Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton (x +
1)^{5}?

    Để có tổng các hệ số ta thay x =
1 ta được: (1 + 1)^{2} = 2^{5} =
32

  • Câu 2: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

  • Câu 3: Nhận biết

    Tìm hệ số h của số hạng chứa x^{5} trong khai triển \left( x^{2} + \frac{2}{x}
ight)^{7}.

    Ta có: \left( x^{2} + \frac{2}{x}
ight)^{7} = {\sum_{k = 0}^{7}{C_{7}^{k}\left( x^{2} ight)^{k}\left(
\frac{2}{x} ight)}}^{7 - k} = \sum_{k = 0}^{7}{C_{7}^{k}.2^{7 -
k}.x^{3k - 7}}

    Ta có: 3k - 7 = 5, suy ra k = 4.

    Vậy hệ số h của số hạng chứa x^{5} trong khai triển\left( x^{2} + \frac{2}{x} ight)^{7}h = C_{7}^{4}.2^{3} = 280.

  • Câu 4: Thông hiểu

    Cho tập hợp N =
\left\{ 0;1;2;3;4;5 ight\}. Có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau từ các chữ số thuộc tập hợp M?

    Gọi số tự nhiên có bốn chữ số là: \overline{abcd};(a eq 0)

    TH1: d = 0 => d có 1 cách.

    Số cách chọn a, b, c lần lượt là 5, 4, 3

    => Số các số tạo thành là: 1.5.4.3 = 60 (số)

    TH2: d \in \left\{ 2;4 ight\} => Chữ số d có 2 cách chọn.

    => Chữ số a có 4 cách.

    => Số cách chọn b, c lần lượt là 4, 3 cách.

    => Số các số tạo thành là: 2.4.4.3 = 96 (số)

    Vậy có tất cả 60 + 96 = 156 (số) thỏa mãn yêu cầu đề bài.

  • Câu 5: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn mỗi đội chỉ được trình diễn 1 vở kịch, 1 điệu múa và 1 bài hát. Hỏi đội văn nghệ có bao nhiêu cách chọn chương trình biểu diễn biết rằng chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Chọn 1 vở kịch có 2 cách

    Chọn 1 điệu múa có 3 cách

    Chọn 1 bài hát có 6 cách

    Có 2.3.6 = 36 cách.

  • Câu 6: Nhận biết

    Có bao nhiêu số hạng trong khai triển nhị thức (2x - 3)^{2018}?

    Trong khai triển nhị thức (a +
b)^{n} thì số các số hạng là n +
1 nên trong khai triển (2x -
3)^{2018}2019 số hạng.

  • Câu 7: Nhận biết

    Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?

    Số cách chọn một quyển sách là 8 cách.

    Số cách chọn một cái bút là 10 cách. 

    => Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách. 

  • Câu 8: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có ít nhất 1 nam?

    Chọn ban điều hành gồm 3 học sinh không có học sinh nam nào có C_{15}^{3} = 455 cách

    Số cách chọn ban điều hành gồm 3 học sinh có ít nhất 1 nam có: 9425 cách.

  • Câu 9: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 10: Thông hiểu

    Cho đa giác đều có 2020 đỉnh. Số hình chữ nhật có 4 đỉnh là 4 trong số 2020 điểm là đỉnh của đa giác đã cho là bao nhiều?

    Đa giác đều có 2020 đỉnh có 1010 đường chéo qua tâm, cứ hai đường chéo qua tâm cho ta một hình chữ nhật. Vậy số cách chọn ra 4 đỉnh tạo thành hình chữ nhật là C_{1010}^{2}.

  • Câu 11: Vận dụng

    Cho khai triển (1
+ 3x)^{n} = a_{0} + a_{1}x^{1} + ... + a_{n}x^{n} trong đó n\mathbb{\in N}* và các hệ số thỏa mãn hệ thức a_{0} + \frac{a_{1}}{3} + ... +
\frac{a_{n}}{3^{n}} = 4096. Hệ số lớn nhất là:

    Xét khai triển (1 + 3x)^{n} = a_{0} +
a_{1}x^{1} + ... + a_{n}x^{n}.

    Cho x = \frac{1}{3} ta được \left( 1 + 3.\frac{1}{3} ight)^{n} = a_{0}
+ \frac{a_{1}}{3^{1}} + ... + \frac{a_{n}}{3^{n}} \Rightarrow 2^{n} =
4096 \Leftrightarrow n = 12.

    Khi đó (1 + 3x)^{12} = \sum_{k =
0}^{12}{C_{12}^{k}.3^{k}.x^{k}}.

    Ta có hệ số a_{k} = 3^{k}C_{12}^{k} =
3^{k}.\frac{12!}{k!.(12 - k)!}

    Hệ số a_{k} lớn nhất nên \left\{ \begin{matrix}
a_{k} \geq a_{k - 1} \\
a_{k} \geq a_{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k - 1}.\frac{12!}{(k - 1)!.(12 -
k + 1)!} \\
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k + 1}.\frac{12!}{(k + 1)!.(12 -
k - 1)!} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{3}{k} \geq \frac{1}{13 - k} \\
\frac{1}{12 - k} \geq \frac{3}{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
39 - 3k \geq k \\
k + 1 \geq 36 - 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k \leq \frac{39}{4} \\
k \geq \frac{35}{4} \\
\end{matrix} ight.

    k\mathbb{\in N} nên nhận k = 9.

    Vậy hệ số lớn nhất a_{9} =
3^{9}.C_{12}^{9} = 4330260..

  • Câu 12: Vận dụng

    Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)

    Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là A_{5}^{2}. Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là. 3!.A_{5}^{2}.4! =
2880.

  • Câu 13: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 14: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có 1 nam và 2 nữ?

    Chọn ban điều hành gồm 3 học sinh gồm 1 nam và 2 nữ có C_{25}^{1}.C_{15}^{2} = 2625 cách.

  • Câu 15: Nhận biết

    Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra một học sinh đi dự trại hè của trường. Hỏi có bao nhiêu cách chọn?

    Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:

    Bước 2: Đếm số cách chọn.

    * Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.

    * Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.

    Bước 3: Áp dụng quy tắc cộng.

    Vậy có 20 + 25 = 45 cách chọn.

  • Câu 16: Thông hiểu

    Cho tập hợp các chữ số C = \left\{ 1,2,3,4,5 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau là:

    Mỗi số tự nhiên có 5 chữ số khác nhau được lập từ tập hợp C là một hoán vị của 5.

    Suy ra có thể lập được 5! = 120 số thỏa mãn yêu cầu đề bài.

  • Câu 17: Thông hiểu

    Giải phương trình C_{n}^{2} + 2C_{n}^{1} + C_{n}^{0} = 78. Kết luận nào sau đây đúng?

    Điều kiện: n \geq 2,n\mathbb{\in
N}

    Ta có:

    C_{n}^{2} + 2C_{n}^{1} + C_{n}^{0} =
78

    \Leftrightarrow \frac{n!}{2!(n - 2)!} +
2.\frac{n!}{1!(n - 1)!} + \frac{n!}{0!(n - 0)!} = 78

    \Leftrightarrow \frac{n(n - 1)(n -
2)!}{2!(n - 2)!} + 2.\frac{n(n - 1)!}{1!(n - 1)!} + \frac{n!}{n!} =
78

    \Leftrightarrow \frac{n(n - 1)}{1} + 2n
+ 1 = 78

    \Leftrightarrow n^{2} - n + 4n + 2 =
156

    \Leftrightarrow n^{2} + 3n - 154 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 11(TM) \\
n = - 14(L) \\
\end{matrix} ight.

    Vậy kết luận đúng là: n là số nguyên tố.

  • Câu 18: Nhận biết

    Cho tập hợp M =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Số tập con gồm 3 phần tử của M sao cho không có số 0 là:

    Mỗi tập con gồm 3 phần tử của M không có số 0 là tổ hợp chập 3 của 9 phần tử.

    Số tập con gồm 3 phần tử của M không có số 0 là. C_{9}^{3}.

  • Câu 19: Thông hiểu

    Tổng hệ số của x^{3}x^{2} trong khai triển (1 + 2x)^{4} là:

     Ta có: (1+2x)^4=16{x^4} + 32{x^3} + 24{x^2} + 8x + 1.

    Tổng hệ số của x^3x^2 bằng 32+24=56.

  • Câu 20: Nhận biết

    Một nhóm học sinh gồm 4 học sinh nam và 5 học sinh nữ. Hỏi có bao nhiêu cách sắp xếp 9 học sinh trên thành 1 hàng dọc sao cho nam nữ đứng xen kẽ?

    Xếp 4 học sinh nam thành hàng dọc có 4! cách xếp.

    Giữa 4 học sinh nam có 5 khoảng trống ta xếp các bạn nữ vào vị trí đó nên có 5! cách xếp.

    Theo quy tắc nhân có 4!5! = 2880 cách xếp thoả mãn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 55 lượt xem
Sắp xếp theo