Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 2: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (\alpha):x - y + 2z = 1. Trong các đường thẳng sau, đường thẳng nào vuông góc với (\alpha).

    Mặt phẳng (\alpha):x - y + 2z =
1 có một vectơ pháp tuyến là \overrightarrow{n_{(\alpha)}} = (1; -
1;2).

    Đường thẳng d_{1} có một vectơ chỉ phương là \overrightarrow{u_{d_{1}}} =
(1; - 1;2) = \overrightarrow{n_{(\alpha)}}

    Suy ra d_{1}\bot(\alpha).

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M;N lần lượt là trung điểm của ADSD. Số đo của góc (MN;SC) bằng bao nhiêu?

    Hình vẽ minh họa

    Do ABCD là hình vuông cạnh a suy ra AC =
a\sqrt{2}

    \Rightarrow AC^{2} = 2a^{2} = SA^{2} +
SC^{2} suy ra tam giác SAC vuông tại S.

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA \Rightarrow \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}

    Khi đó \overrightarrow{MN}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0 suy ra MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 4: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C', điểm M trên CC' sao cho \overrightarrow{MC} = -
\frac{1}{3}\overrightarrow{MC'}. Đặt \overrightarrow{AB} = \overrightarrow{a},\ \
\overrightarrow{AC} = \overrightarrow{b},\ \ \overrightarrow{AA'} =
\overrightarrow{c}. Khẳng định nào dưới đây là đúng ?

    Hình vẽ minh họa

    Ta có

    \overrightarrow{A'M} =
\overrightarrow{A'C} + \overrightarrow{CM}

    = \overrightarrow{A'A} +
\overrightarrow{A'C'} +
\frac{1}{4}\overrightarrow{AA'}

    = - \overrightarrow{AA'} +\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AA'}

    = \overrightarrow{AC} -
\frac{3}{4}\overrightarrow{AA'} = \overrightarrow{b} -
\frac{3}{4}\overrightarrow{c}

  • Câu 5: Vận dụng

    Cho tam giác ABC với A\left( {\,1,\,\, - 2,\,\,6\,} ight);\,\,B\left( {\,2,\,\,5,\,\,1} ight);\,\,C\left( {\, - 1,\,\,8,\,\,4} ight) . Viết phương trình tổng quát của mặt phẳng (R) vuông góc với mặt phẳng (ABC) song song phân giác ngoài AF của góc A?

     Một vecto chỉ phương của (R)\overrightarrow n  = 12\left( {3,1,2} ight)

    Ta có :

    \begin{array}{l}A{B^2} = 75 \Rightarrow AB = 5\sqrt 3 ;A{C^2} = 108 \Rightarrow AC = 6\sqrt 3 \\6\overrightarrow {FB}  = 5\overrightarrow {FC}  \Leftrightarrow \left\{ \begin{array}{l}6\left( {2 - x} ight) = 5\left( { - 1 - x} ight)\\6\left( {5 - y} ight) = 5\left( {8 - y} ight)\\6\left( {1 - z} ight) = 5\left( {4 - z} ight)\end{array} ight. \Rightarrow F\left\{ \begin{array}{l}x = 17\\y =  - 10\\z =  - 14\end{array} ight.\end{array}

    Vecto chỉ phương thứ hai \overrightarrow {AF}  = 4\left( {4, - 2, - 5} ight)

    Suy ra vecto pháp tuyến của (R)\overrightarrow N  = \left[ {\overrightarrow n ,\overrightarrow {AF} } ight] = \left( { - 1,23, - 10} ight)

    Mp (R) đi qua A (1, -2, 6) và nhận vecto (-1, 23, -10) làm 1 VTPT có phương trình là:

    \Rightarrow \left( R ight):\left( {x - 1} ight)\left( { - 1} ight) + \left( {y + 2} ight)23 + \left( {z - 6} ight)\left( { - 10} ight) = 0

    \Leftrightarrow x - 23y + 10z - 108 = 0

  • Câu 6: Thông hiểu

    Trong không gian với tọa độ Oxyz cho A(2; - 3;0) và mặt phẳng (\alpha):x + 2y - z + 3 = 0. Tìm phương trình mặt phẳng (P) đi qua A sao cho (P) vuông góc với (α) và (P) song song với trục Oz?

    (P)\bot(\alpha) nên \overrightarrow{n_{(P)}}\bot\overrightarrow{n_{(\alpha)}}(P)//Oz nên \overrightarrow{n_{(P)}}\bot\overrightarrow{k}

    Chọn \overrightarrow{n_{(P)}} =
\left\lbrack \overrightarrow{n_{(\alpha)}};\overrightarrow{k}
ightbrack = (2; - 1;0)

    Phương trình mặt phẳng (P)2x - y - 7 = 0.

  • Câu 7: Thông hiểu

    Trong không gian Oxyz , cho vectơ \overrightarrow{OA} = (2; - 1;5),B(5; -
5;7). Xét sự đúng sai của các khẳng định sau:

    a) Tọa độ của điểm A(2; - 1;5). Đúng||Sai

    b) Gọi C(a;b;c) thỏa mãn ∆ABC nhận G(1;1;1) làm trọng tâm. Khi đó a + b +
c = - 4 . Đúng||Sai

    c) Nếu A;B;M(x;y;1) thẳng hàng thì tổng x + y = 3 . Đúng||Sai

    d) Cho N \in (Oxy) để ∆ABN vuông cân tại A. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz , cho vectơ \overrightarrow{OA} = (2; - 1;5),B(5; -
5;7). Xét sự đúng sai của các khẳng định sau:

    a) Tọa độ của điểm A(2; - 1;5). Đúng||Sai

    b) Gọi C(a;b;c) thỏa mãn ∆ABC nhận G(1;1;1) làm trọng tâm. Khi đó a + b +
c = - 4 . Đúng||Sai

    c) Nếu A;B;M(x;y;1) thẳng hàng thì tổng x + y = 3 . Đúng||Sai

    d) Cho N \in (Oxy) để ∆ABN vuông cân tại A. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng

    a) Ta có:

    Tọa độ của điểm A(2; - 1;5).

    b) G là trọng tâm tam giác ABC

    \Leftrightarrow \left\{ \begin{matrix}1 = \dfrac{2 + 5 + x_{C}}{3} \\1 = \dfrac{- 1 - 5 + y_{C}}{3} \\1 = \dfrac{5 + 7 + x_{C}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{C} = - 4 \\y_{C} = 9 \\x_{C} = - 9 \\\end{matrix} ight.\  \Rightarrow C( - 4;9; - 9)

    \Rightarrow a + b + c = - 4

    c) Ta có: \overrightarrow{AB} = (3; -
4;2);\overrightarrow{AC} = (x - 2;y + 1; - 4)

    Ba điểm A, B, M thằng hàng khi và chỉ khi

    \overrightarrow{AM} =
k\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x - 2 = 3k \\
y + 1 = k.( - 4) \\
- 4 = k.2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 7 \\
k = - 2 \\
\end{matrix} ight.

    Suy ra x + y = 3

    d) Ta có: N \in (Oxy) \Rightarrow N =
(x;y;0)

    \Rightarrow \overrightarrow{AN} = (x -
2;y + 1; - 5),\overrightarrow{AB} = (3; - 4;2)

    Ta có ∆ABN vuông cân tại A \Leftrightarrow \left\{ \begin{matrix}
AN\bot AB(*) \\
AN = AB(**) \\
\end{matrix} ight.

    Từ (*) \Leftrightarrow
\overrightarrow{AN}\bot\overrightarrow{AB} \Leftrightarrow 3(x - 2) -
4(y + 1) - 10 = 0

    \Leftrightarrow 3x - 4y = 20
\Leftrightarrow y = \frac{3}{4}x - 5

    Từ (**) AN^{2} = AB^{2} \Leftrightarrow
(x - 2)^{2} + (y + 1)^{2} + 25 = 9 + 16 + 4

    \Leftrightarrow (x - 2)^{2} + \left(
\frac{3x}{4} - 4 ight)^{2} = 4 \Leftrightarrow x =
\frac{16}{5}

    \Rightarrow y = - \frac{13}{5}
\Rightarrow N\left( \frac{16}{5}; - \frac{13}{5};0 ight)

    Vậy x_{N} + y_{N} =
\frac{3}{5}

  • Câu 8: Vận dụng cao

    Cho đường thẳng d:\left\{\begin{matrix} x=-t \\ y=2t-1 \\ z=t+2\end{matrix}ight. và mặt phẳng (\alpha): 2x-y-2z-2=0. Mặt phẳng (P) qua d  và tạo với (\alpha ) một góc nhỏ nhất. Một véc tơ pháp tuyến của (P)  là:

    Tìm vecto pháp tuyến

    Gọi \triangle = (\alpha)\cap (P), A =d \cap(\alpha), B \in d(Beq A);

    H là hình chiếu vuông góc của B lên (\alpha ); K là hình chiếu của H lên \triangle.

    Suy ra: (\widehat{(d),(\alpha)})=\widehat{BAH} cố định; (\widehat{(\alpha),(P)})=\widehat{BKH}.

    \widehat{BKH} \geqslant \widehat{BAH} (vì HK \leq HA)  \Rightarrow (\widehat{d, (\alpha)}) \leq (\widehat{(P),(\alpha)} )

    Suy ra (\widehat{(P),(\alpha)}) nhỏ nhất bằng (\widehat{d, (\alpha)}) khi K\equiv A .

    Khi đó \triangle \perp dvà có một VTCP \vec{u_\triangle} = [\vec{u_d}, \vec{u_\alpha}]=-3(1;0;1) .

    Vậy (P) có một VTPT là \vec{n_p} = [\vec{u_\triangle}, \vec{u_d}]=2(-1;1;1).

  • Câu 9: Nhận biết

    Trong không gian Oxyz, đường thẳng (d) qua M\left( {\,{x_0},\,\,{y_0},\,\,{z_0}} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight) với  {a_1},\,\,{a_2},\,\,{a_3} e 0  có phương trình chính tắc là:

    Trong không gian Oxyz, đường thẳng (d) qua M\left( {\,{x_0},\,\,{y_0},\,\,{z_0}} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight) với {a_1},\,\,{a_2},\,\,{a_3} e 0 có phương trình chính tắc là:

    \frac{{x\, - \,{x_0}}}{{{a_1}}} = \frac{{y\, - \,{y_0}}}{{{a_2}}} = \frac{{z\, - \,{z_0}}}{{{a_3}}}

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hình vuông ABCD, B(3;0;8),D( - 5; - 4;0). Biết đỉnh A thuộc mặt phẳng (Oxy) và có tọa độ là những số nguyên, khi đó \left|
\overrightarrow{CA} + \overrightarrow{CB} ight| bằng:

    Ta có trung điểm BD là I( - 1; - 2;4),BD
= 12 và điểm A thuộc mặt phẳng (Oxy) nên A(a;b;0). Lại có: ABCD là hình vuông \Rightarrow \left\{ \begin{matrix}
AB^{2} = AD^{2} \\
AI^{2} = \left( \frac{1}{2}BD ight)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 3)^{2} + b^{2} + 8^{2} = (a + 5)^{2} + (b + 4)^{2} \\
(a + 1)^{2} + (b + 2)^{2} + 4^{2} = 36 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 4 - 2a \\
(a + 1)^{2} + (6 - 2a)^{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight. hoặc \left\{\begin{matrix}a = \frac{17}{5} \\b = \dfrac{- 14}{5} \\\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}A(1;2;0)(tm) \\A\left( \dfrac{17}{5};\dfrac{- 14}{5};0 ight)(ktm) \\\end{matrix} ight.

    \Rightarrow A(1;2;0) \Rightarrow C( - 3;
- 6;8) \Rightarrow \overrightarrow{CA} = (4;8; - 8);\overrightarrow{CB}
= (6;6;0)

    \Rightarrow \overrightarrow{CA} +
\overrightarrow{CB} = (10;14; - 8) \Rightarrow \left|
\overrightarrow{CA} + \overrightarrow{CB} ight| =
6\sqrt{10}

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD =\frac{a\sqrt{17}}{2}, hình chiếu vuông góc Hcủa S trên mặt phẳng (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm đoạn AD (tham khảo hình vẽ)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD =\frac{a\sqrt{17}}{2}, hình chiếu vuông góc Hcủa S trên mặt phẳng (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm đoạn AD (tham khảo hình vẽ)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Vận dụng cao

    Cho ba mặt phẳng \left( P ight):2x + 2y - 6z + 5 = 0;\,\,\,\,\left( Q ight):3x + 4y + 2z - 6 = 0(R) qua hai điểm A\left( {1,3, - 1} ight);\,\,\,\,B\left( { - 2,4, - 1} ight) và vuông góc với (R)  . Câu nào sau đây đúng? (Có thể chọn nhiều hơn 1 đáp án)

    Theo đề bài ta có \left( R ight) \bot \left( P ight) \Rightarrow Một vecto chỉ phương của (R) là: \overrightarrow {{n_P}}  = \left( {2,2, - 6} ight) \Rightarrow \overrightarrow a  = \left( { - 1, - 1,3} ight)

    => A đúng

    Vecto chỉ phương thứ hai của (R) là: \overrightarrow b  = \overrightarrow {AB}  = \left( { - 3,1,1} ight)

    Một vecto pháp tuyến của (R) là: \overrightarrow {{n_R}}  = \left[ {\overrightarrow a ,\overrightarrow b } ight] =  - 4\left( {1,2,1} ight)

    \Rightarrow \overrightarrow n  = 4\left( {1,2,1} ight)

    => B đúng.

    Vecto chỉ phương của (D) là: \overrightarrow d  = 2\left( {14, - 11,1} ight)

    Ta có: \frac{1}{{14}} e  - \frac{2}{{11}} e \frac{1}{1},nên (R) không vuông góc với (D).

  • Câu 13: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = ( - 2;2;0);\overrightarrow{b}
= (2;2;0);\overrightarrow{c} = (2;2;2). Khi đó giá trị của \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| bằng bao nhiêu?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = ( - 2 + 2 + 2;2 + 2 + 2;0 + 0
+ 2) = (2;6;2).

    Khi đó \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| = \sqrt{2^{2} + 6^{2} +
2^{2}} = 2\sqrt{11}

    Vậy đáp án cần tìm là: 2\sqrt{11}

  • Câu 14: Thông hiểu

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 15: Vận dụng

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} =
\frac{y}{1} = \frac{z}{3},d_{2}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 + t \\
z = m \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi S là tập hợp tất cả các số m sao cho d_{1},d_{2} chéo nhau và khoảng cách giữa chúng bằng \frac{5}{\sqrt{19}}. Tính tổng tất cả các phần tử của S.

    Vectơ chỉ phương của d_{1},d_{2}\overrightarrow{u_{1}} =
(2;1;3),\overrightarrow{u_{2}} = (1;1;0)

    Khi đó: \overrightarrow{n} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack = ( -
3;3;1).

    Gọi (P) là mặt phẳng chứa d_{1} song song với d_{2}.

    Tức là, (P) qua A(1;0;0) và nhận \overrightarrow{n} làm vectơ pháp tuyến.

    Ta có phương trình (P):3x - 3y - z - 3 =
0

    Xét điểm B(1;2;m) \in d_{2}. Do d_{1},d_{2} chéo nhau nên B otin (P) \Leftrightarrow m eq -
6.

    Lại có:

    d\left( d_{1};d_{2} ight) =
\frac{5}{\sqrt{19}} \Leftrightarrow d\left( B;(P) ight) =
\frac{5}{\sqrt{19}}

    \Leftrightarrow \frac{|3 - 6 - m -
3|}{\sqrt{19}} = \frac{5}{\sqrt{19}} \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = - 11 \\
\end{matrix} ight.

    Vậy tổng các phần tử của S là - 1 - 11 =
- 12.

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x + 4y + 2z + 4 = 0 và điểm M(1; - 2;3). Tính khoảng cách d từ M đến (P).

    Khoảng cách từ M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{|3.1 - 4.2
+ 2.3 + 4|}{\sqrt{3^{2} + 4^{2} + 2^{2}}} =
\frac{5}{\sqrt{29}}

  • Câu 17: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = t \\
y = - 1 - 4t \\
z = 6 + 6t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và đường thẳng d_{2}:\frac{x}{2} = \frac{y - 1}{1} =
\frac{z + 2}{- 5}. Viết phương trình đường thẳng \Delta đi qua A(1; - 1;2), đồng thời vuông góc với cả hai đường thẳng d_{1}d_{2}.

    Đường thẳng d_{1}d_{2} có vectơ chỉ phương lần lượt là \left\{ \begin{matrix}
\overrightarrow{u_{1}} = (1; - 4;6)\  \\
\overrightarrow{u_{2}} = (2;1; - 5) \\
\end{matrix} ight.

    Gọi \overrightarrow{u} là vectơ chỉ phương của đường thẳng ∆.

    Do \left\{ \begin{matrix}
\Delta\bot\overrightarrow{u_{1}} \\
\Delta\bot\overrightarrow{u_{2}} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\overrightarrow{u}\bot\overrightarrow{u_{1}} \\
\overrightarrow{u}\bot\overrightarrow{u_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack =
(14;17;9)

    Mà ∆ đi qua A(1; - 1;2) do đó ∆ có phương trình là \frac{x - 1}{14} =
\frac{y + 1}{17} = \frac{z - 2}{9}.

  • Câu 18: Nhận biết

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

  • Câu 19: Vận dụng

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Cách 1. Gọi P là trung điểm CD, I = MP \cap AD, J = IN \cap DD', K = AC \cap MP.

    Ta có MP//BD \Rightarrow MP//B'D'
\Rightarrow d(B'D';MN) = d\left\lbrack B'D';(MNP)
ightbrack = d\left\lbrack D';(MNP) ightbrack.

    Lại có d\left\lbrack D';(MNP)
ightbrack = \frac{D'J}{DJ}d\left\lbrack D;(MNP) ightbrack =
5.d\left\lbrack D;(MNP) ightbrack.

    Mặt khác d\left\lbrack D;(MNP)
ightbrack = \frac{DI}{AI}d\left\lbrack A;(MNP) ightbrack =
\frac{1}{3}d\left\lbrack A;(MNP) ightbrack.

    Dễ thấy \left\{ \begin{matrix}
(NAK)\bot(MNP) \\
(NAK) \cap (MNP) = AK \\
AH\bot NK\ (H \in NK)\ trong\ (NAK) \\
\end{matrix} ight.

    \Rightarrow AH\bot(MNP) \Rightarrow
d\left\lbrack A;(MNP) ightbrack = AH.

    Suy ra d(MN;B'D') =
\frac{5}{3}d\left\lbrack A;(MNP) ightbrack = \frac{5}{3}AH với AN = \frac{AA'}{2} = 2 ; AK = \frac{3}{4}\sqrt{2}AB =
\frac{3\sqrt{2}}{2}.

    Vậy d(MN;B'D') = \frac{5}{3}AH =
\frac{5}{3}.\frac{AN.AK}{\sqrt{AN^{2} + AK^{2}}} =
\frac{5}{3}.\frac{\frac{3\sqrt{2}}{2}.2}{\sqrt{\left(
\frac{3\sqrt{2}}{2} ight)^{2} + 2^{2}}} = \frac{10.\sqrt{17}}{17}
\simeq 2,43.

    Cách 2. Đặt các trục Ox, OyOz vào hình như sau

    Ta có M(1;2;0), N(0;0;2), B'(0;2;4)D'(2;0;4).

    Ta có \overrightarrow{MN} = ( - 1; -
2;2), \overrightarrow{B'D'}
= (2; - 2;0)\overrightarrow{MB'} = ( - 1;0;4) \Rightarrow
\left\lbrack \overrightarrow{MN},\overrightarrow{B'D'}
ightbrack = (4;4;6).

    Khi đó :

    d\left( MN;B^{'}D^{'} ight) =
\frac{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}}
ightbrack.\overrightarrow{MB^{'}} ight|}{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}} ightbrack
ight|}

    = \frac{\left| ( - 1).4 + 0.4 + 4.6
ight|}{\sqrt{4^{2} + 4^{2} + 6^{2}}} = \frac{10\sqrt{17}}{17} \simeq
2,43.

  • Câu 20: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, hình chiếu vuông góc của điểm M(2;3;4) trên mặt phẳng (P):2x - y - z + 6 = 0 là điểm nào dưới đây?

    Gọi ∆ là đường thẳng đi qua M và vuông góc mặt phẳng (P).

    Khi đó phương trình tham số của ∆ là \left\{ \begin{matrix}
x = 2 + 2t \\
y = 3 - t \\
z = 4 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Gọi M’ là hình chiếu vuông góc của M trên mặt phẳng (M).

    Tọa độ điểm M’ là nghiệm của hệ phương trình: \left\{ \begin{matrix}x = 2 + 2t \\y = 3 - t \\z = 4 - t \\2x - y - z + 6 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t = - \dfrac{1}{2} \\x = 1 \\y = \dfrac{7}{2} \\z = \dfrac{9}{2} \\\end{matrix} ight.

    Vậy M'\left(
1;\frac{7}{2};\frac{9}{2} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 33 lượt xem
Sắp xếp theo