Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho A = \left\{
1,\ 2,\ 3,\ 4 ight\}. Từ tập hợp này lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau?

    Mỗi số tự nhiên tự nhiên có 4 chữ số khác nhau được lập từ tập A là hoán vị của 4 phần tử.

    Vậy có 4! = 24 số cần tìm.

  • Câu 2: Thông hiểu

    Tổng hệ số của x^{3}x^{2} trong khai triển (1 + 2x)^{4} là:

     Ta có: (1+2x)^4=16{x^4} + 32{x^3} + 24{x^2} + 8x + 1.

    Tổng hệ số của x^3x^2 bằng 32+24=56.

  • Câu 3: Nhận biết

    Trong khai triển (x + 2y)^{5} số hạng chứa x^{2}y^{3} là:

     Ta có: (x+2y)^5={x^5} + 10{x^4}y + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}.

    Vậy số hạng cần tìm là: 80x^{2}y^{3}.

  • Câu 4: Thông hiểu

    Tìm số các số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ?

    Trường hợp 1: 3 chữ số đều lẻ. Có A_{5}^{3} = 60 số thỏa mãn.

    Trường hợp 2: số đó gồm 2 chữ số chẵn và 1 chữ số lẻ

    - Chọn 2 chữ số chẵn khác nhau có C_{5}^{2} = 10 cách.

    - Chọn 1 chữ số lẻ có 5 cách.

    - Từ 3 số đã chọn đó lập được 3! =6 số.

    Do đó có 10.5.6 = 300 dãy gồm 3 chữ số phân biệt, trong đó có 2 chữ số chẵn, 1 chữ số lẻ kể cả chữ số 0 đứng đầu.

    Xét dãy số có 3 chữ số phân biệt, gồm 2 chữ số chẵn, 1 chữ số lẻ mà chữ số đầu bằng 0

    - Chọn 1 chữ số lẻ có 5 cách.

    - Chọn 1 chữ số chẵn khác chữ số 0 có 4 cách.

    Vậy có 4.5.2! = 40 số có 3 chữ số phân biệt, gồm 2 chữ số chẵn, 1 chữ số lẻ mà chữ số đầu bằng 0.

    Do đó có 60 + 300 - 40 = 320 số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ.

  • Câu 5: Nhận biết

    Có bao nhiêu số hạng trong khai triển nhị thức (2x - 3)^{2018}?

    Trong khai triển nhị thức (a +
b)^{n} thì số các số hạng là n +
1 nên trong khai triển (2x -
3)^{2018}2019 số hạng.

  • Câu 6: Vận dụng

    Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Số cách chọn 2 nam đứng ở đầu và cuối là. A_{7}^{2}. Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là A_{6}^{5}. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là. 5!.A_{6}^{5}

    Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. A_{7}^{2}.5!.A_{6}^{5} =
3628800.

  • Câu 7: Vận dụng

    Cho n là số tự nhiên thỏa mãn 3^{n}C_{n}^{0} -
3^{n - 1}C_{n}^{1} + 3^{n - 2}C_{n}^{2} - ..... + ( - 1)^{n}C_{n}^{n} =
2048. Tìm hệ số của x^{10} trong khai triển (x + 2)^{n}.

    Ta có (3 - 1)^{n} = 3^{n}C_{n}^{0} - 3^{n
- 1}C_{n}^{1} + 3^{n - 2}C_{n}^{2} - ..... + ( -
1)^{n}C_{n}^{n}

    \Leftrightarrow 2^{n} = 2048
\Leftrightarrow 2^{n} = 2^{11} \Leftrightarrow n = 11.

    Xét khai triển (x + 2)^{11} = \sum_{k =
0}^{11}{C_{11}^{k}x^{11 - k}.2^{k}}

    Tìm hệ số của x^{10}
\Leftrightarrowtìm k\mathbb{\in N\
\ }(k \leq 11) thỏa mãn 11 - k = 10
\Leftrightarrow k = 1.

    Vậy hệ số của x^{10} trong khai triển (x + 2)^{11}C_{11}^{1}.2 = 22.

  • Câu 8: Thông hiểu

    Cho biết hệ số của x^{2} trong khai triển (1 + 2x)^{n} bằng 180. Tìm n.

    Ta có (1 + 2x)^{n} = C_{n}^{0} +
C_{n}^{1}.2x + C_{n}^{2}.(2x)^{2} + ... +
C_{n}^{n}(2x)^{n}.

    Hệ số của x^{2} bằng 180 \Leftrightarrow 4.C_{n}^{2} = 180
\Leftrightarrow 4\frac{n!}{2!(n - 2)!} = 180 \Leftrightarrow n(n - 1) =
90

    \Leftrightarrow n^{2} - n - 90 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = - 9(l) \\
n = 10 \\
\end{matrix} ight..

    Vậy n = 10.

  • Câu 9: Thông hiểu

    Cho tập hợp B =
\left\{ 0,1,2,3,4,5,6,7 ight\}. Có bao nhiêu số tự nhiên gồm ba chữ số được lập từ B sao cho chữ số đằng sau luôn lớn hơn chữ số đẳng trước nó?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc};(a \leq b \leq c)

    TH1: a < b < cC_{7}^{3} = 35 số thỏa mãn.

    TH2: a = b < cC_{7}^{2} = 21 số thỏa mãn.

    TH3: a < b = cC_{7}^{2} = 21 số thỏa mãn.

    TH4: a = b = cC_{7}^{1} = 7 số thỏa mãn.

    Vậy số các số được tạo thành là: 35 +
2.21 + 7 = 84 số.

  • Câu 10: Nhận biết

    3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau?

    Số cách xếp 3 viên bi đen khác nhau thành một dãy bằng. 3!.

    Số cách xếp 4 viên bi đỏ khác nhau thành một dãy bằng. 4!.

    Số cách xếp 5 viên bi đen khác nhau thành một dãy bằng. 5!.

    Số cách xếp 3 nhóm bi thành một dãy bằng. 3!.

    Vậy số cách xếp thỏa yêu cầu đề bài bằng 3!.4!.5!.3! = 103680 cách.

  • Câu 11: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có 1 nam và 2 nữ?

    Chọn ban điều hành gồm 3 học sinh gồm 1 nam và 2 nữ có C_{25}^{1}.C_{15}^{2} = 2625 cách.

  • Câu 12: Nhận biết

    Giả sử một công việc phải hoàn thành qua 2 giai đoạn:

    Giai đoạn 1 có a cách thực hiện.

    Với mỗi cách thực hiện của giai đoạn 1 ta có b cách thực hiện cho giai đoạn 2.

    Khi đó số cách thực hiện công việc là:

    Áp dụng quy tắc nhân ta có số cách thực hiện công việc là a.b cách.

  • Câu 13: Nhận biết

    Số hạng không chứa x trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    Số hạng tổng quát trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    C_{5}^{k}.\left( x^{3} ight)^{5 -
k}.\left( - \frac{1}{x^{2}} ight)^{k} = C_{5}^{k}.( - 1)^{k}.x^{15 -
5k}

    Số hạng không chứa x khi và chỉ khi 15 -
5k = 0 \Rightarrow k = 3

    Vậy số hạng không chứa x là: C_{5}^{3}.(
- 1)^{3} = - 10.

  • Câu 14: Nhận biết

    Lớp 10A có 20 học sinh nam và 15 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra hai học sinh một nam, một nữ để thi đấu cầu lông đôi nam nữ.

     Chọn 1 nam có: 20 cách

    Chọn 1 nữ có: 15 cách

    Vậy số cách chọn 1 nam và 1 nữ là: 20.15 = 300 (cách).

  • Câu 15: Thông hiểu

    Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?

    Gọi số cần tìm có dạng \overline{abc};\left( a,b \in \left\{ 1;2;5;7;8
ight\},c \in \left\{ 2;8 ight\} ight)

    Trường hợp 1: a = 2;b = 7;c = 8. Có 1 số thỏa mãn yêu cầu bài toán.

    Trường hợp2: a = 2;b < 7;c =
8

    a có 1 cách chọn.

    c có 1 cách chọn.

    b có 2 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.1.2 =
2 (số).

    Trường hợp 3: a < 2;c \in \left\{ 2;8
ight\}

    a có 1 cách chọn.

    c có 2 cách chọn.

    b có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.2.3 =
6 (số).

    Vậy có: 1 + 2 + 6 = 9 (số).

  • Câu 16: Nhận biết

    Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:

     Số tập con có 3 phần tử từ tập 5 phần tử là: C_5^3 = 10.

  • Câu 17: Vận dụng

    Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?

    Gọi số cần tìm có dạng \overline{abcd}. Vì \overline{abcd} chia hết cho 10 suy ra d = 0.

    TH1. Với a = 5, ta có

    + Nếu b = 4 suy ra c = \left\{ 0;1 ight\}, do đó có 2 số cần tìm.

    + Nếu b < 4 suy ra b = \left\{ 0;1 ight\}c = \left\{ 0;1;4;5;6;7;9 ight\}, do đó có 14 số cần tìm.

    TH2. Với a < 5
\Rightarrow a = \left\{ 1;4 ight\} suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn

    C.

    Suy ra có 2 \times 7 \times 7 =
98 số cần tìm. Vậy có tất cả 114 số cần tìm.

  • Câu 18: Nhận biết

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n gồm 4 chữ số đôi một khác nhau?

    Có thể lập được A_{5}^{4} = 120 số nguyên dương n gồm bốn chữ số đôi một khác nhau.

  • Câu 19: Vận dụng

    Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:

    Gọi số cần tìm có dạng: \overline{abcde}\
\ \ \ \ \ \ (a eq 0).

    Chọn e: có 1 cách (e = 0)

    Chọn a: có 9 cách (a eq 0)

    Chọn \overline{bcd}: có 10^{3} cách

    Theo quy tắc nhân, có 1.9.10^{3} =
9000(số).

  • Câu 20: Thông hiểu

    Số các số có 6 chữ số khác nhau không bắt đầu bởi 12 được lập từ 1;\ \ 2;\ \ 3;\ \ 4;\ \ 5;\ \ 6 là:

    Lập số tự nhiên có 6 chữ số khác nhau, ta tìm được: 6! số.

    Lập số tự nhiên có 6 chữ số khác nhau nhưng bắt đầu bằng 12, ta tìm được: 4! số.

    Vậy số các số có 6 chữ số khác nhau không bắt đầu bởi 126! - 4! = 696 số.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo