Cho hình
là hình phẳng giới hạn bởi parabol
, đường cong
và trục hoành (phần tô đậm trong hình vẽ).

Tính diện tích
của hình
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Cho hình
là hình phẳng giới hạn bởi parabol
, đường cong
và trục hoành (phần tô đậm trong hình vẽ).

Tính diện tích
của hình
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Nguyên hàm của hàm số
là
Ta có: .
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Biết tích phân
trong đó
là các số nguyên. Tính giá trị biểu thức
?
Ta có:
Khi đó
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Cho hàm số
liên tục trên
và có một nguyên hàm là hàm số
. Mệnh đề nào sau đây đúng?
Theo định nghĩa tích phân ta có: .
Cho hàm số
có đạo hàm
liên tục trên
;
. Tính giá trị
?
Ta có:
Tính diện tích hình phẳng giới hạn bởi các đường cong
và các đường thẳng
?
Hình vẽ minh họa
Với khi đó
Diện tích hình phẳng ta được:
Tính tích phân
?
Ta có:
Cho hàm số
có đạo hàm trên khoảng
thỏa mãn
và
. Giá trị tích phân
bằng:
Từ giả thiết ta có:
Lấy nguyên hàm hai vế của (*) suy ra
Vì nên
Đặt
Theo công thức tích phân từng phần ta được:
Biết
là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Trong mặt phẳng tọa độ
, cho đường tròn
.

Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn
quanh trục hoành.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Gọi
là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức
. Kết luận nào sau đây đúng?
Ta có:
Một chất điểm đang chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian
kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc nên
Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Cho parabol
và hai điểm
thuộc
sao cho
. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol
và đường thẳng
.
Hình vẽ minh họa
Gọi và
là hai điểm thuộc (P) sao cho AB = 2.
Không mất tính tổng quát giả sử a < b.
Theo giả thiết ta có AB = 2 nên
Phương trình đường thẳng đi qua hai điểm A và B là
Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:
Mặt khác nên
do
Suy ra
Vậy dấu bằng xảy ra khi và chỉ khi a = − b = ±1.