Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT

Mô tả thêm: Bài kiểm tra 15 phút Nguyên hàm và tích phân của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 2: Thông hiểu

    Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc a(t) = 6 - 2t\left( m/s^{2}
ight), trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là bao nhiêu mét?

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{(6 - 2t)dt} = 6t - t^{2} + C

    Khi đó v_{\max} \Leftrightarrow t =
3 do ban đầu ô tô đang dừng nên v(0) = 0 \Rightarrow C = 0

    Quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là: S =
\int_{0}^{3}{\left( 6t - t^{2} ight)dt} = 18m.

  • Câu 3: Nhận biết

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 4: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}, f(0) = 0;f'(0) eq 0;f( - 2) > 2 và thỏa mãn hệ thức f(x)f'(x) + 18x^{2}
= \left( 3x^{2} + x ight)f'(x) + (6x + 1)f(x) với \forall x\mathbb{\in R}. Giá trị của f( - 2) là:

    Ta có:

    f(x)f'(x) + 18x^{2} = \left( 3x^{2}
+ x ight)f'(x) + (6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) + 36x^{2}
= 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) -
\left\lbrack 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)
ightbrack = - 36x^{2}

    \Rightarrow \left\lbrack f^{2}(x) -
2\left( 3x^{2} + x ight)f(x) ightbrack' = -
36x^{2}

    \Rightarrow \int_{}^{}{\left\lbrack
f^{2}(x) - 2\left( 3x^{2} + x ight)f(x) ightbrack'dx} =
\int_{}^{}{\left( - 36x^{2} ight)dx}

    \Rightarrow f^{2}(x) - 2\left( 3x^{2} +
x ight)f(x) = - 12x^{3} + C

    Mặt khác f(0) = 0 \Rightarrow C =
0

    Vậy f^{2}(x) - 2\left( 3x^{2} + x
ight)f(x) = - 12x^{3}

    \Rightarrow f^{2}( - 2) - 20f( - 2) = 96
\Leftrightarrow \left\lbrack \begin{matrix}
f( - 2) = 24 \\
f( - 2) = - 4 \\
\end{matrix} ight.

    f( - 2) > 2 \Rightarrow f( - 2) =
24.

  • Câu 5: Thông hiểu

    Cho hàm số f(x) = 2x^{2}.e^{x^{3} + 2} +
2xe^{2x}, ta có: \int_{}^{}{f(x)dx}
= me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C. Tính giá trị biểu thức S = m + n + p?

    Ta có:

    \int_{}^{}{f(x)dx} = me^{x^{3} + 2} +
nxe^{2x} - pe^{2x} + C nên \left(
me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C ight)' = f(x)

    \Rightarrow 3mx^{2}e^{x^{3} + 2} +
2nxe^{2x} + (n - 2p)e^{2x} = 2x^{2}.e^{x^{3} + 2} + 2xe^{2x} đồng nhất 2 biểu thức ta được hệ phương trình \left\{ \begin{matrix}3m = 2 \\2n = 2 \ - 2p = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = 1 \\p = \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{13}{6}

  • Câu 6: Nhận biết

    Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, đường thẳng x = a;x = b như hình vẽ sau:

    Hỏi khẳng định nào dưới đây là khẳng định đúng?

    Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành, đường thẳng x = a;x = b ta có: S = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}.

  • Câu 7: Thông hiểu

    Cho f(x);g(x) là các hàm số liên tục trên \mathbb{R} và thỏa mãn \int_{0}^{1}{f(x)dx} =
3;\int_{0}^{2}{\left\lbrack f(x) - 3g(x) ightbrack dx} = 4\int_{0}^{2}{\left\lbrack 2f(x) + g(x)
ightbrack dx} = 8. Tính tích phân I = \int_{1}^{2}{f(x)dx}?

    Đặt \left\{ \begin{matrix}
\int_{0}^{2}{f(x)dx} = a \\
\int_{0}^{2}{g(x)dx} = b \\
\end{matrix} ight.. Theo giả thiết ta có: \left\{ \begin{matrix}
a - 3b = 4 \\
2a + b = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 4 \\
b = 0 \\
\end{matrix} ight.

    Ta có:

    \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx}

    \Rightarrow \int_{1}^{2}{f(x)dx} =
\int_{0}^{2}{f(x)dx} - \int_{0}^{1}{f(x)dx}

    \Rightarrow \int_{1}^{2}{f(x)dx} = 4 - 3
= 1

  • Câu 8: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = \cos 3x

     Ta có: \int {\cos 3xdx}  = \frac{{\sin 3x}}{3} + C

  • Câu 9: Thông hiểu

    Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x = 0;x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x;(0 \leq x \leq 3) là hình chữ nhật có kích thước là x2\sqrt{9 - x^{2}}?

    Thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x;(0 \leq x \leq 3) là hình chữ nhật có kích thước là x2\sqrt{9 - x^{2}}

    Diện tích thiết diện được xác định theo hàm là: S(x) = 2x\sqrt{9 - x^{2}}

    ⇒ Thể tích vật thể tròn xoay: V =
\int_{0}^{3}{2x\sqrt{9 - x^{2}}}dx = 18

  • Câu 10: Thông hiểu

    Cho hai hàm số F(x) = \left( x^{2} + bx +
c ight)e^{x}f(x) = \left(
x^{2} + 3x + 4 ight)e^{x}. Biết a;b là các số thực để F(x) là một nguyên hàm của f(x). Tính S
= a + b?

    Từ giả thiết ta có:

    F'(x) = f(x)

    \Leftrightarrow (2x + a)e^{x} + \left(
x^{2} + ax + b ight)e^{x} = \left( x^{2} + 3x + 4 ight)e^{x};\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} + (2 + a)x + a + b
= x^{2} + 3x + 4;\forall x\mathbb{\in R}

    Đồng nhất hai vế ta có: \left\{
\begin{matrix}
a + 2 = 3 \\
a + b = 4 \\
\end{matrix} ight.\  \Rightarrow S = a + b = 4.

  • Câu 11: Vận dụng cao

    Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng 5m,khoảng cách giữa 2 chân trụ liên tiếp là 40m. Bề dày nhịp cầu không đổi là 20cm. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu m^{3}? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 40 m3.

    Đáp án là:

    Thành phố định xây cây cầu bắc ngang con sông dài 500m, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng 5m,khoảng cách giữa 2 chân trụ liên tiếp là 40m. Bề dày nhịp cầu không đổi là 20cm. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu m^{3}? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 40 m3.

    Cả hai bên cầu có tất cả 2.10 =
20 nhịp cầu.

    Chọn hệ trục tọa độ như hình vẽ với gốc O(0;0) là chân cầu, đỉnh I(25;2), điểm A(50;0)

    Gọi Parabol phía trên có phương trình: \left( P_{1} ight):y_{1} = ax^{2} + bx + c =
ax^{2} + bx (vì O \in \left( P_{1}
ight))

    \Rightarrow y_{2} = ax^{2} + bx -
\frac{1}{5} là phương trình parabol phía dưới

    (Vì bề dày nhịp cầu là 20cm =
\frac{1}{5}m)

    Ta có I,A \in \left( P_{1} ight)
\Rightarrow \left\{ \begin{matrix}
25^{2}a + 25b = 2 \\
50^{2}a + 50b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{625} \\
b = \frac{4}{25} \\
\end{matrix} ight.

    \Rightarrow \left( P_{1} ight):y_{1} =
- \frac{2}{625}x^{2} + \frac{4}{25}x \Rightarrow \left( P_{2} ight):\
\ \ y_{2} = - \frac{2}{625}x^{2} + \frac{4}{25}x -
\frac{1}{5}

    Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi y_{1};y_{2} và trục Ox nên ta có:

    S = 2\left( \int_{0}^{0,2}{\left( -
\frac{2}{625}x^{2} + \frac{4}{25}x ight)dx +
\int_{0,2}^{25}{\frac{1}{5}dx}} ight) \approx 9,926m^{2}

    Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là S.0,2 \approx 1,985m^{3}.

    Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là V = 20.S.0,2 \approx
40m^{3}

  • Câu 12: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 13: Vận dụng cao

    Tính tổng T = \frac{C_{2018}^{0}}{3} -
\frac{C_{2018}^{1}}{4} + \frac{C_{2018}^{2}}{5} - \frac{C_{2018}^{3}}{6}
+ ... - \frac{C_{2018}^{2017}}{2020} +
\frac{C_{2018}^{2018}}{2021}?

    Ta có:

    x^{2}(1 - x)^{2018} = x^{2} \cdot \sum_{k
= 0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k}( - 1)^{k} = \sum_{k =
0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}.

    Do đó

    \int_{0}^{1}\mspace{2mu} x^{2}(1 -x)^{2018}dx = \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx.

    Mặt khác:

    \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx. =\left. \ \sum_{k = 0}^{2018}\mspace{2mu} C_{2018}^{k}\frac{x^{k + 3}}{k+ 3}( - 1)^{k} ight|_{0}^{1}= \sum_{k = 0}^{2018}\mspace{2mu}C_{2018}^{k} \cdot \frac{( - 1)^{k}}{k + 3} = T.

    Đặt t = 1 - x \Rightarrow dt = -
dx.

    Đổi cận x = 0 \Rightarrow t = 1x = 1 \Rightarrow t = 0. Khi đó

    \int_{0}^{1}\mspace{2mu}\mspace{2mu}x^{2}(1 - x)^{2018}dx = \int_{1}^{0}\mspace{2mu}\mspace{2mu}t^{2018}(1 - t)^{2}( - dt)

    = \int_{0}^{1}\mspace{2mu}\mspace{2mu}
t^{2018}\left( t^{2} - 2t + 1 ight)dt = \left. \ \left(
\frac{t^{2021}}{2021} - 2 \cdot \frac{t^{2020}}{2020} +
\frac{t^{2019}}{2019} ight) ight|_{0}^{1}

    = \frac{1}{2021} - \frac{2}{2020} +
\frac{1}{2019} = \frac{1}{1010 \cdot 2019 \cdot 2021} =
\frac{1}{4121202990}

  • Câu 14: Thông hiểu

    Cho hình vẽ:

    Diện tích của hình phẳng (H) được giới hạn bởi đồ thị hàm số y =
f(x), trục hoành và hai đường thẳng x = a,x = b,(a < b) (phần tô đậm trong hình vẽ) tính theo công thức:

    Áp dụng công thức tính diện tích hình phẳng ta có:

    S = \int_{a}^{b}{\left| f(x) ight|dx}
= \int_{a}^{c}{\left\lbrack 0 - f(x) ightbrack dx} +
\int_{c}^{b}{\left\lbrack f(x) - 0 ightbrack dx}

    = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}

    Vậy đáp án cần tìm là: S = -
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}.

  • Câu 15: Thông hiểu

    Cho hàm số f(x) = x^{4} - 4x^{3} + 2x^{2}
- x + 1;\forall x\mathbb{\in R}. Tính I =
\int_{0}^{1}{f^{2}(x).f'(x)dx}

    Ta có:

    I = \int_{0}^{1}{f^{2}(x).f'(x)dx} =
\int_{0}^{1}{f^{2}(x)d\left( f(x) ight)} = \left. \ \frac{f^{3}(x)}{3}
ight|_{0}^{1} = - \frac{2}{3}.

  • Câu 16: Vận dụng

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 18: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 19: Thông hiểu

    Diện tích hình phẳng giới hạn bởi hai đường y = x^{2} + 2xy = x + 2 bằng:

    Xét phương trình hoành độ giao điểm

    x^{2} + 2x = x + 2 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Hình vẽ minh họa

    Diện tích hình phẳng là:

    S = \int_{- 2}^{1}{\left| \left( x^{2} +
2x ight) - (x + 2) ight|dx} = \int_{- 2}^{1}{\left| x^{2} + x - 2
ight|dx}

    = \int_{- 2}^{1}{\left\lbrack - \left(
x^{2} + x - 2 ight) ightbrack dx} = \left| \left. \ \left( -
\frac{x^{3}}{3} - \frac{1}{2}x^{2} + 2x ight) ight|_{- 2}^{1}
ight| = \frac{9}{2}

    = \left| \left. \ \left(
\frac{2}{3}x^{3} - \frac{3}{2}x^{2} ight) ight|_{0}^{\frac{3}{2}}
ight| = \frac{9}{8}

  • Câu 20: Nhận biết

    Cho hàm số f(x) biết f(0) = 1, f'(x) liên tục trên \lbrack 0;3brack\int_{0}^{3}{f'(x)dx} = 9. Tính f(3)?

    Ta có:

    \int_{0}^{3}{f'(x)dx} = 9
\Leftrightarrow \left. \ f(x) ight|_{0}^{3} = 9 \Rightarrow f(3) -
f(0) = 9

    \Rightarrow f(3) = 9 + f(0) = 9 + 1 =
10

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm và tích phân KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo