Cho tam giác ABC có
. Cần điều kiện gì để các góc của tam giác thỏa mãn biểu thức
?
Theo định lí hàm số cos ta có:
Chứng minh tương tự ta có:
Do đó
Dấu bằng xảy ra khi và chỉ khi tam giác ABC đều.
Cho tam giác ABC có
. Cần điều kiện gì để các góc của tam giác thỏa mãn biểu thức
?
Theo định lí hàm số cos ta có:
Chứng minh tương tự ta có:
Do đó
Dấu bằng xảy ra khi và chỉ khi tam giác ABC đều.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Giá trị biểu thức
bằng:
Ta có:
.
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Giả sử
là chiều cao của tháp trong đó
là chân tháp. Chọn hai điểm
trên mặt đất sao cho ba điểm
và
thẳng hàng. Ta đo được
,
.
Chiều cao
của tháp gần với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Ta có nên
Do đó
Trong tam giác vuông có
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho tam giác
. Tìm công thức sai:
Ta có:
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có
Thay vào
, ta được
.
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Giá trị
là:
Ta có: .
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho
Khẳng định nào sau đây đúng?
Ta có :