Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{AC} +\overrightarrow{BA'} + k\left( \overrightarrow{DB} +\overrightarrow{C'D} ight) = \overrightarrow{0}

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AC} + \overrightarrow{BA'} = \overrightarrow{AC} +
\overrightarrow{CD'} = \overrightarrow{AD'} \\
\overrightarrow{DB} + \overrightarrow{C'D} = \overrightarrow{DB} -
\overrightarrow{DC'} = \overrightarrow{D'A} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC} +
\overrightarrow{BA'} + k\left( \overrightarrow{DB} +
\overrightarrow{C'D} ight) = \overrightarrow{AD'} +
k.\overrightarrow{D'A} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{AD'}
+ k.\overrightarrow{D'A} = \overrightarrow{0} \Leftrightarrow (k -
1).\overrightarrow{D'A} = \overrightarrow{0} \Leftrightarrow k - 1 =
0 \Leftrightarrow k = 1.

    Vậy k = 1.

  • Câu 2: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:\bigtriangleup_{1}:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z - 3}{- 2}\bigtriangleup_{2}:\frac{x - 4}{- 1} = \frac{y -
5}{- 2} = \frac{z - 6}{2}

    a) Vectơ có tọa độ (1;2;3) là một vectơ chỉ phương của \bigtriangleup_{1}. Sai||Đúng

    b) Đường thẳng \bigtriangleup_{2} đi qua điểm A(0; - 3;14). Đúng||Sai

    c) Đường thẳng \bigtriangleup_{3} đi qua B(1;1; - 2) và vuông góc với \bigtriangleup_{1} có phương trình tham số là \bigtriangleup_{3}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = 1 - 2t \\
z = - 2 - 3t \\
\end{matrix} ight.. Đúng||Sai

    d) Góc giữa hai đường thẳng \bigtriangleup_{1}\bigtriangleup_{2} khoảng 132^{0}. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:\bigtriangleup_{1}:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z - 3}{- 2}\bigtriangleup_{2}:\frac{x - 4}{- 1} = \frac{y -
5}{- 2} = \frac{z - 6}{2}

    a) Vectơ có tọa độ (1;2;3) là một vectơ chỉ phương của \bigtriangleup_{1}. Sai||Đúng

    b) Đường thẳng \bigtriangleup_{2} đi qua điểm A(0; - 3;14). Đúng||Sai

    c) Đường thẳng \bigtriangleup_{3} đi qua B(1;1; - 2) và vuông góc với \bigtriangleup_{1} có phương trình tham số là \bigtriangleup_{3}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = 1 - 2t \\
z = - 2 - 3t \\
\end{matrix} ight.. Đúng||Sai

    d) Góc giữa hai đường thẳng \bigtriangleup_{1}\bigtriangleup_{2} khoảng 132^{0}. Sai||Đúng

    a) Vectơ có tọa độ (2;1; - 2) là một vectơ chỉ phương của \bigtriangleup_{1} nên mệnh đề sai

    b) Mệnh đề đúng

    c) Gọi B = \bigtriangleup_{1} \cap
\bigtriangleup_{3} \Rightarrow B(1 + 2t;2 + t;3 - 2t)

    \begin{matrix}
\overrightarrow{AB} = ( - 2t; - 1 - t; - 5 + 2t\ ) \\
\overrightarrow{AB}\bot u_{\bigtriangleup_{1}} \Rightarrow t = 1 \\
\Rightarrow \overrightarrow{AB} = ( - 2; - 2; - 3\ ) \\
\end{matrix} nên mệnh đề đúng

    d) Góc giữa hai đường thẳng luôn là góc nhọn nên mệnh đề sai

  • Câu 3: Vận dụng cao

    Cho biết có n mặt phẳng với phương trình tương ứng là (P_i):x+a_iy+b_iz+c_i=0  với (i=1,2,...,n)đi qua điểm M(1;2;3) và không đi qua gốc tọa độ O , đồng thời cắt các trục tọa độ Ox, Oy, Oz theo thứ tự tại A, B, C sao cho hình chóp OABC là hình chóp đều. Khi đó giá trị a_1+a_2+...+a_nbằng?

    Giả sử mặt phẳng (P): x+ay+bz+c=0 thỏa mãn yêu cầu bài toán

    +) Ta có:  (P)\cap Ox=A(-c;0;0),

    (P)\cap Oy=B(0;\frac{-c}{a};0),

    P)\cap Oz=C(0;0;\frac{-c}{b}).

    Vì hình chóp OABC là hình chóp đều, suy ra OA=OB=OC

    Nên ta có \left | -c ight | =\left | \frac{-c}{a} ight |= \left | \frac{-c}{b} ight | (do (P) không đi qua gốc tọa độ nên c eq 0 )

    +) Vì điểm M(1;2;3)\in Pnên suy ra:1+2a+3b+c=0

    Nhận thấy nếu a=1, b=-1 thì c=0, trường hợp này không thỏa mãn do  c eq 0

    Như vậy ta sẽ có 3 mặt phẳng thỏa mãn yêu cầu bài toán lần lượt ứng với các trường hợp a=b=1, a=b=-1a=-1.b=1

    Vậy a_1=1, a_2=-1. a_3=-1 suy ra a_1+a_2+a_3=-1.

  • Câu 4: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(5; - 4;2),B(1;2;4). Mặt phẳng đi qua A và vuông góc với đường thẳng AB là:

    Gọi (α) là mặt phẳng đi qua A(5; -
4;2) và vuông góc với đường thẳng AB.

    Do (α) vuông góc với AB nên vectơ pháp tuyến của mặt phẳng (α) là \overrightarrow{n_{(\alpha)}} =
\overrightarrow{n_{AB}} = ( - 4;6;2)

    Vậy phương trình mặt phẳng (α) là:

    - 4(x - 5) + 6(y + 4) + 2(z - 2) =
0

    \Leftrightarrow 2x - 3y - z - 20 =
0

  • Câu 5: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(0; −1; 2), B(2; −3; 0), C(−2; 1; 1), D(0; −1; 3). Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức \overrightarrow{MA}.\overrightarrow{MB} =
\overrightarrow{MC}.\overrightarrow{MD} = 1. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?

    Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.

    Ta có \left\{ \begin{matrix}
\overrightarrow{AM} = (x;y + 1;z - 2) \\
\overrightarrow{BM} = (x - 2;y + 3;z) \\
\overrightarrow{CM} = (x + 2;y - 1;z - 1) \\
\overrightarrow{DM} = (x;y + 1;z - 3) \\
\end{matrix} ight.

    Từ giả thiết \overrightarrow{MA}.\overrightarrow{MB} =
\overrightarrow{MC}.\overrightarrow{MD} = 1 \Leftrightarrow \left\{
\begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = 1 \\
\overrightarrow{MC}.\overrightarrow{MD} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x(x - 2) + (y + 1)(y + 3) + z(z - 2) = 1 \\
x(x + 2) + (y + 1)(y - 1) + (z - 1)(z - 3) = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x + 4y - 2z + 2 = 0 \\
x^{2} + y^{2} + z^{2} + 2x - 4z + 1 = 0 \\
\end{matrix} ight.

    Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm I_1(1; −2; 1), R_1 = 2 và mặt cầu tâm I_2(−1; 0; 2), R_2 = 2

    I_{1}I_{2} = \sqrt{5}

    Dễ thấy r = \sqrt{{R_{1}}^{2} - \left(
\frac{I_{1}I_{2}}{2} ight)^{2}} = \frac{\sqrt{11}}{2}

  • Câu 6: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P):2x + 4y + 3z - 5 = 0(Q):mx - ny - 6z + 2\  = \ 0. Giá trị của m, n sao cho (P)//(Q)

    Ta có: (P) có vectơ chỉ phương \overrightarrow{u_{(P)}} = (2;4;3), (Q) có vectơ chỉ phương \overrightarrow{u_{(Q)}} = (m; - n; -
6)

    Để hai mặt phẳng song song thì \overrightarrow{u_{(P)}} =
k\overrightarrow{u_{(Q)}} \Leftrightarrow \left\{ \begin{matrix}
m = 2k \\
- n = 4k \\
- 6 = 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = - 2 \\
m = - 4 \\
n = 8 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: m = - 4;n =
8.

  • Câu 7: Vận dụng

    Trong không gian Oxyz, cho hai điểm A(1;2; - 1),B(3;0;3). Biết mặt phẳng (P) đi qua điểm A và cách B một khoảng lớn nhất. Phương trình mặt phẳng (P)

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.

    Ta có BH ≤ AB.

    Dấu “=” xảy ra ⇔ H ≡ A

    ⇒ BHmax = AB khi AB ⊥ (P).

    Ta có:

    \left\{ \begin{matrix}
AB\bot(P) \\
A \in (P) \\
\end{matrix} ight.\  \Rightarrow (P):2x - 2y + 4z + 6 = 0

    \Leftrightarrow x - y + 2z + 3 =
0

  • Câu 8: Nhận biết

    Trong không gian Oxyz, điểm đối xứng của điểm M(1;2;3) qua trục Ox có tọa độ là

    Gọi M' là điểm đối xứng của M(1;2;3) qua trục Ox.

    Hình chiếu vuông góc của M(1;2;3) lên trục OxH(1;0;0)

    Khi đó H(1;0;0) là trung điểm của M'M. Do đó tọa độ của M'(1;
- 2; - 3)

  • Câu 9: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng \Delta?

    Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:

    \left\{ \begin{matrix}
- 1 = 1 + 2t \\
- 4 = - 1 + 3t \\
3 = 2 - t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 \Rightarrow M( - 1; -
4;3) \in \Delta.

  • Câu 10: Thông hiểu

    Cho các mệnh đề sau:

    (I) Vectơ \overrightarrow{x} =\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} luôn đồng phẳng với hai vectơ \overrightarrow{a};\overrightarrow{b}.

    (II) Nếu có m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0} và ít nhất một trong ba số m;n;p khác không thì ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng.

    (III) Nếu ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} không đồng phẳng và m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0} thì m = n = p = 0.

    Hỏi có bao nhiêu mệnh đề đúng?

    Do \overrightarrow{x} được biểu thị qua hai vectơ \overrightarrow{a};\overrightarrow{b} nên (I) đúng.

    Xét mệnh đề (II): Giả sử m eq
0, khi đó:

    m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0}\Leftrightarrow \overrightarrow{a} = - \frac{n}{m}\overrightarrow{b} -\frac{p}{m}\overrightarrow{c}

    Suy ra ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng. Vậy mệnh đề (II) đúng.

    Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCSA = SB = SC\widehat{ASB} = \widehat{BSC} =
\widehat{CSA}. Góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC} là:

    Ta có: \overrightarrow{SA}.\overrightarrow{BC} =
\overrightarrow{SA}.\left( \overrightarrow{SC} - \overrightarrow{SB}
ight)

    =
\overrightarrow{SA}.\overrightarrow{SC} -
\overrightarrow{SA}.\overrightarrow{SB}

    = \left| \overrightarrow{SA}ight|.\left| \overrightarrow{SC} ight|.\cos\widehat{ASC} - \left|\overrightarrow{SA} ight|.\left| \overrightarrow{SB}ight|.\cos\widehat{ASB} = 0

    Vậy góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC}90^{0}.

  • Câu 12: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;2;5),B(0;4; - 3),C(2; - 3;7). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tính tổng P = x + y + z.

    Vì M ∈ (Oxy) nên M(x;y;0).

    Gọi G là trọng tâm của tam giác ABC.

    Ta có G(2; 1; 3).

    Khi đó:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \left|
\overrightarrow{MG} + \overrightarrow{GA} + \overrightarrow{MG} +
\overrightarrow{GB} + \overrightarrow{MG} + \overrightarrow{GC}
ight|

    = \left| 3\overrightarrow{MG} ight| =
3MG = 3\sqrt{(x - 2)^{2} + (y - 1)^{2} + 3^{2}} \geq 9

    Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).

    Vậy P = 3

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x + 2y + 4z - 1 = 0;(\beta):2x + 3y - 2z+ 5 = 0. Chọn khẳng định đúng.

    Hai mặt phẳng (\alpha);(\beta) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{(\alpha)}} =
(1;2;4),\overrightarrow{n_{(\beta)}} = (2;3; - 2)

    Ta có \overrightarrow{n_{(\alpha)}}.\overrightarrow{n_{(\beta)}}
= 1.2 + 2.3 + 4.( - 2) = 0

    (\alpha)\bot(\beta).

  • Câu 14: Thông hiểu

    Cho hai điểm C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight). Mặt phẳng chứa đường thẳng CD và song song với Oz có phương trình :

    Theo đề bài ta có C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight)

    \Rightarrow \overrightarrow {CD}  = \left( {3, - 9,3} ight) cùng phương với vectơ \overrightarrow a  = \left( {1, - 3,1} ight)

    Mặt khác, trục Oz có vectơ chỉ phương \overrightarrow k  = \left( {0,0,1} ight)

    \Rightarrow \left[ {\overrightarrow a ,\overrightarrow k } ight] = \left( { - 3, - 1,0} ight) cùng phương với vectơ \overrightarrow n  = \left( {3,1,0} ight)

    Chọn \overrightarrow n  = \left( {3,1,0} ight) làm vectơ pháp tuyến cho mặt phẳng chứa CD và song song với trục Oz. Phương trình mặt phẳng này có dạng : 3x + y + D = 0

    Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có: 

    - 3 + 4 + D = 0 \Leftrightarrow D =  - 1

    Vậy phương trình mặt phẳng cần tìm : 3x + y - 1 = 0

  • Câu 15: Thông hiểu

    Hai đường thẳng \left( {d'} ight):\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 3m - t\\z = 2t - 1\end{array} ight.\left( d ight):\left\{ \begin{array}{l}x = 4 - 2m\\y = m + 2\\z =  - m\end{array} ight.với cắt nhau tại M có tọa độ là :

     

    Để (d’) cắt (d) tại M \Leftrightarrow \left\{ \begin{array}{l}2 + 4t = 4 - 2m\\ - 3 - t = m + 2\\2t - 1 =  - m\end{array} ight. \\\Leftrightarrow \left\{ \begin{array}{l}2t + m = 1\\t + m =  - 5\end{array} ight. \\\Leftrightarrow t = 6;m =  - 11

    \Rightarrow M\left( {26, - 9,11} ight)

     

  • Câu 16: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 17: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1;0)B(0;1;2). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (0 - 1;1 - 1;2 -
0) = ( - 1;0; - 2)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(1;2;3).

  • Câu 18: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(−1; 0; 1), B(1; 1; −1); C(5; 0; −2). Tìm tọa độ điểm H sao cho tứ giác ABCH lập thành hình thang cân với hai đáy AB, CH.

    Ta có \overrightarrow{AB} = (2;1; -
2);M\left( 0;\frac{1}{2};0 ight) là trung điểm AB.

    Gọi (α) là mặt phẳng trung trực của AB \Rightarrow (\alpha):2x + y - 2z - \frac{1}{2} =
0

    Gọi d là đường thẳng qua C và song song AB \Rightarrow d:\left\{ \begin{matrix}
x = 5 + 2t \\
y = t \\
z = - 2 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Gọi I là hình chiếu của C lên (α).

    Tọa độ I là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}x = 5 + 2t \\y = t \\z = - 2 - 2t \\2x + y - 2z - \dfrac{1}{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{3}{2} \\z = 1 \\t = - \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow I\left( 2; - \dfrac{3}{2};1ight)

    Do ABCH là hình thang cân nên H và C đối xứng nhau qua mp(α).

    ⇒ I là trung điểm CH

    ⇒ H(−1; −3; 4).

  • Câu 19: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) và mặt phẳng (P):2x - y + 3z + 1 = 0. Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình là:

    Do đường thẳng \Delta cần tìm vuông góc với mặt phẳng (P) nên vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = (2; - 1;3) cũng là vectơ chỉ phương của \Delta.

    Mặt khác \Delta đi qua điểm M(1;1;2) nên phương trình chính tắc của \Delta là: \frac{x - 1}{2} = \frac{y - 1}{- 1} = \frac{z -
2}{3}

  • Câu 20: Thông hiểu

    Cho tứ diện đều ABCD với I là trung điểm của AB. góc giữa hai đường thẳng IC;AD có cosin bằng:

    Hình vẽ minh họa

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    \overrightarrow{AD}.\overrightarrow{AB}= a^{2}.\cos60^{0} = \frac{a^{2}}{2}

    Tương tự \overrightarrow{AC}.\overrightarrow{AD} =
\frac{a^{2}}{2}

    Ta có: \overrightarrow{IC} =
\overrightarrow{AC} - \overrightarrow{AI} = \overrightarrow{AC} -
\frac{1}{2}\overrightarrow{AB}

    Do đó \overrightarrow{IC}.\overrightarrow{AD} =
\frac{a^{2}}{2} - \frac{a^{2}}{4} = \frac{a^{2}}{4}

    \cos\left(
\overrightarrow{IC};\overrightarrow{AD} ight) =
\frac{\overrightarrow{IC}.\overrightarrow{AD}}{\left|
\overrightarrow{IC} ight|.\left| \overrightarrow{AD} ight|} nên \cos\left(
\overrightarrow{IC};\overrightarrow{AD} ight) =
\frac{a^{2}}{4}:\frac{a^{2}\sqrt{3}}{2} =
\frac{1}{2\sqrt{3}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo