Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: \int_{}^{}{( - 12t + 24)}dt = - 6t^{2} + 24t +
C với C là hằng số.

    Khi đó, ta gọi hàm số s(t) = - 6t^{2} + 24t +
C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 6t^{2} + 24t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 12t + 24 = 0 \Leftrightarrow t =
2. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 72\
km/h = 20\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 6.2^{2} + 24.2
= 24(\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 + 24 \approx 44\ (\ m).

    Do 44 < 45 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 2: Thông hiểu

    Một vật thể nằm giữa hai mặt phẳng x = -
1;x = 1 và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ x;(
- 1 \leq x \leq 1) là một hình tròn có diện tích bằng 3\pi. Thể tích của vật thể là?

    Ta có: V = \int_{- 1}^{1}{S(x)dx} =
\int_{- 1}^{1}{3\pi dx} = 6\pi

  • Câu 3: Vận dụng

    Cho hàm số f(x) liên tục và có đạo hàm trên \left( 0;\frac{\pi}{2}
ight) thỏa mãn f(x) + \tan xf'(x) = \frac{x}{\cos^{3}x}. Biết rằng \sqrt{3}f\left( \frac{\pi}{3} ight) - f\left(
\frac{\pi}{6} ight) = a\pi\sqrt{3} + bln3 trong đó a;b\mathbb{\in R}. Kết luận nào sau đây đúng?

    Ta có: f(x) + \tan xf'(x) =\frac{x}{\cos^{3}x}

    \Leftrightarrow \cos xf(x) + \sin xf'(x) = \frac{x}{\cos^{2}x}

    \Leftrightarrow \left\lbrack \sin xf(x)ightbrack' = \frac{x}{\cos^{2}x}

    \Rightarrow \int_{}^{}{\left\lbrack \sin xf(x) ightbrack'dx} =\int_{}^{}{\frac{x}{\cos^{2}x}dx}

    \Rightarrow \sin xf(x) =\int_{}^{}{\frac{x}{\cos^{2}x}dx}.

    Tính I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}. Đặt \left\{ \begin{matrix}u = x \\dv = \dfrac{dx}{\cos^{2}x} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \tan x \\\end{matrix} ight. khi đó:

    I = x\tan x - \int_{}^{}{\tan xdx} =
x\tan x - \int_{}^{}\frac{d\left( \cos x ight)}{\cos x}

    = x\tan x + \ln\left| \cos x
ight|

    \Rightarrow f(x) = \frac{x\tan x +
\ln\left| \cos x ight|}{\sin x} = \frac{x}{\cos x} + \frac{\ln\left|
\cos x ight|}{\sin x}

    Theo bài ra ta có:

    \Rightarrow \sqrt{3}f\left(\frac{\pi}{3} ight) - f\left( \frac{\pi}{6} ight) = \sqrt{3}\left(\frac{2\pi}{3} - \dfrac{2\ln2}{\sqrt{3}} ight)- \left(\frac{\pi\sqrt{3}}{9} + 2\ln\dfrac{\sqrt{3}}{2} ight) =\dfrac{5\pi\sqrt{3}}{9}\ln3

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{5}{9} \\b = - 1 \\\end{matrix} ight.\  \Rightarrow a + b = - \frac{4}{9}

  • Câu 4: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 5: Nhận biết

    Gọi S là diện tích hình phẳng giới hạn bởi các đường y = 3^{x};y = 0;x = 0;x = 2. Mệnh đề nào dưới đây đúng?

    Ta có: S = \int_{0}^{2}{\left| 3^{x}
ight|dx} = \int_{0}^{2}{3^{x}dx}

  • Câu 6: Vận dụng

    Biết rằng  F(x) nguyên hàm của hàm số f(x) = \frac{1}{x^{2}(x +1)} thỏa mãn F(1) + F( - 2) = \frac{1}{2}. Chọn mệnh đề đúng?

    Sử dụng phương pháp đồng nhất thức, ta có:

    f(x) = \frac{1}{x^{2}(x + 1)} =\frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x + 1}= \frac{(A + C)x^{2} +(A + B)x + B}{x^{2}(x + 1)}

    Suy ra \left\{ \begin{matrix}A + C = 0 \\A + B = 0 \\B = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = 1 \\C = 1 \\\end{matrix} ight.

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\left( - \frac{1}{x} + \frac{1}{x^{2}} + \frac{1}{x + 1}ight)dx}

    \Rightarrow F(x) = - \ln|x| -\frac{1}{x} + \ln|x + 1| + C = \ln\left| \frac{x + 1}{x} ight| -\frac{1}{x} + C

    Khi đó F(x) = \left\{ \begin{matrix}\ln\dfrac{x + 1}{x} - \dfrac{1}{x} + C_{1};x \in (0; + \infty) \\\ln\dfrac{- x - 1}{x} - \dfrac{1}{x} + C_{2};x \in ( - 1;0) \\\ln\frac{x + 1}{x} - \dfrac{1}{x} + C_{3};x \in ( - \infty; - 1) \\\end{matrix} ight.

    F(1) + F( - 2) =\frac{1}{2}

    \Leftrightarrow \ln2 - 1 + C_{1} +\ln\frac{1}{2} + \frac{1}{2} + C_{3} = \frac{1}{2}

    \Leftrightarrow C_{1} + C_{3} =1

    Vậy T = F(2) + F( - 3) = \ln\frac{3}{2} -\frac{1}{2} + C_{1} + \ln\frac{2}{3} + \frac{1}{3} + C_{3} =\frac{5}{6}

  • Câu 7: Thông hiểu

    Cho hình vẽ:

    Diện tích hình phẳng (phần gạch chéo) giới hạn bởi đồ thị 3 hàm số f(x);g(x);h(x) như hình bên, bằng kết quả nào sau đây?

    Diện tích miền tích phân được chia thành hai phần. Phần 1 với x nằm trong khoảng a đến b và phần 2 với x nằm trong khoảng b đến c:

    S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx} + \int_{b}^{c}{\left| g(x) - h(x) ight|dx}

    = \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{b}^{c}{\left\lbrack h(x) - g(x) ightbrack
dx}

    = \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} - \int_{b}^{c}{\left\lbrack g(x) - h(x) ightbrack
dx}.

  • Câu 8: Thông hiểu

    Cho hàm số f(x) có đạo hàm với mọi x\mathbb{\in R}f'(x) = 2x + 1. Giá trị của f(2) - f(1) bằng:

    Ta có:

    f'(x) = 2x + 1 \Rightarrow\int_{}^{}{f'(x)dx = \int_{}^{}{(2x + 1)dx}}

    = x^{2} + x + C \Rightarrow \existsC_{1}\mathbb{\in R}:f(x) = x^{2} + x + C

    \Rightarrow f(2) - f(1) = 2^{2} + 2 +C_{1} - \left( 1^{2} + 1 + C_{1} ight) = 4

  • Câu 9: Nhận biết

    Giá trị của tích phân \int_{- 1}^{0}{e^{x
+ 1}dx} bằng:

    Ta có: \int_{- 1}^{0}{e^{x + 1}dx} =
\left. \ e^{x + 1} ight|_{- 1}^{0} = e^{1} - e^{0} = e -
1.

  • Câu 10: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = 2\cos 3x - {3^{x - 1}} thỏa mãn F\left( 0 ight) = 0. Tìm F(x)

     F\left( x ight) = \int {f\left( x ight)dx }

    = \int {2\cos 3xdx - \int {{3^{x - 1}}dx - \frac{1}{3}\int {{3^x}dx}  = \frac{{2\sin 3x}}{3} - \frac{{{3^x}}}{{3\ln 3}} + C} }

    Mặt khác F\left( 0 ight) = 0 \Rightarrow \frac{{2\sin 3x}}{3} - \frac{{{3^x}}}{{3\ln 3}} + C = 0 \Rightarrow C = \frac{1}{{3\ln 3}}

    => F\left( x ight) = \frac{{2\sin 3x}}{3} - \frac{{{3^{x - 1}}}}{{\ln 3}} + \frac{1}{{3\ln 3}}

  • Câu 11: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 12: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 13: Nhận biết

    Một chiếc máy bay di chuyển với vận tốc là v(t) = 3t^{2} + 5(m/s). Hỏi quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 bằng bao nhiêu?

    Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:

    S = \int_{4}^{10}{v(t)dt} =
\int_{4}^{10}{\left( 3t^{2} + 5 ight)dt}

    = \left. \ \left( t^{3} + 5t ight)
ight|_{4}^{10} = 996(m)

  • Câu 14: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m thỏa mãn \int_{0}^{m}{(2x + 1)dx} < 2?

    Ta có: \int_{0}^{m}{(2x + 1)dx} < 2
\Leftrightarrow \left. \ \left( x^{2} + x ight) ight|_{0}^{m} <
2

    \Leftrightarrow m^{2} + m - 2 < 0
\Leftrightarrow - 2 < m < 1

  • Câu 15: Thông hiểu

    Tìm a + b biết rằng \int_{0}^{1}{x\sqrt[3]{1 - x}dx} =
\frac{a}{b} là phân số tối giản?

    Ta có: t = \sqrt[3]{1 - x} \Rightarrow
t^{3} = 1 - x \Rightarrow 3t^{2}dt = - dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight. khi đó suy ra

    \Rightarrow \int_{0}^{1}{x\sqrt[3]{1 -
x}dx} = 3\int_{0}^{1}{\left( 1 - t^{3} ight)t^{3}dt}

    = \left. \ 3\left( \frac{t^{4}}{4} -
\frac{t^{7}}{7} ight) ight|_{0}^{1} = \frac{9}{28}

  • Câu 16: Nhận biết

    Cho hàm số y = f(x);y = g(x) liên tục trên \lbrack a;bbrack. Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x);y = g(x) và các đường thẳng x = a;x = b. Diện tích hình (H) được tính theo công thức?

    Ta có diện tích hình (H) được tính bằng công thức S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 17: Vận dụng cao

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đáp án là:

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.

    Đồ thị của hàm số y = f(x)nhận trục Oy làm trục đối xứng đi qua hai điểm A(
- 1;0)A(2;1) có dạng hàm số (P_{1}):y = \frac{1}{2}x^{2} -
1.

    Đồ thị của hàm số y = g(x)nhận trục Oy làm trục đối xứng đi qua hai điểm C(1;0)D(2;
- 1) có dạng hàm số (P_{1}):y = -
\frac{1}{2}x^{2} + 1.

    Giao điểm của hai parabol tại x_{1} = -
\sqrt{2};x_{2} = \sqrt{2}

    Do đó, diện tích của con cá là S =
\int_{- \sqrt{2}}^{2}{\left| x^{2} - 2 ight|dx} \approx
4,32m^{2}

  • Câu 18: Vận dụng cao

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}}, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)

     Ta có: f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} = \frac{{\left( {A + C} ight){x^2} + (A + B)x + B}}{{{x^2}\left( {x + 1} ight)}}

    => \left\{ {\begin{array}{*{20}{c}}  {A + C = 0} \\   {B = 1} \\   {A + B = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {A =  - 1} \\   {B = 1} \\   {B = 1} \end{array}} ight.

    => F\left( x ight) = \int {f\left( x ight)dx = \int {\left( { - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{x + 1}}} ight)dx} }

    => F\left( x ight) =  - \ln \left| x ight| - \frac{1}{x} + \ln \left| {x + 1} ight| + C = \ln \left| {\frac{{x + 1}}{x}} ight| - \frac{1}{x} + C

    Khi đó: F\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_1}{\text{ khi x}} \in \left( {0; + \infty } ight)} \\   {\ln \left( {\dfrac{{ - x - 1}}{x}} ight) - \dfrac{1}{x} + {C_2}{\text{ khi x}} \in \left( { - 1; + \infty } ight)} \\   {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_3}{\text{ khi x}} \in \left( { - \infty ; - 1} ight)} \end{array}} ight.

    Theo bài ra ta có: F(x) + F(-2) = 0,5

    => \left( {\ln 2 - 1 + {C_1}} ight) + \left( {\ln \frac{1}{2} + \frac{1}{2} + {C_2}} ight) = \frac{1}{2}

    => {C_1} + {C_2} = 1

    => F\left( 2 ight) + F\left( { - 3} ight) = \left( {\ln \frac{3}{2} + \frac{1}{2} + {C_1}} ight) + \left( {\ln \frac{2}{3} + \frac{1}{2} + {C_1}} ight) = \frac{5}{6}

  • Câu 19: Vận dụng

    Cho hình phẳng D được giới hạn bởi hai đường y = 2\left( x^{2} - 1ight);y = 1 - x^{2}. Tính thể tích khối tròn xoay tạo thành do D quay quanh trục Ox?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình phẳng D được giới hạn bởi hai đường y = 2\left( x^{2} - 1ight);y = 1 - x^{2}. Tính thể tích khối tròn xoay tạo thành do D quay quanh trục Ox?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Cho hình phẳng D giới hạn bởi đường cong y = e^{x}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Ta có:

    V = \pi\int_{0}^{1}{e^{2x}dx} = \left. \
\frac{\pi}{2}e^{2x} ight|_{0}^{1} = \frac{\pi\left( e^{2} - 1
ight)}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo