Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số cách xếp 5 học sinh ngồi vào một bàn dài là:

    Ta có số cách xếp 5 học sinh vào một bàn dài là số các hoán vị của 5học sinh đó. Vậy kết quả là: P_{5} = 5! = 120.

  • Câu 2: Thông hiểu

    Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số 1 xếp kề nhau?

    Gọi 11111 là số a.

    Vậy ta cần sắp các số a, 2, 3, 4, 5.

    ⇒ Số cách sắp xếp số thỏa mãn là: 1.2.3.4.5 = 120 (số).

  • Câu 3: Vận dụng

    Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.

    Vì chữ số đứng đầu chẵn nên a_{1}4 cách chọn, chữ số đứng cuối lẻ nên a_{8} có 4 cách chọn. Các số còn lại có 6.5.4.3.2.1 cách chọn

    Vậy có 4^{2}.6.5.4.3.2.1 = 11520 số thỏa yêu cầu bài toán.

  • Câu 4: Vận dụng

    Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Số cách chọn 2 nam đứng ở đầu và cuối là. A_{7}^{2}. Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là A_{6}^{5}. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là. 5!.A_{6}^{5}

    Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. A_{7}^{2}.5!.A_{6}^{5} =
3628800.

  • Câu 5: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?

    Giả sử số đó là \overline{a_{1}a_{2}a_{3}}

    Trường hợp 1. a_{3} = 0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.

    Trường hợp 2. a_{3} = 5. Với a_{1} = 2 chọn a_{2} có 6 cách nên có 6 số thỏa mãn. Với a_{1} eq 2 chọn a_{1} có 5 cách chọn, và tất nhiên a_{2} = 2 nên có 5 số thỏa mãn. Do đó có 12 + 6 + 5 = 23 số thỏa mãn.

  • Câu 6: Thông hiểu

    Tổng các hệ số trong khai triển nhị thức Newton của (2x - 3)^{5} bằng:

    Ta có:

    (2x - 3)^{5} = C_{5}^{0}(2x)^{5}.( -
3)^{0} + C_{5}^{1}.(2x)^{4}.( - 3)^{1}

    + ... + C_{5}^{4}.(2x)^{1}.( - 3)^{4} +
C_{5}^{5}.(2x)^{0}.( - 3)^{5}

    = C_{5}^{0}2^{5}.( - 3)^{0}.x^{5} +
C_{5}^{1}.2^{4}.( - 3)^{1}.x^{4}

    + ... + C_{5}^{4}.2.( - 3)^{4}.x +
C_{5}^{5}.( - 3)^{5}

    Cho x = 1 ta được:

    (2.1 - 3)^{5} = C_{5}^{0}2^{5}.( -
3)^{0}.1^{5} + C_{5}^{1}.2^{4}.( - 3)^{1}.1^{4} + ... + C_{5}^{4}.2.( -
3)^{4}.1 + C_{5}^{5}.( - 3)^{5} = - 1

    Vậy tổng hệ số trong khai triển đã cho bằng -1.

  • Câu 7: Nhận biết

    Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?

    Mỗi tập con có 8 phần tử của tập hợp E là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp E là. C_{10}^{8} = 45.

  • Câu 8: Thông hiểu

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng:

    Điều kiện n \geq 2,n\mathbb{\in
N}

    Ta có:

    A_{n}^{2} - 3C_{n}^{2} = 15 -
5n

    \Leftrightarrow \frac{n!}{(n - 2)!} -
3.\frac{n!}{2!(n - 2)!} = 15 - 5n

    \Leftrightarrow n(n - 1) - \frac{3n(n -
1)}{2} = 15 - 5n

    \Leftrightarrow - n^{2} + 11n - 30 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 5 \\
n = 6 \\
\end{matrix} ight.\ (tm)

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng 11.

  • Câu 9: Nhận biết

    Thầy giáo chủ nhiệm có 10 quyển sách khác nhau và 8 quyển vở khác nhau. Thầy chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi. Hỏi có bao nhiêu cách chọn khác nhau?

    Chọn một quyển sách có 10 cách chọn.

    Chọn một quyển vở có 8 cách chọn.

    Áp dụng quy tắc cộng có 18 cách chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi.

  • Câu 10: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn C ngồi chính giữa là:

    Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp A;B;C;D;E

  • Câu 11: Nhận biết

    Ngân hàng câu hỏi kiểm tra Toán lớp 11A gồm 35 câu hỏi đại số và 15 câu hỏi hình học. Học sinh được chọn một câu hỏi để trả lời. Khi đó số khả năng có thể xảy ra bằng:

    Áp dụng quy tắc cộng ta có số khả năng có thể xảy ra là: 35 + 15 = 50 khả năng.

  • Câu 12: Thông hiểu

    Một bài thi trắc nghiệm khách quan gồm 8 câu hỏi. Mỗi câu hỏi gồm 4 đáp án trả lời. Hỏi bài thi đó có tất cả bao nhiêu đáp án?

    Mỗi câu hỏi gồm 4 đáp án, có 8 câu hỏi nên có: 4.4.4.4.4.4.4.4 = 4^{8} (đáp án). (quy tắc nhân)

  • Câu 13: Nhận biết

    Tìm hệ số của x^{7} trong khai triển (1 + x)^{10}.

    Số hạng tổng quát là: T_{k + 1} =
C_{10}^{k}.x^{k}.

    Số hạng chứa x^{7} trong khai triển (1 + x)^{10} là: T_{8} = C_{10}^{8}.x^{7} nên hệ số là 45.

  • Câu 14: Nhận biết

    Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?

    Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.

  • Câu 15: Thông hiểu

    Tìm hệ số của x^{3} trong khai triển f(x) = (1 + x)^{3} + (1 + x)^{4} + (1 +
x)^{5} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (1 + x)^{3}x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{4}C_{4}^{3}x^{3} = 4x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{5}C_{5}^{3}x^{3} = 10x^{3}

    Do đó tổng các số hạng chứa x^{3} trong khai triển đã cho là: x^{3} + 4x^{3} + 10x^{3} = 15x^{3}

    Vậy hệ số cần tìm là 15.

  • Câu 16: Vận dụng

    Cho n là số nguyên dương thỏa mãn A_{n}^{2} =
C_{n}^{2} + C_{n}^{1} + 4n + 6. Tìm hệ số của số hạng chứa x^{9} của khai triển biểu thức P(x) = \left( x^{2} + \frac{3}{x}
ight)^{n}.

    A_{n}^{2} = C_{n}^{2} + C_{n}^{1} + 4n +
6 \Leftrightarrow \frac{n!}{(n - 2)!} = \frac{n!}{(n - 2)!.2!} +
\frac{n!}{(n - 1)!.1!} + 4n + 6

    \Leftrightarrow n(n - 1) = \frac{n(n -
1)}{2} + n + 4n + 6 \Leftrightarrow n^{2} - 11n - 12 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = - 1\ (l) \\
n = 12\ (n) \\
\end{matrix} ight..

    Khi đó P(x) = \left( x^{2} + \frac{3}{x}
ight)^{12}.

    Công thức số hạng tổng quát: T_{k + 1} =
C_{12}^{k}.\left( x^{2} ight)^{12 - k}.\left( \frac{3}{x} ight)^{k}
= C_{12}^{k}.3^{k}.x^{24 - 3k}.

    Số hạng chứa x^{9} \Rightarrow 24 - 3k =
9 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{9} trong khai triển là C_{12}^{5}.3^{5} =
192456.

  • Câu 17: Nhận biết

    Số hạng tử trong khai triển {(x - 2y)^4} bằng

    Số hạng tử trong khai triển {(x - 2y)^4} là: 4 + 1 = 5 hạng tử.

  • Câu 18: Thông hiểu

    Từ 6 chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và 2?

    Gọi số cần tìm có dạng \overline{abcde}

    Số cách sắp xếp số 1; 2 vào 5 vị trí ta có: A_{5}^{2} cách

    3 vị trí còn lại có A_{4}^{3} cách

    Vậy số cần thành lập là: A_{5}^{2}.A_{4}^{3} = 480 số.

  • Câu 19: Nhận biết

    Bạn Công muốn mua một chiếc áo mới và một chiếc quần mới để đi dự sinh nhật bạn mình. Ở cửa hàng có 12 chiếc áo khác nhau, quần có 15 chiếc khác nhau. Hỏi có bao nhiêu cách chọn một bộ quần và áo?

    Số cách bạn Công chọn một chiếc áo mới là: 12 cách.

    Số cách bạn Công chọn một chiếc quần mới là: 15 cách.

    Theo quy tắc nhân, bạn Công có 12.15 = 180 cách để chọn một bộ quần và áo.

  • Câu 20: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 47 lượt xem
Sắp xếp theo