Cho hàm số
liên tục trên tập số thực và thỏa mãn ![]()
![]()
. Khi đó giá trị
bằng:
Ta có:
Cho hàm số
liên tục trên tập số thực và thỏa mãn ![]()
![]()
. Khi đó giá trị
bằng:
Ta có:
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường
quay xung quanh
.
Thể tích vật thể bằng:
.
Cho hàm số
có đạo hàm
liên tục trên
;
. Tính giá trị
?
Ta có:
Biết
với
là các số nguyên dương. Giá trị của biểu thức
bằng:
Giả sử . Đặt
, đổi cận
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số ![]()
Ta có: F(x) là một nguyên hàm của hàm số nên:
Hay
Xét
Đặt
Khi đó
Giả sử
với
là hằng số. Tổng các nghiệm của phương trình
bằng:
Ta có:
Đặt
Theo định lí Vi – et ta thấy phương trình có hai nghiệm
và
.
Tìm họ nguyên hàm của hàm số ![]()
Tích phân
với
. Kết luận nào dưới đây đúng?
Ta có:. Đặt
Đổi cận tích phân
Vậy
Suy ra . Vậy
.
Cho hàm số
có đồ thị
. Xét các điểm
sao cho tiếp tuyến tại
và
của
vuông góc với nhau, diện tích hình phẳng giới hạn bởi
và đường thẳng
bằng
. Gọi
lần lượt là hoành độ của
và
. Giá trị của
bằng:
Hình vẽ minh họa
Ta có: có TXĐ:
Giả sử và
Phương trình tiếp tuyến tại điểm A của (P) là
Phương trình tiếp tuyến tại điểm B của (P) là
Vì nên ta có:
Phương trình đường thẳng AB
Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:
Thay ta có:
Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số
quanh trục
bằng
Ta có:
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho hình
giới hạn bởi các đường
, trục hoành. Quay hình phẳng
quanh trục
ta được khối tròn xoay có thể tích là:
Phương trình hoành độ giao điểm của là:
Khi đó .
Xét
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
. Giá trị của
sao cho thể tích của khối tròn xoay tạo thành khi quay
quanh trục hoành bằng
là?
Thể tích khối tròn xoay tạo thành khi quay quanh trục hoành là:
Mà
Vậy là giá trị cần tìm.
Tìm nguyên hàm của hàm số
?
Ta có:
Tổng tất cả các giá trị của tham số m thỏa mãn
bằng:
Ta có:
Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số.
Áp dụng hệ thứ Vi- et
Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Một mảnh vườn hình elip có trục lớn bằng
, trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Một mảnh vườn hình elip có trục lớn bằng , trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Cho
là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Cho hình vẽ:

Diện tích của hình phẳng
được giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
(phần tô đậm trong hình vẽ) tính theo công thức:
Áp dụng công thức tính diện tích hình phẳng ta có:
Vậy đáp án cần tìm là: .
Tính tích phân
bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra