Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho
Khẳng định nào sau đây đúng?
Ta có :
Giá trị biểu thức
bằng:
Ta có:
.
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho tam giác
có diện tích
, lấy
là trọng tâm và
. Giả sử
, tính giá trị biểu thức
theo
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
. Kẻ
Tam giác vuông =>
Tam giác vuông =>
Ta có:
Mặt khác áp dụng định lí sin cho tam giác AMB ta được:
Từ (*) và (**) ta được:
Chứng minh tương tự ta có:
Do đó:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Khoảng cách từ
đến
không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm
mà từ đó có thể nhìn được
và
dưới một góc
. Biết
,
. Khoảng cách
gần nhất với kết quả nào sau đây?
Ta có:
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Tam giác ABC có đoạn thẳng nối trung điểm của AB và BC bằng 3, cạnh
AB = 9 và
. Tính độ dài cạnh cạnh BC.
Theo đề bài, đoạn nối 2 trung điểm bằng 3 nên suy ra .
Áp dụng định lí côsin:
.