Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác. Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OB} =
\overrightarrow{OE}.

  • Câu 2: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 3: Vận dụng cao

    Trong hệ tọa độ Oxy, cho ba điểm A(1;0),\ B(0;3)C( - 3; - 5). Tìm điểm M thuộc trục hoành sao cho biểu thức P = \left| 2\overrightarrow{MA} -
3\overrightarrow{MB} + 2\overrightarrow{MC} ight| đạt giá trị nhỏ nhất.

    Ta có

    2\overrightarrow{MA} -3\overrightarrow{MB} + 2\overrightarrow{MC} =2\left(\overrightarrow{MI} + \overrightarrow{IA} ight) - 3\left(\overrightarrow{MI} + \overrightarrow{IB} ight) + 2\left(\overrightarrow{MI} + \overrightarrow{IC} ight),\ \forall I

    = \overrightarrow{MI} + 2\left(
\overrightarrow{IA} - 3\overrightarrow{IB} + 2\overrightarrow{IC}
ight),\ \forall I.

    Chọn điểm I sao cho 2\overrightarrow{IA} - 3\overrightarrow{IB} +
2\overrightarrow{IC} = \overrightarrow{0}. (*)

    Gọi I(x;y), từ (*) ta có

    \left\{ \begin{matrix}2(1 - x) - 3(0 - x) + 2( - 3 - x) = 0 \\2(0 - y) - 3(2 - y) + 2( - 5 - y) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = - 4 \\y = - 16 \\\end{matrix} ight.\  ight.\  \Rightarrow I( - 4; - 16).

    Khi đó P = \left| 2\overrightarrow{MA} -3\overrightarrow{MB} + 2\overrightarrow{MC} ight|= \left|\overrightarrow{MI} ight| = MI.

    Để P nhỏ nhất \Leftrightarrow MI nhỏ nhất. Mà M thuộc trục hoành nên MI nhỏ nhất khi M là hình chiếu vuông góc của I lên trục hoành \overset{}{ightarrow}M( - 4;0).

  • Câu 4: Nhận biết

    Tích vô hướng của hai vecto \overrightarrow{a} = (2; - 5)\overrightarrow{b} = ( - 5;2) là:

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
2.( - 5) + ( - 5).2 = - 20

  • Câu 5: Nhận biết

    Cho \Delta
ABCb = 6,c = 8,\widehat{A} =
60^{0}. Độ dài cạnh a là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos
A = 36 + 64 - 2.6.8.cos60^{0} =
52

    \Rightarrow a = 2\sqrt{13}.

  • Câu 6: Nhận biết

    Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 7: Thông hiểu

    Trong các đẳng thức sau, đẳng thức nào sai?

    Khẳng định sai là: "\sin {0^0} + \cos {0^0} = 0"

    Sửa lại là: "\sin {0^0} + \cos {0^0} = 1"

  • Câu 8: Nhận biết

    Cho tam giác ABC. Gọi MN lần lượt là trung điểm của ABAC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AB,\ \ AC. Suy ra MN là đường trung bình của tam giác

    ABC\overset{}{ightarrow}MN =
\frac{1}{2}BC.\overrightarrow{BC},\ \ \
\overrightarrow{MN} là hai vectơ cùng hướng nên \overrightarrow{BC} = 2\
\overrightarrow{MN}.

  • Câu 9: Thông hiểu

    Cho tam giác ABCM thỏa mãn điều kiện \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Xác định vị trí điểm M.

    Gọi G là trọng tâm tam giác ABC.

    Ta có \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}
\Rightarrow M \equiv G.

  • Câu 10: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khẳng định nào sau đây đúng?

    Xét đáp án \overrightarrow{MP} +
\overrightarrow{NM} = \overrightarrow{NP}. Ta có \overrightarrow{MP} + \overrightarrow{NM} =
\overrightarrow{NM} + \overrightarrow{MP} =
\overrightarrow{NP}. Vậy đáp án này đúng.

  • Câu 11: Nhận biết

    Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó \overrightarrow{GA}=

    Ta có: G là trọng tâm tam giác ABC => \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AM} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AM} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AM}

     

    \Rightarrow \overrightarrow {GA}  =  - \frac{2}{3}\overrightarrow {AM}

  • Câu 12: Vận dụng

    Cho tam giác ABCN thuộc cạnh BC sao cho BN
= 2NC. Đẳng thức nào sau đây đúng?

    Ta có

    \overrightarrow{AN} = \overrightarrow{AB}+ \overrightarrow{BN}= \overrightarrow{AB} +\frac{2}{3}\overrightarrow{BC} = \overrightarrow{AB} + \frac{2}{3}\left(\overrightarrow{BA} + \overrightarrow{AC} ight)= \overrightarrow{AB}- \frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC} =\frac{1}{3}\overrightarrow{AB} +\frac{2}{3}\overrightarrow{AC}.

  • Câu 13: Vận dụng

    Trong hệ tọa độ Oxy, cho hình bình hành OABC, điểm C thuộc trục hoành. Khẳng định nào sau đây đúng?

    Từ giả thiết suy ra cạnh OC thuộc trục hoành \overset{}{ightarrow} cạnh AB song song với trục hoành nên y_{A} =
y_{B}\overset{}{ightarrow}\overrightarrow{AB} = \left( x_{A} - x_{B};0
ight). Do đó loại đáp án \overrightarrow{AB} có tung độ khác 0 và đáp án hai điểm A,\ B có tung độ khác nhau.

    Nếu C có hoành độ bằng 0\overset{}{ightarrow}C(0;0) \equiv O: mâu thuẩn với giả thiết OABC là hình bình hành. Loại đáp án C có hoành độ bằng 0.

    Dùng phương pháp loại trừ, ta chọn x_{A}
+ x_{C} - x_{B} = 0.

    Cách 2. Gọi I là tâm của hình bình hành OABC. Suy ra

    \bullet I là trung điểm AC\overset{}{ightarrow}I\left( \frac{x_{A} +
x_{C}}{2};\frac{y_{A} + 0}{2} ight).

    \bullet I là trung điểm OB\overset{}{ightarrow}I\left( \frac{0 +
x_{B}}{2};\frac{0 + y_{B}}{2} ight).

    Từ đó suy ra \frac{x_{A} + x_{C}}{2} =\frac{0 + x_{B}}{2}\overset{}{ightarrow}x_{A} + x_{C} - x_{B} =0.

  • Câu 14: Thông hiểu

    Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính |\overrightarrow{AB}+\overrightarrow{BC}|

    Ta có: \left| {\overrightarrow {AB}  + \overrightarrow {BC} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ABC vuông tại A ta có:

    \begin{matrix}  A{B^2} + A{C^2} = B{C^2} \hfill \\   \Rightarrow A{C^2} = B{C^2} - A{B^2} = {5^2} - {3^2} = 16 \hfill \\   \Rightarrow AC = 4 \hfill \\   \Rightarrow \left| {\overrightarrow {AC} } ight| = AC = 4 \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Gọi M,\ \
N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Hỏi cặp vectơ nào sau đây cùng hướng?

    Cặp \overrightarrow{AB}\overrightarrow{MB} là cặp vectơ cùng hướng.

  • Câu 16: Thông hiểu

    Cho \overrightarrow{OM} = ( - 2; - 1),\overrightarrow{ON} = (3; - 1). Tính góc của \left(
\overrightarrow{OM},\overrightarrow{ON} ight).

    Ta có \cos\left(\overrightarrow{OM},\overrightarrow{ON} ight) =\frac{\overrightarrow{OM}.\overrightarrow{ON}}{\left|\overrightarrow{OM} ight|.\overrightarrow{|ON|}}= \frac{-5}{\sqrt{5}.\sqrt{10}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(\overrightarrow{OM},\overrightarrow{ON} ight) = 135^{o}.

  • Câu 17: Nhận biết

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    \overrightarrow{AB}.\overrightarrow{AC}.
= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}
ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight) =
a.a.cos60^{{^\circ}} = \frac{a^{2}}{2}.

  • Câu 18: Thông hiểu

    Cho hình bình hành ABCD, điểm M thỏa mãn 4\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}. Xác định vị trí điểm M.

    Ta có: ABCD là hình bình hành

    => \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC}

    Xét biểu thức:

    \begin{matrix}  \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AC}  = 4\overrightarrow {AM}  \hfill \\   \Leftrightarrow \overrightarrow {AC}  + \overrightarrow {AC}  = 4\overrightarrow {AM}  \hfill \\   \Leftrightarrow 2\overrightarrow {AC}  = 4\overrightarrow {AM}  \hfill \\   \Leftrightarrow \overrightarrow {AC}  = 2\overrightarrow {AM}  \hfill \\ \end{matrix}

    Vậy M là trung điểm của AC.

  • Câu 19: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 20: Thông hiểu

    Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn \overrightarrow{MA} +
\overrightarrow{MB} + 3\overrightarrow{MC} =
\overrightarrow{0}. Chọn mệnh đề đúng.

    \overrightarrow{MA} + \overrightarrow{MB}+ 3\overrightarrow{MC} = \overrightarrow{0}\Leftrightarrow2\overrightarrow{MI} = - 3\overrightarrow{MC}\Leftrightarrow2\overrightarrow{MI} = 3\overrightarrow{IM} - 3\overrightarrow{IC}\Leftrightarrow 5\overrightarrow{MI} =3\overrightarrow{CI}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo