Tìm số hạng không chứa
trong khai triển
.
Công thức số hạng thứ của khai triển
là:
.
Số hạng không chứa ứng với
(thỏa mãn).
Suy ra .
Tìm số hạng không chứa
trong khai triển
.
Công thức số hạng thứ của khai triển
là:
.
Số hạng không chứa ứng với
(thỏa mãn).
Suy ra .
Cho đa giác đều
nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong
của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong
đỉnh của đa giác. Tìm
.
Số tam giác có 3 đỉnh là 3 trong 2n điểm là
Ứng với 2 đường chéo đi qua tâm của đa giác đều cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm
Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.
Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là
Theo giả thiết ta có:
Vậy .
Có bao nhiêu cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?
Đánh số thứ tự các vị trí theo hàng dọc từ đến
.
Trường hợp 1. Nam đứng trước, nữ đứng sau.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Trường hợp 2. Nữ đứng trước, nam đứng sau.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Theo quy tắc cộng ta có. cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.
Tìm số các số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ?
Trường hợp 1: 3 chữ số đều lẻ. Có số thỏa mãn.
Trường hợp 2: số đó gồm 2 chữ số chẵn và 1 chữ số lẻ
- Chọn 2 chữ số chẵn khác nhau có cách.
- Chọn 1 chữ số lẻ có 5 cách.
- Từ 3 số đã chọn đó lập được số.
Do đó có dãy gồm 3 chữ số phân biệt, trong đó có 2 chữ số chẵn, 1 chữ số lẻ kể cả chữ số 0 đứng đầu.
Xét dãy số có 3 chữ số phân biệt, gồm 2 chữ số chẵn, 1 chữ số lẻ mà chữ số đầu bằng 0
- Chọn 1 chữ số lẻ có 5 cách.
- Chọn 1 chữ số chẵn khác chữ số 0 có 4 cách.
Vậy có số có 3 chữ số phân biệt, gồm 2 chữ số chẵn, 1 chữ số lẻ mà chữ số đầu bằng 0.
Do đó có số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ.
Cho tập
. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.
Gọi là số cần lập,
có 1 cách chọn, cách chọn
Trường hợp này có 360 số
có một cách chọn, số cách chọn
Trường hợp này có 300 số.
Vậy có số thỏa yêu cầu bài toán.
Một nhóm học sinh gồm 7 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 1 bạn nam và 1 bạn nữ để trực nhật lớp. Hỏi có bao nhiêu cách chọn?
Số cách chọn một bạn nam là: cách
Số cách chọn một bạn nữ là: cách
Vậy số cách chọn 1 nam, 1 nữ đi trực nhật lớp là: cách chọn.
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là tổ hợp chập 3 của 7 phần từ.
=> Số tập hợp con là: tập hợp
Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác có 3 người, cần có cả nam và nữ, cần có cả nhà toán học và nhà vật lý. Hỏi có bao nhiêu cách?
Trường hợp 1: 2 nhà toán học nữ và 1 nhà vật lý nam có cách
Trường hợp 2: 1 nhà toán học nữ và 2 nhà vật lý nam có cách
Trường hợp 3: 1 nhà toán học nữ, 1 nhà toán học nam và 1 nhà vật lý nam có cách
Theo quy tắc cộng có: cách lập.
Khai triển biểu thức
ta được:
Ta có:
Cho biểu thức
với
,
. Số hạng không chứa
trong khai triển Niu-tơn của
là:
Ta có .
Nên .
Số hạng tổng quát của khai triển là: .
Khi thì số hạng không chứa
là
.
Tính giá trị biểu thức:
.
Xét khai triển
Thay ta được:
Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?
Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.
Có 3 cây bút đỏ, 4 cây bút xanh trong một hộp bút. Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?
Số cách lấy ra 1 cây bút là màu đỏ có 3 cách.
Số cách lấy ra 1 cây bút là màu xanh có 4 cách.
Theo quy tắc cộng, số cách lấy ra 1 cây bút từ hộp bút là: 3 + 4 = 7 cách.
Vậy có 7 cách lấy 1 cây bút từ hộp bút.
Một hộp chứa 5 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên 1 viên bi trong hộp. Số khả năng xảy ra là:
Áp dụng quy tắc cộng ta có số khả năng xảy ra là: 5 + 4 = 9 khả năng.
Một nhóm học sinh gồm
học sinh nam và
học sinh nữ. Hỏi có bao nhiêu cách sắp xếp
học sinh trên thành
hàng dọc sao cho nam nữ đứng xen kẽ?
Xếp học sinh nam thành hàng dọc có
cách xếp.
Giữa học sinh nam có
khoảng trống ta xếp các bạn nữ vào vị trí đó nên có
cách xếp.
Theo quy tắc nhân có cách xếp thoả mãn.
Hệ số của số hạng chứa
trong khai triển nhị thức
(với
) là:
Số hạng tổng quát của khai triển (với
) là:
.
Số hạng trên chứa suy ra
.
Vậy hệ số của số hạng chứa trong khai triển trên là
.
Cho tập hợp
. Có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau từ các chữ số thuộc tập hợp
?
Gọi số tự nhiên có ba chữ số là:
TH1: c = 0
Chữ số a có 6 cách chọn.
Với mỗi cách chọn a có 5 cách chọn chữ số b
=> Số các số tạo thành là: 1 . 5 . 6 = 30 (số)
TH2: => Chữ số c có 3 cách chọn.
Chữ số a có 5 cách chọn, với mỗi cách chọn a ta có 5 cách chọn b.
=> Số các số tạo thành là: 3 . 5 . 5 = 75 (số)
Vậy có tất cả 30 + 75 = 105 (số) thỏa mãn yêu cầu đề bài.
Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Giả sử số đó là
Trường hợp 1. xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2. . Với
chọn
có 6 cách nên có 6 số thỏa mãn. Với
chọn
có 5 cách chọn, và tất nhiên
nên có 5 số thỏa mãn. Do đó có
số thỏa mãn.
Một lớp có 34 học sinh. Hỏi có bao nhiêu cách chọn 3 học sinh để làm lớp trưởng, lớp phó, bí thư?
Chọn 3 học sinh từ 34 học sinh rồi xếp vào 3 vai trò lớp trưởng, lớp phó, bí thư có cách.
Viết khai triển theo công thức nhị thức Niu-tơn
.
Ta có:
Hay .