Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giá trị của D = \int_{0}^{1}{\left(
2019x^{2018} - 1 ight)dx} bằng

    Ta có:

    D = \int_{0}^{1}{\left( 2019x^{2018} - 1
ight)dx} = \left. \ \left( x^{2019} - x ight) ight|_{0}^{1} =
0

  • Câu 2: Nhận biết

    Nguyên hàm của hàm số f(x) = 2^{x} +
x

    Ta có: \int_{}^{}f(x)dx =
\int_{}^{}\left( 2^{x} + x ight)dx = \frac{2^{x}}{ln2} +
\frac{x^{2}}{2} + C.

  • Câu 3: Vận dụng

    Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16\pi\left( \ cm^{2}
ight). Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)

    Quả bóng bầu dục sẽ có dạng elip.

    Độ dài trục lớn bằng 20\ cm \Rightarrow2a = 20 \Rightarrow a = 5\ \ (cm)

    Ta có diện tích đường tròn thiết diện là

    S = \pi b^{2} = 16\pi \Rightarrow b =4(\ cm)

    Ta sẽ có phương trình elip \frac{x^{2}}{25} + \frac{y^{2}}{16} =
1

    \Rightarrow V = \pi\int_{-
5}^{5}{16\left( 1 - \frac{x^{2}}{25} ight)}dx \approx 335\ \ \left( \
cm^{3} ight) = 0,34\ (l).

  • Câu 4: Nhận biết

    Giá trị của tích phân \int_{- 1}^{0}{e^{x
+ 1}dx} bằng:

    Ta có: \int_{- 1}^{0}{e^{x + 1}dx} =
\left. \ e^{x + 1} ight|_{- 1}^{0} = e^{1} - e^{0} = e -
1.

  • Câu 5: Vận dụng

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Đáp án là:

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Giả sử hàm số biểu thị cho vận tốc có dạng (P):v(t) = at^{2} + bt + c\left( a,b,c\mathbb{\in
R} ight)

    Do (P) đi qua gốc O nên c =
0

    (P) có đỉnh là I(10;50) \Rightarrow \left\{ \begin{matrix}
\frac{- b}{2a} = 10 \\
50 = a.100 + b.10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{1}{2} \\
b = 10 \\
\end{matrix} ight.

    Do đó (P):v(t) = - \frac{1}{2}t^{2} +
10t

    Xe dừng lại khi v(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} ight.

    Quảng đường xe ô tô di chuyển trong 20 giây là S = \int_{0}^{20}{\left( - \frac{1}{2}t^{2} + 10t
ight)dt} \approx 667m

  • Câu 6: Thông hiểu

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 7: Nhận biết

    Xác định nguyên hàm của hàm số f(x) =
3x^{2} + \frac{x}{2}?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}\left( 3x^{2} + \frac{x}{2} ight)dx = x^{3} +
\frac{x^{2}}{4} + C.

  • Câu 8: Thông hiểu

    Cho hai hàm số F(x) = \left( x^{2} + bx +
c ight)e^{x}f(x) = \left(
x^{2} + 3x + 4 ight)e^{x}. Biết a;b là các số thực để F(x) là một nguyên hàm của f(x). Tính S
= a + b?

    Từ giả thiết ta có:

    F'(x) = f(x)

    \Leftrightarrow (2x + a)e^{x} + \left(
x^{2} + ax + b ight)e^{x} = \left( x^{2} + 3x + 4 ight)e^{x};\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} + (2 + a)x + a + b
= x^{2} + 3x + 4;\forall x\mathbb{\in R}

    Đồng nhất hai vế ta có: \left\{
\begin{matrix}
a + 2 = 3 \\
a + b = 4 \\
\end{matrix} ight.\  \Rightarrow S = a + b = 4.

  • Câu 9: Thông hiểu

    Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị y = x^{2} - ax với trục hoành (a eq 0). Quay hình (H) xung quanh trục hoành ta thu được khối tròn xoay có thể tích V =
\frac{16\pi}{15}. Tìm a?

    Phương trình hoành độ giao điểm

    x^{2} - ax = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = a \\
\end{matrix} ight.

    Trường hợp 1: Với a > 0 thì thể tích khối tròn xoay là:

    V = \pi\int_{0}^{a}{\left( x^{2} - ax
ight)^{2}dx} = \pi\left. \ \left( \frac{x^{5}}{5} - \frac{ax^{4}}{2} +
\frac{a^{2}x^{3}}{3} ight) ight|_{0}^{a} =
\frac{a^{5}\pi}{30}

    \Rightarrow \frac{a^{5}\pi}{30} =
\frac{16\pi}{15} \Rightarrow a = 2

    Trường hợp 2: Với a < 0 thì thể tích khối tròn xoay là:

    V = \pi\int_{a}^{0}{\left( x^{2} - ax
ight)^{2}dx} = \pi\left. \ \left( \frac{x^{5}}{5} - \frac{ax^{4}}{2} +
\frac{a^{2}x^{3}}{3} ight) ight|_{a}^{0} = -
\frac{a^{5}\pi}{30}

    \Rightarrow - \frac{a^{5}\pi}{30} =
\frac{16\pi}{15} \Rightarrow a = - 2

    Vậy a = \pm 2.

  • Câu 10: Thông hiểu

    Biết rằng \int_{3}^{4}{\frac{5x -8}{x^{2} - 3x + 2}dx} = a\ln3 + b\ln2 + c\ln5 với a;b;c là các số hữu tủ. Giá trị của 2^{a - 3b + c} bằng:

    Ta có:

    \int_{3}^{4}{\frac{5x - 8}{x^{2} - 3x +2}dx} = \int_{3}^{4}{\left( \frac{3}{x - 1} + \frac{2}{x - 2}ight)dx}

    = \left. \ 3\ln|x - 1| ight|_{3}^{4} +2\left. \ \ln|x - 2| ight|_{3}^{4}

    = 3\ln2 - 3\ln2 + 2\ln2 = - \ln2 +3\ln3

    \Rightarrow \left\{ \begin{matrix}a = 3 \\b = - 1 \\c = 0 \\\end{matrix} ight.\  \Rightarrow 2^{a - 3b + c} = 2^{6} =64

  • Câu 11: Vận dụng cao

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 12: Thông hiểu

    Thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y =
x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox?

    Phương trình hoành độ giao điểm của đường y = x\sqrt{x^{2} + 1} và trục hoành là:

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:

    V = \pi\int_{0}^{1}{\left( x\sqrt{x^{2}
+ 1} ight)^{2}dx} = \pi\int_{0}^{1}{\left( x^{4} + x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} +
\frac{x^{3}}{3} ight) ight|_{0}^{1} = \frac{8\pi}{15}

  • Câu 13: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{1}{{x - 1}};f\left( 0 ight) = 2017;f\left( 2 ight) = 2018. Giá trị của biểu thức T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] là bao nhiêu?

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\dfrac{1}{{x - 1}}dx}  \hfill \\   = \ln \left| {x - 1} ight| + C = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  1}}} \\   {\ln \left( {1 - x} ight) + {C_2}{\text{ khi x  <  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 2017 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 2017} \\   {f\left( 2 ight) = 2018 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 2018} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 2017} \\   {{C_1} = 2018} \end{array}} ight.

    Khi đó

    \begin{matrix}  T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] \hfill \\   = \left[ {\ln \left( {3 - 1} ight) + 2018 - 2018} ight].\left[ {\ln \left( {1 - \left( { - 1} ight)} ight) + 2017 - 2017} ight] \hfill \\   = \ln 2.\ln 2 = {\ln ^2}2 \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Cho hình vẽ:

    Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:

    Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{2}{\left( - x^{2} + 3 -
x^{2} + 2x + 1 ight)dx} = \int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4
ight)dx}.

  • Câu 15: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 0x =
2 bằng

    Hình vẽ minh họa

    Phương trình hoành độ giao điểm x^{3} = 0
\Leftrightarrow x = 0

    Diện tích hình giới hạn là S =
\int_{0}^{2}{\left| x^{3} ight|dx} = \left| \int_{0}^{2}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{0}^{2}
ight| = 4

  • Câu 16: Thông hiểu

    Một vật chuyển động với vận tốc 10(m/s) thì tăng tốc với gia tốc a(t) = 3t + t^{2}\left( m/s^{2}
ight)Tính quãng đường vật đi được trong khoảng thời gian 10 giây kể từ lúc bắt đầu tăng tốc.

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( 3t + t^{2} ight)dt} = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + C

    Do khi bắt đầu tăng tốc v_{0} = 10
\Rightarrow v_{(t = 0)} = 10 \Rightarrow C = 10

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{3}{2}t^{2} + 10

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{\left( \frac{t^{3}}{3} + \frac{3}{2}t^{2} + 10 ight)dt}
= \frac{4300}{3}(m)

  • Câu 17: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack, có đồ thị hàm số y = f'(x) như sau:

    Mệnh đề nào dưới đây là đúng?

    Theo ý nghĩa hình học của tích phân thì \int_{a}^{b}{f'(x)dx} là diện tích hình thang cong ABMN.

  • Câu 18: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 19: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn 2xf\left( x ight) + {x^2}f'\left( x ight) = 1;f\left( 1 ight) = 0. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có:

    \begin{matrix}  2xf\left( x ight) + {x^2}f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left( {{x^2}} ight)'.f\left( x ight) + {x^2}.f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left[ {{x^2}f\left( x ight)} ight]' = 1 \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {{x^2}f\left( x ight)} ight]'dx}  = \int {1.dx}  \hfill \\   \Leftrightarrow {x^2}f\left( x ight) = x + C \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  f\left( 1 ight) = 0 \Rightarrow 1.f\left( 1 ight) = 1 + C \Rightarrow C =  - 1 \hfill \\   \Rightarrow {x^2}f\left( x ight) = x - 1 \Rightarrow f\left( x ight) = \dfrac{{x - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    Xét phương trình hoành độ giao điểm với trục hoành ta có:

    \frac{{x - 1}}{{{x^2}}} = 0 \Rightarrow x = 1\left( {tm} ight)

    Ta lại có: f'\left( x ight) = \frac{{2 - x}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( 1 ight) = 1} \\   {f\left( 1 ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( 1 ight)\left( {x - 1} ight) + f\left( 1 ight) \Rightarrow y = x - 1

  • Câu 20: Nhận biết

    Xác định giá trị của tham số a thỏa mãn \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = a^{3} + 2?

    Ta có: \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = \left. \ \left( x^{3} + 2x ight) ight|_{0}^{a} = a^{3}
+ 2a

    \Rightarrow \int_{0}^{a}{\left( 3x^{2} +
2 ight)dx} = a^{3} + 2 \Leftrightarrow a^{3} + 2a = a^{3} + 2
\Leftrightarrow a = 1

    Vậy đáp án a = 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo