Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm và tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tìm nguyên hàm của hàm số  f\left( x ight) = \frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}

     \int {f\left( x ight)} dx = \int {\frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}} dx = {\int {\left( {\frac{{x - 2}}{{x + 1}}} ight)} ^{10}}.\frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    Đặt t = \frac{{x - 2}}{{x + 1}} \Rightarrow dt = \frac{3}{{{{\left( {x + 1} ight)}^2}dx}} \Rightarrow \frac{1}{3}dt = \frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    => \int {f\left( x ight)} dx = \int {{t^{10}}.\frac{1}{3}dt = \frac{1}{{33}}.{t^{11}} + C}

    => \frac{1}{{33}}{\left( {\frac{{x - 2}}{{x + 1}}} ight)^{11}} + C

  • Câu 2: Nhận biết

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 3: Nhận biết

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

  • Câu 4: Thông hiểu

    Hàm số nào dưới đây là họ nguyên hàm của hàm số y = cos2x?

    Ta có: \int_{}^{}{\cos2xdx} =\frac{1}{2}\sin2x + C

    = \frac{1}{2}.2\sin x\cos x + C =\frac{1}{2}.\left( 1 + 2\sin x\cos x ight) + C -\frac{1}{2}

    = \frac{1}{2}.\left( \sin^{2}x +2\sin x\cos x + \cos^{2}x ight) + C'

    = \frac{1}{2}.\left( \sin x + \cos x
ight)^{2} + C'

    Vậy đáp án cần tìm là: y =
\frac{1}{2}\left( \sin x + \cos x ight)^{2} + C.

  • Câu 5: Thông hiểu

    Anh A xuất phát từ D, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t) =
\frac{t^{2}}{180} + \frac{11t}{18}(m/s) trong đó t (giây) là khoảng thời gian tính từ lúc anh A bắt đầu chuyển động. Từ trạng thái nghỉ, anh B cũng xuất phát từ D, chuyển động thẳng cùng hướng với anh A nhưng chậm hơn 5 giây so với anh A và có gia tốc bằng a\left( m/s^{2} ight) (a là hằng số). Sau khi anh B xuất phát được 10 giây thì đuổi kịp anh A. Vận tốc của anh B tại thời điểm đuổi kịp anh A bằng bao nhiêu?

    Quãng đường anh A đi được cho đến khi hai người gặp nhau là:

    S = \int_{0}^{15}{\left(
\frac{t^{2}}{180} + \frac{11t}{18} ight)dt} = 75(m)

    Vận tốc của anh B tại thời điểm t(s) tính từ lúc anh B xuất phát là: v_{B}(t) = at

    Quãng đường anh B đi được cho đến khi hai người gặp nhau là:

    S = \int_{0}^{10}{(at)dt} = \left. \
\left( \frac{at^{2}}{2} ight) ight|_{0}^{10} = 50a(m)

    \Rightarrow 50a = 75 \Rightarrow a =
\frac{3}{2}

    Vậy vận tốc của anh B tại thời điểm đuổi kịp anh A là: v_{B}(20) = 10a = 15(m/s)

  • Câu 6: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hình thang ABCD với A( - 2;3),B(3;6),C(3;0),D( - 2;0). Quay hình thang ABCD xung quanh trục Ox thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??

    Phương trình các cạnh của hình thang là: \left\{ \begin{matrix}
AD:x = - 2 \\
CD:y = 0 \\
BC:x = 3 \\
AB:3x - 5y + 21 = 0 \\
\end{matrix} ight.

    Ta thấy ABCD là hình thang vuông có CD:y = 0 nên khối tròn xoay cần tính là

    V = \pi\int_{- 2}^{3}{\frac{(3x +
21)^{2}}{25}dx} = 105\pi

  • Câu 7: Nhận biết

    Cho hình (H) giới hạn bởi các đường y = - x^{2} + 2x, trục hoành. Quay hình phẳng (H) quanh trục Ox ta được khối tròn xoay có thể tích là:

    Phương trình hoành độ giao điểm của (H);Ox là: -
x^{2} + 2x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó V = \pi\int_{0}^{2}{\left( - x^{2}
+ 2x ight)^{2}dx} = \pi\int_{0}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx} = \frac{16\pi}{15}.

  • Câu 8: Thông hiểu

    Tích phân \int_{1}^{2}{\frac{\ln x}{x\left( \ln x + 2 ight)^{2}}dx} = a\ln3 + b\ln2 +\frac{c}{3} với a;b;c\mathbb{\in
Z}. Kết luận nào dưới đây đúng?

    Ta có:I = \int_{1}^{2}{\frac{\ln
x}{x\left( \ln x + 2 ight)^{2}}dx}. Đặt t = \ln x + 2 \Rightarrow dt =
\frac{dx}{x}

    Đổi cận tích phân \left\{ \begin{matrix}
x = 1 \Rightarrow t = 2 \\
x = e \Rightarrow t = 3 \\
\end{matrix} ight.

    Vậy I = \int_{2}^{3}{\frac{t -2}{t^{2}}dt} = \int_{2}^{3}{\left( \frac{1}{t} - \frac{2}{t^{2}}ight)dt} = \left. \ \left( \ln t + \frac{2}{t} ight) ight|_{2}^{3}= \ln3 - \ln2 - \frac{1}{3}

    Suy ra a = 1;b = - 1;c = - 1. Vậy a^{2} + b^{2} + c^{2} = 3.

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y = 3x^{2} -
1. Phát biểu nào sau đây đúng?

    Ta có \int_{}^{}{\left( 3x^{2} - 1
ight)dx = x^{3} - x + C}.

  • Câu 10: Nhận biết

    Tính tích phân I =\int_{0}^{\frac{\pi}{2}}{\left( \sin2x + \sin x ight)dx}?

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\left(\sin2x + \sin x ight)dx} = \left. \ \left( - \frac{1}{2}\cos2x - \cos xight) ight|_{0}^{\frac{\pi}{2}} = 2

  • Câu 11: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = 2\cos 3x - {3^{x - 1}} thỏa mãn F\left( 0 ight) = 0. Tìm F(x)

     F\left( x ight) = \int {f\left( x ight)dx }

    = \int {2\cos 3xdx - \int {{3^{x - 1}}dx - \frac{1}{3}\int {{3^x}dx}  = \frac{{2\sin 3x}}{3} - \frac{{{3^x}}}{{3\ln 3}} + C} }

    Mặt khác F\left( 0 ight) = 0 \Rightarrow \frac{{2\sin 3x}}{3} - \frac{{{3^x}}}{{3\ln 3}} + C = 0 \Rightarrow C = \frac{1}{{3\ln 3}}

    => F\left( x ight) = \frac{{2\sin 3x}}{3} - \frac{{{3^{x - 1}}}}{{\ln 3}} + \frac{1}{{3\ln 3}}

  • Câu 12: Thông hiểu

    Có bao nhiêu số thực b \in
(\pi;3\pi) sao cho \int_{\pi}^{b}{4\cos2xdx} = 1?

    Ta có:

    \int_{\pi}^{b}{4\cos2xdx} = 1\Leftrightarrow \left. \ 2\sin2x ight|_{\pi}^{b} = 1

    \Leftrightarrow \sin2b = 1\Leftrightarrow \left\lbrack \begin{matrix}b = \dfrac{\pi}{12} + k\pi \\b = \dfrac{5\pi}{12} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Do b \in (\pi;3\pi) nên có đúng 4 giá trị của b thỏa mãn.

  • Câu 13: Nhận biết

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 14: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm dương và liên tục trên \lbrack
0;1brack thỏa mãn f(0) =
15\int_{0}^{1}{\left\{
f'(x)\left\lbrack f(x) ightbrack^{2} + \frac{1}{25} ight\} dx}
\leq 2\int_{0}^{1}{\left\lbrack \sqrt{f'(x)}.f(x) ightbrack
dx}. Tích phân \int_{0}^{1}{\left\lbrack f(x)
ightbrack^{3}dx} là:

    5\int_{0}^{1}\mspace{2mu}\left\lbrack
f^{'}(x)\lbrack f(x)brack^{2} + \frac{1}{25} ightbrack dx
\leqslant
2\int_{0}^{1}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx

    \Leftrightarrow5\int_{0}^{1}\mspace{2mu} f^{'}(x)\lbrack f(x)brack^{2}dx+ \frac{1}{5} \leqslant2\int_{0}^{1}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx

    Áp dụng BĐT Cauchy-Schwarz:

    \Rightarrow \left(\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dxight)^{2} \leqslant \int_{0}^{1}\mspace{2mu}\mspace{2mu}dx\cdot \int_{0}^{1}\mspace{2mu}\mspace{2mu} f^{'}(x)\lbrack f(x)brack^{2}dx

    \Rightarrow 5\left(\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dxight)^{2} + \frac{1}{5} \leqslant2\int_{0}^{2}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx

    \Leftrightarrow 5\left(
\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx -
\frac{1}{5} ight)^{2} \leqslant 0 \Leftrightarrow
\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx =
\frac{1}{5}.

    Dấu "=" xảy ra khi chỉ khi \left\{\begin{matrix}\int_{0}^{1}\mspace{2mu}\mspace{2mu}\sqrt{f^{'}(x)}f(x)dx =\dfrac{1}{5} \Rightarrow k = \dfrac{1}{5} \\\sqrt{f^{'}(x)}f(x) = k \\\end{matrix} ight.

    \Rightarrow \int_{}^{}\
f^{'}(x)f^{2}(x)dx = \int_{}^{}\ \frac{1}{25}dx = \frac{1}{25}x +
C

    \Rightarrow \frac{\left\lbrack f(x)
ightbrack^{3}}{3} = \frac{1}{25}x + C \Leftrightarrow f(x) =
\sqrt[3]{\frac{3}{25}x + 3C}

    f(0) = 1 \Rightarrow 3C = 1 \Rightarrow
f(x) = \sqrt[3]{\frac{3}{25}x + 1}

    \Rightarrow \int_{0}^{1}{\left\lbrack
f(x) ightbrack^{3}dx} = \int_{0}^{1}{\left( \frac{3}{25}x + 1
ight)dx} = \frac{53}{50}

  • Câu 15: Thông hiểu

    Diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} + |x|;y = x^{2} + 1 được cho bởi công thức nào sau đây?

    Ta có: y = x^{2} + |x| = \left\{\begin{matrix}x^{2} + x;\ \ x \geq 0 \\x^{2} - x;\ \ x \leq 0 \\\end{matrix} ight.

    Với x \geq 0 \Rightarrow x^{2} + x =x^{2} + 1 \Leftrightarrow x = 1

    Với x \leq 0 \Rightarrow x^{2} - x =x^{2} + 1 \Leftrightarrow x = - 1

    Ta có:

    S = \left| \int_{- 1}^{0}{( - x - 1)dx}ight| + \left| \int_{0}^{1}{(x - 1)dx} ight|

  • Câu 16: Vận dụng cao

    Gọi d là đường thẳng tùy ý đi qua điểm M(1;1) và có hệ số góc âm. Giả sử d cắt các trục Ox;Oy lần lượt tại A;B. Quay tam giác OAB quanh trục Oy thu được một khối tròn xoay có thể tích là V. Giá trị nhỏ nhất của V bằng

    Hình vẽ minh họa

    Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d: \frac{x}{a} + \frac{y}{b} = 1 \Rightarrow d:x = -\frac{b}{a}x + b\ \ \ (1)

    Mà M(1; 1) ∈ d nên \frac{1}{a} +\frac{1}{b} = 1 \Rightarrow a + b = 2ab\ \ (2)

    Từ (1) suy ra d có hệ số góc là k = -\frac{b}{a}; theo giả thiết ta có -\frac{b}{a} < 0 \Rightarrow ab > 0

    Nếu a < 0;b < 0 \Rightarrow a + b< 0 mẫu thuẫn với (2) suy ra a> 0;b > 0

    Mặt khác từ (2) suy ra b = \frac{a}{a -1} kết hợp với a > 0, b > 0 suy ra a > 1.

    Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao h = b và bán kính đường tròn đáy r = a

    Thể tích khối nón là V = \frac{1}{3}\pir^{2}h = \frac{1}{3}\pi a^{2}b = \frac{1}{3}\pi\frac{a^{3}}{a -1}

    Suy ra V đạt giá trị nhỏ nhất khi \frac{a^{3}}{a - 1} đạt giá trị nhỏ nhất.

    Xét hàm số f(x) = \frac{x^{3}}{x - 1} =x^{2} + x + 1 + \frac{1}{x - 1} trên khoảng (1; + \infty)

    f'(x) = 2x + 1 - \frac{1}{(x -1)^{2}} = \frac{x^{2}(2x - 3)}{(x - 1)^{2}}

    f'(x) = 0 \Rightarrow \left\lbrack\begin{matrix}x = 0 \\x = \frac{3}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy giá trị nhỏ nhất của V bằng \frac{1}{3}\pi.f\left( \frac{3}{2} ight) =\frac{9\pi}{4}

  • Câu 17: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Khi xe dừng hẳn thì vận tốc bằng 0m/s.

    Khi xe dừng hẳn thì v(t) = 0m/s nên 0 = - 5t + 20 \Leftrightarrow t =
4s.

    Nguyên hàm của hàm số vận tốc \int_{}^{}{( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C}, C\mathbb{\in
R}.

    Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là

    \int_{0}^{4}{( - 5t + 20)dt} = \left. \
\left( \frac{- 5t^{2}}{2} + 20t ight) ight|_{0}^{4} =
40m.

  • Câu 18: Thông hiểu

    Tính thể tích V của vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y = x^{2} + 1;y = x^{3} + 1 quay quanh Ox.

    Xét phương trình hoành độ giao điểm:

    x^{2} + 1 = x^{3} + 1 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Thể tích khối tròn xoay cần tính là:

    V = \pi\int_{0}^{1}{\left| \left( x^{2}
+ 1 ight)^{2} - \left( x^{3} + 1 ight)^{2} ight|dx}

    = \pi\left| \int_{0}^{1}{\left\lbrack
\left( x^{2} + 1 ight)^{2} - \left( x^{3} + 1 ight)^{2}
ightbrack dx} ight|

    = \pi\left| \int_{0}^{1}{\left( - x^{6}
+ x^{4} - 2x^{3} + 2x^{2} ight)dx} ight|

    = \pi\left| \left. \ \left( -
\frac{1}{7}x^{7} + \frac{1}{5}x^{5} - \frac{1}{2}x^{4} +
\frac{2}{3}x^{3} ight) ight|_{0}^{1} ight| =
\frac{47\pi}{210}

  • Câu 19: Thông hiểu

    Tính diện tích S_{D} của hình phẳng D được giới hạn bởi các đường y = \left| \frac{\ln x}{x} ight|, trục hoành và các đường thẳng x =
\frac{1}{e};x = 2?

    Diện tích hình phẳng cần tìm là:

    S_{D} = \int_{\frac{1}{e}}^{2}{\left|
\frac{\ln x}{x} ight|dx} = \int_{\frac{1}{e}}^{1}{\left| \frac{\ln
x}{x} ight|dx} + \int_{1}^{2}{\left| \frac{\ln x}{x}
ight|dx}

    = - \int_{\frac{1}{e}}^{1}{\frac{\ln
x}{x}dx} + \int_{1}^{2}{\frac{\ln x}{x}dx}

    = - \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{\frac{1}{e}}^{1} + \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{1}^{2}

    = \frac{1}{2} + \frac{\ln^{2}2}{2} =\frac{1}{2}\left( 1 + \ln^{2}2 ight)

  • Câu 20: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo