Một vật chuyển động chậm dần với vận tốc
. Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Một vật chuyển động chậm dần với vận tốc
. Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Một vật chuyển động với vận tốc
có gia tốc
. Vận tốc ban đầu của vật là
. Tính vận tốc của vật sau
giây, (làm tròn kết quả đến hàng đơn vị).
Vận tốc của vật là:
Do vận tốc ban đầu của vật là
Vận tốc của vật sau 10s là
Một vật chuyển động với vận tốc
. Tính quãng đường vật đó đi được trong
giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?
Quãng đường vật đó đi được trong 4 giây đầu là:
.
Một ô tô đang chạy đều với vận tốc
m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
s. Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là
m. Sai||Đúng
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Khi xe dừng hẳn thì vận tốc bằng m/s.
Khi xe dừng hẳn thì m/s nên
s.
Nguyên hàm của hàm số vận tốc ,
.
Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là
m.
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

Đáp án: 4,32m2.
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).
Đáp án: 4,32m2.
Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Giao điểm của hai parabol tại
Do đó, diện tích của con cá là
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Tìm tất cả các giá trị thực của tham số
để tồn tại tích phân
?
Tích phân tồn tại khi và chỉ khi hàm số
liên tục trên
hoặc
Mà hàm số liên tục trên các khoảng
Nên hàm số liên tục trên
hoặc
khi và chỉ khi
.
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho hàm số
, ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Cho hình vẽ:

Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Tính thể tích khối tròn xoay sinh ra khi quay quanh trục
hình phẳng giới hạn bởi hai đồ thị
?
Phương trình hoành độ giao điểm
Gọi là hình phẳng giới hạn bởi các đường
Thể tích khối tròn xoay tạo thành khi quay (H) quanh Ox l
Diện tích hình phẳng là:
Họ nguyên hàm của hàm số
là:
Ta có:
.
Biết rằng
với
là các số hữu tỉ. Giá trị của
là:
Ta có:
Đặt
Thể tích khối tròn xoay khi quay hình phẳng
giới hạn bởi các đường
quanh trục
có kết quả có dạng
với
là các số nguyên dương và
là phân số tối giản. Khi đó giá trị của
bằng:
Phương trình hoành độ giao
Thể tích cần tính
Suy ra .
Diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
là
Phương trình hoành độ giao điểm:
Khi đó:
.
Cho hình phẳng
được giới hạn bởi đồ thị các hàm số ![]()
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Cho hàm số
liên tục trên
. Gọi
là hình phẳng giới hạn bởi hai đồ thị
và các đường thẳng
. Diện tích hình
được tính theo công thức?
Ta có diện tích hình (H) được tính bằng công thức .
Họ các nguyên hàm của hàm số
trên khoảng ![]()