Trong khai triển
số hạng chứa
là:
Ta có: .
Vậy số hạng cần tìm là: .
Trong khai triển
số hạng chứa
là:
Ta có: .
Vậy số hạng cần tìm là: .
Từ
người cần chọn ra một đoàn đại biểu gồm
trưởng đoàn,
phó đoàn,
thư kí và
ủy viên. Số cách chọn thỏa mãn là:
Số cách chọn người trong
người làm trưởng đoàn là.
cách.
Số cách chọn người trong
người còn lại làm phó đoàn là.
cách.
Số cách chọn người trong
người còn lại làm thư kí là.
cách.
Số cách chọn người trong
người còn lại làm ủy viên là.
cách.
Vậy số cách chọn đoàn đại biểu là .
Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?
Số cách lấy 5 con trong đó có 1 con át và 1 con vua là .
Có bao nhiêu số tự nhiên có
chữ số lập từ các số
với điều các chữ số đó không lặp lại?
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.
Cho đa giác đều có tất cả 12 cạnh. Hỏi đa giác có bao nhiêu đường chéo?
Từ 12 đỉnh của đa giác đều, ta xác định được đoạn thẳng.
Vậy đa giác đều có tất cả đường chéo.
Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:
Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.
Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.
Vì vậy số hoán vị 6 đối tượng là 6!.
Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.
Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!
Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.
Số cách chọn một học sinh trong nhóm gồm 5 nữ và 4 nam là:
Áp dụng quy tắc cộng ta có số cách chọn một học sinh là: 5 + 4 = 9 cách.
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là tổ hợp chập 3 của 7 phần từ.
=> Số tập hợp con là: tập hợp
Có bao nhiêu cách sắp xếp
học sinh thành một hàng dọc?
Số cách sắp xếp học sinh thành một hàng dọc là
.
Cho kiểu gen AaBb. Giả sử quá trình giảm phân tạo giao tử bình thường và không xảy ra đột biến. Sơ đồ hình cây biểu thị sự hình thành giao tử được biểu diễn như hình bên.

Từ sơ đồ cây, số loại giao tử của kiểu gen AaBb là:
Từ sơ đồ cây, ta thấy có 4 kết quả có thể xảy ra.
=> Số loại giao tử của kiểu gen AaBb là 4.
Biến đổi biểu thức
dưới dạng
. Tính giá trị biểu thức
?
Ta có:
Tính giá trị biểu thức ![]()
Áp dụng công thức cho
ta có:
Với số nguyên dương
, gọi
là hệ số của
trong khai triển thành đa thức của
. Tìm
để
.
Ta có:
Ta thấy không thoả mãn điều kiện bài toán.
Với ta có:
Do đó hệ số của trong khai triển thành đa thức của
.
.
Vậy là giá trị cần tìm.
Số hạng thứ
trong khai triển
bằng?
Ta có
Số hạng thứ trong khai triển tương ứng với
.
.
Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp
và nhỏ hơn
?
Gọi số tự nhiên có bốn chữ số
Do và
nên
TH1:
Chọn ba số trong dãy xếp vào ba vị trí
ta có:
cách.
=> Trong trường hợp này có số được tạo thành.
TH2:
=> Trong trường hợp này có số được tạo thành.
Vậy có tất cả 210 + 5 = 215 số được tạo thành thỏa mãn yêu cầu đề bài.
Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách. Khi đó công việc có thể thực hiện bằng:
Khi đó công việc có thể được thực hiện bằng (cách).
Từ tập A = {1; 2; 3; 4; 5; 6} có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và số đó không lớn hơn 456?
Ta có: là số cần tìm.
Trường hợp 1:
Chọn a ∈ {1; 2; 3}: 3 cách.
Chọn : 5 cách.
Chọn : 4 cách.
⇒ Có số.
Trường hợp 2:
Chọn a = 4: 1 cách.
Chọn b ∈ {1; 2; 3}: 3 cách.
Chọn : 4 cách.
⇒ Có: 1.3.4 = 12 số.
Trường hợp 3:
Chọn a = 4: 1 cách.
Chọn b = 5: 1 cách.
Chọn : 4 cách.
⇒ Có: 1.1.4 = 4 số.
Từ (1); (2); (3) có số thoả yêu cầu bài toán.
Cho hai dãy ghế được xếp như sau.

Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?
Xếp 4 bạn nam vào một dãy có (cách xếp).
Xếp 4 bạn nữ vào một dãy có (cách xếp).
Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.
Số cách xếp theo yêu cầu là. (cách xếp).
Khai triển nhị thức Newton
ta được kết quả là:
Ta có:
Cho tập
. Hỏi lập được bao nhiêu số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
Gọi là số số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
+ TH1. . Chọn
có 360 số.
+ TH2. Chọn
3 (cách).
Chọn 5 (cách).
Chọn
(cách).
có
số.
Vậy có. số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.