Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).
Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số
.
Gọi .
Cách 1: Tính trực tiếp
Vì là số chẵn nên
.
TH 1: có 1 cách chọn
.
Với mỗi cách chọn ta có 6 cách chọn
Với mỗi cách chọn ta có 5 cách chọn
Với mỗi cách chọn ta có
cách chọn
Suy ra trong trường hợp này có số.
TH 2: có 4 cách chọn d
Với mỗi cách chọn , do
nên ta có 5 cách chọn
.
Với mỗi cách chọn ta có 5 cách chọn
Với mỗi cách chọn ta có
cách chọn
Suy ra trong trường hợp này có số.
Vậy có tất cả số cần lập.
Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.
TH1. Có đúng 1 học sinh khối 10: (cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)
TH2. Có đúng 2 học sinh khối 10: (cách).
Có
cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.
Từ khai triển biểu thức
thành đa thức. Tổng các hệ số của đa thức là:
Xét khai triển .
Gọi là tổng các hệ số trong khai triển thì ta có
.
Tìm hệ số của số hạng chứa
trong khai triển nhị thức
, (biết
).
Số hạng tổng quát trong khai triển nhị thức .
.
chứa
.
Vậy hệ số của số hạng chứa trong khai triển nhị thức
bằng:
.
Cho tập
. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.
Trường hợp 1: An và Bình không có mặt trong tổ công tác:
Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có cách.
Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:
Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có cách
Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có cách.
Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng
Như vậy có tất cả số cách là: cách
Giá trị của
thoả mãn phương trình
là:
Điều kiện: .
Thay vào phương trình, ta được:
(2 vế bằng nhau). Do đó
là nghiệm của phương trình.
Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ luôn luôn ngồi kề nhau?
Coi 2 nữ là một phần tử A
Xếp phần tử A và 3 nam vào dãy có 4! cách.
Hoán đổi vị trí 2 nữ trong phần tử A có 2! cách.
Do đó có cách.
Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?
Gọi số cần tìm có dạng
Trường hợp 1: . Có 1 số thỏa mãn yêu cầu bài toán.
Trường hợp2:
a có 1 cách chọn.
c có 1 cách chọn.
b có 2 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Trường hợp 3:
a có 1 cách chọn.
c có 2 cách chọn.
b có 3 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Vậy có: (số).
Một người vào một cửa hàng ăn, người đó chọn thực đơn 1 món ăn trong 5 món khác nhau, 1 loại quả tráng miệng trong 5 loại quả tráng miệng khác nhau, 1 loại đồ uống trong 3 loại đồ uống khác nhau. Có bao nhiêu cách chọn một thực đơn?
Người đó chọn 1 món ăn trong 5 món khác nhau có 5 cách.
Người đó chọn 1 loại quả tráng miệng trong 5 loại quả tráng miệng khác nhau có 5 cách.
Người đó chọn 1 loại đồ uống trong 3 loại đồ uống khác nhau có 3 cách.
Áp dụng quy tắc nhân ta có 5.5.3 = 75cách.
Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:
Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.
Tính số cách chọn một học sinh trong khối lớp 10 tham gia công tác Đoàn. Biết rằng khối 10 có 350 học sinh nam và 245 học sinh nữ?
Áp dụng quy tắc cộng ta có số cách chọn học sinh tham gia công tác Đoàn là: 350 + 245 = 495.
Cho tập hợp
có
phần tử. Số tập con gồm hai phần từ của
là:
Mỗi cách lấy ra phần tử trong
phần tử của
để tạo thành tập con gồm
phần tử là một tổ hợp chập
của
phần tử
Số tập con của
gồm
phần tử là
.
Biết rằng
. Chọn kết luận đúng?
Thay vào
ta được:
Số hạng tử trong khai triển
bằng
Số hạng tử trong khai triển là: 4 + 1 = 5 hạng tử.
Cho các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm
chữ số khác nhau?
Số cách lập số tự nhiên có chữ số khác nhau từ các chữ số đã cho là số hoán vị của
phần tử, do đó có
.
Từ các chữ số
, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 4 chữ số đôi một khác nhau và bắt đầu bằng 56 hoặc 65.
Gọi là số thỏa yêu cầu bài toán.
Chọn có: 2 cách.
Chọn có: 7 cách.
Chọn có: 6 cách.
Theo quy tắc nhân có: số.
Trong khai triển của
, số hạng mà lũy thừa của
và
bằng nhau là số hạng thứ bao nhiêu của khai triển?
Ta có số hạng thứ là :
Theo đề bài ta có;
Vậy số hạng thỏa yêu cầu bài toán là số hạng thứ .
Khai triển biểu thức
ta thu được kết quả là:
Ta có: .