Trong các khẳng định sau, khẳng định nào sai?
Ta có: nên khẳng định
sai.
Trong các khẳng định sau, khẳng định nào sai?
Ta có: nên khẳng định
sai.
Cho hình vẽ:

Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Cho hàm số
xác định trên tập số thực thỏa mãn
và
. Tính
biết rằng
?
Vì nên ta có:
Cho
Do đó
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
. Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được
. Tìm
?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:
Xét hình phẳng
giới hạn bởi các đường như hình vẽ (phần gạch sọc).

Diện tích hình phẳng
được tính theo công thức
Ta có:
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Cho hàm số
xác định trên
thỏa mãn
và
. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Một vật thể nằm giữa hai mặt phẳng
và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Tìm nguyên hàm của hàm số
bằng:
Đặt
với
là tham số thực. Tìm giá trị của tham số
để
?
Ta có:
Do .
Gọi
là đường thẳng tùy ý đi qua điểm
và có hệ số góc âm. Giả sử
cắt các trục
lần lượt tại
. Quay tam giác
quanh trục
thu được một khối tròn xoay có thể tích là
. Giá trị nhỏ nhất của
bằng
Hình vẽ minh họa
Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d:
Mà M(1; 1) ∈ d nên
Từ (1) suy ra d có hệ số góc là ; theo giả thiết ta có
Nếu mẫu thuẫn với (2) suy ra
Mặt khác từ (2) suy ra kết hợp với a > 0, b > 0 suy ra a > 1.
Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao và bán kính đường tròn đáy
Thể tích khối nón là
Suy ra V đạt giá trị nhỏ nhất khi đạt giá trị nhỏ nhất.
Xét hàm số trên khoảng
Ta có bảng biến thiên như sau:
Vậy giá trị nhỏ nhất của V bằng
Xác định hàm số f(x) biết rằng ![]()
Mà
Vậy hàm số cần tìm là
Cho hàm số
. Tính ![]()
Ta có:
.
Cho hai hàm số
và
liên tục trên
và thỏa mãn
. Gọi
là thể tích của khối tròn xoay sinh ra khi quay quanh
hình phẳng
giới hạn bởi các đường:
. Khi đó
được tính bởi công thức nào sau đây?
Ta cần nhớ lại công thức sau: Cho hai hàm số liên tục trên
. Khi đó thể tích của vật thể tròn xoay giới hạn bởi
(với
) và hai đường thẳng
khi quay quanh trục
là
.
Một mảnh vườn hình elip có trục lớn bằng
, trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Một mảnh vườn hình elip có trục lớn bằng , trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Tính tổng
?
Ta có:
.
Do đó
.
Mặt khác:
.
Đặt .
Đổi cận và
. Khi đó
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Biết
. Khi đó
bằng:
Ta có:
Cho hàm
có đạo hàm liên tục trên
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
(phần gạch chéo trong hình vẽ):

Diện tích hình
bằng:
Diện tích phần gạch chéo là:
.