Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Trong mặt phẳng tọa độ
, cho tọa độ
. Một điểm
bất kì. Tìm giá trị nhỏ nhất của biểu thức
?
Ta có:
Ta có:
Suy ra
Ta có:
(Với )
Lại có:
Mà
Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox =>
Vậy biểu thức T đạt giá trị nhỏ nhất là .
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Cho tam giác
vuông cân tại
cạnh
Khẳng định nào sau đây sai?
Dựa vào các đáp án, ta có nhận xét sau:
• đúng, gọi
nằm trên tia đối của tia
sao cho
Và
nằm trên tia đối của tia
sao cho
Dựng hình chữ nhật
suy ra
(quy tắc hình bình hành).
Ta có
• đúng, vì
• sai, xử lý tương tự như ở trên. Chọn đáp án này.
• đúng, vì
Biết
và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Với
(khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Trong mặt phẳng tọa độ
cho
. Cho biết
. Khi đó
Ta có: .
Cho lục giác đều
tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Cho
. Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Cho ngũ giác
. Từ các đỉnh của ngũ giác đã cho có thể lập được bao nhiêu vectơ có điểm cuối là điểm
?
Các vectơ có điểm cuối là điểm là
;
;
;
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho hai vectơ
và
không cùng phương. Hai vectơ nào sau đây là cùng phương?
Ta có .
Hai vectơ và
là cùng phương.
Chọn đáp án và
.
Cho tam giác
vuông cân tại
có
. Tính ![]()
Gọi là trung điểm
Ta có
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Cho tam giác
, gọi
là trung điểm
và
là một điểm trên cạnh
sao cho
. Gọi
là trung điểm của
. Khi đó
Ta có .
Trên đường thẳng MN lấy điểm P sao cho
. Điểm P được xác định đúng trong hình vẽ nào sau đây:

Vì nên
nằm giữa
và
, đồng thời
.
Cho hình vuông
cạnh
Tính ![]()
Ta có
Cho ba điểm
phân biệt. Khẳng định nào sau đây đúng?
Xét đáp án Ta có
. Vậy đáp án này đúng.