Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Tam giác có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho góc thỏa mãn
và
Tính
Ta có
. Do đó,
Cho có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Tam giác ABC có . Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Tam giác vuông tại
, có
. Gọi
là độ dài đoạn phân giác trong góc
. Tính
theo
và
.
Ta có
Do là phân giác trong của
.
Theo định lí hàm cosin, ta có
.
hay
.
Cho có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Điểm cuối của thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Điểm cuối của góc lượng giác ở góc phần tư thứ mấy nếu
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho hình thoi cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Tam giác có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho góc thỏa mãn
và
Tính
Ta có
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)
Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Cho tam giác có độ dài
và các cạnh của tam giác thỏa mãn biểu thức:
. Giả sử M và N lần lượt là trung điểm của BC, AC. Tính góc giữa hai đường thẳng AM và BN.
Gọi G là trọng tâm tam giác ABC. Ta có:
Trong tam giác AGN ta có