Số hạng chứa
trong khai triển
là:
Số hạng thứ trong khai triển
là:
.
Số hạng chứa trong khai triển
tương ứng với:
.
Vậy số hạng chứa trong khai triển
là:
.
Số hạng chứa
trong khai triển
là:
Số hạng thứ trong khai triển
là:
.
Số hạng chứa trong khai triển
tương ứng với:
.
Vậy số hạng chứa trong khai triển
là:
.
Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách chọn 2 người sao cho luôn có 2 màu áo khác nhau.
Trường hợp 1: 1 áo vàng + 1 áo đỏ
Có: (cách).
Trường hợp 2: 1 áo đỏ + 1 áo xanh
Có: (cách).
Trường hợp 3: 1 áo xanh + 1 áo vàng
Có: (cách)
Vậy có (cách).
Một trường THPT được cử một học sinh đi dự trại hè toàn quốc. Nhà trường quyết định chọn một học sinh tiên tiến trong lớp 11A hoặc lớp 12B. Hỏi nhà trường có bao nhiêu cách chọn, biết rằng lớp 11A có 31 học sinh tiên tiến và lớp 12B có 22 học sinh tiên tiến?
Để chọn được một học sinh đi dự ta có 2 trường hợp:
Trường hợp 1: Học sinh ở lớp 11A: có 31 cách
Trường hợp 2: Học sinh ở lớp 12B: có 22 cách
Vậy có cách.
Tìm hệ số của số hạng chứa
trong khai triển nhị thức Newton
?
Ta có:
Vậy hệ số của số hạng chứa trong khai triển nhị thức là:
.
Khai triển nhị thức
ta được kết quả là:
Ta có: .
Cho kiểu gen AaBb. Giả sử quá trình giảm phân tạo giao tử bình thường và không xảy ra đột biến. Sơ đồ hình cây biểu thị sự hình thành giao tử được biểu diễn như hình bên.

Từ sơ đồ cây, số loại giao tử của kiểu gen AaBb là:
Từ sơ đồ cây, ta thấy có 4 kết quả có thể xảy ra.
=> Số loại giao tử của kiểu gen AaBb là 4.
Bạn Dũng có 9 quyển truyện tranh khác nhau và 6 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Bạn Dũng có số cách chọn ra một quyển sách để đọc vào cuối tuần là 9 + 6 = 15 cách.
Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?
Gọi số cần tìm có dạng . Vì
chia hết cho 6 suy ra
TH1. Với suy ra
, do đó gồm các bộ
suy ra có 24 số.
TH2. Với suy ra
, do đó gồm các bộ
,
suy ra có 42 số.
Vậy có tất cả số cần tìm.
Với
là số nguyên dương thỏa mãn
. Trong khai triển biểu thức
, gọi
là số hạng mà tổng số mũ của
và
của số hạng đó bằng
. Hệ số của
là :
Điều kiện: ,
.
Ta có
.
.
.
Ta có: . Vậy hệ số
.
Có bao nhiêu số nguyên dương n gồm 3 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó chữ số hàng chục và chữ số hàng đơn vị của n giống hệt nhau và hai chữ số này khác chữ số hàng trăm của n?
Chọn có: 9 cách.
Chọn có: 9 cách.
Chọn có: 1 cách.
Theo quy tắc nhân có: số.
Trong một hộp chứa 5 viên bi màu trắng đánh số từ 1 đến 5, 7 viên bi xanh đánh số từ 1 đến 7 và 9 viên bi vàng đánh số từ 1 đến 9. Chọn ngẫu nhiên hai viên bi. Số cách chọn được hai viên bi khác màu là:
Chọn được 1 viên bi trắng + 1 viên bi xanh ta có: 5.7 = 35 cách chọn.
Chọn được 1 viên bi trắng + 1 viên bi vàng ta có: 5.9 = 45 cách chọn.
Chọn được 1 viên bi xanh + 1 viên bi vàng ta có: 7.9 = 63 cách chọn.
Vậy số cách chọn được hai viên bi khác màu là 35 + 45 + 63 = 143 cách chọn.
Đếm số cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài. Biết các sách Văn phải xếp kề nhau?
Vì các sách Văn phải xếp kề nhau nên ta xem cuốn sách Văn là một phần tử.
Xếp cuốn sách toán lên kệ có
cách.
Giữa cuốn sách Toán có 8 khoảng trống, ta xếp phần tử chứa
cuốn sách Văn vào
vị trí đó có
cách.
cuốn sách Văn có thể hoán đổi vị trí cho nhau ta được
cách.
Vậy số cách sắp xếp thỏa mãn yêu cầu bài toán là. .
Có
viên bi đen khác nhau,
viên bi đỏ khác nhau,
viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau?
Số cách xếp viên bi đen khác nhau thành một dãy bằng.
.
Số cách xếp viên bi đỏ khác nhau thành một dãy bằng.
.
Số cách xếp viên bi đen khác nhau thành một dãy bằng.
.
Số cách xếp nhóm bi thành một dãy bằng.
.
Vậy số cách xếp thỏa yêu cầu đề bài bằng cách.
Giả sử rằng:
![]()
![]()
![]()
Hãy tính
?
Ta có:
Cho đa giác đều có 54 đường chéo. Hãy tính xem đa giác này có bao nhiêu cạnh?
Đa giác n cạnh có n đỉnh.
Mỗi đỉnh nối với đỉnh khác để tạo ra đường chéo
Do đó n đỉnh sẽ có đường
Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là:
Theo đề bài ta có:
Vậy đa giác có 12 cạnh.
Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.
Vì chữ số đứng đầu chẵn nên có
cách chọn, chữ số đứng cuối lẻ nên
có 4 cách chọn. Các số còn lại có
cách chọn
Vậy có số thỏa yêu cầu bài toán.
Tìm số tự nhiên
thỏa ![]()
Điều kiện: .
Ta có:
Vậy .
Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?
Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là .
Trường hợp này có 2!.6 số.
Chữ số cuối bằng 2 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 4 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 8 ta có các bộ , hoán vị được
số.
Kết hợp lại ta có 35 số.
Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?
TH1: Chọn 7 người 18 người không là cặp vợ chồng:
TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng:
TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng:
Vậy số cách chọn thỏa mãn là: cách
Biết rằng
. Chọn kết luận đúng?
Thay vào
ta được: