Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong khai triển nhị thức (a + 2)^{n-5}(n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng:

     Khai triển bậc (n-5) có 6 số hạng. Suy ra (n-5) = 5. Vậy n = 10.

  • Câu 2: Nhận biết

    Từ các chữ số 1, 2, 3, 4, 5. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Mỗi số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5 là một hoán vị của 5 phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là P_{5} = 5! =
120 (số).

  • Câu 3: Vận dụng

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 4: Nhận biết

    Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ?

    Mỗi cách xếp 10 học sinh thành một hàng ngang là một hoán vị của tập hợp có 10 phần tử.

    Suy ra số cách sắp xếp là P_{10}.

  • Câu 5: Nhận biết

    Tìm hệ số của số hạng chứa x^{3} trong khai triển nhị thức Newton \left( \frac{2}{3}x + \frac{1}{4}
ight)^{5}?

    Ta có:

    \left( \frac{2}{3}x + \frac{1}{4}
ight)^{5} = \frac{32}{243}x^{5} + \frac{20}{81}x^{4} +
\frac{5}{27}x^{3} + \frac{5}{72}x^{2} + \frac{3}{384}x +
\frac{1}{1024}

    Vậy hệ số của số hạng chứa x^{3} trong khai triển nhị thức là: \frac{5}{27}.

  • Câu 6: Nhận biết

    An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con

    đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn

    đường đi đến nhà Cường cùng Bình (như hình vẽ dưới đây và không có con đường nào khác)?

    Chọn đường đi từ nhà An đến nhà Bình có 4 cách chọn.

    Chọn đường đi từ nhà Bình đến nhà Cường có 6 cách chọn.

    Vậy theo quy tắc nhân có 4.6 = 24 cách cho An chọn đường đi đến nhà Cường cùng Bình.

  • Câu 7: Thông hiểu

    Tính giá trị biểu thức S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    Áp dụng công thức (a + b)^{n} cho a = 2,b = 1,n = 5 ta có:

    S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    S = (2 + 1)^{5} = 243

  • Câu 8: Thông hiểu

    Từ 9 chữ số 1;2;3;4;5;6;7;8;9 có thể lập được bao nhiêu số gồm 9 chữ số nếu như không có chữ số nào được lặp lại? Trong các số đó có bao nhiêu số mà các chữ số 1 và 7 không đứng cạnh nhau.

    Từ 9 chữ số 1;2;3;4;5;6;7;8;9 có thể lập được các số nếu như không có chữ số nào được lặp lại ta hiểu đó là số có 9 chữ số khác nhau.

    Do đó sẽ có 9! số thỏa mãn.

    Để tìm số mà các chữ số 1 và 7 không đứng cạnh nhau ta đi tìm các số mà 1 và 7 đứng cạnh nhau.

    Coi 1 và 7 là 1 số thì ta sẽ có \overline{17}\overline{71}.

    Đưa được về bài toán tìm số có 8 chữ số khác nhau.

    Do đó số các số tìm được là 8! số.

    Do 1 và 7 có 2 vị trí nên ta có 2.8! số.

    Vậy số có 9 chữ số khác nhau không có 1 và 7 đứng cạnh là: 9! - 2.8! = 282240 số.

  • Câu 9: Nhận biết

    Một lớp có 15 nam và 20 nữ. Hỏi có bao nhiêu cách chọn 1 bạn đi trực nhật.

     Trường hợp 1: Chọn 1 nam. Có 15 cách.

     Trường hợp 2: Chọn 1 nữ. Có 20 cách.

    Vậy có 15+20 = 35 cách.

  • Câu 10: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 6 chữ số đôi một khác nhau trong đó phải có 1 và 3 đứng cạnh nhau, không kể thứ tự trước sau.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số thỏa yêu cầu bài toán.

    Chọn 2 vị trí cạnh nhau từ 6 vị trí (từ a_{1} ightarrow a_{6}) có: 5 cách.

    Xếp số 1 và 3 vào 2 vị trí vừa chọn có: 2 cách.

    Chọn số cho 4 vị trí từ tập X\backslash\left\{ 1;3 ight\} có: 7.6.5.4 = 840 cách.

    Theo quy tắc nhân có: 5.2.840 =
8400 số.

  • Câu 11: Thông hiểu

    Có 3 người đàn ông, 2 người đàn bà và 1 đứa trẻ được xếp ngồi vào 6 cái ghế xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho đứa trẻ ngồi giữa hai người đàn bà?

    Ta đánh số thứ tự cho 6 chiếc ghế từ số 1 đến số 6

    Ta thực hiện việc xếp 6 người vào 6 chiếc ghế sao cho đứa trẻ ngồi giữa hai người đàn bà như sau:

    Xếp đứa trẻ ngồi vào 1 trong các ghế có số thứ tự từ 2 đến 5 có 4 cách.

    Xếp hai người đàn bà vào 2 ghế bên cạnh đứa trẻ có 2 cách.

    Xếp 3 người đàn ông vào 3 ghế còn lại: có 3! cách.

    Áp dụng quy tắc nhân, có tất cả: 4.2.6 =
48 cách.

  • Câu 12: Nhận biết

    Bạn Dũng có 9 quyển truyện tranh khác nhau và 6 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.

    Bạn Dũng có số cách chọn ra một quyển sách để đọc vào cuối tuần là 9 + 6 = 15 cách.

  • Câu 13: Nhận biết

    Cho tập hợp M = {a; b; c}. Số hoán vị của ba phần tử của M là:

     Số hoán vị của ba phần tử của M là: 3! = 6.

  • Câu 14: Thông hiểu

    Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton (x +
1)^{5}?

    Để có tổng các hệ số ta thay x =
1 ta được: (1 + 1)^{2} = 2^{5} =
32

  • Câu 15: Vận dụng

    Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?

    Gọi số in trên vé có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}}

    Số cách chọn a_{1} là 10 (a_{1} có thể là 0).

    Số cách chọn a_{2} là 9.

    Số cách chọn a_{3} là 8.

    Số cách chọn a_{4} là 7.

    Số cách chọn a_{5} là 6.

    Do đó có 10.9.8.7.6 = 23460 (số).

  • Câu 16: Vận dụng

    Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.

    TH1. Có đúng 1 học sinh khối 10: 5.1.C_{5}^{4} + 5.C_{5}^{4}.1 = 50(cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)

    TH2. Có đúng 2 học sinh khối 10: C_{5}^{2}.C_{5}^{3}.C_{5}^{5} +
C_{5}^{2}.C_{5}^{4}.C_{5}^{4} + C_{5}^{2}.C_{5}^{5}.C_{5}^{3} =
450(cách).

    \Rightarrow50 + 450 = 500 cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.

  • Câu 17: Thông hiểu

    Một nhóm gồm 15 học sinh nam trong đó có 5 bạn giỏi Toán và 20 học sinh nữ trong đó có 6 bạn giỏi Văn. Có bao nhiêu cách chọn 4 học sinh sao cho có đúng 1 học sinh nam giỏi môn Toán và 1 học sinh nữ giỏi môn Văn?

    Số cách chọn một học sinh nam giỏi Toán và 1 học sinh nữ giỏi Văn là: C_{5}^{1}.C_{6}^{1} = 30(cách)

    Chọn 2 học sinh còn lại là: C_{26}^{2} (cách)

    Số cách chọn 4 học sinh thỏa mãn là: 30.C_{26}^{2} cách.

  • Câu 18: Nhận biết

    Có 1 con mèo vàng, 1 con mèo đen, 1 con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào 6 cái ghế sao cho mỗi ghế chỉ có một con mèo. Đếm số cách xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau.

    Số cách xếp con mèo vàng và con mèo đen ở cạnh nhau là 2.

    Xem nhóm con mèo vàng và đen này là một phần tử, cùng với 1 con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím, ta được 5 phần tử. Xếp 5 phần tử này là. 5!

    Vậy có 2.5! = 240.

  • Câu 19: Vận dụng

    Tìm hệ số của x^{8} trong khai triển \left( \frac{1}{x^{3}} + \sqrt{x^{5}}
ight)^{n};\ (x > 0) biết C_{n
+ 4}^{n + 1} - C_{n + 3}^{n} = 7(n + 3) là :

    Điều kiện: n\mathbb{\in N}

    Ta có :

    C_{n + 4}^{n + 1} - C_{n + 3}^{n} = 7(n
+ 3) \Leftrightarrow \frac{(n + 4)!}{(n + 1)!3!} - \frac{(n + 3)!}{n!3!}
= 7(n + 3)

    \Leftrightarrow \frac{(n + 4)(n + 3)(n +
2)}{6} - \frac{(n + 3)(n + 2)(n + 1)}{6} = 7(n + 3)

    \Leftrightarrow 3n = 36 \Leftrightarrow n
= 12.

    Xét khai triển

    \left( \frac{1}{x^{3}} + \sqrt{x^{5}}
ight)^{12} = \sum_{k = 0}^{12}{C_{12}^{k}\left( \frac{1}{x^{3}}
ight)^{k}\left( \sqrt{x^{5}} ight)^{12 - k}} \left( 0 \leq k \leq 12,\ k\mathbb{\in N}
ight)

    = \sum_{k = 0}^{12}{C_{12}^{k}x^{\frac{60
- 11k}{2}}}.

    Để số hạng chứa x^{8} thì \frac{60 - 11k}{2} = 8 \Leftrightarrow k =
4.

    Vậy hệ số chứa x^{8} trong khai triển trên là C_{12}^{4} = 495.

  • Câu 20: Nhận biết

    Thực hiện khai triển nhị thức Newton (x + 2y)^{5} ta được kết quả là:

    Ta có:

    (x + 2y)^{5} = x^{5} + 10x^{4}y +
40x^{3}y^{2} + 80x^{2}y^{3} + 80xy^{4} + 32y^{5}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo