Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho \frac{\pi}{2} < \alpha < \pi. Xác định dấu của biểu thức M = \cos\left( -
\frac{\pi}{2} + \alpha ight).tan(\pi - \alpha).

    Ta có:

    \left\{ \begin{matrix}
\frac{\pi}{2} < \alpha < \pi ightarrow 0 < - \frac{\pi}{2} +
\alpha < \frac{\pi}{2} \\
\frac{\pi}{2} < \alpha < \pi ightarrow 0 < \pi - \alpha <
\frac{\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cos\left( - \frac{\pi}{2}
+ \alpha ight) > 0\overset{}{ightarrow}\tan(\pi - \alpha) >
0

    \overset{}{ightarrow}M >
0.

  • Câu 2: Thông hiểu

    Cho \cos\alpha =
\frac{4}{5} với 0 < \alpha <
\frac{\pi}{2}. Tính \sin\alpha.

    Ta có: sin^{2}\alpha = 1 - cos^{2}\alpha
= 1 - \left( \frac{4}{5} ight)^{2} = \frac{9}{25} \Rightarrow \sin\alpha = \pm
\frac{3}{5}.

    Do 0 < \alpha <
\frac{\pi}{2} nên \sin\alpha >
0. Suy ra, \sin\alpha =
\frac{3}{5}

  • Câu 3: Nhận biết

    Chọn công thức đúng trong các đáp án sau:

    Ta có: S = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin
C.

  • Câu 4: Thông hiểu

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 6: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 7: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ cos\alpha cùng dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha >
0, \cos\alpha > 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha <
0, \cos\alpha < 0.

    Vậy nếu \sin\alpha,\ cos\alpha cùng dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc III.

  • Câu 8: Nhận biết

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 9: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 10: Thông hiểu

    Nếu tam giác ABCBC^{2} < AB^{2} + AC^{2} thì:

    Nếu tam giác ABC có BC^{2} < AB^{2} + AC^{2} thì \widehat{A} là góc nhọn

  • Câu 11: Vận dụng cao

    Tam giác ABC thỏa mãn đẳng thức

    \dfrac{a^{2}\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}} + \dfrac{b^{2}\cos\dfrac{C -A}{2}}{2\sin\dfrac{B}{2}} + \dfrac{b^{2}\cos\dfrac{A -B}{2}}{2\sin\dfrac{C}{2}} = a^{2} + b^{2} + c^{2}

    Biết AB = c;BC = a;AC = b. Chọn khẳng định nào dưới đây đúng?

    Ta có:

    \dfrac{a^{2}\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}} = \dfrac{a\left( 2R\sin A ight)\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}}

    = 2aR.\cos\dfrac{A}{2}\cos\dfrac{B -C}{2}

    = 2aR.\sin\dfrac{B + C}{2}\cos\dfrac{B -C}{2}

    = aR.\left( \sin B + \sin C ight) =
\frac{a(b + c)}{2}

    Chứng minh tương tự và suy ra ta có:

    \dfrac{a^{2}\cos\dfrac{B -C}{2}}{2\sin\dfrac{A}{2}} + \dfrac{b^{2}\cos\dfrac{C -A}{2}}{2\sin\dfrac{B}{2}} + \dfrac{b^{2}\cos\dfrac{A -B}{2}}{2\sin\dfrac{C}{2}}

    = \frac{a(b + c)}{2} + \frac{b(c +
a)}{2} + \frac{c(a + b)}{2}

    = ab + bc + ca

    \leq \frac{a^{2} + b^{2}}{2} +
\frac{b^{2} + c^{2}}{2} + \frac{c^{2} + a^{2}}{2} = a^{2} + b^{2} +
c^{2}

    Dấu bằng xảy ra khi và chỉ khi a = b =
c

    Vậy tam giác ABC là tam giác đều.

  • Câu 12: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 13: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 14: Nhận biết

    Cho \Delta
ABCb = 6,c = 8,\widehat{A} =
60^{0}. Độ dài cạnh a là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos
A = 36 + 64 - 2.6.8.cos60^{0} =
52

    \Rightarrow a = 2\sqrt{13}.

  • Câu 15: Thông hiểu

    Cho \pi <
\alpha < \frac{3\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có : \pi < \alpha <
\frac{3\pi}{2} ightarrow 0 < \frac{3\pi}{2} - \alpha <
\frac{\pi}{2}\overset{}{ightarrow} \left\{ \begin{matrix}
\sin\left( \frac{3\pi}{2} - \alpha ight) > 0 \\
\cos\left( \frac{3\pi}{2} - \alpha ight) > 0 \\
\end{matrix} ight. \overset{}{ightarrow}\tan\left( \frac{3\pi}{2} -
\alpha ight) > 0.

  • Câu 16: Nhận biết

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 17: Thông hiểu

    Cho 0 < \alpha
< \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha < \frac{\pi}{2}
ightarrow - \pi < \alpha - \pi < -
\frac{\pi}{2}\overset{}{ightarrow} điểm cuối cung \alpha - \pi thuộc góc phần tư thứ III\overset{}{ightarrow} \sin(\alpha - \pi) < 0.

  • Câu 18: Thông hiểu

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} =
\frac{2b^{2} + 2c^{2} - a^{2}}{4}.

  • Câu 19: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 20: Vận dụng

    Tam giác ABC cóAB = 10, AC = 24, diện tích bằng 120. Độ dài đường trung tuyến AM là:

    Ta có:

    Diện tích tam giác bằng 120

    \begin{matrix}  S = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.120}}{{10.23}} = 1 \hfill \\ \end{matrix}

    \Rightarrow \widehat A = {90^0} 

    Xét tam giác ABC vuông tại A ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} \hfill \\   \Rightarrow BC = \sqrt {{{10}^2} + {{24}^2}}  = 26 \hfill \\ \end{matrix}

    => Trung tuyến AM có độ dài là:

    AM = \frac{1}{2}BC = \frac{1}{2}.26 = 13

     

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo