Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Giá trị
là:
Ta có: .
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có :
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho
Giá trị lượng giác nào sau đây luôn dương?
Ta có
Do
.
Một tam giác có ba cạnh là
Bán kính đường tròn ngoại tiếp là:
Ta có:
Suy ra:
.
Mà
.
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
.
Thay và
vào
, ta được
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho
có
. Số đo của góc
là:
Ta có:
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có: