Lớp 10A có 20 học sinh nam và 15 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra hai học sinh một nam, một nữ để thi đấu cầu lông đôi nam nữ.
Chọn 1 nam có: 20 cách
Chọn 1 nữ có: 15 cách
Vậy số cách chọn 1 nam và 1 nữ là: 20.15 = 300 (cách).
Lớp 10A có 20 học sinh nam và 15 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra hai học sinh một nam, một nữ để thi đấu cầu lông đôi nam nữ.
Chọn 1 nam có: 20 cách
Chọn 1 nữ có: 15 cách
Vậy số cách chọn 1 nam và 1 nữ là: 20.15 = 300 (cách).
Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu sao cho 3 quả cầu lấy ra có ít nhất một quả cầu trắng?
Trường hợp 1: 1 quả trắng và 2 quả đỏ.
Số cách lấy là
Trường hợp 2: 2 quả trắng và 1 quả đỏ.
Số cách lấy là
Trường hợp 3: 3 quả trắng.
Số cách lấy là
Do vậy số cách lấy ngẫu nhiên 3 quả cầy trong hộp sao cho trong 3 quả cầu lấy ra có ít nhất 1 quả cầu trắng là: 75 + 60 + 10 = 145 (cách)
Có bao nhiêu số chẵn gồm bốn chữ số được lập từ các số 0; 1; 2; 4; 5; 6; 8.
Gọi số tự nhiên có 4 chữ số có dạng:
Do số tự nhiên được tạo thành là chữ số chẵn nên
Trường hợp 1: d = 0 ta có: d có 1 cách chọn
a có 6 cách chọn
b có 7 cách chọn
c có 7 cách chọn
=> Số các số được tạo thành là: 6.7.7.1 = 294 số
Trướng hợp 2: => d có 4 cách chọn
a có 6 cách chọn
b có 7 cách chọn
c có 7 cách chọn
=> Số các số tạo thành là: 4.6.7.7=1176 số
=> Có tất cả 294 + 1176 = 1470 số tự nhiên chẵn có 4 chữ số được tạo thành.
Trong khai triển
Tính giá trị ![]()
Ta có
Vậy
Cho tập
. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?
Gọi số cần tìm là số dạng . Vì
chia hết cho 3 suy ra
.
Khi đó bộ .
Với bộ suy ra có
số cần tìm.
Tương tự với các bộ số còn lại.
Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:
Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.
Cho đa giác đều
nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong
của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong
đỉnh của đa giác. Tìm
.
Số tam giác có 3 đỉnh là 3 trong 2n điểm là
Ứng với 2 đường chéo đi qua tâm của đa giác đều cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm
Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.
Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là
Theo giả thiết ta có:
Vậy .
Chọn đáp án đúng khi khai triển nhị thức
?
Ta có:
Tìm hệ số của số hạng chứa
trong khai triển
.
Ta có: .
Số hạng tổng quát của khai triển là: .
Số hạng chứa trong khai triển tương ứng với
.
Vậy hệ số cần tìm là: (theo tính chất của tổ hợp:
).
Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra một học sinh đi dự trại hè của trường. Hỏi có bao nhiêu cách chọn?
Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:
Bước 2: Đếm số cách chọn.
* Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.
* Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.
Bước 3: Áp dụng quy tắc cộng.
Vậy có 20 + 25 = 45 cách chọn.
Tìm hệ số của
trong khai triển
biết
.
Ta có:
.
Ta có: .
Hệ số sẽ là
.
Hệ số của số hạng chứa
trong khai triển nhị thức
(với
) là:
Số hạng tổng quát của khai triển (với
) là:
.
Số hạng trên chứa suy ra
.
Vậy hệ số của số hạng chứa trong khai triển trên là
.
Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Lý và 3 cuốn sách Hóa. Thầy muốn lấy ra 5 cuốn và tặng cho 5 học sinh A, B, C, D, E mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng nếu có ít nhất một cuốn sách Toán được tặng.
Số cách lấy 5 cuốn sách trong tổng số 10 cuốn sách ở ba thể loại để tặng cho 5 học sinh là (cách)
Số cách lấy 5 cuốn sách để chia cho 5 học sinh trong đó không có cuốn sách Toán nào là (cách).
Vậy số cách lấy 5 cuốn sách thỏa ycbt là: cách.
Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số được xếp tùy ý?
Lập một số có 9 chữ số thỏa mãn yêu cầu, thực chất là việc xếp các số 2, 3, 4, 5 vào 4 vị trí tùy ý trong 9 vị trí (5 vị trí còn lại là dành cho chữ số 1 lặp lại 5 lần)
⇒ Vậy có tất cả: (số)
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Nếu chữ số hàng chục là thì số có chữ số hàng đơn vị là
thì số các chữ số nhỏ hơn
năm ở hàng đơn vị cũng bằng
. Do chữ số hang chục lớn hơn bằng
còn chữ số hang đơn vị thi
.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:
.
Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?
Mỗi cách phân công bạn An, Bình, Công vào
chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của
phần tử. Vậy có
cách.
Đếm số tập con gồm
phần tử được lấy ra từ tập
?
Mỗi tập con tập gồm phần tử được lấy ra từ tập
có
phần tử là một tổ hợp chập
của
phần tử.
Vậy số tập con gồm phần tử của
là
tập con.
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi ở hai đầu ghế là:
Vì A; E ngồi ở hai đầu ghế nên ta có 3!.2! = 12 cách sắp xếp
Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.
Biết hệ số của
trong khai triển của
là – 270. Giá trị của n là
Khai triển biểu thức như sau:
Hệ số của x3 trong khai triển bằng -270
=>