Xác định tích phân
?
Ta có:
Xác định tích phân
?
Ta có:
Giá trị tích phân
bằng:
Ta có:
Cho hai hàm số
và
liên tục trên
và thỏa mãn
. Gọi
là thể tích của khối tròn xoay sinh ra khi quay quanh
hình phẳng
giới hạn bởi các đường:
. Khi đó
được tính bởi công thức nào sau đây?
Ta cần nhớ lại công thức sau: Cho hai hàm số liên tục trên
. Khi đó thể tích của vật thể tròn xoay giới hạn bởi
(với
) và hai đường thẳng
khi quay quanh trục
là
.
Cho hàm số
biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số
,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
Tìm nguyên hàm của hàm số
?
Ta có:
Cho đồ thị của hàm số
như sau:

Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:
Dựa vào hình vẽ ta được: .
Tìm nguyên hàm của hàm số ![]()
Cho hàm số
đồng biến và có đạo hàm cấp hai trên đoạn
và thỏa mãn
với
. Biết rằng
khi đó tích phân
bằng:
Ta có:
Theo bài ra ta có:
Cho hàm số
là một nguyên hàm của
trên khoảng
thỏa mãn
. Xác định công thức
?
Ta có: (vì
)
Mà
Vậy .
Dòng diện xoay chiều hình sin chạy qua mạch điện dao động
lí tưởng có phương trình
. Ngoài ra
với
là điện tích tức thời trong tụ. Tính từ lúc
, điện lượng chạy qua tiết diện thẳng của dây dẫn của mạch trong thời gian
là
Điện lượng cần tìm là:
Cho hàm số
có đồ thị
. Xét các điểm
sao cho tiếp tuyến tại
và
của
vuông góc với nhau, diện tích hình phẳng giới hạn bởi
và đường thẳng
bằng
. Gọi
lần lượt là hoành độ của
và
. Giá trị của
bằng:
Hình vẽ minh họa
Ta có: có TXĐ:
Giả sử và
Phương trình tiếp tuyến tại điểm A của (P) là
Phương trình tiếp tuyến tại điểm B của (P) là
Vì nên ta có:
Phương trình đường thẳng AB
Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:
Thay ta có:
Cho hàm số
. Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành. Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm:
Diện tích hình phẳng cần tìm là:
((do trong khoảng (0; 1) và (1; 2) phương trình
vô nghiệm)
Vậy mệnh đề sai là: .
Nguyên hàm của hàm số
là:
Ta có:
Một chất điểm đang chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian
kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc nên
Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, đường thẳng
như hình vẽ sau:

Hỏi khẳng định nào dưới đây là khẳng định đúng?
Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số trục hoành, đường thẳng
ta có:
.
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Trong mặt phẳng tọa độ
, cho đường tròn
.

Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn
quanh trục hoành.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Họ nguyên hàm của hàm số
là:
Ta có:
Cho hàm số
liên tục trên đoạn
và
. Tính tích phân
?
Ta có: