Cặp vectơ nào sau đây vuông góc?
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
đúng.
Vì suy ra đáp án
và
sai.
Cặp vectơ nào sau đây vuông góc?
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
đúng.
Vì suy ra đáp án
và
sai.
Cho
. Điểm
sao cho
là trung điểm
. Tìm tọa độ của điểm
.
Ta có: nên
.
là trung điểm
nên
Vậy .
Cho lục giác đều
tâm
. Các vectơ đối của vectơ
là:
Các vectơ đối của vectơ là:
.
Trong hệ tọa độ
cho ba điểm
và
Tìm điểm
thuộc trục hoành sao cho biểu thức
đạt giá trị nhỏ nhất.
Ta có
Chọn điểm sao cho
Gọi , từ
ta có
Khi đó
Để nhỏ nhất
nhỏ nhất. Mà
thuộc trục hoành nên
nhỏ nhất khi
là hình chiếu vuông góc của
lên trục hoành
Cho tam giác
điểm
thuộc cạnh
sao cho
và
là trung điểm của
Tính
theo
và ![]()
Vì là trung điểm
nên
Suy ra
Cho tam giác
vuông cân tại
cạnh
Khẳng định nào sau đây sai?
Dựa vào các đáp án, ta có nhận xét sau:
• đúng, gọi
nằm trên tia đối của tia
sao cho
Và
nằm trên tia đối của tia
sao cho
Dựng hình chữ nhật
suy ra
(quy tắc hình bình hành).
Ta có
• đúng, vì
• sai, xử lý tương tự như ở trên. Chọn đáp án này.
• đúng, vì
Cho
và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn
và
. Tìm
.
Ta có:
Cho tam giác
vuông tại
có
. Tính độ dài
.

Đặt .
Ta có: .
Áp dụng định lý Pytago trong tam giác :
.
Trong mặt phẳng tọa độ
cho vectơ
. Vectơ nào sau đây không vuông góc với vectơ
?
Vì nên đáp án
đúng.
Vì nên đáp án
đúng.
Vì nên đáp án
sai.
Vì nên đáp án
đúng.
Gọi
là giao điểm của hai đường chéo của hình bình hành
. Đẳng thức nào sau đây sai?
Đẳng thức sai là
Cho
và
là các vectơ khác
với
là vectơ đối của
. Khẳng định nào sau đây sai?
Ta có . Do đó,
và
cùng phương, cùng độ dài và ngược hướng nhau.
Chọn đáp án sai là: Hai vectơ chung điểm đầu.
Cho tam giác đều
có cạnh
. Tính tích vô hướng
.
Ta có: .
Với
(khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
![]()
Ta có:
Hãy chọn kết quả đúng khi phân tích vectơ
theo hai vectơ
và
của tam giác
với trung tuyến
.
Do là trung điểm của
nên ta có
.
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Gọi O là giao điểm của AC và BD
=> OA OC, OB = OD
Ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Cho 4 điểm
phân biệt. Khi đó
bằng
.