Chọn đáp án đúng khi khai triển nhị thức
?
Ta có:
Chọn đáp án đúng khi khai triển nhị thức
?
Ta có:
Cho tập hợp các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau là:
Mỗi số tự nhiên có 5 chữ số khác nhau được lập từ tập hợp C là một hoán vị của 5.
Suy ra có thể lập được số thỏa mãn yêu cầu đề bài.
Tính số cách sắp xếp
nam sinh và
nữ sinh vào một dãy ghế hàng ngang có
chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.
Sắp xếp nữ sinh vào
ghế.
cách.
Xem nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với
nam sinh. có
cách
vậy có cách sắp xếp.
Cho hai đường thẳng song song d và d’. Trên đường thẳng d lấy 10 điểm phân biệt, trên đường thẳng d’ lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 điểm vừa nói trên.
Trường hợp 1: Lấy 2 điểm trên d và 1 điểm trên d’
Trường hợp 2: Lấy 1 điểm trên d và 2 điểm trên d’.
Số tam giác thỏa bài toán là: tam giác.
Từ các chữ số 6; 7; 8; 9. có thể lập được bao nhiêu chữ số tự nhiên có 3 chữ số.
Gọi số cần lập có dạng .
A: có 4 cách chọn.
B: có 4 cách chọn.
C: có 4 cách chọn.
Vậy có 4.4.4 = 64 (số) tự nhiên có 3 chữ số.
Hệ số của
trong khai triển
là:
Ta có: .
Hệ số của là 10.
Một hộp có 3 viên bi trắng, 2 viên bi đen và 2 viên bi vàng. Hỏi có bao nhiêu cách lấy ngẫu nhiên 2 viên bi từ hộp đó.
Chọn 2 viên từ hộp 7 viên có: (cách).
Khối lớp 11 có 300 học sinh nam và 250 học sinh nữ. Nhà trường cần chọn hai học sinh làm đại diện cho khối 11 trong đó có 1 học sinh nam và 1 học sinh nữ. Số cách chọn là:
Áp dụng quy tắc nhân ta có số cách chọn 1 học sinh nam và 1 học sinh nữ là:
cách chọn.
Cho khai triển
. Tìm hệ số
biết rằng ![]()
Ta có . Vậy
;
;
.
Theo bài ra nên ta có:
(thỏa mãn) hoặc
(loại).
Từ đó ta có .
Có bao nhiêu số nguyên dương n gồm 3 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó chữ số hàng chục và chữ số hàng đơn vị của n giống hệt nhau và hai chữ số này khác chữ số hàng trăm của n?
Chọn có: 9 cách.
Chọn có: 9 cách.
Chọn có: 1 cách.
Theo quy tắc nhân có: số.
Tổng số nguyên dương n thỏa mãn
là:
Điều kiện. .
hoặc
.
Vậy tổng số nguyên dương n bằng 11.
Từ các số
,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên có
chữ số khác nhau đôi một?
Mỗi cách lập số tự nhiên có 5 chữ số khác nhau đôi một hoán vị của 5 phần tử.
Vậy có số cần tìm.
Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong
người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
Thứ 2: có cách chọn bạn đi thăm
Thứ 3: có cách chọn bạn đi thăm
Thứ 4: có cách chọn bạn đi thăm
Thứ 5: có cách chọn bạn đi thăm
Thứ 6: có cách chọn bạn đi thăm
Thứ 7: có cách chọn bạn đi thăm
Chủ nhật: có cách chọn bạn đi thăm
Vậy theo quy tắc nhân, có (kế hoạch).
Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:
Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.
Biết
là số nguyên dương thỏa mãn
, số hạng chứa
trong khai triển
là:
Ta có:
(vì
là số nguyên dương).
Số hạng tổng quát trong khai triển là:
.
Cho .
Vậy số hạng chứa trong khai triển
là
.
Biểu thức
là khai triển của nhị thức nào dưới đây?
Ta có:
Cho tập
. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?
Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ
TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có:
TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có:
TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có:
Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: (số).
Cho đa giác đều có tất cả 12 cạnh. Hỏi đa giác có bao nhiêu đường chéo?
Từ 12 đỉnh của đa giác đều, ta xác định được đoạn thẳng.
Vậy đa giác đều có tất cả đường chéo.
Có bao nhiêu số hạng trong khai triển nhị thức
?
Trong khai triển nhị thức thì số các số hạng là
nên trong khai triển
có
số hạng.
Cho tập
gồm
phần tử. Số tập con có
phần tử của tập A là:
Theo định nghĩa tổ hợp. “ Giả sử tập có
phần tử
. Mỗi tập con gồm
phần tử của
được gọi là một tổ hợp chập
của
phần tử đã cho”.
Do đó theo yêu cầu bài toán số tập con có phần tử của tập A là
.