Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện
và
. Khi đó m + n bằng
Điều kiện:
Ta có:
Mặt khác ta có:
=>
vậy tổng m và n là: 18 + 8 = 26.
Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện
và
. Khi đó m + n bằng
Điều kiện:
Ta có:
Mặt khác ta có:
=>
vậy tổng m và n là: 18 + 8 = 26.
Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu?
Tổng số quả cầu trong hộp là 5 + 6 = 11
Mỗi cách lấy ngẫu nhiên 3 quả cầu trong 11 quả cầu trong hộp là tổ hợp chập 3 của 11 phần tử
Vậy số cách thỏa mãn yêu cầu bài toán là (cách).
Khai triển
thành đa thức ta được biểu thức gồm mấy số hạng?
Biểu thức khai triển thành đa thức có 5 hạng tử.
Kết quả của phép tính
là:
Ta có: .
Biết rằng
. Chọn kết luận đúng?
Thay vào
ta được:
Khai triển nhị thức
ta được kết quả là:
Khai triển nhị thức ta có:
Từ các số
có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?
TH1: số có 1 chữ số thì có 3 cách.
TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì cósố.
TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì cósố
Vậy có số.
Cho hai đường thẳng
và
song song với nhau. Trên đường thẳng
lấy 5 điểm phân biệt, trên đường thẳng
lấy 4 điểm phân biệt. Số tam giác có 3 đỉnh là 3 điểm có được từ các điểm trên là bao nhiêu?
Th1: Chọn 2 điểm trên đường thẳng và 1 điểm trên đường thẳng
suy ra ta có:
Th2: Chọn 1 điểm trên đường thẳng và 2 điểm trên đường thẳng
suy ra ta có:
Vậy số tam giác được tạo thành là: 30 + 40 = 70 tam giác.
Lớp 11A có 20 học sinh nam và 15 học sinh nữ. Giáo viên chủ nhiệm muốn chọn một nhóm học sinh đại diện gồm 3 học sinh nam và 2 học sinh nữ. Hỏi có bao nhiêu cách chọn nhóm học sinh đại diện?
Số cách chọn 3 học sinh nam là cách.
Số cách chọn 2 học sinh nữ là: cách.
Vậy số cách chọn nhóm học sinh đại diện là: cách.
Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp
và không vượt quá
?
TH1: Số cần tìm có dạng
Chữ số d có 7 cách chọn là một trong các chữ số .
Suy ra có 7 số thỏa mãn.
TH2: Số cần tìm có dạng
3 vị trí còn lại có cách chọn
Suy ra có 504 số thỏa mãn
Kết hợp cả hai trường hợp ta có: 504 + 7 = 511 số được tạo thành thỏa mãn yêu cầu đề bài.
Viết khai triển theo công thức nhị thức Niu-tơn
.
Ta có:
Hay .
Có bao nhiêu cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?
Đánh số thứ tự các vị trí theo hàng dọc từ đến
.
Trường hợp 1. Nam đứng trước, nữ đứng sau.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Trường hợp 2. Nữ đứng trước, nam đứng sau.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Theo quy tắc cộng ta có. cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.
Biểu thức
là khai triển của nhị thức nào dưới đây?
Ta có:
Tổng số nguyên dương n thỏa mãn
là:
Điều kiện. .
hoặc
.
Vậy tổng số nguyên dương n bằng 11.
Một người vào cửa hàng ăn, người đó chọn thực đơn. Trong đó gồm
món ăn trong
món ăn,
loại quả tráng miệng trong
loại quả tráng miệng và
loại nước uống trong
loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?
Chọn một món ăn có 5 cách.
Chọn một loại quả tráng miệng có 4 cách.
Chọn một loại nước uống có 3 cách.
Áp dụng quy tắc nhân, có 5.4.3 = 60 cách chọn thực đơn.
Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.
Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử
=> Số cách chọn là: (cách)
Từ các chữ số 6; 7; 8; 9. có thể lập được bao nhiêu chữ số tự nhiên có 3 chữ số.
Gọi số cần lập có dạng .
A: có 4 cách chọn.
B: có 4 cách chọn.
C: có 4 cách chọn.
Vậy có 4.4.4 = 64 (số) tự nhiên có 3 chữ số.
Tính số chỉnh hợp chập 2 của 5 là:
Số chỉnh hợp chập 2 của 5 là: .
Tìm hệ số của
trong khai triển
biết
là :
Điều kiện:
Ta có :
.
Xét khai triển
.
Để số hạng chứa thì
.
Vậy hệ số chứa trong khai triển trên là
.
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.