Một vật thể nằm giữa hai mặt phẳng
và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Một vật thể nằm giữa hai mặt phẳng
và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Hình vẽ minh họa
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Cho
. Hãy tính
?
Đặt
Đổi cận ta có:
Vậy
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất
, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

Đáp án: 667m
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất , sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).
Đáp án: 667m
Giả sử hàm số biểu thị cho vận tốc có dạng
Do đi qua gốc
nên
có đỉnh là
Do đó
Xe dừng lại khi
Quảng đường xe ô tô di chuyển trong 20 giây là
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
bằng
Ta có .
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Cho hàm số
có đồ thị
. Xét các điểm
sao cho tiếp tuyến tại
và
của
vuông góc với nhau, diện tích hình phẳng giới hạn bởi
và đường thẳng
bằng
. Gọi
lần lượt là hoành độ của
và
. Giá trị của
bằng:
Hình vẽ minh họa
Ta có: có TXĐ:
Giả sử và
Phương trình tiếp tuyến tại điểm A của (P) là
Phương trình tiếp tuyến tại điểm B của (P) là
Vì nên ta có:
Phương trình đường thẳng AB
Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:
Thay ta có:
Tích phân
bằng:
Ta có:
Viết công thức tính thể tích
của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục
tại các điểm
, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là
.
Thể tích của vật thể đã cho là: .
Vật thể
giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Tìm họ nguyên hàm của hàm số ![]()
Tính diện tích S của hình phẳng giới hạn bởi các đường
?
Phương trình hoành độ giao điểm
Do đó, diện tích hình phẳng giới hạn bởi các đường
Biết rằng
. Mệnh đề nào sau đây đúng?
Ta có:
Khi đó
Suy ra suy ra
.
Nguyên hàm của hàm số
là:
Ta có:
Cho hàm số
liên tục trên tập số thực và thỏa mãn ![]()
![]()
. Khi đó giá trị
bằng:
Ta có:
Một vật chuyển động với gia tốc
. Vận tốc ban đầu của vật là
. Hỏi vận tốc của vật là bao nhiêu sau khi chuyển động với gia tốc đó được
.
Ta có:
Do khi bắt đầu tăng tốc nên
Suy ra
Vận tốc của vật khi chuyển động với gia tốc đó được 2s là .
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là
, chiều cao trong lòng cốc là
đang đựng một lượng nước.

Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là , chiều cao trong lòng cốc là
đang đựng một lượng nước.
Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là: