Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là

    Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).

  • Câu 2: Nhận biết

    Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của (3 -
2x)^{5}?

    Khi viết nhị thức (3 - 2x)^{5} dưới dạng khai triển 5 + 1 = 6 số hạng.

  • Câu 3: Thông hiểu

    Một hội nghị bàn tròn có phái đoàn của các nước: Việt Nam có 3 người; Nhật có 5 người; Hàn Quốc có 2 người; Ấn Độ có 3 người; Thái Lan có 4 người. Hỏi có bao nhiêu cách xếp chỗ ngồi cho mọi thành viên sao cho người cùng quốc tịch thì ngồi cạnh nhau?

    Ta thấy tổng số nước tham dự hội nghị là 5 nước.

    Để xếp chỗ ngồi cho mọi thành viên sao cho người cùng quốc tịch thì ngồi cạnh nhau ̀ta thực hiện như sau:

    Xếp cờ của 5 nước vào 5 vị trí xung quanh bàn tròn: có 4! cách xếp.

    Ở vị trí cờ của Việt Nam xếp 3 người vào ba vị trí: có 3! cách xếp.

    Ở vị trí cờ của Nhật xếp 5 người vào năm vị trí: có 5! cách xếp.

    Ở vị trí cờ của Hàn Quốc xếp 2 người vào hai vị trí: có 2! cách xếp.

    Ở vị trí cờ của Ấn Độ xếp 3 người vào ba vị trí: có 3! cách xếp.

    Ở vị trí cờ của Thái Lan xếp 4 người vào bốn vị trí: có 4! cách xếp.

    Áp dụng quy tắc nhân, có tất cả: 4!.3!.5!.2!.3!.4! = 4976640 cách

  • Câu 4: Nhận biết

    Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.

    Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử 

    => Số cách chọn là: A_{10}^2 = 90 (cách)

  • Câu 5: Thông hiểu

    Tìm hệ số của x^{25}y^{10} trong khai triển \left( x^{3} + xy ight)^{15}.

    Số hạng tổng quát của khai triển đã cho là C_{15}^{k}.\left( x^{3} ight)^{15 - k}.(xy)^{k}
= C_{15}^{k}.x^{45 - 2k}.y^{k},

    với 0 \leq k \leq 15, k \in \mathbb{N}. Số hạng này chứa x^{25}y^{10} khi và chỉ khi k = 10 (thỏa mãn).

    Vậy hệ số của x^{25}y^{10} trong khai triển \left( x^{3} + xy
ight)^{15}là C_{15}^{10} =
3003..

  • Câu 6: Nhận biết

    An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?

    Từ nhà An đến nhà Bình có 4 cách chọn đường.

    Từ nhà Bình đến nhà Cường có 6 cách chọn đường.

    Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).

  • Câu 7: Nhận biết

    Số cách lấy một chiếc bút trong hộp gồm 4 chiếc bút bi và 6 chiếc bút máy bằng:

    Áp dụng quy tắc cộng ta có số cách lấy một chiếc bút là:

    4 + 6 = 10 cách.

  • Câu 8: Vận dụng

    Cho n là số nguyên dương thỏa mãn A_{n}^{2} =
C_{n}^{2} + C_{n}^{1} + 4n + 6. Tìm hệ số của số hạng chứa x^{9} của khai triển biểu thức P(x) = \left( x^{2} + \frac{3}{x}
ight)^{n}.

    A_{n}^{2} = C_{n}^{2} + C_{n}^{1} + 4n +
6 \Leftrightarrow \frac{n!}{(n - 2)!} = \frac{n!}{(n - 2)!.2!} +
\frac{n!}{(n - 1)!.1!} + 4n + 6

    \Leftrightarrow n(n - 1) = \frac{n(n -
1)}{2} + n + 4n + 6 \Leftrightarrow n^{2} - 11n - 12 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = - 1\ (l) \\
n = 12\ (n) \\
\end{matrix} ight..

    Khi đó P(x) = \left( x^{2} + \frac{3}{x}
ight)^{12}.

    Công thức số hạng tổng quát: T_{k + 1} =
C_{12}^{k}.\left( x^{2} ight)^{12 - k}.\left( \frac{3}{x} ight)^{k}
= C_{12}^{k}.3^{k}.x^{24 - 3k}.

    Số hạng chứa x^{9} \Rightarrow 24 - 3k =
9 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{9} trong khai triển là C_{12}^{5}.3^{5} =
192456.

  • Câu 9: Nhận biết

    Trong khai triển nhị thức (a + 2)^{n-5}(n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng:

     Khai triển bậc (n-5) có 6 số hạng. Suy ra (n-5) = 5. Vậy n = 10.

  • Câu 10: Thông hiểu

    Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?

     Một tam giác được lập thành từ 3 điểm.

    Cứ 2 điểm thuộc \Delta + 1 điểm nằm ngoài có sẵn, ta được một tam giác.

    Số cách lấy 2 điểm từ 6 điểm thuộc \Delta là: C_6^2=15 (cách).

  • Câu 11: Thông hiểu

    Từ các số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau?

    Mỗi số tự nhiên có ba chữ số khác nhau được lập từ các số 1,2,3,4,5,6 là một chỉnh hợp chập 3 của 6 phần tử.

    Vậy từ các số 1,2,3,4,5,6 có thể lập được: A_{6}^{3} = 120 số tự nhiên có ba chữ số khác nhau.

  • Câu 12: Nhận biết

    Từ các chữ số 1, 2, 3, 4, 5. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Mỗi số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5 là một hoán vị của 5 phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là P_{5} = 5! =
120 (số).

  • Câu 13: Nhận biết

    Cho tập A gồm 12 phần tử. Số tập con có 4 phần tử của tập A là:

    Theo định nghĩa tổ hợp. “ Giả sử tập An phần tử (n
\geq 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho”.

    Do đó theo yêu cầu bài toán số tập con có 4 phần tử của tập A là C_{12}^{4}.

  • Câu 14: Nhận biết

    Tìm hệ số của số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có: \left( x + \frac{1}{x^{2}}
ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}.x^{40 - k}}.\left(
\frac{1}{x^{2}} ight)^{k} = \sum_{k = 0}^{40}{C_{40}^{k}.x^{40 -
3k}}.

    Số hạng tổng quát của khai triển là: T_{k
+ 1} = C_{40}^{k}.x^{40 - 3k}.

    Số hạng chứa x^{31} trong khai triển tương ứng với 40 - 3k = 31
\Leftrightarrow k = 3.

    Vậy hệ số cần tìm là: C_{40}^{3} =
C_{40}^{37} (theo tính chất của tổ hợp: C_{n}^{k} = C_{n}^{n - k}).

  • Câu 15: Vận dụng

    Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Số cách chọn 2 nam đứng ở đầu và cuối là. A_{7}^{2}. Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là A_{6}^{5}. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là. 5!.A_{6}^{5}

    Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. A_{7}^{2}.5!.A_{6}^{5} =
3628800.

  • Câu 16: Nhận biết

    Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:

    Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.

  • Câu 17: Thông hiểu

    Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số được xếp tùy ý?

    Lập một số có 9 chữ số thỏa mãn yêu cầu, thực chất là việc xếp các số 2, 3, 4, 5 vào 4 vị trí tùy ý trong 9 vị trí (5 vị trí còn lại là dành cho chữ số 1 lặp lại 5 lần)

    ⇒ Vậy có tất cả: A_{9}^{4} =
3024 (số)

  • Câu 18: Vận dụng

    Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcd} chia hết cho 6 suy ra \left\{ \begin{matrix}
e = \left\{ 0;2 ight\} \\
(a + b + c + d + e) \vdots 3 \\
\end{matrix} ight.

    TH1. Với e = 0 suy ra a + b + c + d \vdots 3, do đó gồm các bộ (1;2;5;7) suy ra có 24 số.

    TH2. Với e = 2 suy ra a + b + c + d + 2 \vdots 3, do đó gồm các bộ (0;1;5;7), (1;5;7;9) suy ra có 42 số.

    Vậy có tất cả 24 + 42 = 66 số cần tìm.

  • Câu 19: Thông hiểu

    Tìm số hạng không chứa x trong khai triển \left( x^{3} - \frac{1}{x}
ight)^{12}.

    Công thức số hạng thứ (k + 1) của khai triển \left( x^{3} - \frac{1}{x}
ight)^{12}là:

    T_{k} = C_{12}^{k}( - 1)^{k}\left( x^{3}
ight)^{12 - k}.\frac{1}{x^{k}} = C_{12}^{k}( - 1)^{k}{x^{3}}^{6 -
4k},0 \leq k \leq 12,k \in \mathbb{N}.

    Số hạng không chứa x ứng với 36 - 4k = 0 \Leftrightarrow k = 9 (thỏa mãn).

    Suy ra T_{7} = C_{12}^{9}( - 1)^{9} = -
220.

  • Câu 20: Vận dụng

    Có bao nhiêu số tự nhiên gồm 5 chữ số lớn hơn 4 và đôi một khác nhau?

    Gọi số tự nhiên cần tìm có dạng \overline{abcde}.

    Khi đó: acó 5 cách chọn, bcó 4 cách chọn, ccó 3 cách chọn, dcó 2 cách chọn, ecó 1 cách chọn.

    Nên có tất cả5.4.3.2.1 =
120số.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo