Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm Tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \int_{a}^{b}{f(x)dx} = -
\int_{b}^{a}{f(x)dx} nên khẳng định \int_{a}^{b}{f(x)dx} =
\int_{b}^{a}{f(x)dx} sai.

  • Câu 2: Thông hiểu

    Cho hai hàm số f(x)g(x) liên tục trên \lbrack a;bbrack và thỏa mãn 0 < g(x) < f(x),\forall x \in \lbrack
a;bbrack. Gọi V là thể tích của khối tròn xoay sinh ra khi quay quanh Ox hình phẳng (H) giới hạn bởi các đường: y = f(x),y = g(x),x = a,x = b. Khi đó V được tính bởi công thức nào sau đây?

    Ta cần nhớ lại công thức sau: Cho hai hàm số y = f(x),y = g(x) liên tục trên \lbrack a;bbrack. Khi đó thể tích của vật thể tròn xoay giới hạn bởi y = f(x),y =
g(x) (với 0 < g(x) <
f(x)) và hai đường thẳng x = a,x =
b khi quay quanh trục OxV = \pi\int_{a}^{b}{\left\lbrack f^{2}(x)
- g^{2}(x) ightbrack dx}.

  • Câu 3: Nhận biết

    Hàm số f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số nào sau đây?

    Ta có: f'(x) = - e^{- x} + 2 nên f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số y = - e^{- x} +
2.

  • Câu 4: Thông hiểu

    Cho \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = ae^{2} + be + c với a;b;c\mathbb{\in Z}. Tính S = a + b + c?

    Ta có:

    \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = 2\int_{0}^{3}{e^{\sqrt{x + 1}}d\left( \sqrt{x +
1} ight)} = \left. \ \left( 2e^{\sqrt{x + 1}} ight) ight|_{0}^{3}
= 2e^{2} - 2e

    Vậy a = 2;b = - 2;c = 0 \Rightarrow S =
0

  • Câu 5: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack. Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a;x = b;(a <
b) được tính theo công thức

    Theo lí thuyết về tính diện tích hình phẳng ta có diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y
= f(x), trục hoành và hai đường thẳng x = a;x = b;(a < b) được tính theo công thức: S = \int_{a}^{b}{\left| f(x)
ight|dx}.

  • Câu 6: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x - 8\sin x\cos x thỏa mãn F(\pi) = 2?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(2x - 8\sin x\cos x ight)dx}

    = \int_{}^{}{(2x - 4\sin2x)dx} = x^{2} +2\cos2x + C

    Theo bài ra ta có: F(\pi) =
2

    \Rightarrow \pi^{2} + 2 + C = 2
\Leftrightarrow C = - \pi^{2}

    Vậy F(x) = x^{2} + 2\cos2x -\pi^{2}

  • Câu 7: Vận dụng

    Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16\pi\left( \ cm^{2}
ight). Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)

    Quả bóng bầu dục sẽ có dạng elip.

    Độ dài trục lớn bằng 20\ cm \Rightarrow2a = 20 \Rightarrow a = 5\ \ (cm)

    Ta có diện tích đường tròn thiết diện là

    S = \pi b^{2} = 16\pi \Rightarrow b =4(\ cm)

    Ta sẽ có phương trình elip \frac{x^{2}}{25} + \frac{y^{2}}{16} =
1

    \Rightarrow V = \pi\int_{-
5}^{5}{16\left( 1 - \frac{x^{2}}{25} ight)}dx \approx 335\ \ \left( \
cm^{3} ight) = 0,34\ (l).

  • Câu 8: Thông hiểu

    Cho F(x) = (x - 1)e^{x} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}?

    Ta có: F(x) là một nguyên hàm của hàm số f(x)e^{2x} nên

    F'(x) = f(x)e^{2x} \Leftrightarrow
\left\lbrack (x - 1)e^{x} ightbrack' = f(x)e^{2x}

    Hay f(x)e^{2x} = e^{x} + (x - 1)e^{x} =
xe^{x}

    Xét I =
\int_{}^{}{f'(x)e^{2x}}dx, đặt \left\{ \begin{matrix}
u = e^{2x} \\
dv = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2e^{2x}dx \\
v = f(x) \\
\end{matrix} ight.

    Khi đó

    I = f(x)e^{2x} -
\int_{}^{}{2f(x)e^{2x}}dx

    = xe^{x} - 2(x - 1)e^{x} + C = (2 -
x)e^{x} + C

  • Câu 9: Vận dụng cao

    Cho hình phẳng (H) giới hạn bởi đồ thị các hàm số sau y = \sqrt{x};y =1 và đườDng thẳng x = 4 (tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng y = 1 bằng

    Đặt \left\{ \begin{matrix}X = x - 1 \\Y = y - 1 \\\end{matrix} ight.. Ta được hệ trục tọa độ OXY như hình vẽ

    Ta có: y = \sqrt{x} \Leftrightarrow Y + 1= \sqrt{X + 1} \Leftrightarrow Y = \sqrt{X + 1} - 1

    Thể tích cần tìm là

    V = \pi\int_{0}^{3}{\left( \sqrt{X + 1}- 1 ight)^{2}dX} = \pi\int_{0}^{3}{\left( X + 2 - 2\sqrt{X + 1}ight)dX}

    = \pi\left. \ \left\lbrack\frac{1}{2}X^{2} + 2X - \frac{4}{3}(X + 1)\sqrt{X + 1} ightbrackight|_{0}^{3}

    = \pi\left\lbrack \left( \frac{9}{2} + 6- \frac{32}{3} ight) - \left( - \frac{4}{3} ight) ightbrack =\frac{7\pi}{6}

  • Câu 10: Vận dụng cao

    Cho F\left( x ight) = \left( {x - 1} ight).{e^x} là một nguyên hàm của hàm số f\left( x ight).{e^{2x}}. Tìm nguyên hàm của hàm số f'\left( x ight).{e^{2x}}

    Ta có: F(x) là một nguyên hàm của hàm số f\left( x ight).{e^{2x}} nên:

    \begin{matrix}  F'\left( x ight) = f\left( x ight).{e^{2x}} \hfill \\   \Leftrightarrow \left[ {\left( {x - 1} ight).{e^x}} ight]' = f\left( x ight).{e^{2x}} \hfill \\ \end{matrix}

    Hay f\left( x ight).{e^{2x}} = {e^x} + \left( {x - 1} ight).{e^x} = x.{e^x}

    Xét I = \int {f'\left( x ight).{e^{2x}}dx}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {u = {e^{2x}}} \\   {dv = f'\left( x ight)dx} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {du = 2{e^{2x}}dx} \\   {v = f\left( x ight)} \end{array}} ight.

    Khi đó

    I = f\left( x ight).{e^{2x}} - \int {2f\left( x ight).{e^{2x}}dx}  = x.{e^x} - 2\left( {x - 1} ight){e^x} + C = \left( {2 - x} ight).{e^x} + C

     

  • Câu 11: Nhận biết

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 12: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường y = \frac{x - 1}{x + 2} và các đường thẳng y = 2;y = - 2x - 4 như hình vẽ:

    Phương trình hoành độ giao điểm

    \frac{x - 1}{x + 2} = - 2x - 4\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - \dfrac{7}{2} \\\end{matrix} ight.

    Xét - 2x - 4 = 0 \Leftrightarrow x = -
3

    Xét \frac{x - 1}{x + 2} = 2
\Leftrightarrow x = - 5

    Diện tích hình phẳng là:

    S = \int_{- 5}^{\frac{- 7}{2}}{\left(
\frac{x - 1}{x + 2} - 2 ight)dx} + \int_{- \frac{7}{2}}^{- 3}{( - 2x -
4 - 2)dx}

    = - \frac{5}{4} + 3\ln2

  • Câu 13: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y =
x^{5}.Phát biểu nào sau đây đúng?

    Ta có \left(
\frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}
ight)\mathbf{'}\mathbf{=}\mathbf{x}^{\mathbf{5}}

    Vậy đáp án cần tìm là: \frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}\mathbf{+
C}.

  • Câu 14: Vận dụng

    Cho các hàm số f(x) có đạo hàm cấp một, đạo hàm cấp hai liên tục trên \lbrack 0;1brack và thỏa mãn \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx}
eq 0. Giá trị của biểu thức \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} bằng:

    Đặt \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx} =
k

    Ta có:

    k = \int_{0}^{1}{e^{x}f''(x)dx}
= \int_{0}^{1}{e^{x}d\left\lbrack f'(x) ightbrack}

    = \left. \ e^{x}f'(x)
ight|_{0}^{1} - \int_{0}^{1}{e^{x}f'(x)dx} = \left. \
e^{x}f'(x) ight|_{0}^{1} - k

    \Rightarrow 2k = \left. \ e^{x}f'(x)
ight|_{0}^{1}

    Ta có:

    k = \int_{0}^{1}{e^{x}f'(x)dx} =
\int_{0}^{1}{e^{x}d\left\lbrack f(x) ightbrack}

    = \left. \ e^{x}f(x) ight|_{0}^{1} -
\int_{0}^{1}{e^{x}f(x)dx} = \left. \ e^{x}f(x) ight|_{0}^{1} -
k

    \Rightarrow 2k = \left. \ e^{x}f(x)
ight|_{0}^{1}

    Vậy \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} = \frac{\left. \ e^{x}f'(x) ight|_{0}^{1}}{\left. \
e^{x}f(x) ight|_{0}^{1}} = 1

  • Câu 15: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 16: Thông hiểu

    Tính tích phân B = \int_{0}^{2}{2x\left(
x^{2} + 1 ight)^{2018}dx}?

    Ta có: B = \int_{0}^{2}{2x\left( x^{2} +
1 ight)^{2018}dx}

    = \int_{0}^{2}{\left( x^{2} + 1
ight)^{2018}d\left( x^{2} + 1 ight)}

    = \left. \ \frac{\left( x^{2} + 1
ight)^{2019}}{2019} ight|_{0}^{2} = \frac{5^{2019} -
1}{2019}

  • Câu 17: Vận dụng

    Cho hàm số y = f(x) thỏa mãn f'(x) - f(x) = e^{x}f(0) = 2. Phương trình tiếp tuyến của đồ thị hàm số y(x) = f(x) tại giao điểm với trục hoành là:

    Ta có: f'(x) - f(x) = e^{x}. Nhân cả hai vế với e^{- x} ta được:

    e^{- x}f'(x) - e^{- x}.f(x) =
1

    \Leftrightarrow \left( e^{- x}.f(x)
ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \Leftrightarrow \int_{}^{}{\left( e^{-
x}.f(x) ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow e^{- x}.f(x) =
x + C

    f(0) = 2 \Rightarrow f(0) = 0 + C
\Leftrightarrow C = 2

    Suy ra e^{- x}.f(x) = x + 2
\Leftrightarrow f(x) = \frac{x + 2}{e^{- x}} = (x + 2)e^{x}

    \Rightarrow f'(x) = (x +
3)e^{x}

    Xét phương trình hoành độ giao điểm (x +
2)e^{x} = 0 \Leftrightarrow x = - 2

    Ta có: f'( - 2) = ( - 2 + 3)e^{- 2} =
e^{- 2};f( - 2) = 0

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là: y = e^{- 2}(x + 2)

  • Câu 18: Nhận biết

    Cho hàm số f(x) liên tục trên Ka;b \in K, F(x) là một nguyên hàm của f(x) trên K. Chọn khẳng định sai trong các khẳng định sau?

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 19: Nhận biết

    Tính thể tích V của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường y = \sqrt{2x};y = 0 và hai đường thẳng x = 1;x = 2 quanh trục Ox:

    Thể tích V của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường y = \sqrt{2x};y = 0 và hai đường thẳng x = 1;x = 2 quanh trục Ox là:

    V = \pi\int_{1}^{2}{\left( \sqrt{2x}
ight)^{2}dx} = \pi\int_{1}^{2}{x^{2}dx} = \pi\left. \ x^{2}
ight|_{1}^{2} = 3\pi.

  • Câu 20: Thông hiểu

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo