Diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
là
Phương trình hoành độ giao điểm:
Khi đó:
.
Diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
là
Phương trình hoành độ giao điểm:
Khi đó:
.
Tìm nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Vậy .
Tính tích phân
?
Đặt . Ta có:
suy ra
.
Tìm nguyên hàm
.
Ta có:
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số
liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Một vật chuyển động với vận tốc
có gia tốc
. Vận tốc ban đầu của vật là
. Tính vận tốc của vật sau
giây, (làm tròn kết quả đến hàng đơn vị).
Vận tốc của vật là:
Do vận tốc ban đầu của vật là
Vận tốc của vật sau 10s là
Đặt S là diện tích của hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và các đường thẳng
. Giá trị của
sao cho
là
Diện tích cần tìm chính là tích phân:
Ta có:
Do đó
Vậy là giá trị cần tìm.
Cho hàm số
dương và liên tục trên
thỏa mãn
và biểu thức
đạt giá trị lớn nhất, khi đó
bằng:
Do
Dấu bằng xảy ra khi và chỉ khi .
Cho hàm số
có đồ thị như hình vẽ:

Các biểu thức
xác định bởi
. Mệnh đề nào sau đây đúng?
Dựa vào hình vẽ và diện tích hình phẳng ta có:
(hệ số góc của tiếp tuyến tại x = 1)
Như vậy
Tích phân
bằng:
Ta có:
Cho vật thể có mặt đáy là hình tròn có bán kính bằng
như hình vẽ:

Khi cắt vật thể bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
thì được thiết diện là một tam giác đều. Tính thể tích
của vật thể đó.?
Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ thì được thiết diện là một tam giác đều có cạnh bằng
Do đó, diện tích của thiết diện:
Một ô tô đang chạy với vận tốc
thì người lái hãm phanh. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc
trong đó
là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?
Khi vật dừng hẳn thì
Quãng đường vật đi được trong khoảng thời gian trên là:
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
.
Cho hình vẽ:

Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Cho hàm số
liên tục trên đoạn
và
. Tính tích phân
?
Ta có:
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Tính thể tích
của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Họ nguyên hàm của hàm số
là:
Ta có:
Tìm nguyên hàm của hàm số
?
Ta có: