Cho hình bình hành
, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ
là:
Ta có là hình bình hành nên
do đó
.
Cho hình bình hành
, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ
là:
Ta có là hình bình hành nên
do đó
.
Cho hai điểm
và
phân biệt. Điều kiện để
là trung điểm
là:
Điều kiện để là trung điểm
là:
Mệnh đề nào sau đây sai?
Giả sử trường hợp
=> Điểm A và điểm B trùng nhau.
=> Có thể xảy ra trường hợp này.
=> Mệnh đề sai là
Cho tam giác
. Tập hợp các điểm
thỏa mãn
là:
Vì , mà
cố định nên suy ra tập hợp
là đường thẳng đi qua
và vuông góc với
.
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Cho tam giác đều
có cạnh
. Tính tích vô hướng
.
Ta có: .
Cho 4 điểm
. Ba điểm nào trong 4 điểm đã cho là thẳng hàng?
Ta có: 3 điểm
thẳng hàng.
Trong mặt phẳng tọa độ
, cho tọa độ
. Một điểm
bất kì. Tìm giá trị nhỏ nhất của biểu thức
?
Ta có:
Ta có:
Suy ra
Ta có:
(Với )
Lại có:
Mà
Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox =>
Vậy biểu thức T đạt giá trị nhỏ nhất là .
Cho tam giác
và điểm
thỏa mãn
Khẳng định nào sau đây đúng?
Gọi lần lượt là trung điểm
và trọng tâm tam giác
Vì
là trung điểm
nên
Theo bài ra, ta có suy ra
thẳng hàng
Mặt khác là trọng tâm của tam giác
Do đó, ba điểm
thẳng hàng.
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Cho tam giác
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Giá trị
là:
Ta có: .
Cho tam giác ABC. Gọi I là trung điểm AB. Tìm điểm M thỏa mãn hệ thức: ![]()
Ta có:
I là trung điểm của AB =>
Khi đó:
Vậy M là trung điểm của IC.
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.
Gọi
là các trung tuyến của tam giác
. Đẳng thức nào sau đây đúng?
Ta có
Suy ra
Do đó .
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Trong mặt phẳng
cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Cho tam giác
với
lần lượt là trung điểm của. Khẳng định nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Chọn đáp án này.
Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Do là hình bình hành nên
Suy ra
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.