Khai triển biểu thức
ta thu được kết quả là:
Ta có: .
Khai triển biểu thức
ta thu được kết quả là:
Ta có: .
Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?
Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.
Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong
người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
Thứ 2: có cách chọn bạn đi thăm
Thứ 3: có cách chọn bạn đi thăm
Thứ 4: có cách chọn bạn đi thăm
Thứ 5: có cách chọn bạn đi thăm
Thứ 6: có cách chọn bạn đi thăm
Thứ 7: có cách chọn bạn đi thăm
Chủ nhật: có cách chọn bạn đi thăm
Vậy theo quy tắc nhân, có (kế hoạch).
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam đứng cạnh nhau và nữ đứng cạnh nhau:
Trường hợp 1: Nữ đứng trước
Có 6 vị trí để xếp, vì nam đứng cạnh nhau và nữ đứng cạnh nhau nên nữ sẽ đứng vị trí số 1, 2, 3 còn nam đứng vị trí số 4, 5, 6
Sắp xếp học sinh nữ vào vị trí 1, 2, 3
Vị trí số 1 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nữ)
Vị trí số 2 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nữ còn lại)
Vị trí số 3 có 1 cách chọn (vì chỉ còn 1 bạn nữ để chọn)
Có 6 vị trí để xếp, vì nam nữ đứng xen kẽ nên nữ sẽ đứng vị trí số 1, 3, 5 còn nam đứng vị trí số 2, 4, 6.
Sắp xếp học sinh nam vào vị trí 4, 5, 6
Vị trí số 4 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nam)
Vị trí số 5 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nam còn lại)
Vị trí số 6 có 1 cách chọn (vì chỉ còn 1 bạn nam để chọn)
Trường hợp 1 có 3.2.1.3.2.1 = 36 (cách xếp)
Trường hợp 2: Nam đứng trước
Tương tự như trường hợp 1, trường hợp 2 có 36 (cách xếp)
Vậy áp dụng quy tắc cộng ta có cả hai trường hợp có 36 + 36 = 72 (cách xếp).
Tìm hệ số của
trong khai triển nhị thức Newton
với
, biết
là số tự nhiên lớn nhất thỏa mãn
.
Điều kiện:
Khi đó
.
Số hạng tổng quát trong khai triển là
.
Tìm sao cho
.
Vậy hệ số của số hạng chứa là
.
Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện
và
. Khi đó m + n bằng
Điều kiện:
Ta có:
Mặt khác ta có:
=>
vậy tổng m và n là: 18 + 8 = 26.
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
Gọi số cần tìm có dạng . Vì
chia hết cho 5 suy ra
.
TH1. Với suy ra có
số cần tìm.
TH2. Với , suy ra có
số cần tìm.
Vậy có tất cả 444 số cần tìm.
Từ
người cần chọn ra một đoàn đại biểu gồm
trưởng đoàn,
phó đoàn,
thư kí và
ủy viên. Số cách chọn thỏa mãn là:
Số cách chọn người trong
người làm trưởng đoàn là.
cách.
Số cách chọn người trong
người còn lại làm phó đoàn là.
cách.
Số cách chọn người trong
người còn lại làm thư kí là.
cách.
Số cách chọn người trong
người còn lại làm ủy viên là.
cách.
Vậy số cách chọn đoàn đại biểu là .
Tìm số hạng không chứa
trong khai triển
biết
.
Ta có:
.
Suy ra số hạng tổng quát trong khai triển: .
Tìm .
Vậy hệ số của số hạng không chứa trong khai triển là:
.
Cho 6 chữ số 2, 3, 4, 5, 6, 7. Có bao nhiêu số có 3 chữ số được lập từ 6 chữ số đó?
Trong 6 chữ số đã cho không có chữ số 0, số có 3 chữ số không yêu cầu khác nhau nên mỗi chữ số đều có 6 cách chọn, do đó số các số thỏa mãn 63 = 216.
Cho kiểu gen AaBb. Giả sử quá trình giảm phân tạo giao tử bình thường và không xảy ra đột biến. Sơ đồ hình cây biểu thị sự hình thành giao tử được biểu diễn như hình bên.

Từ sơ đồ cây, số loại giao tử của kiểu gen AaBb là:
Từ sơ đồ cây, ta thấy có 4 kết quả có thể xảy ra.
=> Số loại giao tử của kiểu gen AaBb là 4.
Tìm số hạng chứa
trong khai triển
.
Ta có khai triển: .
Số hạng tổng quát trong khai triển:
Số hạng chứa ứng với:
Vậy số hạng chứa là:
.
Nếu
và
. Thì
bằng:
Ta có: .
Cho hai đường thẳng
gồm
điểm phân biệt và
gồm
điểm phân biệt. Biết rằng
. Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?
Một tam giác được hình thành bởi ba điểm không thẳng hàng.
TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
Vậy số tam giác được tạo thành là .
Khai triển
thành đa thức ta được biểu thức gồm mấy số hạng?
Biểu thức khai triển thành đa thức có 5 hạng tử.
Từ các số
,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên có
chữ số khác nhau đôi một?
Mỗi cách lập số tự nhiên có 5 chữ số khác nhau đôi một hoán vị của 5 phần tử.
Vậy có số cần tìm.
Cho các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm
chữ số khác nhau?
Số cách lập số tự nhiên có chữ số khác nhau từ các chữ số đã cho là số hoán vị của
phần tử, do đó có
.
Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:
Số tập con có 3 phần tử từ tập 5 phần tử là: .
Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?
Số cách chọn sách Toán là 20 cách.
Số cách chọn sách Vật lí là 40 cách.
Số cách chọn sách Hóa học là 50 cách.
Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.
Biến đổi biểu thức
dưới dạng
. Tính giá trị biểu thức
?
Ta có: