Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Cho tam giác
thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Đặt khi đó ta có:
Do đó
Vậy tam giác ABC là tam giác cân tại A.
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Cho biết
. Tính
.
Ta có:
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Cho góc
thỏa mãn
và
Tính ![]()
Áp dụng , ta có
Ta có
Vì nên ta chọn
.
Thay vào
, ta được
.
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho
có
Diện tích của tam giác là:
Ta có:
Tam giác
có
. Điểm
thuộc đoạn
sao cho
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có :
.
Do .
Theo định lí hàm cosin, ta có:
.
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.