Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Cho tam giác
cạnh
, lấy
sao cho
. Đường tròn tâm
bán kính
tiếp xúc với các cạnh
lần lượt tại các điểm
. Tính độ dài cạnh
?
Hình vẽ minh họa
Ta có: từ đó suy ra
(do
là các góc nhọn)
Đặt . Do
là phân góc của góc
nên
Mặt khác, theo định lí cosin trong tam giác ta có:
Thay số ta được hệ phương trình:
Vậy
Cho góc
thỏa mãn
Tính ![]()
Chia cả tử và mẫu của cho
ta được
.
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Ta có:
Diện tích ban đầu của tam giác là:
Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho biết
. Tính
.
Ta có:
.
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.