Cho
có
Diện tích của tam giác là:
Ta có:
Cho
có
Diện tích của tam giác là:
Ta có:
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho tam giác
có độ dài
và các cạnh của tam giác thỏa mãn biểu thức:
. Giả sử M và N lần lượt là trung điểm của BC, AC. Tính góc giữa hai đường thẳng AM và BN.
Gọi G là trọng tâm tam giác ABC. Ta có:
Trong tam giác AGN ta có
Cho góc
thoả mãn
và
. Giá trị của
là:
Ta có:
.
Do đó .
Vì nên
.
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Giá trị biểu thức
là:
Ta có:
Cho
có
. Số đo của góc
là:
Ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Giả sử
là chiều cao của tháp trong đó
là chân tháp. Chọn hai điểm
trên mặt đất sao cho ba điểm
và
thẳng hàng. Ta đo được
,
.
Chiều cao
của tháp gần với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Ta có nên
Do đó
Trong tam giác vuông có
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho góc
thỏa mãn
Tính ![]()
Ta có
Chia hai vế của cho
ta được
.