Họ các nguyên hàm của hàm số
trên khoảng ![]()
Họ các nguyên hàm của hàm số
trên khoảng ![]()
Tính thể tích của vật thể giới hạn bởi hai mặt phẳng
biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với
tại điểm có hoành độ
là hình chữ nhật có kích thước là
và
?
Thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với tại điểm có hoành độ
là hình chữ nhật có kích thước là
và
Diện tích thiết diện được xác định theo hàm là:
⇒ Thể tích vật thể tròn xoay:
Với giá trị nào của
thì diện tích của hình phẳng giới hạn bởi hai đồ thị
và
bằng
?
Xét phương trình hoành độ giao điểm .
Khi đó diện tích hình phẳng giới hạn bởi hai đồ thị trên được tính bởi
.
Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên
và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và
Biết rằng
với
là các số hữu tủ. Giá trị của
bằng:
Ta có:
Giả sử
với
là hằng số. Tổng các nghiệm của phương trình
bằng:
Ta có:
Đặt
Theo định lí Vi – et ta thấy phương trình có hai nghiệm
và
.
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số
liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Cho parabol
và hai điểm
thuộc
sao cho
. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol
và đường thẳng
.
Hình vẽ minh họa
Gọi và
là hai điểm thuộc (P) sao cho AB = 2.
Không mất tính tổng quát giả sử a < b.
Theo giả thiết ta có AB = 2 nên
Phương trình đường thẳng đi qua hai điểm A và B là
Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:
Mặt khác nên
do
Suy ra
Vậy dấu bằng xảy ra khi và chỉ khi a = − b = ±1.
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Xác định tích phân
?
Ta có:
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Một ô tô đang chạy đều với vận tốc
m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
s. Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là
m. Sai||Đúng
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Khi xe dừng hẳn thì vận tốc bằng m/s.
Khi xe dừng hẳn thì m/s nên
s.
Nguyên hàm của hàm số vận tốc ,
.
Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là
m.
Cho đồ thị của hàm số
như sau:

Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:
Dựa vào hình vẽ ta được: .
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Biết
với
. Xác định giá trị biểu thức
?
Đặt khi đó ta có:
Vậy .
Cho hai hàm số
và
liên tục trên tập số thực và thỏa mãn
. Tính tích phân
?
Đặt
Đổi cận
Theo bài ra ta có:
Đặt
Đổi cận
Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Cho hàm số
liên tục trên tập số thực và thỏa mãn ![]()
![]()
. Khi đó giá trị
bằng:
Ta có:
Cho hình phẳng
được giới hạn bởi đồ thị các hàm số ![]()
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?