Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một lớp học có 15 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là

    Số cách chọn một bạn nam là 15 cách.

    Số cách chọn một bạn nữ là 10 cách.

    Theo quy tắc nhân ta có số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là 15.10 = 150 cách.

  • Câu 2: Thông hiểu

    Tính tổng các hệ số trong khai triển (1 - 2x)^{2018}.

    Xét khai triển (1 - 2x)^{2018} =C_{2018}^{0} - 2x.C_{2018}^{1} + ( - 2x)^{2}.C_{2018}^{2}  + ... + ( - 2x)^{2018}.C_{2018}^{2018}

    Tổng các hệ số trong khai triển là: S =
C_{2018}^{0} - 2.C_{2018}^{1} + ( - 2)^{2}.C_{2018}^{2} + ( -
2)^{3}.C_{2018}^{3} + ... + ( - 2)^{2018}.C_{2018}^{2018}

    Cho x = 1 ta có: (1 - 2.1)^{2018} = C_{2018}^{0} - 2.1.C_{2018}^{1}+ ( - 2.1)^{2}.C_{2018}^{2} + ... + ( -2.1)^{2018}.C_{2018}^{2018}

    \Leftrightarrow ( - 1)^{2018} = S\Leftrightarrow S = 1

  • Câu 3: Nhận biết

    Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ?

    Mỗi cách xếp 10 học sinh thành một hàng ngang là một hoán vị của tập hợp có 10 phần tử.

    Suy ra số cách sắp xếp là P_{10}.

  • Câu 4: Thông hiểu

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài có nhiều nhất là hai con át?

    Th1: Lấy được 2 con át có C_{4}^{2}.C_{48}^{3} = 103776 cách

    Th2: Lấy được 1 con át có C_{4}^{1}.C_{48}^{4} = 778320 cách

    Th3: Không lấy được con át nào có C_{48}^{5} = 1712304 cách

    Số cách rút 5 con trong đó có nhiều nhất 2 con át là:

    103776 + 778320 + 1712304 = 2594400 cách.

  • Câu 5: Nhận biết

    Số hạng tử trong khai triển {(x - 2y)^4} bằng

    Số hạng tử trong khai triển {(x - 2y)^4} là: 4 + 1 = 5 hạng tử.

  • Câu 6: Nhận biết

    Cho tập hợp M10 phần tử. Số tập con gồm hai phần từ của M là:

    Mỗi cách lấy ra 2 phần tử trong 10 phần tử của M để tạo thành tập con gồm 2 phần tử là một tổ hợp chập 2 của 10phần tử \Rightarrow Số tập con của M gồm 2 phần tử là C_{10}^{2}.

  • Câu 7: Nhận biết

    Cho tập hợp D gồm x phần tử. Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là:

    Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 8: Thông hiểu

    Mỗi bảng số xe gắn máy ở thành phố X có cấu tạo như sau. Phần đầu gồm hai chữ cái trong bảng chữ cái, phần sau gồm 4 chữ số trong các chữ số: 0,1,2,3,4,5,6,7,8,9. Ví dụ: SA0979;EY3535; ... Hỏi có bao nhiêu cách tạo bảng số xe theo cấu tạo trên? (Giả sử bảng chữ cái có tất cả 26 chữ cái)

    Chọn hai chữ cái cho phần đầu có 26^{2} (mỗi chữ số có 26 cách chọn)

    Còn 4 chữ số cho phần đuôi có 10^{4} (mỗi chữ số có 10 cách chọn)

    Vậy có thể tạo được 26^{2}.10^{4} =
6760000

  • Câu 9: Vận dụng

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 23.

    Số các số tự nhiên lớn nhất nhỏ hơn 100 chia hết cho 2396.

    Số các số tự nhiên nhỏ nhất nhỏ hơn 100 chia hết cho 230.

    Số các số tự nhiên nhỏ hơn 100 chia hết cho 23\frac{96
- 0}{6} + 1 = 17.

  • Câu 10: Thông hiểu

    Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n không chia hết cho 10?

    Gọi tập X = \left\{ 0;1;2;3;4;5;6;7;8;9
ight\}n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa mãn yêu cầu:

    Chọn a_{1} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Chọn a_{2} \in X có: 10 cách.

    Chọn a_{3} \in X có: 10 cách.

    Chọn a_{4} \in X có: 10 cách.

    Chọn a_{5} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Theo quy tắc nhân có: 9.10.10.10.9 =
81000 số.

  • Câu 11: Nhận biết

    Một hộp có 5 bi đỏ và 4 bi vàng. Số cách lấy ra hai viên bi từ hộp là:

     Số cách lấy 2 viên bi từ 9 viên bi là: C_9^2=36 (cách).

  • Câu 12: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 13: Thông hiểu

    Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:

    Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.

    Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.

    Vì vậy số hoán vị 6 đối tượng là 6!.

    Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.

    Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!

    Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.

  • Câu 14: Vận dụng

    Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcd} chia hết cho 6 suy ra \left\{ \begin{matrix}
e = \left\{ 0;2 ight\} \\
(a + b + c + d + e) \vdots 3 \\
\end{matrix} ight.

    TH1. Với e = 0 suy ra a + b + c + d \vdots 3, do đó gồm các bộ (1;2;5;7) suy ra có 24 số.

    TH2. Với e = 2 suy ra a + b + c + d + 2 \vdots 3, do đó gồm các bộ (0;1;5;7), (1;5;7;9) suy ra có 42 số.

    Vậy có tất cả 24 + 42 = 66 số cần tìm.

  • Câu 15: Nhận biết

    Bạn Công muốn mua một chiếc áo mới và một chiếc quần mới để đi dự sinh nhật bạn mình. Ở cửa hàng có 12 chiếc áo khác nhau, quần có 15 chiếc khác nhau. Hỏi có bao nhiêu cách chọn một bộ quần và áo?

    Số cách bạn Công chọn một chiếc áo mới là: 12 cách.

    Số cách bạn Công chọn một chiếc quần mới là: 15 cách.

    Theo quy tắc nhân, bạn Công có 12.15 = 180 cách để chọn một bộ quần và áo.

  • Câu 16: Vận dụng

    Khai triển (\sqrt{5} - \sqrt[4]{7})^{124}. Hỏi có tất cả bao nhiêu số hạng hữu tỉ trong khai triển trên?

    Ta có (\sqrt{5} - \sqrt[4]{7})^{124} =
\sum_{k = 0}^{124}{C_{124}^{k}.( - 1)^{k}.5^{\frac{124 -
k}{2}}.7^{\frac{k}{4}}}

    Số hạng hữu tỉ trong khai triển tương ứng với \left\{ \begin{matrix}
\frac{124 - k}{2}\mathbb{\in Z} \\
\frac{k}{4}\mathbb{\in Z} \\
\end{matrix} ight.\  \Leftrightarrow k \in \left\{ 0;4;8;12;...;124
ight\}.

    Vậy số các giá trị k là: \frac{124 - 0}{4} + 1 = 32.

  • Câu 17: Nhận biết

    Hệ số của x^{2} trong khai triển (2x + 3)^{5} là:

    Ta có số hạng tổng quát: T_{k + 1} =C_{5}^{k}.(2x)^{5 - k}.3^{k} = C_{5}^{k}.2^{5 - k}.x^{5 -k}.3^{k}

    Số hạng chứa x^{2} nên 5 - k = 2 \Rightarrow k = 3

    Vậy hệ số của x^{2} trong khai triển đã cho là: C_{5}^{3}.2^{2}.3^{3}.

  • Câu 18: Nhận biết

    Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:

     Số tập con có 3 phần tử từ tập 5 phần tử là: C_5^3 = 10.

  • Câu 19: Thông hiểu

    Giả sử rằng:

    (1 + x)\left( 1 + x + x^{2}
ight)

    = (1 + 1)\left( 1 + 1 + 1^{2}
ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n} ight)

    = m_{0} + m_{1}x + m_{2}x^{2} + ... +
m_{a}x^{a}

    Hãy tính \sum_{i =
0}^{a}m_{i}?

    Ta có:

    \sum_{i = 0}^{a}m_{i} = (1 + 1)\left( 1
+ 1 + 1^{2} ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n}
ight)

    = 2.3.4.....(n + 1) = (n +
1)!

  • Câu 20: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo