Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:

     Số tập con có 3 phần tử từ tập 5 phần tử là: C_5^3 = 10.

  • Câu 2: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn mỗi đội chỉ được trình diễn 1 vở kịch, 1 điệu múa và 1 bài hát. Hỏi đội văn nghệ có bao nhiêu cách chọn chương trình biểu diễn biết rằng chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Chọn 1 vở kịch có 2 cách

    Chọn 1 điệu múa có 3 cách

    Chọn 1 bài hát có 6 cách

    Có 2.3.6 = 36 cách.

  • Câu 3: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

  • Câu 4: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 5: Thông hiểu

    Hệ số của x^{3} trong khai triển 3x^{3} + (1 + x)^{5} bằng:

    Ta có:

    {(1 + x)^5} = \sumolimits_{k = 0}^5 {C_5^k{{.1}^{5 - k}}.{x^k}}

    Hệ số của x3 trong khai triển {(1 + x)^5} là: C_5^3{.1^{5 - 3}} = 10

    => Hệ số của x^{3} trong khai triển 3x^{3} + (1 + x)^{5} bằng: 3 + 10 = 13

  • Câu 6: Nhận biết

    Thực hiện khai triển nhị thức Newton (x + 2y)^{5} ta được kết quả là:

    Ta có:

    (x + 2y)^{5} = x^{5} + 10x^{4}y +
40x^{3}y^{2} + 80x^{2}y^{3} + 80xy^{4} + 32y^{5}

  • Câu 7: Thông hiểu

    Tính tổng các hệ số trong khai triển (1 - 2x)^{2018}.

    Xét khai triển (1 - 2x)^{2018} =C_{2018}^{0} - 2x.C_{2018}^{1} + ( - 2x)^{2}.C_{2018}^{2}  + ... + ( - 2x)^{2018}.C_{2018}^{2018}

    Tổng các hệ số trong khai triển là: S =
C_{2018}^{0} - 2.C_{2018}^{1} + ( - 2)^{2}.C_{2018}^{2} + ( -
2)^{3}.C_{2018}^{3} + ... + ( - 2)^{2018}.C_{2018}^{2018}

    Cho x = 1 ta có: (1 - 2.1)^{2018} = C_{2018}^{0} - 2.1.C_{2018}^{1}+ ( - 2.1)^{2}.C_{2018}^{2} + ... + ( -2.1)^{2018}.C_{2018}^{2018}

    \Leftrightarrow ( - 1)^{2018} = S\Leftrightarrow S = 1

  • Câu 8: Thông hiểu

    Từ 6 chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và chia hết cho 3?

    Gọi số tự nhiên có 4 chữ số là \overline{abcd};(a eq b eq c eq
d)

    Bộ bốn chữ số có tổng chia hết cho 3 là: A = \left\{
(0;1;2;3),(0;2;3;4),(0;3;4;5),(1;2;4;5) ight\}

    Trường hợp 1: \overline{abcd} \in \left\{
(0;1;2;3),(0;2;3;4),(0;3;4;5) ight\}

    Chọn a: 3 cách (vì a ≠ 0).

    Chọn b, c, d: 3! = 6 cách chọn.

    Khi đó: 3.6=18 (cách).

    Trường hợp 2: \overline{abcd} \in \left\{
1;2;4;5 ight\}

    Chọn a,b,c,d: 4! = 24

    Vậy 6 + 24 = 30 (số)

  • Câu 9: Vận dụng

    Cho tập hợp số: A = \left\{ 0,1,2,3,4,5,6 ight\}.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

    Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \{ 0,1,2,3\}, \{ 0,1,2,6\}, \{ 0,2,3,4\}, \{ 0,3,4,5\}, \{ 1,2,4,5\}, \{ 1,2,3,6\}, \left\{ 1,3,5,6 ight\}.

    Vậy số các số cần lập là: 4(4! - 3!) +
3.4! = 144 số.

  • Câu 10: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 11: Thông hiểu

    Có bao nhiêu cách xếp 8 người vào một bàn tròn?

    Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! cách xếp.

    Vậy có 1.7! = 5040 cách xếp

  • Câu 12: Nhận biết

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ ngồi ở đầu và cuối dãy ghế?

    2 nữ ngồi ở đầu và cuối dãy ghế có 2! cách.

    3 nam ngồi ở 3 ghế giữa có 3! cách.

    Vậy có 2!.3! = 12 cách xếp.

  • Câu 13: Nhận biết

    Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?

    Số cách chọn một quyển sách là 8 cách.

    Số cách chọn một cái bút là 10 cách. 

    => Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách. 

  • Câu 14: Vận dụng

    Khai triển (\sqrt{5} - \sqrt[4]{7})^{124}. Hỏi có tất cả bao nhiêu số hạng hữu tỉ trong khai triển trên?

    Ta có (\sqrt{5} - \sqrt[4]{7})^{124} =
\sum_{k = 0}^{124}{C_{124}^{k}.( - 1)^{k}.5^{\frac{124 -
k}{2}}.7^{\frac{k}{4}}}

    Số hạng hữu tỉ trong khai triển tương ứng với \left\{ \begin{matrix}
\frac{124 - k}{2}\mathbb{\in Z} \\
\frac{k}{4}\mathbb{\in Z} \\
\end{matrix} ight.\  \Leftrightarrow k \in \left\{ 0;4;8;12;...;124
ight\}.

    Vậy số các giá trị k là: \frac{124 - 0}{4} + 1 = 32.

  • Câu 15: Thông hiểu

    Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện C_{m}^{2}=153 và C_{m}^{n}=C_{m}^{n+2}. Khi đó m + n bằng

    Điều kiện: m,n \in \mathbb{N},m \geqslant 2,0 \leqslant n < m

    Ta có: C_m^n = C_m^{m - n}  

    \begin{matrix}  C_m^n = C_m^{n + 2} \hfill \\   \Leftrightarrow C_m^{m - n} = C_m^{n + 2} \hfill \\   \Rightarrow m - n = n + 2 \hfill \\   \Rightarrow n = \dfrac{{m - 2}}{2} \hfill \\ \end{matrix}

    Mặt khác ta có:

     \begin{matrix}  C_m^2 = 153 \hfill \\   \Leftrightarrow \dfrac{{m\left( {m - 1} ight)\left( {m - 2} ight)!}}{{2!\left( {m - 2} ight)!}} = 153 \hfill \\   \Leftrightarrow m\left( {m - 1} ight) = 306 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 18\left( {tm} ight)} \\   {m =  - 17\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => n=8

    vậy tổng m và n là: 18 + 8 = 26.

     

  • Câu 16: Nhận biết

    Có bao nhiêu số tự nhiên có ba chữ số dạng \overline{abc} với a, b, c \in\left\{ 0;1;\ 2;\ 3;\ 4;5;6 ight\} sao cho a < b < c.

    Vì số tự nhiên có ba chữ số dạng \overline{abc} với a, b, c \in\left\{ 0;1;\ 2;\ 3;\ 4;5;6 ight\} sao cho a < b < c nên a, b, c \in\left\{ 1;\ 2;\ 3;\ 4;5;6 ight\}. Suy ra số các số có dạng \overline{abc}C_{6}^{3} = 20.

  • Câu 17: Nhận biết

    Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của (3 -
2x)^{5}?

    Khi viết nhị thức (3 - 2x)^{5} dưới dạng khai triển 5 + 1 = 6 số hạng.

  • Câu 18: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp F =
\left\{ 0,1,2,3,4,5,6,7;8;9 ight\} và không vượt quá 2023?

    TH1: Số cần tìm có dạng \overline{201d}

    Chữ số d có 7 cách chọn là một trong các chữ số \left\{ 3,4,5,6,7;8;9 ight\}.

    Suy ra có 7 số thỏa mãn.

    TH2: Số cần tìm có dạng \overline{abcd};(a = 1)

    3 vị trí còn lại có A_{5}^{3} =
504 cách chọn

    Suy ra có 504 số thỏa mãn

    Kết hợp cả hai trường hợp ta có: 504 + 7 = 511 số được tạo thành thỏa mãn yêu cầu đề bài.

  • Câu 19: Nhận biết

    Tìm số hạng chứa x^3 trong khai triển \left( x - \frac{1}{2x} ight)^{9}.

    Số hạng thứ k + 1 trong khai triển là: T_{k + 1} = C_{9}^{k}x^{9 - k}
\cdot \left( - \frac{1}{2x} ight)^{k} = C_{9}^{k} \cdot \left( -
\frac{1}{2} ight)^{k}x^{9 - 2}.

    Số hạng chứa x^{3} có giá trị k thỏa mãn: 9 - 2k = 3 \Leftrightarrow k = 3.

    Vậy số hạng chứa x^{3} trong khai triển là: -
\frac{1}{8}C_{9}^{3}x^{3}.

  • Câu 20: Nhận biết

    Sắp xếp 5 bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Đếm số cách sắp xếp thỏa mãn bạn An và bạn Dũng không ngồi cạnh nhau?

    +) Xếp 5 bạn vào 5 chỗ ngồi có 5! cách.

    +) Xếp An và Dũng ngồi cạnh nhau có 2 cách. Xem An và Dũng là 1 phần tử cùng với 3 bạn còn lại là 4 phần tử xếp vào 4 chỗ. Suy ra số cách xếp 5 bạn sao cho An và Dũng luôn ngồi cạnh nhau là. 2.4! cách.

    Vậy số cách xếp 5 bạn vào 5 ghế sao cho An và Dũng không ngồi cạnh nhau là.

    5!–2.4! = 72.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo