Giả sử
và
. Khi đó
bằng
Ta có:
Giả sử
và
. Khi đó
bằng
Ta có:
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Cho hàm số
liên tục trên
thỏa mãn
và
. Tính tích phân
?
Ta có: .
Ta có:
Đặt . Đổi cận
do đó:
Ta có:
Đặt . Đổi cận
do đó:
.
Vậy
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
Ta có:
Đặt
Đổi cận từ đó ta có:
Ta có:
Đặt
Đổi cận từ đó ta có:
Ta có:
Đặt
Đổi cận từ đó ta có:
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, đường thẳng
như hình vẽ sau:

Hỏi khẳng định nào dưới đây là khẳng định đúng?
Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số trục hoành, đường thẳng
ta có:
.
Trong không gian với hệ tọa độ
, cho khối cầu
, mặt phẳng
có phương trình
cắt khối cầu
thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu
.
Trong không gian với hệ tọa độ , cho khối cầu
, mặt phẳng
có phương trình
cắt khối cầu
thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu
.
Tìm nguyên hàm của hàm số ![]()
Cho hai hàm số
và
liên tục trên
và thỏa mãn
. Gọi
là thể tích của khối tròn xoay sinh ra khi quay quanh
hình phẳng
giới hạn bởi các đường:
. Khi đó
được tính bởi công thức nào sau đây?
Ta cần nhớ lại công thức sau: Cho hai hàm số liên tục trên
. Khi đó thể tích của vật thể tròn xoay giới hạn bởi
(với
) và hai đường thẳng
khi quay quanh trục
là
.
Đặt
với
là tham số thực. Tìm giá trị của tham số
để
?
Ta có:
Do .
Xác định nguyên hàm của hàm số
?
Ta có: .
Họ nguyên hàm của hàm số
là:
Đặt
Cho hàm số
là hàm số bậc ba có đồ thị như hình vẽ:

Biết
và
. Phương trình tiếp tuyến với đồ thị hàm số
tại điểm có hoành độ
là:
Từ đồ thị hàm số ta suy ra
Xét tích phân . Đặt
Đổi cận
Do đó
Xét tích phân . Đặt
Đổi cận
Theo bài ra suy ra
Như vậy . Suy ra phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ
là:
.
Trong không gian
, cho vật thể
giới hạn bởi hai mặt phẳng có phương trình
và
với
. Gọi
là diện tích thiết diện của
bị cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ là
, với
. Biết hàm số
liên tục trên đoạn
, khi đó thể tích
của vật thể
được cho bởi công thức:
Vì là diện tích thiết diện của
bị cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ là
, với
ta có:
không phải là
.
Một biển quảng cáo có dạng hình elip với bốn đỉnh
như hình vẽ:

Người ta chia elip bởi Parabol có đỉnh
, trục đối xứng
và đi qua các điểm
. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng ![]()
Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)
Phương trình đường Elip
Ta có:
Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình , (a > 0), đi qua M; N
Diện tích phần tô đậm
Đặt
Đổi cận
Diện tích hình Elip là
Suy ra diện tích phần còn lại là:
Kinh phí sử dụng là đồng.
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số
,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
Cho hàm số
thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy
Cho
với
là các số thực. Giá trị của biểu thức
bằng:
Ta có:
Một người có mảnh đất hình tròn có bán kính
. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Một người có mảnh đất hình tròn có bán kính . Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Nguyên hàm của hàm số
là
Ta có: .
Cho
. Với
, khẳng định nào sau đây đúng?
Xét , đặt t = ax + b
=>
=>