Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 2: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 3: Nhận biết

    Cho hình vẽ:

    Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:

    Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{2}{\left( - x^{2} + 3 -
x^{2} + 2x + 1 ight)dx} = \int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4
ight)dx}.

  • Câu 4: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn 2xf\left( x ight) + {x^2}f'\left( x ight) = 1;f\left( 1 ight) = 0. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có:

    \begin{matrix}  2xf\left( x ight) + {x^2}f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left( {{x^2}} ight)'.f\left( x ight) + {x^2}.f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left[ {{x^2}f\left( x ight)} ight]' = 1 \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {{x^2}f\left( x ight)} ight]'dx}  = \int {1.dx}  \hfill \\   \Leftrightarrow {x^2}f\left( x ight) = x + C \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  f\left( 1 ight) = 0 \Rightarrow 1.f\left( 1 ight) = 1 + C \Rightarrow C =  - 1 \hfill \\   \Rightarrow {x^2}f\left( x ight) = x - 1 \Rightarrow f\left( x ight) = \dfrac{{x - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    Xét phương trình hoành độ giao điểm với trục hoành ta có:

    \frac{{x - 1}}{{{x^2}}} = 0 \Rightarrow x = 1\left( {tm} ight)

    Ta lại có: f'\left( x ight) = \frac{{2 - x}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( 1 ight) = 1} \\   {f\left( 1 ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( 1 ight)\left( {x - 1} ight) + f\left( 1 ight) \Rightarrow y = x - 1

  • Câu 5: Thông hiểu

    Cho hàm số f(x);g(x) là các hàm số liên tục trên \lbrack 1;3brack và thỏa mãn \int_{1}^{3}{\left\lbrack f(x) +
3g(x) ightbrack dx} = 10\int_{1}^{3}{\left\lbrack 2f(x) - g(x)
ightbrack dx} = 6. Tính tích phân K = \int_{1}^{3}{\left\lbrack f(x) + g(x)
ightbrack dx}?

    Theo bài ra ta có:

    \left\{ \begin{matrix}\int_{1}^{3}{\left\lbrack f(x) + 3g(x) ightbrack dx} = 10 \\\int_{1}^{3}{\left\lbrack 2f(x) - g(x) ightbrack dx} = 6 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}\int_{1}^{3}{f(x)dx} + 3\int_{1}^{3}{g(x)dx} = 10 \\2\int_{1}^{3}{f(x)dx} - \int_{1}^{3}{g(x)dx} = 6 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\int_{1}^{3}{f(x)dx} = 4 \\\int_{1}^{3}{g(x)dx} = 2 \\\end{matrix} ight.\Rightarrow K = \int_{1}^{3}{\left\lbrack f(x) +g(x) ightbrack dx} = 4.2 = 6

  • Câu 6: Thông hiểu

    Cho hình phẳng (H) giới hạn bởi Parabol y = \frac{x^{2}}{12} và đường cong có phương trình y = \sqrt{4 -
\frac{x^{2}}{4}} như hình vẽ:

    Diện tích của hình phẳng (H) bằng:

    Phương trình hoành độ giao điểm:

    \frac{x^{2}}{12} = \sqrt{4 -
\frac{x^{2}}{4}} \Leftrightarrow x = \pm 2\sqrt{3}

    Diện tích hình phẳng (H) bằng:

    S = 2\int_{0}^{2\sqrt{3}}{\left\lbrack
\sqrt{4 - \frac{x^{2}}{4}} - \frac{x^{2}}{12} ightbrack
dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} - \frac{1}{6}\int_{0}^{2\sqrt{3}}{x^{2}dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} + \frac{4\sqrt{3}}{3}

    Đặt x = 4\sin t

    \Rightarrow\int_{0}^{2\sqrt{3}}{\sqrt{16 - x^{2}}dx} =\int_{0}^{\frac{\pi}{3}}{16\cos^{2}tdt} = \frac{8\pi}{3} +2\sqrt{3}

    \Rightarrow S = \frac{8\pi +
2\sqrt{3}}{3}

  • Câu 7: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = \cos 3x

     Ta có: \int {\cos 3xdx}  = \frac{{\sin 3x}}{3} + C

  • Câu 8: Thông hiểu

    Anh A xuất phát từ D, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t) =
\frac{t^{2}}{180} + \frac{11t}{18}(m/s) trong đó t (giây) là khoảng thời gian tính từ lúc anh A bắt đầu chuyển động. Từ trạng thái nghỉ, anh B cũng xuất phát từ D, chuyển động thẳng cùng hướng với anh A nhưng chậm hơn 5 giây so với anh A và có gia tốc bằng a\left( m/s^{2} ight) (a là hằng số). Sau khi anh B xuất phát được 10 giây thì đuổi kịp anh A. Vận tốc của anh B tại thời điểm đuổi kịp anh A bằng bao nhiêu?

    Quãng đường anh A đi được cho đến khi hai người gặp nhau là:

    S = \int_{0}^{15}{\left(
\frac{t^{2}}{180} + \frac{11t}{18} ight)dt} = 75(m)

    Vận tốc của anh B tại thời điểm t(s) tính từ lúc anh B xuất phát là: v_{B}(t) = at

    Quãng đường anh B đi được cho đến khi hai người gặp nhau là:

    S = \int_{0}^{10}{(at)dt} = \left. \
\left( \frac{at^{2}}{2} ight) ight|_{0}^{10} = 50a(m)

    \Rightarrow 50a = 75 \Rightarrow a =
\frac{3}{2}

    Vậy vận tốc của anh B tại thời điểm đuổi kịp anh A là: v_{B}(20) = 10a = 15(m/s)

  • Câu 9: Nhận biết

    Xác định giá trị của tham số a thỏa mãn \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = a^{3} + 2?

    Ta có: \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = \left. \ \left( x^{3} + 2x ight) ight|_{0}^{a} = a^{3}
+ 2a

    \Rightarrow \int_{0}^{a}{\left( 3x^{2} +
2 ight)dx} = a^{3} + 2 \Leftrightarrow a^{3} + 2a = a^{3} + 2
\Leftrightarrow a = 1

    Vậy đáp án a = 1.

  • Câu 10: Nhận biết

    Tính tích phân I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x}?

    Ta có: I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x} = \left. \  -\cot x ight|_{\frac{\pi}{4}}^{\frac{\pi}{3}}

    = - \left( \cot\frac{\pi}{3} -
\cot\frac{\pi}{4} ight) = - \cot\frac{\pi}{3} +
\cot\frac{\pi}{4}.

  • Câu 11: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 4x\left(
1 + \ln x ight) là:

    Ta có: \left\{ \begin{gathered}
  u = 1 + \ln x \hfill \\
  dv = 4xdx \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  du = \frac{1}{x}dx \hfill \\
  v = 2{x^2} \hfill \\ 
\end{gathered}  ight.

    Khi đó \int_{}^{}{f(x)dx} =
\int_{}^{}{4x\left( 1 + \ln x ight)dx} = \left( 1 + \ln x
ight)2x^{2} - \int_{}^{}{2xdx}

    = \left( 1 + \ln x ight)2x^{2} - x^{2}
+ C = x^{2}(1 + 2lnx) + C

  • Câu 12: Vận dụng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x}. Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\frac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = \int_{}^{}{\frac{2}{\sin^{2}x}d\left(\sin x ight)} - \int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = - \frac{2}{\sin x} + \cot x +
C

    Suy ra F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    Trên khoảng (0;\pi) ta có:

    F'(x) = 0 \Leftrightarrow 2\cos x - 1= 0 \Leftrightarrow x = \frac{\pi}{3}

    Ta có bảng biến thiên

    Giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3} nên t s có:

    F\left( \frac{\pi}{3} ight) = \sqrt{3}
\Leftrightarrow - \frac{3\sqrt{3}}{3} + C = \sqrt{3} \Leftrightarrow C =
2\sqrt{3}

    Vậy F(x) = - \frac{2}{\sin x} + \cot x +
2\sqrt{3} \Rightarrow F\left( \frac{\pi}{6} ight) = 3\sqrt{3} -
4.

  • Câu 13: Thông hiểu

    Cho hàm y = f(x) có đạo hàm liên tục trên \lbrack 1;3brack. Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = f'(x) và đường thẳng y = x (phần gạch chéo trong hình vẽ):

    Diện tích hình (H) bằng:

    Diện tích phần gạch chéo là:

    S = \int_{1}^{2}{\left\lbrack f'(x)
- x ightbrack dx} - \int_{2}^{3}{\left\lbrack f'(x) - x
ightbrack dx}

    = \left. \ \left\lbrack f(x) -
\frac{x^{2}}{2} ightbrack ight|_{1}^{2} - \left. \ \left\lbrack
f(x) - \frac{x^{2}}{2} ightbrack ight|_{2}^{3}

    = 2f(2) - f(1) - f(3) + 1.

  • Câu 14: Vận dụng cao

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 15: Nhận biết

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 16: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {e^{ - 2x}} + \frac{1}{{\sqrt x }}

     \begin{matrix}  \int {\left( {{e^{ - 2x}} + \dfrac{1}{{\sqrt x }}} ight)dx}  = \int {{e^{ - 2x}}dx}  + \int {\dfrac{1}{{\sqrt x }}} dx =  - \dfrac{1}{2}\int {{e^{ - 2x}}d\left( { - 2x} ight)}  + 2\int {\dfrac{1}{{2\sqrt x }}} dx \hfill \\   =  - \dfrac{{{e^{ - 2x}}}}{2} + 2\sqrt x  + C =  - \dfrac{1}{{2{e^{2x}}}} + 2\sqrt x  + C \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Hàm số y = f(x) có một nguyên hàm là F(x) = e^{2x}. Tìm nguyên hàm của hàm số \frac{f(x) +
1}{e^{x}}?

    Ta có: f(x) = F'(x) = \left( e^{2x}
ight)' = 2.e^{2x}

    \Rightarrow \int_{}^{}{\frac{f(x) +
1}{e^{x}}dx} = \int_{}^{}{\frac{2e^{2x} + 1}{e^{x}}dx}

    = 2e^{x} - e^{- x} + C

  • Câu 18: Nhận biết

    Nguyên hàm của hàm số f(x) = \sqrt{3x +
2} là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\sqrt{3x
+ 2}dx} = \int_{}^{}{(3x + 2)^{\frac{1}{2}}dx}

    = \frac{(3x + 2)^{1 + \frac{1}{2}}}{1 +\dfrac{1}{2}}.\frac{1}{3} + C = \frac{2}{9}.(2x + 3).\sqrt{3x + 2} +C

  • Câu 19: Vận dụng

    Cho là một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1}F\left( 1 ight) = \frac{1}{3}. Tính {\left[ {F\left( e ight)} ight]^2}

     Cách 1: \int {f\left( x ight)}  = \int {\frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1} dx = \int {\sqrt {{{\ln }^2}x + 1} .} } \frac{{\ln x}}{x}dx

    Đặt \sqrt {{{\ln }^2}x + 1}  = t

    \begin{matrix}   \Rightarrow {\ln ^2}x + 1 = {t^2} \hfill \\   \Rightarrow 2\ln x.\dfrac{1}{x}dx = 2tdt \hfill \\   \Rightarrow \dfrac{{\ln x}}{x}dx = tdt \hfill \\ \end{matrix}

    Khi đó \int {f\left( x ight)}  = \int {t.t.dt}  = \int {{t^2}dt}  = \frac{{{t^3}}}{3} + C

    => F\left( x ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    Mặt khác F\left( 1 ight) = \frac{1}{3} \Leftrightarrow \frac{1}{3} = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    => C = 0

    => F\left( e ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}e + 1} } ight)^3} = \frac{{2\sqrt 2 }}{3}

    => {\left[ {F\left( e ight)} ight]^2} = {\left( {\frac{{2\sqrt 2 }}{3}} ight)^2} = \frac{8}{9}

    Cách 2: F\left( e ight) - F\left( 1 ight) = \int\limits_1^e {\frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1} dx}. Sử dụng máy tính cầm tay để tính.

  • Câu 20: Vận dụng

    Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16\pi\left( \ cm^{2}
ight). Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)

    Quả bóng bầu dục sẽ có dạng elip.

    Độ dài trục lớn bằng 20\ cm \Rightarrow2a = 20 \Rightarrow a = 5\ \ (cm)

    Ta có diện tích đường tròn thiết diện là

    S = \pi b^{2} = 16\pi \Rightarrow b =4(\ cm)

    Ta sẽ có phương trình elip \frac{x^{2}}{25} + \frac{y^{2}}{16} =
1

    \Rightarrow V = \pi\int_{-
5}^{5}{16\left( 1 - \frac{x^{2}}{25} ight)}dx \approx 335\ \ \left( \
cm^{3} ight) = 0,34\ (l).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo