Cho các hàm số
và
liên tục trên
thỏa mãn
với
. Tính
, biết rằng
?
Ta có: .
Cho các hàm số
và
liên tục trên
thỏa mãn
với
. Tính
, biết rằng
?
Ta có: .
Cho hàm số
. Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành. Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm:
Diện tích hình phẳng cần tìm là:
((do trong khoảng (0; 1) và (1; 2) phương trình
vô nghiệm)
Vậy mệnh đề sai là: .
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
. Từ (*) và (**) suy ra
Do đó
Họ nguyên hàm của hàm số
là:
Ta có:
Một ô tô đang chạy với vận tốc
thì người lái hãm phanh. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc
trong đó
là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?
Khi vật dừng hẳn thì
Quãng đường vật đi được trong khoảng thời gian trên là:
Thể tích
của khối tròn xoay do hình phẳng giới hạn bởi các đường
, trục hoành và đường thẳng
khi quay quanh trục
?
Phương trình hoành độ giao điểm của đường và trục hoành là:
Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường , trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:
Tính thể tích khối tròn xoay sinh ra khi quay quanh trục
hình phẳng giới hạn bởi hai đồ thị
?
Phương trình hoành độ giao điểm
Gọi là hình phẳng giới hạn bởi các đường
Thể tích khối tròn xoay tạo thành khi quay (H) quanh Ox l
Diện tích hình phẳng là:
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Hình vẽ minh họa
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số ![]()
Cho hàm số
có đạo hàm và liên tục trên đoạn
với
. Đặt
. Tìm giá trị nhỏ nhất của
?
Gọi sao cho
. Ta có:
Mà
Suy ra
Dấu bằng xảy ra khi và chỉ khi .
Vậy giá trị nhỏ nhất của đạt được bằng
khi
.
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Cho đồ thị của hàm số
như sau:

Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:
Dựa vào hình vẽ ta được: .
Biết
. Khi đó
bằng:
Ta có:
Biết
. Khi đó
tương ứng bằng
Ta có:
Cho hình (H) giới hạn bởi đồ thị hàm số
, cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).

Biết thể tích của khối tròn xoay tạo thành khi quay
quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Cho hình (H) giới hạn bởi đồ thị hàm số , cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).
Biết thể tích của khối tròn xoay tạo thành khi quay quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Cho hàm số
là một nguyên hàm của
trên khoảng
thỏa mãn
. Xác định công thức
?
Ta có: (vì
)
Mà
Vậy .
Cho hình phẳng
giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

Đáp án: 0,59
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Gọi là diện tích hình phẳng
. Lúc dó
, trong đó
là diện tích phần gạch sọc ở bên phải
và
là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi là các giao diếm có hoành độ dương của đường thẳng
và đồ thị hàm số
, trong đó
và
.
Thco yêu cầu bài toán .
.
.
Có bao nhiêu số thực
sao cho
?
Ta có:
Do nên có đúng 4 giá trị của
thỏa mãn.
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó: