Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác. Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 2: Nhận biết

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là \overrightarrow{DE}.

  • Câu 3: Thông hiểu

    Cho 0 < \alpha
< \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha < \frac{\pi}{2}
ightarrow - \pi < \alpha - \pi < -
\frac{\pi}{2}\overset{}{ightarrow} điểm cuối cung \alpha - \pi thuộc góc phần tư thứ III\overset{}{ightarrow} \sin(\alpha - \pi) < 0.

  • Câu 4: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC,\ \ \ I là trung điểm của AM. Khẳng định nào sau đây đúng?

    M là trung điểm BC nên \overrightarrow{AB} + \overrightarrow{AC} = 2\
\overrightarrow{AM}. (1) Mặt khác I là trung điểm AM nên 2\
\overrightarrow{AI} = \overrightarrow{AM}. (2)

    Từ (1),\ \ (2) suy ra \overrightarrow{AB} + \overrightarrow{AC} = 4\
\overrightarrow{AI} \Leftrightarrow \overrightarrow{AI} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC}
ight).

  • Câu 5: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 6: Vận dụng

    Cho tam giác ABC, điểm I thoả mãn: 5\overrightarrow{MA} =
2\overrightarrow{MB}. Nếu \overrightarrow{IA} = m\overrightarrow{IM} +
n\overrightarrow{IB} thì cặp số (m;n) bằng:

    Ta có:

    5\overrightarrow{MA} =2\overrightarrow{MB} \Leftrightarrow 5\left( \overrightarrow{MI} +\overrightarrow{IA} ight) = 2\left( \overrightarrow{MI} +\overrightarrow{IB} ight)\Leftrightarrow 5\overrightarrow{IA} =3\overrightarrow{IM} + 2\overrightarrow{IB} \Leftrightarrow\overrightarrow{IA} = \frac{3}{5}\overrightarrow{IM} +\frac{2}{5}\overrightarrow{IB}.

  • Câu 7: Thông hiểu

    Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?

     Ta có:\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FA}+\overrightarrow{BC}+\overrightarrow{EF}+\overrightarrow{DE}=\overrightarrow{0}\Leftrightarrow\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DE}  + \overrightarrow {EF}  + \overrightarrow {FA}  = \overrightarrow 0.

  • Câu 8: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 9: Nhận biết

    Với \overrightarrow{DE} (khác vectơ - không) thì độ dài đoạn ED được gọi là

    Với \overrightarrow{DE} (khác vectơ - không) thì độ dài đoạn ED được gọi là: Độ dài của \overrightarrow{ED}.

  • Câu 10: Thông hiểu

    Cho hình bình hành ABCDM là trung điểm của AB. Khẳng định nào sau đây đúng?

    Xét các đáp án ta thấy bài toán yêu cần phân tích vectơ \overrightarrow{DM} theo hai vectơ \overrightarrow{DC}\overrightarrow{BC}.

    ABCD là hình bình hành nên \overrightarrow{DB} = \overrightarrow{DA} +
\overrightarrow{DC}.M là trung điểm AB nên 2\ \overrightarrow{DM} = \overrightarrow{DA} +
\overrightarrow{DB} \Leftrightarrow 2\ \overrightarrow{DM} = 2\
\overrightarrow{DA} + \overrightarrow{DC} \Leftrightarrow 2\
\overrightarrow{DM} = - \ 2\ \overrightarrow{BC} +
\overrightarrow{DC}

    suy ra \overrightarrow{DM} =
\frac{1}{2}\overrightarrow{DC} - \overrightarrow{BC}.

  • Câu 11: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN}=-3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

     Vì \overrightarrow{MN}=-3\overrightarrow{MP} nên M nằm giữa NP, đồng thời MN=3MP.

  • Câu 12: Vận dụng

    Trong hệ tọa độ Oxy, cho bốn điểm A(3; - 2),\ B(7;1),\ C(0;1),\ D( - 8; -
5). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (4;3) \\
\overrightarrow{CD} = ( - 8; - 6) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{CD} = -
2\overrightarrow{AB}\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{CD} ngược hướng.

  • Câu 13: Vận dụng cao

    Trong mặt phẳng tọa độ Oxy, cho tọa độ A(1; - 4),B(4;5),C(0; - 7). Một điểm M \in Ox bất kì. Tìm giá trị nhỏ nhất của biểu thức T = 2\left|
\overrightarrow{MA} + 2\overrightarrow{MB} ight| + 3\left|
\overrightarrow{MB} + \overrightarrow{MC} ight|?

    Ta có: M \in Ox \Rightarrow
M(x;0)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (1 - x; - 4) \\
\overrightarrow{MB} = (4 - x;5) \\
\overrightarrow{MC} = ( - x; - 7) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{MA} + 2\overrightarrow{MB} = (9 - 3x;6) \\
\overrightarrow{MB} + \overrightarrow{MC} = (4 - 2x; - 2) \\
\end{matrix} ight.

    Ta có:

    T = 2\left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| + 3\left| \overrightarrow{MB} +
\overrightarrow{MC} ight|

    = 2\sqrt{(9 - 3x)^{2} + 6^{2}} +
3\sqrt{(4 - 2x)^{2} + ( - 2)^{2}}

    = 6\left( \sqrt{(3 - x)^{2} + 2^{2}} +
\sqrt{(2 - x)^{2} + ( - 1)^{2}} ight) = 6(ME + MF)

    (Với E(3;2),F(2; - 1))

    Lại có: \overrightarrow{EF} = ( - 1; - 3)
\Rightarrow \left| \overrightarrow{EF} ight| = \sqrt{10}

    ME + MF \geq EF \Rightarrow T \geq
6\sqrt{10}

    Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox => M\left( \frac{7}{3};0 ight)

    Vậy biểu thức T đạt giá trị nhỏ nhất là 6\sqrt{10}.

  • Câu 14: Thông hiểu

    Cho hình thang ABCD\ \ (AB//CD),\ \ CD = 2AB, M là trung điểm của AB. Có bao nhiêu vectơ khác vectơ – không cùng phương với \overrightarrow{AM}?

    Vì ABCD là hình thang nên ta có các vectơ thỏa mãn yêu cầu là\overrightarrow{MA},\ \ \overrightarrow{BM},\ \
\overrightarrow{MB},\ \ \overrightarrow{AB},\ \ \overrightarrow{BA},\ \
\overrightarrow{CD},\ \ \overrightarrow{DC}

  • Câu 15: Thông hiểu

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

     Ta có: \overrightarrow a .\overrightarrow b  =  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|.\cos \left( {\overrightarrow a ,\overrightarrow b } ight)=  - \left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight| \Leftrightarrow \cos \left( {\overrightarrow a ,\overrightarrow b } ight) =  - 1 \Leftrightarrow \left( {\overrightarrow a ,\overrightarrow b } ight) = 180^\circ.

    Suy ra \overrightarrow a\overrightarrow b ngược hướng.

  • Câu 16: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 17: Nhận biết

    Tích vô hướng của hai vecto \overrightarrow{a} = (2; - 5)\overrightarrow{b} = ( - 5;2) là:

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
2.( - 5) + ( - 5).2 = - 20

  • Câu 18: Nhận biết

    Tam giác ABC\widehat{B} = 60^{\circ},\widehat{C} =
45^{\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí sin ta có:

    \frac{AB}{\sin C} = \frac{AC}{\sin B}
\Leftrightarrow \frac{5}{\sin 45^{\circ}} = \frac{AC}{\sin
60^{\circ}}

    \Leftrightarrow AC =
\frac{5\sqrt{6}}{2}.

  • Câu 19: Thông hiểu

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

    Ta có:

    \begin{matrix}  \overrightarrow {AB}  - \overrightarrow {DC}  + \overrightarrow {BC}  - \overrightarrow {AD}  \hfill \\   = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) - \left( {\overrightarrow {DC}  + \overrightarrow {AD} } ight) \hfill \\   = \overrightarrow {AC}  - \overrightarrow {AC}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Điều kiện nào dưới đây là điều kiện cần và đủ để điểm O là trung điểm của đoạn AB.

    Điểm O là trung điểm của đoạn AB khi và chỉ khi OA = OB;\ \ \ \overrightarrow{OA} và ngược hướng.

    Vậy \overrightarrow{OA} +
\overrightarrow{OB} = \overrightarrow{0}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo