Xét hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?
Xét hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?
Họ nguyên hàm của hàm số là:
Ta có: .
Gọi là đường thẳng tùy ý đi qua điểm
và có hệ số góc âm. Giả sử
cắt các trục
lần lượt tại
. Quay tam giác
quanh trục
thu được một khối tròn xoay có thể tích là
. Giá trị nhỏ nhất của
bằng
Hình vẽ minh họa
Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d:
Mà M(1; 1) ∈ d nên
Từ (1) suy ra d có hệ số góc là ; theo giả thiết ta có
Nếu mẫu thuẫn với (2) suy ra
Mặt khác từ (2) suy ra kết hợp với a > 0, b > 0 suy ra a > 1.
Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao và bán kính đường tròn đáy
Thể tích khối nón là
Suy ra V đạt giá trị nhỏ nhất khi đạt giá trị nhỏ nhất.
Xét hàm số trên khoảng
Ta có bảng biến thiên như sau:
Vậy giá trị nhỏ nhất của V bằng
Một học sinh đi học từ nhà đến trường bằng xe đạp với vận tốc thay đổi theo thời gian được tính bởi công thức . Biết rằng sau khi đi được 1 phút thì quãng đường học sinh đó đi được là
. Biết quãng đường từ nhà đến trường là
. Hỏi thời gian học sinh đó đi đến trường là bao nhiêu phút?
Ta có:
Vì
Để học sinh đó đến trường thì
Vậy đáp án cần tìm là phút.
Tính thể tích của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Tính thể tích của vật thể giới hạn bởi hai mặt phẳng biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với
tại điểm có hoành độ
là hình chữ nhật có kích thước là
và
?
Thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với tại điểm có hoành độ
là hình chữ nhật có kích thước là
và
Diện tích thiết diện được xác định theo hàm là:
⇒ Thể tích vật thể tròn xoay:
Biết rằng với
là các số hữu tỉ. Giá trị của
là:
Ta có:
Đặt
Cho các hàm số và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Cho hình vẽ:
Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Biết rằng . Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Cho hình vẽ:
Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
(phần tô đậm trong hình vẽ) tính theo công thức:
Áp dụng công thức tính diện tích hình phẳng ta có:
Vậy đáp án cần tìm là: .
Biết tích phân trong đó
là các số nguyên. Tính giá trị biểu thức
?
Ta có:
Khi đó
Diện tích hình phẳng giới hạn bởi các đường , trục hoành,
và
bằng
Diện tích hình giới hạn là
Cho hàm số có đạo hàm dương và liên tục trên
thỏa mãn
và
. Tích phân
là:
Áp dụng BĐT Cauchy-Schwarz:
Dấu "=" xảy ra khi chỉ khi
Biết rằng . Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Tính tích phân bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra
Tìm nguyên hàm của hàm số
Cho hàm số xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Tìm nguyên hàm của hàm số ?
Ta có:
Tìm họ các nguyên hàm của hàm số ?
Ta có: