Tìm nguyên hàm của hàm số
bằng:
Tìm nguyên hàm của hàm số
bằng:
Thành phố định xây cây cầu bắc ngang con sông dài
, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Cả hai bên cầu có tất cả nhịp cầu.
Chọn hệ trục tọa độ như hình vẽ với gốc là chân cầu, đỉnh
, điểm
Gọi Parabol phía trên có phương trình: (vì
)
là phương trình parabol phía dưới
(Vì bề dày nhịp cầu là )
Ta có
Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi và trục Ox nên ta có:
Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là
Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Biết luôn có hai số
để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Tìm nguyên hàm của hàm số 
Đặt
=>
=>
Cho hàm số
liên tục, luôn dương trên
và thỏa mãn
. Khi đó giá trị của tích phân
là:
Ta có:
Diện tích nhỏ nhất giới hạn bởi parabol
và đường thẳng
là:
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Vì nên phương trình luôn có 2 nghiệm phân biệt
với
Ta có: .
Diện tích hình phẳng giới hạn bởi (P) và (d) là:
Vậy diện tích nhỏ nhất giới hạn bởi parabol và đường thẳng
là
.
Nếu
thì
bằng:
Ta có:
Tính tích phân
bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra
Tính diện tích hình phẳng giới hạn bởi các đường thẳng
?
Hình vẽ minh họa
Ta có:
Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng
Diện tích hình giới hạn là
Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Gọi
là thể tích của khối tròn xoay thu được khi quay hình
xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?
Áp dụng công thức thể tích khối tròn xoay ta có:
Khi đó áp dụng vào bài toán ta được:
.
Tìm nguyên hàm của hàm số
?
Ta có:
Xác định tích phân
?
Ta có:
Cho hàm số
có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Tìm nguyên hàm của hàm của hàm số ![]()
Diện tích S của hình phẳng giới hạn bởi đường cong
, trục hoành và hai đường thẳng
là
Phương trình hoành độ giao điểm
Khi đó:
Cho hàm số
có đồ thị
. Các tiếp tuyến với đồ thị tại
và tại
cắt nhau tại
. Tính diện tích hình phẳng giới hạn bởi cung
của
và hai tiếp tuyến
?
Tập xác định
Tiếp tuyến tại O(0; 0) là OB:
Tiếp tuyến tại A(3; 3) là AB:
Suy ra
Diện tích hình giới hạn là
Cho các hàm số
có đạo hàm cấp một, đạo hàm cấp hai liên tục trên
và thỏa mãn
. Giá trị của biểu thức
bằng:
Đặt
Ta có:
Ta có:
Vậy
Tính tích phân
bằng
Ta có: