Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Giá trị
thoả mãn
gần nhất với giá trị:
Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.
Vậy α ≈ 58°
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho
có
. Số đo của góc
là:
Ta có:
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho góc
thỏa mãn
và
Tính ![]()
Áp dụng , ta có
Ta có
Vì nên ta chọn
.
Thay vào
, ta được
.
Cho tam giác
có độ dài
và các cạnh của tam giác thỏa mãn biểu thức:
. Giả sử M và N lần lượt là trung điểm của BC, AC. Tính góc giữa hai đường thẳng AM và BN.
Gọi G là trọng tâm tam giác ABC. Ta có:
Trong tam giác AGN ta có
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Từ một đỉnh tháp chiều cao
, người ta nhìn hai điểm
và
trên mặt đất dưới các góc nhìn là
và
so với phương nằm ngang. Ba điểm
thẳng hàng. Tính khoảng cách
(chính xác đến hàng đơn vị)?
Ta có: Trong tam giác vuông :
Trong tam giác vuông :
Suy ra: khoảng cách
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có