Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Biết
là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Họ nguyên hàm của hàm số
là:
Ta có: .
Tính thể tích
của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
:
Thể tích của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
là:
.
Cho hàm số
có đạo hàm dương và liên tục trên
thỏa mãn
và
. Tích phân
là:
Áp dụng BĐT Cauchy-Schwarz:
Dấu "=" xảy ra khi chỉ khi
Xét
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
. Giá trị của
sao cho thể tích của khối tròn xoay tạo thành khi quay
quanh trục hoành bằng
là?
Thể tích khối tròn xoay tạo thành khi quay quanh trục hoành là:
Mà
Vậy là giá trị cần tìm.
Cho vật thể có mặt đáy là hình tròn có bán kính bằng
như hình vẽ:

Khi cắt vật thể bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
thì được thiết diện là một tam giác đều. Tính thể tích
của vật thể đó.?
Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ thì được thiết diện là một tam giác đều có cạnh bằng
Do đó, diện tích của thiết diện:
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Một học sinh đi học từ nhà đến trường bằng xe đạp với vận tốc thay đổi theo thời gian được tính bởi công thức
. Biết rằng sau khi đi được 1 phút thì quãng đường học sinh đó đi được là
. Biết quãng đường từ nhà đến trường là
. Hỏi thời gian học sinh đó đi đến trường là bao nhiêu phút?
Ta có:
Vì
Để học sinh đó đến trường thì
Vậy đáp án cần tìm là phút.
Một mảnh vườn hình elip có trục lớn bằng
, trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Một mảnh vườn hình elip có trục lớn bằng , trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Nếu
thì
bằng:
Ta có:
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Họ nguyên hàm của hàm số
là:
Đặt
Tính diện tích S của hình phẳng giới hạn bởi các đường
?
Phương trình hoành độ giao điểm
Do đó, diện tích hình phẳng giới hạn bởi các đường
Tìm nguyên hàm của hàm số
?
Ta có:
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Cho
với
là các số thực. Giá trị của biểu thức
bằng:
Ta có:
Cho hàm số
liên tục trên
và có đồ thị
cắt trục
tại ba điểm có hoành độ
với
như hình bên. Đặt
. Diện tích của hình phẳng giới hạn bởi đồ thị
và trục hoành (phần tô đậm) bằng bao nhiêu?

Diện tích hình phẳng phần tô đậm được tính như sau:
Tìm nguyên hàm của hàm số ![]()
Đặt
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc
. Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc
. Tính quãng đường
đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?
Quãng đường xe đi được trong 12s đầu là
Sau khi đi được 12s vật đạt vận tốc , sau đó vận tốc của vật có phương trình
Vật dừng hẳn sau 2s kể từ khi phanh.
Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là
Vậy tổng quãng đường ô tô đi được là