Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác. Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tam giác ABC vuông ở A và có góc \widehat{B} = 50^{o}. Hệ thức nào sau đây là sai?

    \left( \overrightarrow{AB},\
\overrightarrow{BC} ight) = 180^{0} - \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = 130^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{BC}
ight) = 130^{o}.

    \left( \overrightarrow{BC},\
\overrightarrow{AC} ight) = \left( \overrightarrow{CB},\
\overrightarrow{CA} ight) = 40^{o} nên loại \left( \overrightarrow{BC},\ \overrightarrow{AC}
ight) = 40^{o}.

    \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = \left( \overrightarrow{BA},\
\overrightarrow{BC} ight) = 50^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{CB}
ight) = 50^{o}.

    \left( \overrightarrow{AC},\
\overrightarrow{CB} ight) = 180^{0} - \left( \overrightarrow{CA},\
\overrightarrow{CB} ight) = 140^{o}nên chọn \left( \overrightarrow{AC},\ \overrightarrow{CB}
ight) = 120^{o}.

  • Câu 2: Thông hiểu

    Cho ngũ giác ABCDE. Có bao nhiêu vectơ khác vectơ – không có điểm đầu và điểm cuối là đỉnh của ngũ giác đó?

    \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD},\overrightarrow{AE}, \overrightarrow{BA},\overrightarrow{BC},\overrightarrow{BD},\overrightarrow{BE}, \overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CD},\overrightarrow{CE}, \overrightarrow{DA},\overrightarrow{DC},\overrightarrow{DB},\overrightarrow{DE}, \overrightarrow{EA},\overrightarrow{EC},\overrightarrow{EB},\overrightarrow{ED}.

  • Câu 3: Nhận biết

    Cho tam giác ABCcân tại A, \widehat{A} = 120^{o} AB = a. Tính \overrightarrow{BA}.\overrightarrow{CA}.

    Ta có \overrightarrow{BA}.\overrightarrow{CA} =
BA.CA.cos120^{o} = - \frac{1}{2}a^{2}.

  • Câu 4: Thông hiểu

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \tan\alpha.

    Ta có \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi. \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha =
\frac{5}{13}\overset{}{ightarrow}\tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = - \frac{5}{12}.

  • Câu 5: Nhận biết

    Cho tam giác ABC, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?

    Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm \overrightarrow{AB},\overrightarrow{BA},\overrightarrow{AC},\overrightarrow{CA},\overrightarrow{BC},\overrightarrow{CB}. Vậy có 6 véc tơ.

  • Câu 6: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi ba điểmA,\ \ B,\ \ C thẳng hàng và B nằm giữaA,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm. Chọn đáp án này.

  • Câu 7: Thông hiểu

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0} Xác định vị trí điểm M.

    Giả sử G là trọng tâm tam giác ABC, khi đó ta có:

    \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0

    \Rightarrow M \equiv G

    => M là trọng tâm của tam giác ABC.

  • Câu 8: Thông hiểu

    Cho tam giác ABCG là trọng tâm và M là trung điểm BC. Khẳng định nào sau đây sai?

    M là trung điểm của BC suy ra \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0}. Ta có \left\{
\begin{matrix}
\overrightarrow{GB} = \overrightarrow{GM} + \overrightarrow{MB} \\
\overrightarrow{GC} = \overrightarrow{GM} + \overrightarrow{MC} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{GB} +
\overrightarrow{GC} =
\underset{\overrightarrow{0}}{\overset{\overrightarrow{MB} +
\overrightarrow{MC}}{︸}} + 2\ \overrightarrow{GM} = 2\
\overrightarrow{GM}.

  • Câu 9: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 10: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 11: Thông hiểu

    Cho tam giác ABC cân ở A, đường cao AH. Khẳng định nào sau đây sai?

    Tam giác ABC cân ở A, đường cao AH. Do đó, H là trung điểm BC.

    Ta có:

    AB = AC \Rightarrow \left|
\overrightarrow{AB} ight| = \left| \overrightarrow{AC}
ight|

    H là trung điểm BC \Rightarrow \left\{ \begin{matrix}
\overrightarrow{HC} = - \overrightarrow{HB} \\
\overrightarrow{BC} = 2\overrightarrow{HC} \\
\end{matrix} ight..

    Chọn đáp án sai là \overrightarrow{AB} =
\overrightarrow{AC}.

  • Câu 12: Nhận biết

    Cho tam giác ABC và đặt \overrightarrow{a} = \overrightarrow{BC},\ \
\overrightarrow{b} = \overrightarrow{AC}. Cặp vectơ nào sau đây cùng phương?

    Dễ thấy - 10\ \overrightarrow{a} -
2\overrightarrow{b} = - \ 2\ \left( 5\overrightarrow{a} +
\overrightarrow{b} ight)\overset{}{ightarrow} hai vectơ 5\overrightarrow{a} + \overrightarrow{b},\
\  - 10\overrightarrow{a} - 2\overrightarrow{b} cùng phương.

  • Câu 13: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai điểm B( - 3;6),\ C(1; - 3). Xác định điểm E trên trục hoành sao cho ba điểm B,\ \ C,\ \ E thẳng hàng.

    Gọi E(x;0) khi đó \overrightarrow{BE}(x + 3; - 6),\ \
\overrightarrow{EC}(1 - x; - 3)

    Ba điểm B,C,E thẳng hàng khi và chỉ khi \overrightarrow{BE} cùng phương với \overrightarrow{EC}

    \Leftrightarrow \frac{x + 3}{1 - x} =
\frac{- 6}{- 3} \Leftrightarrow x = - \frac{1}{3}.

  • Câu 14: Vận dụng cao

    Chp parabol như hình vẽ:

    Biết G là đỉnh parabol cách AB một khoảng bằng 6, CD = 4;DE = \frac{10}{3}. Tính khoảng cách giữa hai điểm A,B?

    Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.

    Khi đó tọa độ E\left( 2;\frac{10}{3}
ight),G(0;6)

    Gọi biểu thức hàm số có đồ thị là hình parabol là y = ax^{2} + bx + c

    Có G là đỉnh parabol suy ra c = 6;b =
0

    E\left( 2;\frac{10}{3} ight) \in
(P) suy ra \frac{10}{3} = 4a + 6
\Rightarrow a = - \frac{2}{3}

    Biểu thức hàm số là y = -
\frac{2}{3}x^{2} + 6

    Hoành độ giao điểm với trục hoành: -
\frac{2}{3}x^{2} + 6 = 0 \Leftrightarrow x = \pm 3

    Vậy khoảng cách giữa hai điểm A và B là 6.

  • Câu 15: Thông hiểu

    Cho hình bình hành ABCDM là trung điểm của AB. Khẳng định nào sau đây đúng?

    Xét các đáp án ta thấy bài toán yêu cần phân tích vectơ \overrightarrow{DM} theo hai vectơ \overrightarrow{DC}\overrightarrow{BC}.

    ABCD là hình bình hành nên \overrightarrow{DB} = \overrightarrow{DA} +
\overrightarrow{DC}.M là trung điểm AB nên 2\ \overrightarrow{DM} = \overrightarrow{DA} +
\overrightarrow{DB} \Leftrightarrow 2\ \overrightarrow{DM} = 2\
\overrightarrow{DA} + \overrightarrow{DC} \Leftrightarrow 2\
\overrightarrow{DM} = - \ 2\ \overrightarrow{BC} +
\overrightarrow{DC}

    suy ra \overrightarrow{DM} =
\frac{1}{2}\overrightarrow{DC} - \overrightarrow{BC}.

  • Câu 16: Nhận biết

    Cho đoạn thẳng ABM là một điểm trên đoạn AB sao cho MA
= \frac{1}{5}AB. Trong các khẳng định sau, khẳng định nào sai?

    Hình vẽ minh họa

    Ta thấy \overrightarrow{MB}\overrightarrow{AB} cùng hướng nên \overrightarrow{MB} = -
\frac{4}{5}\overrightarrow{AB} là sai.

  • Câu 17: Nhận biết

    Trong mặt phẳng Oxy cho \overrightarrow{a} = (1;3),\ \ \overrightarrow{b}= ( - 2;1). Tích vô hướng của 2 vectơ \overrightarrow{a}.\overrightarrow{b} là:

    Ta có \overrightarrow{a} =(1;3),\overrightarrow{b} = ( - 2;1), suy ra \overrightarrow{a}.\overrightarrow{b} = 1.( - 2) +3.1 = 1.

  • Câu 18: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 19: Vận dụng

    Cho tam giác ABC, tập hợp các điểm M sao cho \left| \ \overrightarrow{MA} + \overrightarrow{MB}
+ \overrightarrow{MC}\  ight| = 6 là:

    Gọi G là trọng tâm của tam giác ABC , ta có \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = 3\overrightarrow{MG}.

    Thay vào ta được : \left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} ight|= 6\Leftrightarrow \left| 3\overrightarrow{MG} ight| = 6\Leftrightarrow MG = 2, hay tập hợp các điểm M là đường tròn có tâm là trọng tâm của tam giác ABC và bán kính bằng 2.

  • Câu 20: Nhận biết

    Cho ba điểm phân biệt M,N,P. Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm M,N,P đã cho?

    Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm M,N,P đã cho là

    \overrightarrow{MN},\overrightarrow{NM},\overrightarrow{MP},\overrightarrow{PM},\overrightarrow{NP},\overrightarrow{PN}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 30 lượt xem
Sắp xếp theo