Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?

    Số cách lấy 5 con trong đó có 1 con át và 1 con vua là C_{4}^{1}C_{4}^{1}.C_{44}^{3} =
211904.

  • Câu 2: Nhận biết

    Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu?

    Tổng số quả cầu trong hộp là 5 + 6 = 11

    Mỗi cách lấy ngẫu nhiên 3 quả cầu trong 11 quả cầu trong hộp là tổ hợp chập 3 của 11 phần tử

    Vậy số cách thỏa mãn yêu cầu bài toán là C_{11}^{3} = 165 (cách).

  • Câu 3: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0,2,4,6,8 với điều các chữ số đó không lặp lại?

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a4 cách chọn

    b4 cách chọn

    c3 cách chọn

    Vậy có: 4.4.3 = 48 số.

  • Câu 4: Vận dụng

    Với số nguyên dương n, gọi a_{3n - 3} là hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} + 1 ight)^{n}(x +
2)^{n}. Tìm n để a_{3n - 3} = 26n.

    Ta có:

    \left( x^{2} + 1 ight)^{n} =
C_{n}^{0}x^{2n} + C_{n}^{1}x^{2n - 2} + C_{n}^{2}x^{2n - 4} + \ldots +
C_{n}^{n}

    (x + 2)^{n} = C_{n}^{0}x^{n} +
2C_{n}^{1}x^{n - 1} + 2^{2}C_{n}^{2}x^{n - 2} + \ldots +
2^{n}C_{n}^{n}

    Ta thấy n = 1,n = 2 không thoả mãn điều kiện bài toán.

    Với n \geq 3 ta có: x^{3n - 3} = x^{2n}.x^{n - 3} = x^{2n - 2}.x^{n -
1}

    Do đó hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} +
1 ight)^{n}(x + 2)^{n}.

    a_{3n - 3} = 2^{3}.C_{n}^{0}.C_{n}^{3} +
2.C_{n}^{1}.C_{n}^{1}.

    \Rightarrow a_{3n - 3} = 26n
\Leftrightarrow \frac{2n\left( 2n^{2} - 3n + 4 ight)}{3} =
26n

    \Leftrightarrow \left\lbrack\begin{matrix}n = 0\ \ (L) \ = - \dfrac{7}{2}\ \ (L). \ = 5\ \ (t/m) \\\end{matrix} ight.

    Vậy n = 5 là giá trị cần tìm.

  • Câu 5: Thông hiểu

    Tìm hệ số không chứa x trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n}, biết n là sô nguyên dương thỏa mãn C_{n}^{n - 1} + C_{n}^{n - 2} =
78.

    C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow n + \frac{n(n - 1)}{2} = 78 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 12 \\
n = - 13(l) \\
\end{matrix} ight..

    \left( x^{3} - \frac{2}{x} ight)^{n} =
\left( x^{3} - \frac{2}{x} ight)^{12} = \sum_{k =
0}^{12}{C_{12}^{k}\left( x^{3} ight)^{12 - k}( - 2)^{k}\left(
\frac{1}{x} ight)^{k} =}\sum_{k = 0}^{12}{C_{12}^{k}( - 2)^{k}x^{36 -
4k}}.

    Số hạng không chứa x ứng với 36 - 4k = 0 \Leftrightarrow k = 9C_{12}^{9}( - 2)^{9} = -
112640.

  • Câu 6: Thông hiểu

    Từ tập hợp các chữ số A = \left\{ 1,3,4,5,6,8,9 ight\} có thể lập được bao nhiêu số có ba chữ số đôi một khác nhau và luôn có mặt số 1?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc}

    TH1: \overline{1bc}. Chọn b, c có 5.6 = 30 cách.

    TH2: \overline{a1c}. Chọn b, c có 5.6 = 30 cách.

    TH3: \overline{ab1}. Chọn b, c có 5.6 = 30 cách.

    Vậy có thể lập được 30 + 30 + 30 =
90(số) thỏa mãn yêu cầu đề bài.

  • Câu 7: Nhận biết

    Có sáu quả cầu xanh đánh số từ 1 đến 6, năm quả cầu đỏ đánh số từ 1 đến 5 và bảy quả cầu vàng đánh số từ 1 đến 7. Hỏi có bao nhiêu cách lấy ra ba quả cầu vừa khác màu vừa khác số?

    +) Chọn 1 quả màu đỏ có 5 cách.

    +) Chọn 1 quả màu xanh khác số với quả màu đỏ có 5 cách.

    +) Chọn 1 quả màu vàng khác số với quả màu đỏ và quả màu xanh có 5 cách.

    Vậy số cách lấy ra 3 quả cầu vừa khác màu, vừa khác số là: 5.5.5 = 125.

  • Câu 8: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 9: Thông hiểu

    Tìm tất cả các số tự nhiên có đúng 5 chữ số sao cho trong mỗi số đó chữ số đứng sau lớn hơn chữ số đứng liền trước?

    Gọi số có 5 chữ cố có dạng là \overline{abcde}. Điều kiện a eq 0;a < b < c < d <
e

    Ta chuyển bài toán về tìm số các số tự nhiên có 5 chữ số khác nhau lập từ các chữ số 1;2;3;4;5;6;7;8;9 để lập số thoả yêu cầu của bài toán.

    Do đó sẽ có số các số có 5 chữ số khác nhau lập từ 1;2;3;4;5;6;7;8;9C_{9}^{5} = 126 số

  • Câu 10: Thông hiểu

    Biến đổi biểu thức \left( 2 + \sqrt{3} ight)^{5} - \left( 2 -
\sqrt{3} ight)^{4} dưới dạng a +
b\sqrt{3};\left( a,b\mathbb{\in Z} ight). Tính giá trị biểu thức M = a - 2b + 500?

    Ta có:

    \left( 2 + \sqrt{3} ight)^{5} - \left(
2 - \sqrt{3} ight)^{4} = 265 - 265\sqrt{3}

    \Rightarrow \left\{ \begin{matrix}
a = 265 \\
b = 265 \\
\end{matrix} ight.\  \Rightarrow M = 235

  • Câu 11: Nhận biết

    Từ các số 1, 2, 3, 4, 5. Hỏi có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau đôi một?

    Mỗi cách lập số tự nhiên có 5 chữ số khác nhau đôi một hoán vị của 5 phần tử.

    Vậy có 5! = 120số cần tìm.

  • Câu 12: Thông hiểu

    Từ tập A = {1; 2; 3; 4; 5; 6} có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và số đó không lớn hơn 456?

    Ta có: \overline{abc} là số cần tìm.

    Trường hợp 1: 100 \leq \overline{abc}
< 400

    Chọn a ∈ {1; 2; 3}: 3 cách.

    Chọn b \in A\backslash\left\{ a
ight\}: 5 cách.

    Chọn c \in A\backslash\left\{ a,b
ight\}: 4 cách.

    ⇒ Có 3.4.5 = 60 số.

    Trường hợp 2: 400 \leq \overline{abc}
< 450

    Chọn a = 4: 1 cách.

    Chọn b ∈ {1; 2; 3}: 3 cách.

    Chọn c \in A\backslash\left\{ 4;b
ight\}: 4 cách.

    ⇒ Có: 1.3.4 = 12 số.

    Trường hợp 3: 450 \leq \overline{abc}
< 456

    Chọn a = 4: 1 cách.

    Chọn b = 5: 1 cách.

    Chọn c \in A\backslash\left\{ 4;5
ight\}: 4 cách.

    ⇒ Có: 1.1.4 = 4 số.

    Từ (1); (2); (3) có 60 + 12 + 4 =
76 số thoả yêu cầu bài toán.

  • Câu 13: Thông hiểu

    Từ một hộp chứa 5 viên bi xanh, 3 viên bi đỏ và 2 viên bi vành, chọn ngẫu nhiên 4 viên bi. Tính số cách chọn để 4 viên bi lấy ra có số bi đỏ bằng số bi vàng?

    Th1: Chọn 1 bi đỏ, 1 bi vàng và 2 bi xanh có: C_{3}^{1}.C_{2}^{1}.C_{5}^{2} = 60 cách

    Th2: Chọn 2 bi đỏ và 2 bi vàng có: C_{3}^{2}.C_{2}^{2} = 3 cách

    Vậy số cách chọn 4 viên bi sao cho số bi đỏ bằng số bi vàng là 63 cách.

  • Câu 14: Nhận biết

    Tìm hệ số h của số hạng chứa x^{5} trong khai triển \left( x^{2} + \frac{2}{x}
ight)^{7}.

    Ta có: \left( x^{2} + \frac{2}{x}
ight)^{7} = {\sum_{k = 0}^{7}{C_{7}^{k}\left( x^{2} ight)^{k}\left(
\frac{2}{x} ight)}}^{7 - k} = \sum_{k = 0}^{7}{C_{7}^{k}.2^{7 -
k}.x^{3k - 7}}

    Ta có: 3k - 7 = 5, suy ra k = 4.

    Vậy hệ số h của số hạng chứa x^{5} trong khai triển\left( x^{2} + \frac{2}{x} ight)^{7}h = C_{7}^{4}.2^{3} = 280.

  • Câu 15: Nhận biết

    Có bao nhiêu số hạng trong khai triển (6x + 4)^{4}?

    Trong khai triển nhị thức (6x +
4)^{4}n = 4 nên có 5 số hạng.

  • Câu 16: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

  • Câu 17: Nhận biết

    Có bao nhiêu cách xếp 6 người thành một hàng dọc

     Xếp 6 người thành một hàng dọc có: 6! = 720 cách.

  • Câu 18: Nhận biết

    Từ thành phố A đến thành phố B có 2 con đường, từ thành phố B đến thành phố C có 3 con đường. Hỏi có bao nhiêu cách đi từ A đến C sao cho bắt buộc phải đi qua B.

     Đi từ A đến B: 2 cách.

    Đi từ B đến C: 3 cách.

    Vậy đi từ A đến C (qua B) có: 2.3 = 6 cách.

  • Câu 19: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 20: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 47 lượt xem
Sắp xếp theo