Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm và tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính tích phân B = \int_{0}^{2}{2x\left(
x^{2} + 1 ight)^{2018}dx}?

    Ta có: B = \int_{0}^{2}{2x\left( x^{2} +
1 ight)^{2018}dx}

    = \int_{0}^{2}{\left( x^{2} + 1
ight)^{2018}d\left( x^{2} + 1 ight)}

    = \left. \ \frac{\left( x^{2} + 1
ight)^{2019}}{2019} ight|_{0}^{2} = \frac{5^{2019} -
1}{2019}

  • Câu 2: Thông hiểu

    Một vật chuyển động với vận tốc v(t)(m/s)có gia tốc v'(t) = \frac{3}{t + 1}\left( m/s^{2}
ight). Vận tốc ban đầu của vật là 6m/s. Tính vận tốc của vật sau 10 giây, (làm tròn kết quả đến hàng đơn vị).

    Vận tốc của vật là:v(t) =
\int_{}^{}{v'(t)dt} = \int_{}^{}{\frac{3}{t + 1}dt} = 3ln(t + 1) +
C

    Do vận tốc ban đầu của vật là 6m/s

    \Rightarrow v_{(t = 0)} = 6 \Rightarrow
3ln1 + C = 6 \Rightarrow C = 6

    Vận tốc của vật sau 10s là v(10) = 3ln11
+ 6 \approx 13m/s

  • Câu 3: Thông hiểu

    Cho hàm số f(x) có đạo hàm với mọi x\mathbb{\in R}f'(x) = 2x + 1. Giá trị của f(2) - f(1) bằng:

    Ta có:

    f'(x) = 2x + 1 \Rightarrow\int_{}^{}{f'(x)dx = \int_{}^{}{(2x + 1)dx}}

    = x^{2} + x + C \Rightarrow \existsC_{1}\mathbb{\in R}:f(x) = x^{2} + x + C

    \Rightarrow f(2) - f(1) = 2^{2} + 2 +C_{1} - \left( 1^{2} + 1 + C_{1} ight) = 4

  • Câu 4: Nhận biết

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: \int_{}^{}{( - 12t + 24)}dt = - 6t^{2} + 24t +
C với C là hằng số.

    Khi đó, ta gọi hàm số s(t) = - 6t^{2} + 24t +
C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 6t^{2} + 24t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 12t + 24 = 0 \Leftrightarrow t =
2. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 72\
km/h = 20\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 6.2^{2} + 24.2
= 24(\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 + 24 \approx 44\ (\ m).

    Do 44 < 45 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 5: Nhận biết

    Tính tích phân I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x}?

    Ta có: I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x} = \left. \  -\cot x ight|_{\frac{\pi}{4}}^{\frac{\pi}{3}}

    = - \left( \cot\frac{\pi}{3} -
\cot\frac{\pi}{4} ight) = - \cot\frac{\pi}{3} +
\cot\frac{\pi}{4}.

  • Câu 6: Nhận biết

    Giả sử f(x);g(x) là các hàm số bất kì liên tục trên \mathbb{R}a;b;c là các số thực. Mệnh đề nào sau đây sai?

    Theo tính chất tích phân ta có:

    \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} + \int_{c}^{a}{f(x)dx}

    = \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} - \int_{a}^{c}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{a}^{c}{f(x)dx} = 0

    \int_{a}^{b}{c.f(x)dx} =
c.\int_{a}^{b}{f(x)dx};\forall x\mathbb{\in R}

    \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx} -
\int_{a}^{b}{g(x)dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx}

    Vậy mệnh đề sai: \int_{a}^{b}{\left\lbrack f(x)g(x) ightbrack
dx} = \int_{a}^{b}{f(x)dx}.\int_{a}^{b}{g(x)dx}

  • Câu 7: Vận dụng

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Đáp án là:

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Diện tích 1 cánh của hình trang trí là:

    S_{1} = \int_{0}^{1}\left( x^{2} -
ax^{3} - bx ight)dx = \left. \ \left( \frac{x^{3}}{3} -
\frac{ax^{4}}{4} - \frac{bx^{2}}{2} ight) ight|_{0}^{1} =
\frac{1}{2} - \frac{a}{4} - \frac{b}{2}

    \Rightarrow Diện tích hình trang trí là: S = 4S_{1} = \frac{4}{3} - a -
2b

    Vì diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn nên

    \frac{4}{3} - a - 2b = \frac{4}{3}
\Leftrightarrow a + 2b = 0

    Khi đó ta có: \left\{ \begin{matrix}
a + b = 1 \\
a + 2b = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 1 \\
\end{matrix} ight.\  ight.

    Vậy ab = - 2.

  • Câu 8: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =
3x + 1?

    Ta có:

    \int_{}^{}{(3x + 1)dx} =
\frac{1}{3}\int_{}^{}{(3x + 1)d(3x + 1)}

    = \frac{1}{3}.\frac{(3x + 1)^{2}}{2} + C
= \frac{1}{6}(3x + 1)^{2} + C

  • Câu 9: Vận dụng cao

    Cho hàm số y = \frac{1}{2}x^{2} có đồ thị (P). Xét các điểm A;B \in (P) sao cho tiếp tuyến tại AB của (P) vuông góc với nhau, diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \frac{9}{4}. Gọi x_{1};x_{2} lần lượt là hoành độ của AB. Giá trị của \left( x_{1} + x_{2} ight)^{2} bằng:

    Hình vẽ minh họa

    Ta có:y = \frac{1}{2}x^{2} có TXĐ: D\mathbb{= R}

    y' = x

    Giả sử A\left(
x_{1};\frac{1}{2}{x_{1}}^{2} ight),B\left(
x_{2};\frac{1}{2}{x_{2}}^{2} ight) \in (P)x_{1} eq x_{2}

    Phương trình tiếp tuyến tại điểm A của (P) là y = x_{1}\left( x - x_{1} ight) +
\frac{1}{2}{x_{1}}^{2}

    \Rightarrow y = x_{1}x -
\frac{1}{2}{x_{1}}^{2}\ \ \ \left( d_{1} ight)

    Phương trình tiếp tuyến tại điểm B của (P) là y = x_{2}\left( x - x_{2} ight) +
\frac{1}{2}{x_{2}}^{2}

    \Rightarrow y = x_{2}x -
\frac{1}{2}{x_{2}}^{2}\ \ \ \left( d_{2} ight)

    \left( d_{1} ight)\bot\left( d_{2}
ight) nên ta có: x_{1}x_{2} = - 1
\Leftrightarrow x_{2} = - \frac{1}{x_{1}}

    Phương trình đường thẳng AB

    \dfrac{x - x_{1}}{x_{2} - x_{1}} =\dfrac{y - \dfrac{1}{2}{x_{1}}^{2}}{\dfrac{1}{2}{x_{2}}^{2} -\dfrac{1}{2}{x_{1}}^{2}}

    \Leftrightarrow \frac{1}{2}\left( x -
x_{1} ight)\left( {x_{2}}^{2} - {x_{1}}^{2} ight) = \left( y -
\frac{1}{2}{x_{1}}^{2} ight)\left( x_{2} - x_{1} ight)

    \Leftrightarrow \left( x - x_{1}
ight)\left( x_{2} + x_{1} ight) = 2y - {x_{1}}^{2}

    \Leftrightarrow \left( x_{2} + x_{1}
ight)x - 2y - x_{1}x_{2} = 0

    \Leftrightarrow y =
\frac{1}{2}\left\lbrack \left( x_{2} + x_{1} ight)x - x_{1}x_{2}
ightbrack = \frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)x +
1 ightbrack

    Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:

    S =
\frac{1}{2}\int_{x_{1}}^{x_{2}}{\left\lbrack \left( x_{1} + x_{2}
ight)x + 1 - x^{2} ightbrack dx}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left. \ \left\lbrack \left( x_{1} + x_{2}
ight)\frac{x^{2}}{2} + x - \frac{x^{3}}{3} ightbrack
ight|_{x_{1}}^{x_{2}}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)\left(
\frac{{x_{2}}^{2}}{2} - \frac{{x_{1}}^{2}}{2} ight) + \left( x_{2} -
x_{1} ight) - \frac{{x_{2}}^{3} - {x_{1}}^{3}}{3}
ightbrack

    \Leftrightarrow 27 = - 3\left(
x_{1}{x_{2}}^{2} - {x_{1}}^{3} + {x_{2}}^{3} - {x_{1}}^{2}x_{2} ight)
+ 6\left( x_{2} - x_{1} ight) - 2{x_{2}}^{3} +
2{x_{1}}^{3}

    \Leftrightarrow 27 = - 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight) + 6\left( x_{2} - x_{1} ight)

    \Leftrightarrow 27 = 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( {x_{1}}^{2} + {x_{2}}^{2} + 2 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( x_{2} - x_{1} ight)^{2}

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)^{3} \Leftrightarrow x_{2} - x_{1} = 3

    Thay x_{2} = - \frac{1}{x_{1}} ta có:

    - \frac{1}{x_{1}} - x_{1} = 3
\Leftrightarrow - 1 - {x_{1}}^{2} - 3x_{1} = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = \dfrac{- 3 - \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{2}{3 +\sqrt{5}} \\x_{1} = \dfrac{- 3 + \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{- 2}{- 3 +\sqrt{5}} \\\end{matrix} ight.

    \Rightarrow \left( x_{1} + x_{2}
ight)^{2} = 5

  • Câu 10: Thông hiểu

    Thể tích khối tròn xoay khi quay hình phẳng (S) giới hạn bởi các đường y = 4 - x^{2};y = 0 quanh trục Ox có kết quả có dạng \frac{\pi a}{b} với a;b là các số nguyên dương và \frac{a}{b} là phân số tối giản. Khi đó giá trị của a - 30b bằng:

    Phương trình hoành độ giao 4 - x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
\end{matrix} ight.

    Thể tích cần tính V = \pi\int_{-
2}^{2}{\left( 4 - x^{2} ight)^{2}dx} = \left. \ \left( \frac{x^{5}}{5}
- \frac{8x^{3}}{3} - 16x ight) ight|_{- 2}^{2} =
\frac{512\pi}{15}

    Suy ra a = 512;b = 15 \Rightarrow a - 30b
= 62.

  • Câu 11: Nhận biết

    Tính \int_{}^{}{\sin3xdx}?

    Áp dụng công thức \int_{}^{}{\sin(ax +
b)dx} = - \frac{1}{a}\cos(ax + b) + C

    Suy ra \int_{}^{}{\sin3xdx} = -\frac{1}{3}\cos3x + C

  • Câu 12: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = (x + 2)^{2};y = 0;x = 1;x = 3 bằng:

    Gọi S là diện tích hình phẳng cần tìm. Khi đó

    S = \int_{1}^{3}{(x + 2)^{2}dx} = \left.
\ \frac{1}{3}(x + 2)^{3} ight|_{1}^{3} = \frac{98}{3}

  • Câu 13: Thông hiểu

    Thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y =
x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox?

    Phương trình hoành độ giao điểm của đường y = x\sqrt{x^{2} + 1} và trục hoành là:

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:

    V = \pi\int_{0}^{1}{\left( x\sqrt{x^{2}
+ 1} ight)^{2}dx} = \pi\int_{0}^{1}{\left( x^{4} + x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} +
\frac{x^{3}}{3} ight) ight|_{0}^{1} = \frac{8\pi}{15}

  • Câu 14: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack, có đồ thị hàm số y = f'(x) như sau:

    Mệnh đề nào dưới đây là đúng?

    Theo ý nghĩa hình học của tích phân thì \int_{a}^{b}{f'(x)dx} là diện tích hình thang cong ABMN.

  • Câu 15: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left( \sin xight)dx} = 2\int_{0}^{1}{x.f(x)dx} Đúng||Sai

    b) \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{1}^{e}{\frac{f(x)}{x^{2}}dx} Đúng||Sai

    c) \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{x.f(x)dx} Đúng||Sai

    Đáp án là:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left( \sin xight)dx} = 2\int_{0}^{1}{x.f(x)dx} Đúng||Sai

    b) \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{1}^{e}{\frac{f(x)}{x^{2}}dx} Đúng||Sai

    c) \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{x.f(x)dx} Đúng||Sai

    Ta có:

    \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left(\sin x ight)dx} = \int_{0}^{\frac{\pi}{2}}{2\sin x.\cos x.f\left( \sin xight)dx}

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = \dfrac{\pi}{2} \Rightarrow t = 1 \\\end{matrix} ight. từ đó ta có:

    \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left(\sin x ight)dx} = \int_{0}^{1}{2tf(t)dt} =2\int_{0}^{1}{2xf(x)dx}

    Ta có: \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx}

    Đặt t = e^{x} \Rightarrow dt =
e^{x}dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = e \\
\end{matrix} ight. từ đó ta có:

    \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{0}^{e}{\frac{f(t)}{t^{2}}dt} =
\int_{0}^{e}{\frac{f(x)}{x^{2}}dx}

    Ta có: \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx}

    Đặt t = x^{2} \Rightarrow dt =
2xdx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = a \Rightarrow t = a^{2} \\
\end{matrix} ight. từ đó ta có:

    \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{tf(t)}dt =
\frac{1}{2}\int_{0}^{a^{2}}{xf(x)}dx

  • Câu 16: Thông hiểu

    Hàm số f\left( x ight) = {x^3} + 3x - 2 có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:

     F\left( x ight) = \int {\left( {{x^3} + 3x - 2} ight)dx = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + C}

    Hàm số đi qua B(2; 10) => \frac{{{2^4}}}{4} + \frac{{{{3.2}^2}}}{2} - 2.2 + C = 10 \Rightarrow C = 4

    => F\left( x ight) = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + 4

    => F\left( { - 2} ight) = \frac{{{{\left( { - 2} ight)}^4}}}{4} + \frac{{3.{{\left( { - 2} ight)}^2}}}{2} - 2\left( { - 2} ight) + 4 = 6

  • Câu 17: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \lbrack 0;1brack và thỏa mãn f(0) = 0. Biết rằng \int_{0}^{1}{f^{2}(x)dx} = \frac{9}{2}\int_{0}^{1}{f'(x)\cos\frac{\pi x}{2}}dx= \frac{3\pi}{4}. Tích phân \int_{0}^{1}{f(x)d(x)} bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \lbrack 0;1brack và thỏa mãn f(0) = 0. Biết rằng \int_{0}^{1}{f^{2}(x)dx} = \frac{9}{2}\int_{0}^{1}{f'(x)\cos\frac{\pi x}{2}}dx= \frac{3\pi}{4}. Tích phân \int_{0}^{1}{f(x)d(x)} bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu

    Với giá trị nào của m > 0 thì diện tích của hình phẳng giới hạn bởi hai đồ thị y = x^{2}y = mx bằng \frac{4}{3}?

    Xét phương trình hoành độ giao điểm x^{2}
= mx \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = m \\
\end{matrix} ight..

    Khi đó diện tích hình phẳng giới hạn bởi hai đồ thị trên được tính bởi

    \int_{0}^{m}{\left| x^{2} - mx
ight|dx} = \int_{0}^{m}{\left( mx - x^{2} ight)dx} = \frac{m^{3}}{6}
= \frac{4}{3} \Rightarrow m = 2.

  • Câu 19: Thông hiểu

    Biết rằng \int_{}^{}{\frac{4x + 11}{x^{2}
+ 5x + 6}dx} = a\ln|x + 2| + b\ln|x + 3| + C. Tính giá trị biểu thức T = a^{2} + ab + b^{2}?

    Ta có: \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \frac{A}{x + 2} + \frac{B}{x + 3}

    = \frac{A(x + 2) + B(x + 3)}{(x + 2)(x +
3)} = \frac{(A + B)x + (3A + 2B)}{(x + 2)(x + 3)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 4 \\
3A + 2B = 11 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 3 \\
B = 1 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{4x + 11}{x^{2} +
5x + 6}dx} = \int_{}^{}{\left( \frac{3}{x + 2} + \frac{1}{x + 3}
ight)dx}

    = 3ln|x + 2| + \ln|x + 3| +
C

    Suy ra a = 3;b = 1 \Rightarrow T =
13

  • Câu 20: Vận dụng

    Cho hàm số y = f(x) liên tục nhận giá trị dương trên (0; +\infty) và thỏa mãn f(1) =1; f(x) = f'(x).\sqrt{3x +1};\forall x > 0. Giá trị f(3) gần nhất với giá trị nào sau đây?

    \left\{ \begin{matrix}f(x) > 0 \\f(x) = f'(x)\sqrt{3x + 1} \\\end{matrix} ight.\  \Rightarrow \frac{f'(x)}{f(x)} =\frac{1}{\sqrt{3x + 1}}

    \Rightarrow\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{\frac{1}{\sqrt{3x +1}}dx} \Rightarrow \ln f(x) = \frac{2\sqrt{3x + 1}}{3} + C

    f(1) = 1 \Rightarrow C = -\frac{4}{3}

    \Rightarrow f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}} \Rightarrow f\left( 3 ight)  \approx 2,17

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo