Một lớp có 15 nam và 20 nữ. Hỏi có bao nhiêu cách chọn 1 bạn đi trực nhật.
Trường hợp 1: Chọn 1 nam. Có 15 cách.
Trường hợp 2: Chọn 1 nữ. Có 20 cách.
Vậy có 15+20 = 35 cách.
Một lớp có 15 nam và 20 nữ. Hỏi có bao nhiêu cách chọn 1 bạn đi trực nhật.
Trường hợp 1: Chọn 1 nam. Có 15 cách.
Trường hợp 2: Chọn 1 nữ. Có 20 cách.
Vậy có 15+20 = 35 cách.
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12
Trường hợp 1: Các bạn nam gồi ghế ghi số chẵn ở dãy A và số lẻ ở dãy B.
Các bạn nữ ngồi ở ghế ghi số lẻ của dãy A và số chẵn ở dãy B có: cách.
Trường hợp 2: Ngược lại có cách.
Vậy số cách xếp là: cách.
Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn?
Gọi số cần lập có dạng .
A: có 4 cách chọn (2,4,6,8)
B: có 5 cách chọn (0,2,4,6,8)
C: có 5 cách chọn (0,2,4,6,8)
Vậy có 4.5.5 = 100 (số) có 3 chữ số và cả 3 chữ số đều chẵn.
Một lớp học có 15 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là
Số cách chọn một bạn nam là 15 cách.
Số cách chọn một bạn nữ là 10 cách.
Theo quy tắc nhân ta có số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là 15.10 = 150 cách.
Khai triển nhị thức Niu-tơn của
có bao nhiêu số hạng?
Ta có: Khai triển nhị thức Niu-tơn có
số hạng.
Vậy trong khai triển nhị thức Niu-tơn của có
số hạng.
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là tổ hợp chập 3 của 7 phần từ.
=> Số tập hợp con là: tập hợp
Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?
Gọi số cần tìm có dạng . Vì
chia hết cho 10 suy ra
.
TH1. Với , ta có
+ Nếu suy ra
, do đó có 2 số cần tìm.
+ Nếu suy ra
và
, do đó có 14 số cần tìm.
TH2. Với suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn
C.
Suy ra có số cần tìm. Vậy có tất cả 114 số cần tìm.
Hệ số của
trong khai triển
bằng:
Ta có:
Hệ số của x3 trong khai triển là:
=> Hệ số của trong khai triển
bằng: 3 + 10 = 13
Có
viên bi đen khác nhau,
viên bi đỏ khác nhau,
viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau?
Số cách xếp viên bi đen khác nhau thành một dãy bằng.
.
Số cách xếp viên bi đỏ khác nhau thành một dãy bằng.
.
Số cách xếp viên bi đen khác nhau thành một dãy bằng.
.
Số cách xếp nhóm bi thành một dãy bằng.
.
Vậy số cách xếp thỏa yêu cầu đề bài bằng cách.
Số hạng không chứa
trong khai triển nhị thức
là:
Số hạng tổng quát trong khai triển nhị thức là:
Số hạng không chứa x khi và chỉ khi
Vậy số hạng không chứa x là: .
Cho
là số nguyên dương thỏa mãn
. Tìm hệ số của số hạng chứa
của khai triển biểu thức
.
.
Khi đó .
Công thức số hạng tổng quát: .
Số hạng chứa .
Vậy hệ số của số hạng chứa trong khai triển là
.
Có bao nhiêu số hạng trong khai triển
?
Trong khai triển nhị thức có
nên có 5 số hạng.
Có bao nhiêu số tự nhiên có
chữ số?
Cách 1: Số có chữ số là từ
đến
nên có
số.
Cách 2:
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.
Có bao nhiêu số tự nhiên có ba chữ số dạng
với
,
,
sao cho
.
Vì số tự nhiên có ba chữ số dạng với
,
,
sao cho
nên
,
,
. Suy ra số các số có dạng
là
.
Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?
Chọn 4 Toán, 2 Văn, 2 Lí có cách.
Chọn 4 Toán, 1 Văn, 3 Lí có cách.
Chọn 5 Toán, 2 Văn, 1 Lí có cách.
Chọn 5 Toán, 1 Văn, 2 Lí có cách.
Chọn 6 Toán, 1 Văn, 1 Lí có cách.
Tổng lại ta được 181440 cách thỏa mãn.
Từ các chữ số
có thể lập được bao nhiêu số nguyên dương n là số lẻ gồm năm chữ số, trong đó các chữ số cách đều chữ số chính giữa thì giống nhau.
Vì n là số gồm năm chữ số, trong đó các chữ số cách đều chữ số chính giữa thì giống nhau.
Gọi n có dạng để n là số lẻ ta có
a có 3 lựa chọn là {1; 5; 9}
b có 5 lựa chọn.
c có 5 lựa chọn.
Vậy có số n thỏa mãn yêu cầu bài toán.
Cho đa giác đều có
đỉnh. Số hình chữ nhật có 4 đỉnh là 4 trong số 2020 điểm là đỉnh của đa giác đã cho là bao nhiều?
Đa giác đều có 2020 đỉnh có 1010 đường chéo qua tâm, cứ hai đường chéo qua tâm cho ta một hình chữ nhật. Vậy số cách chọn ra 4 đỉnh tạo thành hình chữ nhật là .
Biết hệ số của số hạng chứa
trong khai triển
là
. Số tự nhiên
bằng bao nhiêu?
Ta có: .
Hệ số của số hạng chứa là:
.
Giả thiết suy ra
Khối lớp 11 có 300 học sinh nam và 250 học sinh nữ. Nhà trường cần chọn hai học sinh làm đại diện cho khối 11 trong đó có 1 học sinh nam và 1 học sinh nữ. Số cách chọn là:
Áp dụng quy tắc nhân ta có số cách chọn 1 học sinh nam và 1 học sinh nữ là:
cách chọn.
Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là
Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: cách.