Với
là số nguyên dương thỏa mãn
, hệ số của
trong khai triển của biểu thức bằng
.
Giải phương trình .
Điều kiện .
Ta có: .
Vậy .
Ta có: .
Hệ số của trong khai triển bằng 0.
Với
là số nguyên dương thỏa mãn
, hệ số của
trong khai triển của biểu thức bằng
.
Giải phương trình .
Điều kiện .
Ta có: .
Vậy .
Ta có: .
Hệ số của trong khai triển bằng 0.
Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?
Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá
C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. .
Vậy số cách xếp cần tìm. 8!.7.2! = 564480.
Số hạng chứa
trong khai triển
là:
Số hạng thứ trong khai triển
là:
.
Số hạng chứa trong khai triển
tương ứng với:
.
Vậy số hạng chứa trong khai triển
là:
.
Có bao nhiêu số tự nhiên có
chữ số lập từ các số
với điều các chữ số đó không lặp lại?
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.
Biết
là số nguyên dương thỏa mãn
, số hạng chứa
trong khai triển
là:
Ta có:
(vì
là số nguyên dương).
Số hạng tổng quát trong khai triển là:
.
Cho .
Vậy số hạng chứa trong khai triển
là
.
Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n là một số lẻ?
Gọi tập và
là số thỏa mãn yêu cầu:
Chọn có: 9 cách.
Chọn có: 10 cách.
Chọn có: 10 cách.
Chọn có: 10 cách.
Chọn có: 5 cách.
Theo quy tắc nhân có: số.
Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu?
Tổng số quả cầu trong hộp là 5 + 6 = 11
Mỗi cách lấy ngẫu nhiên 3 quả cầu trong 11 quả cầu trong hộp là tổ hợp chập 3 của 11 phần tử
Vậy số cách thỏa mãn yêu cầu bài toán là (cách).
Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n là bội số của 5?
Gọi tập và
là số thỏa mãn yêu cầu:
Chọn có: 9 cách.
Chọn có: 10 cách.
Chọn có: 10 cách.
Chọn có: 10 cách.
Chọn có: 2 cách.
Theo quy tắc nhân có: số.
Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?
Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.
Cho tập
. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Có bao nhiêu số tự nhiên có ba chữ số dạng
với
,
,
sao cho
.
Vì số tự nhiên có ba chữ số dạng với
,
,
sao cho
nên
,
,
. Suy ra số các số có dạng
là
.
Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:
Khi đó công việc có thể được thực hiện bằng (cách) (theo quy tắc nhân)
Có
viên bi đen khác nhau,
viên bi đỏ khác nhau,
viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau?
Số cách xếp viên bi đen khác nhau thành một dãy bằng.
.
Số cách xếp viên bi đỏ khác nhau thành một dãy bằng.
.
Số cách xếp viên bi đen khác nhau thành một dãy bằng.
.
Số cách xếp nhóm bi thành một dãy bằng.
.
Vậy số cách xếp thỏa yêu cầu đề bài bằng cách.
Trong hộp có 5 quả cầu đỏ và 7 quả cầu xanh kích thước giống nhau. Lấy ngẫu nhiên 4 quả cầu từ hộp. Hỏi có bao nhiêu khả năng lấy được số quả cầu đỏ nhiều hơn số quả cầu xanh.
Trường hợp 1: 4 quả đỏ + 0 quả xanh
Chọn 4 quả đỏ từ 5 quả đỏ có: (cách).
Trường hợp 2: 3 quả đỏ + 1 quả xanh
Chọn 3 quả đỏ từ 5 quả đỏ, 1 quả xanh từ 7 quả xanh có: (cách).
Vậy có (cách).
Tìm số hạng chứa
trong khai triển
?
Số hạng tổng quát theo thứ tự giảm dần số mũ x là:
Số hạng chứa ứng với
Số hạng cần tìm là .
Tìm hệ số của số hạng chứa
trong khai triển của biểu thức
.
Ta có .
Số hạng chứa ứng với
.
Hệ số của số hạng chứa là
.
Cho
. Từ tập hợp này lập được bao nhiêu số tự nhiên có
chữ số đôi một khác nhau?
Mỗi số tự nhiên tự nhiên có chữ số khác nhau được lập từ tập
là hoán vị của
phần tử.
Vậy có số cần tìm.
Từ các chữ số
có thể lập được bao nhiêu số nguyên dương n gồm 4 chữ số đôi một khác nhau?
Có thể lập được số nguyên dương n gồm bốn chữ số đôi một khác nhau.
Phát biểu nào sau đây đúng?
Phát biểu đúng là:
Có bao nhiêu cách xếp 8 người vào một bàn tròn?
Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! cách xếp.
Vậy có 1.7! = 5040 cách xếp