Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton
?
Để có tổng các hệ số ta thay ta được:
Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton
?
Để có tổng các hệ số ta thay ta được:
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Cho đa giác đều
nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong
của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong
đỉnh của đa giác. Tìm
.
Số tam giác có 3 đỉnh là 3 trong 2n điểm là
Ứng với 2 đường chéo đi qua tâm của đa giác đều cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm
Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.
Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là
Theo giả thiết ta có:
Vậy .
Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được 2 con át?
Số cách lấy 5 con trong đó có 2 con át là: .
Biết rằng khai triển nhị thức Newton
với
có tất cả 6 số hạng. Hãy xác định
?
Vì trong khai triển nhị thức Newton đã cho có tất cả 6 số hạng nên
Vậy n = 8 là giá trị cần tìm.
Cho tập hợp
. Có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau từ các chữ số thuộc tập hợp
?
Gọi số tự nhiên có ba chữ số là:
TH1: c = 0
Chữ số a có 6 cách chọn.
Với mỗi cách chọn a có 5 cách chọn chữ số b
=> Số các số tạo thành là: 1 . 5 . 6 = 30 (số)
TH2: => Chữ số c có 3 cách chọn.
Chữ số a có 5 cách chọn, với mỗi cách chọn a ta có 5 cách chọn b.
=> Số các số tạo thành là: 3 . 5 . 5 = 75 (số)
Vậy có tất cả 30 + 75 = 105 (số) thỏa mãn yêu cầu đề bài.
Từ
người cần chọn ra một đoàn đại biểu gồm
trưởng đoàn,
phó đoàn,
thư kí và
ủy viên. Số cách chọn thỏa mãn là:
Số cách chọn người trong
người làm trưởng đoàn là.
cách.
Số cách chọn người trong
người còn lại làm phó đoàn là.
cách.
Số cách chọn người trong
người còn lại làm thư kí là.
cách.
Số cách chọn người trong
người còn lại làm ủy viên là.
cách.
Vậy số cách chọn đoàn đại biểu là .
Tìm
thuộc tập hợp số tự nhiên, biết rằng
(
là số tổ hợp chập k của n phần tử).
Trước hết ta chứng minh công thức với
và
Thật vậy, (đpcm)
Áp dụng công thức trên ta có
Theo đề .
Hệ số
trong khai triển nhị thức
bằng:
Hệ số của trong khai triển
là:
.
Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:
Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.
Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.
Vì vậy số hoán vị 6 đối tượng là 6!.
Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.
Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!
Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.
Có bao nhiêu số tự nhiên nhỏ hơn
chia hết cho
và
.
Số các số tự nhiên lớn nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ hơn chia hết cho
và
là
.
Khai triển
thành đa thức ta được biểu thức gồm mấy số hạng?
Biểu thức khai triển thành đa thức có 5 hạng tử.
Một tổ có
học sinh nữ và
học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên hai học sinh của tổ đó đi trực nhật biết cần có cả nam và nữ.
Chọn một học sinh nữ có 5 cách.
Chọn một học sinh nam có 6 cách.
Áp dụng quy tắc nhân, có 5.6 = 30 cách chọn hai học sinh có cả nam và nữ.
Từ các số
,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên có
chữ số khác nhau đôi một?
Mỗi cách lập số tự nhiên có 5 chữ số khác nhau đôi một hoán vị của 5 phần tử.
Vậy có số cần tìm.
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn mỗi đội chỉ được trình diễn 1 vở kịch, 1 điệu múa và 1 bài hát. Hỏi đội văn nghệ có bao nhiêu cách chọn chương trình biểu diễn biết rằng chất lượng các vở kịch, điệu múa, bài hát là như nhau?
Chọn 1 vở kịch có 2 cách
Chọn 1 điệu múa có 3 cách
Chọn 1 bài hát có 6 cách
Có 2.3.6 = 36 cách.
Biết hệ số của
trong khai triển của
là – 270. Giá trị của n là
Khai triển biểu thức như sau:
Hệ số của x3 trong khai triển bằng -270
=>
Cho tập hợp
. Có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau từ các chữ số thuộc tập hợp
?
Gọi số tự nhiên có bốn chữ số là:
TH1: d = 0 => d có 1 cách.
Số cách chọn a, b, c lần lượt là 5, 4, 3
=> Số các số tạo thành là: 1.5.4.3 = 60 (số)
TH2: => Chữ số d có 2 cách chọn.
=> Chữ số a có 4 cách.
=> Số cách chọn b, c lần lượt là 4, 3 cách.
=> Số các số tạo thành là: 2.4.4.3 = 96 (số)
Vậy có tất cả 60 + 96 = 156 (số) thỏa mãn yêu cầu đề bài.
Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:
Số tập con có 3 phần tử từ tập 5 phần tử là: .
Giả sử một công việc phải hoàn thành qua 2 giai đoạn:
Giai đoạn 1 có a cách thực hiện.
Với mỗi cách thực hiện của giai đoạn 1 ta có b cách thực hiện cho giai đoạn 2.
Khi đó số cách thực hiện công việc là:
Áp dụng quy tắc nhân ta có số cách thực hiện công việc là cách.
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12
Trường hợp 1: Các bạn nam gồi ghế ghi số chẵn ở dãy A và số lẻ ở dãy B.
Các bạn nữ ngồi ở ghế ghi số lẻ của dãy A và số chẵn ở dãy B có: cách.
Trường hợp 2: Ngược lại có cách.
Vậy số cách xếp là: cách.