Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?

    Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.

  • Câu 2: Nhận biết

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    Đáp án là:

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    2^{10} = 1024 dãy nhị phân 10 bit.

  • Câu 3: Nhận biết

    Thực hiện khai triển nhị thức Newton (x + 2y)^{5} ta được kết quả là:

    Ta có:

    (x + 2y)^{5} = x^{5} + 10x^{4}y +
40x^{3}y^{2} + 80x^{2}y^{3} + 80xy^{4} + 32y^{5}

  • Câu 4: Thông hiểu

    Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?

    Gọi \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số cần tìm

    Ta có a_{6} \in \left\{ 1;\ 3;\ 5ight\}\left( a_{1} + a_{2} +a_{3} ight) - \left( a_{4} + a_{5} + a_{6} ight) = 1

    Với a_{6} = 1 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 2 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 4,\ 5 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 4,\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 3,\ 6 ight\} \\\end{matrix} ight.

    Với a_{6} = 3 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 4 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2;\ 4;\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 6 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 5 ight\} \\\end{matrix} ight.

    Với a_{6} = 5 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 6 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 4 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 3 ight\} \\\end{matrix} ight.

    Mỗi trường hợp có 3!.2! = 12 số thỏa mãn yêu cầu

    Vậy có tất cả 6.12 = 72 số cần tìm.

  • Câu 5: Thông hiểu

    Một người có 5 chiếc áo trong đó có 3chiếc áo trắng. Người đó cũng có 3 chiếc cà vạt trong đó có 2 chiếc cà vạt màu vàng. Tìm số cách chọn một chiếc áo và một chiếc cà vạt sao cho đã chọn áo trắng thì không chọn cà vạt màu vàng.

    5 chiếc áo gồm: 3 trắng và 2 màu khác.

    3 chiếc cà vạt gồm: 2 vàng và 1 màu khác.

    Trường hợp 1: Áo trắng, cà vạt màu khác vàng.

    Áo trắng: có 3 cách chọn.

    Cà vạt màu khác vàng: 1 cách chọn.

    Suy ra có: 3.1 = 3 (cách).

    Trường hợp 2: Áo màu khác trắng, cà vạt màu bất kì.

    Áo màu khác trắng: 2 cách chọn.

    Cà vạt màu bất kì: 3 cách chọn.

    Suy ra có: 2.3 = 6 (cách).

    Vậy có: 3+6 = 9 (cách) chọn thỏa mãn yêu cầu đề bài.

  • Câu 6: Vận dụng

    Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)

    Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là A_{5}^{2}. Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là. 3!.A_{5}^{2}.4! =
2880.

  • Câu 7: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 8: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 4 chữ số đôi một khác nhau và bắt đầu bằng 56 hoặc 65.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}} là số thỏa yêu cầu bài toán.

    Chọn \overline{a_{1}a_{2}} \in \left\{
56;65 ight\} có: 2 cách.

    Chọn a_{3} \in X\backslash\left\{
a_{1};a_{2} ight\} có: 7 cách.

    Chọn a_{4} \in X\backslash\left\{
a_{1};a_{2};a_{3} ight\} có: 6 cách.

    Theo quy tắc nhân có: 2.7.6 = 84 số.

  • Câu 9: Nhận biết

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?

    Đánh số thứ tự các vị trí theo hàng dọc từ 1 đến 6.

    Trường hợp 1. Nam đứng trước, nữ đứng sau.

    Xếp nam (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nữ (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Trường hợp 2. Nữ đứng trước, nam đứng sau.

    Xếp nữ (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nam (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Theo quy tắc cộng ta có. 36 + 36 =
72 cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.

  • Câu 10: Nhận biết

    Số cách chọn một học sinh trong nhóm gồm 5 nữ và 4 nam là:

    Áp dụng quy tắc cộng ta có số cách chọn một học sinh là: 5 + 4 = 9 cách.

  • Câu 11: Nhận biết

    Số hạng chứa x^{5} trong khai triển (x - 2)^{5} là:

    Công thức số hạng tổng quát: C_{5}^{k}.x^{k}.( - 2)^{5 - k} \Rightarrow k =
5 ta được số hạng chứa x^{5} là: x^{5}

  • Câu 12: Thông hiểu

    Tìm số hạng chứa x^{4} trong khai triển (x^{2}-\frac{1}{x})^{n} biết A_{n}^{2}-C_{n}^{2}=10.

    Ta có:

    \begin{matrix}  A_n^2 - C_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 - \dfrac{{A_n^2}}{{2!}} = 10 \hfill \\   \Leftrightarrow \dfrac{1}{2}A_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 = 20 \Leftrightarrow n = 5 \hfill \\ \end{matrix}

    Khai triển biểu thức như sau:

    \begin{matrix}  {\left( {{x^2} - \dfrac{1}{x}} ight)^5} = \sumolimits_{k = 0}^5 {C_5^k.{{\left( {{x^2}} ight)}^{5 - k}}.{{\left( { - \dfrac{1}{x}} ight)}^k}}  \hfill \\   = \sumolimits_{k = 0}^5 {C_5^k.{{\left( { - 1} ight)}^k}.{x^{10 - 3k}}}  \hfill \\ \end{matrix}

    Số hạng chứa x^{4} nghĩa là: 10 - 3k = 4 \Rightarrow k = 2

    => Số hạng cần tìm là C_5^2 = 10

  • Câu 13: Nhận biết

    Có thể lập được bao nhiêu số tự nhiên có 4 chữ số từ tập hợp các chữ số M = \left\{
1;2;3;4;5;6 ight\}?

    Gọi số tự nhiên có 4 chữ số là: \overline{abcd};(a eq 0).

    Mỗi chữ số có 6 cách chọn.

    Mà số cần lập gồm 4 chữ số nên theo quy tắc nhân có thể lập được 6^{4} số.

  • Câu 14: Vận dụng

    Cho khai triển (1
+ 3x)^{n} = a_{0} + a_{1}x^{1} + ... + a_{n}x^{n} trong đó n\mathbb{\in N}* và các hệ số thỏa mãn hệ thức a_{0} + \frac{a_{1}}{3} + ... +
\frac{a_{n}}{3^{n}} = 4096. Hệ số lớn nhất là:

    Xét khai triển (1 + 3x)^{n} = a_{0} +
a_{1}x^{1} + ... + a_{n}x^{n}.

    Cho x = \frac{1}{3} ta được \left( 1 + 3.\frac{1}{3} ight)^{n} = a_{0}
+ \frac{a_{1}}{3^{1}} + ... + \frac{a_{n}}{3^{n}} \Rightarrow 2^{n} =
4096 \Leftrightarrow n = 12.

    Khi đó (1 + 3x)^{12} = \sum_{k =
0}^{12}{C_{12}^{k}.3^{k}.x^{k}}.

    Ta có hệ số a_{k} = 3^{k}C_{12}^{k} =
3^{k}.\frac{12!}{k!.(12 - k)!}

    Hệ số a_{k} lớn nhất nên \left\{ \begin{matrix}
a_{k} \geq a_{k - 1} \\
a_{k} \geq a_{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k - 1}.\frac{12!}{(k - 1)!.(12 -
k + 1)!} \\
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k + 1}.\frac{12!}{(k + 1)!.(12 -
k - 1)!} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{3}{k} \geq \frac{1}{13 - k} \\
\frac{1}{12 - k} \geq \frac{3}{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
39 - 3k \geq k \\
k + 1 \geq 36 - 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k \leq \frac{39}{4} \\
k \geq \frac{35}{4} \\
\end{matrix} ight.

    k\mathbb{\in N} nên nhận k = 9.

    Vậy hệ số lớn nhất a_{9} =
3^{9}.C_{12}^{9} = 4330260..

  • Câu 15: Thông hiểu

    Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau mỗi hàng ngang và tất cả các học sinh trong mỗi hàng đều cùng trường?

    Giả sử 4 hàng dọc được kí hiệu là D_{1};D_{2};D_{3};D_{4}

    Theo yêu cầu thì:

    Các bạn trường A được xếp ở D_{1};D_{3}

    Các bạn trường B được xếp ở D_{2};D_{4} hoặc ngược lại.

    Nên số cách xếp là 2.20!.20! cách.

  • Câu 16: Nhận biết

    Một học sinh có 12 quyển sách đôi một khác nhau, trong đó có 2 sách Toán, 4 sách Văn, 6 sách Anh Văn. Hỏi có bao nhiêu cách xếp tất cả các quyển sách lên một kệ sách dài nếu mọi quyển sách cùng môn được xếp kề nhau?

    Có 3! = 6 cách xếp 3 loại sách.

    Có 2! = 2 cách xếp 2 sách Toán.

    Có 4! = 24 cách xếp 4 sách Văn.

    Vậy theo qui tắc nhân có tất cả 6.2.24 = 720 cách xếp thoả mãn yêu cầu đề bài

  • Câu 17: Nhận biết

    Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là

    Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: A_{12}^{3} = 1320 cách.

  • Câu 18: Nhận biết

    Số hạng thứ 13 trong khai triển (2 - x)^{15} bằng?

    Ta có (2 - x)^{15} = \sum_{k =
0}^{15}{C_{15}^{k}.2^{15 - k}.( - x)^{k}}

    Số hạng thứ 13 trong khai triển tương ứng với k = 12.\Rightarrow C_{15}^{12}.2^{15 - 12}.( - x)^{12} =
3640x^{12}.

  • Câu 19: Vận dụng

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

    Nếu chữ số hàng chục là n thì số có chữ số hàng đơn vị là n - 1 thì số các chữ số nhỏ hơn n năm ở hàng đơn vị cũng bằng n. Do chữ số hang chục lớn hơn bằng 1 còn chữ số hang đơn vị thi \geq.

    Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:

    1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =
45.

  • Câu 20: Thông hiểu

    Tìm hệ số của x^{6} trong khai triển \left( \frac{1}{x} + x^{3} ight)^{3n +
1}với x eq 0, biết n là số nguyên dương thỏa mãn 3C_{n + 1}^{2} + nP_{2} = 4A_{n}^{2}.

    Đk:n \geq 2,\ \ n \in
\mathbb{N.}

    \ \ \ \ \ \ \ 3C_{n + 1}^{2} + nP_{2} =
4A_{n}^{2}

    \Leftrightarrow 3\frac{(n + 1)!}{(n -
1)!2!} + 2!n = 4\frac{n!}{(n - 2)!}

    \Leftrightarrow \frac{3}{2}n(n + 1) + 2n
= 4n(n - 1)

    \Leftrightarrow \frac{5}{2}n^{2} -
\frac{15}{2}n = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0\ \ \ \ (L) \\
n = 3 \\
\end{matrix} ight.

    Với n = 3, nhị thức trở thành \left( \frac{1}{x} + x^{3}
ight)^{10}.

    Số hạng tổng quát là C_{10}^{k}.\left(
\frac{1}{x} ight)^{10 - k}.\left( x^{3} ight)^{k} = C_{10}^{k}.x^{4k
- 10}

    Từ yêu cầu bài toán ta cần có: 4k - 10 =
6 \Leftrightarrow k = 4.

    Vậy hệ số của số hạng chứa x^{6}C_{10}^{4} = 210..

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 55 lượt xem
Sắp xếp theo