Biết rằng
và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Biết rằng
và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Cho hàm số
liên tục trên
thỏa mãn
và
. Tính tích phân
?
Ta có: .
Ta có:
Đặt . Đổi cận
do đó:
Ta có:
Đặt . Đổi cận
do đó:
.
Vậy
Cho hàm số
liên tục trên tập số thực và thỏa mãn ![]()
![]()
. Khi đó giá trị
bằng:
Ta có:
Tích phân
bằng:
Ta có:
.
Tìm nguyên hàm của hàm số
bằng:
Có bao nhiêu số thực
sao cho
?
Ta có:
Do nên có đúng 4 giá trị của
thỏa mãn.
Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng
. Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)
Quả bóng bầu dục sẽ có dạng elip.
Độ dài trục lớn bằng
Ta có diện tích đường tròn thiết diện là
Ta sẽ có phương trình elip
Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol
và đường thẳng
xoay quanh trục
tính bởi công thức nào sau đây?
Hình vẽ minh họa
Ta có và
cắt nhau tại hai điểm
và
Suy ra thể tích khối tròn xoay đã cho bằng thể tích khối tròn xoay
trừ đi thể tích khối tròn xoay
. Trong đó:
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
Vậy thể tích khối tròn xoay đã cho bằng .
Cho hình phẳng
giới hạn bởi đường parabol
và tiếp tuyến của đồ thị hàm số
tại điểm có tọa độ
. Diện tích của hình (H) là:
Xét hàm số trên
. Ta có:
Khi đó phương trình tiếp tuyến tại điểm của đồ thị hàm số
là
Gọi ∆ là đường thẳng có phương trình . Xét phương trình tương giao của (P) và ∆
Gọi là diện tích hình phẳng
khi đó
Vì nên
Thể tích khối tròn xoay khi quay quanh trục Ox hình phẳng giới hạn bởi
là
. Tính
?
Phương trình hoành độ giao điểm
Ta có:
Vậy
Cho hàm số
thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
.
Theo bài ra ta có:
Vậy .
Tìm nguyên hàm
của hàm số
?
Ta có:
Vậy một nguyên hàm của hàm số là .
Cho hình vẽ:

Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Tìm nguyên hàm của hàm số ![]()
Ta có:
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

Đáp án: 4,32m2.
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).
Đáp án: 4,32m2.
Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Giao điểm của hai parabol tại
Do đó, diện tích của con cá là
Cho
. Tính
.
Ta có:
Họ các nguyên hàm của hàm số
trên khoảng ![]()
Cho hình phẳng
giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Cho hàm số
liên tục trên
thỏa mãn điều kiện
với
và
với
. Tính giá trị
?
Cho hàm số liên tục trên
thỏa mãn điều kiện
với
và
với
. Tính giá trị
?