Giá trị biểu thức
là:
Ta có:
Giá trị biểu thức
là:
Ta có:
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tam giác
vuông tại
, có
. Gọi
là độ dài đoạn phân giác trong góc
. Tính
theo
và
.
Ta có
Do là phân giác trong của
.
Theo định lí hàm cosin, ta có
.
hay
.
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
. Mà
.
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Cho
có
Diện tích của tam giác là:
Ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Giá trị biểu thức
bằng:
Ta có:
Cho
có
. Số đo của góc
là:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ