Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hai hàm số y = f(x) có đạo hàm trên \lbrack 1;2brack thỏa mãn f(1) = 4f(x) = x.f'(x) - 2x^{3} - 3x^{2}. Giá trị f(2) bằng:

    Chọn f(x) = ax^{3} + bx^{2} + cx +
d

    f(x) = xf'(x) - 2x^{3} -
3x^{2}

    \Leftrightarrow ax^{3} + bx^{2} + cx + d
= x\left( 3ax^{2} + 2bx + c ight) - 2x^{3} - 3x^{2}

    Từ đó suy ra \left\{ \begin{matrix}
a = 3a - 2 \\
b = 2b - 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.

    Vậy f(x) = x^{3} + 3x^{2} \Rightarrow
f(2) = 20

  • Câu 2: Thông hiểu

    Một vật chuyển động với vận tốc 10(m/s) thì tăng tốc với gia tốc a(t) = 3t + t^{2}\left( m/s^{2}
ight)Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc.

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( 3t + t^{2} ight)dt} = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + C

    Do khi bắt đầu tăng tốc v_{0} = 10
\Rightarrow v_{(t = 0)} = 10 \Rightarrow C = 10

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + 10

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{\left( \frac{t^{3}}{3} + \frac{3}{2}t^{2} + 10 ight)dt}
= \frac{4300}{3}(m)

  • Câu 3: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 4: Vận dụng cao

    Biết luôn có hai số a;b để F(x) = \frac{ax + b}{x + 4};(4a - b eq
0) là một nguyên hàm của hàm số f(x) và thỏa mãn 2f^{2}(x) = \left\lbrack F(x) - 1
ightbrack.f'(x). Khẳng định nào sau đây là đúng và đầy đủ nhất?

    Do 4a - b eq 0 \Rightarrow F(x) eq
C;\forall x\mathbb{\in R}. Vì luôn có hai số a;b để F(x) =
\frac{ax + b}{x + 4};(4a - b eq 0) là một nguyên hàm của hàm số f(x) nên f(x) không phải là hàm hằng.

    Từ giả thiết 2f^{2}(x) = \left\lbrack
F(x) - 1 ightbrack.f'(x) \Leftrightarrow \frac{2f(x)}{F(x) - 1}
= \frac{f'(x)}{f(x)}

    Lấy nguyên hàm hai vế với vi phân dx ta được:

    \int_{}^{}{\frac{2f(x)}{F(x) - 1}dx} =\int_{}^{}{\frac{f'(x)}{f(x)}dx}\Leftrightarrow 2\ln\left| F(x) - 1ight| = \ln\left| f(x) ight| + C với C là hằng số.

    \Leftrightarrow 2ln\left| F(x) - 1
ight| + \ln e^{C} = \ln\left| f(x) ight|

    \Leftrightarrow \left| f(x) ight| =
e^{C}.\left\lbrack F(x) - 1 ightbrack^{2} = e^{C}.\left( \frac{(a -
1)x + b - 4}{x + 4} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}f(x) = e^{C}.\left\lbrack \dfrac{(a - 1)x + b - 4}{x + 4}ightbrack^{2} \\f(x) = - e^{C}.\left\lbrack \dfrac{(a - 1)x + b - 4}{x + 4}ightbrack^{2} \\\end{matrix} ight.

    TH1: f(x) = e^{C}.\left\lbrack \frac{(a -
1)x + b - 4}{x + 4} ightbrack^{2} ta có: F'(x) = f(x) \Rightarrow f(x) = \frac{4a -
b}{(x + 4)^{2}}

    Đồng nhất hệ số ta có:

    e^{C}.\left\lbrack (a - 1)x + b - 4
ightbrack^{2} = 4a - b;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}a = 1 \\e^{C}.(b - 4)^{2} = 4 - b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 1 \\\left\lbrack \begin{matrix}b = 4 \\b = \dfrac{4e^{C} - 1}{e^{C}} \\\end{matrix} ight.\  \\\end{matrix} ight.

    Loại b = 4 do điều kiện 4a - b eq 0. Do đó (a;b) = \left( 1;\frac{4e^{C} - 1}{e^{C}}
ight)

    TH2: f(x) = - e^{C}.\left\lbrack \frac{(a
- 1)x + b - 4}{x + 4} ightbrack^{2} ta có: F'(x) = f(x) \Rightarrow f(x) = \frac{4a -
b}{(x + 4)^{2}}

    Đồng nhất hệ số ta có:

    - e^{C}.\left\lbrack (a - 1)x + b - 4
ightbrack^{2} = 4a - b;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}a = 1 \\- e^{C}.(b - 4)^{2} = 4 - b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 1 \\\left\lbrack \begin{matrix}b = 4 \\b = \dfrac{4e^{C} + 1}{e^{C}} \\\end{matrix} ight.\  \\\end{matrix} ight.

    Loại b = 4 do điều kiện 4a - b eq 0. Do đó (a;b) = \left( 1;\frac{4e^{C} + 1}{e^{C}}
ight)

    Vậy khẳng định đúng và đầy đủ nhất là a =
1;b\mathbb{= R}\backslash\left\{ 4 ight\}.

  • Câu 5: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)(x + 3)?

    Ta có:

    f(x) = (x + 1)(x + 2)(x + 3) = x^{3} +
6x^{2} + 11x + 6

    \Rightarrow F(x) = \frac{x^{4}}{4} +
2x^{3} + \frac{11}{2}x^{2} + 6x + C

  • Câu 6: Nhận biết

    Giả sử f(x) là một hàm số bất kì và liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta). Mệnh đề nào sau đây sai?

    Dựa vào tính chất của tích phân với f(x) là một số bất kì liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta) ta có:

    \int_{a}^{b}{f(x)dx} =
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{b}^{c}{f(x)dx}

    = \int_{a}^{b + c}{f(x)dx} + \int_{b +
c}^{b}{f(x)dx}

  • Câu 7: Nhận biết

    Tính tích phân I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x}?

    Ta có: I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x} = \left. \  -\cot x ight|_{\frac{\pi}{4}}^{\frac{\pi}{3}}

    = - \left( \cot\frac{\pi}{3} -
\cot\frac{\pi}{4} ight) = - \cot\frac{\pi}{3} +
\cot\frac{\pi}{4}.

  • Câu 8: Thông hiểu

    Diện tích hình phẳng giới hạn bởi hai đường y = x^{2}y = x bằng:

    Xét phương trình hoành độ giao điểm

    x^{2} = x \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Diện tích hình phẳng là:

    S = \int_{0}^{1}{\left| x^{2} - x
ight|dx} = \left| \int_{0}^{1}{\left( x^{2} - x ight)dx}
ight|

    = \left| \left. \ \left( \frac{x^{2}}{2}
- \frac{x^{3}}{3} ight) ight|_{0}^{1} ight| =
\frac{1}{6}

  • Câu 9: Vận dụng cao

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Đáp án là:

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Gọi S là diện tích hình phẳng (H). Lúc dó S = 2S_{1} + 2S_{2}, trong đó S_{1} là diện tích phần gạch sọc ở bên phải OyS_{2} là diện tích phần gạch ca rô trong hình vẽ bên.

    GọiA,B là các giao diếm có hoành độ dương của đường thẳng y = k và đồ thị hàm sốy = \left| x^{2} - 1
ight|, trong đó A\left( \sqrt{1 -
k};k ight)B\left( \sqrt{1 +
k};k ight).

    Thco yêu cầu bài toán S = 2 \cdot 2S_{1}
\Leftrightarrow S_{1} = S_{2}.

    \Leftrightarrow \int_{0}^{\sqrt{1 -
k}}{\left( 1 - x^{2} - k ight)dx}\  = \int_{\sqrt{1 - k}}^{1}{\left( k
- 1 + x^{2} ight)dx} + \int_{1}^{\sqrt{1 + k}}{\left( k - x^{2} + 1
ight)dx}.

    \Leftrightarrow \ (1 - k)\sqrt{1 - k} -
\frac{1}{3}(1 - k)\sqrt{1 - k}

    = \frac{1}{3} - (1 - k) - \frac{1}{3}(1
- k)\sqrt{1 - k} + (1 - k)\sqrt{1 - k}

    \  + (1 + k)\sqrt{1 + k} - \frac{1}{3}(1
+ k)\sqrt{1 + k} - (1 + k) + \frac{1}{3}

    \Leftrightarrow \ \frac{2}{3}(1 +
k)\sqrt{1 + k} = \frac{4}{3}

    \Leftrightarrow \left( \sqrt{1 + k}
ight)^{3} = 2 \Leftrightarrow k = \sqrt[3]{4} - 1 \approx
0,59.

  • Câu 10: Vận dụng

    Cho hai hàm số f(x) = ax^{3} + bx +
c;g(x) = bx^{3} + ax + c;(a > 0) có đồ thị như hình vẽ:

    Gọi S_{1};S_{2} là diện tích hình phẳng được gạch trong hình vẽ. Khi S_{1} + S_{2} = 3 thì \int_{0}^{1}{f(x)dx} bằng bao nhiêu?

    Phương trình hoành độ giao điểm

    (a - b)x^{3} + (b - a)x = 0

    \Leftrightarrow (a - b)\left( x^{3} - x
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
x = 0 \\
\end{matrix} ight.

    Ký hiệu S_{3} là diện tích hình phẳng như hình vẽ:

    Ta có:

    S_{1} = \int_{- 1}^{0}{\left\lbrack f(x)
- g(x) ightbrack dx} = (a - b)\int_{- 1}^{0}{\left( x^{3} - x
ight)dx} = \frac{1}{4}(a - b)

    S_{2} = - \int_{- 1}^{0}{g(x)dx} = -
\int_{- 1}^{0}{\left( bx^{3} + ax + c ight)dx} = - \left( \frac{b}{4}
+ \frac{a}{2} + c ight)

    Vì vậy S_{1} + S_{2} = 3 \Leftrightarrow
\frac{1}{4}(a - b) - \left( \frac{b}{4} + \frac{a}{2} + c ight) =
3

    \Leftrightarrow a + 2b + 4c = -
12

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{1}{\left( ax^{3} + bx + c ight)dx} = \frac{a}{4} +
\frac{b}{2} + c = \frac{a + 2b + 4c}{4} = - 3

  • Câu 11: Thông hiểu

    Một vận động viên đua xe đang chạy với vận tốc 10m/s thì anh ta tăng tốc với vận tốc a(t) = 6t\left( m/s^{2} ight), trong đó t là khoảng thời gian tính bằng giây kể từ lúc tăng tốc, hỏi quãng đường xe của anh ta đi được trong thời gian 10s kể từ lúc bắt đầu tăng tốc là bao nhiêu?

    Ta có: v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{6tdt} = 3t^{2} + C

    Do khi bắt đầu tăng tốc v_{0} = 10
ightarrow v_{(t = 0)} = 10 \Rightarrow C = 10

    \Rightarrow v(t) = 3t^{2} +
10

    Khi đó quãng đường xe đi được sau 10 giây kể từ khi ô tô bắt đầu tăng tốc bằng

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{\left( 3t^{2} + 10 ight)dt} = 1100(m)

  • Câu 12: Vận dụng

    Cho các hàm số f(x) có đạo hàm cấp một, đạo hàm cấp hai liên tục trên \lbrack 0;1brack và thỏa mãn \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx}
eq 0. Giá trị của biểu thức \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} bằng:

    Đặt \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx} =
k

    Ta có:

    k = \int_{0}^{1}{e^{x}f''(x)dx}
= \int_{0}^{1}{e^{x}d\left\lbrack f'(x) ightbrack}

    = \left. \ e^{x}f'(x)
ight|_{0}^{1} - \int_{0}^{1}{e^{x}f'(x)dx} = \left. \
e^{x}f'(x) ight|_{0}^{1} - k

    \Rightarrow 2k = \left. \ e^{x}f'(x)
ight|_{0}^{1}

    Ta có:

    k = \int_{0}^{1}{e^{x}f'(x)dx} =
\int_{0}^{1}{e^{x}d\left\lbrack f(x) ightbrack}

    = \left. \ e^{x}f(x) ight|_{0}^{1} -
\int_{0}^{1}{e^{x}f(x)dx} = \left. \ e^{x}f(x) ight|_{0}^{1} -
k

    \Rightarrow 2k = \left. \ e^{x}f(x)
ight|_{0}^{1}

    Vậy \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} = \frac{\left. \ e^{x}f'(x) ight|_{0}^{1}}{\left. \
e^{x}f(x) ight|_{0}^{1}} = 1

  • Câu 13: Thông hiểu

    Biết rằng \int_{}^{}{\frac{1}{x^{3} -
x}dx = a\ln\left| (x - 1)(x + 1) ight| + b\ln|x| + C}. Tính giá trị biểu thức H = 2a + b?

    Ta có:

    \frac{1}{x^{3} - x} = \frac{A}{x} +
\frac{B}{x - 1} + \frac{D}{c + 1}

    = \frac{A\left( x^{2} - 1 ight) + Bx(x
+ 1) + Dx(x - 1)}{x^{3} - x}

    = \frac{(A + B + D)x^{2} + (B - D)x -
A}{x^{3} - x}

    \Rightarrow \left\{ \begin{matrix}A + B + D = 0 \\B - D = 0 \\- A = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = \dfrac{1}{2} \\D = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{1}{x^{3} - x}dx}
= \int_{}^{}{\left\lbrack \frac{- 1}{x} + \frac{1}{2(x - 1)} +
\frac{1}{2(x + 1)} ightbrack dx}

    = \frac{1}{2}\ln\left| (x - 1)(x + 1)
ight| - \ln|x| + C

    Suy ra a = \frac{1}{2};b = - 1
\Rightarrow H = 0.

  • Câu 14: Thông hiểu

    Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x = 0;x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x;(0 \leq x \leq 3) là hình chữ nhật có kích thước là x2\sqrt{9 - x^{2}}?

    Thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x;(0 \leq x \leq 3) là hình chữ nhật có kích thước là x2\sqrt{9 - x^{2}}

    Diện tích thiết diện được xác định theo hàm là: S(x) = 2x\sqrt{9 - x^{2}}

    ⇒ Thể tích vật thể tròn xoay: V =
\int_{0}^{3}{2x\sqrt{9 - x^{2}}}dx = 18

  • Câu 15: Nhận biết

    Hàm số f(x) = x^{3} + \sin x là một nguyên hàm của hàm số nào sau đây?

    Ta có: F'(x) = 3x^{2} + \cos
x

  • Câu 16: Nhận biết

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 17: Nhận biết

    Cho đồ thị của hàm số y = f(x) như sau:

    Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:

    Dựa vào hình vẽ ta được: S = \int_{-
3}^{0}{f(x)dx} - \int_{0}^{4}{f(x)dx}.

  • Câu 18: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) liên tục trên \lbrack a;bbrack; f(b) = 5;\int_{a}^{b}{f'(x)dx} =
3\sqrt{5}. Tính giá trị f(a)?

    Ta có: \int_{a}^{b}{f'(x)dx} =
3\sqrt{5} \Leftrightarrow f(b) - f(a) = 3\sqrt{5}

    \Leftrightarrow f(a) = f(b) - 3\sqrt{5}
= \sqrt{5}\left( \sqrt{5} - 3 ight)

  • Câu 19: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 0x =
2 bằng

    Hình vẽ minh họa

    Phương trình hoành độ giao điểm x^{3} = 0
\Leftrightarrow x = 0

    Diện tích hình giới hạn là S =
\int_{0}^{2}{\left| x^{3} ight|dx} = \left| \int_{0}^{2}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{0}^{2}
ight| = 4

  • Câu 20: Thông hiểu

    Cho \int {f\left( x ight)dx}  = F\left( x ight) + C. Với a e 0, khẳng định nào sau đây đúng?

     Xét \int {f\left( {ax + b} ight)dx}, đặt t = ax + b

    => I = \int {f\left( t ight)d\left( {\frac{{t - b}}{a}} ight) = \frac{1}{a}} \int {f\left( t ight)dt = \frac{1}{a}} \int {f\left( x ight)d} x

    => \int {f\left( {ax + b} ight)d\left( {ax + b} ight) = \frac{1}{a}\left[ {F\left( {ax + b} ight) + C'} ight] = \frac{1}{a}F\left( {ax + b} ight) + C}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo