Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?

    Chọn 4 Toán, 2 Văn, 2 Lí có C_{10}^{4}C_{5}^{2}C_{8}^{2} cách.

    Chọn 4 Toán, 1 Văn, 3 Lí có C_{10}^{4}C_{5}^{1}C_{8}^{3} cách.

    Chọn 5 Toán, 2 Văn, 1 Lí có C_{10}^{5}C_{5}^{2}C_{8}^{1} cách.

    Chọn 5 Toán, 1 Văn, 2 Lí có C_{10}^{5}C_{5}^{1}C_{8}^{2} cách.

    Chọn 6 Toán, 1 Văn, 1 Lí có C_{10}^{6}C_{5}^{1}C_{8}^{1} cách.

    Tổng lại ta được 181440 cách thỏa mãn.

  • Câu 2: Thông hiểu

    Từ tập hợp các chữ số A = \left\{ 1,2,3,4,5,6 ight\} có thể lập được bao nhiêu số có ba chữ số khác nhau thuộc khoảng (300;500)?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc};(a eq 0)

    Số cần tìm thuộc khoảng (300;500) nên a \in \left\{ 3;4 ight\}=> a có 2 cách chọn.

    Số cách chọn b là 5 cách chọn

    Số cách chọn c là 4 cách chọn

    Vậy có thể lập được 2.5.4 =
40(số) thỏa mãn yêu cầu đề bài.

  • Câu 3: Nhận biết

    Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là

    Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: A_{12}^{3} = 1320 cách.

  • Câu 4: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 5: Vận dụng

    Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).

    Thứ 2: có 12 cách chọn bạn đi thăm

    Thứ 3: có 12 cách chọn bạn đi thăm

    Thứ 4: có 12 cách chọn bạn đi thăm

    Thứ 5: có 12 cách chọn bạn đi thăm

    Thứ 6: có 12 cách chọn bạn đi thăm

    Thứ 7: có 12 cách chọn bạn đi thăm

    Chủ nhật: có 12 cách chọn bạn đi thăm

    Vậy theo quy tắc nhân, có 12^{7} =
35831808 (kế hoạch).

  • Câu 6: Nhận biết

    Có bao nhiêu số hạng trong khai triển (6x + 4)^{4}?

    Trong khai triển nhị thức (6x +
4)^{4}n = 4 nên có 5 số hạng.

  • Câu 7: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 5 chữ số đôi một khác nhau và tận cùng bằng một chữ số khác 3.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa yêu cầu bài toán.

    Chọn a_{5} \in X\backslash\left\{ 3
ight\} có: 8 cách.

    Chọn a_{1} \in X\backslash\left\{ a_{5}
ight\} có: 8 cách.

    Chọn a_{2} \in X\backslash\left\{
a_{1};a_{5} ight\} có: 7 cách.

    Chọn a_{3} \in X\backslash\left\{
a_{1};a_{5};a_{2} ight\} có: 6 cách.

    Chọn a_{4} \in X\backslash\left\{
a_{1};a_{5};a_{2};a_{3} ight\} có: 5 cách.

    Theo quy tắc nhân có: 8.8.7.6.5 =
13440 số.

  • Câu 8: Vận dụng

    Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \left( \sqrt[3]{3} +
\sqrt[5]{5} ight)^{2019}?

    Ta có \left( \sqrt[3]{3} + \sqrt[5]{5}
ight)^{2019} = \sum_{k = 0}^{2019}{C_{2019}^{k}.\left( \sqrt[3]{3}
ight)^{2019 - k}.\left( \sqrt[5]{5} ight)^{k}} = \sum_{k =
0}^{2019}{C_{2019}^{k}.3^{\frac{2019 -
k}{3}}.5^{\frac{k}{5}}}.

    Để trong khai triển có số hạng là số nguyên thì \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
\frac{2019 - k}{3}\mathbb{\in N} \\
\frac{k}{5}\mathbb{\in N} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
673 - \frac{k}{3}\mathbb{\in N} \\
\frac{k}{5}\mathbb{\in N} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
k \vdots 15 \\
\end{matrix} ight..

    Ta có k \vdots 15 \Rightarrow k =
15m0 \leq k \leq 2019
\Leftrightarrow 0 \leq 15m \leq 2019 \Leftrightarrow 0 \leq m \leq
134,6. Suy ra có 135 số hạng là số nguyên trong khai triển của biểu thức.

  • Câu 9: Nhận biết

    Hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x - \frac{2}{x\sqrt{x}}
ight)^{12} (với x >
0) là:

    Số hạng tổng quát của khai triển \left( x
- \frac{2}{x\sqrt{x}} ight)^{12} (với x > 0) là:

    T_{k + 1} = C_{12}^{k}.x^{12 - k}.\left(
- \frac{2}{x\sqrt{x}} ight)^{k} = ( - 2)^{k}.C_{12}^{k}.x^{12 -
k}.x^{- \frac{3k}{2}} = ( - 2)^{k}.C_{12}^{k}.x^{12 -
\frac{5k}{2}}.

    Số hạng trên chứa x^{7} suy ra 12 - \frac{5k}{2} = 7 \Leftrightarrow k =
2.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển trên là = ( -
2)^{2}.C_{12}^{2} = 264.

  • Câu 10: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn C ngồi chính giữa là:

    Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp A;B;C;D;E

  • Câu 11: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x - 3)^{4} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (x + 2)^{5}C_{5}^{2}.2^{2}.x^{3} = 40x^{3}

    Số hạng chứa x^{3} trong khai triển (x - 3)^{4}C_{4}^{1}.( - 3)^{1}.x^{3} = -
12x^{3}

    Do đó số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x -
3)^{4} đã cho là: 40x^{3} - ( -
12)x^{3} = 52x^{3}

    Vậy số hạng cần tìm là 52x^{3}.

  • Câu 12: Thông hiểu

    Tìm số hạng không chứa x trong khai triển \left( x^{2} - \frac{1}{x} ight)^{n} biết A_{n}^{2} - C_{n}^{2} =
105.

    Ta có: A_{n}^{2} - C_{n}^{2} = 105
\Leftrightarrow \frac{n!}{(n - 2)!} - \frac{n!}{2!(n - 2)!} =
105 \Leftrightarrow \frac{1}{2}n(n
- 1) = 105 \Leftrightarrow n^{2} -
n - 210 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 15 \\
n = - 14\ \ \ (L) \\
\end{matrix} ight..

    Suy ra số hạng tổng quát trong khai triển: T_{k + 1} = C_{15}^{k}.\left( x^{2} ight)^{15 -
k}.\left( - \frac{1}{x} ight)^{k} = C_{15}^{k}.( - 1)^{k}.x^{30 -
3k}.

    Tìm 30 - 3k = 0 \Leftrightarrow k =
10.

    Vậy hệ số của số hạng không chứa x trong khai triển là: C_{15}^{10}.( - 1)^{10} = 3003.

  • Câu 13: Nhận biết

    Biểu thức C_{4}^{0}x^{4}+C_{4}^{1}x^{3}y+C_{4}^{2}x^{2}y^{2}+C_{4}^{3}xy^{3}+C_{4}^{4}y^{4} bằng:

    Ta có:

    C_{4}^{0}x^{4}+C_{4}^{1}x^{3}y+C_{4}^{2}x^{2}y^{2}+C_{4}^{3}xy^{3}+C_{4}^{4}y^{4} =(x + y)^{4}

  • Câu 14: Thông hiểu

    Một nhóm học sinh có 5 nam và 3 nữ. Hỏi có bao nhiêu cách sắp xếp các học sinh thành hàng dọc sao cho các bạn học sinh nam đứng liền nhau và các học sinh nữ đứng liền nhau?

    Để xếp 8 học sinh đã cho thành hàng dọc sao cho các học sinh nam đứng liền nhau và các học sinh nữ đứng liền nhau ta thực hiện các bước:

    Bước 1: Xếp vị trí cho nam và nữ: có 2 cách (5 nam đứng đầu hàng, 3 nữ đứng cuối hàng hoặc 5 nam đứng cuối hàng, 3 nữ đầu hàng).

    Bước 2: Xếp chỗ cho 5 nam vào 5 vị trí có 5! cách.

    Bước 3: Xếp chỗ cho 3 nữ vào 3 vị trí có 3! cách.

    Áp dụng quy tắc nhân ta có: 2.5!.3! =
1440 (cách).

  • Câu 15: Nhận biết

    Một hộp có 5 bi đỏ và 4 bi vàng. Số cách lấy ra hai viên bi từ hộp là:

     Số cách lấy 2 viên bi từ 9 viên bi là: C_9^2=36 (cách).

  • Câu 16: Thông hiểu

    : Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn?

    Có 4 bộ sách được sắp 4 vị trí có 4! cách

    Sắp xếp 3 quyển sách Toán có 3! cách

    Sắp xếp 2 sách Hóa có 2! cách

    Sắp xếp 4 quyển sách Lý có 4! cách

    Sắp xếp 5 quyển sách Sinh có 5! cách

    Vậy số cách sắp xếp số sách trên kệ theo từng môn là: 4!.2!.3!.4!.5! = 829440 cách.

  • Câu 17: Nhận biết

    Cho hai số tự nhiên k,x sao cho 0
\leq k \leq n. Chọn khẳng định đúng sau đây?

    Khẳng định đúng là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 18: Vận dụng

    Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcd} chia hết cho 6 suy ra \left\{ \begin{matrix}
e = \left\{ 0;2 ight\} \\
(a + b + c + d + e) \vdots 3 \\
\end{matrix} ight.

    TH1. Với e = 0 suy ra a + b + c + d \vdots 3, do đó gồm các bộ (1;2;5;7) suy ra có 24 số.

    TH2. Với e = 2 suy ra a + b + c + d + 2 \vdots 3, do đó gồm các bộ (0;1;5;7), (1;5;7;9) suy ra có 42 số.

    Vậy có tất cả 24 + 42 = 66 số cần tìm.

  • Câu 19: Nhận biết

    Một nhóm học sinh gồm 4 học sinh nam và 5 học sinh nữ. Hỏi có bao nhiêu cách sắp xếp 9 học sinh trên thành 1 hàng dọc sao cho nam nữ đứng xen kẽ?

    Xếp 4 học sinh nam thành hàng dọc có 4! cách xếp.

    Giữa 4 học sinh nam có 5 khoảng trống ta xếp các bạn nữ vào vị trí đó nên có 5! cách xếp.

    Theo quy tắc nhân có 4!5! = 2880 cách xếp thoả mãn.

  • Câu 20: Nhận biết

    Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 5?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde} ;\left( {a e 0} ight)

    Do số cần tìm chia hết cho 5 => e \in \left\{ {0;5} ight\} => e có 2 cách chọn.

    a có 9 cách chọn

    b, c, d có 10 cách chọn

    => Số các số tạo thành là: 2.9.10.10.10 = 18 000 số.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo