Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho tam giác
có
và các góc của tam giác thỏa mãn biểu thức:
. Khi đó tam giác
là tam giác gì?
Ta có:
Ta lại có:
Vậy tam giác ABC là tam giác đều.
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Cho
Giá trị lượng giác nào sau đây luôn dương?
Ta có
Do
.
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Tam giác ABC có đoạn thẳng nối trung điểm của AB và BC bằng 3, cạnh
AB = 9 và
. Tính độ dài cạnh cạnh BC.
Theo đề bài, đoạn nối 2 trung điểm bằng 3 nên suy ra .
Áp dụng định lí côsin:
.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Cho
có
Diện tích của tam giác là:
Ta có:
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Để đo chiều cao từ mặt đất đến đỉnh cột cờ của một kỳ đài trước Ngọ Môn (Đại Nội – Huế), người ta cắm hai cọc AM và BN cao 1,5 mét so với mặt đất. Hai cọc này song song và cách nhau 10 mét và thẳng hàng so với tim cột cờ (Hình vẽ minh họa). Đặt giác kế tại đỉnh A và B để nhắm đến đỉnh cột cờ, người ta được các góc lần lượt là 51°40' và 45°39' so với đường song song mặt đất.

Chiều cao của cột cờ (làm tròn kết quả đến chữ số thập phân thứ hai) là:
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Ta có tam giác ACH vuông tại C
Chiều cao của cột cờ khoảng:
Cho
có
Độ dài cạnh
bằng:
Ta có:
.