Thực hiện khai triển nhị thức Newton
ta được kết quả là:
Ta có:
Thực hiện khai triển nhị thức Newton
ta được kết quả là:
Ta có:
Số các số tự nhiên gồm
chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Bạn Công muốn mua một chiếc áo mới và một chiếc quần mới để đi dự sinh nhật bạn mình. Ở cửa hàng có 12 chiếc áo khác nhau, quần có 15 chiếc khác nhau. Hỏi có bao nhiêu cách chọn một bộ quần và áo?
Số cách bạn Công chọn một chiếc áo mới là: 12 cách.
Số cách bạn Công chọn một chiếc quần mới là: 15 cách.
Theo quy tắc nhân, bạn Công có 12.15 = 180 cách để chọn một bộ quần và áo.
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?
Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.
Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?
Một tam giác được lập thành từ 3 điểm.
Cứ 2 điểm thuộc + 1 điểm nằm ngoài có sẵn, ta được một tam giác.
Số cách lấy 2 điểm từ 6 điểm thuộc là:
(cách).
Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?
Mỗi cách phân công bạn An, Bình, Công vào
chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của
phần tử. Vậy có
cách.
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?
Từ nhà An đến nhà Bình có 4 cách chọn đường.
Từ nhà Bình đến nhà Cường có 6 cách chọn đường.
Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12
Chọn một bạn để xếp vào vị trí ghế số 1 có 12 cách.
Chọn một bạn để xếp vào vị trí ghế số 7 để khác giới với bạn vị trí ghế số 1 có 6 cách.
Chọn một bạn để xếp vào vị trí ghế số 2 có 10 cách.
Chọn một bạn để xếp vào vị trí ghế số 8 để khác giới với bạn vị trí ghế số 1 có 5 cách.
Cứ tuân theo cách xếp như vậy, ta có số cách xếp là:
Khai triển biểu thức
ta thu được kết quả:
Ta có:
Cho các số
,
,
,
. Hỏi lập được bao nhiêu số tự nhiên có
chữ số với các số khác nhau lập từ các số đã cho?
Số các số tự nhiên có chữ số với các số khác nhau lập từ các số đã cho là:
số.
Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?
Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là .
Trường hợp này có 2!.6 số.
Chữ số cuối bằng 2 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 4 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 8 ta có các bộ , hoán vị được
số.
Kết hợp lại ta có 35 số.
Có
học sinh và
thầy giáo được xếp thành hàng ngang. Đếm số cách xếp sao cho hai thầy giáo không đứng cạnh nhau?
Xếp 8 người thành hàng ngang có cách.
Xếp 8 người thành hàng ngang sao cho 2 thầy giáo đứng cạnh nhau có cách.
Vậy số cách xếp cần tìm là. cách.
Biết hệ số của số hạng chứa
trong khai triển
là
. Số tự nhiên
bằng bao nhiêu?
Ta có: .
Hệ số của số hạng chứa là:
.
Giả thiết suy ra
Cho
là số thực dương, số hạng không chứa
trong khai triển nhị thức
là:
Ta có
Số hạng tổng quát thứ trong khai triển là
.
Số hạng này không chứa tương ứng với trường hợp
.
Vậy số hạng không chứa trong khai triển là
.
Khai triển
. Hỏi có tất cả bao nhiêu số hạng hữu tỉ trong khai triển trên?
Ta có
Số hạng hữu tỉ trong khai triển tương ứng với .
Vậy số các giá trị là:
.
Cho hai đường thẳng
gồm
điểm phân biệt và
gồm
điểm phân biệt. Biết rằng
. Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?
Một tam giác được hình thành bởi ba điểm không thẳng hàng.
TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
Vậy số tam giác được tạo thành là .
Có bao nhiêu số tự nhiên lẻ trong khoảng (2000; 3000) có thể tạo nên bằng các chữ số
nếu các chữ số không nhất thiết khác nhau?
Gọi số tự nhiên trong khoảng có dạng
Vì là số tự nhiên lẻ nên c có 3 lựa chọn là
a, b có 6 lựa chọn.
Vậy có số tự nhiên thỏa mãn yêu cầu bài toán.
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi ở hai đầu ghế là:
Vì A; E ngồi ở hai đầu ghế nên ta có 3!.2! = 12 cách sắp xếp
Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?
Gọi số cần tìm có dạng . Vì
chia hết cho 6 suy ra
TH1. Với suy ra
, do đó gồm các bộ
suy ra có 24 số.
TH2. Với suy ra
, do đó gồm các bộ
,
suy ra có 42 số.
Vậy có tất cả số cần tìm.
Phát biểu nào sau đây đúng?
Phát biểu đúng là: