Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm và tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính tích phân I =\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{\cos^{3}x}dx}?

    Đặt t = \cos x \Rightarrow dt = - \sin
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 1 \\x = \dfrac{\pi}{3} \Rightarrow t = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó:

    I = \int_{1}^{\frac{1}{2}}{\frac{-
1}{t^{3}}dt} = \int_{\frac{1}{2}}^{1}{\frac{1}{t^{3}}dt} = \left. \  -
\frac{1}{2t^{2}} ight|_{\frac{1}{2}}^{1} = - \frac{1}{2} + 2 =
\frac{3}{2}.

  • Câu 2: Vận dụng cao

    Cho hàm số f(x) là hàm số chẵn, liên tục trên đoạn \lbrack -1;1brack\int_{-1}^{1}{f(x)dx} = 4. Tính tích phân I = \int_{- 1}^{1}{\frac{f(x)}{1 +e^{x}}dx}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) là hàm số chẵn, liên tục trên đoạn \lbrack -1;1brack\int_{-1}^{1}{f(x)dx} = 4. Tính tích phân I = \int_{- 1}^{1}{\frac{f(x)}{1 +e^{x}}dx}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Vận dụng cao

    Cho parabol (P):y = x^{2} và hai điểm A;B thuộc (P) sao cho AB = 2. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB.

    Hình vẽ minh họa

    Gọi A\left( a;a^{2} ight)(P):y = x^{2} là hai điểm thuộc (P) sao cho AB = 2.

    Không mất tính tổng quát giả sử a < b.

    Theo giả thiết ta có AB = 2 nên

    (b - a)^{2} + \left( b^{2} - a^{2}ight)^{2} = 4

    \Leftrightarrow (b - a)^{2}\left\lbrack1 + (b + a)^{2} ightbrack = 4

    Phương trình đường thẳng đi qua hai điểm A và B là y = (b + a)x - ab

    Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:

    S = \int_{a}^{b}{\left\lbrack (a + b)x -ab - x^{2} ightbrack dx}

    = \left. \ \left\lbrack (a +b)\frac{x^{2}}{2} - abx - \frac{x^{3}}{3} ightbrack ight|_{a}^{b}= \frac{(b - a)^{3}}{6}

    Mặt khác (b - a)^{2}\left\lbrack 1 + (b +a)^{2} ightbrack = 4 nên |b -a| \leq 2 do 1 + (b + a)^{2} \geq1

    Suy ra S = \frac{(b - a)^{3}}{6} \leq\frac{2^{3}}{6}

    Vậy S_{\max} = \frac{4}{3} dấu bằng xảy ra khi và chỉ khi a = − b = ±1.

  • Câu 4: Nhận biết

    Cho \int_{- 1}^{2}{f(x)dx} = 2\int_{- 1}^{2}{g(x)dx} = - 1, khi đó \int_{- 1}^{2}{\left\lbrack x + 2f(x)
+ 3g(x) ightbrack dx} bằng:

    Ta có:

    \int_{- 1}^{2}{\left\lbrack x + 2f(x) +
3g(x) ightbrack dx} = \int_{- 1}^{2}{xdx} + 2\int_{- 1}^{2}{f(x)dx}
+ 3\int_{- 1}^{2}{g(x)dx}

    = \left. \ \frac{1}{2}x^{2} ight|_{-
1}^{2} + 2.2 + 3.( - 1) = \frac{5}{2}

  • Câu 5: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường y = x\sin2x;y = 2x;x = \frac{\pi}{2}?

    Phương trình hoành độ giao điểm

    x\sin2x = 2x \Leftrightarrow \left\lbrack\begin{matrix}x = 0 \\\sin2x = 2(L) \\\end{matrix} ight.

    Diện tích hình phẳng là:

    S = \int_{0}^{\frac{\pi}{2}}{\left|
x\sin x - 2x ight|dx} = \left| \int_{0}^{\frac{\pi}{2}}{\left( x\sin x
- 2x ight)dx} ight|

    = \left| \left. \ \left(\frac{1}{4}\sin2x - \frac{1}{2}x\cos2x - x^{2} ight)ight|_{0}^{\frac{\pi}{2}} ight| = \frac{\pi^{2}}{4} -\frac{\pi}{4}

  • Câu 6: Thông hiểu

    Đặt S là diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x^{2} - 2x}{x - 1}, đường thẳng y = x - 1 và các đường thẳng x = m;x = 2m;(m > 1). Giá trị của m sao cho S = ln3

    Diện tích cần tìm chính là tích phân:

    S = \int_{m}^{2m}{\left| \frac{x^{2} -
2x}{x - 1} - (x - 1) ight|dx}

    Ta có:

    S = \int_{m}^{2m}{\left| \frac{x^{2} -
2x}{x - 1} - (x - 1) ight|dx} = \int_{m}^{2m}{\left| \frac{- 1}{x - 1}
ight|dx}

    = \int_{m}^{2m}{\frac{1}{|x - 1|}dx} =
\int_{m}^{2m}{\frac{1}{x - 1}dx};(m > 1)

    = \left. \ \left\lbrack \ln|x - 1|
ightbrack ight|_{m}^{2m} = \ln\frac{2m - 1}{m - 1}

    Do đó S = ln3 \Leftrightarrow \ln\frac{2m
- 1}{m - 1} = ln3 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 7: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 8: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = 2x - x^{2};y = 0. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:

    Ta có: 2x - x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Theo công thức thể tích giới hạn bởi các đường ta có:

    V = \pi\int_{0}^{2}{\left( 2x - x^{2}
ight)^{2}dx}

  • Câu 9: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số f(x) = ax + \frac{b}{x^{2}};(x eq
0), biết rằng F( - 1) = 1;F(1) =
4;f(1) = 0?

    Ta có: F(x) = \int_{}^{}{\left( ax +
\frac{b}{x^{2}} ight)dx = \frac{ax^{2}}{2} - \frac{b}{x} +
c}

    Theo bài ra ta có:

    F( - 1) = 1;F(1) = 4;f(1) =
0

    \Rightarrow \left\{ \begin{matrix}\dfrac{a}{2} + b + c = 1 \\\dfrac{a}{2} - b + c = 4 \\a + b = 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = - \dfrac{3}{2} \\c = \dfrac{7}{4} \\\end{matrix} ight.. Vậy F(x) =
\frac{3x^{2}}{4} + \frac{3}{2x} + \frac{7}{4}.

  • Câu 10: Nhận biết

    Tính \int_{}^{}{\sin3xdx}?

    Áp dụng công thức \int_{}^{}{\sin(ax +
b)dx} = - \frac{1}{a}\cos(ax + b) + C

    Suy ra \int_{}^{}{\sin3xdx} = -\frac{1}{3}\cos3x + C

  • Câu 11: Nhận biết

    Tích phân \int_{1}^{8}\sqrt[3]{x}dx bằng:

    Ta có:

    \int_{1}^{8}\sqrt[3]{x}dx = \left. \
\left( \frac{3}{4}x\sqrt[3]{x} ight) ight|_{1}^{8} =
\frac{45}{4}.

  • Câu 12: Thông hiểu

    Cho hàm số F(x) = \left( ax^{2} + bx - c
ight).e^{2x} là một nguyên hàm của hàm số f(x) = \left( 2018x^{2} - 3x + 1
ight)e^{2x} trên khoảng ( -
\infty; + \infty). Giá trị biểu thức a + 2b + 4c bằng:

    Ta có: F'(x) = (2ax + b)e^{2x} +
2\left( ax^{2} + bx - c ight)e^{2x}

    = \left\lbrack 2ax^{2} + (2b + 2a)x + b
- 2c ightbrack e^{2x}

    Theo bài ra ta có:

    \Rightarrow \left\lbrack 2ax^{2} + (2b +
2a)x + b - 2c ightbrack e^{2x} = \left( 2018x^{2} - 3x + 1
ight)e^{2x}

    \Rightarrow \left\{ \begin{matrix}2a = 2018 \\2(a + b) = - 3 \\b - 2c = 1 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1009 \\b = \dfrac{- 2021}{2} \\c = \dfrac{- 2023}{4} \\\end{matrix} ight.\  \Rightarrow a + 2b + 4c = - 3035

  • Câu 13: Vận dụng

    Cho hình phẳng D được giới hạn bởi hai đường y = 2\left( x^{2} - 1ight);y = 1 - x^{2}. Tính thể tích khối tròn xoay tạo thành do D quay quanh trục Ox?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình phẳng D được giới hạn bởi hai đường y = 2\left( x^{2} - 1ight);y = 1 - x^{2}. Tính thể tích khối tròn xoay tạo thành do D quay quanh trục Ox?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu

    Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian t(s)a(t)
= 2t - 7\left( m/s^{2} ight). Biết vận tốc đầu bằng 10(m/s). Hỏi trong 6 giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?

    Ta có:

    Vận tốc của vật được tính theo công thức: v(t) = 10 + t^{2} - 7t(m/s)

    Suy ra quãng đường vật đi được tính theo công thức: S(t) = \int_{}^{}{v(t)dt} = \frac{t^{3}}{3} -
\frac{7}{2}t^{2} + 10t

    Ta có: S'(t) = t^{2} - 7t + 10
\Rightarrow S'(t) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 2 \\
t = 5 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}S(0) = 0 \\S(2) = \dfrac{26}{3} \\S(5) = \dfrac{25}{6} \\S(6) = 6 \\\end{matrix} ight.\  \Rightarrow \underset{\lbrack 0;6brack}{\max S(t) = S(2)} = \dfrac{26}{3}

    Vậy thời điểm chất điểm ở xa nhất về phía bên phải là 2s.

  • Câu 15: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = \frac{{x + 2}}{{\sqrt {x + 1} }}

     Đặt t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1 \Rightarrow 2tdt = dx

    F\left( x ight) = \int {\frac{{x + 2}}{{\sqrt {x + 1} }}dx = \int {\left( {\frac{{{t^2} + 1}}{2}} ight).2tdt = \int {\left( {2{t^2} + 2} ight)dt = \frac{{2{t^3}}}{3} + 2t + C} } }

    = \frac{{2\left( {x + 1} ight)\sqrt {x + 1} }}{3} + 2\sqrt {x + 1}  + C = \frac{2}{3}\left( {x + 4} ight)\sqrt {x + 1}  + C

  • Câu 16: Thông hiểu

    Cho hàm số y = f(x) liên tục, luôn dương trên \lbrack 0;3brack và thỏa mãn I = \int_{0}^{3}{f(x)dx} =
4. Khi đó giá trị của tích phân K =
\int_{0}^{3}{\left( e^{1 + \ln f(x)} + 4 ight)dx} là:

    Ta có:

    K = \int_{0}^{3}{\left( e^{1 + \ln f(x)}
+ 4 ight)dx} = \int_{0}^{3}{\left\lbrack e.e^{\ln f(x)} ightbrack
dx} + \int_{0}^{3}{4dx}

    = e\int_{0}^{3}{f(x)dx} +
\int_{0}^{3}{4dx} = 4e + 12

  • Câu 17: Nhận biết

    Cho đồ thị của hàm số y = f(x) như sau:

    Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:

    Dựa vào hình vẽ ta được: S = \int_{-
3}^{0}{f(x)dx} - \int_{0}^{4}{f(x)dx}.

  • Câu 18: Thông hiểu

    Thể tích khối tròn xoay khi quay hình phẳng (S) giới hạn bởi các đường y = 4 - x^{2};y = 0 quanh trục Ox có kết quả có dạng \frac{\pi a}{b} với a;b là các số nguyên dương và \frac{a}{b} là phân số tối giản. Khi đó giá trị của a - 30b bằng:

    Phương trình hoành độ giao 4 - x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
\end{matrix} ight.

    Thể tích cần tính V = \pi\int_{-
2}^{2}{\left( 4 - x^{2} ight)^{2}dx} = \left. \ \left( \frac{x^{5}}{5}
- \frac{8x^{3}}{3} - 16x ight) ight|_{- 2}^{2} =
\frac{512\pi}{15}

    Suy ra a = 512;b = 15 \Rightarrow a - 30b
= 62.

  • Câu 19: Nhận biết

    Nguyên hàm của hàm số f(x) = 2^{x} +
x

    Ta có: \int_{}^{}f(x)dx =
\int_{}^{}\left( 2^{x} + x ight)dx = \frac{2^{x}}{ln2} +
\frac{x^{2}}{2} + C.

  • Câu 20: Vận dụng

    Tìm nguyên hàm của hàm số  f\left( x ight) = \frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}

     \int {f\left( x ight)} dx = \int {\frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}} dx = {\int {\left( {\frac{{x - 2}}{{x + 1}}} ight)} ^{10}}.\frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    Đặt t = \frac{{x - 2}}{{x + 1}} \Rightarrow dt = \frac{3}{{{{\left( {x + 1} ight)}^2}dx}} \Rightarrow \frac{1}{3}dt = \frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    => \int {f\left( x ight)} dx = \int {{t^{10}}.\frac{1}{3}dt = \frac{1}{{33}}.{t^{11}} + C}

    => \frac{1}{{33}}{\left( {\frac{{x - 2}}{{x + 1}}} ight)^{11}} + C

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo