Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giả sử f(x) là một hàm số bất kì và liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta). Mệnh đề nào sau đây sai?

    Dựa vào tính chất của tích phân với f(x) là một số bất kì liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta) ta có:

    \int_{a}^{b}{f(x)dx} =
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{b}^{c}{f(x)dx}

    = \int_{a}^{b + c}{f(x)dx} + \int_{b +
c}^{b}{f(x)dx}

  • Câu 2: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x thỏa mãn F(0) = \frac{3}{2}. Chọn khẳng định đúng trong các khẳng định sau?

    Ta có: \int_{}^{}{\left( e^{x} + 2x
ight)dx} = e^{x} + x^{2} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x suy ra F(x) có dạng e^{x} + x^{2} + C

    Theo bài ra ta có: F(0) = \frac{3}{2}
\Leftrightarrow e^{0} + 0^{2} + C = \frac{3}{2} \Rightarrow C =
\frac{1}{2}

    Vậy F(x) = e^{x} + x^{2} +
\frac{1}{2}.

  • Câu 3: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\frac{e^{\tan x}}{\cos^{2}x}?

    Đặt t = \tan x \Rightarrow dt =\frac{1}{\cos^{2}x}dx

    \int_{}^{}{\frac{e^{\tan x}}{\cos^{2}x}dx} = \int_{}^{}{e^{t}dt} = e^{t} + C = e^{\tan x} +C

  • Câu 4: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Mệnh đề đúng

    b) Cho v = 0 \Leftrightarrow - 5t + 20 =
0 \Leftrightarrow t\  = \ 4\ (s). Mệnh đề sai

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Mệnh đề đúng

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là S = \int_{0}^{4}{( - 5t + 20)dt} = 40\
(m). Mệnh đề sai

  • Câu 5: Vận dụng

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Nhận biết

    Nếu \int_{1}^{2}{f(x)dx} =
5;\int_{2}^{5}{f(x)dx} = - 1 thì \int_{1}^{5}{f(x)dx} bằng:

    Ta có:

    \int_{1}^{5}{f(x)dx} =
\int_{1}^{2}{f(x)dx} + \int_{2}^{5}{f(x)dx} = 5 + ( - 1) =
4

  • Câu 7: Vận dụng cao

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đáp án là:

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.

    Đồ thị của hàm số y = f(x)nhận trục Oy làm trục đối xứng đi qua hai điểm A(
- 1;0)A(2;1) có dạng hàm số (P_{1}):y = \frac{1}{2}x^{2} -
1.

    Đồ thị của hàm số y = g(x)nhận trục Oy làm trục đối xứng đi qua hai điểm C(1;0)D(2;
- 1) có dạng hàm số (P_{1}):y = -
\frac{1}{2}x^{2} + 1.

    Giao điểm của hai parabol tại x_{1} = -
\sqrt{2};x_{2} = \sqrt{2}

    Do đó, diện tích của con cá là S =
\int_{- \sqrt{2}}^{2}{\left| x^{2} - 2 ight|dx} \approx
4,32m^{2}

  • Câu 8: Nhận biết

    Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x);y = g(x) liên tục trên đoạn \lbrack a;bbrack và hai đường thẳng x = a;x = b;a < b

    Ta có hình phẳng giới hạn bởi \left\{
\begin{matrix}
\left( C_{1} ight):y = f(x) \\
\left( C_{2} ight):y = g(x) \\
x = a \\
x = b \\
\end{matrix} ight.S =
\int_{a}^{b}{\left| f(x) - g(x) ight|dx}.

  • Câu 9: Vận dụng

    Cho hàm số f(x) thỏa mãn \int_{0}^{3}\left\lbrack 2x\ln(x + 1) + xf'(x)
ightbrack dx = 0f(3) =
1. Biết \int_{0}^{3}{f(x)}dx =\frac{a + b\ln2}{2} với a;b \in
\mathbb{R}^{+}. Giá trị của biểu thức a + b là:

    Tính I = \int_{0}^{3}{2x\ln(x +
1)}dx

    Đặt \left\{ \begin{matrix}u = \ln(x + 1) \\dv = 2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 1}dx \\v = x^{2} \\\end{matrix} ight. khi đó:

    I = \left. \ x^{2}\ln(x + 1)
ight|_{0}^{3} - \int_{0}^{3}{\frac{x^{2}}{x + 1}dx}

    = 9ln4 - \left. \ \left( \frac{x^{2}}{2}
- x + \ln|x + 1| ight) ight|_{0}^{3} = 16ln2 -
\frac{3}{2}

    Tính J =
\int_{0}^{3}{xf'(x)}dx.

    Đặt \left\{ \begin{matrix}
u_{J} = x \\
dv_{J} = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du_{J} = dx \\
v_{J} = f(x) \\
\end{matrix} ight. khi đó

    J = \int_{0}^{3}{xf'(x)}dx = \left.
\ xf(x) ight|_{0}^{3} - \int_{0}^{3}{f(x)}dx

    \int_{0}^{3}\left\lbrack 2x\ln(x + 1)
+ xf'(x) ightbrack dx = 0

    \Rightarrow I + J = 0 \Rightarrow 16\ln2- \frac{3}{2} + 3 - \int_{0}^{3}{f(x)}dx = 0

    \Rightarrow \int_{0}^{3}{f(x)}dx = 16\ln2+ \frac{3}{2} = \frac{3 + 32\ln2}{2}

    \Rightarrow \left\{ \begin{matrix}
a = 3 \\
b = 32 \\
\end{matrix} ight.\  \Rightarrow a + b = 35

  • Câu 10: Vận dụng cao

    Cho F\left( x ight) = \left( {x - 1} ight).{e^x} là một nguyên hàm của hàm số f\left( x ight).{e^{2x}}. Tìm nguyên hàm của hàm số f'\left( x ight).{e^{2x}}

    Ta có: F(x) là một nguyên hàm của hàm số f\left( x ight).{e^{2x}} nên:

    \begin{matrix}  F'\left( x ight) = f\left( x ight).{e^{2x}} \hfill \\   \Leftrightarrow \left[ {\left( {x - 1} ight).{e^x}} ight]' = f\left( x ight).{e^{2x}} \hfill \\ \end{matrix}

    Hay f\left( x ight).{e^{2x}} = {e^x} + \left( {x - 1} ight).{e^x} = x.{e^x}

    Xét I = \int {f'\left( x ight).{e^{2x}}dx}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {u = {e^{2x}}} \\   {dv = f'\left( x ight)dx} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {du = 2{e^{2x}}dx} \\   {v = f\left( x ight)} \end{array}} ight.

    Khi đó

    I = f\left( x ight).{e^{2x}} - \int {2f\left( x ight).{e^{2x}}dx}  = x.{e^x} - 2\left( {x - 1} ight){e^x} + C = \left( {2 - x} ight).{e^x} + C

     

  • Câu 11: Nhận biết

    Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = \cos x,y = 0,x = 0,x = \pi quay xung quanh Ox.

    Thể tích vật thể bằng:

    V = \pi\int_{0}^{\pi}{\left( \cos xight)^{2}dx} = \frac{\pi}{2}\int_{0}^{\pi}{(1 + \cos2x)dx} = \pi\left.\ \left( x + \frac{1}{2}\sin2x ight) ight|_{1}^{\pi} =\frac{\pi^{2}}{2}.

  • Câu 12: Thông hiểu

    Cho hình vẽ:

    Diện tích của hình phẳng (H) được giới hạn bởi đồ thị hàm số y =
f(x), trục hoành và hai đường thẳng x = a,x = b,(a < b) (phần tô đậm trong hình vẽ) tính theo công thức:

    Áp dụng công thức tính diện tích hình phẳng ta có:

    S = \int_{a}^{b}{\left| f(x) ight|dx}
= \int_{a}^{c}{\left\lbrack 0 - f(x) ightbrack dx} +
\int_{c}^{b}{\left\lbrack f(x) - 0 ightbrack dx}

    = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}

    Vậy đáp án cần tìm là: S = -
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}.

  • Câu 13: Nhận biết

    Gọi (D) là hình phẳng giới hạn bởi các đường y = \frac{x}{4};y = 0;x = 1;x
= 4. Tính thể tích vật thể tròn xoay tạo thành khi quay hình (D) quanh trục Ox?

    Thể tích vật thể tròn xoay tạo thành khi quay hình (D) quanh trục Ox

    V = \pi\int_{1}^{4}{\left( \frac{x}{4}
ight)^{2}dx} = \left. \ \frac{\pi x^{3}}{48} ight|_{1}^{4} =
\frac{21\pi}{16}.

  • Câu 14: Nhận biết

    Cho hàm số f(x) liên tục trên đoạn \left\lbrack 0;\frac{\pi}{2}
ightbrack\int_{0}^{\frac{\pi}{2}}{f(x)dx} = 5. Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2sinx ightbrack
dx}?

    Ta có:

    I =\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2\sin x ightbrack dx} =\int_{0}^{\frac{\pi}{2}}{f(x)dx} +\int_{0}^{\frac{\pi}{2}}{2\sin xdx}

    = 5 - \left. \ 2\cos xight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 15: Nhận biết

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: \int_{}^{}{( - 12t + 24)}dt = - 6t^{2} + 24t +
C với C là hằng số.

    Khi đó, ta gọi hàm số s(t) = - 6t^{2} + 24t +
C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 6t^{2} + 24t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 12t + 24 = 0 \Leftrightarrow t =
2. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 72\
km/h = 20\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 6.2^{2} + 24.2
= 24(\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 + 24 \approx 44\ (\ m).

    Do 44 < 45 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 16: Thông hiểu

    Biết \int_{1}^{e}{\frac{\ln
x}{\sqrt{x}}dx} = a\sqrt{e} + b với a;b\mathbb{\in Z}. Xác định giá trị biểu thức P = ab?

    Đặt \left\{ \begin{matrix}u = \ln x \\dv = \dfrac{dx}{\sqrt{x}} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{dx}{x} \\v = 2\sqrt{x} \\\end{matrix} ight. khi đó ta có:

    \int_{1}^{e}{\frac{\ln x}{\sqrt{x}}dx} =
\left. \ \left( 2\sqrt{x}\ln x ight) ight|_{e}^{1} -
2\int_{1}^{e}\frac{dx}{x}

    = \left. \ \left( 2\sqrt{x}\ln x ight)
ight|_{e}^{1} - \left. \ \left( 4\sqrt{x} ight) ight|_{e}^{1} = -
2\sqrt{e} + 4

    Vậy \left\{ \begin{matrix}
a = - 2 \\
b = 4 \\
\end{matrix} ight.\  \Rightarrow P = a.b = - 8.

  • Câu 17: Vận dụng

    Cho là một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1}F\left( 1 ight) = \frac{1}{3}. Tính {\left[ {F\left( e ight)} ight]^2}

     Cách 1: \int {f\left( x ight)}  = \int {\frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1} dx = \int {\sqrt {{{\ln }^2}x + 1} .} } \frac{{\ln x}}{x}dx

    Đặt \sqrt {{{\ln }^2}x + 1}  = t

    \begin{matrix}   \Rightarrow {\ln ^2}x + 1 = {t^2} \hfill \\   \Rightarrow 2\ln x.\dfrac{1}{x}dx = 2tdt \hfill \\   \Rightarrow \dfrac{{\ln x}}{x}dx = tdt \hfill \\ \end{matrix}

    Khi đó \int {f\left( x ight)}  = \int {t.t.dt}  = \int {{t^2}dt}  = \frac{{{t^3}}}{3} + C

    => F\left( x ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    Mặt khác F\left( 1 ight) = \frac{1}{3} \Leftrightarrow \frac{1}{3} = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    => C = 0

    => F\left( e ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}e + 1} } ight)^3} = \frac{{2\sqrt 2 }}{3}

    => {\left[ {F\left( e ight)} ight]^2} = {\left( {\frac{{2\sqrt 2 }}{3}} ight)^2} = \frac{8}{9}

    Cách 2: F\left( e ight) - F\left( 1 ight) = \int\limits_1^e {\frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1} dx}. Sử dụng máy tính cầm tay để tính.

  • Câu 18: Thông hiểu

    Thể tích khối tròn xoay khi quay quanh trục Ox hình phẳng giới hạn bởi y = \ln x,y = 0,x = eV = \pi(a + be). Tính a + b?

    Phương trình hoành độ giao điểm \ln x = 0
\Leftrightarrow x = 1

    Ta có:

    V =\pi\int_{1}^{e}{\ln^{2}xdx}

    = \pi\left\lbrack \left. \ \left(x\ln^{2}x ight) ight|_{1}^{e} - \int_{1}^{e}{x.\frac{2}{x}.\ln xdx}ightbrack

    = \pi\left\lbrack e - 2\int_{1}^{e}{\ln
xdx} ightbrack

    = \pi\left\{ e - 2.\left\lbrack \left. \
\left( x\ln x ight) ight|_{1}^{e} - \int_{1}^{e}{dx} ightbrack
ight\}

    = \pi\left\{ e - 2.\lbrack e - e +
1brack ight\} = \pi(e - 2)

    Vậy a = - 2;b = 1 \Rightarrow a + b = -
1

  • Câu 19: Thông hiểu

    Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức v(t) = 3t + 2, thời gian tính theo đơn vị giây, quãng đường vật đi được tính theo đơn vị mét. Biết tại thời điểm t = 2s thì vật đi được quãng đường là 10m. Hỏi tại thời điểm t = 30s thì vật đi được quãng đường là bao nhiêu?

    Quãng đường vật đi được từ thời điểm t =
2s đến t = 30s

    S = \int_{2}^{30}{v(t)dt} =
\int_{2}^{30}{(3t + 2)dt} = 1400m = S(30) - S(2)

    \Rightarrow S(30) = 1400m + S(2) =
1410m

  • Câu 20: Nhận biết

    Nguyên hàm của hàm số f(x) = 2^{x} +
x

    Ta có: \int_{}^{}f(x)dx =
\int_{}^{}\left( 2^{x} + x ight)dx = \frac{2^{x}}{ln2} +
\frac{x^{2}}{2} + C.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo