Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Cho
có
Diện tích của tam giác là:
Ta có:
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Giá trị
là:
Ta có: .
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Hai chiếc tàu thủy cùng xuất phát từ một vị trí
, đi thẳng theo hai hướng tạo với nhau góc
. Tàu
chạy với tốc độ
hải lí một giờ. Tàu
chạy với tốc độ
hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí? Kết quả gần nhất với số nào sau đây?

Sau giờ tàu
đi được
hải lí, tàu
đi được
hải lí. Vậy tam giác
có
và
Áp dụng định lí côsin vào tam giác ta có
Vậy (hải lí).
Sau giờ, hai tàu cách nhau khoảng
hải lí.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Cho góc
với
. Giá trị của bằng
bao nhiêu?
Ta có:
Cho
có
. Số đo của góc
là:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có :
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.