Cho
là số tự nhiên thỏa mãn
. Biết số hạng thứ
trong khai triển Newton của
có giá trị bằng
. Tìm giá trị của
.
Ta có:
.
Ta được nhị thức .
Số hạng thứ ba của khai triển là .
Theo giả thiết ta có:
.
Cho
là số tự nhiên thỏa mãn
. Biết số hạng thứ
trong khai triển Newton của
có giá trị bằng
. Tìm giá trị của
.
Ta có:
.
Ta được nhị thức .
Số hạng thứ ba của khai triển là .
Theo giả thiết ta có:
.
Có bao nhiêu số tự nhiên gồm 3 chữ số lẻ?
Gọi số thỏa mãn đề bài có dạng .
Vị trí A: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.
Vị trí B: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.
Vị trí C: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.
Áp dụng quy tắc nhân, có 5.5.5 = 125 (số).
Cho tập
gồm
phần tử. Số tập con gồm
phần tử của M là:
Số tập con gồm phần tử của
là số cách chọn
phần tử bất kì trong
phần tử của
.
Do đó số tập con gồm phần tử của
là
.
Quan sát mạch điện như sau:

Mạch điện có 6 công tắc khác nhau, trong đó mỗi công tắc có 2 trạng thái đóng và mở. Hỏi có bao nhiêu cách đóng mở 6 công tắc để mạch điện thông mạch từ E đến F?
Cả 3 công tắc của nhánh trên đóng còn 1 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh trên đóng còn 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh dưới đóng còn 1 trong 3 công tắc của nhánh trên mở có: Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh dưới đóng còn 3 công tắc nhánh trên mở có:
Cả 3 công tắc của nhánh trên đóng và cả 3 công tắc nhánh dưới đóng có:
Vậy có tất cả 15 cách.
Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.
Trường hợp 1: An và Bình không có mặt trong tổ công tác:
Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có cách.
Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:
Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có cách
Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có cách.
Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng
Như vậy có tất cả số cách là: cách
Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?
Học sinh nam có 280 cách chọn
Học sinh nữ có 325 cách chọn
Chọn một học sinh khối 11 đi dự dạ hội của học sinh thành phố thì có cách.
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi chính giữa là:
Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp
Cho
. Từ tập hợp này lập được bao nhiêu số tự nhiên có
chữ số đôi một khác nhau?
Mỗi số tự nhiên tự nhiên có chữ số khác nhau được lập từ tập
là hoán vị của
phần tử.
Vậy có số cần tìm.
Phát biểu nào sau đây đúng?
Phát biểu đúng là:
Một đoàn tàu có bốn toa đỗ ở ga. Có bốn hành khách bước lên tàu. Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là:
Mỗi hành khách có 4 cách chọn toa.
⇒ Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là: 4.4.4.4 = 44 = 256.
Trong khai triển nhị thức
hệ số của
là
. Giá trị của n là
Khai triển biểu thức như sau:
Theo bài ra ta có:
Hệ số của là
khi đó: k = 1
Cho tập
. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.
Vì lẻ và không chia hết cho 5 nên
có 3 cách chọn
Số các chọn các chữ số còn lại là:
Vậy số thỏa yêu cầu bài toán.
Tìm số hạng chứa
trong khai triển
.
Ta có công thức của số hạng tổng quát:
Số hạng chứa khi và chỉ khi
.
Vậy số hạng chứa trong khai triển là
.
Số hạng tử trong khai triển
bằng
Số hạng tử trong khai triển là: 4 + 1 = 5 hạng tử.
Cho tập hợp các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau là:
Mỗi số tự nhiên có 5 chữ số khác nhau được lập từ tập hợp C là một hoán vị của 5.
Suy ra có thể lập được số thỏa mãn yêu cầu đề bài.
Tìm số hạng chứa
trong khai triển
?
Số hạng tổng quát theo thứ tự giảm dần số mũ x là:
Số hạng chứa ứng với
Số hạng cần tìm là .
Cho đa giác đều
nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong
của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong
đỉnh của đa giác. Tìm
.
Số tam giác có 3 đỉnh là 3 trong 2n điểm là
Ứng với 2 đường chéo đi qua tâm của đa giác đều cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm
Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.
Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là
Theo giả thiết ta có:
Vậy .
Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là
Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: cách.
Tính số cách sắp xếp 8 học sinh thành 1 hàng dọc?
Số cách sắp xếp 8 học sinh thành 1 hàng dọc là 8! = 40320 cách.
Có 3 người đàn ông, 2 người đàn bà và 1 đứa trẻ được xếp ngồi vào 6 cái ghế xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho đứa trẻ ngồi giữa hai người đàn bà?
Ta đánh số thứ tự cho 6 chiếc ghế từ số 1 đến số 6
Ta thực hiện việc xếp 6 người vào 6 chiếc ghế sao cho đứa trẻ ngồi giữa hai người đàn bà như sau:
Xếp đứa trẻ ngồi vào 1 trong các ghế có số thứ tự từ 2 đến 5 có 4 cách.
Xếp hai người đàn bà vào 2 ghế bên cạnh đứa trẻ có 2 cách.
Xếp 3 người đàn ông vào 3 ghế còn lại: có 3! cách.
Áp dụng quy tắc nhân, có tất cả: cách.