Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tập hợp M = {a; b; c}. Số hoán vị của ba phần tử của M là:

     Số hoán vị của ba phần tử của M là: 3! = 6.

  • Câu 2: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 3: Thông hiểu

    Trong khai triển \left( 3x^{2} + \frac{1}{x}
ight)^{n}biết hệ số của x^{3}3^{4}C_{n}^{5}. Giá trị n có thể nhận là:

    Ta có \left( 3x^{2} + \frac{1}{x}
ight)^{n} = \sum_{k = 0}^{n}{C_{n}^{k}\left( 3x^{2} ight)^{n -
k}\left( \frac{1}{x} ight)^{k}} = \sum_{k = 0}^{n}{C_{n}^{k}3^{n -
k}x^{2n - 3k}}.

    Biết hệ số của x^{3}3^{4}C_{n}^{5} nên \left\{ \begin{matrix}
2n - 3k = 3 \\
n - k = 4 \\
k = 5 \\
0 \leq k \leq n,(k,n \in N) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 5 \\
n = 9 \\
\end{matrix} ight..

  • Câu 4: Nhận biết

    Một đoàn tàu có bốn toa đỗ ở ga. Có bốn hành khách bước lên tàu. Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là:

    Mỗi hành khách có 4 cách chọn toa.

    Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là: 4.4.4.4 = 44 = 256.

  • Câu 5: Nhận biết

    Tìm hệ số của x^{7} trong khai triển (1 + x)^{10}.

    Số hạng tổng quát là: T_{k + 1} =
C_{10}^{k}.x^{k}.

    Số hạng chứa x^{7} trong khai triển (1 + x)^{10} là: T_{8} = C_{10}^{8}.x^{7} nên hệ số là 45.

  • Câu 6: Thông hiểu

    Tìm số hạng không chứa x trong khai triển \left( x^{2} - \frac{1}{x} ight)^{n} biết A_{n}^{2} - C_{n}^{2} =
105.

    Ta có: A_{n}^{2} - C_{n}^{2} = 105
\Leftrightarrow \frac{n!}{(n - 2)!} - \frac{n!}{2!(n - 2)!} =
105 \Leftrightarrow \frac{1}{2}n(n
- 1) = 105 \Leftrightarrow n^{2} -
n - 210 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 15 \\
n = - 14\ \ \ (L) \\
\end{matrix} ight..

    Suy ra số hạng tổng quát trong khai triển: T_{k + 1} = C_{15}^{k}.\left( x^{2} ight)^{15 -
k}.\left( - \frac{1}{x} ight)^{k} = C_{15}^{k}.( - 1)^{k}.x^{30 -
3k}.

    Tìm 30 - 3k = 0 \Leftrightarrow k =
10.

    Vậy hệ số của số hạng không chứa x trong khai triển là: C_{15}^{10}.( - 1)^{10} = 3003.

  • Câu 7: Thông hiểu

    Nếu C_{n}^{k}=10A_{n}^{k}=60. Thì k bằng:

     Ta có: \left\{ {\begin{array}{*{20}{c}}{C_n^k = 10}\\{A_n^k = 60}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{{n!}}{{k!(n - k)!}} = 10}\\{\frac{{n!}}{{(n - k)!}} = 60}\end{array}} ight.} ight.\Leftrightarrow k! = 6 \Leftrightarrow k = 3.

  • Câu 8: Vận dụng

    Tìm hệ số của số hạng chứa x^{6} trong khai triển \left( 2x^{2} - \frac{3}{x} ight)^{n}(x eq
0), biết rằng \frac{2}{C_{n}^{2}} +
\frac{14}{3C_{n}^{3}} = \frac{1}{n} \left( C_{n}^{k} ight. là số tổ hợp chập k của n phần tử).

    Xét phương trình \frac{2}{C_{n}^{2}} +
\frac{14}{3C_{n}^{3}} = \frac{1}{n} (1)

    Điều kiện: n \geq 3,\ n\mathbb{\in
N}

    (1) \Leftrightarrow \frac{2.(n -
2)!.2!}{n!} + \frac{14(n - 3)!.3!}{3.n!} = \frac{1}{n} \Leftrightarrow
\frac{4}{n(n - 1)} + \frac{28}{n(n - 1)(n - 2)} =
\frac{1}{n}

    \Leftrightarrow \frac{4}{n - 1} +\frac{28}{(n - 1)(n - 2)} = 1 \Leftrightarrow 4(n - 2) + 28 = (n - 1)(n- 2)

    \Leftrightarrow n^{2} - 7n - 18 = 0 \Leftrightarrow \left\lbrack\begin{matrix}n = 9 \ = - 2\ (l) \\\end{matrix} ight.

    Với n = 9 ta có: \left( 2x^{2} - \frac{3}{x} ight)^{9} = \sum_{k
= 0}^{9}{C_{9}^{k}.}\left( 2x^{2} ight)^{9 - k}.\left( - \frac{3}{x}
ight)^{k} = \sum_{k = 0}^{9}{C_{9}^{k}.}2^{9 - k}.( - 3)^{k}.x^{18 -
3k}

    Số hạng tổng quát của khai triển là C_{9}^{k}.2^{9 - k}.( - 3)^{k}.x^{18 -
3k}

    Cho 18 - 3k = 6 \Rightarrow k = 4
\Rightarrow hệ số của số hạng chứa x^{6} trong khai triển là C_{9}^{4}.2^{5}.( - 3)^{4} = 326592.

  • Câu 9: Nhận biết

    Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 5?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde} ;\left( {a e 0} ight)

    Do số cần tìm chia hết cho 5 => e \in \left\{ {0;5} ight\} => e có 2 cách chọn.

    a có 9 cách chọn

    b, c, d có 10 cách chọn

    => Số các số tạo thành là: 2.9.10.10.10 = 18 000 số.

  • Câu 10: Vận dụng

    Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcd} chia hết cho 6 suy ra \left\{ \begin{matrix}
e = \left\{ 0;2 ight\} \\
(a + b + c + d + e) \vdots 3 \\
\end{matrix} ight.

    TH1. Với e = 0 suy ra a + b + c + d \vdots 3, do đó gồm các bộ (1;2;5;7) suy ra có 24 số.

    TH2. Với e = 2 suy ra a + b + c + d + 2 \vdots 3, do đó gồm các bộ (0;1;5;7), (1;5;7;9) suy ra có 42 số.

    Vậy có tất cả 24 + 42 = 66 số cần tìm.

  • Câu 11: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau và là số lẻ?

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Vị trí C: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.

    Vị tri A: có 8 cách chọn, bỏ số 0 và khác 1 số ở vị trí C.

    Vị trí B: có 8 cách chọn, khác 1 số ở vị trí C, 1 số ở vị trí A.

    Áp dụng quy tắc nhân, có 5.8.8 = 320 (số).

  • Câu 12: Nhận biết

    Tìm số hạng chứa x^3 trong khai triển \left( x - \frac{1}{2x} ight)^{9}.

    Số hạng thứ k + 1 trong khai triển là: T_{k + 1} = C_{9}^{k}x^{9 - k}
\cdot \left( - \frac{1}{2x} ight)^{k} = C_{9}^{k} \cdot \left( -
\frac{1}{2} ight)^{k}x^{9 - 2}.

    Số hạng chứa x^{3} có giá trị k thỏa mãn: 9 - 2k = 3 \Leftrightarrow k = 3.

    Vậy số hạng chứa x^{3} trong khai triển là: -
\frac{1}{8}C_{9}^{3}x^{3}.

  • Câu 13: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số?

    Cách 1: Số có 3 chữ số là từ 100 đến 999 nên có 999 - 100 + 1 = 900số.

    Cách 2:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a9 cách chọn

    b10 cách chọn

    c10 cách chọn

    Vậy có: 9.10.10 = 900 số.

  • Câu 14: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi xen kẽ nhau trong từng dãy?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Chọn 3 bạn nam, 3 bạn nữ để xếp vào dãy A có C_{6}^{3}.C_{6}^{3}

    Trong dãy đó xếp sao cho nam và nữ ngồi xen kẽ nhau có: 3!.3!.2 cách.

    Xếp 3 nam, 3 nữ còn lại vào dãy B sao cho nam và nữ ngồi xen kẽ nhau có 3!.3!.2 cách.

    Vậy số cách xếp là: C_{6}^{3}.C_{6}^{3}.3!.3!.2.3!.3!.2 =
2073600 cách.

  • Câu 15: Nhận biết

    Trong khai triển (x + 2y)^{5} số hạng chứa x^{2}y^{3} là:

     Ta có: (x+2y)^5={x^5} + 10{x^4}y + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}.

    Vậy số hạng cần tìm là: 80x^{2}y^{3}.

  • Câu 16: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 6 chữ số đôi một khác nhau trong đó phải có 1 và 3 đứng cạnh nhau, không kể thứ tự trước sau.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số thỏa yêu cầu bài toán.

    Chọn 2 vị trí cạnh nhau từ 6 vị trí (từ a_{1} ightarrow a_{6}) có: 5 cách.

    Xếp số 1 và 3 vào 2 vị trí vừa chọn có: 2 cách.

    Chọn số cho 4 vị trí từ tập X\backslash\left\{ 1;3 ight\} có: 7.6.5.4 = 840 cách.

    Theo quy tắc nhân có: 5.2.840 =
8400 số.

  • Câu 17: Nhận biết

    Đếm số tập con gồm 3 phần tử được lấy ra từ tập A = \left\{ a;b;c;d;e;f ight\}?

    Mỗi tập con tập gồm 3phần tử được lấy ra từ tập A6 phần tử là một tổ hợp chập 3 của 6 phần tử.

    Vậy số tập con gồm 3 phần tử của AC_{6}^{3} = 20 tập con.

  • Câu 18: Nhận biết

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:

    Số tập hợp con cần tìm là số tổ hợp chập 3 của 7 phần tử.

    Vậy có C_{7}^{3} tập con cần tìm.

  • Câu 19: Nhận biết

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    Đáp án là:

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    2^{10} = 1024 dãy nhị phân 10 bit.

  • Câu 20: Vận dụng

    Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?

    Chọn 4 Toán, 2 Văn, 2 Lí có C_{10}^{4}C_{5}^{2}C_{8}^{2} cách.

    Chọn 4 Toán, 1 Văn, 3 Lí có C_{10}^{4}C_{5}^{1}C_{8}^{3} cách.

    Chọn 5 Toán, 2 Văn, 1 Lí có C_{10}^{5}C_{5}^{2}C_{8}^{1} cách.

    Chọn 5 Toán, 1 Văn, 2 Lí có C_{10}^{5}C_{5}^{1}C_{8}^{2} cách.

    Chọn 6 Toán, 1 Văn, 1 Lí có C_{10}^{6}C_{5}^{1}C_{8}^{1} cách.

    Tổng lại ta được 181440 cách thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 54 lượt xem
Sắp xếp theo