Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng
, giả sử chiều cao của giác kế là
.Quay thanh giác kế sao cho khi ngắm theo thanh ta nhình thấy đỉnh
của tháp. Đọc trên giác kế số đo của góc
. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

Tam giác vuông tại
có
Vậy chiếu cao của ngọn tháp là
Cho biết
. Tính
.
Ta có:
.
Cho
Khẳng định nào sau đây đúng?
Ta có :
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có: