Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác. Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; - 1),B(2;10),C( - 4;2). Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Ta có: \overrightarrow{AB} = ( -
1;11),\overrightarrow{AC} = ( -
7;3) \Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=40.

  • Câu 2: Thông hiểu

    Tam giác ABC vuông ở A và có góc \widehat{B} = 50^{o}. Hệ thức nào sau đây là sai?

    \left( \overrightarrow{AB},\
\overrightarrow{BC} ight) = 180^{0} - \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = 130^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{BC}
ight) = 130^{o}.

    \left( \overrightarrow{BC},\
\overrightarrow{AC} ight) = \left( \overrightarrow{CB},\
\overrightarrow{CA} ight) = 40^{o} nên loại \left( \overrightarrow{BC},\ \overrightarrow{AC}
ight) = 40^{o}.

    \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = \left( \overrightarrow{BA},\
\overrightarrow{BC} ight) = 50^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{CB}
ight) = 50^{o}.

    \left( \overrightarrow{AC},\
\overrightarrow{CB} ight) = 180^{0} - \left( \overrightarrow{CA},\
\overrightarrow{CB} ight) = 140^{o}nên chọn \left( \overrightarrow{AC},\ \overrightarrow{CB}
ight) = 120^{o}.

  • Câu 3: Thông hiểu

    Cho góc \alpha thoả mãn 0^{\circ} < \alpha < 180^{\circ}\cot\alpha = - 2. Giá trị của \sin\alpha là:

    Ta có: \cot\alpha =
\frac{\cos\alpha}{\sin\alpha}

    \Rightarrow \cot^{2}\alpha =
\frac{\cos^{2}\alpha}{\sin^{2}\alpha} = \frac{1 -
\sin^{2}\alpha}{\sin^{2}\alpha}

    \Rightarrow 1 + \cot^{2}\alpha =
\frac{1}{\sin^{2}\alpha}.

    Do đó \sin^{2}\alpha = \frac{1}{1 +
\cot^{2}\alpha} = \frac{1}{1 + ( - 2)^{2}} = \frac{1}{5}.

    0^{0} < \alpha <
180^{\circ} nên \sin\alpha =\frac{\sqrt{5}}{5}.

  • Câu 4: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 5: Nhận biết

    Khẳng định nào sau đây đúng?

    Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:

    +) Cùng hướng

    +) Cùng độ dài.

    Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

  • Câu 6: Nhận biết

    Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó \overrightarrow{GA}=

    Ta có: G là trọng tâm tam giác ABC => \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AM} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AM} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AM}

     

    \Rightarrow \overrightarrow {GA}  =  - \frac{2}{3}\overrightarrow {AM}

  • Câu 7: Nhận biết

    Cho M là trung điểm AB, tìm đẳng thức sai

     Ta có: \overrightarrow{MA}\times \overrightarrow{MB}=MA.MB.\cos180^{\circ} =-MA.MB

    Đáp án sai là \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB.

  • Câu 8: Thông hiểu

    Cho tam giác ABCG là trọng tâm và M là trung điểm BC. Khẳng định nào sau đây sai?

    M là trung điểm của BC suy ra \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0}. Ta có \left\{
\begin{matrix}
\overrightarrow{GB} = \overrightarrow{GM} + \overrightarrow{MB} \\
\overrightarrow{GC} = \overrightarrow{GM} + \overrightarrow{MC} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{GB} +
\overrightarrow{GC} =
\underset{\overrightarrow{0}}{\overset{\overrightarrow{MB} +
\overrightarrow{MC}}{︸}} + 2\ \overrightarrow{GM} = 2\
\overrightarrow{GM}.

  • Câu 9: Nhận biết

    Cho tam giác ABC với M là trung điểm BC. Mệnh đề nào sau đây đúng?

    Xét đáp án \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0}. Ta có \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0} (theo quy tắc ba điểm).

    Chọn đáp án này.

  • Câu 10: Nhận biết

    Gọi M,\ \
N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Hỏi cặp vectơ nào sau đây cùng hướng?

    Cặp \overrightarrow{AB}\overrightarrow{MB} là cặp vectơ cùng hướng.

  • Câu 11: Thông hiểu

    Gọi M,N lần lượt là trung điểm của các cạnh ABCD của tứ giác ABCD. Mệnh đề nào sau đây đúng?

    Do M là trung điểm các cạnh AB nên \overrightarrow{MB} + \overrightarrow{MA} =
\overrightarrow{0}.

    Do N lần lượt là trung điểm các cạnh DC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MD}.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MD}= \overrightarrow{MB} +\overrightarrow{BC} + \overrightarrow{MA} + \overrightarrow{AD}=\overrightarrow{AD} + \overrightarrow{BC} + \left( \overrightarrow{MA} +\overrightarrow{MB} ight) = \overrightarrow{AD} +\overrightarrow{BC}

    Mặt khác \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BC} +
\overrightarrow{CD} = \overrightarrow{BC} + \left( \overrightarrow{AC} +
\overrightarrow{CD} ight) = \overrightarrow{BC} +
\overrightarrow{AD}

    Do đó \overrightarrow{AC} +
\overrightarrow{BD} + \overrightarrow{BC} + \overrightarrow{AD} =
4\overrightarrow{MN}.

  • Câu 12: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AC} - \overrightarrow{AD}
= \overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{AD} =
\overrightarrow{DC}.

    \overrightarrow{AC} - \overrightarrow{BD}
= 2\overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{BD} =2\overrightarrow{CD}\Leftrightarrow \left( \overrightarrow{AB} +\overrightarrow{AD} ight) - \left( \overrightarrow{AD} -\overrightarrow{AB} ight)\mathbf{=}2\overrightarrow{CD}\Leftrightarrow 2\overrightarrow{AB} =2\overrightarrow{CD}.

    \overrightarrow{AC} + \overrightarrow{BC}
= \overrightarrow{AB} sai do \overrightarrow{AC} + \overrightarrow{BC} =\overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} -\overrightarrow{AB} = - \overrightarrow{BC}\Leftrightarrow\overrightarrow{BC} = \overrightarrow{CB}.

    \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{BC} đúng do \overrightarrow{AC} + \overrightarrow{BD} =\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} +\overrightarrow{CD}\mathbf{=}2\overrightarrow{BC} + \left(\overrightarrow{AB} + \overrightarrow{CD} ight) = 2\overrightarrow{BC}+ \overrightarrow{0} = 2\overrightarrow{BC}.

  • Câu 13: Vận dụng cao

    Chp parabol như hình vẽ:

    Biết G là đỉnh parabol cách AB một khoảng bằng 6, CD = 4;DE = \frac{10}{3}. Tính khoảng cách giữa hai điểm A,B?

    Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.

    Khi đó tọa độ E\left( 2;\frac{10}{3}
ight),G(0;6)

    Gọi biểu thức hàm số có đồ thị là hình parabol là y = ax^{2} + bx + c

    Có G là đỉnh parabol suy ra c = 6;b =
0

    E\left( 2;\frac{10}{3} ight) \in
(P) suy ra \frac{10}{3} = 4a + 6
\Rightarrow a = - \frac{2}{3}

    Biểu thức hàm số là y = -
\frac{2}{3}x^{2} + 6

    Hoành độ giao điểm với trục hoành: -
\frac{2}{3}x^{2} + 6 = 0 \Leftrightarrow x = \pm 3

    Vậy khoảng cách giữa hai điểm A và B là 6.

  • Câu 14: Nhận biết

    Tính tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}.

    Ta có \overrightarrow{MN} +\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +\overrightarrow{QR}= \overrightarrow{MN} + \overrightarrow{NP} +\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RN} =\overrightarrow{MN}.

  • Câu 15: Vận dụng

    Cho K(1; -
3). Điểm A \in Ox,B \in Oy sao cho A là trung điểm KB. Tìm tọa độ của điểm B.

    Ta có: A \in Ox,B \in Oy nên A(x;0),B(0;y).

    A là trung điểm KB nên \left\{ \begin{matrix}
x = \frac{1 + 0}{2} \\
0 = \frac{- 3 + y}{2} \\
\end{matrix} \Leftrightarrow ight.\ \left\{ \begin{matrix}
x = \frac{1}{2} \\
y = 3 \\
\end{matrix} ight.

    Vậy B(0;3).

  • Câu 16: Thông hiểu

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

    Gọi O là giao điểm của AC và BD

    => OA  OC, OB = OD

    Ta có:

    \begin{matrix}   \Rightarrow \overrightarrow {OA}  earrow  \swarrow \overrightarrow {OC} ;\overrightarrow {OB}  earrow  \swarrow \overrightarrow {OD}  \hfill \\   \Rightarrow \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0  \hfill \\  \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 2\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính \left| \overrightarrow{AB} - \overrightarrow{DA}
ight|.

    Ta có \left| \overrightarrow{AB} -
\overrightarrow{DA} ight| = \left| \overrightarrow{AB} +
\overrightarrow{AD} ight| = \left| \overrightarrow{AC} ight| = AC =
a\sqrt{2}.

  • Câu 18: Nhận biết

    Cho tam giác ABC có a = 8,b = 10, góc C bằng 60^{0} . Độ dài cạnh c là ?

    Ta có: c^{2} = a^{2} + b^{2} -
2a.b.cosC = 8^{2} + 10^{2} -
2.8.10.cos60^{0} = 84 \Rightarrow c
= 2\sqrt{21}.

  • Câu 19: Thông hiểu

    Cho ngũ giác ABCDE. Có bao nhiêu vectơ khác vectơ – không có điểm đầu và điểm cuối là đỉnh của ngũ giác đó?

    \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD},\overrightarrow{AE}, \overrightarrow{BA},\overrightarrow{BC},\overrightarrow{BD},\overrightarrow{BE}, \overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CD},\overrightarrow{CE}, \overrightarrow{DA},\overrightarrow{DC},\overrightarrow{DB},\overrightarrow{DE}, \overrightarrow{EA},\overrightarrow{EC},\overrightarrow{EB},\overrightarrow{ED}.

  • Câu 20: Vận dụng

    Cho tam giác ABC, tập hợp các điểm M sao cho \left| \ \overrightarrow{MA} + \overrightarrow{MB}
+ \overrightarrow{MC}\  ight| = 6 là:

    Gọi G là trọng tâm của tam giác ABC , ta có \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = 3\overrightarrow{MG}.

    Thay vào ta được : \left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} ight|= 6\Leftrightarrow \left| 3\overrightarrow{MG} ight| = 6\Leftrightarrow MG = 2, hay tập hợp các điểm M là đường tròn có tâm là trọng tâm của tam giác ABC và bán kính bằng 2.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo