Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?

    Mỗi cách phân công \mathbf{3} bạn An, Bình, Công vào 3 chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của 3 phần tử. Vậy có 3!\ \  = \ \ 6 cách.

  • Câu 2: Nhận biết

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả là:

     Ta có: (x + 1)^{4} =x^{4}+4x^{3}+6x^{2}+4x+1.

  • Câu 3: Thông hiểu

    Biết hệ số của x^{3} trong khai triển của {(1 - 3x)^n} là – 270. Giá trị của n là

    Khai triển biểu thức như sau:

    \begin{matrix}  {(1 - 3x)^n} = \sumolimits_{k = 0}^n {C_n^k.{{\left( 1 ight)}^{n - k}}.{{\left( { - 3x} ight)}^k}}  \hfill \\   = \sumolimits_{k = 0}^n {C_n^k.{{\left( { - 3} ight)}^k}.{x^k}}  \hfill \\ \end{matrix}

    Hệ số của x3 trong khai triển bằng -270

    => C_n^3.{\left( { - 3} ight)^3} =  - 270 \Rightarrow n = 5

  • Câu 4: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số?

    Cách 1: Số có 3 chữ số là từ 100 đến 999 nên có 999 - 100 + 1 = 900số.

    Cách 2:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a9 cách chọn

    b10 cách chọn

    c10 cách chọn

    Vậy có: 9.10.10 = 900 số.

  • Câu 5: Nhận biết

    Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có 5 sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở 5 vị trí khác nhau. Yêu cầu mỗi vị trí có đúng 1 sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 người đó?

    Mỗi cách xếp 5 sinh viên vào 5 vị trí thỏa đề là một hoán vị của 5 phần tử.

    Suy ra số cách xếp là 5! = 120 cách.

  • Câu 6: Vận dụng

    Trong khai triển của \left( x^{\frac{1}{15}}y^{\frac{1}{3}} +
x^{\frac{1}{3}}y^{\frac{1}{5}} ight)^{2019}, số hạng mà lũy thừa của xy bằng nhau là số hạng thứ bao nhiêu của khai triển?

    Ta có số hạng thứ k + 1 là : C_{2019}^{k}\left(
x^{\frac{1}{15}}y^{\frac{1}{3}} ight)^{2019 - k}\left(
x^{\frac{1}{3}}y^{\frac{1}{5}} ight)^{k} =
C_{2019}^{k}x^{\frac{2019}{15} + \frac{4}{15}k}y^{\frac{2019}{3} -
\frac{2}{15}k}

    Theo đề bài ta có; \frac{2019}{15} +
\frac{4}{15}k = \frac{2019}{3} - \frac{2}{15}k \Leftrightarrow k =
1346

    Vậy số hạng thỏa yêu cầu bài toán là số hạng thứ 1347.

  • Câu 7: Nhận biết

    Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?

    Từ nhà Nam đến nhà Hải có 4 con đường.

    Từ nhà Hải đến nhà Cường có 6 con đường.

    Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).

  • Câu 8: Nhận biết

    Khai triển nhị thức Niu-tơn của (3 - 2x)^{2019} có bao nhiêu số hạng?

    Ta có: Khai triển nhị thức Niu-tơn (a +
b)^{n}n + 1 số hạng.

    Vậy trong khai triển nhị thức Niu-tơn của (3 - 2x)^{2019}2020 số hạng.

  • Câu 9: Nhận biết

    An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?

    Từ nhà An đến nhà Bình có 4 cách chọn đường.

    Từ nhà Bình đến nhà Cường có 6 cách chọn đường.

    Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).

  • Câu 10: Nhận biết

    Đếm số cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài. Biết các sách Văn phải xếp kề nhau?

    Vì các sách Văn phải xếp kề nhau nên ta xem 5 cuốn sách Văn là một phần tử.

    Xếp 7 cuốn sách toán lên kệ có 7! cách.

    Giữa 7 cuốn sách Toán có 8 khoảng trống, ta xếp phần tử chứa 5 cuốn sách Văn vào 8 vị trí đó có 8 cách.

    5 cuốn sách Văn có thể hoán đổi vị trí cho nhau ta được 5! cách.

    Vậy số cách sắp xếp thỏa mãn yêu cầu bài toán là. 8.7!.5! = 8!.5!.

  • Câu 11: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 12: Thông hiểu

    Có 3 người đàn ông, 2 người đàn bà và 1 đứa trẻ được xếp ngồi vào 6 cái ghế xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho đứa trẻ ngồi giữa hai người đàn ông?

    Ta đánh số thứ tự cho 6 chiếc ghế từ số 1 đến số 6

    Ta thực hiện việc xếp 6 người vào 6 chiếc ghế sao cho đứa trẻ ngồi giữa hai người đàn ông như sau:

    Xếp đứa trẻ ngồi vào 1 trong các ghế có số thứ tự từ 2 đến 5 có 4 cách.

    Chọn và xếp 2 người đàn ông trong 3 người đàn ông vào 2 ghế bên cạnh đứa trẻ: A_{3}^{2} = 6 cách.

    Xếp 3 người còn lại vào 3 ghế còn lại có 3! Cách.

    Áp dụng quy tắc nhân, có tất cả: 4.6.6 =
144 cách.

  • Câu 13: Nhận biết

    Cho các số 1,5, 6,7. Hỏi lập được bao nhiêu số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho?

    Số các số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho là: 4! = 24số.

  • Câu 14: Thông hiểu

    Tìm số hạng chứa x^{5} trong khai triển \left( x - \frac{2}{x} ight)^{n}, biết n là số tự nhiên thỏa mãn C_{n}^{3} = \frac{4}{3}n +
2C_{n}^{2}.

    Điều kiện : n \geq 3,\ n \in
\mathbb{Z}.

    Ta có C_{n}^{3} = \frac{4}{3}n +2C_{n}^{2} \Leftrightarrow \frac{n!}{3!(n - 3)!} = \frac{4}{3}n +\frac{n!}{(n - 2)!}

    \Leftrightarrow n(n - 1)(n - 2) = 8n + 6n(n -1)

    \Leftrightarrow n^{2} - 3n + 2 = 8 + 6n -
6 \Leftrightarrow n^{2} - 9n = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 0 \\
n = 9 \\
\end{matrix} ight.. Đối chiếu điều kiện ta được n = 9.

    Số hạng tổng quát của khai triển \left( x
- \frac{2}{x} ight)^{9},là : C_{9}^{k}x^{9 - k}.\frac{( - 2)^{k}}{x^{k}} = ( -
2)^{k}C_{9}^{k}x^{9 - 2k}

    Số hạng này chứa x^{5}ứng với 9 - 2k = 5 \Leftrightarrow k =
2.

    Vậy hệ số của số hạng đó là 4.C_{9}^{2} =
144.

  • Câu 15: Thông hiểu

    Có bao nhiêu số tự nhiên chia hết cho 2 và gồm 4 chữ số?

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Trường hợp 1: C bằng 0. Suy ra có 1 cách chọn.

    Vị trí A: có 9 cách chọn, khác số 0.

    Vị trí B: có 10 cách chọn.

    Suy ra có: 1.9.10 = 90 (số).

    Trường hợp 2: C khác 0. Suy ra C có 4 cách chọn (2, 4, 6, 8).

    Vị trí A: có 9 cách chọn, khác số 0.

    Ví trí B: Có 10 cách chọn.

    Suy ra có: 4.9.10 = 360 (số).

    Vậy, áp dụng quy tắc cộng, có 90 + 360 = 450 (số).

  • Câu 16: Nhận biết

    Tính số chỉnh hợp chập 2 của 5 là:

    Số chỉnh hợp chập 2 của 5 là: A_{5}^{2}.

  • Câu 17: Thông hiểu

    Có thể lập được bao nhiêu chữ số có hai chữ số trong đó cả hai chữ số trong số đó đều là số lẻ?

    Gọi số có hai chữ số là: \overline{ab};(a
eq 0)

    Vì hai chữ số đều là chữ số lẻ nên a,b
\in \left\{ 1;3;5;7;9 ight\}.

    Áp dụng quy tắc nhân ta có: 5.5 =
25 cách.

  • Câu 18: Thông hiểu

    Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác có 3 người, cần có cả nam và nữ, cần có cả nhà toán học và nhà vật lý. Hỏi có bao nhiêu cách?

    Trường hợp 1: 2 nhà toán học nữ và 1 nhà vật lý nam có C_{3}^{2}.C_{4}^{1} = 12 cách

    Trường hợp 2: 1 nhà toán học nữ và 2 nhà vật lý nam có C_{3}^{1}.C_{4}^{2} = 18 cách

    Trường hợp 3: 1 nhà toán học nữ, 1 nhà toán học nam và 1 nhà vật lý nam có C_{3}^{1}.C_{5}^{1}.C_{4}^{1} =
60 cách

    Theo quy tắc cộng có: 12 + 18 + 60 =
90 cách lập.

  • Câu 19: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?

    Giả sử số đó là \overline{a_{1}a_{2}a_{3}}

    Trường hợp 1. a_{3} = 0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.

    Trường hợp 2. a_{3} = 5. Với a_{1} = 2 chọn a_{2} có 6 cách nên có 6 số thỏa mãn. Với a_{1} eq 2 chọn a_{1} có 5 cách chọn, và tất nhiên a_{2} = 2 nên có 5 số thỏa mãn. Do đó có 12 + 6 + 5 = 23 số thỏa mãn.

  • Câu 20: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 55 lượt xem
Sắp xếp theo