrow \overrightarrow{AB}.\left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = - m

    Khi đó ta có:

    V_{ABCD} = \frac{1}{6}\left|
\overrightarrow{AB}.\left\lbrack \overrightarrow{AC};\overrightarrow{AD}
ightbrack ight| = \frac{|m|}{6}

    Theo đề ta có: V_{ABCD} = 10
\Leftrightarrow \frac{|m|}{6} = 10 \Leftrightarrow m = \pm
60

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - y + 2 = 0 và hai điểm A(1;2;3),B(1;0;1). Điểm C(a;\ b; - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - y + 2 = 0 và hai điểm A(1;2;3),B(1;0;1). Điểm C(a;\ b; - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P):2x - y + 3 = 0. Một véc tơ pháp tuyến của (P) có tọa độ là?

    Mặt phẳng (P) có VTPT là: \overrightarrow{n} = (2; - 1;0)

  • Câu 11: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y + 2}{- 1} = \frac{z}{-
2}. Mặt phẳng (P) chứa đường thẳng d và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là ax + by + cz + 9 = 0. Tính tổng a + b + c

    Hình vẽ minh họa

    Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1; - 2)

    Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.

    Phương trình tham số của \Delta:\left\{
\begin{matrix}
x = 1 \\
y = - 2 + t \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lấy điểm N(1; 2; 0) ∈ ∆.

    Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.

    Khi đó \left( (P),d ight) = \left(
(P),\Delta ight) = \widehat{NMH}

    Lại có: \cos\widehat{NMH} = \frac{MH}{NM}
\leq \frac{MK}{NM}

    Vậy \widehat{NMH}lớn nhất khi và chỉ khi H trùng với K

    Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).

    Vectơ pháp tuyến của (Q) là \overrightarrow{n_{Q}} = \left\lbrack
\overrightarrow{u},\overrightarrow{j} ightbrack =
(2;0;1)

    Vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{n_{Q}},\overrightarrow{u} ightbrack = (1;5; -
2)

    Phương trình mặt phẳng (P) là 1(x - 1) +
5(y + 2) - 2(z - 0) = 0

    \Leftrightarrow x + 5y - 2z + 9 =
0

    Vậy a + b + c = 4

  • Câu 12: Thông hiểu

    Cho hai điểm A(5;1;3)H(3; - 3; - 1). Tọa độ điểm A' đối xứng với A qua H là:

    Vì điểm A' đối xứng với A qua H nên H là trung điểm của AA'

    \Rightarrow \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} = 1 \\
y_{A'} = 2y_{H} - y_{A} = - 7 \\
z_{A'} = 2z_{H} - z_{A} = 5 \\
\end{matrix} ight.\  \Rightarrow A'(1; - 7; - 5)

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 14: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:

     \overrightarrow {AB}  = \left( { - 1,2, - 2} ight): vectơ chỉ phương của trục Ox: \overrightarrow i  = \left( {1,0,0} ight) .

    \left[ {\overrightarrow {AB} ,\overrightarrow i } ight] = \left( {0, - 2, - 2} ight): Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng y + z + D = 0, qua A nên:- 1 + 1 + D = 0 \Leftrightarrow D = 0

    Vậy ta có phương trình mp cần tìm là:  y+z=0

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;2; - 3),\ \ B(3; - 2;1). Tọa độ trung điểm của AB là.

    Tọa độ trung điểm I của AB là:

    I = \left( \frac{1 + 3}{2};\frac{2 -
2}{2};\frac{- 3 + 1}{2} ight) = (2;0; - 1)

  • Câu 17: Nhận biết

    Trong hệ tọa độ Oxyz, điểm nào dưới đây thuộc đường thẳng d:\frac{x - 1}{2}
= \frac{y + 1}{- 1} = \frac{z - 2}{3}?

    Dựa vào phương trình đường thẳng ta thấy đường thẳng đã cho đi qua điểm N(1; - 1;2).

  • Câu 18: Thông hiểu

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 8 = 0 và đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight.. Khoảng cách giữa đưởng thẳng d và mặt phẳng (P) bằng:

    Đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. đi qua A(1;2;3) và có vectơ chỉ phương \overrightarrow{u} = (2; - 1;1)

    Mặt phẳng (P):x + 2y - 8 = 0 có vectơ pháp tuyến \overrightarrow{n} =
(1;2;0).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{u}.\overrightarrow{n} = 2 - 2 + 0 = 0 \\
A otin (P) \\
\end{matrix} ight., nên đường thằng d song song với mặt phẳng (P).

    Vậy khoảng cách giữa đường thẳng d và mặt phẳng (P) bằng khoảng cách từ A đến mặt phẳng (P):

    d\left( d;(P) ight) = d\left( A;(P)
ight) = \frac{|1 + 4 - 8|}{\sqrt{1^{2} + 2^{2}}} =
\frac{3}{\sqrt{5}}

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1; - 1)B(2;3;2). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (2 - 1;3 - 1;2 +
1) = (1;2;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(1;2;3).

  • Câu 20: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ hai điểm A(3;0;0),B(0;0;4). Tính chu vi tam giác OAB?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{OA} = (3;0;0) \Rightarrow OA = 3 \\
\overrightarrow{OB} = (0;0;4) \Rightarrow OB = 4 \\
\overrightarrow{AB} = ( - 3;0;4) \Rightarrow AB = 5 \\
\end{matrix} ight.

    Chu vi tam giác OAB là:

    C = OA + OB + AB = 3 + 4 + 5 =
12

    Vậy đáp án đúng là: 12.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo