Tìm hệ số
của số hạng chứa
trong khai triển
.
Ta có:
Ta có: , suy ra
Vậy hệ số của số hạng chứa
trong khai triển
là
Tìm hệ số
của số hạng chứa
trong khai triển
.
Ta có:
Ta có: , suy ra
Vậy hệ số của số hạng chứa
trong khai triển
là
Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?
Một tam giác được lập thành từ 3 điểm.
Cứ 2 điểm thuộc + 1 điểm nằm ngoài có sẵn, ta được một tam giác.
Số cách lấy 2 điểm từ 6 điểm thuộc là:
(cách).
Trong khai triển
số hạng chứa
là:
Ta có: .
Vậy số hạng cần tìm là: .
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi xen kẽ nhau trong từng dãy?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Chọn 3 bạn nam, 3 bạn nữ để xếp vào dãy A có
Trong dãy đó xếp sao cho nam và nữ ngồi xen kẽ nhau có: cách.
Xếp 3 nam, 3 nữ còn lại vào dãy B sao cho nam và nữ ngồi xen kẽ nhau có cách.
Vậy số cách xếp là: cách.
Một người có 7 áo trong đó có 3 áo trắng và 5 cà vạt trong đó có 2 cà vạt vàng. Hỏi người đó có bao nhiêu cách chọn bộ áo và cà vạt nếu chọn áo nào cũng được và cà vạt nào cũng được?
Số cách chọn 1 một bộ áo và cà vạt là:
Cho tập
gồm
phần tử. Số tập con gồm
phần tử của M là:
Số tập con gồm phần tử của
là số cách chọn
phần tử bất kì trong
phần tử của
.
Do đó số tập con gồm phần tử của
là
.
Tổng các hệ số trong khai triển nhị thức Newton của
bằng:
Ta có:
Cho ta được:
Vậy tổng hệ số trong khai triển đã cho bằng -1.
Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Giả sử số đó là
Trường hợp 1. xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2. . Với
chọn
có 6 cách nên có 6 số thỏa mãn. Với
chọn
có 5 cách chọn, và tất nhiên
nên có 5 số thỏa mãn. Do đó có
số thỏa mãn.
Có
học sinh và
thầy giáo được xếp thành hàng ngang. Đếm số cách xếp sao cho hai thầy giáo không đứng cạnh nhau?
Xếp 8 người thành hàng ngang có cách.
Xếp 8 người thành hàng ngang sao cho 2 thầy giáo đứng cạnh nhau có cách.
Vậy số cách xếp cần tìm là. cách.
Cho đa giác đều có 54 đường chéo. Hãy tính xem đa giác này có bao nhiêu cạnh?
Đa giác n cạnh có n đỉnh.
Mỗi đỉnh nối với đỉnh khác để tạo ra đường chéo
Do đó n đỉnh sẽ có đường
Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là:
Theo đề bài ta có:
Vậy đa giác có 12 cạnh.
Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có
sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở
vị trí khác nhau. Yêu cầu mỗi vị trí có đúng
sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho
người đó?
Mỗi cách xếp sinh viên vào
vị trí thỏa đề là một hoán vị của
phần tử.
Suy ra số cách xếp là cách.
Từ các số
lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chia hết cho 5?
Vì chia hết cho 5 nên
chỉ có thể là 5
có 1 cách chọn d.
Có 6 cách , 5 cách chọn b và 4 cách chọn c.
Vậy có số thỏa yêu cầu bài toán.
Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số vé gồm 5 chữ số khác nhau?
Gọi số in trên vé có dạng
Số cách chọn là 10 (
có thể là 0).
Số cách chọn là 9.
Số cách chọn là 8.
Số cách chọn là 7.
Số cách chọn là 6.
Vậy có 10.9.8.7.6 = 30240 cách
Tính tổng
?
Xét khai triển
Chọn ta được:
Bạn Dũng có 9 quyển truyện tranh khác nhau và 6 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Bạn Dũng có số cách chọn ra một quyển sách để đọc vào cuối tuần là 9 + 6 = 15 cách.
Với
là số nguyên dương thỏa mãn
, hệ số của
trong khai triển của biểu thức bằng
.
Giải phương trình .
Điều kiện .
Ta có: .
Vậy .
Ta có: .
Hệ số của trong khai triển bằng 0.
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?
Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.
Từ 10 chữ số 0, 1, 2, 3, …, 9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các chữ số đó có mặt chữ số 0 và 1?
Gọi số cần lập có dạng
Bước 1: Xếp chữ số 0 vào trong 5 vị trí từ đến
, có 5 cách xếp.
Bước 2: Xếp chữ số 1 vào trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.
Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6, 7, 8, 9} để xếp vào 4 vị trí còn lại, có 8.7.6.5 cách.
⇒ Theo quy tắc nhân có số thỏa yêu cầu.
Hệ số của số hạng chứa
trong khai triển nhị thức
(với
) là:
Số hạng tổng quát của khai triển (với
) là:
.
Số hạng trên chứa suy ra
.
Vậy hệ số của số hạng chứa trong khai triển trên là
.
Cho tập
. Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?
Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra có 3 cách chọn, a có 5 cách chọn
có
số.
Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A là số.
Suy ra có tất cả số cần tìm.