Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ cos\alpha cùng dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha >
0, \cos\alpha > 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha <
0, \cos\alpha < 0.

    Vậy nếu \sin\alpha,\ cos\alpha cùng dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc III.

  • Câu 2: Nhận biết

    Cho tam giác ABC. Tìm công thức sai:

    Ta có: \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R.

  • Câu 3: Nhận biết

    Tam giác ABC có \hat B = {60^0},\hat C = {45^0};AC = 5. Độ dài cạnh AB là:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin B}} = \dfrac{{AB}}{{\sin C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin C}}{{\sin B}} = \dfrac{{5.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{5\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 5: Thông hiểu

    Tam giác ABC có BC=5\sqrt{5},AC=5\sqrt{2},AB=5 . Số đo góc A là:

    Áp dụng định lí cosin trong tam giác ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC\cos \widehat A \hfill \\   \Leftrightarrow \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} =  - \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {135^0} \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: " 1+\cot^{2}α=\frac{1}{\cos^{2}α}, (0° < α < 180° và α ≠ 90°)"

    Sửa lại là " 1+\cot^{2}α=-\frac{1}{\sin^{2}α}, (0° < α < 180° và α ≠ 90°)".

     

  • Câu 7: Thông hiểu

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 8: Vận dụng

    Từ vị trí A người ta quan sát một cây cao (hình vẽ).

    Biết AH = 4m,HB = 20m,\widehat{BAC} =
45^{0}.

    Chiều cao của cây gần nhất với giá trị nào sau đây?

    Trong tam giác AHB, ta có \tan\widehat{ABH} = \frac{AH}{BH} = \frac{4}{20} =
\frac{1}{5} \overset{}{ightarrow}\widehat{ABH} \approx
11^{0}19'.

    Suy ra \widehat{ABC} = 90^{0} -
\widehat{ABH} = 78^{0}41'.

    Suy ra \widehat{ACB} = 180^{0} - \left(
\widehat{BAC} + \widehat{ABC} ight) = 56^{0}19'.

    Áp dụng định lý sin trong tam giác ABC, ta được \frac{AB}{\sin\widehat{ACB}} =
\frac{CB}{\sin\widehat{BAC}} \overset{}{ightarrow}CB =
\frac{AB.sin\widehat{BAC}}{\sin\widehat{ACB}} \approx 17m.

  • Câu 9: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ).

    Chiều dài hàng rào NP là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

    Áp dụng định li côsin ta

    NP^{2} = MN^{2} + MP^{2} - 2MN \cdot MP
\cdot \cos M

    = 150^{2} + 230^{2} - 2 \cdot 150 \cdot
230 \cdot cos110^{\circ} \approx
98999,39.

    Suy ra NP \approx \sqrt{98999,39} \approx
314,6(m).

    Vậy chiều dài hàng rào NP là khoảng 314,6m.

  • Câu 10: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 11: Thông hiểu

    Trong các đẳng thức sau, đẳng thức nào sai?

    Khẳng định sai là: "\sin {0^0} + \cos {0^0} = 0"

    Sửa lại là: "\sin {0^0} + \cos {0^0} = 1"

  • Câu 12: Vận dụng cao

    Tam giác ABC là tam giác gì khi có các góc thỏa mãn biểu thức

    \sin2\widehat{A}.\cos2\widehat{A} +\sin2\widehat{B}.\cos2\widehat{B} + \sin2\widehat{C}.\cos2\widehat{C} =0?

    Ta có:

    \sin2\widehat{A}.\cos2\widehat{A} +\sin2\widehat{B}.\cos2\widehat{B} + \sin2\widehat{C}.\cos2\widehat{C} =0

    \Leftrightarrow2\sin2\widehat{A}.\cos2\widehat{A} + 2\sin2\widehat{B}.\cos2\widehat{B} +\sin2\widehat{C}.\cos2\widehat{C} = 0

    \Leftrightarrow \sin4\widehat{A} +\sin4\widehat{B} + 2\sin2\widehat{C}.\cos2\widehat{C} = 0

    \Leftrightarrow 2\sin2\left( \widehat{A}+ \widehat{B} ight).\cos2\left( \widehat{A} - \widehat{B} ight) +2\sin2\widehat{C}.\cos2\left( \widehat{A} + \widehat{B} ight) =0

    \Leftrightarrow -2\sin2\widehat{C}.\left\lbrack \cos2\left( \widehat{A} - \widehat{B}ight) - \cos2\left( \widehat{A} + \widehat{B} ight) ightbrack =0

    \Leftrightarrow -4\sin2\widehat{C}.\sin2A.\sin2B = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\sin2\widehat{C} = 0 \\\sin2\widehat{A} = 0 \\\sin2\widehat{B} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}2\widehat{C} = \pi \\2\widehat{A} = \pi \\2\widehat{A} = \pi \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\widehat{C} = \dfrac{\pi}{2} \\\widehat{A} = \dfrac{\pi}{2} \\\widehat{A} = \dfrac{\pi}{2} \\\end{matrix} ight.

    Vậy tam giác ABC là tam giác vuông.

  • Câu 13: Nhận biết

    Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64 cm^{2}. Giá trị sin A là:

    Ta có: 

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.64}}{{8.18}} = \dfrac{8}{9} \hfill \\ \end{matrix}

  • Câu 14: Vận dụng

    Cho góc \alpha thỏa mãn \cos\alpha = \frac{3}{5}\frac{\pi}{4} < \alpha <
\frac{\pi}{2}. Tính P =
\sqrt{tan^{2}\alpha - 2tan\alpha + 1}.

    Ta có P = \sqrt{\left( \tan\alpha - 1
ight)^{2}} = \left| \tan\alpha - 1 ight|.

    \frac{\pi}{4} < \alpha <
\frac{\pi}{2}\overset{}{ightarrow}\tan\alpha > 1 \overset{}{ightarrow}P = \tan\alpha -
1.

    Theo giả thiết: \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{4}{5} \\
\frac{\pi}{4} < \alpha < \frac{\pi}{2} \\
\end{matrix} ight. ightarrow
\sin\alpha = \frac{4}{5} ightarrow \tan\alpha = \frac{4}{3}
ightarrow P = \frac{1}{3}

  • Câu 15: Thông hiểu

    Cho \sin\alpha =\frac{1}{4}, với 0^{\circ} <
\alpha < 90^{\circ}. Giá trị \cos\alpha bằng

    Ta có:

    \cos^{2}\alpha = 1 -\sin^{2}\alpha

    = 1 - \left( \frac{1}{4} ight)^{2} =
\frac{15}{16}

    \Rightarrow \cos\alpha =\frac{\sqrt{15}}{4} (do 0^{\circ}
< \alpha < 90^{\circ}).

    Vậy \cos\alpha =\frac{\sqrt{15}}{4}.

  • Câu 16: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 17: Nhận biết

    Cho tam giác ABC có a = 8,b = 10, góc C bằng 60^{0} . Độ dài cạnh c là ?

    Ta có: c^{2} = a^{2} + b^{2} -
2a.b.cosC = 8^{2} + 10^{2} -
2.8.10.cos60^{0} = 84 \Rightarrow c
= 2\sqrt{21}.

  • Câu 18: Thông hiểu

    Một tam giác có ba cạnh là 52,\ 56,\ 60. Bán kính đường tròn ngoại tiếp tam giác đó là:

    Ta có: p = \frac{52 + 56 + 60}{2} =
84.

    Áp dụng hệ thức Hê - rông ta có:

    S = \sqrt{84 \cdot (84 - 52) \cdot (84 -
56) \cdot (84 - 60)} = 1344.

    Mặt khác S = \frac{abc}{4R} \Rightarrow R
= \frac{abc}{4S\ } = \frac{52.56.60}{4.1344} = 32.5

  • Câu 19: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 20: Nhận biết

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo