Trong không gian
, cho đường thẳng
. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng
?
Đường thẳng có 1 vectơ chỉ phương là
. Do đó vectơ
không là vectơ chỉ phương của
.
Trong không gian
, cho đường thẳng
. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng
?
Đường thẳng có 1 vectơ chỉ phương là
. Do đó vectơ
không là vectơ chỉ phương của
.
Cho hai đường thẳng
và
lần lượt có vectơ chỉ phương là
và
. Nếu
là góc giữa hai đường thẳng
và
thì:
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là .
Trong không gian Oxyz, cho mặt phẳng
và hai điểm
. Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

Gọi (Q) là mặt phẳng qua A và song song (P).
Ta có: nằm về hai phía với (P).
Gọi H là hình chiếu vuông góc của B lên (Q) BH cố định và
.
Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay .
Ta có: bé nhất bằng BH khi K trùng với điểm H.
Gọi là VTPT của (ABH)
Ta có đường thẳng d cần lập qua A, H và có VTCP là
Vậy phương trình đường thẳng d cần lập là:
Cho hình hộp
có
. Gọi
là trung điểm của đoạn
. Biểu thị
theo ba vectơ
?
Hình vẽ minh họa
Ta có:
Cho biết có n mặt phẳng với phương trình tương ứng là
với
đi qua điểm
và không đi qua gốc tọa độ O , đồng thời cắt các trục tọa độ
theo thứ tự tại A, B, C sao cho hình chóp OABC là hình chóp đều. Khi đó giá trị
bằng?
Giả sử mặt phẳng thỏa mãn yêu cầu bài toán
+) Ta có:
.
Vì hình chóp OABC là hình chóp đều, suy ra
Nên ta có (do (P) không đi qua gốc tọa độ nên
)
+) Vì điểm nên suy ra:
Nhận thấy nếu thì
, trường hợp này không thỏa mãn do
Như vậy ta sẽ có 3 mặt phẳng thỏa mãn yêu cầu bài toán lần lượt ứng với các trường hợp và
Vậy suy ra
.
Trong không gian
, viết phương trình mặt phẳng
biết
đi qua hai điểm
và vuông góc với mặt phẳng
.
Ta có và
có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Do đó, có phương trình là
.
Cho tứ diện đều
cạnh
Tính
theo ![]()
Hình vẽ minh họa
Gọi là trọng tâm của
Do đó
Ta có
Mà là tứ diện đều nên
Suy ra
Vậy
Trong không gian với hệ tọa độ
, cho hai đường thẳng ![]()
?
Gọi lần lượt là vectơ chỉ phương của d1 và d2 ta chọn
Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn suy ra
Khi đó và
. Do đó (d1) và (d2) chéo nhau.
Trong không gian với hệ toạ độ
, cho bốn đường thẳng ![]()
![]()
![]()
. Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
Kiểm tra vị trí tương đối giữa hai đường thẳng ta thấy (d1) // (d2); (d4) cắt (d2), (d3).
Gọi (P) là mặt phẳng chứa (d1) và (d2); (Q) là mặt phẳng chứa (d3) và (d4).
Gọi (∆) là đường thẳng cắt cả 4 đường thẳng trên.
Ta thấy, (∆) cắt cả (d1), (d2) suy ra (∆) ⊂ (P).
(∆) cắt cả (d3),(d4) suy ra (∆) ⊂ (Q).
Mà (d2), (d4) có điểm chung nên (∆) là giao tuyến của (P) và (Q), do đó có duy nhất một đường thẳng thỏa mãn.
Trong không gian hệ trục tọa độ
, cho các điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian
, cho mặt phẳng
và
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
Gọi
lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
và
là một điểm bất kì trong không gian. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Vì lần lượt là trung điểm của các cạnh
nên ta có:
.
Mặt khác (vì I là trung điểm của MN) suy ra
Theo bài ra ta có:
Cho tứ diện
có
và
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: ;
suy ra
. Ta có:
. Vậy góc giữa hai đường thẳng cần tìm là
Trong không gian với hệ tọa độ
, cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Vì M ∈ (Oxy) nên .
Gọi G là trọng tâm của tam giác ABC.
Ta có G(2; 1; 3).
Khi đó:
Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).
Vậy P = 3
Cho tứ diện
. Gọi
là trọng tâm của tam giác
.Phân tích nào sau đây là đúng?
Ta có: là trọng tâm tam giác
khi
Trong không gian với hệ tọa đô
, cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các tia
lần lượt tại các điểm
sao cho thể tích tứ diện
nhỏ nhất.
đi qua điểm nào dưới đây?
Gọi với
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Mặt phẳng đi qua điểm
.
Trong không gian tọa độ
, cho mặt phẳng
và đường thẳng
. Khoảng cách giữa đưởng thẳng
và mặt phẳng
bằng:
Đường thẳng đi qua
và có vectơ chỉ phương
Mặt phẳng có vectơ pháp tuyến
.
Ta có: , nên đường thằng
song song với mặt phẳng
.
Vậy khoảng cách giữa đường thẳng và mặt phẳng
bằng khoảng cách từ
đến mặt phẳng
:
Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm ![]()
Theo đề bài, ta có cặp vecto chỉ phương của
Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của
Mp (P) đi qua và nhận vecto có tọa độ
làm 1 VTPT có phương trình là:
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) cắt nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:
và (d) cùng nằm trong một mặt phẳng
Để (D) và d cắt nhau, ta sẽ xét tỉ số sau:
và (d) cắt nhau.
Trong không gian
, cho
. Tính diện tích tam giác
?
Ta có:
Lại có diện tích tam giác là: