Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton
?
Để có tổng các hệ số ta thay ta được:
Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton
?
Để có tổng các hệ số ta thay ta được:
Viết khai triển theo công thức nhị thức Niu-tơn
.
Ta có:
Hay .
Tìm hệ số
của số hạng chứa
trong khai triển
.
Ta có:
Ta có: , suy ra
Vậy hệ số của số hạng chứa
trong khai triển
là
Cho tập hợp
. Có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau từ các chữ số thuộc tập hợp
?
Gọi số tự nhiên có bốn chữ số là:
TH1: d = 0 => d có 1 cách.
Số cách chọn a, b, c lần lượt là 5, 4, 3
=> Số các số tạo thành là: 1.5.4.3 = 60 (số)
TH2: => Chữ số d có 2 cách chọn.
=> Chữ số a có 4 cách.
=> Số cách chọn b, c lần lượt là 4, 3 cách.
=> Số các số tạo thành là: 2.4.4.3 = 96 (số)
Vậy có tất cả 60 + 96 = 156 (số) thỏa mãn yêu cầu đề bài.
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn mỗi đội chỉ được trình diễn 1 vở kịch, 1 điệu múa và 1 bài hát. Hỏi đội văn nghệ có bao nhiêu cách chọn chương trình biểu diễn biết rằng chất lượng các vở kịch, điệu múa, bài hát là như nhau?
Chọn 1 vở kịch có 2 cách
Chọn 1 điệu múa có 3 cách
Chọn 1 bài hát có 6 cách
Có 2.3.6 = 36 cách.
Có bao nhiêu số hạng trong khai triển nhị thức
?
Trong khai triển nhị thức thì số các số hạng là
nên trong khai triển
có
số hạng.
Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?
Số cách chọn một quyển sách là 8 cách.
Số cách chọn một cái bút là 10 cách.
=> Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách.
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có ít nhất 1 nam?
Chọn ban điều hành gồm 3 học sinh không có học sinh nam nào có cách
Số cách chọn ban điều hành gồm 3 học sinh có ít nhất 1 nam có: cách.
Cho các số
. Số các số tự nhiên gồm
chữ số lấy từ
chữ số trên sao cho chữ số đầu tiên bằng
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Cho đa giác đều có
đỉnh. Số hình chữ nhật có 4 đỉnh là 4 trong số 2020 điểm là đỉnh của đa giác đã cho là bao nhiều?
Đa giác đều có 2020 đỉnh có 1010 đường chéo qua tâm, cứ hai đường chéo qua tâm cho ta một hình chữ nhật. Vậy số cách chọn ra 4 đỉnh tạo thành hình chữ nhật là .
Cho khai triển
trong đó
và các hệ số thỏa mãn hệ thức
. Hệ số lớn nhất là:
Xét khai triển .
Cho ta được
Khi đó .
Ta có hệ số
Hệ số lớn nhất nên
Vì nên nhận
Vậy hệ số lớn nhất .
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.
Đội văn nghệ của nhà trường gồm
học sinh lớp 12A,
học sinh lớp 12B và
học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?
Tổng số học sinh trong đội văn nghệ của nhà trường là học sinh.
Số cách chọn học sinh bất kì trong
học sinh là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12A là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12B là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12C là.
cách.
Vậy có cách thỏa mãn yêu cầu bài toán.
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có 1 nam và 2 nữ?
Chọn ban điều hành gồm 3 học sinh gồm 1 nam và 2 nữ có cách.
Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra một học sinh đi dự trại hè của trường. Hỏi có bao nhiêu cách chọn?
Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:
Bước 2: Đếm số cách chọn.
* Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.
* Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.
Bước 3: Áp dụng quy tắc cộng.
Vậy có 20 + 25 = 45 cách chọn.
Cho tập hợp các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau là:
Mỗi số tự nhiên có 5 chữ số khác nhau được lập từ tập hợp C là một hoán vị của 5.
Suy ra có thể lập được số thỏa mãn yêu cầu đề bài.
Giải phương trình
. Kết luận nào sau đây đúng?
Điều kiện:
Ta có:
Vậy kết luận đúng là: n là số nguyên tố.
Cho tập hợp
. Số tập con gồm 3 phần tử của
sao cho không có số
là:
Mỗi tập con gồm 3 phần tử của không có số
là tổ hợp chập 3 của 9 phần tử.
Số tập con gồm 3 phần tử của không có số
là.
.
Tổng hệ số của
và
trong khai triển
là:
Ta có: .
Tổng hệ số của và
bằng
.
Một nhóm học sinh gồm
học sinh nam và
học sinh nữ. Hỏi có bao nhiêu cách sắp xếp
học sinh trên thành
hàng dọc sao cho nam nữ đứng xen kẽ?
Xếp học sinh nam thành hàng dọc có
cách xếp.
Giữa học sinh nam có
khoảng trống ta xếp các bạn nữ vào vị trí đó nên có
cách xếp.
Theo quy tắc nhân có cách xếp thoả mãn.