Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho \Delta
ABC\widehat{C} =
45^{0},\widehat{B} = 75^{0}. Số đo của góc A là:

    Ta có: \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Rightarrow
\widehat{A} = 180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 75^{0} - 45^{0} = 60^{0}.

  • Câu 2: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 3: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 4: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 5: Vận dụng

    Cho tam giác ABC nội tiếp đường tròn bán kính R, AB = R, AC=R\sqrt{2}. Tính số đo của \widehat{A} biết \widehat{A} là góc tù.

    Theo bài ra ta có: \widehat{A} là góc tù => \widehat B,\widehat C là góc nhọn.

    Xét tam giác ABC áp dụng định lí sin ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} = 2R \hfill \\   \Rightarrow \dfrac{{R\sqrt 2 }}{{\sin \widehat B}} = \dfrac{R}{{\sin \widehat C}} = 2R \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \widehat B = \dfrac{{R\sqrt 2 }}{{2R}} = \dfrac{{\sqrt 2 }}{2}} \\   {\sin \widehat C = \dfrac{R}{{2R}} = \dfrac{1}{2}} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\widehat B = {{45}^0}} \\   {\widehat C = {{30}^0}} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \widehat A + \widehat B + \widehat C = {180^0}

    \Rightarrow \widehat A = 180^0-45^0-35^0=105^0

  • Câu 6: Thông hiểu

    Giá trị α, (0° ≤ α ≤ 180°) thoả mãn \tanα = 1,607 gần nhất với giá trị:

    Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.

    Vậy α ≈ 58°

  • Câu 7: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ tan\alpha trái dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai thì \sin\alpha >
0, \cos\alpha < 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ tư thì \sin\alpha <
0, \cos\alpha > 0.

    Vậy nếu \sin\alpha,\ cos\alpha trái dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ II hoặc IV.

  • Câu 8: Nhận biết

    Cho tam giác ABC. Tìm công thức sai:

    Ta có: \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R.

  • Câu 9: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 10: Thông hiểu

    Tam giác ABCAB =
\sqrt{2},\ \ AC = \sqrt{3}\widehat{C} = 45{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{C}

    \Rightarrow \left( \sqrt{2}
ight)^{2} = \left( \sqrt{3}
ight)^{2} + BC^{2} - 2.\sqrt{3}.BC.cos45{^\circ}

    \Rightarrow BC = \frac{\sqrt{6} +
\sqrt{2}}{2}.

  • Câu 11: Thông hiểu

    Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: " 1+\cot^{2}α=\frac{1}{\cos^{2}α}, (0° < α < 180° và α ≠ 90°)"

    Sửa lại là " 1+\cot^{2}α=-\frac{1}{\sin^{2}α}, (0° < α < 180° và α ≠ 90°)".

     

  • Câu 12: Vận dụng cao

    Tam giác ABC là tam giác gì khi có các góc thỏa mãn biểu thức

    \sin2\widehat{A}.\cos2\widehat{A} +\sin2\widehat{B}.\cos2\widehat{B} + \sin2\widehat{C}.\cos2\widehat{C} =0?

    Ta có:

    \sin2\widehat{A}.\cos2\widehat{A} +\sin2\widehat{B}.\cos2\widehat{B} + \sin2\widehat{C}.\cos2\widehat{C} =0

    \Leftrightarrow2\sin2\widehat{A}.\cos2\widehat{A} + 2\sin2\widehat{B}.\cos2\widehat{B} +\sin2\widehat{C}.\cos2\widehat{C} = 0

    \Leftrightarrow \sin4\widehat{A} +\sin4\widehat{B} + 2\sin2\widehat{C}.\cos2\widehat{C} = 0

    \Leftrightarrow 2\sin2\left( \widehat{A}+ \widehat{B} ight).\cos2\left( \widehat{A} - \widehat{B} ight) +2\sin2\widehat{C}.\cos2\left( \widehat{A} + \widehat{B} ight) =0

    \Leftrightarrow -2\sin2\widehat{C}.\left\lbrack \cos2\left( \widehat{A} - \widehat{B}ight) - \cos2\left( \widehat{A} + \widehat{B} ight) ightbrack =0

    \Leftrightarrow -4\sin2\widehat{C}.\sin2A.\sin2B = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\sin2\widehat{C} = 0 \\\sin2\widehat{A} = 0 \\\sin2\widehat{B} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}2\widehat{C} = \pi \\2\widehat{A} = \pi \\2\widehat{A} = \pi \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\widehat{C} = \dfrac{\pi}{2} \\\widehat{A} = \dfrac{\pi}{2} \\\widehat{A} = \dfrac{\pi}{2} \\\end{matrix} ight.

    Vậy tam giác ABC là tam giác vuông.

  • Câu 13: Nhận biết

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 14: Nhận biết

    Cho tam giác ABC có a = 8,b = 10, góc C bằng 60^{0} . Độ dài cạnh c là ?

    Ta có: c^{2} = a^{2} + b^{2} -
2a.b.cosC = 8^{2} + 10^{2} -
2.8.10.cos60^{0} = 84 \Rightarrow c
= 2\sqrt{21}.

  • Câu 15: Vận dụng

    Cho góc \alpha thỏa mãn \frac{\pi}{2} < \alpha < 2\pi\tan\left( \alpha + \frac{\pi}{4} ight) =
1. Tính P = \cos\left( \alpha -
\frac{\pi}{6} ight) + \sin\alpha.

    Ta có \left\{ \begin{matrix}
\frac{\pi}{2} < \alpha <
2\pi\overset{}{\leftrightarrow}\frac{3\pi}{4} < \alpha +
\frac{\pi}{4} < \frac{9\pi}{4} \\
\tan\left( \alpha + \frac{\pi}{4} ight) = 1 \\
\end{matrix} ight.

    ightarrow \alpha + \frac{\pi}{4} =
\frac{5\pi}{4} ightarrow\alpha = \pi.

    Thay \alpha = \pi vào P, ta được P
= - \frac{\sqrt{3}}{2}.

  • Câu 16: Thông hiểu

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 17: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 18: Thông hiểu

    Tam giác ABC\widehat{A}=68°12',\widehat{B}=34°44' , AB = 117. Độ dài cạnh AC là khoảng:

    Ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {{{68}^0}12\prime  - {{34}^0}44\prime } ight) \hfill \\   \Rightarrow \widehat C = {77^0}4\prime \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \Rightarrow AC = \dfrac{{AB.\sin \widehat B}}{{\sin \widehat C}} \hfill \\   \Rightarrow AC = \dfrac{{AB.\sin {{34}^0}44'}}{{\sin {{77}^0}4'}} \approx 68 \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Cho \Delta
ABCb = 6,c = 8,\widehat{A} =
60^{0}. Độ dài cạnh a là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos
A = 36 + 64 - 2.6.8.cos60^{0} =
52

    \Rightarrow a = 2\sqrt{13}.

  • Câu 20: Thông hiểu

    Cho \cos\alpha =
\frac{4}{5} với 0 < \alpha <
\frac{\pi}{2}. Tính \sin\alpha.

    Ta có: sin^{2}\alpha = 1 - cos^{2}\alpha
= 1 - \left( \frac{4}{5} ight)^{2} = \frac{9}{25} \Rightarrow \sin\alpha = \pm
\frac{3}{5}.

    Do 0 < \alpha <
\frac{\pi}{2} nên \sin\alpha >
0. Suy ra, \sin\alpha =
\frac{3}{5}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo