Tìm hệ số của số hạng chứa
trong khai triển
.
Ta có: .
Số hạng tổng quát của khai triển là: .
Số hạng chứa trong khai triển tương ứng với
.
Vậy hệ số cần tìm là: (theo tính chất của tổ hợp:
).
Tìm hệ số của số hạng chứa
trong khai triển
.
Ta có: .
Số hạng tổng quát của khai triển là: .
Số hạng chứa trong khai triển tương ứng với
.
Vậy hệ số cần tìm là: (theo tính chất của tổ hợp:
).
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).
Trong hộp có 5 quả cầu đỏ và 7 quả cầu xanh kích thước giống nhau. Lấy ngẫu nhiên 4 quả cầu từ hộp. Hỏi có bao nhiêu khả năng lấy được số quả cầu đỏ nhiều hơn số quả cầu xanh.
Trường hợp 1: 4 quả đỏ + 0 quả xanh
Chọn 4 quả đỏ từ 5 quả đỏ có: (cách).
Trường hợp 2: 3 quả đỏ + 1 quả xanh
Chọn 3 quả đỏ từ 5 quả đỏ, 1 quả xanh từ 7 quả xanh có: (cách).
Vậy có (cách).
Tìm hệ số
của số hạng chứa
trong khai triển
.
Ta có:
Ta có: , suy ra
Vậy hệ số của số hạng chứa
trong khai triển
là
Tính số chỉnh hợp chập 2 của 5 là:
Số chỉnh hợp chập 2 của 5 là: .
Có bao nhiêu số tự nhiên có ba chữ số dạng
với
,
,
sao cho
.
Vì số tự nhiên có ba chữ số dạng với
,
,
sao cho
nên
,
,
. Suy ra số các số có dạng
là
.
Đội văn nghệ của nhà trường gồm
học sinh lớp 12A,
học sinh lớp 12B và
học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?
Tổng số học sinh trong đội văn nghệ của nhà trường là học sinh.
Số cách chọn học sinh bất kì trong
học sinh là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12A là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12B là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12C là.
cách.
Vậy có cách thỏa mãn yêu cầu bài toán.
Cho các số
. Số các số tự nhiên gồm
chữ số lấy từ
chữ số trên sao cho chữ số đầu tiên bằng
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.
Từ các chữ số
, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 5 chữ số đôi một khác nhau và tận cùng bằng một chữ số khác 3.
Gọi là số thỏa yêu cầu bài toán.
Chọn có: 8 cách.
Chọn có: 8 cách.
Chọn có: 7 cách.
Chọn có: 6 cách.
Chọn có: 5 cách.
Theo quy tắc nhân có: số.
Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách chọn 2 người sao cho luôn có 2 màu áo khác nhau.
Trường hợp 1: 1 áo vàng + 1 áo đỏ
Có: (cách).
Trường hợp 2: 1 áo đỏ + 1 áo xanh
Có: (cách).
Trường hợp 3: 1 áo xanh + 1 áo vàng
Có: (cách)
Vậy có (cách).
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có ít nhất 1 nam?
Chọn ban điều hành gồm 3 học sinh không có học sinh nam nào có cách
Số cách chọn ban điều hành gồm 3 học sinh có ít nhất 1 nam có: cách.
Có bao nhiêu số tự nhiên chia hết cho 2 và gồm 4 chữ số?
Gọi số thỏa mãn đề bài có dạng .
Trường hợp 1: C bằng 0. Suy ra có 1 cách chọn.
Vị trí A: có 9 cách chọn, khác số 0.
Vị trí B: có 10 cách chọn.
Suy ra có: 1.9.10 = 90 (số).
Trường hợp 2: C khác 0. Suy ra C có 4 cách chọn (2, 4, 6, 8).
Vị trí A: có 9 cách chọn, khác số 0.
Ví trí B: Có 10 cách chọn.
Suy ra có: 4.9.10 = 360 (số).
Vậy, áp dụng quy tắc cộng, có 90 + 360 = 450 (số).
Trong khai triển
biết hệ số của
là
. Giá trị
có thể nhận là:
Ta có .
Biết hệ số của là
nên
.
Giả sử bạn muốn màu áo sơ mi cỡ 39 hoặc 40. Áo cỡ 39 có 5 màu khác nhau, áo cỡ 40 có 4 màu khác nhau. Hỏi bạn có bao nhiêu sự lựa chọn (về màu và cỡ áo)?
Áo cỡ 39 có 5 cách chọn
Áo cỡ 40 có 4 cách chọn
Vậy có tất cả cách chọn về màu và cỡ áo.
Tìm số hạng không chứa
trong khai triển
biết
.
Ta có:
.
Suy ra số hạng tổng quát trong khai triển: .
Tìm .
Vậy hệ số của số hạng không chứa trong khai triển là:
.
Cho tập hợp
có
phần tử. Số tập con gồm hai phần từ của
là:
Mỗi cách lấy ra phần tử trong
phần tử của
để tạo thành tập con gồm
phần tử là một tổ hợp chập
của
phần tử
Số tập con của
gồm
phần tử là
.
Cho khai triển
. Tìm hệ số
biết rằng ![]()
Ta có . Vậy
;
;
.
Theo bài ra nên ta có:
(thỏa mãn) hoặc
(loại).
Từ đó ta có .
Một bài trắc nghiệm khách quan có 10 câu hỏi. Mỗi câu hỏi có 4 phương án trả lời. Có bao nhiêu phương án trả lời?
Mỗi câu hỏi có 4 cách chọn phương án trả lời.
Mười câu hỏi sẽ có số cách chọn phương án trả lời là 410.
Tìm hệ số của số hạng chứa
trong khai triển của biểu thức
.
Ta có .
Số hạng chứa ứng với
.
Hệ số của số hạng chứa là
.