Có bao nhiêu số hạng trong khai triển
?
Trong khai triển nhị thức có
nên có 5 số hạng.
Có bao nhiêu số hạng trong khai triển
?
Trong khai triển nhị thức có
nên có 5 số hạng.
Tìm số hạng không chứa
trong khai triển
biết
.
Ta có:
.
Suy ra số hạng tổng quát trong khai triển: .
Tìm .
Vậy hệ số của số hạng không chứa trong khai triển là:
.
Cho tập hợp
có thể lập được bao nhiêu số tự nhiên có 4 chữ số?
Gọi số tự nhiên có 4 chữ số cần tìm là .
Số cách chọn a là 4 cách
Số cách chọn b là 4 cách
Số cách chọn c là 4 cách
Số cách chọn d là 4 cách
Vậy số các số tự nhiên có 4 chữ số có thể lập được là .
Cho tập
. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Một tổ có
học sinh nữ và
học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên hai học sinh của tổ đó đi trực nhật biết cần có cả nam và nữ.
Chọn một học sinh nữ có 5 cách.
Chọn một học sinh nam có 6 cách.
Áp dụng quy tắc nhân, có 5.6 = 30 cách chọn hai học sinh có cả nam và nữ.
Một hộp chứa 5 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên 1 viên bi trong hộp. Số khả năng xảy ra là:
Áp dụng quy tắc cộng ta có số khả năng xảy ra là: 5 + 4 = 9 khả năng.
Có 1 con mèo vàng,
con mèo đen,
con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào
cái ghế sao cho mỗi ghế chỉ có một con mèo. Đếm số cách xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau.
Số cách xếp con mèo vàng và con mèo đen ở cạnh nhau là .
Xem nhóm con mèo vàng và đen này là một phần tử, cùng với con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím, ta được
phần tử. Xếp
phần tử này là.
Vậy có .
Hệ số của
trong khai triển thành đa thức của
bằng bao nhiêu? Cho biết n là số tự nhiên thỏa mãn:
.
Ta có
Thay vào
:
Thay vào
:
Phương trình trừ
theo vế:
.
Theo đề ta có
Số hạng tổng quát của khai triển :
Theo giả thiết ta có .
Vậy hệ số cần tìm .
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).
Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?
Gọi số in trên vé có dạng
Số cách chọn là 10 (
có thể là 0).
Số cách chọn là 9.
Số cách chọn là 8.
Số cách chọn là 7.
Số cách chọn là 6.
Do đó có 10.9.8.7.6 = 23460 (số).
Trong khai triển nhị thức Newton của
, số hạng thứ hai theo số mũ tăng dần của biến
là:
Ta có:
Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?
Số cách chọn một quyển sách là 8 cách.
Số cách chọn một cái bút là 10 cách.
=> Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách.
Một nhóm học sinh có 5 nam và 3 nữ. Hỏi có bao nhiêu cách sắp xếp các học sinh thành hàng dọc sao cho các bạn học sinh nam đứng liền nhau và các học sinh nữ đứng liền nhau?
Để xếp 8 học sinh đã cho thành hàng dọc sao cho các học sinh nam đứng liền nhau và các học sinh nữ đứng liền nhau ta thực hiện các bước:
Bước 1: Xếp vị trí cho nam và nữ: có 2 cách (5 nam đứng đầu hàng, 3 nữ đứng cuối hàng hoặc 5 nam đứng cuối hàng, 3 nữ đầu hàng).
Bước 2: Xếp chỗ cho 5 nam vào 5 vị trí có 5! cách.
Bước 3: Xếp chỗ cho 3 nữ vào 3 vị trí có 3! cách.
Áp dụng quy tắc nhân ta có: (cách).
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam đứng cạnh nhau và nữ đứng cạnh nhau:
Trường hợp 1: Nữ đứng trước
Có 6 vị trí để xếp, vì nam đứng cạnh nhau và nữ đứng cạnh nhau nên nữ sẽ đứng vị trí số 1, 2, 3 còn nam đứng vị trí số 4, 5, 6
Sắp xếp học sinh nữ vào vị trí 1, 2, 3
Vị trí số 1 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nữ)
Vị trí số 2 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nữ còn lại)
Vị trí số 3 có 1 cách chọn (vì chỉ còn 1 bạn nữ để chọn)
Có 6 vị trí để xếp, vì nam nữ đứng xen kẽ nên nữ sẽ đứng vị trí số 1, 3, 5 còn nam đứng vị trí số 2, 4, 6.
Sắp xếp học sinh nam vào vị trí 4, 5, 6
Vị trí số 4 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nam)
Vị trí số 5 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nam còn lại)
Vị trí số 6 có 1 cách chọn (vì chỉ còn 1 bạn nam để chọn)
Trường hợp 1 có 3.2.1.3.2.1 = 36 (cách xếp)
Trường hợp 2: Nam đứng trước
Tương tự như trường hợp 1, trường hợp 2 có 36 (cách xếp)
Vậy áp dụng quy tắc cộng ta có cả hai trường hợp có 36 + 36 = 72 (cách xếp).
Tính số cách sắp xếp
nam sinh và
nữ sinh vào một dãy ghế hàng ngang có
chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.
Sắp xếp nữ sinh vào
ghế.
cách.
Xem nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với
nam sinh. có
cách
vậy có cách sắp xếp.
Từ các số
,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên có
chữ số khác nhau đôi một?
Mỗi cách lập số tự nhiên có 5 chữ số khác nhau đôi một hoán vị của 5 phần tử.
Vậy có số cần tìm.
Số hạng chứa
trong khai triển biểu thức
là:
Ta có: .
Số hạng cần tìm là: .
Tính tổng
?
Xét khai triển
Chọn ta được:
Cho đa giác n cạnh. Tìm n để đa giác có số đường chéo gấp đôi số cạnh.
Đa giác n cạnh có n đỉnh.
Mỗi đỉnh nối với đỉnh khác để tạo ra đường chéo
Do đó n đỉnh sẽ có đường
Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là:
Theo bài ra ta có:
Vậy .
Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?
Gọi số cần tìm có dạng . Vì
chia hết cho 10 suy ra
.
TH1. Với , ta có
+ Nếu suy ra
, do đó có 2 số cần tìm.
+ Nếu suy ra
và
, do đó có 14 số cần tìm.
TH2. Với suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn
C.
Suy ra có số cần tìm. Vậy có tất cả 114 số cần tìm.