Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của
?
Khi viết nhị thức dưới dạng khai triển
số hạng.
Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của
?
Khi viết nhị thức dưới dạng khai triển
số hạng.
Trong khai triển
biết hệ số của
là
. Giá trị
có thể nhận là:
Ta có .
Biết hệ số của là
nên
.
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là tổ hợp chập 3 của 7 phần từ.
=> Số tập hợp con là: tập hợp
Số hạng không chứa
trong khai triển nhị thức
là:
Số hạng tổng quát trong khai triển nhị thức là:
Số hạng không chứa x khi và chỉ khi
Vậy số hạng không chứa x là: .
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12
Trường hợp 1: Các bạn nam gồi ghế ghi số chẵn ở dãy A và số lẻ ở dãy B.
Các bạn nữ ngồi ở ghế ghi số lẻ của dãy A và số chẵn ở dãy B có: cách.
Trường hợp 2: Ngược lại có cách.
Vậy số cách xếp là: cách.
Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách chọn 2 người sao cho luôn có 2 màu áo khác nhau.
Trường hợp 1: 1 áo vàng + 1 áo đỏ
Có: (cách).
Trường hợp 2: 1 áo đỏ + 1 áo xanh
Có: (cách).
Trường hợp 3: 1 áo xanh + 1 áo vàng
Có: (cách)
Vậy có (cách).
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).
Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số được xếp tùy ý?
Lập một số có 9 chữ số thỏa mãn yêu cầu, thực chất là việc xếp các số 2, 3, 4, 5 vào 4 vị trí tùy ý trong 9 vị trí (5 vị trí còn lại là dành cho chữ số 1 lặp lại 5 lần)
⇒ Vậy có tất cả: (số)
Số hạng chứa
trong khai triển
là:
Số hạng thứ trong khai triển
là:
.
Số hạng chứa trong khai triển
tương ứng với:
.
Vậy số hạng chứa trong khai triển
là:
.
Đếm số tập con gồm
phần tử được lấy ra từ tập
?
Mỗi tập con tập gồm phần tử được lấy ra từ tập
có
phần tử là một tổ hợp chập
của
phần tử.
Vậy số tập con gồm phần tử của
là
tập con.
Từ 6 chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và chia hết cho 3?
Gọi số tự nhiên có 4 chữ số là
Bộ bốn chữ số có tổng chia hết cho 3 là:
Trường hợp 1:
Chọn a: 3 cách (vì a ≠ 0).
Chọn b, c, d: cách chọn.
Khi đó: 3.6=18 (cách).
Trường hợp 2:
Chọn :
Vậy 6 + 24 = 30 (số)
Quân đến nhà Hoàng để cùng Hoàng đến nhà An. Từ nhà Quân đến nhà Hoàng có 4 con đường đi, từ nhà Hoàng đến nhà An có 6 con đường đi. Hỏi Quân có bao nhiêu cách chọn con đường đi từ nhà đến nhà An?
Giai đoạn 1: Quân đi từ nhà đến nhà Hoàng có 4 cách.
Giai đoạn 2: Quân đi từ nhà Bình đến nhà An có 6 cách.
Vậy số cách Quân lựa chọn con đường đi từ nhà đến nhà An là: cách
Bạn Dũng có 9 quyển truyện tranh khác nhau và 6 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Bạn Dũng có số cách chọn ra một quyển sách để đọc vào cuối tuần là 9 + 6 = 15 cách.
Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có
sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở
vị trí khác nhau. Yêu cầu mỗi vị trí có đúng
sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho
người đó?
Mỗi cách xếp sinh viên vào
vị trí thỏa đề là một hoán vị của
phần tử.
Suy ra số cách xếp là cách.
Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần?
Với một cách chọn chữ số từ tập
ta có duy nhất một cách xếp chúng theo thứ tự giảm dần.
Ta có cách chọn
chữ số từ tập
.
Do đó có số tự nhiên cần tìm.
Xác định số hạng không chứa x trong khai triển nhị thức Newton
. Biết rằng
.
Ta có:
Xét khai triển
Số hạng tổng quát
Số hạng không chứa x ứng với
Suy ra số hạng không chứa x là .
Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.
TH1. Có đúng 1 học sinh khối 10: (cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)
TH2. Có đúng 2 học sinh khối 10: (cách).
Có
cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.
Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?
Gọi số cần tìm có dạng . Vì
chia hết cho 6 suy ra
TH1. Với suy ra
, do đó gồm các bộ
suy ra có 24 số.
TH2. Với suy ra
, do đó gồm các bộ
,
suy ra có 42 số.
Vậy có tất cả số cần tìm.
Thầy giáo chủ nhiệm có 10 quyển sách khác nhau và 8 quyển vở khác nhau. Thầy chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi. Hỏi có bao nhiêu cách chọn khác nhau?
Chọn một quyển sách có 10 cách chọn.
Chọn một quyển vở có 8 cách chọn.
Áp dụng quy tắc cộng có 18 cách chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi.
Cho
là số nguyên dương thỏa mãn
. Tìm hệ số của số hạng chứa
của khai triển biểu thức
.
.
Khi đó .
Công thức số hạng tổng quát: .
Số hạng chứa .
Vậy hệ số của số hạng chứa trong khai triển là
.