Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.

    TH1. Có đúng 1 học sinh khối 10: 5.1.C_{5}^{4} + 5.C_{5}^{4}.1 = 50(cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)

    TH2. Có đúng 2 học sinh khối 10: C_{5}^{2}.C_{5}^{3}.C_{5}^{5} +
C_{5}^{2}.C_{5}^{4}.C_{5}^{4} + C_{5}^{2}.C_{5}^{5}.C_{5}^{3} =
450(cách).

    \Rightarrow50 + 450 = 500 cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.

  • Câu 2: Thông hiểu

    Cho số tự nhiên n thỏa mãn 3C_{n+1}^{3}-3A_{n}^{2}=42(n-1). Giá trị của biểu thức 3C_{n}^{4}-A_{n}^{2}

    Ta có: 

    \begin{matrix}  3C_{n + 1}^3 - 3A_n^2 = 42(n - 1) \hfill \\  DK:n > 2,n \in \mathbb{Z} \hfill \\   \Leftrightarrow 3\dfrac{{\left( {n + 1} ight)!}}{{3!\left( {n + 1 - 3} ight)!}} - 3\dfrac{{n!}}{{\left( {n - 2} ight)!}} = 42(n - 1) \hfill \\   \Leftrightarrow 3\dfrac{{\left( {n + 1} ight)n.\left( {n - 1} ight).\left( {n - 2} ight)!}}{{3!\left( {n - 2} ight)!}} - 3\dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)!}}{{\left( {n - 2} ight)!}} = 42(n - 1) \hfill \\   \Leftrightarrow \dfrac{{\left( {n + 1} ight)n.\left( {n - 1} ight)}}{2} - 3.n\left( {n - 1} ight) = 42(n - 1) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n - 1 = 0} \\   {{n^2} + n - 6n = 84} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 1\left( {ktm} ight)} \\   \begin{gathered}  n = 12\left( {tm} ight) \hfill \\  n =  - 7\left( {ktm} ight) \hfill \\ \end{gathered}  \end{array}} ight. \hfill \\ \end{matrix}

    Thay n = 12 vào biểu thức ta được: 3C_{12}^4 - A_{12}^2 = 1353

     

  • Câu 3: Nhận biết

    Cho tập hợp M = {a; b; c}. Số hoán vị của ba phần tử của M là:

     Số hoán vị của ba phần tử của M là: 3! = 6.

  • Câu 4: Nhận biết

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ ngồi ở đầu và cuối dãy ghế?

    2 nữ ngồi ở đầu và cuối dãy ghế có 2! cách.

    3 nam ngồi ở 3 ghế giữa có 3! cách.

    Vậy có 2!.3! = 12 cách xếp.

  • Câu 5: Thông hiểu

    Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số 1 xếp kề nhau?

    Gọi 11111 là số a.

    Vậy ta cần sắp các số a, 2, 3, 4, 5.

    ⇒ Số cách sắp xếp số thỏa mãn là: 1.2.3.4.5 = 120 (số).

  • Câu 6: Thông hiểu

    Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?

    Gọi số cần tìm có dạng \overline{abc};\left( a,b \in \left\{ 1;2;5;7;8
ight\},c \in \left\{ 2;8 ight\} ight)

    Trường hợp 1: a = 2;b = 7;c = 8. Có 1 số thỏa mãn yêu cầu bài toán.

    Trường hợp2: a = 2;b < 7;c =
8

    a có 1 cách chọn.

    c có 1 cách chọn.

    b có 2 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.1.2 =
2 (số).

    Trường hợp 3: a < 2;c \in \left\{ 2;8
ight\}

    a có 1 cách chọn.

    c có 2 cách chọn.

    b có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.2.3 =
6 (số).

    Vậy có: 1 + 2 + 6 = 9 (số).

  • Câu 7: Nhận biết

    Lớp 10A có 20 học sinh nam và 15 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra hai học sinh một nam, một nữ để thi đấu cầu lông đôi nam nữ.

     Chọn 1 nam có: 20 cách

    Chọn 1 nữ có: 15 cách

    Vậy số cách chọn 1 nam và 1 nữ là: 20.15 = 300 (cách).

  • Câu 8: Nhận biết

    Tìm hệ số của số hạng chứa x^{10} trong khai triển của biểu thức \left( 3x^{3} - \frac{2}{x^{2}}
ight)^{5}.

    Ta có \left( 3x^{3} - \frac{2}{x^{2}}
ight)^{5} = \sum_{k = 0}^{5}{( - 1)^{k}.C_{5}^{k}.\left( 3x^{3}
ight)^{5 - k}.\left( \frac{2}{x^{2}} ight)^{k}} = \sum_{k = 0}^{5}{(
- 1)^{k}.C_{5}^{k}.3^{5 - k}.2^{k}}x^{15 - 5k}.

    Số hạng chứa x^{10} ứng với 15 - 5k = 10 \Leftrightarrow k =
1.

    Hệ số của số hạng chứa x^{10}( - 1)^{1}C_{5}^{1}.3^{4}.2^{1} = -
810.

  • Câu 9: Vận dụng

    Quan sát mạch điện như sau:

    Mạch điện có 6 công tắc khác nhau, trong đó mỗi công tắc có 2 trạng thái đóng và mở. Hỏi có bao nhiêu cách đóng mở 6 công tắc để mạch điện thông mạch từ E đến F?

    Cả 3 công tắc của nhánh trên đóng còn 1 trong 3 công tắc của nhánh dưới mở có: C_{3}^{1} = 3

    Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có: C_{3}^{2} = 3

    Cả 3 công tắc của nhánh trên đóng còn 3 công tắc của nhánh dưới mở có: C_{3}^{3} = 1

    Cả 3 công tắc của nhánh dưới đóng còn 1 trong 3 công tắc của nhánh trên mở có: Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có: C_{3}^{1} = 3

    Cả 3 công tắc của nhánh dưới đóng còn 3 công tắc nhánh trên mở có: C_{3}^{3} = 1

    Cả 3 công tắc của nhánh trên đóng và cả 3 công tắc nhánh dưới đóng có: 1

    Vậy có tất cả 15 cách.

  • Câu 10: Thông hiểu

    Tổng hệ số của x^{3}x^{2} trong khai triển (1 + 2x)^{4} là:

     Ta có: (1+2x)^4=16{x^4} + 32{x^3} + 24{x^2} + 8x + 1.

    Tổng hệ số của x^3x^2 bằng 32+24=56.

  • Câu 11: Vận dụng

    Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?

    TH1: số có 1 chữ số thì có 3 cách.

    TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì có3.2 = 6số.

    TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì có3.2.1 = 6số

    Vậy có3 + 6 + 6 = 15 số.

  • Câu 12: Nhận biết

    Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?

    Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là C_{8}^{3}

    Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!

    Vậy số cách trao các huy chương này là C_{8}^{3}.3! = 336

  • Câu 13: Nhận biết

    Có bao nhiêu số tự nhiên có hai chữ số mà cả hai chữ số đó đều lẻ?

    - Gọi số tự nhiên có hai chữ số cần lập thỏa mãn yêu cầu bài toán là \overline{ab} (a, b ∈ {1;3;5;7;9})

    + a: có 5 cách chọn

    + b: có 5 cách chọn.

    Dó đó có: 5 x 5 = 25 cách lập số có 2 chữ số mà cả hai chữ số đều lẻ.

  • Câu 14: Nhận biết

    Tìm số hạng chứa x^{7} trong khai triển \left( x - \frac{1}{x} ight)^{13}.

    Ta có công thức của số hạng tổng quát:

    T_{k + 1} = C_{13}^{k}x^{13 - k}.\left(
- \frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - k}( - 1)^{k}x^{- k} =
C_{13}^{k}.( - 1)^{k}x^{13 - 2k}

    Số hạng chứa x^{7}khi và chỉ khi 13 - 2k = 7 \Leftrightarrow k =
3.

    Vậy số hạng chứa x^{7} trong khai triển là -
C_{13}^{3}x^{7}.

  • Câu 15: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn mỗi đội chỉ được trình diễn 1 vở kịch, 1 điệu múa và 1 bài hát. Hỏi đội văn nghệ có bao nhiêu cách chọn chương trình biểu diễn biết rằng chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Chọn 1 vở kịch có 2 cách

    Chọn 1 điệu múa có 3 cách

    Chọn 1 bài hát có 6 cách

    Có 2.3.6 = 36 cách.

  • Câu 16: Thông hiểu

    Một phòng thi có 40 thí sinh, trong đó có thí sinh A và B được xếp chỗ ngồi vào 20 bàn trong một phòng thi, mỗi bàn xếp đủ 2 thí sinh. Có bao nhiêu cách xếp chỗ ngồi sao cho hai thí sinh A và B được ngồi cùng một bàn?

    Chọn một bàn trong 20 bàn để xếp hai thí sinh A và B vào bàn đó có: 20.2! cách.

    Xếp 38 thí sinh còn lại vào các vị trí còn lại có: 38! cách.

    Vậy có 20.2!.38! = 40.38! cách xếp

  • Câu 17: Nhận biết

    Có bao nhiêu số hạng trong khai triển nhị thức (2x - 3)^{2018}?

    Trong khai triển nhị thức (a +
b)^{n} thì số các số hạng là n +
1 nên trong khai triển (2x -
3)^{2018}2019 số hạng.

  • Câu 18: Vận dụng

    Tìm hệ số của số hạng chứa x^{6} trong khai triển \left( 2x^{2} - \frac{3}{x} ight)^{n}(x eq
0), biết rằng \frac{2}{C_{n}^{2}} +
\frac{14}{3C_{n}^{3}} = \frac{1}{n} \left( C_{n}^{k} ight. là số tổ hợp chập k của n phần tử).

    Xét phương trình \frac{2}{C_{n}^{2}} +
\frac{14}{3C_{n}^{3}} = \frac{1}{n} (1)

    Điều kiện: n \geq 3,\ n\mathbb{\in
N}

    (1) \Leftrightarrow \frac{2.(n -
2)!.2!}{n!} + \frac{14(n - 3)!.3!}{3.n!} = \frac{1}{n} \Leftrightarrow
\frac{4}{n(n - 1)} + \frac{28}{n(n - 1)(n - 2)} =
\frac{1}{n}

    \Leftrightarrow \frac{4}{n - 1} +\frac{28}{(n - 1)(n - 2)} = 1 \Leftrightarrow 4(n - 2) + 28 = (n - 1)(n- 2)

    \Leftrightarrow n^{2} - 7n - 18 = 0 \Leftrightarrow \left\lbrack\begin{matrix}n = 9 \ = - 2\ (l) \\\end{matrix} ight.

    Với n = 9 ta có: \left( 2x^{2} - \frac{3}{x} ight)^{9} = \sum_{k
= 0}^{9}{C_{9}^{k}.}\left( 2x^{2} ight)^{9 - k}.\left( - \frac{3}{x}
ight)^{k} = \sum_{k = 0}^{9}{C_{9}^{k}.}2^{9 - k}.( - 3)^{k}.x^{18 -
3k}

    Số hạng tổng quát của khai triển là C_{9}^{k}.2^{9 - k}.( - 3)^{k}.x^{18 -
3k}

    Cho 18 - 3k = 6 \Rightarrow k = 4
\Rightarrow hệ số của số hạng chứa x^{6} trong khai triển là C_{9}^{4}.2^{5}.( - 3)^{4} = 326592.

  • Câu 19: Thông hiểu

    Cho x là số thực dương, số hạng không chứa x trong khai triển nhị thức \left( x + \frac{2}{\sqrt{x}}
ight)^{30}là:

    Ta có \left( x + \frac{2}{\sqrt{x}}
ight)^{30} = \left( x + 2x^{- \frac{1}{2}} ight)^{30} = \sum_{k =
0}^{30}{C_{30}^{k}x^{30 - k}\left( 2x^{\frac{- 1}{2}} ight)^{k} =
\sum_{k = 0}^{30}{C_{30}^{k}2^{k}x^{30 - \frac{3}{2}k}}}

    Số hạng tổng quát thứ k + 1 trong khai triển là T_{k + 1} =
C_{30}^{k}2^{k}x^{30 - \frac{3}{2}k}.

    Số hạng này không chứa x tương ứng với trường hợp 30 - \frac{3k}{2} = 0
\Leftrightarrow k = 20.

    Vậy số hạng không chứa x trong khai triển là T_{21} = C_{30}^{20}2^{20} =
2^{20}C_{30}^{10}.

  • Câu 20: Nhận biết

    Cho tập hợp M30 phần tử. Số tập con gồm 5 phần tử của M là:

    Số tập con gồm 5 phần tử của M chính là số tổ hợp chập 5 của 30 phần tử, nghĩa là bằng C_{30}^{5}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo