Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{1}{{x - 1}};f\left( 0 ight) = 2017;f\left( 2 ight) = 2018. Giá trị của biểu thức T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] là bao nhiêu?

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\dfrac{1}{{x - 1}}dx}  \hfill \\   = \ln \left| {x - 1} ight| + C = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  1}}} \\   {\ln \left( {1 - x} ight) + {C_2}{\text{ khi x  <  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 2017 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 2017} \\   {f\left( 2 ight) = 2018 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 2018} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 2017} \\   {{C_1} = 2018} \end{array}} ight.

    Khi đó

    \begin{matrix}  T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] \hfill \\   = \left[ {\ln \left( {3 - 1} ight) + 2018 - 2018} ight].\left[ {\ln \left( {1 - \left( { - 1} ight)} ight) + 2017 - 2017} ight] \hfill \\   = \ln 2.\ln 2 = {\ln ^2}2 \hfill \\ \end{matrix}

  • Câu 2: Nhận biết

    Cho hàm số y = f(x);y = g(x) liên tục trên \lbrack a;bbrack. Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x);y = g(x) và các đường thẳng x = a;x = b. Diện tích hình (H) được tính theo công thức?

    Ta có diện tích hình (H) được tính bằng công thức S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 3: Vận dụng cao

    Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1 như hình vẽ:

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1)thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.?

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1) thì được thiết diện là một tam giác đều có cạnh bằng 2\sqrt{1 - x^{2}}

    Do đó, diện tích của thiết diện: S(x) =\frac{\left( 2\sqrt{1 - x^{2}} ight)^{2}\sqrt{3}}{4} = \sqrt{3}\left(1 - x^{2} ight)

    V = \int_{- 1}^{1}{S(x)dx} = \int_{-1}^{1}{\left\lbrack \sqrt{3}\left( 1 - x^{2} ight) ightbrackdx}

    = \sqrt{3}\left. \ \left( x -\frac{x^{3}}{3} ight) ight|_{- 1}^{1} =\frac{4\sqrt{3}}{3}

  • Câu 4: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)?

    Ta có: f(x) = (x + 1)(x + 2) = x^{2} + 3x
+ 2

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
x^{2} + 3x + 2 ight)dx} = \frac{x^{3}}{3} + \frac{3}{2}x^{2} + 2x +
C

  • Câu 5: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) cắt trục Ox tại ba điểm có hoành độ a;b;c với c\in (a;b) như hình bên. Đặt m =\int_{a}^{c}{f(x)dx;n} = \int_{c}^{b}{f(x)dx}. Diện tích của hình phẳng giới hạn bởi đồ thị (C) và trục hoành (phần tô đậm) bằng bao nhiêu?

    Diện tích hình phẳng

    Diện tích hình phẳng phần tô đậm được tính như sau:

    S = \int_{a}^{b}{\left| f(x) ight|dx}= \int_{a}^{c}{\left| f(x) ight|dx} + \int_{c}^{b}{\left| f(x)ight|dx}

    = \int_{a}^{c}{f(x)dx} -\int_{c}^{b}{f(x)dx} = m - n

  • Câu 6: Thông hiểu

    Cho hàm số f(x);g(x) là các hàm số liên tục trên \lbrack 1;3brack và thỏa mãn \int_{1}^{3}{\left\lbrack f(x) +
3g(x) ightbrack dx} = 10\int_{1}^{3}{\left\lbrack 2f(x) - g(x)
ightbrack dx} = 6. Tính tích phân K = \int_{1}^{3}{\left\lbrack f(x) + g(x)
ightbrack dx}?

    Theo bài ra ta có:

    \left\{ \begin{matrix}\int_{1}^{3}{\left\lbrack f(x) + 3g(x) ightbrack dx} = 10 \\\int_{1}^{3}{\left\lbrack 2f(x) - g(x) ightbrack dx} = 6 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}\int_{1}^{3}{f(x)dx} + 3\int_{1}^{3}{g(x)dx} = 10 \\2\int_{1}^{3}{f(x)dx} - \int_{1}^{3}{g(x)dx} = 6 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\int_{1}^{3}{f(x)dx} = 4 \\\int_{1}^{3}{g(x)dx} = 2 \\\end{matrix} ight.\Rightarrow K = \int_{1}^{3}{\left\lbrack f(x) +g(x) ightbrack dx} = 4.2 = 6

  • Câu 7: Nhận biết

    Cho hàm số f(x) liên tục trên tập số thực và thỏa mãn \int_{0}^{6}{f(x)dx}= 7;\int_{3}^{10}{f(x)dx} = 8;\int_{3}^{6}{f(x)dx} = 9. Khi đó giá trị I = \int_{0}^{10}{f(x)dx} bằng:

    Ta có:

    \int_{3}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} + \int_{6}^{10}{f(x)dx}

    \Leftrightarrow \int_{6}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} - \int_{3}^{10}{f(x)dx} = 8 - 9 = 1

    \Rightarrow I = \int_{0}^{6}{f(x)dx} +
\int_{6}^{10}{f(x)dx} = 7 - 1 = 6

  • Câu 8: Thông hiểu

    Hàm số nào dưới đây là họ nguyên hàm của hàm số y = cos2x?

    Ta có: \int_{}^{}{\cos2xdx} =\frac{1}{2}\sin2x + C

    = \frac{1}{2}.2\sin x\cos x + C =\frac{1}{2}.\left( 1 + 2\sin x\cos x ight) + C -\frac{1}{2}

    = \frac{1}{2}.\left( \sin^{2}x +2\sin x\cos x + \cos^{2}x ight) + C'

    = \frac{1}{2}.\left( \sin x + \cos x
ight)^{2} + C'

    Vậy đáp án cần tìm là: y =
\frac{1}{2}\left( \sin x + \cos x ight)^{2} + C.

  • Câu 9: Vận dụng

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Nhận biết

    Hàm số y = {x^3} + x có nguyên hàm là:

     Ta có: \int {\left( {{x^3} + x} ight)dx}  = \int {{x^3}dx}  + \int {xdx}  = \frac{1}{4}{x^4} + \frac{1}{2}{x^2} + C

  • Câu 11: Vận dụng cao

    Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên \left( {0; + \infty } ight) và thỏa mãn f(1) = 1, f\left( x ight) = f'\left( x ight)\sqrt {3x + 1} ,\forall x > 0. Mệnh đề nào sau đây đúng?

    Ta có: f\left( x ight) > 0f\left( x ight) = f'\left( x ight)\sqrt {3x + 1}

    => \frac{{f'\left( x ight)}}{{f\left( x ight)}} = \frac{1}{{\sqrt {3x + 1} }}

    => \int {\frac{{f'\left( x ight)}}{{f\left( x ight)}}dx}  = \int {\frac{1}{{\sqrt {3x + 1} }}} dx \Rightarrow \ln f\left( x ight) = \frac{{2\sqrt {3x + 1} }}{3} + C

    Mà f(1) = 1 => C =  - \frac{4}{3}f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}}.f\left( 5 ight) = {e^{\frac{4}{3}}} \approx 3,79

  • Câu 12: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tích phân

    Tính tích phân I = \int_{1}^{2}{f'(2x
- 1)dx}?

    Ta có:

    I = \int_{1}^{2}{f'(2x - 1)dx} =
\frac{1}{2}\int_{1}^{2}{f'(2x - 1)d(2x - 1)}

    = \frac{1}{2}\left. \ f(2x - 1)ight|_{1}^{2} = \frac{1}{2}\left\lbrack f(3) - f(1) ightbrack =2

  • Câu 13: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = {\left( {2x - 3} ight)^2} thỏa mãn F\left( 0 ight) = \frac{1}{3}. Tính giá trị của biểu thức A = {\log _2}\left[ {3F\left( 1 ight) - 2F\left( 2 ight)} ight]

     F\left( x ight) = \int {{{\left( {2x - 3} ight)}^2}dx = \frac{1}{2}\int {{{\left( {2x - 3} ight)}^2}d\left( {2x - 3} ight) = } \frac{1}{2}.\frac{{{{\left( {2x - 3} ight)}^2}}}{3} + C}

    Ta có: F\left( 0 ight) = \frac{1}{3} \Rightarrow C = \frac{{29}}{6}

    F\left( 1 ight) = \frac{1}{2}.\left( {\frac{{ - 1}}{3}} ight) + \frac{{29}}{6} = \frac{{14}}{3};F\left( 2 ight) = \frac{1}{2}.\left( {\frac{1}{3}} ight) + \frac{{29}}{6} = 5

    => A = {\log _2}\left[ {3F\left( 1 ight) - 2F\left( 2 ight)} ight] = A = {\log _2}\left[ {3\frac{{14}}{3} - 2.5} ight] = {\log _2}4 = 2

  • Câu 14: Nhận biết

    Đặt I = \int_{1}^{2}{(2mx +
1)dx} với m là tham số thực. Tìm giá trị của tham số m để I = 4?

    Ta có: I = \int_{1}^{2}{(2mx + 1)dx} =
\left. \ \left( mx^{2} + x ight) ight|_{1}^{2} = 3m + 1

    Do I = 4 \Leftrightarrow 3m + 1 = 4
\Leftrightarrow m = 1.

  • Câu 15: Nhận biết

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 16: Nhận biết

    Cho hàm số f(x) biết f(0) = 1, f'(x) liên tục trên \lbrack 0;3brack\int_{0}^{3}{f'(x)dx} = 9. Tính f(3)?

    Ta có:

    \int_{0}^{3}{f'(x)dx} = 9
\Leftrightarrow \left. \ f(x) ight|_{0}^{3} = 9 \Rightarrow f(3) -
f(0) = 9

    \Rightarrow f(3) = 9 + f(0) = 9 + 1 =
10

  • Câu 17: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 18: Vận dụng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x}. Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\frac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = \int_{}^{}{\frac{2}{\sin^{2}x}d\left(\sin x ight)} - \int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = - \frac{2}{\sin x} + \cot x +
C

    Suy ra F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    Trên khoảng (0;\pi) ta có:

    F'(x) = 0 \Leftrightarrow 2\cos x - 1= 0 \Leftrightarrow x = \frac{\pi}{3}

    Ta có bảng biến thiên

    Giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3} nên t s có:

    F\left( \frac{\pi}{3} ight) = \sqrt{3}
\Leftrightarrow - \frac{3\sqrt{3}}{3} + C = \sqrt{3} \Leftrightarrow C =
2\sqrt{3}

    Vậy F(x) = - \frac{2}{\sin x} + \cot x +
2\sqrt{3} \Rightarrow F\left( \frac{\pi}{6} ight) = 3\sqrt{3} -
4.

  • Câu 19: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x^{3}, trục hoành và hai đường thẳng x = - 1;x = 2 biết rằng mỗi đơn vị dài trên các trục tọa độ là 2cm?

    Ta có: S = \int_{- 1}^{2}{\left| x^{3}
ight|dx} = \int_{- 1}^{0}{\left| x^{3} ight|dx} +
\int_{0}^{2}{\left| x^{3} ight|dx}

    = - \int_{- 1}^{0}{x^{3}dx} +
\int_{0}^{2}{x^{3}dx} = \left. \  - \frac{x^{4}}{4} ight|_{-
1}^{0}\left. \  + \frac{x^{4}}{4} ight|_{0}^{2} =
\frac{17}{4}

    Do mỗi đơn vị trên trục là 2 cm nên S =
\frac{17}{4}.2^{2} = 17\left( cm^{2} ight)

  • Câu 20: Nhận biết

    Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2;y = 0;x = - 1;x
= 2 quanh trục Ox bằng

    Ta có:

    V = \pi\int_{- 1}^{2}{\left( x^{2} - 2x
ight)^{2}dx} = \pi\int_{- 1}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} -
x^{4} + \frac{4x^{3}}{3} ight) ight|_{- 1}^{2} =
\frac{18\pi}{5}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo