Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 2: Vận dụng

    Cho hàm số y = f(x) liên tục nhận giá trị dương trên (0; +\infty) và thỏa mãn f(1) =1; f(x) = f'(x).\sqrt{3x +1};\forall x > 0. Giá trị f(3) gần nhất với giá trị nào sau đây?

    \left\{ \begin{matrix}f(x) > 0 \\f(x) = f'(x)\sqrt{3x + 1} \\\end{matrix} ight.\  \Rightarrow \frac{f'(x)}{f(x)} =\frac{1}{\sqrt{3x + 1}}

    \Rightarrow\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{\frac{1}{\sqrt{3x +1}}dx} \Rightarrow \ln f(x) = \frac{2\sqrt{3x + 1}}{3} + C

    f(1) = 1 \Rightarrow C = -\frac{4}{3}

    \Rightarrow f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}} \Rightarrow f\left( 3 ight)  \approx 2,17

  • Câu 3: Thông hiểu

    Cho hàm số f(x) xác định trên \mathbb{R}\left\{ 1 ight\}thỏa mãn f'(x) = \frac{1}{x - 1}; f(0) = 2017;f(2) = 2018. Tính T = f(3) - f( - 1)?

    Trên khoảng (1; + \infty) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(x - 1) + C_{1}

    \Rightarrow f(x) = \ln(x - 1) +
C_{1}

    f(2) = 2018 \Rightarrow C_{1} =
2018

    Trên khoảng ( - \infty;1) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(1 - x) + C_{2}

    \Rightarrow f(x) = \ln(1 - x) +
C_{2}

    f(0) = 2017 \Rightarrow C_{2} =
2017

    Vậy f(x) = \left\{ \begin{matrix}
\ln(x - 1) + 2018\ \ \ khi\ x\  > \ 1 \\
\ln(1 - x) + 2017\ \ \ khi\ x\  < \ 1 \\
\end{matrix} ight.

    \Rightarrow T = f(3) - f( - 1) =
1.

  • Câu 4: Nhận biết

    Họ nguyên hàm của hàm số f(x) = \sin x\cos x + \frac{1}{x + 1} là:

    Ta có:

    f(x) = \frac{1}{2}\sin2x + \frac{1}{x +1}

    \Rightarrow F(x) = \int_{}^{}{\left(\frac{1}{2}\sin2x + \frac{1}{x + 1} ight)dx} = - \frac{1}{4}\cos2x +\ln|x + 1| + C

  • Câu 5: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên khoảng (0; + \infty) thỏa mãn f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack và f(1) = 0. Giá trị tích phân D = \int_{1}^{5}{f(x)dx} bằng:

    Từ giả thiết ta có:

    f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack

    \Leftrightarrow \frac{f(x)}{x} =
\ln\left\lbrack \frac{x^{3}}{xf'(x) - f(x)}
ightbrack

    \Leftrightarrow e^{\frac{f(x)}{x}} =
\frac{x^{3}}{xf'(x) - f(x)}

    \Leftrightarrow \frac{xf'(x) -
f(x)}{x^{2}}.e^{\frac{f(x)}{x}} = x

    \Leftrightarrow \left\lbrack
\frac{f(x)}{x} ightbrack'.e^{\frac{f(x)}{x}} = x(*)

    Lấy nguyên hàm hai vế của (*) suy ra e^{\frac{f(x)}{x}} = \frac{x^{2}}{2} +
C

    f(1) = 0 \Rightarrow C =
\frac{1}{2} nên e^{\frac{f(x)}{x}}
= \frac{x^{2}}{2} + \frac{1}{2} \Rightarrow f(x) = x\ln\frac{x^{2} +
1}{2};\forall x \in (0; + \infty)

    D = \int_{1}^{5}{f(x)dx} =\int_{1}^{5}{x.\ln\frac{x^{2} + 1}{2}dx}(**)

    Đặt \left\{ \begin{matrix}u = \ln\dfrac{x^{2} + 1}{2} \\dv = xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{2x}{x^{2} + 1}dx \\v = \dfrac{x^{2} + 1}{2} \\\end{matrix} ight.

    Theo công thức tích phân từng phần ta được:

    D = \left. \ \left( \frac{x^{2} +1}{2}.\ln\frac{x^{2} + 1}{2} ight) ight|_{1}^{5} - \int_{1}^{5}{xdx}= 13\ln13 - \left. \ \frac{x^{2}}{2} ight|_{1}^{5} = 13\ln13 -12

  • Câu 6: Nhận biết

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 5;3brackF(x) là một nguyên hàm của f(x). Biết rằng F( - 5) = 3;F(3) = \frac{15}{7}. Xác định tích phân I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx}?

    Ta có: I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx} = \left. \ \left( 7F(x) ight) ight|_{-
5}^{3} - \left. \ \frac{x^{2}}{2} ight|_{- 5}^{3} = 2.

  • Câu 7: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = \frac{{x + 2}}{{\sqrt {x + 1} }}

     Đặt t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1 \Rightarrow 2tdt = dx

    F\left( x ight) = \int {\frac{{x + 2}}{{\sqrt {x + 1} }}dx = \int {\left( {\frac{{{t^2} + 1}}{2}} ight).2tdt = \int {\left( {2{t^2} + 2} ight)dt = \frac{{2{t^3}}}{3} + 2t + C} } }

    = \frac{{2\left( {x + 1} ight)\sqrt {x + 1} }}{3} + 2\sqrt {x + 1}  + C = \frac{2}{3}\left( {x + 4} ight)\sqrt {x + 1}  + C

  • Câu 8: Nhận biết

    Tính diện tích hình phẳng giới hạn bởi các đường thẳng y = \cos x;Ox;x = - \frac{\pi}{2};x =
\frac{\pi}{2}?

    Hình vẽ minh họa

    Ta có: \cos x = 0 \Rightarrow x =
\frac{\pi}{2} + k\pi;k\mathbb{\in Z}

    Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng \left( - \frac{\pi}{2};\frac{\pi}{2}
ight)

    Diện tích hình giới hạn là S = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\left| \cos x ight|dx} = \left| \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\cos xdx} ight| = \left| \left. \ \sin x ight|_{- \frac{\pi}{2}}^{\frac{\pi}{2}} ight| = 2

  • Câu 9: Thông hiểu

    Cho hàm số y = x^{2} - 2x có đồ thị (P). Các tiếp tuyến với đồ thị tại O(0;0) và tại A(3;3) cắt nhau tại B. Tính diện tích hình phẳng giới hạn bởi cung OA của (P) và hai tiếp tuyến BO;BA?

    Tập xác định D\mathbb{= R}

    y' = 2x - 2

    Tiếp tuyến tại O(0; 0) là OB: y =
y'(0)(x - 0) + 0 \Leftrightarrow y = - 2x

    Tiếp tuyến tại A(3; 3) là AB: y =
y'(3)(x - 3) + 3 \Leftrightarrow y = 4x - 9

    Suy ra OA \cap OB = B\left( \frac{3}{2};
- 3 ight)

    Diện tích hình giới hạn là

    S = \int_{0}^{\frac{3}{2}}{x^{2}dx} +
\int_{\frac{3}{2}}^{3}{\left( x^{2} - 6x + 9 ight)dx} = \frac{9}{8} +
\frac{9}{8} = \frac{9}{4}

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack, có đồ thị hàm số y = f'(x) như sau:

    Mệnh đề nào dưới đây là đúng?

    Theo ý nghĩa hình học của tích phân thì \int_{a}^{b}{f'(x)dx} là diện tích hình thang cong ABMN.

  • Câu 11: Nhận biết

    Nếu \int_{0}^{1}{f(x)dx} =
2;\int_{1}^{2}{f(x)dx} = 4. Khi đó \int_{0}^{2}{f(x)dx} bằng:

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx} = 2 + 4 = 6.

  • Câu 12: Nhận biết

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳng x =
- 1;x = 3.

    Diện tích hình phẳng được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left. \ \left( \frac{x^{3}}{3} + x^{2} + x ight)
ight|_{- 1}^{3} = \frac{64}{3}.

  • Câu 13: Vận dụng cao

    Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1 như hình vẽ:

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1)thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.?

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1) thì được thiết diện là một tam giác đều có cạnh bằng 2\sqrt{1 - x^{2}}

    Do đó, diện tích của thiết diện: S(x) =\frac{\left( 2\sqrt{1 - x^{2}} ight)^{2}\sqrt{3}}{4} = \sqrt{3}\left(1 - x^{2} ight)

    V = \int_{- 1}^{1}{S(x)dx} = \int_{-1}^{1}{\left\lbrack \sqrt{3}\left( 1 - x^{2} ight) ightbrackdx}

    = \sqrt{3}\left. \ \left( x -\frac{x^{3}}{3} ight) ight|_{- 1}^{1} =\frac{4\sqrt{3}}{3}

  • Câu 14: Thông hiểu

    Dòng diện xoay chiều hình sin chạy qua mạch điện dao động LC lí tưởng có phương trình i = I_{0}\sin\left( \omega t + \frac{\pi}{2}
ight). Ngoài ra i =
q'(t) với q là điện tích tức thời trong tụ. Tính từ lúc t =
0, điện lượng chạy qua tiết diện thẳng của dây dẫn của mạch trong thời gian \frac{\pi}{2\omega}

    Điện lượng cần tìm là:

    \int_{0}^{\frac{\pi}{2\omega}}{\left\lbrack
I_{0}\sin\left( \omega t + \frac{\pi}{2} ight) ightbrack dt} =
\int_{0}^{\frac{\pi}{2\omega}}{\left\lbrack I_{0}\cos(\omega t)
ightbrack dt}

    = \left. \ \left\lbrack I_{0}\sin(\omega
t) ightbrack ight|_{0}^{\frac{\pi}{2\omega}} =
\frac{I_{0}}{\omega}

  • Câu 15: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x - 3)^{2} + (y - 1)^{2} =1.

    Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn (C) quanh trục hoành.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x - 3)^{2} + (y - 1)^{2} =1.

    Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn (C) quanh trục hoành.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng cao

    Cho a, b là các số hữu tỉ thỏa mãn

    \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = a\left( {x + 2} ight)\sqrt {x + 2}  + b\left( {x + 1} ight)\sqrt {x + 1}  + C}

    Tính giá trị biểu thức M = a + b.

     I = \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = \int {\frac{{\sqrt {x + 2}  - \sqrt {x + 1} }}{{\left( {x + 2} ight) - \left( {x + 1} ight)}}dx}  = \int {\left( {\sqrt {x + 2}  - \sqrt {x + 1} } ight)dx} }

    => I = \frac{2}{3}.\left( {x + 2} ight)\sqrt {x + 2}  - \frac{2}{3}\left( {x + 1} ight)\sqrt {x + 1}  + C

    => \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{2}{3}} \\   {b = \dfrac{{ - 2}}{3}} \end{array}} ight. \Rightarrow M = a + b = 0

  • Câu 17: Thông hiểu

    Cho hàm y = f(x) có đạo hàm liên tục trên \lbrack 1;3brack. Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = f'(x) và đường thẳng y = x (phần gạch chéo trong hình vẽ):

    Diện tích hình (H) bằng:

    Diện tích phần gạch chéo là:

    S = \int_{1}^{2}{\left\lbrack f'(x)
- x ightbrack dx} - \int_{2}^{3}{\left\lbrack f'(x) - x
ightbrack dx}

    = \left. \ \left\lbrack f(x) -
\frac{x^{2}}{2} ightbrack ight|_{1}^{2} - \left. \ \left\lbrack
f(x) - \frac{x^{2}}{2} ightbrack ight|_{2}^{3}

    = 2f(2) - f(1) - f(3) + 1.

  • Câu 18: Thông hiểu

    Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian t(s)a(t)
= 2t - 7\left( m/s^{2} ight). Biết vận tốc đầu bằng 10(m/s). Hỏi trong 6 giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?

    Ta có:

    Vận tốc của vật được tính theo công thức: v(t) = 10 + t^{2} - 7t(m/s)

    Suy ra quãng đường vật đi được tính theo công thức: S(t) = \int_{}^{}{v(t)dt} = \frac{t^{3}}{3} -
\frac{7}{2}t^{2} + 10t

    Ta có: S'(t) = t^{2} - 7t + 10
\Rightarrow S'(t) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 2 \\
t = 5 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}S(0) = 0 \\S(2) = \dfrac{26}{3} \\S(5) = \dfrac{25}{6} \\S(6) = 6 \\\end{matrix} ight.\  \Rightarrow \underset{\lbrack 0;6brack}{\max S(t) = S(2)} = \dfrac{26}{3}

    Vậy thời điểm chất điểm ở xa nhất về phía bên phải là 2s.

  • Câu 19: Nhận biết

    Một chiếc máy bay di chuyển với vận tốc là v(t) = 3t^{2} + 5(m/s). Hỏi quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 bằng bao nhiêu?

    Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:

    S = \int_{4}^{10}{v(t)dt} =
\int_{4}^{10}{\left( 3t^{2} + 5 ight)dt}

    = \left. \ \left( t^{3} + 5t ight)
ight|_{4}^{10} = 996(m)

  • Câu 20: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo