Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm và tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để tồn tại tích phân \int_{1}^{1 + m}\frac{dx}{x(x - 5)(x -
4)}?

    Tích phân \int_{1}^{1 + m}\frac{dx}{x(x -
5)(x - 4)} tồn tại khi và chỉ khi hàm số y = \frac{1}{x(x - 5)(x - 4)} liên tục trên \lbrack 1;1 + mbrack hoặc \lbrack 1 + m;1brack

    Mà hàm số y = \frac{1}{x(x - 5)(x -
4)} liên tục trên các khoảng ( -
\infty;0),(0;4),(4;5),(5; + \infty)

    Nên hàm số y = \frac{1}{x(x - 5)(x -
4)} liên tục trên \lbrack 1;1 +
mbrack hoặc \lbrack 1 +
m;1brack khi và chỉ khi

    0 < 1 + m < 4 \Leftrightarrow - 1
< m < 3 \Rightarrow m \in ( - 1;3).

  • Câu 2: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x - 8\sin x\cos x thỏa mãn F(\pi) = 2?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(2x - 8\sin x\cos x ight)dx}

    = \int_{}^{}{(2x - 4\sin2x)dx} = x^{2} +2\cos2x + C

    Theo bài ra ta có: F(\pi) =
2

    \Rightarrow \pi^{2} + 2 + C = 2
\Leftrightarrow C = - \pi^{2}

    Vậy F(x) = x^{2} + 2\cos2x -\pi^{2}

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) cắt trục Ox tại ba điểm có hoành độ a;b;c với c\in (a;b) như hình bên. Đặt m =\int_{a}^{c}{f(x)dx;n} = \int_{c}^{b}{f(x)dx}. Diện tích của hình phẳng giới hạn bởi đồ thị (C) và trục hoành (phần tô đậm) bằng bao nhiêu?

    Diện tích hình phẳng

    Diện tích hình phẳng phần tô đậm được tính như sau:

    S = \int_{a}^{b}{\left| f(x) ight|dx}= \int_{a}^{c}{\left| f(x) ight|dx} + \int_{c}^{b}{\left| f(x)ight|dx}

    = \int_{a}^{c}{f(x)dx} -\int_{c}^{b}{f(x)dx} = m - n

  • Câu 4: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 5: Thông hiểu

    Cho hình phẳng (H) giới hạn bởi đường parabol (P):y = x^{2} - x + 2 và tiếp tuyến của đồ thị hàm số y = x^{2} +
1 tại điểm có tọa độ (1;2). Diện tích của hình (H) là:

    Xét hàm số y = x^{2} + 1 trên \mathbb{R}. Ta có: y' = 2x

    Khi đó phương trình tiếp tuyến tại điểm (1;2) của đồ thị hàm số y = x^{2} + 1

    y = y'(1)(x - 1) + 2 \Leftrightarrow
y = 2x

    Gọi ∆ là đường thẳng có phương trình y =
2x. Xét phương trình tương giao của (P) và ∆

    x^{2} - x + 2 = 2x \Leftrightarrow x^{2}
- 3x + 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Gọi S là diện tích hình phẳng (H) khi đó

    S = \int_{1}^{2}{\left| \left( x^{2} - x
+ 2 ight) - 2x ight|dx} = \int_{1}^{2}{\left| x^{2} - 3x + 2
ight|dx}

    x^{2} - 3x + 2 \leq 0;\forall x \in
\lbrack 1;2bracknên

    S = - \int_{1}^{2}{\left( x^{2} - 3x + 2
ight)dx}

    = - \left. \ \left( \frac{x^{3}}{3} -
\frac{3x^{2}}{2} + 2x ight) ight|_{1}^{2} = - \left( \frac{2}{3} -
\frac{5}{6} ight) = \frac{1}{6}

  • Câu 6: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = \cos x;y = 0;x = 0;x =
\frac{\pi}{2}. Thể tích vật thể tròn xoay có được khi (H) quay quanh trục Ox bằng:

    Gọi V là thể tích khối tròn xoay cần tính. Ta có:

    V = \pi\int_{0}^{\frac{\pi}{2}}{\left(\cos x ight)^{2}dx} = \pi\int_{0}^{\frac{\pi}{2}}{\frac{1 +\cos2x}{2}dx}

    = \pi\left. \ \left( \frac{x}{2} +\frac{\sin2x}{4} ight) ight|_{0}^{\frac{\pi}{2}} =\frac{\pi^{2}}{4}

  • Câu 7: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2}. Giá trị của f(2) là:

     Chọn f(x) = ax3 + bx2 + cx + d

    Ta có:

    \begin{matrix}  f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow a{x^3} + 2{x^2} + cx + d = x\left( {3a{x^2} + 2bx + c} ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3a - 2} \\   {b = 2b - 3} \\   {d = 0} \\   {c = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1} \\   {b = 3} \\   {c = 0} \\   {d = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy f\left( x ight) = {x^3} + 3{x^2} => f(x) = 20

  • Câu 8: Thông hiểu

    Cho I =\int_{0}^{\frac{\pi}{4}}{\frac{\ln\left( \sin x + 2\cos xight)}{\cos^{2}x}dx} = a\ln3 + b\ln2 + c\pi với a;b;c là các số hữu tỉ. Giá trị của biểu thức S = a.b.c bằng

    Đặt \left\{ \begin{matrix}u = \ln\left( \sin x + 2\cos x ight) \\dv = \dfrac{dx}{\cos x} \\\end{matrix} ight.\Rightarrow \left\{ \begin{matrix}du = \dfrac{\cos x - 2\sin x}{\sin x + 2\cos x} \\v = \tan x + 2 = \dfrac{\sin x + 2\cos x}{\cos x} \\\end{matrix} ight. khi đó:

    I = \left. \ \left( \tan x + 2ight)\ln\left( \sin x + 2\cos x ight) ight|_{0}^{\frac{\pi}{4}} -\int_{0}^{\frac{\pi}{4}}{\left( 1 - 2\frac{\sin x}{\cos x}ight)dx}

    I = 3\ln\frac{3\sqrt{2}}{2} - 2\ln2 -\left. \ \left\lbrack x + 2\ln\left( \cos x ight) ightbrackight|_{0}^{\frac{\pi}{4}}

    I = 3\ln\frac{3\sqrt{2}}{2} - 2\ln2 -\frac{\pi}{4} - 2\ln\frac{\sqrt{2}}{2}

    I = 3\ln3 - \dfrac{5}{2}\ln2 -\dfrac{1}{4}\pi \Rightarrow \left\{ \begin{matrix}a = 3 \\b = - \frac{5}{2} \\c = - \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{15}{8}

  • Câu 9: Thông hiểu

    Tìm một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1}?

    Ta có: F(x) = \int_{}^{}{\frac{\ln x}{x}\sqrt{\ln^{2}x + 1}dx}

    Đặt \sqrt{ln^{2}x + 1} \Rightarrow t^{2}= \ln^{2}x + 1 \Rightarrow tdt = \frac{\ln x}{x}dx

    Khi đó F(x) = \int_{}^{}{t^{2}dt} =\frac{t^{3}}{3} + C = \frac{\sqrt{\left( \ln^{2}x + 1 ight)^{3}}}{3} +C.

  • Câu 10: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 11: Vận dụng cao

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 6;5brack có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

    Tính giá trị I = \int_{-
6}^{5}{\left\lbrack f(x) + 2 ightbrack dx}?

    Hình vẽ minh họa

    Dựa vào đồ thị ta có: A( - 6; - 1),B( -
2;1) suy ra phương trình đường thẳng AB:y = \frac{1}{2}x + 2

    \Rightarrow I_{1} = \int_{0}^{-
2}{\left\lbrack \frac{1}{2}x + 2 + 2 ightbrack dx} = 8

    Phương trình đường tròn (C): x^{2} + (y - 1)^{2} = 4 \Rightarrow y = 1 +
\sqrt{4 - x^{2}}

    \Rightarrow I_{2} = \int_{-
2}^{2}{\left\lbrack 1 + \sqrt{4 - x^{2}} + 2 ightbrack dx} = 12 +
2\pi

    Điểm C(2;1),D(5;3) nên phương trình đường thẳng CD là: y = \frac{2}{3}x - \frac{1}{3}

    \Rightarrow I_{3} =
\int_{2}^{5}{\left\lbrack \frac{2}{3}x - \frac{1}{3} + 2 ightbrack
dx} = 12

    Vậy I = I_{1} + I_{2} + I_{3} = 32 +
2\pi

  • Câu 12: Vận dụng

    Cho (H) là hình phẳng giới hạn bởi parabol y =
\frac{\sqrt{3}}{2}x^{2} và nửa elip có phương trình y = \frac{1}{2}\sqrt{4 - x^{2}} (với - 2 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Gọi S là diện tích của, biết S = \frac{a\pi + b\sqrt{3}}{c} (với a;b;c\mathbb{\in R}). Tính P = a + b + c?

    Hoành độ giao điểm của hai đồ thị: \frac{\sqrt{3}}{2}x^{2} = \frac{1}{2}\sqrt{4 -
x^{2}} \Leftrightarrow x = \pm 1

    Do tính chất đối xứng của đồ thị nên

    S = 2\left(
\frac{\sqrt{3}}{2}\int_{0}^{1}{x^{2}dx} +
\frac{1}{2}\int_{1}^{2}{\sqrt{4 - x^{2}}dx} ight) = 2\left( S_{1} +
S_{2} ight)

    S_{1} =
\frac{\sqrt{3}}{2}\int_{0}^{1}{x^{2}dx} =
\frac{\sqrt{3}}{6}

    S_{2} = \frac{1}{2}\int_{1}^{2}{\sqrt{4 -
x^{2}}dx}. Đặt x = 2\sin t\Rightarrow dx = 2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 1 \Rightarrow t = \dfrac{\pi}{6} \\x = 2 \Rightarrow t = \dfrac{\pi}{2} \\\end{matrix} ight.

    Với t \in \left\lbrack\frac{\pi}{6};\frac{\pi}{2} ightbrack \Rightarrow \cos t \geq 0\Rightarrow \sqrt{4 - x^{2}} = 2\sqrt{\cos^{2}t} = 2\cos t

    S_{2} =\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{4\cos^{2}tdt} =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{2\cos^{2}tdt}

    =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{(1 + \cos2t)dt} = \left. \ \left( t+ \frac{1}{2}\sin2t ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} =\frac{\pi}{3} - \frac{\sqrt{3}}{4}

    Suy ra S = \frac{4\pi - \sqrt{3}}{6}
\Rightarrow a = 4;b = - 1;c = 6

    Vậy P = a + b + c = 9

  • Câu 13: Vận dụng cao

    Một biển quảng cáo có dạng hình elip với bốn đỉnh A_{1};A_{2};B_{1};B_{2} như hình vẽ:

    Người ta chia elip bởi Parabol có đỉnh B_{1}, trục đối xứng B_{1}B_{2} và đi qua các điểm M;N. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A_{1}A_{2} =4m;B_{1}B_{2} = MN = 2m

    Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)

    Phương trình đường Elip (E):\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1\Leftrightarrow y = \pm \sqrt{1 - \frac{x^{2}}{4}}

    Ta có: M\left( - 1;\frac{\sqrt{3}}{2}ight),N\left( 1;\frac{\sqrt{3}}{2} ight) \in (E)

    Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình y = ax^{2} - 1, (a > 0), đi qua M; N

    \Rightarrow a = \frac{\sqrt{3}}{2} + 1\Rightarrow (P):y = \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2} -1

    Diện tích phần tô đậm

    S_{1} = 2\int_{0}^{1}{\left\lbrack\sqrt{1 - \frac{x^{2}}{4}} - \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2}+ 1 ightbrack dx}

    = \int_{0}^{1}{\sqrt{4 - x^{2}}dx} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    Đặt x = 2\sin t;t \in \left\lbrack -\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = 1 \Rightarrow t = \dfrac{\pi}{6} \\\end{matrix} ight.

    \Rightarrow S_{1} =\int_{0}^{\frac{\pi}{6}}{\sqrt{4 - 4\sin^{2}t}.2\cos tdt} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    = 4\int_{0}^{\frac{\pi}{6}}{\cos^{2}tdt}- \frac{\sqrt{3}}{4} + \frac{4}{3} = 2\int_{0}^{\frac{\pi}{6}}{(1 +\cos2t)dt} - \frac{\sqrt{3}}{4} + \frac{4}{3}

    = \left. \ (2t + \sin2t)ight|_{0}^{\frac{\pi}{6}} - \frac{\sqrt{3}}{4} + \frac{4}{3} =\frac{\pi}{3} + \frac{\sqrt{3}}{6} + \frac{4}{3}

    Diện tích hình Elip là S = πab = 2π

    Suy ra diện tích phần còn lại là: S_{2} =S - S_{1} = \frac{5\pi}{3} - \frac{\sqrt{3}}{6} -\frac{4}{3}

    Kinh phí sử dụng là 2.10^{5}S_{1} +5.10^{5}S_{2} \approx 2.341.000 đồng.

  • Câu 14: Thông hiểu

    Biết rằng \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx} = \frac{1}{a} + \frac{\pi}{b} với a;b là các số hữu tỉ. Giá trị của a.b là:

    Ta có: I = \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx}

    Đặt \left\{ \begin{matrix}u = x + 1 \\dv = \cos2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \dfrac{1}{2}\sin2x \\\end{matrix} ight.

    \Rightarrow I = \left. \ \frac{1}{2}(x +1)\sin2x ight|_{0}^{\frac{\pi}{4}} -\frac{1}{2}\int_{0}^{\frac{\pi}{4}}{\sin2xdx}

    \Rightarrow I = \frac{1}{2}\left(\frac{\pi}{4} + 1 ight) + \left. \ \frac{1}{4}\cos2xight|_{0}^{\frac{\pi}{4}} = \frac{\pi}{8} + \frac{1}{4}

    \Rightarrow a.b = 8.4 = 32

  • Câu 15: Thông hiểu

    Tính diện tích S_{D} của hình phẳng D được giới hạn bởi các đường y = \left| \frac{\ln x}{x} ight|, trục hoành và các đường thẳng x =
\frac{1}{e};x = 2?

    Diện tích hình phẳng cần tìm là:

    S_{D} = \int_{\frac{1}{e}}^{2}{\left|
\frac{\ln x}{x} ight|dx} = \int_{\frac{1}{e}}^{1}{\left| \frac{\ln
x}{x} ight|dx} + \int_{1}^{2}{\left| \frac{\ln x}{x}
ight|dx}

    = - \int_{\frac{1}{e}}^{1}{\frac{\ln
x}{x}dx} + \int_{1}^{2}{\frac{\ln x}{x}dx}

    = - \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{\frac{1}{e}}^{1} + \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{1}^{2}

    = \frac{1}{2} + \frac{\ln^{2}2}{2} =\frac{1}{2}\left( 1 + \ln^{2}2 ight)

  • Câu 16: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = \frac{{x + 2}}{{\sqrt {x + 1} }}

     Đặt t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1 \Rightarrow 2tdt = dx

    F\left( x ight) = \int {\frac{{x + 2}}{{\sqrt {x + 1} }}dx = \int {\left( {\frac{{{t^2} + 1}}{2}} ight).2tdt = \int {\left( {2{t^2} + 2} ight)dt = \frac{{2{t^3}}}{3} + 2t + C} } }

    = \frac{{2\left( {x + 1} ight)\sqrt {x + 1} }}{3} + 2\sqrt {x + 1}  + C = \frac{2}{3}\left( {x + 4} ight)\sqrt {x + 1}  + C

  • Câu 17: Thông hiểu

    Biết rằng hàm số y = f(x)f'(x) = 3x^{2} + 2x + m;f(2) =
1 và đồ thị hàm số y =
f(x) cắt trục tung tại điểm có tung độ bằng - 5. Hàm số f(x) là:

    Theo lí thuyết \int_{}^{}{f'(x)dx =
f(x) + C}

    Ta có: \int_{}^{}{f'(x)dx
=}\int_{}^{}{\left( 3x^{2} + 2x + m ight)dx} = x^{3} + x^{2} + mx +
C

    Khi đó f(x) có dạng f(x) = x^{3} + x^{2} + mx + C_{1}

    Theo đề ta có: \left\{ \begin{matrix}
f(2) = 1 \\
f(0) = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2^{3} + 2^{2} + 2m + C_{1} = 1 \\
C_{1} = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = - 3 \\
C_{1} = - 5 \\
\end{matrix} ight.

    Vậy hàm số là f(x) = x^{3} + x^{2} - 3x -
5.

  • Câu 18: Nhận biết

    Giá trị của D = \int_{0}^{1}{\left(
2019x^{2018} - 1 ight)dx} bằng

    Ta có:

    D = \int_{0}^{1}{\left( 2019x^{2018} - 1
ight)dx} = \left. \ \left( x^{2019} - x ight) ight|_{0}^{1} =
0

  • Câu 19: Nhận biết

    Cho các hàm số f(x)F(x) liên tục trên \mathbb{R} thỏa mãn F'(x) = f(x) với \forall x\mathbb{\in R}. Tính I = \int_{0}^{1}{f(x)dx}, biết rằng F(0) = 2;F(1) = 5?

    Ta có: I = \int_{0}^{1}{f(x)dx} = F(1) -
F(0) = 3.

  • Câu 20: Nhận biết

    Cho hàm số y = f(x);y = g(x) liên tục trên \lbrack a;bbrack. Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x);y = g(x) và các đường thẳng x = a;x = b. Diện tích hình (H) được tính theo công thức?

    Ta có diện tích hình (H) được tính bằng công thức S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo