Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác
. Tìm công thức sai:
Ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
với
là số thực lớn hơn
. Tính độ lớn góc
?
Áp dụng định lí cosin ta có:
Ta có:
Từ đó suy ra
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Giả sử
là chiều cao của tháp trong đó
là chân tháp. Chọn hai điểm
trên mặt đất sao cho ba điểm
và
thẳng hàng. Ta đo được
,
.
Chiều cao
của tháp gần với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Ta có nên
Do đó
Trong tam giác vuông có
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có :
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
: loại (vì
).
, ta có hệ phương trình
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.