Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Tam giác
có
. Gọi
là chân đường phân giác trong góc
. Khi đó góc
bằng bao nhiêu độ?
Theo định lí hàm cosin, ta có:
Trong có
.
Cho biết
. Tính
.
Ta có:
.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Giá trị biểu thức
bằng:
Ta có:
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Cho tam giác
có
và
. Biết rằng:

Chọn khẳng định đúng?
Ta có:
Mà
Vậy tam giác ABC là tam giác vuông tại A.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho góc
thoả mãn
và
. Giá trị của
là:
Ta có:
.
Do đó .
Vì nên
.
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
. Do đó,