Diện tích hình phẳng giới hạn bởi hai đồ thị
được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Diện tích hình phẳng giới hạn bởi hai đồ thị
được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Cho đường thẳng
và parabol
(
là tham số thực). Gọi
lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi
thì
thuộc khoảng nào dưới đây?

Phương trình hoành độ giao điểm của của hai đồ thị:
Theo giả thiết, phương trình có hai nghiệm phân biệt
Khi đó, phương trình có hai nghiệm thỏa mãn:
Diện tích hình phẳng:
Diện tích hình phẳng:
Theo giả thiết ta có:
Họ nguyên hàm của hàm số
là:
Ta có: .
Cho các hàm số
và
liên tục trên
thỏa mãn
với
. Tính
, biết rằng
?
Ta có: .
Xét hình phẳng
giới hạn bởi các đường như hình vẽ (phần gạch sọc).

Diện tích hình phẳng
được tính theo công thức
Ta có:
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a)
là một nguyên hàm của
. Đúng||Sai
b)
. Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a) là một nguyên hàm của
. Đúng||Sai
b) . Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Ta có: là một nguyên hàm của
và
Do
Tốc độ tăng dân số của nước ta vào năm 2034 là
( triệu người/năm)
Dân số của nước ta vào năm 2034 là
( triệu người)
Một vật chuyển động chậm dần đều với vận tốc
. Hỏi trong
trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Nếu
thì
bằng:
Ta có:
Một vật thể nằm giữa hai mặt phẳng
và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có: .
Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc
, trong đó
là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là bao nhiêu mét?
Ta có:
Khi đó do ban đầu ô tô đang dừng nên
Quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là: .
Xét hình phẳng
giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?

Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng
xung quanh trục Ox.
Ta có :
Gọi F(x) là một nguyên hàm của hàm số
, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Tìm nguyên hàm của hàm số ![]()
Cho hình phẳng
giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Xác định nguyên hàm của hàm số
?
Ta có: .
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vì là một nguyên hàm của hàm số
trên khoảng
nên hàm số
có công thức dạng
với mọi
Xét hàm số xác định và liên tục trên
Ta có:
Trên khoảng phương trình
có một nghiệm
Ta có bảng biến thiên như sau:
. Theo bài ra ta có:
Do đó suy ra
.
Cho các hàm số
có đạo hàm cấp một, đạo hàm cấp hai liên tục trên
và thỏa mãn
. Giá trị của biểu thức
bằng:
Đặt
Ta có:
Ta có:
Vậy
Tìm
biết rằng
là phân số tối giản?
Ta có:
Đổi cận khi đó suy ra