Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tổng tất cả các nghiệm của phương trình P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight) bằng:

    Điều kiện xác định: x\mathbb{\in N};x
\geq 2

    Ta có:

    P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight)

    \Leftrightarrow x!.\frac{x!}{(x - 2)!} +
72 = 6\left\lbrack 2x! + \frac{x!}{(x - 2)!} ightbrack

    \Leftrightarrow x!.x(x - 1) + 72 =
6\left\lbrack 2.x! + 2(x - 1) ightbrack

    \Leftrightarrow x(x - 1)(x! - 6) + 12(6
- x!) = 0

    \Leftrightarrow (x! - 6)\left\lbrack x(x
- 1) - 12 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x! - 6 = 0 \\
x^{2} - x - 12 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3(tm) \\
\left\lbrack \begin{matrix}
x = - 3(ktm) \\
x = 4(tm) \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vật tổng các nghiệm phương trình là: T =
3 + 4 = 7

  • Câu 2: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 3: Vận dụng

    Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 5 suy ra e = \left\{ 0;5 ight\}.

    TH1. Với e = 0 suy ra có 4 \times 5 \times 4 \times 3 = 240 số cần tìm.

    TH2. Với e = 5, suy ra có 5 \times 4 \times 3 + 3 \times 4 \times 4 \times 3
= 204 số cần tìm.

    Vậy có tất cả 444 số cần tìm.

  • Câu 4: Nhận biết

    Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ?

    Mỗi cách xếp 10 học sinh thành một hàng ngang là một hoán vị của tập hợp có 10 phần tử.

    Suy ra số cách sắp xếp là P_{10}.

  • Câu 5: Thông hiểu

    Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?

    Gọi \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số cần tìm

    Ta có a_{6} \in \left\{ 1;\ 3;\ 5ight\}\left( a_{1} + a_{2} +a_{3} ight) - \left( a_{4} + a_{5} + a_{6} ight) = 1

    Với a_{6} = 1 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 2 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 4,\ 5 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 4,\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 3,\ 6 ight\} \\\end{matrix} ight.

    Với a_{6} = 3 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 4 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2;\ 4;\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 6 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 5 ight\} \\\end{matrix} ight.

    Với a_{6} = 5 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 6 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 4 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 3 ight\} \\\end{matrix} ight.

    Mỗi trường hợp có 3!.2! = 12 số thỏa mãn yêu cầu

    Vậy có tất cả 6.12 = 72 số cần tìm.

  • Câu 6: Vận dụng

    Cho khai triển (1 - 2x)^{n} = a_{0} + a_{1}x + a_{2}x^{2} + ... +
a_{n}x^{n}. Tìm hệ số a_{5} biết rằng a_{0} + a_{1} + a_{2} = 71.

    Ta có (1 - 2x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}( - 2x)^{k}}. Vậy a_{0} = 1; a_{1} = - 2C_{n}^{1}; a_{2} = 4C_{n}^{2}.

    Theo bài ra a_{0} + a_{1} + a_{2} =
71 nên ta có:

    1 - 2C_{n}^{1} + 4C_{n}^{2} = 71
\Leftrightarrow 1 - 2\frac{n!}{1!(n - 1)!} + 4\frac{n!}{2!(n - 2)!} = 71
\Leftrightarrow 1 - 2n + 2n(n - 1) = 71 \Leftrightarrow 2n^{2} - 4n - 70
= 0 \Leftrightarrow n^{2} - 2n - 35 = 0 \Leftrightarrow n = 7 (thỏa mãn) hoặc n = - 5 (loại).

    Từ đó ta có a_{5} = C_{7}^{5}( - 2)^{5} =
- 672.

  • Câu 7: Thông hiểu

    Từ tập hợp các chữ số 1,2,8,6,7,5 có thể lập được bao nhiêu số tự nhiên có hai chữ số khác nhau?

    Gọi số tự nhiên có hai chữ số \overline{ab};(a eq 0)

    Số cách chọn a là 6 cách

    Số cách chọn b là 5 cách

    Vậy số các số tự nhiên có thể tạo thành từ tập hợp các chữ số đã cho là 6.5 = 30 số.

  • Câu 8: Vận dụng

    Cho tập hợp số: A = \left\{ 0,1,2,3,4,5,6 ight\}.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

    Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \{ 0,1,2,3\}, \{ 0,1,2,6\}, \{ 0,2,3,4\}, \{ 0,3,4,5\}, \{ 1,2,4,5\}, \{ 1,2,3,6\}, \left\{ 1,3,5,6 ight\}.

    Vậy số các số cần lập là: 4(4! - 3!) +
3.4! = 144 số.

  • Câu 9: Thông hiểu

    Tính giá trị biểu thức S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    Áp dụng công thức (a + b)^{n} cho a = 2,b = 1,n = 5 ta có:

    S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    S = (2 + 1)^{5} = 243

  • Câu 10: Nhận biết

    An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?

    Từ nhà An đến nhà Bình có 4 cách chọn đường.

    Từ nhà Bình đến nhà Cường có 6 cách chọn đường.

    Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).

  • Câu 11: Nhận biết

    Số hạng chứa x^{4} trong khai triển biểu thức (2x + 3)^{5} là:

     Ta có: (2x+3)^5=32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243.

    Số hạng cần tìm là: 240x^{4}.

  • Câu 12: Nhận biết

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:

    Số tập hợp con cần tìm là số tổ hợp chập 3 của 7 phần tử.

    Vậy có C_{7}^{3} tập con cần tìm.

  • Câu 13: Thông hiểu

    Một người có 5 chiếc áo trong đó có 3chiếc áo trắng. Người đó cũng có 3 chiếc cà vạt trong đó có 2 chiếc cà vạt màu vàng. Tìm số cách chọn một chiếc áo và một chiếc cà vạt sao cho đã chọn áo trắng thì không chọn cà vạt màu vàng.

    5 chiếc áo gồm: 3 trắng và 2 màu khác.

    3 chiếc cà vạt gồm: 2 vàng và 1 màu khác.

    Trường hợp 1: Áo trắng, cà vạt màu khác vàng.

    Áo trắng: có 3 cách chọn.

    Cà vạt màu khác vàng: 1 cách chọn.

    Suy ra có: 3.1 = 3 (cách).

    Trường hợp 2: Áo màu khác trắng, cà vạt màu bất kì.

    Áo màu khác trắng: 2 cách chọn.

    Cà vạt màu bất kì: 3 cách chọn.

    Suy ra có: 2.3 = 6 (cách).

    Vậy có: 3+6 = 9 (cách) chọn thỏa mãn yêu cầu đề bài.

  • Câu 14: Thông hiểu

    Tính tổng các hệ số trong khai triển (1 - 2x)^{2018}.

    Xét khai triển (1 - 2x)^{2018} =C_{2018}^{0} - 2x.C_{2018}^{1} + ( - 2x)^{2}.C_{2018}^{2}  + ... + ( - 2x)^{2018}.C_{2018}^{2018}

    Tổng các hệ số trong khai triển là: S =
C_{2018}^{0} - 2.C_{2018}^{1} + ( - 2)^{2}.C_{2018}^{2} + ( -
2)^{3}.C_{2018}^{3} + ... + ( - 2)^{2018}.C_{2018}^{2018}

    Cho x = 1 ta có: (1 - 2.1)^{2018} = C_{2018}^{0} - 2.1.C_{2018}^{1}+ ( - 2.1)^{2}.C_{2018}^{2} + ... + ( -2.1)^{2018}.C_{2018}^{2018}

    \Leftrightarrow ( - 1)^{2018} = S\Leftrightarrow S = 1

  • Câu 15: Nhận biết

    Một hộp có 3 viên bi trắng, 2 viên bi đen và 2 viên bi vàng. Hỏi có bao nhiêu cách lấy ngẫu nhiên 2 viên bi từ hộp đó.

     Chọn 2 viên từ hộp 7 viên có: C_7^2 = 21 (cách).

  • Câu 16: Nhận biết

    Tìm số hạng chứa x^{7} trong khai triển \left( x - \frac{1}{x} ight)^{13}.

    Ta có công thức của số hạng tổng quát:

    T_{k + 1} = C_{13}^{k}x^{13 - k}.\left(
- \frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - k}( - 1)^{k}x^{- k} =
C_{13}^{k}.( - 1)^{k}x^{13 - 2k}

    Số hạng chứa x^{7}khi và chỉ khi 13 - 2k = 7 \Leftrightarrow k =
3.

    Vậy số hạng chứa x^{7} trong khai triển là -
C_{13}^{3}x^{7}.

  • Câu 17: Nhận biết

    Cho tập hợp X gồm 10 phần tử. Số các hoán vị của 10 phần tử của tập hợp X là bao nhiêu?

    Số các hoán vị của 10 phần tử: 10!.

  • Câu 18: Nhận biết

    Số các số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn là

    Giả sử số tự nhiên thỏa mãn yêu cầu bài toán là: \overline{ab}.

    - Chọn a có 4 cách: a ∈ {2;4;6;8}.

    - Chọn b có 5 cách: b ∈ {0;2;4;6;8}.

    Vậy có tất cả: 4.5 = 20 số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn.

  • Câu 19: Nhận biết

    Tìm hệ số của x^{7} trong khai triển (1 + x)^{10}.

    Số hạng tổng quát là: T_{k + 1} =
C_{10}^{k}.x^{k}.

    Số hạng chứa x^{7} trong khai triển (1 + x)^{10} là: T_{8} = C_{10}^{8}.x^{7} nên hệ số là 45.

  • Câu 20: Nhận biết

    Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?

    Học sinh nam có 280 cách chọn

    Học sinh nữ có 325 cách chọn

    Chọn một học sinh khối 11 đi dự dạ hội của học sinh thành phố thì có 280 + 325 = 605 cách.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo