Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm và tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình phẳng (H) giới hạn bởi Parabol y = \frac{x^{2}}{12} và đường cong có phương trình y = \sqrt{4 -
\frac{x^{2}}{4}} như hình vẽ:

    Diện tích của hình phẳng (H) bằng:

    Phương trình hoành độ giao điểm:

    \frac{x^{2}}{12} = \sqrt{4 -
\frac{x^{2}}{4}} \Leftrightarrow x = \pm 2\sqrt{3}

    Diện tích hình phẳng (H) bằng:

    S = 2\int_{0}^{2\sqrt{3}}{\left\lbrack
\sqrt{4 - \frac{x^{2}}{4}} - \frac{x^{2}}{12} ightbrack
dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} - \frac{1}{6}\int_{0}^{2\sqrt{3}}{x^{2}dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} + \frac{4\sqrt{3}}{3}

    Đặt x = 4\sin t

    \Rightarrow\int_{0}^{2\sqrt{3}}{\sqrt{16 - x^{2}}dx} =\int_{0}^{\frac{\pi}{3}}{16\cos^{2}tdt} = \frac{8\pi}{3} +2\sqrt{3}

    \Rightarrow S = \frac{8\pi +
2\sqrt{3}}{3}

  • Câu 2: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 3: Nhận biết

    Tìm họ nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{2x + 1}}

     \int {\frac{1}{{2x + 1}}dx}  = \frac{1}{2}\ln \left| {2x + 1} ight| + C

  • Câu 4: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left( \sin xight)dx} = 2\int_{0}^{1}{x.f(x)dx} Đúng||Sai

    b) \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{1}^{e}{\frac{f(x)}{x^{2}}dx} Đúng||Sai

    c) \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{x.f(x)dx} Đúng||Sai

    Đáp án là:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left( \sin xight)dx} = 2\int_{0}^{1}{x.f(x)dx} Đúng||Sai

    b) \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{1}^{e}{\frac{f(x)}{x^{2}}dx} Đúng||Sai

    c) \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{x.f(x)dx} Đúng||Sai

    Ta có:

    \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left(\sin x ight)dx} = \int_{0}^{\frac{\pi}{2}}{2\sin x.\cos x.f\left( \sin xight)dx}

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = \dfrac{\pi}{2} \Rightarrow t = 1 \\\end{matrix} ight. từ đó ta có:

    \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left(\sin x ight)dx} = \int_{0}^{1}{2tf(t)dt} =2\int_{0}^{1}{2xf(x)dx}

    Ta có: \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx}

    Đặt t = e^{x} \Rightarrow dt =
e^{x}dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = e \\
\end{matrix} ight. từ đó ta có:

    \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{0}^{e}{\frac{f(t)}{t^{2}}dt} =
\int_{0}^{e}{\frac{f(x)}{x^{2}}dx}

    Ta có: \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx}

    Đặt t = x^{2} \Rightarrow dt =
2xdx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = a \Rightarrow t = a^{2} \\
\end{matrix} ight. từ đó ta có:

    \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{tf(t)}dt =
\frac{1}{2}\int_{0}^{a^{2}}{xf(x)}dx

  • Câu 5: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số f(x) = x.e^{- x} thỏa mãn F(0) = 1?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = e^{- x}dx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - e^{- x} \\
\end{matrix} ight.

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
x.e^{- x} ight)dx}

    = - xe^{- x} + \int_{}^{}{e^{- x}dx} +
C

    = - xe^{- x} - e^{- x} + C. Theo bài ra ta có: F(0) = 1 \Leftrightarrow - 1 -
1 + C = 1 \Rightarrow C = 2

    Vậy - (x + 1)e^{- x} + 2 là đáp án cần tìm.

  • Câu 6: Thông hiểu

    Thể tích khối tròn xoay khi quay hình phẳng (S) giới hạn bởi các đường y = 4 - x^{2};y = 0 quanh trục Ox có kết quả có dạng \frac{\pi a}{b} với a;b là các số nguyên dương và \frac{a}{b} là phân số tối giản. Khi đó giá trị của a - 30b bằng:

    Phương trình hoành độ giao 4 - x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
\end{matrix} ight.

    Thể tích cần tính V = \pi\int_{-
2}^{2}{\left( 4 - x^{2} ight)^{2}dx} = \left. \ \left( \frac{x^{5}}{5}
- \frac{8x^{3}}{3} - 16x ight) ight|_{- 2}^{2} =
\frac{512\pi}{15}

    Suy ra a = 512;b = 15 \Rightarrow a - 30b
= 62.

  • Câu 7: Thông hiểu

    Dòng diện xoay chiều hình sin chạy qua mạch điện dao động LC lí tưởng có phương trình i = I_{0}\sin\left( \omega t + \frac{\pi}{2}
ight). Ngoài ra i =
q'(t) với q là điện tích tức thời trong tụ. Tính từ lúc t =
0, điện lượng chạy qua tiết diện thẳng của dây dẫn của mạch trong thời gian \frac{\pi}{2\omega}

    Điện lượng cần tìm là:

    \int_{0}^{\frac{\pi}{2\omega}}{\left\lbrack
I_{0}\sin\left( \omega t + \frac{\pi}{2} ight) ightbrack dt} =
\int_{0}^{\frac{\pi}{2\omega}}{\left\lbrack I_{0}\cos(\omega t)
ightbrack dt}

    = \left. \ \left\lbrack I_{0}\sin(\omega
t) ightbrack ight|_{0}^{\frac{\pi}{2\omega}} =
\frac{I_{0}}{\omega}

  • Câu 8: Thông hiểu

    Cho F(x) = (x - 1)e^{x} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}?

    Ta có: F(x) là một nguyên hàm của hàm số f(x)e^{2x} nên

    F'(x) = f(x)e^{2x} \Leftrightarrow
\left\lbrack (x - 1)e^{x} ightbrack' = f(x)e^{2x}

    Hay f(x)e^{2x} = e^{x} + (x - 1)e^{x} =
xe^{x}

    Xét I =
\int_{}^{}{f'(x)e^{2x}}dx, đặt \left\{ \begin{matrix}
u = e^{2x} \\
dv = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2e^{2x}dx \\
v = f(x) \\
\end{matrix} ight.

    Khi đó

    I = f(x)e^{2x} -
\int_{}^{}{2f(x)e^{2x}}dx

    = xe^{x} - 2(x - 1)e^{x} + C = (2 -
x)e^{x} + C

  • Câu 9: Nhận biết

    Tính tích phân I =\int_{0}^{\frac{\pi}{2}}{\left( \sin2x + \sin x ight)dx}?

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\left(\sin2x + \sin x ight)dx} = \left. \ \left( - \frac{1}{2}\cos2x - \cos xight) ight|_{0}^{\frac{\pi}{2}} = 2

  • Câu 10: Vận dụng cao

    Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng 5m,khoảng cách giữa 2 chân trụ liên tiếp là 40m. Bề dày nhịp cầu không đổi là 20cm. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu m^{3}? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 40 m3.

    Đáp án là:

    Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng 5m,khoảng cách giữa 2 chân trụ liên tiếp là 40m. Bề dày nhịp cầu không đổi là 20cm. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu m^{3}? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 40 m3.

    Cả hai bên cầu có tất cả 2.10 =
20 nhịp cầu.

    Chọn hệ trục tọa độ như hình vẽ với gốc O(0;0) là chân cầu, đỉnh I(25;2), điểm A(50;0)

    Gọi Parabol phía trên có phương trình: \left( P_{1} ight):y_{1} = ax^{2} + bx + c =
ax^{2} + bx (vì O \in \left( P_{1}
ight))

    \Rightarrow y_{2} = ax^{2} + bx -
\frac{1}{5} là phương trình parabol phía dưới

    (Vì bề dày nhịp cầu là 20cm =
\frac{1}{5}m)

    Ta có I,A \in \left( P_{1} ight)
\Rightarrow \left\{ \begin{matrix}
25^{2}a + 25b = 2 \\
50^{2}a + 50b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{625} \\
b = \frac{4}{25} \\
\end{matrix} ight.

    \Rightarrow \left( P_{1} ight):y_{1} =
- \frac{2}{625}x^{2} + \frac{4}{25}x \Rightarrow \left( P_{2} ight):\
\ \ y_{2} = - \frac{2}{625}x^{2} + \frac{4}{25}x -
\frac{1}{5}

    Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi y_{1};y_{2} và trục Ox nên ta có:

    S = 2\left( \int_{0}^{0,2}{\left( -
\frac{2}{625}x^{2} + \frac{4}{25}x ight)dx +
\int_{0,2}^{25}{\frac{1}{5}dx}} ight) \approx 9,926m^{2}

    Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là S.0,2 \approx 1,985m^{3}.

    Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là V = 20.S.0,2 \approx
40m^{3}

  • Câu 11: Thông hiểu

    Diện tích S của hình phẳng giới hạn bởi đường cong y = - x^{3} + 3x^{2} - 2, trục hoành và hai đường thẳng x = 0;x = 2

    Phương trình hoành độ giao điểm

    - x^{3} + 3x^{2} - 2 = 0 \Leftrightarrow
(1 - x)\left( x^{2} - 2x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 1 + \sqrt{3} \\
x = 1 - \sqrt{3} \\
\end{matrix} ight.

    Khi đó:

    S = \int_{0}^{2}{\left| - x^{3} + 3x^{2}
- 2 ight|dx}

    = \int_{0}^{1}{\left| - x^{3} + 3x^{2} -
2 ight|dx} + \int_{1}^{2}{\left| - x^{3} + 3x^{2} - 2
ight|dx}

    = \left| \int_{0}^{1}{\left( - x^{3} +
3x^{2} - 2 ight)dx} ight| + \left| \int_{1}^{2}{\left( - x^{3} +
3x^{2} - 2 ight)dx} ight|

    = \left| \left. \ \left( -
\frac{x^{4}}{4} + x^{3} - 2x ight) ight|_{0}^{1} ight| + \left|
\left. \ \left( - \frac{x^{4}}{4} + x^{3} - 2x ight) ight|_{1}^{2}
ight|

    = \frac{5}{2}

  • Câu 12: Nhận biết

    Hình phẳng giới hạn bởi đồ thị hàm số y =
f(x) liên tục trên đoạn \lbrack
1;3brack, trục Ox và hai đường thẳng x = 1;x = 3 có diện tích là:

    Công thức tính diện tích cần tìm là: S =
\int_{1}^{3}{\left| f(x) ight|dx}.

  • Câu 13: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\sqrt[3]{x} là:

    Ta có:

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
\sqrt[3]{x} ight)dx} = \int_{}^{}{x^{\frac{2}{3}}dx} =
\frac{3}{4}x^{\frac{4}{3}} + C = \frac{3x\sqrt[3]{x}}{4} +
C.

  • Câu 14: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} thỏa mãn f\left( \frac{\pi}{2} ight) = - 1 với \forall x\mathbb{\in R} ta có: f'(x).f(x) - \sin2x = f'(x)\cos x -f(x)\sin x. Tính tích phân I =
\int_{0}^{\frac{\pi}{4}}{f(x)dx}?

    Ta có:

    f'(x).f(x) - \sin2x = f'(x)\cos x- f(x)\sin x

    \Leftrightarrow f'(x).f(x) - \sin2x =\left\lbrack f(x)\cos x ightbrack'

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}\left\lbrack f'(x).f(x) -\sin2x ightbrack dx = \int_{}^{}{\left\lbrack f(x)\cos xightbrack'}dx

    \Leftrightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x + C

    Theo bài ra ta có: f\left( \frac{\pi}{2}
ight) = - 1 \Rightarrow C = 0

    \Rightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x

    \Leftrightarrow f^{2}(x) + \cos2x =2f(x)\cos x

    \Leftrightarrow f^{2}(x) - 2f(x)\cos x +\cos^{2}x = \sin^{2}x

    \Leftrightarrow \left\lbrack f(x) - \cos x ightbrack^{2} = \sin^{2}x \Leftrightarrow \left\lbrack\begin{matrix}f(x) - \cos x = \sin x \\f(x) - \cos x = - \sin x \\\end{matrix} ight.

    f\left( \frac{\pi}{2} ight) = -
1 nên nhận f(x) = \cos x - \sin
x

    Vậy I = \int_{0}^{\frac{\pi}{4}}{f(x)dx}
= \int_{0}^{\frac{\pi}{4}}{\left\lbrack \cos x - \sin x ightbrack
dx} = \left. \ \left( \cos x - \sin x ight)
ight|_{0}^{\frac{\pi}{4}} = \sqrt{2} - 1

  • Câu 15: Nhận biết

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳng x =
- 1;x = 3.

    Diện tích hình phẳng được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left. \ \left( \frac{x^{3}}{3} + x^{2} + x ight)
ight|_{- 1}^{3} = \frac{64}{3}.

  • Câu 16: Vận dụng

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Nhận biết

    Giả sử f(x);g(x) là các hàm số bất kì liên tục trên \mathbb{R}a;b;c là các số thực. Mệnh đề nào sau đây sai?

    Theo tính chất tích phân ta có:

    \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} + \int_{c}^{a}{f(x)dx}

    = \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} - \int_{a}^{c}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{a}^{c}{f(x)dx} = 0

    \int_{a}^{b}{c.f(x)dx} =
c.\int_{a}^{b}{f(x)dx};\forall x\mathbb{\in R}

    \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx} -
\int_{a}^{b}{g(x)dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx}

    Vậy mệnh đề sai: \int_{a}^{b}{\left\lbrack f(x)g(x) ightbrack
dx} = \int_{a}^{b}{f(x)dx}.\int_{a}^{b}{g(x)dx}

  • Câu 18: Vận dụng

    Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2} + \left( {a + b} ight)x + ab}}

    \begin{matrix}  f\left( x ight) = \dfrac{1}{{{x^2} + \left( {a + b} ight)x + ab}} \hfill \\   \Rightarrow f\left( x ight) = \dfrac{1}{{\left( {x + a} ight)\left( {x + b} ight)}} \hfill \\   \Rightarrow f\left( x ight) = \dfrac{1}{{\left( {b - a} ight)\left( {x + a} ight)}} - \dfrac{1}{{\left( {b - a} ight)\left( {x + b} ight)}} \hfill \\ \end{matrix} 

    \begin{matrix}  \int {f\left( x ight)dx}  = \int {\left[ {\dfrac{1}{{\left( {b - a} ight)\left( {x + a} ight)}} - \dfrac{1}{{\left( {b - a} ight)\left( {x + b} ight)}}} ight]dx}  \hfill \\   = \dfrac{1}{{b - a}}.\int {\left[ {\dfrac{1}{{x + a}} - \dfrac{1}{{x + b}}} ight]dx}  \hfill \\   = \dfrac{1}{{b - a}}.\left[ {\ln \left| {x + a} ight| - \ln \left| {x + b} ight|} ight] + C = \dfrac{1}{{b - a}}\ln \left| {\dfrac{{x + a}}{{x + b}}} ight| + C \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Mệnh đề đúng

    b) Cho v = 0 \Leftrightarrow - 5t + 20 =
0 \Leftrightarrow t\  = \ 4\ (s). Mệnh đề sai

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Mệnh đề đúng

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là S = \int_{0}^{4}{( - 5t + 20)dt} = 40\
(m). Mệnh đề sai

  • Câu 20: Thông hiểu

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 2t(m/s). Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = -
12\left( m/s^{2} ight). Tính quãng đường S(m) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?

    Quãng đường xe đi được trong 12s đầu là S_{1} = \int_{0}^{12}{2tdt} = 144m

    Sau khi đi được 12s vật đạt vận tốc v =
24(m/s), sau đó vận tốc của vật có phương trình v = 24 - 12t

    Vật dừng hẳn sau 2s kể từ khi phanh.

    Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là

    S_{2} = \int_{0}^{2}{(24 - 22t)dt} =
24m

    Vậy tổng quãng đường ô tô đi được là S =
S_{1} + S_{2} = 144 + 24 = 168(m)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo