Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác ABC nội tiếp đường tròn bán kính R,
,
. Tính số đo của
biết
là góc tù.
Theo bài ra ta có: là góc tù =>
là góc nhọn.
Xét tam giác ABC áp dụng định lí sin ta có:
Mặt khác
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Tính giá trị của ![]()
Ta có
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có :
Cho tam giác
có
và các góc của tam giác thỏa mãn biểu thức:
. Khi đó tam giác
là tam giác gì?
Ta có:
Ta lại có:
Vậy tam giác ABC là tam giác đều.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có