Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm số hạng chứa x^{4} trong khai triển (x^{2}-\frac{1}{x})^{n} biết A_{n}^{2}-C_{n}^{2}=10.

    Ta có:

    \begin{matrix}  A_n^2 - C_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 - \dfrac{{A_n^2}}{{2!}} = 10 \hfill \\   \Leftrightarrow \dfrac{1}{2}A_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 = 20 \Leftrightarrow n = 5 \hfill \\ \end{matrix}

    Khai triển biểu thức như sau:

    \begin{matrix}  {\left( {{x^2} - \dfrac{1}{x}} ight)^5} = \sumolimits_{k = 0}^5 {C_5^k.{{\left( {{x^2}} ight)}^{5 - k}}.{{\left( { - \dfrac{1}{x}} ight)}^k}}  \hfill \\   = \sumolimits_{k = 0}^5 {C_5^k.{{\left( { - 1} ight)}^k}.{x^{10 - 3k}}}  \hfill \\ \end{matrix}

    Số hạng chứa x^{4} nghĩa là: 10 - 3k = 4 \Rightarrow k = 2

    => Số hạng cần tìm là C_5^2 = 10

  • Câu 2: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 3: Thông hiểu

    Giá trị của n bằng bao nhiêu, biết \frac{5}{C_{5}^{n}}-\frac{2}{C_{6}^{n}}=\frac{14}{C_{7}^{n}}

     Điều kiện: n \le 5.

    Thay n=3 vào phương trình, ta được \frac{5}{C_{5}^{3}}-\frac{2}{C_{6}^{3}}=\frac{14}{C_{7}^{3}}\Leftrightarrow \frac{2}{5} = \frac{2}{5} (đúng). Do đó n=3 là nghiệm của phương trình.

  • Câu 4: Nhận biết

    Số cách lấy một chiếc bút trong hộp gồm 4 chiếc bút bi và 6 chiếc bút máy bằng:

    Áp dụng quy tắc cộng ta có số cách lấy một chiếc bút là:

    4 + 6 = 10 cách.

  • Câu 5: Nhận biết

    Hệ số của x^{31} trong khai triển \left( x + \frac{1}{x^{2}} ight)^{40}(x eq
0) là:

    \left( x + \frac{1}{x^{2}} ight)^{40}
= \sum_{k = 0}^{40}{C_{40}^{k}x^{40 - k}.x^{- 2k}} = \sum_{k =
0}^{40}{C_{40}^{k}x^{40 - 3k}}

    Theo giả thiết: 40 - 3k = 31 \Rightarrow
k = 3.

    Vậy hệ số của x^{31}C_{40}^{3} = 9880.

  • Câu 6: Thông hiểu

    Biết n là số nguyên dương thỏa mãn C_{n}^{n - 1} +
C_{n}^{n - 2} = 78, số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n} là:

    Ta có: C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow \frac{n!}{(n - 1)!.1!} + \frac{n!}{(n - 2)!.2!} = 78
\Leftrightarrow n + \frac{(n - 1)n}{2} = 78

    \Leftrightarrow n^{2} + n - 156 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 12 \\
n = - 13 \\
\end{matrix} ight.\  \Leftrightarrow n = 12 (vì n là số nguyên dương).

    Số hạng tổng quát trong khai triển \left(
x^{3} - \frac{2}{x} ight)^{12}là: ( - 1)^{k}C_{12}^{k}\left( x^{3} ight)^{12 -
k}\left( \frac{2}{x} ight)^{k} = ( - 1)^{k}C_{12}^{k}.2^{k}.x^{36 -
4k}.

    Cho 36 - 4k = 8 \Leftrightarrow k =
7.

    Vậy số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x}
ight)^{12}-
C_{12}^{7}.2^{7}.x^{8} = - 101376x^{8}.

  • Câu 7: Nhận biết

    Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?

    Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là C_{8}^{3}

    Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!

    Vậy số cách trao các huy chương này là C_{8}^{3}.3! = 336

  • Câu 8: Nhận biết

    Số cách xếp 5 học sinh ngồi vào một bàn dài là:

    Ta có số cách xếp 5 học sinh vào một bàn dài là số các hoán vị của 5học sinh đó. Vậy kết quả là: P_{5} = 5! = 120.

  • Câu 9: Vận dụng

    Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    +TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} +
C_{5}^{3}. Vậy số cách lập nhóm trong trường hợp này là. 2.\left( C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1}
+ C_{5}^{3} ight)

    +TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là C_{5}^{1}C_{6}^{1}
+ C_{5}^{2}. Vậy số cách lập nhóm trong trường hợp này là. C_{5}^{1}.C_{6}^{1} +
C_{5}^{2}.

    Vậy số cách lập cần tìm là. 2.\left(
C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} + C_{5}^{3} ight) +
C_{5}^{1}.C_{6}^{1} + C_{5}^{2} = 375.

  • Câu 10: Nhận biết

    Cho đa giác đều có 54 đường chéo. Hãy tính xem đa giác này có bao nhiêu cạnh?

    Đa giác n cạnh có n đỉnh.

    Mỗi đỉnh nối với n - 3 đỉnh khác để tạo ra đường chéo

    Do đó n đỉnh sẽ có n(n -
3)đường

    Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là: \frac{n(n - 3)}{2}

    Theo đề bài ta có:

    \frac{n(n - 3)}{2} = 54 \Leftrightarrow
n^{2} - 3n - 108 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = - 9(ktm) \\
n = 12(tm) \\
\end{matrix} ight.

    Vậy đa giác có 12 cạnh.

  • Câu 11: Nhận biết

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả là:

     Ta có: (x + 1)^{4} =x^{4}+4x^{3}+6x^{2}+4x+1.

  • Câu 12: Vận dụng

    Cho biểu thức P
= \left( \frac{x + 1}{\sqrt[3]{x^{2}} - \sqrt[3]{x} + 1} - \frac{x -
1}{x - \sqrt{x}} ight)^{10} với x
> 0, x eq 1. Số hạng không chứa x trong khai triển Niu-tơn của P là:

    Ta có \frac{x + 1}{\sqrt[3]{x^{2}} -
\sqrt[3]{x} + 1} - \frac{x - 1}{x - \sqrt{x}} = \sqrt[3]{x} + 1 -
\frac{\sqrt{x} + 1}{\sqrt{x}} = \sqrt[3]{x} -
\frac{1}{\sqrt{x}}.

    Nên P = \left( \frac{x +
1}{\sqrt[3]{x^{2}} - \sqrt[3]{x} + 1} - \frac{x - 1}{x - \sqrt{x}}
ight)^{10} = \left( \sqrt[3]{x} - \frac{1}{\sqrt{x}}
ight)^{10}.

    Số hạng tổng quát của khai triển là: C_{10}^{k}x^{\frac{10 - k}{3}}.\left( \frac{-
1}{\sqrt{x}} ight)^{k} = ( - 1)^{k}C_{10}^{k}x^{\frac{20 -
5k}{6}}.

    Khi k = 4 thì số hạng không chứa x(
- 1)^{4}C_{10}^{4} = 210.

  • Câu 13: Nhận biết

    Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?

    Số cách chọn sách Toán là 20 cách.

    Số cách chọn sách Vật lí là 40 cách.

    Số cách chọn sách Hóa học là 50 cách.

    Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.

  • Câu 14: Nhận biết

    Tìm hệ số của số hạng chứa x^{3} trong khai triển nhị thức Newton \left( \frac{2}{3}x + \frac{1}{4}
ight)^{5}?

    Ta có:

    \left( \frac{2}{3}x + \frac{1}{4}
ight)^{5} = \frac{32}{243}x^{5} + \frac{20}{81}x^{4} +
\frac{5}{27}x^{3} + \frac{5}{72}x^{2} + \frac{3}{384}x +
\frac{1}{1024}

    Vậy hệ số của số hạng chứa x^{3} trong khai triển nhị thức là: \frac{5}{27}.

  • Câu 15: Nhận biết

    Thầy giáo chủ nhiệm có 10 quyển sách khác nhau và 8 quyển vở khác nhau. Thầy chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi. Hỏi có bao nhiêu cách chọn khác nhau?

    Chọn một quyển sách có 10 cách chọn.

    Chọn một quyển vở có 8 cách chọn.

    Áp dụng quy tắc cộng có 18 cách chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi.

  • Câu 16: Thông hiểu

    Cho tập hợp N =
\left\{ 0;1;2;3;4;5 ight\}. Có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau từ các chữ số thuộc tập hợp M?

    Gọi số tự nhiên có bốn chữ số là: \overline{abcd};(a eq 0)

    TH1: d = 0 => d có 1 cách.

    Số cách chọn a, b, c lần lượt là 5, 4, 3

    => Số các số tạo thành là: 1.5.4.3 = 60 (số)

    TH2: d \in \left\{ 2;4 ight\} => Chữ số d có 2 cách chọn.

    => Chữ số a có 4 cách.

    => Số cách chọn b, c lần lượt là 4, 3 cách.

    => Số các số tạo thành là: 2.4.4.3 = 96 (số)

    Vậy có tất cả 60 + 96 = 156 (số) thỏa mãn yêu cầu đề bài.

  • Câu 17: Vận dụng

    Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?

    TH1: số có 1 chữ số thì có 3 cách.

    TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì có3.2 = 6số.

    TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì có3.2.1 = 6số

    Vậy có3 + 6 + 6 = 15 số.

  • Câu 18: Nhận biết

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được 2 con át?

    Số cách lấy 5 con trong đó có 2 con át là: C_{4}^{2}.C_{48}^{3} = 103776.

  • Câu 19: Thông hiểu

    Cho tập hợp B =
\left\{ 0,1,2,3,4,5,6,7 ight\}. Có bao nhiêu số tự nhiên không chia hết cho 2 gồm 5 chữ số khác nhau được lập từ tập hợp B?

    Gọi số tự nhiên có năm chữ số cần tìm có dạng \overline{abcde};(a eq 0)

    Số cách chọn e là: 4 cách

    Số cách chọn a là: 4 cách

    Số cách chọn b là: 6 cách

    Số cách chọn c là: 5 cách

    Số cách chọn d là: 4 cách

    Vậy số các số được tạo thành là: 4.6.6.5.4 = 2880 số.

  • Câu 20: Thông hiểu

    Giá trị của x thoả mãn phương trình A_{x}^{10}+ A_{x}^{9}=9A_{x}^{8} là:

    Điều kiện: x \ge10.

    Thay x=11 vào phương trình, ta được: A_{11}^{10} + A_{11}^9 = 9A_{11}^8 (2 vế bằng nhau). Do đó x=11 là nghiệm của phương trình.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 59 lượt xem
Sắp xếp theo