Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác. Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho \Delta
ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp r của tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p} =
\frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 2: Nhận biết

    Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó \overrightarrow{GA}=

    Ta có: G là trọng tâm tam giác ABC => \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AM} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AM} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AM}

     

    \Rightarrow \overrightarrow {GA}  =  - \frac{2}{3}\overrightarrow {AM}

  • Câu 3: Thông hiểu

    Cho tam giác ABC, điểm M thuộc cạnh AB sao cho 3\
AM = ABN là trung điểm của AC. Tính \overrightarrow{MN} theo \overrightarrow{AB}\overrightarrow{AC}.

    N là trung điểm AC nên 2\
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{MC} =
\overrightarrow{MA} + \overrightarrow{MA} + \overrightarrow{AC}.
\Leftrightarrow 2\overrightarrow{MN} = 2\ \overrightarrow{MA} +
\overrightarrow{AC} = - \frac{2}{3}\overrightarrow{AB} +
\overrightarrow{AC}.

    Suy ra \overrightarrow{MN} = -
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}.

  • Câu 4: Nhận biết

    Cho hình bình hành ABCD, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ \overrightarrow{AB} là:

    Ta có ABCD là hình bình hành nên \left\{ \begin{matrix}
AB = CD \\
AB \parallel CD \\
\end{matrix} ight. do đó \overrightarrow{AB} =
\overrightarrow{DC}.

  • Câu 5: Nhận biết

    Cặp vectơ nào sau đây vuông góc?

    \overrightarrow{a}.\overrightarrow{b}
= 2.( - 3) + ( - 1).4 = - 10 eq 0 suy ra đáp án \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= 3.( - 3) + ( - 4).4 = - 25 eq 0 suy ra đáp án \overrightarrow{a} = (3; - 4)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= - 2.( - 6) - 3.4 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{b} suy ra đáp án \overrightarrow{a} = ( - 2; - 3)\overrightarrow{b} = ( - 6;4) đúng.

    \overrightarrow{a}.\overrightarrow{b}
= 7.3 + ( - 3).( - 7) = 42 eq 0 suy ra đáp án \overrightarrow{a} = (7; - 3)\overrightarrow{b} = (3; - 7) sai.

  • Câu 6: Thông hiểu

    Cho tọa độ ba điểm A(0;3),B(4;0),C( - 2; - 5). Tính \overrightarrow{AB}.\overrightarrow{BC}?

    Ta có: A(0;3),B(4;0),C( - 2; -
5)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{AB} = (4; - 3) \\
\overrightarrow{BC} = ( - 6; - 5) \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 4.( - 6) + ( - 3).( - 5) = -
9

  • Câu 7: Nhận biết

    Cho tam giác ABC. Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh A,\ B,\ C?

    Đó là các vectơ: \overrightarrow{AB},\ \
\overrightarrow{BA},\ \ \overrightarrow{BC},\ \ \overrightarrow{CB},\ \
\overrightarrow{CA},\ \ \overrightarrow{AC}.

  • Câu 8: Thông hiểu

    Cho tam giác ABC đều có cạnh là 6. Tính |\overrightarrow{AB} +
\overrightarrow{AC}|.

    Hình vẽ minh họa

    Gọi I là trung điểm của BC. Vì tam giác ABC đều có cạnh là 6, nên ta có AI\bot BC.

    Xét tam giác AIB vuông tại I, có

    AB^{2} = AI^{2} + IB^{2}

    \Rightarrow AI^{2} = AB^{2} - IB^{2} =
6^{2} - 3^{2} = 27.

    Suy ra AI = \sqrt{27} =
3\sqrt{3}

    Mặt khác ta có:

    \overrightarrow{AB} + \overrightarrow{AC}
= 2\overrightarrow{AI}

    \Rightarrow |\overrightarrow{AB} +
\overrightarrow{AC}| = |2\overrightarrow{AI}| = 2|\overrightarrow{AI}| =
2AI = 6\sqrt{3}.

  • Câu 9: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 10: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 11: Vận dụng

    Trong hệ tọa độ Oxy, cho tam giác ABCA(1; -
1), B(5; - 3)C thuộc trục Oy, trọng tâm G của tam giác thuộc trục Ox. Tìm tọa độ điểm C.

    C thuộc trục Oy\overset{}{ightarrow} C có hoành độ bằng 0. Loại C(2;4).

    Trọng tâm G thuộc trục Ox\overset{}{ightarrow} G có tung độ bằng 0. Xét các đáp án còn lại chỉ có đáp án C(0;4) thỏa mãn \frac{y_{A} + y_{B} + y_{C}}{3} = 0.

  • Câu 12: Thông hiểu

    Mệnh đề nào sau đây sai?

    Chọn \left| \overrightarrow{AB} ight|
> 0.

    Vì có thể xảy ra trường hợp \left|
\overrightarrow{AB} ight| = 0 \Leftrightarrow A \equiv B.

  • Câu 13: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC,\ \ \ I là trung điểm của AM. Khẳng định nào sau đây đúng?

    M là trung điểm BC nên \overrightarrow{AB} + \overrightarrow{AC} = 2\
\overrightarrow{AM}. (1) Mặt khác I là trung điểm AM nên 2\
\overrightarrow{AI} = \overrightarrow{AM}. (2)

    Từ (1),\ \ (2) suy ra \overrightarrow{AB} + \overrightarrow{AC} = 4\
\overrightarrow{AI} \Leftrightarrow \overrightarrow{AI} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC}
ight).

  • Câu 14: Vận dụng

    Cho hình thang ABCD có đáy là ABCD. Gọi MN lần lượt là trung điểm của ADBC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AD,\ \ BC \Rightarrow \left\{
\begin{matrix}
\overrightarrow{MA} + \overrightarrow{MD} = \overrightarrow{0} \\
\overrightarrow{BN} + \overrightarrow{CN} = \overrightarrow{0} \\
\end{matrix} ight.\ . Dựa vào đáp án, ta có nhận xét sau:

    \bullet \overrightarrow{MN} = \overrightarrow{MD} +
\overrightarrow{CN} + \overrightarrow{DC} đúng, vì \overrightarrow{MD} + \overrightarrow{CN} +\overrightarrow{DC} = \overrightarrow{MN}= \left( \overrightarrow{MD} +\overrightarrow{DC} ight) + \overrightarrow{CN} = \overrightarrow{MC}+ \overrightarrow{CN}= \overrightarrow{MN}

    \bullet \overrightarrow{MN} = \overrightarrow{AB} -
\overrightarrow{MD} + \overrightarrow{BN} đúng, vì \overrightarrow{AB} - \overrightarrow{MD} +\overrightarrow{BN} = \left( \overrightarrow{AB} + \overrightarrow{BN}ight) - \overrightarrow{MD}= \overrightarrow{AN} -\overrightarrow{AM} = \overrightarrow{MN}

    \bullet \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{DC}
ight) đúng, vì \overrightarrow{MN} = \overrightarrow{MA} +
\overrightarrow{AB} + \overrightarrow{BN}\overrightarrow{MN} = \overrightarrow{MD} +
\overrightarrow{DC} + \overrightarrow{CN}.

    Suy ra 2\overrightarrow{MN}= \left(\overrightarrow{MA} + \overrightarrow{MD} ight) + \overrightarrow{AB}+ \overrightarrow{DC} + \left( \overrightarrow{BN} + \overrightarrow{CN}ight)= \overrightarrow{0} + \overrightarrow{AB} + \overrightarrow{DC}+ \overrightarrow{0} = \overrightarrow{AB} +\overrightarrow{DC}\overset{}{ightarrow}\overrightarrow{MN} =\frac{1}{2}\left( \overrightarrow{AD} + \overrightarrow{BC}ight).

    \bullet \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AD} + \overrightarrow{BC}
ight) sai, vì theo phân tích ở đáp án trên. Chọn đáp án này.

  • Câu 15: Nhận biết

    Cho tam giác ABC. Gọi MN lần lượt là trung điểm của ABAC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AB,\ \ AC. Suy ra MN là đường trung bình của tam giác

    ABC\overset{}{ightarrow}MN =
\frac{1}{2}BC.\overrightarrow{BC},\ \ \
\overrightarrow{MN} là hai vectơ cùng hướng nên \overrightarrow{BC} = 2\
\overrightarrow{MN}.

  • Câu 16: Thông hiểu

    Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính |\overrightarrow{AB}+\overrightarrow{BC}|

    Ta có: \left| {\overrightarrow {AB}  + \overrightarrow {BC} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ABC vuông tại A ta có:

    \begin{matrix}  A{B^2} + A{C^2} = B{C^2} \hfill \\   \Rightarrow A{C^2} = B{C^2} - A{B^2} = {5^2} - {3^2} = 16 \hfill \\   \Rightarrow AC = 4 \hfill \\   \Rightarrow \left| {\overrightarrow {AC} } ight| = AC = 4 \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 18: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 19: Thông hiểu

    Cho \frac{\pi}{2} < \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có \sin(\pi + \alpha) = -
\sin\alpha; \cot\left(
\frac{\pi}{2} - \alpha ight) = \sin\alpha; \cos( - \alpha) = \cos\alpha; \tan(\pi + \alpha) = \tan\alpha.

    Do \frac{\pi}{2} < \alpha <
\pi ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight..

  • Câu 20: Vận dụng cao

    Chp parabol như hình vẽ:

    Biết G là đỉnh parabol cách AB một khoảng bằng 6, CD = 4;DE = \frac{10}{3}. Tính khoảng cách giữa hai điểm A,B?

    Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.

    Khi đó tọa độ E\left( 2;\frac{10}{3}
ight),G(0;6)

    Gọi biểu thức hàm số có đồ thị là hình parabol là y = ax^{2} + bx + c

    Có G là đỉnh parabol suy ra c = 6;b =
0

    E\left( 2;\frac{10}{3} ight) \in
(P) suy ra \frac{10}{3} = 4a + 6
\Rightarrow a = - \frac{2}{3}

    Biểu thức hàm số là y = -
\frac{2}{3}x^{2} + 6

    Hoành độ giao điểm với trục hoành: -
\frac{2}{3}x^{2} + 6 = 0 \Leftrightarrow x = \pm 3

    Vậy khoảng cách giữa hai điểm A và B là 6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo