Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Biết rằng khai triển nhị thức Newton (x + 2)^{n};\left( n\mathbb{\in N}
ight) có tất cả 6 số hạng. Hãy xác định n?

    Vì trong khai triển nhị thức Newton (x +
2)^{n};\left( n\mathbb{\in N} ight) đã cho có tất cả 6 số hạng nên n + 1 = 6 \Rightarrow n =
5

    Vậy n = 5 là giá trị cần tìm.

  • Câu 2: Nhận biết

    Một lớp có 34 học sinh. Hỏi có bao nhiêu cách chọn 3 học sinh để làm lớp trưởng, lớp phó, bí thư?

     Chọn 3 học sinh từ 34 học sinh rồi xếp vào 3 vai trò lớp trưởng, lớp phó, bí thư có A_{34}^3 cách.

  • Câu 3: Vận dụng

    Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 5 suy ra e = \left\{ 0;5 ight\}.

    TH1. Với e = 0 suy ra có 4 \times 5 \times 4 \times 3 = 240 số cần tìm.

    TH2. Với e = 5, suy ra có 5 \times 4 \times 3 + 3 \times 4 \times 4 \times 3
= 204 số cần tìm.

    Vậy có tất cả 444 số cần tìm.

  • Câu 4: Thông hiểu

    : Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn?

    Có 4 bộ sách được sắp 4 vị trí có 4! cách

    Sắp xếp 3 quyển sách Toán có 3! cách

    Sắp xếp 2 sách Hóa có 2! cách

    Sắp xếp 4 quyển sách Lý có 4! cách

    Sắp xếp 5 quyển sách Sinh có 5! cách

    Vậy số cách sắp xếp số sách trên kệ theo từng môn là: 4!.2!.3!.4!.5! = 829440 cách.

  • Câu 5: Thông hiểu

    Nếu C_{n}^{k}=10A_{n}^{k}=60. Thì k bằng:

     Ta có: \left\{ {\begin{array}{*{20}{c}}{C_n^k = 10}\\{A_n^k = 60}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{n!}}{{k!(n - k)!}} = 10}\\{\frac{{n!}}{{(n - k)!}} = 60}\end{array}} ight.} ight.\Leftrightarrow k! = 6 \Leftrightarrow k = 3.

  • Câu 6: Nhận biết

    Trong một cuốc thi hùng biện, ban tổ chức đã công bố danh sách các chủ đề cho thí sinh gồm 8 chủ đề về lịch sử, 7 chủ đề môi trường, 10 chủ đề về con người và 6 chủ đề về văn hóa. Mỗi thí sinh tham gia thi chỉ được thi với 1 chủ đề. Hỏi mỗi thí sinh có bao nhiêu khả năng lựa chọn chủ đề?

    Số cách chọn chủ đề thi của mỗi thí sinh là: 8 + 7 + 10 + 6 = 31.

  • Câu 7: Nhận biết

    Tìm hệ số h của số hạng chứa x^{5} trong khai triển \left( x^{2} + \frac{2}{x}
ight)^{7}.

    Ta có: \left( x^{2} + \frac{2}{x}
ight)^{7} = {\sum_{k = 0}^{7}{C_{7}^{k}\left( x^{2} ight)^{k}\left(
\frac{2}{x} ight)}}^{7 - k} = \sum_{k = 0}^{7}{C_{7}^{k}.2^{7 -
k}.x^{3k - 7}}

    Ta có: 3k - 7 = 5, suy ra k = 4.

    Vậy hệ số h của số hạng chứa x^{5} trong khai triển\left( x^{2} + \frac{2}{x} ight)^{7}h = C_{7}^{4}.2^{3} = 280.

  • Câu 8: Nhận biết

    Một hộp có 5 bi đỏ và 4 bi vàng. Số cách lấy ra hai viên bi từ hộp là:

     Số cách lấy 2 viên bi từ 9 viên bi là: C_9^2=36 (cách).

  • Câu 9: Thông hiểu

    Trong một bản đồ được lập theo kỹ thuật số của thành phố X, mọi căn nhà trong thành phố đều được lập địa chỉ và “địa chỉ số” của mỗi căn nhà là một dãy gồm 16 chữ số lấy từ hai chữ số 0 và 1. Ví dụ: 0000110000111100 (4 chữ số 0, 2 chữ số 1, 4 chữ số 0, 4 chữ số 1, 2 chữ số 0). Hỏi thành phố X có tối đa bao nhiêu căn nhà?

    Ta có: “địa chỉ số” của mỗi căn nhà là một dãy gồm 16 chữ số

    Mà mỗi chữ số có 2 cách chọn. (0 hoặc 1)

    Nên theo quy tắc nhân, thành phố X có tối đa: 2^{16} căn nhà.

  • Câu 10: Nhận biết

    Số hạng chứa x^{5} trong khai triển (x - 2)^{5} là:

    Công thức số hạng tổng quát: C_{5}^{k}.x^{k}.( - 2)^{5 - k} \Rightarrow k =
5 ta được số hạng chứa x^{5} là: x^{5}

  • Câu 11: Nhận biết

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Đáp án là:

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Chọn 1 sinh viên làm lớp trưởng có 33 cách

    Chọn 1 sinh viên làm lớp phó có 32 cách

    Chọn 1 sinh viên làm bí thư có 31 cách

    33.32.31 = 32736 cách

  • Câu 12: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 13: Thông hiểu

    Tìm hệ số của x^{6} trong khai triển \left( \frac{1}{x} + x^{3} ight)^{3n +
1}với x eq 0, biết n là số nguyên dương thỏa mãn 3C_{n + 1}^{2} + nP_{2} = 4A_{n}^{2}.

    Đk:n \geq 2,\ \ n \in
\mathbb{N.}

    \ \ \ \ \ \ \ 3C_{n + 1}^{2} + nP_{2} =
4A_{n}^{2}

    \Leftrightarrow 3\frac{(n + 1)!}{(n -
1)!2!} + 2!n = 4\frac{n!}{(n - 2)!}

    \Leftrightarrow \frac{3}{2}n(n + 1) + 2n
= 4n(n - 1)

    \Leftrightarrow \frac{5}{2}n^{2} -
\frac{15}{2}n = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0\ \ \ \ (L) \\
n = 3 \\
\end{matrix} ight.

    Với n = 3, nhị thức trở thành \left( \frac{1}{x} + x^{3}
ight)^{10}.

    Số hạng tổng quát là C_{10}^{k}.\left(
\frac{1}{x} ight)^{10 - k}.\left( x^{3} ight)^{k} = C_{10}^{k}.x^{4k
- 10}

    Từ yêu cầu bài toán ta cần có: 4k - 10 =
6 \Leftrightarrow k = 4.

    Vậy hệ số của số hạng chứa x^{6}C_{10}^{4} = 210..

  • Câu 14: Thông hiểu

    Biết rằng (7 -
8x)^{5} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + a_{4}x^{4} +
a_{5}x^{5}. Chọn kết luận đúng?

    Thay x = 1 vào (7 - 8x)^{5} ta được:

    (7 - 8.1)^{5}

    = a_{0} + a_{1}.1 + a_{2}.1^{2} +
a_{3}.1^{3} + a_{4}.1^{4} + a_{5}.1^{5}

    = a_{0} + a_{1} + a_{2} + a_{3} + a_{4}
+ a_{5}

    = \sum_{i = 0}^{5}a_{i} = -
1

  • Câu 15: Vận dụng

    Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

    Đối với bài toán ta xét 2 trường hợp.

    +) Đầu hàng và cuối hàng đều là gói bim bim. Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là. A_{3}^{2} (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau). Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{3}^{2}.6!

    +) Đầu hàng và cuối hàng đều là cốc mì ăn liền. Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là. A_{5}^{2}. Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{6}^{2}.6!

    \Rightarrow Số cách xếp tất cả là. 6!\left( A_{3}^{2} + A_{5}^{2} ight) =
18720.

  • Câu 16: Nhận biết

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ ngồi ở đầu và cuối dãy ghế?

    2 nữ ngồi ở đầu và cuối dãy ghế có 2! cách.

    3 nam ngồi ở 3 ghế giữa có 3! cách.

    Vậy có 2!.3! = 12 cách xếp.

  • Câu 17: Nhận biết

    Thầy giáo chủ nhiệm có 10 quyển sách khác nhau và 8 quyển vở khác nhau. Thầy chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi. Hỏi có bao nhiêu cách chọn khác nhau?

    Chọn một quyển sách có 10 cách chọn.

    Chọn một quyển vở có 8 cách chọn.

    Áp dụng quy tắc cộng có 18 cách chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi.

  • Câu 18: Vận dụng

    Trong khai triển của \left( x^{\frac{1}{15}}y^{\frac{1}{3}} +
x^{\frac{1}{3}}y^{\frac{1}{5}} ight)^{2019}, số hạng mà lũy thừa của xy bằng nhau là số hạng thứ bao nhiêu của khai triển?

    Ta có số hạng thứ k + 1 là : C_{2019}^{k}\left(
x^{\frac{1}{15}}y^{\frac{1}{3}} ight)^{2019 - k}\left(
x^{\frac{1}{3}}y^{\frac{1}{5}} ight)^{k} =
C_{2019}^{k}x^{\frac{2019}{15} + \frac{4}{15}k}y^{\frac{2019}{3} -
\frac{2}{15}k}

    Theo đề bài ta có; \frac{2019}{15} +
\frac{4}{15}k = \frac{2019}{3} - \frac{2}{15}k \Leftrightarrow k =
1346

    Vậy số hạng thỏa yêu cầu bài toán là số hạng thứ 1347.

  • Câu 19: Thông hiểu

    Có bao nhiêu số tự nhiên lẻ trong khoảng (2000; 3000) có thể tạo nên bằng các chữ số 1,2,3,4,5,6 nếu các chữ số không nhất thiết khác nhau?

    Gọi số tự nhiên trong khoảng (2000;3000) có dạng \overline{2abc}

    Vì là số tự nhiên lẻ nên c có 3 lựa chọn là \left\{ 1;3;5 ight\}

    a, b có 6 lựa chọn.

    Vậy có 6.6.3 = 108 số tự nhiên thỏa mãn yêu cầu bài toán.

  • Câu 20: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn A;C ngồi ở hai đầu ghế là:

    Vì A; E ngồi ở hai đầu ghế nên ta có 3!.2! = 12 cách sắp xếp A;B;C;D;E

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo