Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Lý và 3 cuốn sách Hóa. Thầy muốn lấy ra 5 cuốn và tặng cho 5 học sinh A, B, C, D, E mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng nếu có ít nhất một cuốn sách Toán được tặng.

    Số cách lấy 5 cuốn sách trong tổng số 10 cuốn sách ở ba thể loại để tặng cho 5 học sinh là A_{10}^{5} (cách)

    Số cách lấy 5 cuốn sách để chia cho 5 học sinh trong đó không có cuốn sách Toán nào là A_{6}^{5} (cách).

    Vậy số cách lấy 5 cuốn sách thỏa ycbt là: A_{10}^{5} - A_{6}^{5} = 29520 cách.

  • Câu 2: Thông hiểu

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n > 800 và gồm các chữ số đôi một khác nhau.

    Trường hợp 1: n gồm ba chữ số.

    Gọi n = \overline{abc}.

    Để n > 800 và gồm các chữ số đôi một khác nhau thì

    a có 2 lựa chọn là \left\{ 8;9
ight\}

    b có 4 lựa chọn vì phải khác a

    c có 3 lựa chọn vì phải khác a; b

    Vậy có 2.4.3 = 24 số.

    Trường hợp 2: n gồm bốn chữ số. Thỏa mãn n > 800.

    Để n gồm các chữ số đôi một khác nhau thì có A_{5}^{4} = 120 thỏa mãn.

    Trường hợp 3: n gồm năm chữ số. Thỏa mãn n > 800.

    Để n gồm các chữ số đôi một khác nhau thì có A_{5}^{4} = 120 thỏa mãn.

    Vậy có 120 + 120 + 24 = 264 số n thỏa mãn yêu cầu bài toán.

  • Câu 3: Vận dụng

    Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    +TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} +
C_{5}^{3}. Vậy số cách lập nhóm trong trường hợp này là. 2.\left( C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1}
+ C_{5}^{3} ight)

    +TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là C_{5}^{1}C_{6}^{1}
+ C_{5}^{2}. Vậy số cách lập nhóm trong trường hợp này là. C_{5}^{1}.C_{6}^{1} +
C_{5}^{2}.

    Vậy số cách lập cần tìm là. 2.\left(
C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} + C_{5}^{3} ight) +
C_{5}^{1}.C_{6}^{1} + C_{5}^{2} = 375.

  • Câu 4: Nhận biết

    Một nhóm học sinh gồm 4 học sinh nam và 5 học sinh nữ. Hỏi có bao nhiêu cách sắp xếp 9 học sinh trên thành 1 hàng dọc sao cho nam nữ đứng xen kẽ?

    Xếp 4 học sinh nam thành hàng dọc có 4! cách xếp.

    Giữa 4 học sinh nam có 5 khoảng trống ta xếp các bạn nữ vào vị trí đó nên có 5! cách xếp.

    Theo quy tắc nhân có 4!5! = 2880 cách xếp thoả mãn.

  • Câu 5: Nhận biết

    3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau?

    Số cách xếp 3 viên bi đen khác nhau thành một dãy bằng. 3!.

    Số cách xếp 4 viên bi đỏ khác nhau thành một dãy bằng. 4!.

    Số cách xếp 5 viên bi đen khác nhau thành một dãy bằng. 5!.

    Số cách xếp 3 nhóm bi thành một dãy bằng. 3!.

    Vậy số cách xếp thỏa yêu cầu đề bài bằng 3!.4!.5!.3! = 103680 cách.

  • Câu 6: Vận dụng

    Cho 6 chữ số 2,3,4,5,6,7 số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    c3 cách chọn

    a6 cách chọn

    b6 cách chọn

    Vậy có: 3.6.6 = 108 số.

  • Câu 7: Nhận biết

    Cho các số 1,5, 6,7. Hỏi lập được bao nhiêu số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho?

    Số các số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho là: 4! = 24số.

  • Câu 8: Nhận biết

    Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

    Chọn 1 kiểu mặt từ 3 kiểu mặt có 3 cách.

    Chọn 1 kiểu dây từ 4 kiểu dây có 4 cách.

    Vậy theo quy tắc nhân có 12 cách chọn 1 chiếc đồng hồ gồm một mặt và một dây.

  • Câu 9: Nhận biết

    Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra một học sinh đi dự trại hè của trường. Hỏi có bao nhiêu cách chọn?

    Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:

    Bước 2: Đếm số cách chọn.

    * Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.

    * Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.

    Bước 3: Áp dụng quy tắc cộng.

    Vậy có 20 + 25 = 45 cách chọn.

  • Câu 10: Thông hiểu

    Từ 6 chữ số 0;1;2;3;4;5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau sao cho chữ số 2 vs 3 đứng cạnh nhau.

    Gọi số cần tìm có dạng \overline{abcdef};(a eq 0) với a,b,c \in \left\{ 2;4;6;8 ight\}.

    Vì 2 và 3 đứng cạnh nhau ta gộp 2 và 3 thành 1 số \overline{23} hoặc \overline{32} thành 1 vị trí

    Do đó ta còn lại 5 vị trí \overline{abcde}

    Từ 5 chữ số trên ta lập được 5! số khác nhau có dạng \overline{abcde}

    Cho a = 0 ta lập được 4! các số dạng \overline{0bcde}

    Nên sẽ có 5! – 4! = 96 số có 5 chữ số khác nhau.

    Mặt khác ta gộp 2 và 3 thành 1 số \overline{23} hoặc \overline{32} thành 1 vị trí nên ta sẽ có số các số cần tìm là: 96.2 = 192 số thỏa mãn đề bài.

  • Câu 11: Thông hiểu

    Tìm hệ số của x^{6} trong khai triển \left( \frac{1}{x} + x^{3} ight)^{3n +
1}với x eq 0, biết n là số nguyên dương thỏa mãn 3C_{n + 1}^{2} + nP_{2} = 4A_{n}^{2}.

    Đk:n \geq 2,\ \ n \in
\mathbb{N.}

    \ \ \ \ \ \ \ 3C_{n + 1}^{2} + nP_{2} =
4A_{n}^{2}

    \Leftrightarrow 3\frac{(n + 1)!}{(n -
1)!2!} + 2!n = 4\frac{n!}{(n - 2)!}

    \Leftrightarrow \frac{3}{2}n(n + 1) + 2n
= 4n(n - 1)

    \Leftrightarrow \frac{5}{2}n^{2} -
\frac{15}{2}n = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0\ \ \ \ (L) \\
n = 3 \\
\end{matrix} ight.

    Với n = 3, nhị thức trở thành \left( \frac{1}{x} + x^{3}
ight)^{10}.

    Số hạng tổng quát là C_{10}^{k}.\left(
\frac{1}{x} ight)^{10 - k}.\left( x^{3} ight)^{k} = C_{10}^{k}.x^{4k
- 10}

    Từ yêu cầu bài toán ta cần có: 4k - 10 =
6 \Leftrightarrow k = 4.

    Vậy hệ số của số hạng chứa x^{6}C_{10}^{4} = 210..

  • Câu 12: Nhận biết

    Hệ số của x^{2} trong khai triển (x + 1)^{5} là:

     Ta có: {(x + 1)^5} ={x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 5x + 1.

    Hệ số của x^2 là 10.

  • Câu 13: Thông hiểu

    Cho tập hợp N =
\left\{ 0;1;2;3;4;5 ight\}. Có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau từ các chữ số thuộc tập hợp M?

    Gọi số tự nhiên có bốn chữ số là: \overline{abcd};(a eq 0)

    TH1: d = 0 => d có 1 cách.

    Số cách chọn a, b, c lần lượt là 5, 4, 3

    => Số các số tạo thành là: 1.5.4.3 = 60 (số)

    TH2: d \in \left\{ 2;4 ight\} => Chữ số d có 2 cách chọn.

    => Chữ số a có 4 cách.

    => Số cách chọn b, c lần lượt là 4, 3 cách.

    => Số các số tạo thành là: 2.4.4.3 = 96 (số)

    Vậy có tất cả 60 + 96 = 156 (số) thỏa mãn yêu cầu đề bài.

  • Câu 14: Nhận biết

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả là:

     Ta có: (x + 1)^{4} =x^{4}+4x^{3}+6x^{2}+4x+1.

  • Câu 15: Vận dụng

    Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 5 suy ra e = \left\{ 0;5 ight\}.

    TH1. Với e = 0 suy ra có 4 \times 5 \times 4 \times 3 = 240 số cần tìm.

    TH2. Với e = 5, suy ra có 5 \times 4 \times 3 + 3 \times 4 \times 4 \times 3
= 204 số cần tìm.

    Vậy có tất cả 444 số cần tìm.

  • Câu 16: Thông hiểu

    Biết hệ số của x^{2} trong khai triển nhị thức Newton của (1 - 3x)^{n};\left( n\mathbb{\in N}
ight)135. Xác định giá trị n?

    Số hạng thứ k + 1 trong khai triển (1 - 3x)^{n} là:

    T_{k + 1} = C_{n}^{k}.( -
3)^{k}.x^{k} với 1 \leq k \leq
nn,k \in
\mathbb{N}^{*}

    Số hạng chứa x^{2} ứng với k = 2

    Ta có:

    C_{n}^{2}.( - 3)^{2} = 135
\Leftrightarrow C_{n}^{2} = 15

    \Leftrightarrow \frac{n!}{2!(n - 2)!} =
15 \Leftrightarrow n(n - 1) = 30

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = 6(TM) \\
n = - 5(L) \\
\end{matrix} ight.

    Vậy n = 6.

  • Câu 17: Vận dụng

    Cho n là số tự nhiên thỏa mãn 3^{n}C_{n}^{0} -
3^{n - 1}C_{n}^{1} + 3^{n - 2}C_{n}^{2} - ..... + ( - 1)^{n}C_{n}^{n} =
2048. Tìm hệ số của x^{10} trong khai triển (x + 2)^{n}.

    Ta có (3 - 1)^{n} = 3^{n}C_{n}^{0} - 3^{n
- 1}C_{n}^{1} + 3^{n - 2}C_{n}^{2} - ..... + ( -
1)^{n}C_{n}^{n}

    \Leftrightarrow 2^{n} = 2048
\Leftrightarrow 2^{n} = 2^{11} \Leftrightarrow n = 11.

    Xét khai triển (x + 2)^{11} = \sum_{k =
0}^{11}{C_{11}^{k}x^{11 - k}.2^{k}}

    Tìm hệ số của x^{10}
\Leftrightarrowtìm k\mathbb{\in N\
\ }(k \leq 11) thỏa mãn 11 - k = 10
\Leftrightarrow k = 1.

    Vậy hệ số của x^{10} trong khai triển (x + 2)^{11}C_{11}^{1}.2 = 22.

  • Câu 18: Nhận biết

    Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa và 3 chuyến máy bay. Hỏi một ngày có bao nhiêu cách lựa chọn đi từ tỉnh A đến tỉnh B?

    Trường hợp 1: Số cách chọn đi từ tỉnh A đến tỉnh B bằng ô tô: có 10 cách.

    Trường hợp 2: Số cách chọn đi từ tỉnh A đến tỉnh B bằng tàu hỏa: có 5 cách.

    Trường hợp 3: Số cách chọn đi từ tỉnh A đến tỉnh B bằng máy bay: có 3 cách.

    Vậy số cách lựa chọn đi từ tỉnh A đến tỉnh B là: 10 + 5 + 3 = 18 cách

  • Câu 19: Nhận biết

    Cho tập hợp X gồm 10 phần tử. Số các hoán vị của 10 phần tử của tập hợp X là bao nhiêu?

    Số các hoán vị của 10 phần tử: 10!.

  • Câu 20: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 56 lượt xem
Sắp xếp theo