Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Giá trị của bằng
Ta có:
Biết tích phân trong đó
là các số nguyên. Tính giá trị biểu thức
?
Ta có:
Khi đó
Giá trị của bằng
Ta có:
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Xét hình phẳng giới hạn bởi các đường như hình vẽ (phần gạch sọc).
Diện tích hình phẳng được tính theo công thức
Ta có:
Thể tích khối tròn xoay khi quay quanh trục Ox hình phẳng giới hạn bởi là
. Tính
?
Phương trình hoành độ giao điểm
Ta có:
Vậy
Cho a, b là các số hữu tỉ thỏa mãn
Tính giá trị biểu thức M = a + b.
=>
=>
Tích phân với
. Kết luận nào dưới đây đúng?
Ta có:. Đặt
Đổi cận tích phân
Vậy
Suy ra . Vậy
.
Tìm nguyên hàm của hàm số ?
Ta có:
Cho hàm số có đạo hàm trên khoảng
thỏa mãn
và
. Giá trị tích phân
bằng:
Từ giả thiết ta có:
Lấy nguyên hàm hai vế của (*) suy ra
Vì nên
Đặt
Theo công thức tích phân từng phần ta được:
Tích phân bằng:
Ta có:
.
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành, đường thẳng
như hình vẽ sau:
Hỏi khẳng định nào dưới đây là khẳng định đúng?
Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số trục hoành, đường thẳng
ta có:
.
Hàm số nào sau đây là một nguyên hàm của hàm số ?
Ta có:
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Cả hai bên cầu có tất cả nhịp cầu.
Chọn hệ trục tọa độ như hình vẽ với gốc là chân cầu, đỉnh
, điểm
Gọi Parabol phía trên có phương trình: (vì
)
là phương trình parabol phía dưới
(Vì bề dày nhịp cầu là )
Ta có
Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi và trục Ox nên ta có:
Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là
Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là
Biết là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là và
. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số
. Tính thể tích bình cắm hoa?
Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là và
. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số
. Tính thể tích bình cắm hoa?
Biết . Khi đó
tương ứng bằng
Ta có:
Hàm số là một nguyên hàm của hàm số
trên
thỏa mãn
. Khẳng định nào sau đây đúng?
Ta có:
Lại có
Do đó
Vậy .
Tìm nguyên hàm của hàm số bằng: