Tính tích phân
?
Ta có:
Tính tích phân
?
Ta có:
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Cho hình phẳng
giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

Đáp án: 0,59
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Gọi là diện tích hình phẳng
. Lúc dó
, trong đó
là diện tích phần gạch sọc ở bên phải
và
là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi là các giao diếm có hoành độ dương của đường thẳng
và đồ thị hàm số
, trong đó
và
.
Thco yêu cầu bài toán .
.
.
Tích phân
bằng:
Ta có:
.
Họ các nguyên hàm của hàm số
là:
Ta có:
Cho hàm số
. Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành. Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm:
Diện tích hình phẳng cần tìm là:
((do trong khoảng (0; 1) và (1; 2) phương trình
vô nghiệm)
Vậy mệnh đề sai là: .
Nguyên hàm của hàm số
là
Ta có: .
Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Thể tích khối tròn xoay khi quay quanh trục Ox hình phẳng giới hạn bởi
là
. Tính
?
Phương trình hoành độ giao điểm
Ta có:
Vậy
Hình phẳng giới hạn bởi đồ thị hàm số
liên tục trên đoạn
, trục Ox và hai đường thẳng
có diện tích là:
Công thức tính diện tích cần tìm là: .
Tính diện tích S của hình phẳng giới hạn bởi các đường
?
Phương trình hoành độ giao điểm
Do đó, diện tích hình phẳng giới hạn bởi các đường
Hàm số nào dưới đây là họ nguyên hàm của hàm số
?
Ta có:
Vậy đáp án cần tìm là: .
Tìm nguyên hàm của hàm số ![]()
Cho
với
là các số thực. Giá trị của biểu thức
bằng:
Ta có:
Cho hàm số
là các hàm số liên tục trên
và thỏa mãn
và
. Tính tích phân
?
Theo bài ra ta có:
Biết tích phân
trong đó
là các số nguyên. Tính giá trị biểu thức
?
Ta có:
Khi đó
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, đường thẳng
như hình vẽ sau:

Hỏi khẳng định nào dưới đây là khẳng định đúng?
Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số trục hoành, đường thẳng
ta có:
.
Cho
là nguyên hàm của hàm số
thỏa mãn
. Tổng các nghiệm của phương trình
là:
Ta có:
Đặt
Theo bài ra ta có:
Ta có:
Vậy tổng các nghiệm của phương trình bằng 2.
Cho đường cong
. Xét điểm
có hoành độ dương thuộc
, tiếp tuyến của
tại
tạo với
một hình phẳng có diện tích bằng
. Hoành độ điểm
thuộc khoảng nào dưới đây??
Ta có: có
Phương trình tiếp tuyến d của (C) tại A là
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)
Vậy
Nguyên hàm của hàm số
là:
Ta có: