Số hạng chứa
trong khai triển biểu thức
là:
Ta có: .
Số hạng cần tìm là: .
Số hạng chứa
trong khai triển biểu thức
là:
Ta có: .
Số hạng cần tìm là: .
Số hạng chứa
trong khai triển
là:
Số hạng thứ trong khai triển
là:
.
Số hạng chứa trong khai triển
tương ứng với:
.
Vậy số hạng chứa trong khai triển
là:
.
Từ các chữ số
,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm
chữ số đôi một khác nhau?
Mỗi số tự nhiên gồm chữ số khác nhau được lập từ các số
,
,
,
,
là một hoán vị của
phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là
(số).
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có ít nhất 1 nam?
Chọn ban điều hành gồm 3 học sinh không có học sinh nam nào có cách
Số cách chọn ban điều hành gồm 3 học sinh có ít nhất 1 nam có: cách.
Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n là bội số của 5?
Gọi tập và
là số thỏa mãn yêu cầu:
Chọn có: 9 cách.
Chọn có: 10 cách.
Chọn có: 10 cách.
Chọn có: 10 cách.
Chọn có: 2 cách.
Theo quy tắc nhân có: số.
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Tìm số hạng không chứa
trong khai triển nhị thức Newton của
. Cho biết
(
là số tổ hợp chập
của
phần tử).
Xét khai triển
Đạo hàm hai vế của ta được:
Trong công thức ta cho
ta được:
.
Khi đó, .
Do đó số hạng không chứa trong khai triển
nếu
hay
.
Suy ra số hạng cần tìm là .
Hệ số của số hạng chứa
trong khai triển nhị thức
(với
) là:
Số hạng tổng quát của khai triển (với
) là:
.
Số hạng trên chứa suy ra
.
Vậy hệ số của số hạng chứa trong khai triển trên là
.
Tính tổng các hệ số trong khai triển
.
Xét khai triển
Tổng các hệ số trong khai triển là:
Cho ta có:
Biết
là số nguyên dương thỏa mãn
, số hạng chứa
trong khai triển
là:
Ta có:
(vì
là số nguyên dương).
Số hạng tổng quát trong khai triển là:
.
Cho .
Vậy số hạng chứa trong khai triển
là
.
Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?
Chọn 4 Toán, 2 Văn, 2 Lí có cách.
Chọn 4 Toán, 1 Văn, 3 Lí có cách.
Chọn 5 Toán, 2 Văn, 1 Lí có cách.
Chọn 5 Toán, 1 Văn, 2 Lí có cách.
Chọn 6 Toán, 1 Văn, 1 Lí có cách.
Tổng lại ta được 181440 cách thỏa mãn.
Bạn Anh muốn qua nhà bạn Bình để rủ Bình đến nhà bạn Châu chơi. Từ nhà Anh đến nhà Bình có 3con đường. Từ nhà Bình đến nhà Châu có 5con đường. Hỏi bạn Anh có bao nhiêu cách chọn đường đi từ nhà mình đến nhà bạn Châu.
Từ nhà Anh đến nhà Bình có 3 cách chọn 1 con đường.
Từ nhà bạn Bình đến nhà Châu có 5 cách chọn 1 con đường.
Theo quy tắc nhân, số cách chọn đường đi từ nhà Anh đến nhà Châu là 5.3 = 15.
Từ các số
có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?
TH1: số có 1 chữ số thì có 3 cách.
TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì cósố.
TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì cósố
Vậy có số.
Từ các chữ số
,
,
,
,
,
có thể lập được bao nhiêu số tự nhiên lẻ có
chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?
Gọi là số cần tìm
Ta có và
Với thì
hoặc
Với thì
hoặc
Với thì
hoặc
Mỗi trường hợp có số thỏa mãn yêu cầu
Vậy có tất cả số cần tìm.
Biết rằng
thỏa mãn biểu thức
. Tính giá trị biểu thức
?
Ta có:
Lại có:
Từ các chữ số
, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 6 chữ số đôi một khác nhau trong đó phải có 1 và 3 đứng cạnh nhau, không kể thứ tự trước sau.
Gọi là số thỏa yêu cầu bài toán.
Chọn 2 vị trí cạnh nhau từ 6 vị trí (từ ) có: 5 cách.
Xếp số 1 và 3 vào 2 vị trí vừa chọn có: 2 cách.
Chọn số cho 4 vị trí từ tập có:
cách.
Theo quy tắc nhân có: số.
Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa và 3 chuyến máy bay. Hỏi một ngày có bao nhiêu cách lựa chọn đi từ tỉnh A đến tỉnh B?
Trường hợp 1: Số cách chọn đi từ tỉnh A đến tỉnh B bằng ô tô: có 10 cách.
Trường hợp 2: Số cách chọn đi từ tỉnh A đến tỉnh B bằng tàu hỏa: có 5 cách.
Trường hợp 3: Số cách chọn đi từ tỉnh A đến tỉnh B bằng máy bay: có 3 cách.
Vậy số cách lựa chọn đi từ tỉnh A đến tỉnh B là: cách
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?
Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.
Có bao nhiêu số tự nhiên có ba chữ số dạng
với
,
,
sao cho
.
Vì số tự nhiên có ba chữ số dạng với
,
,
sao cho
nên
,
,
. Suy ra số các số có dạng
là
.
Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.