Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 2: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

  • Câu 3: Thông hiểu

    Hỏi có bao nhiêu số có 4 chữ số đôi một khác nhau và là số lẻ.

     Gọi số cần lập có dạng: \overline {ABCD}.

    D: có 5 cách chọn (1,3,5,7)

    A: có 8 cách chọn (khác D và khác 0)

    B: có 8 cách chọn (khác D và khác 0)

    C: có 7 cách chọn (khác A,B,D)

    Vậy có 5.8.8.7 = 2240 (số) có 4 chữ số đôi một khác nhau và là số lẻ.

  • Câu 4: Nhận biết

    Giá trị của C_{n}^{0}-C_{n}^{1}+C_{n}^{n-1}-C_{n}^{n} bằng:

    Ta có:

    \begin{matrix}  C_n^0 - C_n^1 + C_n^{n - 1} - C_n^n \hfill \\   = 1 - C_n^1 + C_n^1 - 1 = 0 \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?

    Mỗi tập con có 8 phần tử của tập hợp E là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp E là. C_{10}^{8} = 45.

  • Câu 6: Nhận biết

    Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?

    Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là C_{8}^{3}

    Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!

    Vậy số cách trao các huy chương này là C_{8}^{3}.3! = 336

  • Câu 7: Thông hiểu

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n là số lẻ gồm năm chữ số, trong đó các chữ số cách đều chữ số chính giữa thì giống nhau.

    Vì n là số gồm năm chữ số, trong đó các chữ số cách đều chữ số chính giữa thì giống nhau.

    Gọi n có dạng \overline{abcba} để n là số lẻ ta có

    a có 3 lựa chọn là {1; 5; 9}

    b có 5 lựa chọn.

    c có 5 lựa chọn.

    Vậy có 5.5.3 = 75 số n thỏa mãn yêu cầu bài toán.

  • Câu 8: Nhận biết

    Khai triển biểu thức \left( x^{2} - 5y ight)^{5} ta được:

    Ta có:

    \left( x^{2} - 5y
ight)^{5}

    = C_{5}^{0}.\left( x^{2} ight)^{5} +
C_{5}^{1}\left( x^{2} ight)^{4}.( - 5y) + C_{5}^{2}.\left( x^{2}
ight)^{3}.( - 5y)^{2}

    + C_{5}^{3}.\left( x^{2} ight)^{2}.( -
5y)^{3} + C_{5}^{4}.\left( x^{2} ight)^{1}.( - 5y)^{4} +
C_{5}^{5}.\left( x^{2} ight)^{0}.( - 5y)^{5}

    =x^{10} - 25x^{8}y + 250x^{6}y^{2} -1250x^{4}y^{3} + 3125x^{2}y^{4} - 3125y^{5}

  • Câu 9: Thông hiểu

    Giải phương trình C_{n}^{2} + 2C_{n}^{1} + C_{n}^{0} = 78. Kết luận nào sau đây đúng?

    Điều kiện: n \geq 2,n\mathbb{\in
N}

    Ta có:

    C_{n}^{2} + 2C_{n}^{1} + C_{n}^{0} =
78

    \Leftrightarrow \frac{n!}{2!(n - 2)!} +
2.\frac{n!}{1!(n - 1)!} + \frac{n!}{0!(n - 0)!} = 78

    \Leftrightarrow \frac{n(n - 1)(n -
2)!}{2!(n - 2)!} + 2.\frac{n(n - 1)!}{1!(n - 1)!} + \frac{n!}{n!} =
78

    \Leftrightarrow \frac{n(n - 1)}{1} + 2n
+ 1 = 78

    \Leftrightarrow n^{2} - n + 4n + 2 =
156

    \Leftrightarrow n^{2} + 3n - 154 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 11(TM) \\
n = - 14(L) \\
\end{matrix} ight.

    Vậy kết luận đúng là: n là số nguyên tố.

  • Câu 10: Vận dụng

    Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?

    Gọi số cần tìm có dạng \overline{abcd}. Vì \overline{abcd} chia hết cho 10 suy ra d = 0.

    TH1. Với a = 5, ta có

    + Nếu b = 4 suy ra c = \left\{ 0;1 ight\}, do đó có 2 số cần tìm.

    + Nếu b < 4 suy ra b = \left\{ 0;1 ight\}c = \left\{ 0;1;4;5;6;7;9 ight\}, do đó có 14 số cần tìm.

    TH2. Với a < 5
\Rightarrow a = \left\{ 1;4 ight\} suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn

    C.

    Suy ra có 2 \times 7 \times 7 =
98 số cần tìm. Vậy có tất cả 114 số cần tìm.

  • Câu 11: Nhận biết

    Cho tập hợp M10 phần tử. Số tập con gồm hai phần từ của M là:

    Mỗi cách lấy ra 2 phần tử trong 10 phần tử của M để tạo thành tập con gồm 2 phần tử là một tổ hợp chập 2 của 10phần tử \Rightarrow Số tập con của M gồm 2 phần tử là C_{10}^{2}.

  • Câu 12: Nhận biết

    Để giải một bài tập ta cần phải giải hai bài tập nhỏ. Bài tập 19 cách giải, bài tập 25 cách giải. Số các cách để giải hoàn thành bài tập trên là:

    Sô cách giải bài toán 1 : 9 cách.

    Số cách giải bài toán 2 : 5 cách.

    Áp dụng quy tắc nhân: 9 × 5 = 45 cách.

  • Câu 13: Vận dụng

    Cho n là số nguyên dương thỏa mãn A_{n}^{2} =
C_{n}^{2} + C_{n}^{1} + 4n + 6. Tìm hệ số của số hạng chứa x^{9} của khai triển biểu thức P(x) = \left( x^{2} + \frac{3}{x}
ight)^{n}.

    A_{n}^{2} = C_{n}^{2} + C_{n}^{1} + 4n +
6 \Leftrightarrow \frac{n!}{(n - 2)!} = \frac{n!}{(n - 2)!.2!} +
\frac{n!}{(n - 1)!.1!} + 4n + 6

    \Leftrightarrow n(n - 1) = \frac{n(n -
1)}{2} + n + 4n + 6 \Leftrightarrow n^{2} - 11n - 12 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = - 1\ (l) \\
n = 12\ (n) \\
\end{matrix} ight..

    Khi đó P(x) = \left( x^{2} + \frac{3}{x}
ight)^{12}.

    Công thức số hạng tổng quát: T_{k + 1} =
C_{12}^{k}.\left( x^{2} ight)^{12 - k}.\left( \frac{3}{x} ight)^{k}
= C_{12}^{k}.3^{k}.x^{24 - 3k}.

    Số hạng chứa x^{9} \Rightarrow 24 - 3k =
9 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{9} trong khai triển là C_{12}^{5}.3^{5} =
192456.

  • Câu 14: Vận dụng

    Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.

    Vì chữ số đứng đầu chẵn nên a_{1}4 cách chọn, chữ số đứng cuối lẻ nên a_{8} có 4 cách chọn. Các số còn lại có 6.5.4.3.2.1 cách chọn

    Vậy có 4^{2}.6.5.4.3.2.1 = 11520 số thỏa yêu cầu bài toán.

  • Câu 15: Nhận biết

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Đáp án là:

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Chọn 1 sinh viên làm lớp trưởng có 33 cách

    Chọn 1 sinh viên làm lớp phó có 32 cách

    Chọn 1 sinh viên làm bí thư có 31 cách

    33.32.31 = 32736 cách

  • Câu 16: Nhận biết

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.

    Số các số tự nhiên lớn nhất nhỏ hơn 100 chia hết cho 2 và 3 là 96.

    Số các số tự nhiên nhỏ nhất nhỏ hơn 100 chia hết cho 2 và 3 là 0.

    Số các số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3 là \frac{96 - 0}{6} + 1 = 17.

  • Câu 17: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi xen kẽ nhau trong từng dãy?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Chọn 3 bạn nam, 3 bạn nữ để xếp vào dãy A có C_{6}^{3}.C_{6}^{3}

    Trong dãy đó xếp sao cho nam và nữ ngồi xen kẽ nhau có: 3!.3!.2 cách.

    Xếp 3 nam, 3 nữ còn lại vào dãy B sao cho nam và nữ ngồi xen kẽ nhau có 3!.3!.2 cách.

    Vậy số cách xếp là: C_{6}^{3}.C_{6}^{3}.3!.3!.2.3!.3!.2 =
2073600 cách.

  • Câu 18: Nhận biết

    Phát biểu nào sau đây đúng?

    Phát biểu đúng là: (a + b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}

  • Câu 19: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển (3x + 2)^{4}?

    Số hạng tổng quát theo thứ tự giảm dần số mũ x là:

    C_{4}^{k}(3x)^{4 - k}.2^{k} =
C_{4}^{k}.3^{4 - k}.2^{k}.x^{4 - k}

    Số hạng chứa x^{3} ứng với 4 - k = 3 \Rightarrow k = 1

    Số hạng cần tìm là C_{4}^{1}.3^{4 -
1}.2.x^{4 - 1} = 216x^{3}.

  • Câu 20: Thông hiểu

    Tìm số hạng không chứa x trong khai triển \left( x^{3} - \frac{1}{x}
ight)^{12}.

    Công thức số hạng thứ (k + 1) của khai triển \left( x^{3} - \frac{1}{x}
ight)^{12}là:

    T_{k} = C_{12}^{k}( - 1)^{k}\left( x^{3}
ight)^{12 - k}.\frac{1}{x^{k}} = C_{12}^{k}( - 1)^{k}{x^{3}}^{6 -
4k},0 \leq k \leq 12,k \in \mathbb{N}.

    Số hạng không chứa x ứng với 36 - 4k = 0 \Leftrightarrow k = 9 (thỏa mãn).

    Suy ra T_{7} = C_{12}^{9}( - 1)^{9} = -
220.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo