Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Đáp án là:

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Diện tích 1 cánh của hình trang trí là:

    S_{1} = \int_{0}^{1}\left( x^{2} -
ax^{3} - bx ight)dx = \left. \ \left( \frac{x^{3}}{3} -
\frac{ax^{4}}{4} - \frac{bx^{2}}{2} ight) ight|_{0}^{1} =
\frac{1}{2} - \frac{a}{4} - \frac{b}{2}

    \Rightarrow Diện tích hình trang trí là: S = 4S_{1} = \frac{4}{3} - a -
2b

    Vì diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn nên

    \frac{4}{3} - a - 2b = \frac{4}{3}
\Leftrightarrow a + 2b = 0

    Khi đó ta có: \left\{ \begin{matrix}
a + b = 1 \\
a + 2b = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 1 \\
\end{matrix} ight.\  ight.

    Vậy ab = - 2.

  • Câu 2: Nhận biết

    Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 12t + 24(m/s) trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Khi dừng hẳn v(t) = - 12t + 24 = 0
\Rightarrow t = 2(s)

    Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:

    S = \int_{0}^{2}{v(t)dt} =
\int_{0}^{2}{( - 12t + 24)dt} = 24m

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) là đường cong như hình vẽ:

    Diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng x = 0;x = 2 (phần tô đen) là:

    Dựa vào hình vẽ ta thấy x \in
(0;1) thì \left\{ \begin{matrix}
f(x) > 0;\forall x \in (0;1) \\
f(x) < 0;\forall x \in (1;2) \\
\end{matrix} ight.

    Vậy S = \int_{0}^{1}{f(x)dx} -
\int_{1}^{2}{f(x)dx}

  • Câu 4: Thông hiểu

    Một vật chuyển động với vận tốc 10(m/s) thì tăng tốc với gia tốc a(t) = 3t + t^{2}\left( m/s^{2}
ight)Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc.

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( 3t + t^{2} ight)dt} = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + C

    Do khi bắt đầu tăng tốc v_{0} = 10
\Rightarrow v_{(t = 0)} = 10 \Rightarrow C = 10

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + 10

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{\left( \frac{t^{3}}{3} + \frac{3}{2}t^{2} + 10 ight)dt}
= \frac{4300}{3}(m)

  • Câu 5: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack, có đồ thị hàm số y = f'(x) như sau:

    Mệnh đề nào dưới đây là đúng?

    Theo ý nghĩa hình học của tích phân thì \int_{a}^{b}{f'(x)dx} là diện tích hình thang cong ABMN.

  • Câu 6: Thông hiểu

    Thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y =
x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox?

    Phương trình hoành độ giao điểm của đường y = x\sqrt{x^{2} + 1} và trục hoành là:

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:

    V = \pi\int_{0}^{1}{\left( x\sqrt{x^{2}
+ 1} ight)^{2}dx} = \pi\int_{0}^{1}{\left( x^{4} + x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} +
\frac{x^{3}}{3} ight) ight|_{0}^{1} = \frac{8\pi}{15}

  • Câu 7: Vận dụng

    Cho hàm số y = f(x) liên tục nhận giá trị dương trên (0; +\infty) và thỏa mãn f(1) =1; f(x) = f'(x).\sqrt{3x +1};\forall x > 0. Giá trị f(3) gần nhất với giá trị nào sau đây?

    \left\{ \begin{matrix}f(x) > 0 \\f(x) = f'(x)\sqrt{3x + 1} \\\end{matrix} ight.\  \Rightarrow \frac{f'(x)}{f(x)} =\frac{1}{\sqrt{3x + 1}}

    \Rightarrow\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{\frac{1}{\sqrt{3x +1}}dx} \Rightarrow \ln f(x) = \frac{2\sqrt{3x + 1}}{3} + C

    f(1) = 1 \Rightarrow C = -\frac{4}{3}

    \Rightarrow f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}} \Rightarrow f\left( 3 ight)  \approx 2,17

  • Câu 8: Nhận biết

    Xác định giá trị của tham số a thỏa mãn \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = a^{3} + 2?

    Ta có: \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = \left. \ \left( x^{3} + 2x ight) ight|_{0}^{a} = a^{3}
+ 2a

    \Rightarrow \int_{0}^{a}{\left( 3x^{2} +
2 ight)dx} = a^{3} + 2 \Leftrightarrow a^{3} + 2a = a^{3} + 2
\Leftrightarrow a = 1

    Vậy đáp án a = 1.

  • Câu 9: Vận dụng cao

    Gọi d là đường thẳng tùy ý đi qua điểm M(1;1) và có hệ số góc âm. Giả sử d cắt các trục Ox;Oy lần lượt tại A;B. Quay tam giác OAB quanh trục Oy thu được một khối tròn xoay có thể tích là V. Giá trị nhỏ nhất của V bằng

    Hình vẽ minh họa

    Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d: \frac{x}{a} + \frac{y}{b} = 1 \Rightarrow d:x = -\frac{b}{a}x + b\ \ \ (1)

    Mà M(1; 1) ∈ d nên \frac{1}{a} +\frac{1}{b} = 1 \Rightarrow a + b = 2ab\ \ (2)

    Từ (1) suy ra d có hệ số góc là k = -\frac{b}{a}; theo giả thiết ta có -\frac{b}{a} < 0 \Rightarrow ab > 0

    Nếu a < 0;b < 0 \Rightarrow a + b< 0 mẫu thuẫn với (2) suy ra a> 0;b > 0

    Mặt khác từ (2) suy ra b = \frac{a}{a -1} kết hợp với a > 0, b > 0 suy ra a > 1.

    Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao h = b và bán kính đường tròn đáy r = a

    Thể tích khối nón là V = \frac{1}{3}\pir^{2}h = \frac{1}{3}\pi a^{2}b = \frac{1}{3}\pi\frac{a^{3}}{a -1}

    Suy ra V đạt giá trị nhỏ nhất khi \frac{a^{3}}{a - 1} đạt giá trị nhỏ nhất.

    Xét hàm số f(x) = \frac{x^{3}}{x - 1} =x^{2} + x + 1 + \frac{1}{x - 1} trên khoảng (1; + \infty)

    f'(x) = 2x + 1 - \frac{1}{(x -1)^{2}} = \frac{x^{2}(2x - 3)}{(x - 1)^{2}}

    f'(x) = 0 \Rightarrow \left\lbrack\begin{matrix}x = 0 \\x = \frac{3}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy giá trị nhỏ nhất của V bằng \frac{1}{3}\pi.f\left( \frac{3}{2} ight) =\frac{9\pi}{4}

  • Câu 10: Vận dụng

    Cho hàm số f(x) liên tục và có đạo hàm trên \left( 0;\frac{\pi}{2}
ight) thỏa mãn f(x) + \tan xf'(x) = \frac{x}{\cos^{3}x}. Biết rằng \sqrt{3}f\left( \frac{\pi}{3} ight) - f\left(
\frac{\pi}{6} ight) = a\pi\sqrt{3} + bln3 trong đó a;b\mathbb{\in R}. Kết luận nào sau đây đúng?

    Ta có: f(x) + \tan xf'(x) =\frac{x}{\cos^{3}x}

    \Leftrightarrow \cos xf(x) + \sin xf'(x) = \frac{x}{\cos^{2}x}

    \Leftrightarrow \left\lbrack \sin xf(x)ightbrack' = \frac{x}{\cos^{2}x}

    \Rightarrow \int_{}^{}{\left\lbrack \sin xf(x) ightbrack'dx} =\int_{}^{}{\frac{x}{\cos^{2}x}dx}

    \Rightarrow \sin xf(x) =\int_{}^{}{\frac{x}{\cos^{2}x}dx}.

    Tính I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}. Đặt \left\{ \begin{matrix}u = x \\dv = \dfrac{dx}{\cos^{2}x} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \tan x \\\end{matrix} ight. khi đó:

    I = x\tan x - \int_{}^{}{\tan xdx} =
x\tan x - \int_{}^{}\frac{d\left( \cos x ight)}{\cos x}

    = x\tan x + \ln\left| \cos x
ight|

    \Rightarrow f(x) = \frac{x\tan x +
\ln\left| \cos x ight|}{\sin x} = \frac{x}{\cos x} + \frac{\ln\left|
\cos x ight|}{\sin x}

    Theo bài ra ta có:

    \Rightarrow \sqrt{3}f\left(\frac{\pi}{3} ight) - f\left( \frac{\pi}{6} ight) = \sqrt{3}\left(\frac{2\pi}{3} - \dfrac{2\ln2}{\sqrt{3}} ight)- \left(\frac{\pi\sqrt{3}}{9} + 2\ln\dfrac{\sqrt{3}}{2} ight) =\dfrac{5\pi\sqrt{3}}{9}\ln3

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{5}{9} \\b = - 1 \\\end{matrix} ight.\  \Rightarrow a + b = - \frac{4}{9}

  • Câu 11: Thông hiểu

    Một chất điểm chuyển động với gia tốc a(t) = 6t^{2} + 2t\left( m/s^{2} ight). Vận tốc ban đầu của chất điểm là 2(m/s). Hỏi vận tốc của chất điểm sau khi chuyển động với gia tốc đó được 2 giây bằng bao nhiêu?

    Ta có: v(2) - v(0) =
\int_{0}^{2}{a(t)dt}

    \Rightarrow v(2) = \int_{0}^{2}{\left(
6t^{2} + 2t ight)dt} + v(0)

    \Rightarrow v(2) = \left. \ \left(
2t^{3} + t^{2} ight) ight|_{0}^{2} + 2 = 22

  • Câu 12: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = (x + 2)^{2};y = 0;x = 1;x = 3 bằng:

    Gọi S là diện tích hình phẳng cần tìm. Khi đó

    S = \int_{1}^{3}{(x + 2)^{2}dx} = \left.
\ \frac{1}{3}(x + 2)^{3} ight|_{1}^{3} = \frac{98}{3}

  • Câu 13: Thông hiểu

    Biết rằng f'(x) = x\sqrt{1 +
x^{2}}3f(0) = 4. Tìm hàm số f(x)?

    Ta có: f(x) = \int_{}^{}{f'(x)dx} =
\int_{}^{}{x\sqrt{1 + x^{2}}dx}

    = \frac{1}{2}\int_{}^{}{\left( 1 + x^{2}
ight)^{\frac{1}{2}}d\left( 1 + x^{2} ight)} = \frac{\left( \sqrt{1 +
x^{2}} ight)^{3}}{3} + C

    3f(0) = 4 \Leftrightarrow
3\frac{\left( \sqrt{1 + 0^{2}} ight)^{3}}{3} + 3C = 4 \Leftrightarrow
C = 1

    Vậy f(x) = \frac{\left( \sqrt{1 + x^{2}}
ight)^{3}}{3} + 1

  • Câu 14: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 15: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 16: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 17: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 18: Vận dụng cao

    Cho a, b là các số hữu tỉ thỏa mãn

    \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = a\left( {x + 2} ight)\sqrt {x + 2}  + b\left( {x + 1} ight)\sqrt {x + 1}  + C}

    Tính giá trị biểu thức M = a + b.

     I = \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = \int {\frac{{\sqrt {x + 2}  - \sqrt {x + 1} }}{{\left( {x + 2} ight) - \left( {x + 1} ight)}}dx}  = \int {\left( {\sqrt {x + 2}  - \sqrt {x + 1} } ight)dx} }

    => I = \frac{2}{3}.\left( {x + 2} ight)\sqrt {x + 2}  - \frac{2}{3}\left( {x + 1} ight)\sqrt {x + 1}  + C

    => \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{2}{3}} \\   {b = \dfrac{{ - 2}}{3}} \end{array}} ight. \Rightarrow M = a + b = 0

  • Câu 19: Thông hiểu

    Cho hàm số f(x) thỏa mãn f'(x) = 2^{x} + 3\sqrt{x}f(4) = \ln\frac{16}{2}. Mệnh đề nào sau đây đúng?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
2^{x} + 3\sqrt{x} ight)dx} = \int_{}^{}{\left( 2^{x} +
3x^{\frac{1}{2}} ight)dx}

    = \frac{2^{x}}{\ln2} + 2.x^{\frac{3}{2}} +C = \frac{2^{x}}{\ln2} + 2\sqrt{x^{3}} + C.

    Theo bài ra ta có:

    f(4) = \ln\frac{16}{2} \Leftrightarrow \frac{2^{4}}{\ln2} + 2\sqrt{4^{3}} + C = \ln\frac{16}{2} \Leftrightarrow C = - 16

    Vậy f(x) = \frac{2^{x}}{\ln2} +2\sqrt{x^{3}} - 16.

  • Câu 20: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 0x =
2 bằng

    Hình vẽ minh họa

    Phương trình hoành độ giao điểm x^{3} = 0
\Leftrightarrow x = 0

    Diện tích hình giới hạn là S =
\int_{0}^{2}{\left| x^{3} ight|dx} = \left| \int_{0}^{2}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{0}^{2}
ight| = 4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo