Cho tích phân với
. Mệnh đề nào sau đây đúng?
Ta có:
Suy ra .
Cho tích phân với
. Mệnh đề nào sau đây đúng?
Ta có:
Suy ra .
Cho hàm số là hàm số chẵn, liên tục trên đoạn
và
. Tính tích phân
?
Cho hàm số là hàm số chẵn, liên tục trên đoạn
và
. Tính tích phân
?
Tích phân với
. Giá trị của
bằng:
Ta có:
Cho hàm số là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Cho hàm số xác định trên tập số thực thỏa mãn
và
. Tính
biết rằng
?
Vì nên ta có:
Cho
Do đó
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Họ nguyên hàm của hàm số là:
Ta có: .
Cho hàm số thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Tính tích phân ?
Đặt . Ta có:
suy ra
.
Biết . Khi đó
tương ứng bằng
Ta có:
Cho đường thẳng và parabol
(
là tham số thực). Gọi
lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi
thì
thuộc khoảng nào dưới đây?
Phương trình hoành độ giao điểm của của hai đồ thị:
Theo giả thiết, phương trình có hai nghiệm phân biệt
Khi đó, phương trình có hai nghiệm thỏa mãn:
Diện tích hình phẳng:
Diện tích hình phẳng:
Theo giả thiết ta có:
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Khi xe dừng hẳn thì vận tốc bằng m/s.
Khi xe dừng hẳn thì m/s nên
s.
Nguyên hàm của hàm số vận tốc ,
.
Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là
m.
Tìm nguyên hàm của hàm số
Ta có:
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Cho hình phẳng như hình vẽ (phần tô đậm):
Diện tích hình phẳng là:
Gọi S là diện tích hình phẳng (H) theo hình vẽ suy ra
Theo công thức tích phân từng phần:
.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là , chiều cao trong lòng cốc là
đang đựng một lượng nước.
Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là , chiều cao trong lòng cốc là
đang đựng một lượng nước.
Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Cho hình phẳng giới hạn bởi Parabol
và đường cong có phương trình
như hình vẽ:
Diện tích của hình phẳng bằng:
Phương trình hoành độ giao điểm:
Diện tích hình phẳng bằng:
Đặt
Giá trị tích phân bằng:
Ta có:
Xác định giá trị của tham số thỏa mãn
?
Ta có:
Vậy đáp án .
Tính diện tích hình phẳng giới hạn bởi các đường ?
Phương trình hoành độ giao điểm
Diện tích hình phẳng là: