Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hệ thức lượng trong tam giác. Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hình bình hành ABCD tâm O. Khẳng định sai là:

    Ta có: \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BO} =
\overrightarrow{BA}.

    Chọn đáp án sai \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{BC}.

  • Câu 2: Thông hiểu

    Cho tam giác ABC vuông tại AAB = 3, AC = 4. Tính độ dài \overrightarrow{CB}+\overrightarrow{AB}.

     

    Đặt \overrightarrow {AB}=\overrightarrow {BD}.

    Ta có: \left| {\overrightarrow {CB}  + \overrightarrow {AB} } ight| = \left| {\overrightarrow {CB}  + \overrightarrow {BD} } ight| = \left| {\overrightarrow {CD} } ight| = CD.

    Áp dụng định lý Pytago trong tam giác ACD: CD = \sqrt {{6^2} + {4^2}}  = 2\sqrt {13}.

  • Câu 3: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Áp dụng quy tắc hình bình hành tại điểm B ta có:

    \overrightarrow{BC}+\overrightarrow{BA}=\overrightarrow{BD}

  • Câu 4: Thông hiểu

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}. Xác định vị trí điểm M.

     Điểm M là trọng tâm tam giác ABC khi và chỉ khi \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}.

  • Câu 5: Vận dụng cao

    Trong hệ tọa độ Oxy, cho ba điểm A(1;0),\ B(0;3)C( - 3; - 5). Tìm điểm M thuộc trục hoành sao cho biểu thức P = \left| 2\overrightarrow{MA} -
3\overrightarrow{MB} + 2\overrightarrow{MC} ight| đạt giá trị nhỏ nhất.

    Ta có

    2\overrightarrow{MA} -3\overrightarrow{MB} + 2\overrightarrow{MC} =2\left(\overrightarrow{MI} + \overrightarrow{IA} ight) - 3\left(\overrightarrow{MI} + \overrightarrow{IB} ight) + 2\left(\overrightarrow{MI} + \overrightarrow{IC} ight),\ \forall I

    = \overrightarrow{MI} + 2\left(
\overrightarrow{IA} - 3\overrightarrow{IB} + 2\overrightarrow{IC}
ight),\ \forall I.

    Chọn điểm I sao cho 2\overrightarrow{IA} - 3\overrightarrow{IB} +
2\overrightarrow{IC} = \overrightarrow{0}. (*)

    Gọi I(x;y), từ (*) ta có

    \left\{ \begin{matrix}2(1 - x) - 3(0 - x) + 2( - 3 - x) = 0 \\2(0 - y) - 3(2 - y) + 2( - 5 - y) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = - 4 \\y = - 16 \\\end{matrix} ight.\  ight.\  \Rightarrow I( - 4; - 16).

    Khi đó P = \left| 2\overrightarrow{MA} -3\overrightarrow{MB} + 2\overrightarrow{MC} ight|= \left|\overrightarrow{MI} ight| = MI.

    Để P nhỏ nhất \Leftrightarrow MI nhỏ nhất. Mà M thuộc trục hoành nên MI nhỏ nhất khi M là hình chiếu vuông góc của I lên trục hoành \overset{}{ightarrow}M( - 4;0).

  • Câu 6: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 7: Thông hiểu

    Gọi M,\ \
N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Đẳng thức nào sau đây đúng?

    Ta có MN là đường trung bình của tam giác ABC.

    Do đó BC =
2MN\overset{}{ightarrow}\left| \overrightarrow{BC} ight| = 2\left|
\overrightarrow{MN} ight|.

  • Câu 8: Nhận biết

    Gọi M,\ \
N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Hỏi cặp vectơ nào sau đây cùng hướng?

    Cặp \overrightarrow{AB}\overrightarrow{MB} là cặp vectơ cùng hướng.

  • Câu 9: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 10: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 11: Thông hiểu

    Giá trị biểu thức T = \tan 1^{\circ}.\tan2^{\circ}\ldots.\tan89^{\circ} bằng:

    Ta có:

    \ T = \left( \tan 1^{\circ}.\tan89^{\circ}ight)\left( \tan 2^{\circ}.\tan88^{\circ} ight)\ldots\left( \tan44^{\circ}.\tan 46^{\circ} ight).\tan45^{\circ}

    = \left( \tan 1^{\circ}.\cot 1^{0}
ight)\left( \tan 2^{\circ}.\cot 2^{\circ} ight)\ldots\left( \tan
44^{\circ}.\cot 44^{\circ} ight)\tan 45^{\circ}

    = 1.1.1\ldots 1 = 1.

  • Câu 12: Thông hiểu

    Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?

     Ta có:\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FA}+\overrightarrow{BC}+\overrightarrow{EF}+\overrightarrow{DE}=\overrightarrow{0}\Leftrightarrow\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DE}  + \overrightarrow {EF}  + \overrightarrow {FA}  = \overrightarrow 0.

  • Câu 13: Vận dụng

    Cho K(1; -
3). Điểm A \in Ox,B \in Oy sao cho A là trung điểm KB. Tìm tọa độ của điểm B.

    Ta có: A \in Ox,B \in Oy nên A(x;0),B(0;y).

    A là trung điểm KB nên \left\{ \begin{matrix}
x = \frac{1 + 0}{2} \\
0 = \frac{- 3 + y}{2} \\
\end{matrix} \Leftrightarrow ight.\ \left\{ \begin{matrix}
x = \frac{1}{2} \\
y = 3 \\
\end{matrix} ight.

    Vậy B(0;3).

  • Câu 14: Nhận biết

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 15: Vận dụng

    Cho tam giác OAB vuông cân tại O, cạnh OA =
a. Khẳng định nào sau đây sai?

    Dựa vào các đáp án, ta có nhận xét sau:

    \left| 3\ \overrightarrow{OA} + 4\
\overrightarrow{OB} ight| = 5a đúng, gọi C nằm trên tia đối của tia AO sao cho OC
= 3\ OA \Rightarrow 3\ \overrightarrow{OA} =
\overrightarrow{OC}.D nằm trên tia đối của tia BO sao cho OD = 4\ OB \Rightarrow 4\
\overrightarrow{OB} = \overrightarrow{OD}.Dựng hình chữ nhật OCED suy ra \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{OE} (quy tắc hình bình hành).

    Ta có \left| 3\overrightarrow{OA} +
4\overrightarrow{OB} ight| = \left| \overrightarrow{OC} +
\overrightarrow{OD} ight| = \left| \overrightarrow{OE} ight| = OE =
CD = \sqrt{OC^{2} + OD^{2}} = 5a.

    \left| 2\ \overrightarrow{OA} ight| +
\left| 3\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 2\ \overrightarrow{OA} ight| + \left| 3\
\overrightarrow{OB} ight| = 2\left| \overrightarrow{OA} ight| +
3\left| \overrightarrow{OB} ight| = 2a + 3a = 5a.

    \left| 7\ \overrightarrow{OA} - 2\
\overrightarrow{OB} ight| = 5a sai, xử lý tương tự như ở trên. Chọn đáp án này.

    \left| 11\ \overrightarrow{OA} ight| -
\left| 6\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 11\ \overrightarrow{OA} ight| - \left| 6\
\overrightarrow{OB} ight| = 11\left| \overrightarrow{OA} ight| -
6\left| \overrightarrow{OB} ight| = 11a - 6a = 5a.

  • Câu 16: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 17: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos(\overrightarrow{a},\overrightarrow{b}) = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight| nên cos(\overrightarrow{a},\overrightarrow{b}) = - 1
\Rightarrow (\overrightarrow{a},\overrightarrow{b}) =
180^{o}.

  • Câu 18: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN} = -
3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

    Ta có \overrightarrow{MN} = -
3\overrightarrow{MP} nên MN =
3MP\overrightarrow{MN}\overrightarrow{MP} ngược hướng.

  • Câu 19: Nhận biết

    Cho tam giác ABC có a = 8,b = 10, góc C bằng 60^{0} . Độ dài cạnh c là ?

    Ta có: c^{2} = a^{2} + b^{2} -
2a.b.cosC = 8^{2} + 10^{2} -
2.8.10.cos60^{0} = 84 \Rightarrow c
= 2\sqrt{21}.

  • Câu 20: Thông hiểu

    Gọi M,N lần lượt là trung điểm của các cạnh ABCD của tứ giác ABCD. Mệnh đề nào sau đây đúng?

    Do M là trung điểm các cạnh AB nên \overrightarrow{MB} + \overrightarrow{MA} =
\overrightarrow{0}.

    Do N lần lượt là trung điểm các cạnh DC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MD}.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MD}= \overrightarrow{MB} +\overrightarrow{BC} + \overrightarrow{MA} + \overrightarrow{AD}=\overrightarrow{AD} + \overrightarrow{BC} + \left( \overrightarrow{MA} +\overrightarrow{MB} ight) = \overrightarrow{AD} +\overrightarrow{BC}

    Mặt khác \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BC} +
\overrightarrow{CD} = \overrightarrow{BC} + \left( \overrightarrow{AC} +
\overrightarrow{CD} ight) = \overrightarrow{BC} +
\overrightarrow{AD}

    Do đó \overrightarrow{AC} +
\overrightarrow{BD} + \overrightarrow{BC} + \overrightarrow{AD} =
4\overrightarrow{MN}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo