Đề kiểm tra 15 phút Chương 4 Vectơ

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong mặt phẳng Oxy cho \overrightarrow{a} = (1;3),\ \ \overrightarrow{b}= ( - 2;1). Tích vô hướng của 2 vectơ \overrightarrow{a}.\overrightarrow{b} là:

    Ta có \overrightarrow{a} =(1;3),\overrightarrow{b} = ( - 2;1), suy ra \overrightarrow{a}.\overrightarrow{b} = 1.( - 2) +3.1 = 1.

  • Câu 2: Thông hiểu

    Cho tứ giác ABCD. Có bao nhiêu vectơ khác vectơ - không có điểm đầu và cuối là các đỉnh của tứ giác?

    Xét các vectơ có điểm A là điểm đầu thì có các vectơ thỏa mãn bài toán là \overrightarrow{AB},\ \overrightarrow{AC},\
\overrightarrow{AD}\overset{}{ightarrow} có 3 vectơ.

    Tương tự cho các điểm còn lại B,\ C,\
D.

    Vậy chọn đáp án 12.

  • Câu 3: Thông hiểu

    Cho tam giác ABCAB =
2\ \ cm,BC = 3\ \ cm,CA = 5\ \ cm. Tính \overrightarrow{CA}.\overrightarrow{CB}.

    Ta có \cos C = \frac{BC^{2} + AC^{2} -AB^{2}}{2.BC.AC}= \frac{3^{2} + 5^{2} - 2^{2}}{2.3.5} = 1

    \overrightarrow{CA}.\overrightarrow{CB}
= \left| \overrightarrow{CA} ight|.\left| \overrightarrow{CB}
ight|.cosC = 15

  • Câu 4: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a}=3\overrightarrow{i}+6\overrightarrow{j}\overrightarrow{b}=8\overrightarrow{i}-4\overrightarrow{j}. Kết luận nào sau đây sai?

    Ta có:

    \begin{matrix}  \vec a = 3\vec i + 6\vec j \Rightarrow \vec a = \left( {3;6} ight) \hfill \\  \vec b = 8\vec i - 4\vec j \Rightarrow \vec b = \left( {8; - 4} ight) \hfill \\   \Rightarrow \vec a.\vec b = 3.8 + \left( { - 4} ight).6 = 0 \hfill \\   \Rightarrow \left| {\vec a.\vec b} ight| = 0 \hfill \\   \Rightarrow \vec a \bot \vec b \hfill \\ \end{matrix}

    Vậy kết luận sai là: |\overrightarrow{a}|\times |\overrightarrow{b}|=0

  • Câu 5: Vận dụng

    Trong hệ tọa độ Oxy, cho bốn điểm A(3; - 2),\ B(7;1),\ C(0;1),\ D( - 8; -
5). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (4;3) \\
\overrightarrow{CD} = ( - 8; - 6) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{CD} = -
2\overrightarrow{AB}\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{CD} ngược hướng.

  • Câu 6: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ vecto \overrightarrow{i} + \overrightarrow{j} là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{i} +
\overrightarrow{j} = (1;1)

  • Câu 7: Nhận biết

    Trên mặt phẳng tọa độ Oxy, cho các điểm A(1;2), B(-1;3), C(-2;1). Chọn khẳng định đúng.

    Biểu diễn các điểm trên hệ trục tọa độ như sau:

    Chọn khẳng định đúng

    Ta có:

    \begin{matrix}  \overrightarrow {OA}  = \left( {1,2} ight) \hfill \\  \overrightarrow {BC}  = \left( { - 2 + 1,1 - 3} ight) = \left( { - 1, - 2} ight) =  - 1.\left( {1,2} ight) =  - 1.\overrightarrow {OA}  \hfill \\ \end{matrix}

    Vậy hai vectơ \overrightarrow{OA},\overrightarrow{BC} cùng phương, ngược hướng.

  • Câu 8: Nhận biết

    Cho tam giác ABC vuông tại A, M là trung điểm của BC. Khẳng định nào sau đây đúng?

    M là trung điểm của BC nên \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{MB} = - \
\overrightarrow{MC}.

  • Câu 9: Nhận biết

    Cho tam giác ABC có trọng tâm G và trung tuyến AM. Khẳng định nào sau đây là sai.

    Ta có AM = 3MG

    Mặt khác \overrightarrow{AM}\overrightarrow{MG} ngược hướng \mathbf{\Rightarrow}\overrightarrow{AM} = -
3\overrightarrow{MG}.

  • Câu 10: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 11: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 12: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(1;3),\ B( - 1;2),\ C( - 2;1). Tìm tọa độ của vectơ \overrightarrow{AB} -
\overrightarrow{AC}.

    Ta có \left\{ \begin{matrix}\overrightarrow{AB} = ( - 2; - 1) \\\overrightarrow{AC} = ( - 3; - 2) \\\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{AB} -\overrightarrow{AC} = \left( - 2 - ( - 3); - 1 - ( - 2) ight) =(1;1).

    Cách khác: \overrightarrow{AB} -
\overrightarrow{AC} = \overrightarrow{CB} = (1;1).

  • Câu 13: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AB} +\overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} =\overrightarrow{CB}. Vậy \overrightarrow{AB} + \overrightarrow{CA} =\overrightarrow{CB} đúng.

  • Câu 14: Thông hiểu

    Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\left| \overrightarrow{AB} + \overrightarrow{AD} ight| = \left|
\overrightarrow{AC} ight| = AC \\
\end{matrix} ight.\ .

    BD = AC \Rightarrow \left|
\overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{AB} + \overrightarrow{AD} ight|.

  • Câu 15: Nhận biết

    Cho \overrightarrow{AB} và một điểm C. Có bao nhiêu điểm D thỏa mãn \overrightarrow{AB}=\overrightarrow{CD}

    Có một và chỉ một điểm D thỏa mãn \overrightarrow{AB}=\overrightarrow{CD}

  • Câu 16: Vận dụng cao

    Cho tam giác ABC. Lấy các điểm M,N sao cho \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{0};2\overrightarrow{NA} + 3\overrightarrow{NC} =
\overrightarrow{0}\overrightarrow{BC} =
k\overrightarrow{BP}. Xác định k để ba điểm M,N,P thẳng hàng.

    Ta có:

    \overrightarrow{MN} =
\overrightarrow{AN} - \overrightarrow{AM} =
\frac{3}{5}\overrightarrow{AC} -
\frac{1}{2}\overrightarrow{AB}

    \overrightarrow{NP} =
\overrightarrow{NC} + \overrightarrow{CP}

    = \frac{2}{5}\overrightarrow{AC} -
\left( \overrightarrow{BP} - \overrightarrow{BC} ight)

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\overrightarrow{BC}

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\left( \overrightarrow{AC} -
\overrightarrow{AB} ight)

    = \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB}

    Để ba điểm M,N,Pthẳng hàng thì \exists m\mathbb{\in R}:\overrightarrow{NP}
= m\overrightarrow{MN} hay

    \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB} = \frac{3m}{5}\overrightarrow{AC} -
\frac{m}{2}\overrightarrow{AB}

    \left\{ \begin{matrix}\dfrac{1}{k} - \dfrac{2}{5} = \dfrac{3m}{5} \\\dfrac{1}{k} - 1 = - \dfrac{m}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 4 \\k = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 17: Thông hiểu

    Cho tam giác ABC, gọi M là trung điểm ABN là một điểm trên cạnh AC sao cho NC
= 2NA. Gọi K là trung điểm của MN. Khi đó

    Ta có \overrightarrow{AK} =
\frac{1}{2}\left( \overrightarrow{AM} + \overrightarrow{AN} ight) =
\frac{1}{2}\left( \frac{1}{2}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC} ight) = \frac{1}{4}\overrightarrow{AB}
+ \frac{1}{6}\overrightarrow{AC}.

  • Câu 18: Thông hiểu

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

     Vì \overrightarrow {MA} .\overrightarrow {BC}  = 0, mà A,B,C cố định nên suy ra tập hợp M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 19: Nhận biết

    Trong hệ tọa độ Oxy cho tọa độ hai điểm A(2; - 3),B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB?

    Tọa độ trung điểm của AB là: \left\{\begin{matrix}x_{I} = \dfrac{2 + 4}{2} = 3 \\y_{I} = \dfrac{- 3 + 7}{2} = 2 \\\end{matrix} ight.\  \Rightarrow I(3;2)

  • Câu 20: Thông hiểu

    Cho tam giác ABCG là trọng tâm và M là trung điểm BC. Khẳng định nào sau đây sai?

    M là trung điểm của BC suy ra \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0}. Ta có \left\{
\begin{matrix}
\overrightarrow{GB} = \overrightarrow{GM} + \overrightarrow{MB} \\
\overrightarrow{GC} = \overrightarrow{GM} + \overrightarrow{MC} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{GB} +
\overrightarrow{GC} =
\underset{\overrightarrow{0}}{\overset{\overrightarrow{MB} +
\overrightarrow{MC}}{︸}} + 2\ \overrightarrow{GM} = 2\
\overrightarrow{GM}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 111 lượt xem
Sắp xếp theo