Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác. Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho góc \alpha thỏa \sin\alpha = \frac{3}{5}90^{O} < \alpha < 180^{O}. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{4}{5} \\
90{^\circ} < \alpha < 180{^\circ} \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{4}{5}.

  • Câu 2: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 3: Thông hiểu

    Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ 

     \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}

    Ta có:

    \begin{matrix}  \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PN}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PA}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Khẳng định nào sau đây đúng?

    Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:

    +) Cùng hướng

    +) Cùng độ dài.

    Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

  • Câu 5: Thông hiểu

    Mệnh đề nào sau đây sai?

    Chọn \left| \overrightarrow{AB} ight|
> 0.

    Vì có thể xảy ra trường hợp \left|
\overrightarrow{AB} ight| = 0 \Leftrightarrow A \equiv B.

  • Câu 6: Nhận biết

    Cho \Delta
ABCS = 84,a = 13,b = 14,c =
15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có: S_{\Delta ABC} = \frac{a.b.c}{4R}
\Leftrightarrow R =
\frac{a.b.c}{4S} = \frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 7: Nhận biết

    Cho \overrightarrow{a} e\overrightarrow{0} và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn \overrightarrow{OM}=3\overrightarrow{a}\overrightarrow{ON}=-4\overrightarrow{a}. Tìm \overrightarrow{MN}.

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  = \overrightarrow {MO}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - \overrightarrow {OM}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  + \left( { - 4\overrightarrow a } ight) \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  - 4\overrightarrow a  = 7\overrightarrow a  \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Biết rằng hai vec tơ \overrightarrow{a}\overrightarrow{b} không cùng phương nhưng hai vectơ 2\overrightarrow{a} -
3\overrightarrow{b}\overrightarrow{a} + (x -
1)\overrightarrow{b} cùng phương. Khi đó giá trị của x là:

    Ta có: 2\overrightarrow{a} -
3\overrightarrow{b}\overrightarrow{a} + (x -
1)\overrightarrow{b} cùng phương nên có tỉ lệ: \frac{1}{2} = \frac{x - 1}{- 3} \Rightarrow x = -
\frac{1}{2}.

  • Câu 9: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC,\ \ \ G là trọng tâm của tam giác ABC. Khẳng định nào sau đây đúng?

    G là trọng tâm của tam giác ABC nên \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AM}.M là trung điểm của BC nên \overrightarrow{AB} + \overrightarrow{AC} = 2\
\overrightarrow{AM} \Leftrightarrow \overrightarrow{AM} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC}
ight). Do đó \overrightarrow{AG}
= \frac{2}{3}.\frac{1}{2}\left( \overrightarrow{AB} +
\overrightarrow{AC} ight) = \frac{1}{3}\left( \overrightarrow{AB} +
\overrightarrow{AC} ight).

  • Câu 10: Nhận biết

    Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?

    Theo bài ra ta có: 

    Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a

    => |\overrightarrow{AB}|=AB=2a

  • Câu 11: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 12: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4). Khẳng định nào sau đây là sai?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = 2.( - 3) +
( - 1).4 = - 10 eq 0 nên đáp án Tích vô hướng của hai vectơ đã cho là - 10 đúng.

    Ta có: \left| \overrightarrow{a} ight|
= \sqrt{2^{2} + ( - 1)^{2}} = \sqrt{5} nên đáp án Độ lớn của vectơ \overrightarrow{a}\sqrt{5} đúng.

    Ta có: \left| \overrightarrow{b} ight|
= \sqrt{( - 3)^{2} + 4^{2}} = 5 nên đáp án Độ lớn của vectơ \overrightarrow{b}5 đúng.

    Đáp án sai là Góc giữa hai vectơ là 90^{o}.

  • Câu 13: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính \left| \overrightarrow{AB} - \overrightarrow{DA}
ight|.

    Ta có \left| \overrightarrow{AB} -
\overrightarrow{DA} ight| = \left| \overrightarrow{AB} +
\overrightarrow{AD} ight| = \left| \overrightarrow{AC} ight| = AC =
a\sqrt{2}.

  • Câu 14: Vận dụng

    Cho hai điểm cố định A,B; gọi I là trung điểm AB. Tập hợp các điểm M thoả: \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} - \overrightarrow{MB}
ight| là:

    Ta có \left| \overrightarrow{MA} +\overrightarrow{MB} ight| = \left| \overrightarrow{MA} -\overrightarrow{MB} ight|\Leftrightarrow \left| 2\overrightarrow{MI}ight| = \left| \overrightarrow{BA} ight| \Leftrightarrow 2MI = BA\Leftrightarrow MI = \frac{BA}{2}

    Vậy tập hợp các điểm M là đường tròn đường kính AB.

  • Câu 15: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 16: Nhận biết

    Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

     Nhận xét: \overrightarrow {AB}  =  - 3\overrightarrow {AI}  \Leftrightarrow \overrightarrow {AB}  + 3\overrightarrow {AI}  = \overrightarrow 0.

  • Câu 17: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 18: Vận dụng cao

    Trong mặt phẳng tọa độ Oxy, cho tọa độ A(1; - 4),B(4;5),C(0; - 7). Một điểm M \in Ox bất kì. Tìm giá trị nhỏ nhất của biểu thức T = 2\left|
\overrightarrow{MA} + 2\overrightarrow{MB} ight| + 3\left|
\overrightarrow{MB} + \overrightarrow{MC} ight|?

    Ta có: M \in Ox \Rightarrow
M(x;0)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (1 - x; - 4) \\
\overrightarrow{MB} = (4 - x;5) \\
\overrightarrow{MC} = ( - x; - 7) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{MA} + 2\overrightarrow{MB} = (9 - 3x;6) \\
\overrightarrow{MB} + \overrightarrow{MC} = (4 - 2x; - 2) \\
\end{matrix} ight.

    Ta có:

    T = 2\left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| + 3\left| \overrightarrow{MB} +
\overrightarrow{MC} ight|

    = 2\sqrt{(9 - 3x)^{2} + 6^{2}} +
3\sqrt{(4 - 2x)^{2} + ( - 2)^{2}}

    = 6\left( \sqrt{(3 - x)^{2} + 2^{2}} +
\sqrt{(2 - x)^{2} + ( - 1)^{2}} ight) = 6(ME + MF)

    (Với E(3;2),F(2; - 1))

    Lại có: \overrightarrow{EF} = ( - 1; - 3)
\Rightarrow \left| \overrightarrow{EF} ight| = \sqrt{10}

    ME + MF \geq EF \Rightarrow T \geq
6\sqrt{10}

    Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox => M\left( \frac{7}{3};0 ight)

    Vậy biểu thức T đạt giá trị nhỏ nhất là 6\sqrt{10}.

  • Câu 19: Nhận biết

    Cho hai vecto \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}. Xác định góc giữa hai vecto \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|

    Ta có: 

    \begin{matrix}  \vec a \times \vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

  • Câu 20: Vận dụng

    Cho các vectơ \overrightarrow{a} = (4; - 2),\overrightarrow{b} =
( - 1; - 3),\overrightarrow{c} = (2;5). Phân tích vectơ \overrightarrow{b} theo hai vectơ \overrightarrow{a}\ và\
\overrightarrow{c}, ta được:

    Giả sử \overrightarrow{b} =m\overrightarrow{a} + n\overrightarrow{c} \Leftrightarrow \left\{\begin{matrix}- 1 = 4m + 2n \\- 3 = - 2m + 5n \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \frac{1}{24} \ = - \frac{7}{12} \\\end{matrix} ight.. Vậy \overrightarrow{b} =
\frac{1}{24}\overrightarrow{a} -
\frac{7}{12}\overrightarrow{c}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 30 lượt xem
Sắp xếp theo