Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm và tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tìm nguyên hàm của hàm số  f\left( x ight) = \frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}

     \int {f\left( x ight)} dx = \int {\frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}} dx = {\int {\left( {\frac{{x - 2}}{{x + 1}}} ight)} ^{10}}.\frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    Đặt t = \frac{{x - 2}}{{x + 1}} \Rightarrow dt = \frac{3}{{{{\left( {x + 1} ight)}^2}dx}} \Rightarrow \frac{1}{3}dt = \frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    => \int {f\left( x ight)} dx = \int {{t^{10}}.\frac{1}{3}dt = \frac{1}{{33}}.{t^{11}} + C}

    => \frac{1}{{33}}{\left( {\frac{{x - 2}}{{x + 1}}} ight)^{11}} + C

  • Câu 2: Nhận biết

    Giá trị của D = \int_{0}^{1}{\left(
2019x^{2018} - 1 ight)dx} bằng

    Ta có:

    D = \int_{0}^{1}{\left( 2019x^{2018} - 1
ight)dx} = \left. \ \left( x^{2019} - x ight) ight|_{0}^{1} =
0

  • Câu 3: Vận dụng cao

    Cho đường thẳng y = \frac{1}{2}x +a và parabol y = x^{2} (a là tham số thực). Gọi S_{1};S_{2} lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi S_{1} = S_{2} thì A thuộc khoảng nào dưới đây?

    Phương trình hoành độ giao điểm của của hai đồ thị:

    \frac{1}{2}x + a = x^{2} \Leftrightarrow2x^{2} - x - 2a = 0

    Theo giả thiết, phương trình có hai nghiệm phân biệt

    \Delta = 1 + 16a > 0 \Rightarrow a> - \frac{1}{16}

    Khi đó, phương trình có hai nghiệm x_{1};x_{2};\left( x_{1} < x_{2}ight) thỏa mãn:

    \left\{ \begin{matrix}S = x_{1} + x_{2} = \frac{1}{2} \\P = x_{1}.x_{2} = - a \\\end{matrix} ight.

    Diện tích hình phẳng:

    S_{1} = \int_{- 2a}^{x_{1}}{\left(\frac{x}{2} + a ight)dx} + \int_{x_{1}}^{0}{x^{2}dx}

    = \left. \ \left( \frac{x^{2}}{4} + axight) ight|_{- 2a}^{x_{1}} + \left. \ \frac{x^{3}}{3}ight|_{x_{1}}^{0}

    = \frac{1}{4}{x_{1}}^{2} + ax_{1} -\frac{1}{4}.4a^{2} + 2a^{2} - \frac{1}{3}{x_{1}}^{3}

    = - \frac{1}{3}{x_{1}}^{3} +\frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2}

    Diện tích hình phẳng:

    S_{2} = \int_{x_{1}}^{x_{2}}{\left(\frac{1}{2}x + a - x^{2} ight)dx} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    Theo giả thiết ta có:

    S_{1} = S_{2}

    \Leftrightarrow = -\frac{1}{3}{x_{1}}^{3} + \frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2} =\frac{\left( x_{2} - x_{1} ight)^{3}}{6}

    \Leftrightarrow \frac{1}{4}\left({x_{1}}^{2} - 4a^{2} ight) + a\left( x_{1} + 2a ight) -\frac{{x_{1}}^{3}}{3} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    \Leftrightarrow - \frac{1}{6}\left({x_{1}}^{3} + {x_{2}}^{3} ight) + \frac{1}{2}x_{1}x_{2}\left( x_{2} -x_{1} ight) + \frac{{x_{1}}^{2}}{4} + ax_{1} + a^{2} = 0

    \Leftrightarrow - \frac{1}{6}\left(\frac{1}{8} + \frac{3a}{2} ight) - \frac{a}{2}\sqrt{\frac{1}{4} + 4a}+ \frac{\left( 1 + \sqrt{1 + 16a} ight)^{2}}{64} + a.\frac{1 - \sqrt{1+ 16a}}{4} + a^{2} = 0

    \Rightarrow a \approx 3,684 \in \left(\frac{7}{2};4 ight)

  • Câu 4: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 1x =
3 bằng

    Diện tích hình giới hạn là S =
\int_{1}^{3}{\left| x^{3} ight|dx} = \left| \int_{3}^{3}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{1}^{3}
ight| = 20

  • Câu 5: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm và liên tục trên đoạn \lbrack
a;bbrack với f(a) = 0. Đặt M = \max_{\lbrack a;bbrack}\left| f(x)
ight|. Tìm giá trị nhỏ nhất của \int_{a}^{b}{\left\lbrack f'(x)
ightbrack^{2}dx}?

    Gọi x_{0} \in \lbrack a;bbrack sao cho \left| f\left( x_{0} ight) ight|
= M. Ta có:

    \left( \int_{a}^{x_{0}}{f'(x)dx}
ight)^{2} \leq \int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}.\int_{a}^{x_{0}}{dx}

    \Leftrightarrow \left\lbrack f\left(
x_{0} ight) - f(a) ightbrack^{2} \leq \left( x_{0} - a
ight)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    \Leftrightarrow f^{2}\left( x_{0}
ight) \leq \left( x_{0} - a ight)\int_{a}^{x_{0}}{\left\lbrack
f'(x) ightbrack^{2}dx}

    \Leftrightarrow M^{2} \leq \left( x_{0}
- a ight)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    \left( x_{0} - a
ight)\int_{a}^{x_{0}}{\left\lbrack f'(x) ightbrack^{2}dx} \leq
(b - a)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    Suy ra M^{2} \leq (b -
a)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    \Rightarrow
\int_{a}^{x_{0}}{\left\lbrack f'(x) ightbrack^{2}dx} \geq
\frac{M^{2}}{b - a}

    Dấu bằng xảy ra khi và chỉ khi f'(x)
= 1 .

    Vậy giá trị nhỏ nhất của \int_{a}^{b}{\left\lbrack f'(x)
ightbrack^{2}dx} đạt được bằng \frac{M^{2}}{b - a} khi f'(x) = 1.

  • Câu 6: Nhận biết

    Cho F(x) là một nguyên hàm của hàm số f(x). Khi đó hiệu số F(0) - F(1) bằng:

    Theo định nghĩa tích phân ta có:

    \int_{0}^{1}{f(x)dx} = F(1) -
F(0) suy ra F(0) - F(1) = -
\int_{0}^{1}{f(x)dx}.

  • Câu 7: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = 2^{x}, thỏa mãn F(0) = \frac{1}{\ln2}. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{2^{x}dx} = \frac{2^{x}}{\ln2} + C

    F(x) là một nguyên hàm của hàm số f(x) = 2^{x}, ta có: F(x) = \frac{2^{x}}{\ln2} + CF(0) = \frac{1}{\ln2}

    \Rightarrow C = 0 \Rightarrow F(x) =\frac{2^{x}}{\ln2}

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = \frac{1}{\ln2}\left( 1 + 2 + 2^{2} +.... + 2^{2018} + 2^{2019} ight)

    T = \frac{1}{\ln2}.\frac{2^{2020} - 1}{2- 1} = \frac{2^{2020} - 1}{ln2}

  • Câu 8: Thông hiểu

    Diện tích hình phẳng được gạch chéo trong hình bên bằng

    Dựa và hình vẽ ta có diện tích hình phẳng được gạch chéo trong hình bên là:

    \int_{- 1}^{2}{\left\lbrack \left( -
x^{2} + 2 ight) - \left( x^{2} - 2x - 2 ight) ightbrack dx} =
\int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4 ight)dx}.

  • Câu 9: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 10: Thông hiểu

    Diện tích hình phẳng giới hạn bởi các đường y = (x - 1)e^{2x}, trục hoành; x = 0x =
2 bằng:

    Hoành độ giao điểm của đồ thị hàm số y =
(x - 1)e^{2x} và trục hoành là nghiệm của phương trình: (x - 1)e^{2x} = 0 \Leftrightarrow x =
1

    Diện tích hình phẳng giới hạn bởi các đường là:

    S = \int_{0}^{2}{\left| (x - 1)e^{2x}
ight|dx}

    = \int_{0}^{1}{\left\lbrack (1 -
x)e^{2x} ightbrack dx} + \int_{1}^{2}{\left\lbrack (x - 1)e^{2x}
ightbrack dx}

    = \frac{1}{2}\int_{0}^{1}{(1 - x)d\left(
e^{2x} ight)} + \frac{1}{2}\int_{1}^{2}{(x - 1)d\left( e^{2x}
ight)}

    = \frac{1}{2}\left. \ (1 - x)e^{2x}
ight|_{0}^{1} + \frac{1}{2}\int_{0}^{1}{e^{2x}dx} + \frac{1}{2}\left.
\ (x - 1)e^{2x} ight|_{1}^{2} -
\frac{1}{2}\int_{1}^{2}{e^{2x}dx}

    = \frac{e^{4}}{2} - \frac{1}{2} +
\frac{1}{4}\left. \ e^{2x} ight|_{0}^{1} - \frac{1}{4}\left. \ e^{2x}
ight|_{1}^{2}

    = \frac{e^{4}}{4} + \frac{e^{2}}{2} -
\frac{3}{4}

  • Câu 11: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu

    Cho \int_{0}^{1}{\frac{x}{(x + 2)^{2}}dx}
= a + ln2 + cln3 với a;b;c là các số hữu tỉ. Giá trị của biểu thức K =
3a + b + c bằng:

    Ta có: \int_{0}^{1}{\frac{x}{(x +
2)^{2}}dx} = \int_{0}^{1}{\frac{x + 2 - 2}{(x + 2)^{2}}dx}

    = \int_{0}^{1}{\frac{x + 2}{(x +
2)^{2}}dx} - \int_{0}^{1}{\frac{2}{(x + 2)^{2}}dx}

    = \int_{0}^{1}{\frac{1}{x + 2}dx} -
\int_{0}^{1}{\frac{2}{(x + 2)^{2}}dx}

    = \left. \ \ln|x + 2| ight|_{0}^{1} -\left. \ \frac{2}{x + 2} ight|_{0}^{1} = \ln3 - \ln2 -\frac{1}{3}

    Suy ra a = - \frac{1}{3};b = - 1;c = 1
\Rightarrow K = - 1

  • Câu 13: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{(2x - 1)^{2}}?

    Ta có: \int_{}^{}{\frac{1}{(2x -1)^{2}}dx} = \int_{}^{}{(2x - 1)^{- 1}dx}

    = - \frac{1}{2}.\frac{1}{2x -2} + C = \frac{1}{2 - 4x} + C

  • Câu 14: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường y = \frac{x - 1}{x + 2} và các đường thẳng y = 2;y = - 2x - 4 như hình vẽ:

    Phương trình hoành độ giao điểm

    \frac{x - 1}{x + 2} = - 2x - 4\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - \dfrac{7}{2} \\\end{matrix} ight.

    Xét - 2x - 4 = 0 \Leftrightarrow x = -
3

    Xét \frac{x - 1}{x + 2} = 2
\Leftrightarrow x = - 5

    Diện tích hình phẳng là:

    S = \int_{- 5}^{\frac{- 7}{2}}{\left(
\frac{x - 1}{x + 2} - 2 ight)dx} + \int_{- \frac{7}{2}}^{- 3}{( - 2x -
4 - 2)dx}

    = - \frac{5}{4} + 3\ln2

  • Câu 15: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight). Khi đó số điểm cực trị của hàm số F(x) là:

    Ta có: F(x) là một nguyên hàm của hàm số f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight)

    \Rightarrow F'(x) = 2019^{x}\left( 4
- x^{2} ight)\left( x^{2} - 3x + 2 ight) = 2019^{x}(x - 2)^{2}(x +
2)(1 - x)

    \Rightarrow F'(x) = 0
\Leftrightarrow 2019^{x}(x - 2)^{2}(x + 2)(1 - x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.. Do x = -
2;x = 1 là nghiệm bội 1 còn x =
2 là nghiệm bội 2 nên hàm số F(x) có hai điểm cực trị.

  • Câu 16: Thông hiểu

    Tích phân \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = a - \ln b với a;b\mathbb{\in Z}. Giá trị của a + b bằng:

    Ta có: \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ x ight|_{0}^{1} - \left. \
\ln\left( x^{2} + 1 ight) ight| = 1 - ln2

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow a + b = 3

  • Câu 17: Nhận biết

    Hàm số f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số nào sau đây?

    Ta có: f'(x) = - e^{- x} + 2 nên f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số y = - e^{- x} +
2.

  • Câu 18: Thông hiểu

    Tính tích phân B = \int_{0}^{2}{2x\left(
x^{2} + 1 ight)^{2018}dx}?

    Ta có: B = \int_{0}^{2}{2x\left( x^{2} +
1 ight)^{2018}dx}

    = \int_{0}^{2}{\left( x^{2} + 1
ight)^{2018}d\left( x^{2} + 1 ight)}

    = \left. \ \frac{\left( x^{2} + 1
ight)^{2019}}{2019} ight|_{0}^{2} = \frac{5^{2019} -
1}{2019}

  • Câu 19: Nhận biết

    Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a;x = b;\left( {a < b} ight) xung quanh trục Ox.

    Ta có : V =
\pi\int_{a}^{b}{f^{2}(x)}dx.

  • Câu 20: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{1}{{\sqrt {2x + 1} }}{\text{   khi }}x \geqslant 0 \hfill \\
  {\left( {2x + 1} ight)^3}{\text{   khi }}x < 0 \hfill \\ 
\end{gathered}  ight.F(4) + F(
- 1) = 8. Giá trị biểu thức Q = F(
- 2) + F(12) bằng:

    Ta có: F\left( x ight) = \int {f\left( x ight)dx}  = \left\{ \begin{gathered}
  \sqrt {2x + 1}  + {C_1}{\text{   khi }}x \geqslant 0 \hfill \\
  \frac{{{{\left( {2x + 1} ight)}^4}}}{8}{\text{ + }}{{\text{C}}_2}{\text{   khi }}x < 0 \hfill \\ 
\end{gathered}  ight.

    F(4) + F( - 1) = 8\Rightarrow \sqrt{8 +1} + C_{1} + \frac{( - 2 + 1)^{4}}{8} + C_{2} = 8\Rightarrow C_{1} +C_{2} = \frac{39}{8}(*)

    Do đó: Q = F( - 2) + F(12) = \sqrt{2.12 +
1} + \frac{( - 4 + 1)^{4}}{8} + C_{1} + C_{2} = 20

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo