Cho hình vuông ABCD cạnh a. Tính ![]()
Hình vẽ minh họa

Ta có:
Tam giác ACD vuông cân tại D ta có:
Cho hình vuông ABCD cạnh a. Tính ![]()
Hình vẽ minh họa

Ta có:
Tam giác ACD vuông cân tại D ta có:
Cho hình bình hành ABCD, điểm M thỏa mãn
. Xác định vị trí điểm M.
Ta có: ABCD là hình bình hành
=>
Xét biểu thức:
Vậy M là trung điểm của AC.
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Ta có: (Sai).
Cho tam giác
điểm
thuộc cạnh
sao cho
và
là trung điểm của
Tính
theo
và ![]()
Vì là trung điểm
nên
Suy ra
Cho tam giác
có
Tính ![]()
Ta có
Cho tam giác
Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh ![]()
Đó là các vectơ:
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Cho tam giác ABC có điểm O thỏa mãn
. Khẳng định nào sau đây là đúng?
Ta có: .

Vẽ hình bình hành , suy ra
. Mà
. Suy ra
. Do đó
là hình chữ nhật. Do đó tam giác
vuông
.
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

Nhận xét: .
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Trong mặt phẳng tọa độ
, cho tọa độ
. Một điểm
bất kì. Tìm giá trị nhỏ nhất của biểu thức
?
Ta có:
Ta có:
Suy ra
Ta có:
(Với )
Lại có:
Mà
Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox =>
Vậy biểu thức T đạt giá trị nhỏ nhất là .
Cho tam giác
,
. Tính tọa độ điểm
là chân đường phân giác góc
. Biết
.
Theo tính chất đường phân giác: . Suy ra
.
Gọi . Suy ra
.
Ta có:
Vậy tọa độ điểm .
Cho ba điểm
phân biệt. Khẳng định nào sau đây đúng?
Xét đáp án Ta có
. Vậy đáp án này đúng.
Cho tam giác
cân tại
,
và
. Tính
.
Ta có .
Cho lục giác đều ABCDEF có tâm O. Số các vectơ bằng vectơ
có điểm đầu và điểm cuối là đỉnh của lục giác bằng :
Các vectơ bằng vectơ có điểm đầu và điểm cuối là đỉnh của lục giác là
và
.
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,