Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Cho góc
thỏa mãn
và
. Tính
.
Ta có
Thay vào
, ta được
.
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho
Giá trị lượng giác nào sau đây luôn dương?
Ta có
Do
.
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác
có độ dài
và các cạnh của tam giác thỏa mãn biểu thức:
. Giả sử M và N lần lượt là trung điểm của BC, AC. Tính góc giữa hai đường thẳng AM và BN.
Gọi G là trọng tâm tam giác ABC. Ta có:
Trong tam giác AGN ta có
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Cho biết
. Tính
.
Ta có:
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho góc
. Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Khi
có độ dài lớn nhất thì độ dài của đoạn
bằng:
Theo định lí hàm sin, ta có
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Tam giác vuông tại
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có: