Cho
chữ số
số các số tự nhiên chẵn có
chữ số lập thành từ
chữ số đó:
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.
Cho
chữ số
số các số tự nhiên chẵn có
chữ số lập thành từ
chữ số đó:
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.
Có 3 học sinh nam và 7 học sinh nữ. Hỏi có bao nhiêu cách chọn 3 bạn gồm cả nam và nữ đi trực nhật.
Trường hợp 1: 2 nam + 1 nữ
Có cách.
Trường hợp 2: 1 nam + 2 nữ
Có cách.
Vậy có cách.
Cho tập
. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?
Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ
TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có:
TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có:
TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có:
Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: (số).
Trong khai triển nhị thức
hệ số của
là
. Giá trị của n là
Khai triển biểu thức như sau:
Theo bài ra ta có:
Hệ số của là
khi đó: k = 1
Tìm số hạng chứa
trong khai triển
. Cho biết
là số nguyên dương thỏa mãn hệ thức
.
Từ giả thiết ta suy ra .
Mặt khác: nên ta có:
Suy ra: .
Số hạng tổng quát trong khai triển là:
.
Hệ số của là
với
thỏa mãn:
.
Vậy hệ số của là
.
Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có
sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở
vị trí khác nhau. Yêu cầu mỗi vị trí có đúng
sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho
người đó?
Mỗi cách xếp sinh viên vào
vị trí thỏa đề là một hoán vị của
phần tử.
Suy ra số cách xếp là cách.
Có tất cả bao nhiêu cách xếp
quyển sách khác nhau vào một hàng ngang trên giá sách?
Mỗi cách sắp xếp quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của
phần tử. Vậy số cách sáp xếp là
.
Một nhóm học sinh gồm 7 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 1 bạn nam và 1 bạn nữ để trực nhật lớp. Hỏi có bao nhiêu cách chọn?
Số cách chọn một bạn nam là: cách
Số cách chọn một bạn nữ là: cách
Vậy số cách chọn 1 nam, 1 nữ đi trực nhật lớp là: cách chọn.
Tìm số hạng chứa
trong khai triển
.
Số hạng thứ trong khai triển là:
.
Số hạng chứa có giá trị
thỏa mãn:
.
Vậy số hạng chứa trong khai triển là:
.
Cho đa giác đều có 54 đường chéo. Hãy tính xem đa giác này có bao nhiêu cạnh?
Đa giác n cạnh có n đỉnh.
Mỗi đỉnh nối với đỉnh khác để tạo ra đường chéo
Do đó n đỉnh sẽ có đường
Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là:
Theo đề bài ta có:
Vậy đa giác có 12 cạnh.
Khai triển biểu thức
ta thu được kết quả:
Ta có:
Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
Số cách chọn 2 nam đứng ở đầu và cuối là. . Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là
. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là.
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. .
Phát biểu nào sau đây đúng?
Phát biểu đúng là:
Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?
Học sinh nam có 280 cách chọn
Học sinh nữ có 325 cách chọn
Chọn một học sinh khối 11 đi dự dạ hội của học sinh thành phố thì có cách.
Cho hai số tự nhiên
sao cho
. Chọn khẳng định đúng sau đây?
Khẳng định đúng là: .
Cho tập hợp các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau là:
Mỗi số tự nhiên có 3 chữ số khác nhau được lập từ tập hợp B là chỉnh hợp chập 3 của 5 nghĩa.
Suy ra có thể lập được số thỏa mãn yêu cầu đề bài.
Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?
Từ nhà Nam đến nhà Hải có 4 con đường.
Từ nhà Hải đến nhà Cường có 6 con đường.
Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).
Tìm số hạng không chứa
trong khai triển
.
Công thức số hạng thứ của khai triển
là:
.
Số hạng không chứa ứng với
(thỏa mãn).
Suy ra .
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Số tập hợp con cần tìm là số tổ hợp chập 3 của 7 phần tử.
Vậy có tập con cần tìm.
Có bao nhiêu vectơ khác vectơ được tạo thành từ 10 điểm phân biệt khác nhau?
Ta có vecto tạo thành từ hai điểm A, B ta được vecto và
.
Chọn hai điểm bất kì trong 10 điểm phân biệt là tổ hợp chập 2 của 10 phần tử.
=> Số vectơ khác vectơ được tạo thành từ 10 điểm phân biệt khác nhau là: vecto.