Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    +TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} +
C_{5}^{3}. Vậy số cách lập nhóm trong trường hợp này là. 2.\left( C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1}
+ C_{5}^{3} ight)

    +TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là C_{5}^{1}C_{6}^{1}
+ C_{5}^{2}. Vậy số cách lập nhóm trong trường hợp này là. C_{5}^{1}.C_{6}^{1} +
C_{5}^{2}.

    Vậy số cách lập cần tìm là. 2.\left(
C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} + C_{5}^{3} ight) +
C_{5}^{1}.C_{6}^{1} + C_{5}^{2} = 375.

  • Câu 2: Vận dụng

    Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8.

    Gọi x = \overline{abcd};\ a,b,c,d \in
\left\{ 0,1,2,4,5,6,8 ight\}.

    Cách 1: Tính trực tiếp

    x là số chẵn nên d \in \left\{ 0,2,4,6,8 ight\}.

    TH 1: d = 0 \Rightarrow có 1 cách chọn d.

    Với mỗi cách chọn d ta có 6 cách chọn a \in \left\{ 1,2,4,5,6,8
ight\}

    Với mỗi cách chọn a,d ta có 5 cách chọn b \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a ight\}

    Với mỗi cách chọn a,b,d ta có 4 cách chọn c \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a,b ight\}

    Suy ra trong trường hợp này có 1.6.5.4 =
120 số.

    TH 2: d eq 0 \Rightarrow d \in \left\{
2,4,6,8 ight\} \Rightarrow có 4 cách chọn d

    Với mỗi cách chọn d, do a eq 0 nên ta có 5 cách chọn

    a \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ d ight\}.

    Với mỗi cách chọn a,d ta có 5 cách chọn b \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a ight\}

    Với mỗi cách chọn a,b,d ta có 4 cách chọn c \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a,b ight\}

    Suy ra trong trường hợp này có 4.5.5.4 =
400 số.

    Vậy có tất cả 120 + 400 = 520 số cần lập.

  • Câu 3: Nhận biết

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ ngồi ở đầu và cuối dãy ghế?

    2 nữ ngồi ở đầu và cuối dãy ghế có 2! cách.

    3 nam ngồi ở 3 ghế giữa có 3! cách.

    Vậy có 2!.3! = 12 cách xếp.

  • Câu 4: Nhận biết

    Tìm hệ số của số hạng chứa x^{3} trong khai triển nhị thức Newton \left( \frac{2}{3}x + \frac{1}{4}
ight)^{5}?

    Ta có:

    \left( \frac{2}{3}x + \frac{1}{4}
ight)^{5} = \frac{32}{243}x^{5} + \frac{20}{81}x^{4} +
\frac{5}{27}x^{3} + \frac{5}{72}x^{2} + \frac{3}{384}x +
\frac{1}{1024}

    Vậy hệ số của số hạng chứa x^{3} trong khai triển nhị thức là: \frac{5}{27}.

  • Câu 5: Nhận biết

    Có sáu quả cầu xanh đánh số từ 1 đến 6, năm quả cầu đỏ đánh số từ 1 đến 5 và bảy quả cầu vàng đánh số từ 1 đến 7. Hỏi có bao nhiêu cách lấy ra ba quả cầu vừa khác màu vừa khác số?

    +) Chọn 1 quả màu đỏ có 5 cách.

    +) Chọn 1 quả màu xanh khác số với quả màu đỏ có 5 cách.

    +) Chọn 1 quả màu vàng khác số với quả màu đỏ và quả màu xanh có 5 cách.

    Vậy số cách lấy ra 3 quả cầu vừa khác màu, vừa khác số là: 5.5.5 = 125.

  • Câu 6: Thông hiểu

    Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách chọn 2 người sao cho luôn có 2 màu áo khác nhau.

     Trường hợp 1: 1 áo vàng + 1 áo đỏ

    Có: C_3^1.C_4^1 = 12 (cách).

    Trường hợp 2: 1 áo đỏ + 1 áo xanh

    Có: C_4^1.C_5^1 = 20 (cách).

    Trường hợp 3: 1 áo xanh + 1 áo vàng

    Có: C_5^1.C_3^1 = 15 (cách)

    Vậy có 12+20+15=47 (cách).

  • Câu 7: Nhận biết

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?

    Đánh số thứ tự các vị trí theo hàng dọc từ 1 đến 6.

    Trường hợp 1. Nam đứng trước, nữ đứng sau.

    Xếp nam (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nữ (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Trường hợp 2. Nữ đứng trước, nam đứng sau.

    Xếp nữ (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nam (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Theo quy tắc cộng ta có. 36 + 36 =
72 cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.

  • Câu 8: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có ít nhất 1 nam?

    Chọn ban điều hành gồm 3 học sinh không có học sinh nam nào có C_{15}^{3} = 455 cách

    Số cách chọn ban điều hành gồm 3 học sinh có ít nhất 1 nam có: 9425 cách.

  • Câu 9: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn C ngồi chính giữa là:

    Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp A;B;C;D;E

  • Câu 10: Thông hiểu

    Trong khai triển \left( 3x^{2} + \frac{1}{x}
ight)^{n}biết hệ số của x^{3}3^{4}C_{n}^{5}. Giá trị n có thể nhận là:

    Ta có \left( 3x^{2} + \frac{1}{x}
ight)^{n} = \sum_{k = 0}^{n}{C_{n}^{k}\left( 3x^{2} ight)^{n -
k}\left( \frac{1}{x} ight)^{k}} = \sum_{k = 0}^{n}{C_{n}^{k}3^{n -
k}x^{2n - 3k}}.

    Biết hệ số của x^{3}3^{4}C_{n}^{5} nên \left\{ \begin{matrix}
2n - 3k = 3 \\
n - k = 4 \\
k = 5 \\
0 \leq k \leq n,(k,n \in N) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 5 \\
n = 9 \\
\end{matrix} ight..

  • Câu 11: Vận dụng

    Cho khai triển (1 - 2x)^{n} = a_{0} + a_{1}x + a_{2}x^{2} + ... +
a_{n}x^{n}. Tìm hệ số a_{5} biết rằng a_{0} + a_{1} + a_{2} = 71.

    Ta có (1 - 2x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}( - 2x)^{k}}. Vậy a_{0} = 1; a_{1} = - 2C_{n}^{1}; a_{2} = 4C_{n}^{2}.

    Theo bài ra a_{0} + a_{1} + a_{2} =
71 nên ta có:

    1 - 2C_{n}^{1} + 4C_{n}^{2} = 71
\Leftrightarrow 1 - 2\frac{n!}{1!(n - 1)!} + 4\frac{n!}{2!(n - 2)!} = 71
\Leftrightarrow 1 - 2n + 2n(n - 1) = 71 \Leftrightarrow 2n^{2} - 4n - 70
= 0 \Leftrightarrow n^{2} - 2n - 35 = 0 \Leftrightarrow n = 7 (thỏa mãn) hoặc n = - 5 (loại).

    Từ đó ta có a_{5} = C_{7}^{5}( - 2)^{5} =
- 672.

  • Câu 12: Thông hiểu

    Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số 1 xếp kề nhau?

    Gọi 11111 là số a.

    Vậy ta cần sắp các số a, 2, 3, 4, 5.

    ⇒ Số cách sắp xếp số thỏa mãn là: 1.2.3.4.5 = 120 (số).

  • Câu 13: Nhận biết

    Tìm hệ số h của số hạng chứa x^{5} trong khai triển \left( x^{2} + \frac{2}{x}
ight)^{7}.

    Ta có: \left( x^{2} + \frac{2}{x}
ight)^{7} = {\sum_{k = 0}^{7}{C_{7}^{k}\left( x^{2} ight)^{k}\left(
\frac{2}{x} ight)}}^{7 - k} = \sum_{k = 0}^{7}{C_{7}^{k}.2^{7 -
k}.x^{3k - 7}}

    Ta có: 3k - 7 = 5, suy ra k = 4.

    Vậy hệ số h của số hạng chứa x^{5} trong khai triển\left( x^{2} + \frac{2}{x} ight)^{7}h = C_{7}^{4}.2^{3} = 280.

  • Câu 14: Thông hiểu

    Giá trị của x thoả mãn phương trình A_{x}^{10}+ A_{x}^{9}=9A_{x}^{8} là:

    Điều kiện: x \ge10.

    Thay x=11 vào phương trình, ta được: A_{11}^{10} + A_{11}^9 = 9A_{11}^8 (2 vế bằng nhau). Do đó x=11 là nghiệm của phương trình.

  • Câu 15: Nhận biết

    Có bao nhiêu cách xếp 5 bạn ABCDE vào 1 chiếc ghế dài sao cho bạn A ngồi chính giữa?

    Xếp bạn A ngồi chính giữa: có 1 cách.

    Khi đó xếp 4 bạn BCDE vào 4 vị trí còn lại, có 4! = 24 cách.

    Vậy có tất cả 24 cách xếp.

  • Câu 16: Thông hiểu

    Có thể lập được bao nhiêu chữ số có hai chữ số trong đó cả hai chữ số trong số đó đều là số lẻ?

    Gọi số có hai chữ số là: \overline{ab};(a
eq 0)

    Vì hai chữ số đều là chữ số lẻ nên a,b
\in \left\{ 1;3;5;7;9 ight\}.

    Áp dụng quy tắc nhân ta có: 5.5 =
25 cách.

  • Câu 17: Thông hiểu

    Hệ số của x^{3} trong khai triển 3x^{3} + (1 + x)^{5} bằng:

    Ta có:

    {(1 + x)^5} = \sumolimits_{k = 0}^5 {C_5^k{{.1}^{5 - k}}.{x^k}}

    Hệ số của x3 trong khai triển {(1 + x)^5} là: C_5^3{.1^{5 - 3}} = 10

    => Hệ số của x^{3} trong khai triển 3x^{3} + (1 + x)^{5} bằng: 3 + 10 = 13

  • Câu 18: Nhận biết

    Có bao nhiêu cách chọn một học sinh từ nhóm gồm 15 học sinh nam và 20 học sinh nữ?

    Số cách chọn một học sinh trong nhóm học sinh là: 15 + 20 = 35 cách.

  • Câu 19: Nhận biết

    Phát biểu nào sau đây đúng?

    Phát biểu đúng là: (a + b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}

  • Câu 20: Vận dụng

    Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

    Đối với bài toán ta xét 2 trường hợp.

    +) Đầu hàng và cuối hàng đều là gói bim bim. Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là. A_{3}^{2} (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau). Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{3}^{2}.6!

    +) Đầu hàng và cuối hàng đều là cốc mì ăn liền. Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là. A_{5}^{2}. Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{6}^{2}.6!

    \Rightarrow Số cách xếp tất cả là. 6!\left( A_{3}^{2} + A_{5}^{2} ight) =
18720.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo