Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác. Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khẳng định nào sau đây đúng?

    Xét đáp án \overrightarrow{MP} +
\overrightarrow{NM} = \overrightarrow{NP}. Ta có \overrightarrow{MP} + \overrightarrow{NM} =
\overrightarrow{NM} + \overrightarrow{MP} =
\overrightarrow{NP}. Vậy đáp án này đúng.

  • Câu 2: Vận dụng

    Cho tam giác OAB vuông cân tại O, cạnh OA =
a. Tính \left| 2\overrightarrow{OA}
- \overrightarrow{OB} ight|.

    Gọi C là điểm đối xứng của O qua A
\Rightarrow OC = 2a. Tam giác OBC vuông tại O,BC =
\sqrt{OB^{2} + OC^{2}} = a\sqrt{5}.

    Ta có 2\overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{OC} - \overrightarrow{OB} =
\overrightarrow{BC}, suy ra \left|
2\overrightarrow{OA} - \overrightarrow{OB} ight| = \left|
\overrightarrow{BC} ight| = a\sqrt{5}.

  • Câu 3: Nhận biết

    Hãy chọn kết quả đúng khi phân tích vectơ \overrightarrow{AM} theo hai vectơ \overrightarrow{AB}\overrightarrow{AC} của tam giác ABC với trung tuyến AM.

    Do M là trung điểm của BC nên ta có \overrightarrow{AM} =
\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}).

  • Câu 4: Nhận biết

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 5: Nhận biết

    Cho tam giác đều ABC có đường cao AH. Tính (\overrightarrow{AH},\overrightarrow{BA}).

     Lấy D sao cho \overrightarrow {BD}=\overrightarrow {AH}.

    Ta có: (\overrightarrow{AH},\overrightarrow{BA}) =(\overrightarrow{BD},\overrightarrow{BA})=90^{\circ} +60^{\circ}= 150^{\circ}.

  • Câu 6: Thông hiểu

    Cho hình bình hành ABCDM là trung điểm của AB. Khẳng định nào sau đây đúng?

    Xét các đáp án ta thấy bài toán yêu cần phân tích vectơ \overrightarrow{DM} theo hai vectơ \overrightarrow{DC}\overrightarrow{BC}.

    ABCD là hình bình hành nên \overrightarrow{DB} = \overrightarrow{DA} +
\overrightarrow{DC}.M là trung điểm AB nên 2\ \overrightarrow{DM} = \overrightarrow{DA} +
\overrightarrow{DB} \Leftrightarrow 2\ \overrightarrow{DM} = 2\
\overrightarrow{DA} + \overrightarrow{DC} \Leftrightarrow 2\
\overrightarrow{DM} = - \ 2\ \overrightarrow{BC} +
\overrightarrow{DC}

    suy ra \overrightarrow{DM} =
\frac{1}{2}\overrightarrow{DC} - \overrightarrow{BC}.

  • Câu 7: Vận dụng

    Trong hệ tọa độ Oxy, cho bốn điểm A(1;1),\ B(2; - 1),\ C(4;3),\ D(3;5). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 2) \\
\overrightarrow{DC} = (1; - 2) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{AB} =
\overrightarrow{DC}\overset{}{ightarrow}ABCD là hình bình hành.

  • Câu 8: Thông hiểu

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

    Ta có:

    \begin{matrix}  \overrightarrow {AB}  - \overrightarrow {DC}  + \overrightarrow {BC}  - \overrightarrow {AD}  \hfill \\   = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) - \left( {\overrightarrow {DC}  + \overrightarrow {AD} } ight) \hfill \\   = \overrightarrow {AC}  - \overrightarrow {AC}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.

  • Câu 11: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi ba điểmA,\ \ B,\ \ C thẳng hàng và B nằm giữaA,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm. Chọn đáp án này.

  • Câu 12: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 13: Nhận biết

    Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?

    Hệ thức sai là: \overrightarrow{MP}\times \overrightarrow{MN}=-\overrightarrow{MN}\times \overrightarrow{MP}

    \overrightarrow {MP} .\overrightarrow {MN}  = \overrightarrow {MN} .\overrightarrow {MP} (tính chất giao hoán)

  • Câu 14: Thông hiểu

    Cho \sin\alpha =\frac{1}{4}, với 0^{\circ} <
\alpha < 90^{\circ}. Giá trị \cos\alpha bằng

    Ta có:

    \cos^{2}\alpha = 1 -\sin^{2}\alpha

    = 1 - \left( \frac{1}{4} ight)^{2} =
\frac{15}{16}

    \Rightarrow \cos\alpha =\frac{\sqrt{15}}{4} (do 0^{\circ}
< \alpha < 90^{\circ}).

    Vậy \cos\alpha =\frac{\sqrt{15}}{4}.

  • Câu 15: Vận dụng cao

    Trong mặt phẳng tọa độ Oxy, cho tọa độ A(1; - 4),B(4;5),C(0; - 7). Một điểm M \in Ox bất kì. Tìm giá trị nhỏ nhất của biểu thức T = 2\left|
\overrightarrow{MA} + 2\overrightarrow{MB} ight| + 3\left|
\overrightarrow{MB} + \overrightarrow{MC} ight|?

    Ta có: M \in Ox \Rightarrow
M(x;0)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (1 - x; - 4) \\
\overrightarrow{MB} = (4 - x;5) \\
\overrightarrow{MC} = ( - x; - 7) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{MA} + 2\overrightarrow{MB} = (9 - 3x;6) \\
\overrightarrow{MB} + \overrightarrow{MC} = (4 - 2x; - 2) \\
\end{matrix} ight.

    Ta có:

    T = 2\left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| + 3\left| \overrightarrow{MB} +
\overrightarrow{MC} ight|

    = 2\sqrt{(9 - 3x)^{2} + 6^{2}} +
3\sqrt{(4 - 2x)^{2} + ( - 2)^{2}}

    = 6\left( \sqrt{(3 - x)^{2} + 2^{2}} +
\sqrt{(2 - x)^{2} + ( - 1)^{2}} ight) = 6(ME + MF)

    (Với E(3;2),F(2; - 1))

    Lại có: \overrightarrow{EF} = ( - 1; - 3)
\Rightarrow \left| \overrightarrow{EF} ight| = \sqrt{10}

    ME + MF \geq EF \Rightarrow T \geq
6\sqrt{10}

    Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox => M\left( \frac{7}{3};0 ight)

    Vậy biểu thức T đạt giá trị nhỏ nhất là 6\sqrt{10}.

  • Câu 16: Thông hiểu

    Cho tam giác ABC với M,\ \
N,\ \ P lần lượt là trung điểm của. Khẳng định nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} =
\overrightarrow{0}.. Ta có \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CA} = \overrightarrow{AA} =
\overrightarrow{0}.

    Đáp án \overrightarrow{AP} +
\overrightarrow{BM} + \overrightarrow{CN} =
\overrightarrow{0}.. Ta có \overrightarrow{AP} + \overrightarrow{BM} +
\overrightarrow{CN} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BC} +
\frac{1}{2}\overrightarrow{CA}

    = \frac{1}{2}\left( \overrightarrow{AB}
+ \overrightarrow{BC} + \overrightarrow{CA} ight) =
\frac{1}{2}\overrightarrow{AA} = \overrightarrow{0}.

    Đáp án \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PM} =
\overrightarrow{0}.. Ta có \overrightarrow{MN} + \overrightarrow{NP} +
\overrightarrow{PM} = \overrightarrow{MM} =
\overrightarrow{0}.

    Đáp án \overrightarrow{PB} +
\overrightarrow{MC} = \overrightarrow{MP}.. Ta có \overrightarrow{PB} + \overrightarrow{MC} =
\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} =
\frac{1}{2}\overrightarrow{AC} = \overrightarrow{AN} =
\overrightarrow{PM} = - \overrightarrow{MP}. Chọn đáp án này.

  • Câu 17: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC,\ \ \ G là trọng tâm của tam giác ABC. Khẳng định nào sau đây đúng?

    G là trọng tâm của tam giác ABC nên \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AM}.M là trung điểm của BC nên \overrightarrow{AB} + \overrightarrow{AC} = 2\
\overrightarrow{AM} \Leftrightarrow \overrightarrow{AM} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC}
ight). Do đó \overrightarrow{AG}
= \frac{2}{3}.\frac{1}{2}\left( \overrightarrow{AB} +
\overrightarrow{AC} ight) = \frac{1}{3}\left( \overrightarrow{AB} +
\overrightarrow{AC} ight).

  • Câu 18: Nhận biết

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 19: Thông hiểu

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OB} =
\overrightarrow{OE}.

  • Câu 20: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = 4\overrightarrow{i} +
6\overrightarrow{j}\overrightarrow{b} = 3\overrightarrow{i} -
7\overrightarrow{j}. Tính tích vô hướng \overrightarrow{a}.\overrightarrow{b}.

    Ta có: \overrightarrow{a} =
4\overrightarrow{i} + 6\overrightarrow{j} \Rightarrow \overrightarrow{a}
= (4;6)\overrightarrow{b} =
3\overrightarrow{i} - 7\overrightarrow{j} \Rightarrow \overrightarrow{b}
= (3; - 7)

    Vậy \overrightarrow{a}.\overrightarrow{b}
= 4.3 + 6.( - 7) = - 30.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 30 lượt xem
Sắp xếp theo