Trong khai triển nhị thức
(n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng:
Khai triển bậc (n-5) có 6 số hạng. Suy ra (n-5) = 5. Vậy n = 10.
Trong khai triển nhị thức
(n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng:
Khai triển bậc (n-5) có 6 số hạng. Suy ra (n-5) = 5. Vậy n = 10.
Từ các chữ số
,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm
chữ số đôi một khác nhau?
Mỗi số tự nhiên gồm chữ số khác nhau được lập từ các số
,
,
,
,
là một hoán vị của
phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là
(số).
Tổng số nguyên dương n thỏa mãn
là:
Điều kiện. .
hoặc
.
Vậy tổng số nguyên dương n bằng 11.
Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ?
Mỗi cách xếp 10 học sinh thành một hàng ngang là một hoán vị của tập hợp có 10 phần tử.
Suy ra số cách sắp xếp là .
Tìm hệ số của số hạng chứa
trong khai triển nhị thức Newton
?
Ta có:
Vậy hệ số của số hạng chứa trong khai triển nhị thức là:
.
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con
đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn
đường đi đến nhà Cường cùng Bình (như hình vẽ dưới đây và không có con đường nào khác)?

Chọn đường đi từ nhà An đến nhà Bình có 4 cách chọn.
Chọn đường đi từ nhà Bình đến nhà Cường có 6 cách chọn.
Vậy theo quy tắc nhân có 4.6 = 24 cách cho An chọn đường đi đến nhà Cường cùng Bình.
Tính giá trị biểu thức ![]()
Áp dụng công thức cho
ta có:
Từ 9 chữ số
có thể lập được bao nhiêu số gồm 9 chữ số nếu như không có chữ số nào được lặp lại? Trong các số đó có bao nhiêu số mà các chữ số 1 và 7 không đứng cạnh nhau.
Từ 9 chữ số có thể lập được các số nếu như không có chữ số nào được lặp lại ta hiểu đó là số có 9 chữ số khác nhau.
Do đó sẽ có 9! số thỏa mãn.
Để tìm số mà các chữ số 1 và 7 không đứng cạnh nhau ta đi tìm các số mà 1 và 7 đứng cạnh nhau.
Coi 1 và 7 là 1 số thì ta sẽ có và
.
Đưa được về bài toán tìm số có 8 chữ số khác nhau.
Do đó số các số tìm được là 8! số.
Do 1 và 7 có 2 vị trí nên ta có 2.8! số.
Vậy số có 9 chữ số khác nhau không có 1 và 7 đứng cạnh là: số.
Một lớp có 15 nam và 20 nữ. Hỏi có bao nhiêu cách chọn 1 bạn đi trực nhật.
Trường hợp 1: Chọn 1 nam. Có 15 cách.
Trường hợp 2: Chọn 1 nữ. Có 20 cách.
Vậy có 15+20 = 35 cách.
Từ các chữ số
, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 6 chữ số đôi một khác nhau trong đó phải có 1 và 3 đứng cạnh nhau, không kể thứ tự trước sau.
Gọi là số thỏa yêu cầu bài toán.
Chọn 2 vị trí cạnh nhau từ 6 vị trí (từ ) có: 5 cách.
Xếp số 1 và 3 vào 2 vị trí vừa chọn có: 2 cách.
Chọn số cho 4 vị trí từ tập có:
cách.
Theo quy tắc nhân có: số.
Có 3 người đàn ông, 2 người đàn bà và 1 đứa trẻ được xếp ngồi vào 6 cái ghế xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho đứa trẻ ngồi giữa hai người đàn bà?
Ta đánh số thứ tự cho 6 chiếc ghế từ số 1 đến số 6
Ta thực hiện việc xếp 6 người vào 6 chiếc ghế sao cho đứa trẻ ngồi giữa hai người đàn bà như sau:
Xếp đứa trẻ ngồi vào 1 trong các ghế có số thứ tự từ 2 đến 5 có 4 cách.
Xếp hai người đàn bà vào 2 ghế bên cạnh đứa trẻ có 2 cách.
Xếp 3 người đàn ông vào 3 ghế còn lại: có 3! cách.
Áp dụng quy tắc nhân, có tất cả: cách.
Bạn Dũng có 9 quyển truyện tranh khác nhau và 6 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Bạn Dũng có số cách chọn ra một quyển sách để đọc vào cuối tuần là 9 + 6 = 15 cách.
Cho tập hợp M = {a; b; c}. Số hoán vị của ba phần tử của M là:
Số hoán vị của ba phần tử của M là: 3! = 6.
Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton
?
Để có tổng các hệ số ta thay ta được:
Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?
Gọi số in trên vé có dạng
Số cách chọn là 10 (
có thể là 0).
Số cách chọn là 9.
Số cách chọn là 8.
Số cách chọn là 7.
Số cách chọn là 6.
Do đó có 10.9.8.7.6 = 23460 (số).
Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.
TH1. Có đúng 1 học sinh khối 10: (cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)
TH2. Có đúng 2 học sinh khối 10: (cách).
Có
cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.
Một nhóm gồm 15 học sinh nam trong đó có 5 bạn giỏi Toán và 20 học sinh nữ trong đó có 6 bạn giỏi Văn. Có bao nhiêu cách chọn 4 học sinh sao cho có đúng 1 học sinh nam giỏi môn Toán và 1 học sinh nữ giỏi môn Văn?
Số cách chọn một học sinh nam giỏi Toán và 1 học sinh nữ giỏi Văn là: (cách)
Chọn 2 học sinh còn lại là: (cách)
Số cách chọn 4 học sinh thỏa mãn là: cách.
Có 1 con mèo vàng,
con mèo đen,
con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào
cái ghế sao cho mỗi ghế chỉ có một con mèo. Đếm số cách xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau.
Số cách xếp con mèo vàng và con mèo đen ở cạnh nhau là .
Xem nhóm con mèo vàng và đen này là một phần tử, cùng với con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím, ta được
phần tử. Xếp
phần tử này là.
Vậy có .
Tìm hệ số của
trong khai triển
biết
là :
Điều kiện:
Ta có :
.
Xét khai triển
.
Để số hạng chứa thì
.
Vậy hệ số chứa trong khai triển trên là
.
Thực hiện khai triển nhị thức Newton
ta được kết quả là:
Ta có: