Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?
Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.
Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?
Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.
Đếm số tập con gồm
phần tử được lấy ra từ tập
?
Mỗi tập con tập gồm phần tử được lấy ra từ tập
có
phần tử là một tổ hợp chập
của
phần tử.
Vậy số tập con gồm phần tử của
là
tập con.
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
Gọi số cần tìm có dạng . Vì
chia hết cho 5 suy ra
.
TH1. Với suy ra có
số cần tìm.
TH2. Với , suy ra có
số cần tìm.
Vậy có tất cả 444 số cần tìm.
Có
viên bi đen khác nhau,
viên bi đỏ khác nhau,
viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau?
Số cách xếp viên bi đen khác nhau thành một dãy bằng.
.
Số cách xếp viên bi đỏ khác nhau thành một dãy bằng.
.
Số cách xếp viên bi đen khác nhau thành một dãy bằng.
.
Số cách xếp nhóm bi thành một dãy bằng.
.
Vậy số cách xếp thỏa yêu cầu đề bài bằng cách.
Quân đến nhà Hoàng để cùng Hoàng đến nhà An. Từ nhà Quân đến nhà Hoàng có 4 con đường đi, từ nhà Hoàng đến nhà An có 6 con đường đi. Hỏi Quân có bao nhiêu cách chọn con đường đi từ nhà đến nhà An?
Giai đoạn 1: Quân đi từ nhà đến nhà Hoàng có 4 cách.
Giai đoạn 2: Quân đi từ nhà Bình đến nhà An có 6 cách.
Vậy số cách Quân lựa chọn con đường đi từ nhà đến nhà An là: cách
Viết khai triển theo công thức nhị thức Niu-tơn
.
Ta có:
Hay .
Trong khai triển nhị thức Newton
, hệ số của số hạng chứa
bằng:
Hệ số của số hạng chứa trong khai triển
là:
.
Từ 6 chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và chia hết cho 6?
Gọi số tự nhiên có 4 chữ số là
Số chia hết cho 6 là số chẵn và chia hết cho 3. Khi đó, xét bộ bốn chữ số có tổng chia hết cho 3 là:
Trường hợp 1:
Chọn a, b, c: cách chọn.
Trường hợp 2:
Chọn d có 2 cách chọn (vì
Chọn a, b, c: cách chọn
Khi đó có 6.2 = 12 số
Vậy 6 + 12 = 18 (số)
Biến đổi biểu thức
dưới dạng
. Tính giá trị biểu thức
?
Ta có:
Hệ số của
trong khai triển thành đa thức của
bằng bao nhiêu? Cho biết n là số tự nhiên thỏa mãn:
.
Ta có
Thay vào
:
Thay vào
:
Phương trình trừ
theo vế:
.
Theo đề ta có
Số hạng tổng quát của khai triển :
Theo giả thiết ta có .
Vậy hệ số cần tìm .
Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?
Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là
Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!
Vậy số cách trao các huy chương này là
Tính số cách sắp xếp 8 học sinh thành 1 hàng dọc?
Số cách sắp xếp 8 học sinh thành 1 hàng dọc là 8! = 40320 cách.
Khai triển nhị thức Niu-tơn của
có bao nhiêu số hạng?
Ta có: Khai triển nhị thức Niu-tơn có
số hạng.
Vậy trong khai triển nhị thức Niu-tơn của có
số hạng.
Một hộp có 3 viên bi trắng, 2 viên bi đen và 2 viên bi vàng. Hỏi có bao nhiêu cách lấy ngẫu nhiên 2 viên bi từ hộp đó.
Chọn 2 viên từ hộp 7 viên có: (cách).
Tính tổng các chữ số gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5?
Có 120 số có 5 chữ số được lập từ 5 chữ số đã cho.
Bây giờ ta xét vị trí của một chữ số trong 5 số 1, 2, 3, 4, 5 chẳng hạn ta xét số 1. Số 1 có thể xếp ở 5 vị trí khác nhau, mỗi vị trí có 4!=24 số nên khi ta nhóm các các vị trí này lại có tổng là : .
Vậy tổng các số có 5 chữ số là : .
Lớp 11A có 20 học sinh nam và 15 học sinh nữ. Giáo viên chủ nhiệm muốn chọn một nhóm học sinh đại diện gồm 3 học sinh nam và 2 học sinh nữ. Hỏi có bao nhiêu cách chọn nhóm học sinh đại diện?
Số cách chọn 3 học sinh nam là cách.
Số cách chọn 2 học sinh nữ là: cách.
Vậy số cách chọn nhóm học sinh đại diện là: cách.
Hệ số của
trong khai triển
bằng:
Ta có:
Hệ số của x3 trong khai triển là:
=> Hệ số của trong khai triển
bằng: 3 + 10 = 13
Cho tập
. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Cho đa giác n cạnh. Tìm n để đa giác có số đường chéo gấp đôi số cạnh.
Đa giác n cạnh có n đỉnh.
Mỗi đỉnh nối với đỉnh khác để tạo ra đường chéo
Do đó n đỉnh sẽ có đường
Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là:
Theo bài ra ta có:
Vậy .
Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách chọn 2 người sao cho luôn có 2 màu áo khác nhau.
Trường hợp 1: 1 áo vàng + 1 áo đỏ
Có: (cách).
Trường hợp 2: 1 áo đỏ + 1 áo xanh
Có: (cách).
Trường hợp 3: 1 áo xanh + 1 áo vàng
Có: (cách)
Vậy có (cách).