Tìm nguyên hàm của hàm của hàm số ![]()
Tìm nguyên hàm của hàm của hàm số ![]()
Cho hàm số
liên tục trên đoạn
và
là một nguyên hàm của
. Biết rằng
. Xác định tích phân
?
Ta có: .
Cho parabol
và hai điểm
thuộc
sao cho
. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol
và đường thẳng
.
Hình vẽ minh họa
Gọi và
là hai điểm thuộc (P) sao cho AB = 2.
Không mất tính tổng quát giả sử a < b.
Theo giả thiết ta có AB = 2 nên
Phương trình đường thẳng đi qua hai điểm A và B là
Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:
Mặt khác nên
do
Suy ra
Vậy dấu bằng xảy ra khi và chỉ khi a = − b = ±1.
Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức
, thời gian tính theo đơn vị giây, quãng đường vật đi được tính theo đơn vị mét. Biết tại thời điểm
thì vật đi được quãng đường là
. Hỏi tại thời điểm
thì vật đi được quãng đường là bao nhiêu?
Quãng đường vật đi được từ thời điểm đến
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Ta có: là một nguyên hàm của hàm số
nên
Hay
Xét , đặt
Khi đó
Cho
là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Cho hàm số
liên tục trên
và có đồ thị
cắt trục
tại ba điểm có hoành độ
với
như hình bên. Đặt
. Diện tích của hình phẳng giới hạn bởi đồ thị
và trục hoành (phần tô đậm) bằng bao nhiêu?

Diện tích hình phẳng phần tô đậm được tính như sau:
Tính diện tích hình phẳng giới hạn bởi đồ thị
của hàm số
và đồ thị
của hàm số
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng cần tìm là:
Diện tích hình phẳng giới hạn bởi các đường
bằng:
Gọi S là diện tích hình phẳng cần tìm. Khi đó
Một ô tô đang chạy với vận tốc
thì người lái hãm phanh. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc
trong đó
là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?
Khi vật dừng hẳn thì
Quãng đường vật đi được trong khoảng thời gian trên là:
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có: nên
là một nguyên hàm của hàm số
.
Cho
là số thực dương. Biết rằng
là một nguyên hàm của hàm số
thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy .
Cho hàm số
dương và liên tục trên
thỏa mãn
và biểu thức
đạt giá trị lớn nhất, khi đó
bằng:
Do
Dấu bằng xảy ra khi và chỉ khi .
Giả sử
là các hàm số bất kì liên tục trên
và
là các số thực. Mệnh đề nào sau đây sai?
Theo tính chất tích phân ta có:
Vậy mệnh đề sai:
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
.
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Cho hình phẳng
được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Biết rằng hàm số
có
và đồ thị hàm số
cắt trục tung tại điểm có tung độ bằng
. Hàm số
là:
Theo lí thuyết
Ta có:
Khi đó có dạng
Theo đề ta có:
Vậy hàm số là .
Diện tích hình phẳng giới hạn bởi hai đường
và
bằng:
Xét phương trình hoành độ giao điểm
Hình vẽ minh họa
Diện tích hình phẳng là: