Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khai triển biểu thức \left( x^{2} - 5y ight)^{5} ta được:

    Ta có:

    \left( x^{2} - 5y
ight)^{5}

    = C_{5}^{0}.\left( x^{2} ight)^{5} +
C_{5}^{1}\left( x^{2} ight)^{4}.( - 5y) + C_{5}^{2}.\left( x^{2}
ight)^{3}.( - 5y)^{2}

    + C_{5}^{3}.\left( x^{2} ight)^{2}.( -
5y)^{3} + C_{5}^{4}.\left( x^{2} ight)^{1}.( - 5y)^{4} +
C_{5}^{5}.\left( x^{2} ight)^{0}.( - 5y)^{5}

    =x^{10} - 25x^{8}y + 250x^{6}y^{2} -1250x^{4}y^{3} + 3125x^{2}y^{4} - 3125y^{5}

  • Câu 2: Vận dụng

    Tìm hệ số của x^{4} trong khai triển nhị thức Newton \left( 2x + \frac{1}{\sqrt[5]{x}}
ight)^{n} với x > 0, biết n là số tự nhiên lớn nhất thỏa mãn A_{n}^{5} \leq 18A_{n -
2}^{4}.

    Điều kiện: \left\{ \begin{matrix}
n \geq 6 \\
n\mathbb{\in Z} \\
\end{matrix} ight.

    Khi đó A_{n}^{5} \leq 18A_{n - 2}^{4}
\Leftrightarrow \frac{n!}{(n - 5)!} \leq 18.\frac{(n - 2)!}{(n -
6)!}

    \Leftrightarrow n(n - 1)(n - 2)(n - 3)(n
- 4) \leq 18(n - 2)(n - 3)(n - 4)(n - 5)

    \Leftrightarrow n(n - 1) \leq 18(n -
5) \Leftrightarrow n^{2} - 19n + 90
\leq 0 \Leftrightarrow 9 \leq n
\leq 10\overset{n ightarrow \max}{ightarrow}n = 10.

    Số hạng tổng quát trong khai triển \left(
2x + \frac{1}{\sqrt[5]{x}} ight)^{10}T_{k + 1} = C_{10}^{k}.(2x)^{10 - k}.\left(
\frac{1}{\sqrt[5]{x}} ight)^{k}

    = C_{10}^{k}.2^{10 - k}.x^{10 - k}.x^{-
\frac{k}{5}} = C_{10}^{k}.2^{10 -
k}.x^{\frac{50 - 6k}{5}}.

    Tìm k sao cho \frac{50 - 6k}{5} = 4 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{4}C_{10}^{5}.2^{10 - 5} =
8064..

  • Câu 3: Thông hiểu

    Tìm tất cả các số tự nhiên có đúng 5 chữ số sao cho trong mỗi số đó chữ số đứng sau lớn hơn chữ số đứng liền trước?

    Gọi số có 5 chữ cố có dạng là \overline{abcde}. Điều kiện a eq 0;a < b < c < d <
e

    Ta chuyển bài toán về tìm số các số tự nhiên có 5 chữ số khác nhau lập từ các chữ số 1;2;3;4;5;6;7;8;9 để lập số thoả yêu cầu của bài toán.

    Do đó sẽ có số các số có 5 chữ số khác nhau lập từ 1;2;3;4;5;6;7;8;9C_{9}^{5} = 126 số

  • Câu 4: Vận dụng

    Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?

    TH1: số có 1 chữ số thì có 3 cách.

    TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì có3.2 = 6số.

    TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì có3.2.1 = 6số

    Vậy có3 + 6 + 6 = 15 số.

  • Câu 5: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12

    Chọn một bạn để xếp vào vị trí ghế số 1 có 12 cách.

    Chọn một bạn để xếp vào vị trí ghế số 7 để khác giới với bạn vị trí ghế số 1 có 6 cách.

    Chọn một bạn để xếp vào vị trí ghế số 2 có 10 cách.

    Chọn một bạn để xếp vào vị trí ghế số 8 để khác giới với bạn vị trí ghế số 1 có 5 cách.

    Cứ tuân theo cách xếp như vậy, ta có số cách xếp là: 12.10.8.6.4.2.6.5.4.3.2 = 33177600

  • Câu 6: Nhận biết

    Một lớp có 15 nam và 20 nữ. Hỏi có bao nhiêu cách chọn 1 bạn đi trực nhật.

     Trường hợp 1: Chọn 1 nam. Có 15 cách.

     Trường hợp 2: Chọn 1 nữ. Có 20 cách.

    Vậy có 15+20 = 35 cách.

  • Câu 7: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn A;C ngồi ở hai đầu ghế là:

    Vì A; E ngồi ở hai đầu ghế nên ta có 3!.2! = 12 cách sắp xếp A;B;C;D;E

  • Câu 8: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

  • Câu 9: Nhận biết

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả là:

     Ta có: (x + 1)^{4} =x^{4}+4x^{3}+6x^{2}+4x+1.

  • Câu 10: Thông hiểu

    Từ tập hợp các chữ số A = \left\{ 1,3,4,5,6,8,9 ight\} có thể lập được bao nhiêu số có ba chữ số đôi một khác nhau và luôn có mặt số 1?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc}

    TH1: \overline{1bc}. Chọn b, c có 5.6 = 30 cách.

    TH2: \overline{a1c}. Chọn b, c có 5.6 = 30 cách.

    TH3: \overline{ab1}. Chọn b, c có 5.6 = 30 cách.

    Vậy có thể lập được 30 + 30 + 30 =
90(số) thỏa mãn yêu cầu đề bài.

  • Câu 11: Nhận biết

    Cho tập hợp M =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Số tập con gồm 3 phần tử của M sao cho không có số 0 là:

    Mỗi tập con gồm 3 phần tử của M không có số 0 là tổ hợp chập 3 của 9 phần tử.

    Số tập con gồm 3 phần tử của M không có số 0 là. C_{9}^{3}.

  • Câu 12: Thông hiểu

    Xác định số hạng không chứa x trong khai triển nhị thức Newton \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0). Biết rằng C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} + ... +
3^{n}.C_{n}^{n} = 256.

    Ta có:

    C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} +
... + 3^{n}.C_{n}^{n} = 256

    \Leftrightarrow (1 + 3)^{n} = 256
\Leftrightarrow 4^{n} = 256 \Leftrightarrow n = 4

    Xét khai triển \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0)

    Số hạng tổng quát C_{4}^{k}.\left( x^{2}
ight)^{4 - k}.\left( \frac{1}{x^{2}} ight)^{k} = C_{4}^{k}.x^{8 -
4k}

    Số hạng không chứa x ứng với 8 - 4k = 0
\Leftrightarrow k = 2

    Suy ra số hạng không chứa x là C_{4}^{2}
= 6.

  • Câu 13: Thông hiểu

    Câu lạc bộ cầu lông gồm 12 tay vợt nam và 9 tay vợt nữ. Hỏi có bao nhiêu cách lập đội đôi nam nữ từ câu lạc bộ để tham gia giải đấu giao lưu các trường?

    Có 12 cách chọn 1 tay vợt nam

    Ứng với mỗi cách chọn 1 tay vợt nam ta có 9 cách chọn một tay vợt nữ

    Theo quy tắc nhân ta có: 9.12 = 108 cách chọn một đôi nam nữ tham gia giải đấu.

  • Câu 14: Nhận biết

    Cho hai số tự nhiên k,x sao cho 0
\leq k \leq n. Chọn khẳng định đúng sau đây?

    Khẳng định đúng là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 15: Nhận biết

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    Đáp án là:

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    2^{10} = 1024 dãy nhị phân 10 bit.

  • Câu 16: Vận dụng

    Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)

    Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là A_{5}^{2}. Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là. 3!.A_{5}^{2}.4! =
2880.

  • Câu 17: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn C ngồi chính giữa là:

    Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp A;B;C;D;E

  • Câu 18: Thông hiểu

    Giả sử rằng:

    (1 + x)\left( 1 + x + x^{2}
ight)

    = (1 + 1)\left( 1 + 1 + 1^{2}
ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n} ight)

    = m_{0} + m_{1}x + m_{2}x^{2} + ... +
m_{a}x^{a}

    Hãy tính \sum_{i =
0}^{a}m_{i}?

    Ta có:

    \sum_{i = 0}^{a}m_{i} = (1 + 1)\left( 1
+ 1 + 1^{2} ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n}
ight)

    = 2.3.4.....(n + 1) = (n +
1)!

  • Câu 19: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 20: Nhận biết

    Giá trị của C_{n}^{0}-C_{n}^{1}+C_{n}^{n-1}-C_{n}^{n} bằng:

    Ta có:

    \begin{matrix}  C_n^0 - C_n^1 + C_n^{n - 1} - C_n^n \hfill \\   = 1 - C_n^1 + C_n^1 - 1 = 0 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 59 lượt xem
Sắp xếp theo