Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:
Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.
Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:
Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).
Lớp 11A có 20 học sinh nam và 15 học sinh nữ. Giáo viên chủ nhiệm muốn chọn một nhóm học sinh đại diện gồm 3 học sinh nam và 2 học sinh nữ. Hỏi có bao nhiêu cách chọn nhóm học sinh đại diện?
Số cách chọn 3 học sinh nam là cách.
Số cách chọn 2 học sinh nữ là: cách.
Vậy số cách chọn nhóm học sinh đại diện là: cách.
Biết hệ số của
trong khai triển của
là – 270. Giá trị của n là
Khai triển biểu thức như sau:
Hệ số của x3 trong khai triển bằng -270
=>
Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là
Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: cách.
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Số tập hợp con cần tìm là số tổ hợp chập 3 của 7 phần tử.
Vậy có tập con cần tìm.
Lớp 10A có 20 học sinh nam và 15 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra hai học sinh một nam, một nữ để thi đấu cầu lông đôi nam nữ.
Chọn 1 nam có: 20 cách
Chọn 1 nữ có: 15 cách
Vậy số cách chọn 1 nam và 1 nữ là: 20.15 = 300 (cách).
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.
Giả sử bạn muốn màu áo sơ mi cỡ 39 hoặc 40. Áo cỡ 39 có 5 màu khác nhau, áo cỡ 40 có 4 màu khác nhau. Hỏi bạn có bao nhiêu sự lựa chọn (về màu và cỡ áo)?
Áo cỡ 39 có 5 cách chọn
Áo cỡ 40 có 4 cách chọn
Vậy có tất cả cách chọn về màu và cỡ áo.
Cho tập
. Hỏi lập được bao nhiêu số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
Gọi là số số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
+ TH1. . Chọn
có 360 số.
+ TH2. Chọn
3 (cách).
Chọn 5 (cách).
Chọn
(cách).
có
số.
Vậy có. số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
Cho hai dãy ghế được xếp như sau.

Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?
Xếp 4 bạn nam vào một dãy có (cách xếp).
Xếp 4 bạn nữ vào một dãy có (cách xếp).
Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.
Số cách xếp theo yêu cầu là. (cách xếp).
Xác định số hạng không chứa x trong khai triển nhị thức Newton
. Biết rằng
.
Ta có:
Xét khai triển
Số hạng tổng quát
Số hạng không chứa x ứng với
Suy ra số hạng không chứa x là .
Biểu thức
bằng:
Ta có:
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12
Trường hợp 1: Các bạn nam gồi ghế ghi số chẵn ở dãy A và số lẻ ở dãy B.
Các bạn nữ ngồi ở ghế ghi số lẻ của dãy A và số chẵn ở dãy B có: cách.
Trường hợp 2: Ngược lại có cách.
Vậy số cách xếp là: cách.
Cho tập hợp các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau là:
Mỗi số tự nhiên có 3 chữ số khác nhau được lập từ tập hợp B là chỉnh hợp chập 3 của 5 nghĩa.
Suy ra có thể lập được số thỏa mãn yêu cầu đề bài.
Tìm hệ số của số hạng chứa
trong khai triển nhị thức
, (biết
).
Số hạng tổng quát trong khai triển nhị thức .
.
chứa
.
Vậy hệ số của số hạng chứa trong khai triển nhị thức
bằng:
.
Cho tập hợp số:
.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.
Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là
,
,
,
,
,
.
Vậy số các số cần lập là: số.
Khai triển nhị thức Niu-tơn của
có bao nhiêu số hạng?
Ta có: Khai triển nhị thức Niu-tơn có
số hạng.
Vậy trong khai triển nhị thức Niu-tơn của có
số hạng.
Với
là số nguyên dương thỏa mãn
, hệ số của
trong khai triển của biểu thức bằng
.
Giải phương trình .
Điều kiện .
Ta có: .
Vậy .
Ta có: .
Hệ số của trong khai triển bằng 0.
Một tổ gồm 7 học sinh trong đó có 4 nam, 3 nữ cùng với 2 cô giáo xếp thành một hàng dọc để tham gia trò chơi đồng đội. Hỏi có bao nhiêu cách xếp hàng cho nhóm 3 học sinh nữ luôn đứng cạnh nhau và nhóm hai cô giáo cũng đứng cạnh nhau?
Xếp nhóm A gồm 3 học sinh nữ đứng cạnh nhau có: cách.
Xếp nhóm B gồm 2 cô giáo đứng cạnh nhau có: cách.
Xếp nhóm A và nhóm B với 4 học sinh nam còn lại có cách.
Theo quy tắc nhân ta có: cách.