Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm và tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 2: Thông hiểu

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack 0;10brack\int_{0}^{10}{f(x)dx} = 7\int_{2}^{6}{f(x)dx} = 3. Tính F = \int_{0}^{2}{f(x)dx} +
\int_{6}^{10}{f(x)dx}?

    Ta có: \int_{0}^{10}{f(x)dx} =
\int_{0}^{2}{f(x)dx} + \int_{2}^{6}{f(x)dx} +
\int_{6}^{10}{f(x)dx}

    \Rightarrow F = \int_{0}^{2}{f(x)dx} +
\int_{6}^{10}{f(x)dx} = \int_{0}^{10}{f(x)dx} - \int_{2}^{6}{f(x)dx} = 7
- 3 = 4

  • Câu 3: Vận dụng

    Biết F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}}. Hỏi đồ thị của hàm số y = F(x) có bao nhiêu điểm cực trị?

    F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}} nên suy ra F'(x) = f(x) = \frac{x - \cos
x}{x^{2}}

    Ta có: F'(x) = 0 \Leftrightarrow
\frac{x - \cos x}{x^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x - \cos x = 0 \\
x \in \lbrack - 1;1brack\backslash\left\{ 0 ight\} \\
\end{matrix} ight.\ (1)

    Xét hàm số g(x) = x - \cos x trên \lbrack - 1;1brack, ta có: g'(x) = 1 + \sin x \geq 0;\forall x \in
\lbrack - 1;1brack suy ra hàm số g(x) đồng biến trên \lbrack - 1;1brack.

    Vậy phương trình g(x) = x - \cos x = 0 có nhiều nhất một nghiệm trên \lbrack -
1;1brack (2)

    Mặt khác ta có hàm số g(x) = x - \cos
x liên tục trên (0;1)\left\{ \begin{matrix}
g(0) = 0 - cos0 = - 1 < 0 \\
g(1) = 1 - cos1 > 0 \\
\end{matrix} ight. nên g(0)g(1)
< 0.

    Suy ra tồn tại x_{0} \in
(0;1) sao cho g\left( x_{0} ight)
= 0 (3)

    Từ (1); (2); (3) suy ra phương trình F'(x) = 0 có nghiệm duy nhất x_{0} eq 0.

    Đồng thời vì x_{0} là nghiệm bội lẻ nên F'(x) đổi dấu qua x = x_{0}

    Vậy đồ thị hàm số y = F(x) có một điểm cực trị.

  • Câu 4: Vận dụng cao

    Cho hàm số y = \frac{1}{2}x^{2} có đồ thị (P). Xét các điểm A;B \in (P) sao cho tiếp tuyến tại AB của (P) vuông góc với nhau, diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \frac{9}{4}. Gọi x_{1};x_{2} lần lượt là hoành độ của AB. Giá trị của \left( x_{1} + x_{2} ight)^{2} bằng:

    Hình vẽ minh họa

    Ta có:y = \frac{1}{2}x^{2} có TXĐ: D\mathbb{= R}

    y' = x

    Giả sử A\left(
x_{1};\frac{1}{2}{x_{1}}^{2} ight),B\left(
x_{2};\frac{1}{2}{x_{2}}^{2} ight) \in (P)x_{1} eq x_{2}

    Phương trình tiếp tuyến tại điểm A của (P) là y = x_{1}\left( x - x_{1} ight) +
\frac{1}{2}{x_{1}}^{2}

    \Rightarrow y = x_{1}x -
\frac{1}{2}{x_{1}}^{2}\ \ \ \left( d_{1} ight)

    Phương trình tiếp tuyến tại điểm B của (P) là y = x_{2}\left( x - x_{2} ight) +
\frac{1}{2}{x_{2}}^{2}

    \Rightarrow y = x_{2}x -
\frac{1}{2}{x_{2}}^{2}\ \ \ \left( d_{2} ight)

    \left( d_{1} ight)\bot\left( d_{2}
ight) nên ta có: x_{1}x_{2} = - 1
\Leftrightarrow x_{2} = - \frac{1}{x_{1}}

    Phương trình đường thẳng AB

    \dfrac{x - x_{1}}{x_{2} - x_{1}} =\dfrac{y - \dfrac{1}{2}{x_{1}}^{2}}{\dfrac{1}{2}{x_{2}}^{2} -\dfrac{1}{2}{x_{1}}^{2}}

    \Leftrightarrow \frac{1}{2}\left( x -
x_{1} ight)\left( {x_{2}}^{2} - {x_{1}}^{2} ight) = \left( y -
\frac{1}{2}{x_{1}}^{2} ight)\left( x_{2} - x_{1} ight)

    \Leftrightarrow \left( x - x_{1}
ight)\left( x_{2} + x_{1} ight) = 2y - {x_{1}}^{2}

    \Leftrightarrow \left( x_{2} + x_{1}
ight)x - 2y - x_{1}x_{2} = 0

    \Leftrightarrow y =
\frac{1}{2}\left\lbrack \left( x_{2} + x_{1} ight)x - x_{1}x_{2}
ightbrack = \frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)x +
1 ightbrack

    Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:

    S =
\frac{1}{2}\int_{x_{1}}^{x_{2}}{\left\lbrack \left( x_{1} + x_{2}
ight)x + 1 - x^{2} ightbrack dx}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left. \ \left\lbrack \left( x_{1} + x_{2}
ight)\frac{x^{2}}{2} + x - \frac{x^{3}}{3} ightbrack
ight|_{x_{1}}^{x_{2}}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)\left(
\frac{{x_{2}}^{2}}{2} - \frac{{x_{1}}^{2}}{2} ight) + \left( x_{2} -
x_{1} ight) - \frac{{x_{2}}^{3} - {x_{1}}^{3}}{3}
ightbrack

    \Leftrightarrow 27 = - 3\left(
x_{1}{x_{2}}^{2} - {x_{1}}^{3} + {x_{2}}^{3} - {x_{1}}^{2}x_{2} ight)
+ 6\left( x_{2} - x_{1} ight) - 2{x_{2}}^{3} +
2{x_{1}}^{3}

    \Leftrightarrow 27 = - 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight) + 6\left( x_{2} - x_{1} ight)

    \Leftrightarrow 27 = 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( {x_{1}}^{2} + {x_{2}}^{2} + 2 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( x_{2} - x_{1} ight)^{2}

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)^{3} \Leftrightarrow x_{2} - x_{1} = 3

    Thay x_{2} = - \frac{1}{x_{1}} ta có:

    - \frac{1}{x_{1}} - x_{1} = 3
\Leftrightarrow - 1 - {x_{1}}^{2} - 3x_{1} = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = \dfrac{- 3 - \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{2}{3 +\sqrt{5}} \\x_{1} = \dfrac{- 3 + \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{- 2}{- 3 +\sqrt{5}} \\\end{matrix} ight.

    \Rightarrow \left( x_{1} + x_{2}
ight)^{2} = 5

  • Câu 5: Nhận biết

    Hình phẳng giới hạn bởi đồ thị hàm số y =
f(x) liên tục trên đoạn \lbrack
1;3brack, trục Ox và hai đường thẳng x = 1;x = 3 có diện tích là:

    Công thức tính diện tích cần tìm là: S =
\int_{1}^{3}{\left| f(x) ight|dx}.

  • Câu 6: Thông hiểu

    Cho I =\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{(\cos2x + 1)^{2}}dx} và đặt t = \cos x. Khẳng định nào sau đây sai?

    Ta có: I =\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{(\cos2x + 1)^{2}}dx} =\frac{1}{4}\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{\cos^{4}x}dx}

    Đặt t = \cos x \Rightarrow dt = - \sin
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 1 \\x = \dfrac{\pi}{3} \Rightarrow t = \dfrac{1}{2} \\\end{matrix} ight. từ đó ta có:

    I = \int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{(\cos2x + 1)^{2}}dx} =\frac{1}{4}\int_{\frac{1}{2}}^{1}\frac{dt}{t^{4}} = \left. \  -\frac{1}{12}t^{- 3} ight|_{\frac{1}{2}}^{1} = -\frac{7}{16}

    Vậy khẳng định sai là: I =
\frac{7}{12}.

  • Câu 7: Thông hiểu

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

  • Câu 8: Vận dụng cao

    Tính tổng T = \frac{C_{2018}^{0}}{3} -
\frac{C_{2018}^{1}}{4} + \frac{C_{2018}^{2}}{5} - \frac{C_{2018}^{3}}{6}
+ ... - \frac{C_{2018}^{2017}}{2020} +
\frac{C_{2018}^{2018}}{2021}?

    Ta có:

    x^{2}(1 - x)^{2018} = x^{2} \cdot \sum_{k
= 0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k}( - 1)^{k} = \sum_{k =
0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}.

    Do đó

    \int_{0}^{1}\mspace{2mu} x^{2}(1 -x)^{2018}dx = \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx.

    Mặt khác:

    \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx. =\left. \ \sum_{k = 0}^{2018}\mspace{2mu} C_{2018}^{k}\frac{x^{k + 3}}{k+ 3}( - 1)^{k} ight|_{0}^{1}= \sum_{k = 0}^{2018}\mspace{2mu}C_{2018}^{k} \cdot \frac{( - 1)^{k}}{k + 3} = T.

    Đặt t = 1 - x \Rightarrow dt = -
dx.

    Đổi cận x = 0 \Rightarrow t = 1x = 1 \Rightarrow t = 0. Khi đó

    \int_{0}^{1}\mspace{2mu}\mspace{2mu}x^{2}(1 - x)^{2018}dx = \int_{1}^{0}\mspace{2mu}\mspace{2mu}t^{2018}(1 - t)^{2}( - dt)

    = \int_{0}^{1}\mspace{2mu}\mspace{2mu}
t^{2018}\left( t^{2} - 2t + 1 ight)dt = \left. \ \left(
\frac{t^{2021}}{2021} - 2 \cdot \frac{t^{2020}}{2020} +
\frac{t^{2019}}{2019} ight) ight|_{0}^{1}

    = \frac{1}{2021} - \frac{2}{2020} +
\frac{1}{2019} = \frac{1}{1010 \cdot 2019 \cdot 2021} =
\frac{1}{4121202990}

  • Câu 9: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = \frac{2x}{x + \sqrt{x^{2} -
1}}?

    Ta có: F(x) = \int_{}^{}{\frac{2x}{x +
\sqrt{x^{2} - 1}}dx} = \int_{}^{}{\left\lbrack 2x\left( x - \sqrt{x^{2}
- 1} ight) ightbrack dx}

    = \int_{}^{}{2x^{2}dx} -
\int_{}^{}{\left\lbrack 2x\sqrt{x^{2} - 1} ightbrack dx} =
\frac{2}{3}x^{3} - \int_{}^{}{\left( x^{2} - 1
ight)^{\frac{1}{2}}d\left( x^{2} - 1 ight)}

    = \frac{2}{3}x^{3} - \frac{2}{3}\left(
x^{2} - 1 ight)\sqrt{x^{2} - 1} + C

    Vậy một nguyên hàm của hàm số là F(x) =
\frac{2}{3}x^{3} - \frac{2}{3}\left( x^{2} - 1 ight)\sqrt{x^{2} -
1}.

  • Câu 10: Nhận biết

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: \int_{}^{}{( - 12t + 24)}dt = - 6t^{2} + 24t +
C với C là hằng số.

    Khi đó, ta gọi hàm số s(t) = - 6t^{2} + 24t +
C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 6t^{2} + 24t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 12t + 24 = 0 \Leftrightarrow t =
2. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 72\
km/h = 20\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 6.2^{2} + 24.2
= 24(\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 + 24 \approx 44\ (\ m).

    Do 44 < 45 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 11: Thông hiểu

    Biết \int_{0}^{1}{\frac{x^{2} + 2x}{(x +
3)^{2}}dx} = \frac{a}{4} - 4ln\frac{4}{b} với a;b là các số nguyên dương. Giá trị của biểu thức a^{2} + b^{2} bằng:

    Giả sử I = \int_{0}^{1}{\frac{x^{2} +
2x}{(x + 3)^{2}}dx}. Đặt t = x + 3
\Rightarrow dt = dx, đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 3 \\
x = 1 \Rightarrow t = 4 \\
\end{matrix} ight.

    I = \int_{3}^{4}{\frac{t^{2} - 4t +
3}{t^{2}}dx} = \int_{3}^{4}{\left( 1 - \frac{4}{t} + \frac{3}{t^{2}}
ight)dx}

    = \left. \ \left( t - 4ln|t| -
\frac{3}{t} ight) ight|_{3}^{4} = \frac{5}{4} -
4ln\frac{4}{3}

    \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} = 34

  • Câu 12: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = - 2x^{3} + x^{2} + x + 5 và đồ thị (C') của hàm số y = x^{2} - x + 5?

    Phương trình hoành độ giao điểm

    - 2x^{3} + x^{2} + x + 5 = x^{2} - x +
5

    \Leftrightarrow - 2x^{3} + 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{1}{\left| 2x^{3} - 2x
ight|dx}

    = \left| \int_{- 1}^{0}{\left( 2x^{3} -
2x ight)dx} ight| + \left| \int_{0}^{1}{\left( 2x^{3} - 2x
ight)dx} ight|

    = 1

  • Câu 13: Thông hiểu

    Diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} + |x|;y = x^{2} + 1 được cho bởi công thức nào sau đây?

    Ta có: y = x^{2} + |x| = \left\{\begin{matrix}x^{2} + x;\ \ x \geq 0 \\x^{2} - x;\ \ x \leq 0 \\\end{matrix} ight.

    Với x \geq 0 \Rightarrow x^{2} + x =x^{2} + 1 \Leftrightarrow x = 1

    Với x \leq 0 \Rightarrow x^{2} - x =x^{2} + 1 \Leftrightarrow x = - 1

    Ta có:

    S = \left| \int_{- 1}^{0}{( - x - 1)dx}ight| + \left| \int_{0}^{1}{(x - 1)dx} ight|

  • Câu 14: Nhận biết

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

  • Câu 15: Vận dụng

    Cho hình phẳng D được giới hạn bởi hai đường y = 2\left( x^{2} - 1ight);y = 1 - x^{2}. Tính thể tích khối tròn xoay tạo thành do D quay quanh trục Ox?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình phẳng D được giới hạn bởi hai đường y = 2\left( x^{2} - 1ight);y = 1 - x^{2}. Tính thể tích khối tròn xoay tạo thành do D quay quanh trục Ox?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x^{3}, trục hoành và hai đường thẳng x = - 1;x = 2 biết rằng mỗi đơn vị dài trên các trục tọa độ là 2cm?

    Ta có: S = \int_{- 1}^{2}{\left| x^{3}
ight|dx} = \int_{- 1}^{0}{\left| x^{3} ight|dx} +
\int_{0}^{2}{\left| x^{3} ight|dx}

    = - \int_{- 1}^{0}{x^{3}dx} +
\int_{0}^{2}{x^{3}dx} = \left. \  - \frac{x^{4}}{4} ight|_{-
1}^{0}\left. \  + \frac{x^{4}}{4} ight|_{0}^{2} =
\frac{17}{4}

    Do mỗi đơn vị trên trục là 2 cm nên S =
\frac{17}{4}.2^{2} = 17\left( cm^{2} ight)

  • Câu 17: Nhận biết

    Nếu \int_{0}^{1}{f(x)dx} =
2;\int_{1}^{2}{f(x)dx} = 4. Khi đó \int_{0}^{2}{f(x)dx} bằng:

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx} = 2 + 4 = 6.

  • Câu 18: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 19: Thông hiểu

    Biết rằng hàm số y = f(x)f'(x) = 3x^{2} + 2x + m;f(2) =
1 và đồ thị hàm số y =
f(x) cắt trục tung tại điểm có tung độ bằng - 5. Hàm số f(x) là:

    Theo lí thuyết \int_{}^{}{f'(x)dx =
f(x) + C}

    Ta có: \int_{}^{}{f'(x)dx
=}\int_{}^{}{\left( 3x^{2} + 2x + m ight)dx} = x^{3} + x^{2} + mx +
C

    Khi đó f(x) có dạng f(x) = x^{3} + x^{2} + mx + C_{1}

    Theo đề ta có: \left\{ \begin{matrix}
f(2) = 1 \\
f(0) = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2^{3} + 2^{2} + 2m + C_{1} = 1 \\
C_{1} = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = - 3 \\
C_{1} = - 5 \\
\end{matrix} ight.

    Vậy hàm số là f(x) = x^{3} + x^{2} - 3x -
5.

  • Câu 20: Nhận biết

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo