Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} + |x|;y = x^{2} + 1 được cho bởi công thức nào sau đây?

    Ta có: y = x^{2} + |x| = \left\{\begin{matrix}x^{2} + x;\ \ x \geq 0 \\x^{2} - x;\ \ x \leq 0 \\\end{matrix} ight.

    Với x \geq 0 \Rightarrow x^{2} + x =x^{2} + 1 \Leftrightarrow x = 1

    Với x \leq 0 \Rightarrow x^{2} - x =x^{2} + 1 \Leftrightarrow x = - 1

    Ta có:

    S = \left| \int_{- 1}^{0}{( - x - 1)dx}ight| + \left| \int_{0}^{1}{(x - 1)dx} ight|

  • Câu 2: Vận dụng cao

    Cho đường thẳng y = \frac{1}{2}x +a và parabol y = x^{2} (a là tham số thực). Gọi S_{1};S_{2} lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi S_{1} = S_{2} thì A thuộc khoảng nào dưới đây?

    Phương trình hoành độ giao điểm của của hai đồ thị:

    \frac{1}{2}x + a = x^{2} \Leftrightarrow2x^{2} - x - 2a = 0

    Theo giả thiết, phương trình có hai nghiệm phân biệt

    \Delta = 1 + 16a > 0 \Rightarrow a> - \frac{1}{16}

    Khi đó, phương trình có hai nghiệm x_{1};x_{2};\left( x_{1} < x_{2}ight) thỏa mãn:

    \left\{ \begin{matrix}S = x_{1} + x_{2} = \frac{1}{2} \\P = x_{1}.x_{2} = - a \\\end{matrix} ight.

    Diện tích hình phẳng:

    S_{1} = \int_{- 2a}^{x_{1}}{\left(\frac{x}{2} + a ight)dx} + \int_{x_{1}}^{0}{x^{2}dx}

    = \left. \ \left( \frac{x^{2}}{4} + axight) ight|_{- 2a}^{x_{1}} + \left. \ \frac{x^{3}}{3}ight|_{x_{1}}^{0}

    = \frac{1}{4}{x_{1}}^{2} + ax_{1} -\frac{1}{4}.4a^{2} + 2a^{2} - \frac{1}{3}{x_{1}}^{3}

    = - \frac{1}{3}{x_{1}}^{3} +\frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2}

    Diện tích hình phẳng:

    S_{2} = \int_{x_{1}}^{x_{2}}{\left(\frac{1}{2}x + a - x^{2} ight)dx} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    Theo giả thiết ta có:

    S_{1} = S_{2}

    \Leftrightarrow = -\frac{1}{3}{x_{1}}^{3} + \frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2} =\frac{\left( x_{2} - x_{1} ight)^{3}}{6}

    \Leftrightarrow \frac{1}{4}\left({x_{1}}^{2} - 4a^{2} ight) + a\left( x_{1} + 2a ight) -\frac{{x_{1}}^{3}}{3} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    \Leftrightarrow - \frac{1}{6}\left({x_{1}}^{3} + {x_{2}}^{3} ight) + \frac{1}{2}x_{1}x_{2}\left( x_{2} -x_{1} ight) + \frac{{x_{1}}^{2}}{4} + ax_{1} + a^{2} = 0

    \Leftrightarrow - \frac{1}{6}\left(\frac{1}{8} + \frac{3a}{2} ight) - \frac{a}{2}\sqrt{\frac{1}{4} + 4a}+ \frac{\left( 1 + \sqrt{1 + 16a} ight)^{2}}{64} + a.\frac{1 - \sqrt{1+ 16a}}{4} + a^{2} = 0

    \Rightarrow a \approx 3,684 \in \left(\frac{7}{2};4 ight)

  • Câu 3: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 4: Nhận biết

    Cho các hàm số f(x)F(x) liên tục trên \mathbb{R} thỏa mãn F'(x) = f(x) với \forall x\mathbb{\in R}. Tính I = \int_{0}^{1}{f(x)dx}, biết rằng F(0) = 2;F(1) = 5?

    Ta có: I = \int_{0}^{1}{f(x)dx} = F(1) -
F(0) = 3.

  • Câu 5: Nhận biết

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 6: Thông hiểu

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) ( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với S'(t) = 1,2698.e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) được tính bằng triệu người/năm.

    a) S(t) là một nguyên hàm của S'(t) . Đúng||Sai

    b) S(t) = 90,7.e^{0,014t} +
90,7. Sai||Đúng

    c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai

    Đáp án là:

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) ( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với S'(t) = 1,2698.e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) được tính bằng triệu người/năm.

    a) S(t) là một nguyên hàm của S'(t) . Đúng||Sai

    b) S(t) = 90,7.e^{0,014t} +
90,7. Sai||Đúng

    c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai

    Ta có: S(t) là một nguyên hàm của S'(t)

    \int_{}^{}{S'(t)}dt =
\int_{}^{}{1,2698.e^{0,014t}}dt = 90,7.e^{0,014t} + C

    Do S(0) = 90,7 \Rightarrow C = 0
\Rightarrow S(t) = 90,7.e^{0,014t}

    Tốc độ tăng dân số của nước ta vào năm 2034 là

    S'(20) = 1,2698.e^{0,014.20} \approx
1,7( triệu người/năm)

    Dân số của nước ta vào năm 2034 là

    S(20)
= 90,7.e^{0,014.20} \approx 120( triệu người)

  • Câu 7: Nhận biết

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

  • Câu 8: Nhận biết

    Nếu \int_{1}^{2}{f(x)dx} =
5;\int_{2}^{5}{f(x)dx} = - 1 thì \int_{1}^{5}{f(x)dx} bằng:

    Ta có:

    \int_{1}^{5}{f(x)dx} =
\int_{1}^{2}{f(x)dx} + \int_{2}^{5}{f(x)dx} = 5 + ( - 1) =
4

  • Câu 9: Thông hiểu

    Một vật thể nằm giữa hai mặt phẳng x = -
1;x = 1 và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ x;(
- 1 \leq x \leq 1) là một hình tròn có diện tích bằng 3\pi. Thể tích của vật thể là?

    Ta có: V = \int_{- 1}^{1}{S(x)dx} =
\int_{- 1}^{1}{3\pi dx} = 6\pi

  • Câu 10: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}}dx} =
\int_{}^{}\frac{d\left( e^{x} + 1 ight)}{\left( e^{x} + 1 ight)^{2}}
= - \frac{1}{e^{x} + 1} + C.

  • Câu 11: Thông hiểu

    Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc a(t) = 6 - 2t\left( m/s^{2}
ight), trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là bao nhiêu mét?

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{(6 - 2t)dt} = 6t - t^{2} + C

    Khi đó v_{\max} \Leftrightarrow t =
3 do ban đầu ô tô đang dừng nên v(0) = 0 \Rightarrow C = 0

    Quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là: S =
\int_{0}^{3}{\left( 6t - t^{2} ight)dt} = 18m.

  • Câu 12: Vận dụng

    Xét hình phẳng (H) giới hạn bởi đồ thị hàm số y = (x + 3)^{2}, trục hoành và đường thẳng x = 0. Gọi A(0;9),B(b;0);( - 3 < b < 0). Tính giá trị của tham số b để đoạn thẳng AB chia (H) thành hai phần có diện tích bằng nhau?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Nhận biết

    Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a;x = b;\left( {a < b} ight) xung quanh trục Ox.

    Ta có : V =
\pi\int_{a}^{b}{f^{2}(x)}dx.

  • Câu 14: Vận dụng cao

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}}, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)

     Ta có: f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} = \frac{{\left( {A + C} ight){x^2} + (A + B)x + B}}{{{x^2}\left( {x + 1} ight)}}

    => \left\{ {\begin{array}{*{20}{c}}  {A + C = 0} \\   {B = 1} \\   {A + B = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {A =  - 1} \\   {B = 1} \\   {B = 1} \end{array}} ight.

    => F\left( x ight) = \int {f\left( x ight)dx = \int {\left( { - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{x + 1}}} ight)dx} }

    => F\left( x ight) =  - \ln \left| x ight| - \frac{1}{x} + \ln \left| {x + 1} ight| + C = \ln \left| {\frac{{x + 1}}{x}} ight| - \frac{1}{x} + C

    Khi đó: F\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_1}{\text{ khi x}} \in \left( {0; + \infty } ight)} \\   {\ln \left( {\dfrac{{ - x - 1}}{x}} ight) - \dfrac{1}{x} + {C_2}{\text{ khi x}} \in \left( { - 1; + \infty } ight)} \\   {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_3}{\text{ khi x}} \in \left( { - \infty ; - 1} ight)} \end{array}} ight.

    Theo bài ra ta có: F(x) + F(-2) = 0,5

    => \left( {\ln 2 - 1 + {C_1}} ight) + \left( {\ln \frac{1}{2} + \frac{1}{2} + {C_2}} ight) = \frac{1}{2}

    => {C_1} + {C_2} = 1

    => F\left( 2 ight) + F\left( { - 3} ight) = \left( {\ln \frac{3}{2} + \frac{1}{2} + {C_1}} ight) + \left( {\ln \frac{2}{3} + \frac{1}{2} + {C_1}} ight) = \frac{5}{6}

  • Câu 15: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {e^{ - 2x}} + \frac{1}{{\sqrt x }}

     \begin{matrix}  \int {\left( {{e^{ - 2x}} + \dfrac{1}{{\sqrt x }}} ight)dx}  = \int {{e^{ - 2x}}dx}  + \int {\dfrac{1}{{\sqrt x }}} dx =  - \dfrac{1}{2}\int {{e^{ - 2x}}d\left( { - 2x} ight)}  + 2\int {\dfrac{1}{{2\sqrt x }}} dx \hfill \\   =  - \dfrac{{{e^{ - 2x}}}}{2} + 2\sqrt x  + C =  - \dfrac{1}{{2{e^{2x}}}} + 2\sqrt x  + C \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = 2x - x^{2};y = 0. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:

    Ta có: 2x - x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Theo công thức thể tích giới hạn bởi các đường ta có:

    V = \pi\int_{0}^{2}{\left( 2x - x^{2}
ight)^{2}dx}

  • Câu 17: Nhận biết

    Xác định nguyên hàm của hàm số f(x) =
3x^{2} + \frac{x}{2}?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}\left( 3x^{2} + \frac{x}{2} ight)dx = x^{3} +
\frac{x^{2}}{4} + C.

  • Câu 18: Vận dụng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x} trên khoảng (0;\pi). Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{\dfrac{2\cos x - 1}{\sin^{2}x}dx} =\int_{}^{}{\dfrac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\dfrac{1}{\sin^{2}x}dx}

    = \int_{}^{}\frac{2d\left( \sin xight)}{\sin^{2}x} - \int_{}^{}{\frac{1}{\sin^{2}x}dx} = - \frac{2}{\sin x} + \cot x + C

    F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x} trên khoảng (0;\pi) nên hàm số F(x) có công thức dạng F(x) = - \frac{2}{\sin x} + \cot x + C với mọi x \in (0;\pi)

    Xét hàm số F(x) = - \frac{2}{\sin x} +
\cot x + C xác định và liên tục trên (0;\pi)

    Ta có: F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    \Rightarrow F'(x) = 0\Leftrightarrow \frac{2\cos x - 1}{\sin^{2}x} = 0

    \Leftrightarrow \cos x = \frac{1}{2}
\Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Trên khoảng (0;\pi) phương trình F'(x) = 0 có một nghiệm x = \frac{\pi}{3}

    Ta có bảng biến thiên như sau:

    \underset{(0;\pi)}{\max F(x)} = F\left(
\frac{\pi}{3} ight) = - \sqrt{3} + C. Theo bài ra ta có: - \sqrt{3} + C = \sqrt{3} \Rightarrow C =
2\sqrt{3}

    Do đó F(x) = - \frac{2}{\sin x} + \cot x
+ 2\sqrt{3} suy ra F\left(
\frac{\pi}{6} ight) = 3\sqrt{3} - 4.

  • Câu 19: Vận dụng

    Cho các hàm số f(x) có đạo hàm cấp một, đạo hàm cấp hai liên tục trên \lbrack 0;1brack và thỏa mãn \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx}
eq 0. Giá trị của biểu thức \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} bằng:

    Đặt \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx} =
k

    Ta có:

    k = \int_{0}^{1}{e^{x}f''(x)dx}
= \int_{0}^{1}{e^{x}d\left\lbrack f'(x) ightbrack}

    = \left. \ e^{x}f'(x)
ight|_{0}^{1} - \int_{0}^{1}{e^{x}f'(x)dx} = \left. \
e^{x}f'(x) ight|_{0}^{1} - k

    \Rightarrow 2k = \left. \ e^{x}f'(x)
ight|_{0}^{1}

    Ta có:

    k = \int_{0}^{1}{e^{x}f'(x)dx} =
\int_{0}^{1}{e^{x}d\left\lbrack f(x) ightbrack}

    = \left. \ e^{x}f(x) ight|_{0}^{1} -
\int_{0}^{1}{e^{x}f(x)dx} = \left. \ e^{x}f(x) ight|_{0}^{1} -
k

    \Rightarrow 2k = \left. \ e^{x}f(x)
ight|_{0}^{1}

    Vậy \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} = \frac{\left. \ e^{x}f'(x) ight|_{0}^{1}}{\left. \
e^{x}f(x) ight|_{0}^{1}} = 1

  • Câu 20: Thông hiểu

    Tìm a + b biết rằng \int_{0}^{1}{x\sqrt[3]{1 - x}dx} =
\frac{a}{b} là phân số tối giản?

    Ta có: t = \sqrt[3]{1 - x} \Rightarrow
t^{3} = 1 - x \Rightarrow 3t^{2}dt = - dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight. khi đó suy ra

    \Rightarrow \int_{0}^{1}{x\sqrt[3]{1 -
x}dx} = 3\int_{0}^{1}{\left( 1 - t^{3} ight)t^{3}dt}

    = \left. \ 3\left( \frac{t^{4}}{4} -
\frac{t^{7}}{7} ight) ight|_{0}^{1} = \frac{9}{28}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo