Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

  • Câu 2: Vận dụng cao

    Cho đường thẳng y = \frac{1}{2}x +a và parabol y = x^{2} (a là tham số thực). Gọi S_{1};S_{2} lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi S_{1} = S_{2} thì A thuộc khoảng nào dưới đây?

    Phương trình hoành độ giao điểm của của hai đồ thị:

    \frac{1}{2}x + a = x^{2} \Leftrightarrow2x^{2} - x - 2a = 0

    Theo giả thiết, phương trình có hai nghiệm phân biệt

    \Delta = 1 + 16a > 0 \Rightarrow a> - \frac{1}{16}

    Khi đó, phương trình có hai nghiệm x_{1};x_{2};\left( x_{1} < x_{2}ight) thỏa mãn:

    \left\{ \begin{matrix}S = x_{1} + x_{2} = \frac{1}{2} \\P = x_{1}.x_{2} = - a \\\end{matrix} ight.

    Diện tích hình phẳng:

    S_{1} = \int_{- 2a}^{x_{1}}{\left(\frac{x}{2} + a ight)dx} + \int_{x_{1}}^{0}{x^{2}dx}

    = \left. \ \left( \frac{x^{2}}{4} + axight) ight|_{- 2a}^{x_{1}} + \left. \ \frac{x^{3}}{3}ight|_{x_{1}}^{0}

    = \frac{1}{4}{x_{1}}^{2} + ax_{1} -\frac{1}{4}.4a^{2} + 2a^{2} - \frac{1}{3}{x_{1}}^{3}

    = - \frac{1}{3}{x_{1}}^{3} +\frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2}

    Diện tích hình phẳng:

    S_{2} = \int_{x_{1}}^{x_{2}}{\left(\frac{1}{2}x + a - x^{2} ight)dx} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    Theo giả thiết ta có:

    S_{1} = S_{2}

    \Leftrightarrow = -\frac{1}{3}{x_{1}}^{3} + \frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2} =\frac{\left( x_{2} - x_{1} ight)^{3}}{6}

    \Leftrightarrow \frac{1}{4}\left({x_{1}}^{2} - 4a^{2} ight) + a\left( x_{1} + 2a ight) -\frac{{x_{1}}^{3}}{3} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    \Leftrightarrow - \frac{1}{6}\left({x_{1}}^{3} + {x_{2}}^{3} ight) + \frac{1}{2}x_{1}x_{2}\left( x_{2} -x_{1} ight) + \frac{{x_{1}}^{2}}{4} + ax_{1} + a^{2} = 0

    \Leftrightarrow - \frac{1}{6}\left(\frac{1}{8} + \frac{3a}{2} ight) - \frac{a}{2}\sqrt{\frac{1}{4} + 4a}+ \frac{\left( 1 + \sqrt{1 + 16a} ight)^{2}}{64} + a.\frac{1 - \sqrt{1+ 16a}}{4} + a^{2} = 0

    \Rightarrow a \approx 3,684 \in \left(\frac{7}{2};4 ight)

  • Câu 3: Thông hiểu

    Cho tích phân I = \int_{0}^{4}{f(x)dx} =
32. Tính tích phân H =
\int_{0}^{2}{f(2x)dx}?

    Đặt t = 2x \Rightarrow dt = 2dx
\Rightarrow dx = \frac{dt}{2}

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = 2 \Rightarrow t = 4 \\
\end{matrix} ight.

    Khi đó H =
\frac{1}{2}\int_{0}^{4}{f(t)dt} = \frac{1}{2}.32 = 16

  • Câu 4: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {e^{ - 2x}} + \frac{1}{{\sqrt x }}

     \begin{matrix}  \int {\left( {{e^{ - 2x}} + \dfrac{1}{{\sqrt x }}} ight)dx}  = \int {{e^{ - 2x}}dx}  + \int {\dfrac{1}{{\sqrt x }}} dx =  - \dfrac{1}{2}\int {{e^{ - 2x}}d\left( { - 2x} ight)}  + 2\int {\dfrac{1}{{2\sqrt x }}} dx \hfill \\   =  - \dfrac{{{e^{ - 2x}}}}{2} + 2\sqrt x  + C =  - \dfrac{1}{{2{e^{2x}}}} + 2\sqrt x  + C \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Cho hình vẽ:

    Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:

    Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{2}{\left( - x^{2} + 3 -
x^{2} + 2x + 1 ight)dx} = \int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4
ight)dx}.

  • Câu 6: Vận dụng

    Cho F(x) là nguyên hàm của hàm số f(x) = \frac{1}{e^{x} + 3} thỏa mãn F(0) = - \frac{1}{3}ln4. Tổng các nghiệm của phương trình 3F(x) +
\ln\left( e^{x} + 3 ight) = 2 là:

    Ta có: F(x) = \int_{}^{}{f(x)}dx =
\int_{}^{}{\left( \frac{1}{e^{x} + 3} ight)dx} =
\int_{}^{}{\frac{e^{x}}{e^{x}\left( e^{x} + 3 ight)}dx}

    Đặt t = e^{x} \Rightarrow dt =
e^{x}dx

    \Rightarrow
\int_{}^{}{\frac{e^{x}}{e^{x}\left( e^{x} + 3 ight)}dx} =
\int_{}^{}{\frac{t}{t(t + 3)}dt}

    = \int_{}^{}{\left\lbrack \frac{1}{3t} -
\frac{1}{3(t + 3)} ightbrack dt} = \frac{\ln|t|}{3} - \frac{\ln|t +
3|}{3} + C

    = \frac{\ln e^{x}}{3} - \frac{\ln\left(
e^{x} + 3 ight)}{3} + C = \frac{x}{3} - \frac{\ln\left( e^{x} + 3
ight)}{3} + C

    Theo bài ra ta có:

    F(0) = - \frac{1}{3}\ln4

    \Leftrightarrow \frac{x}{3} -\frac{\ln\left( e^{x} + 3 ight)}{3} + C = -\frac{1}{3}\ln4

    \Leftrightarrow C = 0

    Ta có:

    3F(x) + \ln\left( e^{x} + 3 ight) =
2

    \Leftrightarrow 3\left( \frac{x}{3} -
\frac{\ln\left( e^{x} + 3 ight)}{3} ight) + \ln\left( e^{x} + 3
ight) = 2

    \Leftrightarrow x = 2

    Vậy tổng các nghiệm của phương trình bằng 2.

  • Câu 7: Vận dụng cao

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Cho hàm số f(x) = \frac{1}{\sin
x} có một nguyên hàm là F(x) thỏa mãn F\left( \frac{\pi}{3} ight) = 0. Giá trị của e^{F\left( \frac{2\pi}{3}
ight)} bằng:

    Ta có: F(x) = \int_{}^{}{\frac{1}{\sin x}dx} =\int_{}^{}{\frac{1}{2\sin\frac{x}{2}.\cos\frac{x}{2}}dx}

    = \int {\frac{1}{{2\tan \frac{x}{2}.{{\cos }^2}\frac{x}{2}}}dx}  = \int {\frac{1}{{\tan \frac{x}{2}}}d\left( {\tan \frac{x}{2}} ight)}= \ln \left| {\tan \frac{x}{2}} ight| + C

    Lại có F\left( \frac{\pi}{3} ight) = 0
\Leftrightarrow \ln\left| \tan\frac{\pi}{6} ight| + C = 0

    \Rightarrow C = - \ln\frac{\sqrt{3}}{3}= \ln\sqrt{3} = \frac{1}{2}\ln3

    Do đó: {e^{F\left( {\frac{{2\pi }}{3}} ight)}} = {e^{\ln \left| {\tan \frac{\pi }{3}} ight| + \frac{1}{2}\ln 3}} = {e^{\ln 3}} = 3

  • Câu 9: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\sqrt[3]{x} là:

    Ta có:

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
\sqrt[3]{x} ight)dx} = \int_{}^{}{x^{\frac{2}{3}}dx} =
\frac{3}{4}x^{\frac{4}{3}} + C = \frac{3x\sqrt[3]{x}}{4} +
C.

  • Câu 10: Nhận biết

    Cho hàm số f(x) liên tục trên đoạn \left\lbrack 0;\frac{\pi}{2}
ightbrack\int_{0}^{\frac{\pi}{2}}{f(x)dx} = 5. Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2sinx ightbrack
dx}?

    Ta có:

    I =\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2\sin x ightbrack dx} =\int_{0}^{\frac{\pi}{2}}{f(x)dx} +\int_{0}^{\frac{\pi}{2}}{2\sin xdx}

    = 5 - \left. \ 2\cos xight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 11: Vận dụng

    Cho các hàm số f(x) có đạo hàm cấp một, đạo hàm cấp hai liên tục trên \lbrack 0;1brack và thỏa mãn \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx}
eq 0. Giá trị của biểu thức \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} bằng:

    Đặt \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx} =
k

    Ta có:

    k = \int_{0}^{1}{e^{x}f''(x)dx}
= \int_{0}^{1}{e^{x}d\left\lbrack f'(x) ightbrack}

    = \left. \ e^{x}f'(x)
ight|_{0}^{1} - \int_{0}^{1}{e^{x}f'(x)dx} = \left. \
e^{x}f'(x) ight|_{0}^{1} - k

    \Rightarrow 2k = \left. \ e^{x}f'(x)
ight|_{0}^{1}

    Ta có:

    k = \int_{0}^{1}{e^{x}f'(x)dx} =
\int_{0}^{1}{e^{x}d\left\lbrack f(x) ightbrack}

    = \left. \ e^{x}f(x) ight|_{0}^{1} -
\int_{0}^{1}{e^{x}f(x)dx} = \left. \ e^{x}f(x) ight|_{0}^{1} -
k

    \Rightarrow 2k = \left. \ e^{x}f(x)
ight|_{0}^{1}

    Vậy \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} = \frac{\left. \ e^{x}f'(x) ight|_{0}^{1}}{\left. \
e^{x}f(x) ight|_{0}^{1}} = 1

  • Câu 12: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 0x =
2 bằng

    Hình vẽ minh họa

    Phương trình hoành độ giao điểm x^{3} = 0
\Leftrightarrow x = 0

    Diện tích hình giới hạn là S =
\int_{0}^{2}{\left| x^{3} ight|dx} = \left| \int_{0}^{2}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{0}^{2}
ight| = 4

  • Câu 13: Vận dụng

    Diện tích nhỏ nhất giới hạn bởi parabol (P):y = x^{2} + 1 và đường thẳng d:y = mx + 2 là:

    Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình

    x^{2} + 1 = mx + 2 \Leftrightarrow x^{2}
- mx - 1 = 0

    \Delta = m^{2} + 4 > 0;\forall
m\mathbb{\in R} nên phương trình luôn có 2 nghiệm phân biệt

    x_{1} = \frac{m - \sqrt{m^{2} +
4}}{2};x_{2} = \frac{m + \sqrt{m^{2} + 4}}{2} với x_{1} < x_{2}

    Ta có: \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}.x_{2} = - 1 \\
x_{2} - x_{1} = \sqrt{m^{2} + 4} \\
\end{matrix} ight..

    Diện tích hình phẳng giới hạn bởi (P) và (d) là:

    S = \int_{x_{1}}^{x_{2}}{\left| \left(
x^{2} - mx - 1 ight) ight|dx}

    = \left| \int_{x_{1}}^{x_{2}}{\left(
x^{2} - mx - 1 ight)dx} ight| = \left| \left. \ \left(
\frac{x^{3}}{2} - \frac{mx^{2}}{2} - x ight) ight|_{x_{1}}^{x_{2}}
ight|

    = \left| \frac{1}{3}\left( {x_{2}}^{3} -
{x_{1}}^{3} ight) - \frac{m}{2}\left( {x_{2}}^{2} - {x_{1}}^{2}
ight) - \left( x_{2} - x_{1} ight) ight|

    = \left( x_{2} - x_{1} ight)\left|
\frac{1}{3}\left( {x_{2}}^{2} + x_{1}x_{2} + {x_{1}}^{2} ight) -
\frac{m}{2}\left( x_{2} + x_{1} ight) - 1 ight|

    = \left( x_{2} - x_{1} ight)\left|
\frac{1}{3}\left( x_{2} + x_{1} ight)^{2} - x_{2}x_{1} -
\frac{m}{2}\left( x_{2} + x_{1} ight) - 1 ight|

    = \sqrt{m^{2} + 4}.\left| \frac{m^{2} +
1}{3} - \frac{m^{2}}{2} - 1 ight|

    = \sqrt{m^{2} + 4}.\left|
\frac{m^{2}}{6} - \frac{2}{3} ight| = \sqrt{m^{2} + 4}.\frac{m^{2} +
4}{6} \geq \frac{4}{3};\forall m\mathbb{\in R}

    Vậy diện tích nhỏ nhất giới hạn bởi parabol (P):y = x^{2} + 1 và đường thẳng d:y = mx + 2\frac{4}{3}.

  • Câu 14: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 15: Thông hiểu

    Cho \int_{1}^{2}{f(x)dx} = 2. Hãy tính \int_{1}^{4}{\frac{f\left( \sqrt{x}
ight)}{\sqrt{x}}dx}?

    Đặt t = \sqrt{x} \Rightarrow dt =
\frac{1}{2\sqrt{x}}dx \Rightarrow 2dt =
\frac{1}{\sqrt{x}}dx

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = 4 \Rightarrow t = 2 \\
\end{matrix} ight. ta có:

    2\int_{1}^{2}{f(t)dt} =
2\int_{1}^{2}{f(x)dx} = 2.2 = 4

    Vậy \int_{1}^{4}{\frac{f\left( \sqrt{x}
ight)}{\sqrt{x}}dx} = 4

  • Câu 16: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 17: Nhận biết

    Tính thể tích V của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường y = \sqrt{2x};y = 0 và hai đường thẳng x = 1;x = 2 quanh trục Ox:

    Thể tích V của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường y = \sqrt{2x};y = 0 và hai đường thẳng x = 1;x = 2 quanh trục Ox là:

    V = \pi\int_{1}^{2}{\left( \sqrt{2x}
ight)^{2}dx} = \pi\int_{1}^{2}{x^{2}dx} = \pi\left. \ x^{2}
ight|_{1}^{2} = 3\pi.

  • Câu 18: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 19: Thông hiểu

    Diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} + |x|;y = x^{2} + 1 được cho bởi công thức nào sau đây?

    Ta có: y = x^{2} + |x| = \left\{\begin{matrix}x^{2} + x;\ \ x \geq 0 \\x^{2} - x;\ \ x \leq 0 \\\end{matrix} ight.

    Với x \geq 0 \Rightarrow x^{2} + x =x^{2} + 1 \Leftrightarrow x = 1

    Với x \leq 0 \Rightarrow x^{2} - x =x^{2} + 1 \Leftrightarrow x = - 1

    Ta có:

    S = \left| \int_{- 1}^{0}{( - x - 1)dx}ight| + \left| \int_{0}^{1}{(x - 1)dx} ight|

  • Câu 20: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} - 2x - 2y = \frac{x - 4}{2 - x}?

    Phương trình hoành độ giao điểm x^{2} -
2x - 2 = \frac{x - 4}{2 - x}

    \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
\left( x^{2} - 2x - 2 ight)(2 - x) = x - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
x\left( x^{2} - 4x + 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Diện tích hình giới hạn là

    S = \int_{0}^{1}{\left| x^{2} - 2x - 2 -
\frac{x - 4}{2 - x} ight|dx} + \int_{1}^{3}{\left| x^{2} - 2x - 2 -
\frac{x - 4}{2 - x} ight|dx}

    = \int_{0}^{1}{\left| x^{2} - 2x - 1 -
\frac{2}{2 - x} ight|dx} + \int_{1}^{3}{\left| x^{2} - 2x - 1 -
\frac{2}{x - 2} ight|dx}

    = \left| \left. \ \left( \frac{x^{3}}{3}- x^{2} - x - 2\ln|x - 2| ight) ight|_{0}^{1} ight| + \left| \left.\ \left( \frac{x^{3}}{3} - x^{2} - x - 2\ln|x - 2| ight)ight|_{1}^{3} ight|

    = \frac{5}{3} - 2\ln2 + \frac{4}{3} = 3 -\ln4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo