Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tập M gồm 10 phần tử. Số tập con gồm 4 phần tử của M là:

    Số tập con gồm 4 phần tử của M là số cách chọn 4 phần tử bất kì trong 10 phần tử của M.

    Do đó số tập con gồm 4 phần tử của MC_{10}^{4}.

  • Câu 2: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 3: Thông hiểu

    Một nhóm học sinh gồm 7 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 1 bạn nam và 1 bạn nữ để trực nhật lớp. Hỏi có bao nhiêu cách chọn?

    Số cách chọn một bạn nam là: 7 cách

    Số cách chọn một bạn nữ là: 4 cách

    Vậy số cách chọn 1 nam, 1 nữ đi trực nhật lớp là: 7.4 = 28 cách chọn.

  • Câu 4: Nhận biết

    Khối lớp 11 có 300 học sinh nam và 250 học sinh nữ. Nhà trường cần chọn hai học sinh làm đại diện cho khối 11 trong đó có 1 học sinh nam và 1 học sinh nữ. Số cách chọn là:

    Áp dụng quy tắc nhân ta có số cách chọn 1 học sinh nam và 1 học sinh nữ là:

    300.250 = 75000 cách chọn.

  • Câu 5: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 6: Nhận biết

    6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Đếm số cách xếp sao cho hai thầy giáo không đứng cạnh nhau?

    Xếp 8 người thành hàng ngang có P_{8} cách.

    Xếp 8 người thành hàng ngang sao cho 2 thầy giáo đứng cạnh nhau có 7.2!.6! cách.

    Vậy số cách xếp cần tìm là. P_{8} -
7.2!.6! = 30240 cách.

  • Câu 7: Thông hiểu

    Biết rằng (7 -
8x)^{5} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + a_{4}x^{4} +
a_{5}x^{5}. Chọn kết luận đúng?

    Thay x = 1 vào (7 - 8x)^{5} ta được:

    (7 - 8.1)^{5}

    = a_{0} + a_{1}.1 + a_{2}.1^{2} +
a_{3}.1^{3} + a_{4}.1^{4} + a_{5}.1^{5}

    = a_{0} + a_{1} + a_{2} + a_{3} + a_{4}
+ a_{5}

    = \sum_{i = 0}^{5}a_{i} = -
1

  • Câu 8: Vận dụng

    Với n là số nguyên dương thỏa mãn 3C_{n + 1}^{3} -
3A_{n}^{2} = 52(n - 1). Trong khai triển biểu thức \left( x^{3} + 2y^{2} ight)^{n}, gọi T_{k} là số hạng mà tổng số mũ của xy của số hạng đó bằng 34. Hệ số của T_{k} là :

    Điều kiện: n \geq 2, n \in \mathbb{N}^{*}.

    Ta có 3C_{n + 1}^{3} - 3A_{n}^{2} = 52(n
- 1) \Leftrightarrow 3.\frac{(n + 1)!}{3!(n - 2)!} - 3\frac{n!}{(n -
2)!} = 52(n - 1)

    \Leftrightarrow \frac{(n - 1)n(n + 1)}{2}
- 3n(n - 1) = 52(n - 1) \Leftrightarrow n^{2} + n - 6n =
104.

    \Leftrightarrow n^{2} - 5n - 104 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 13 \\
n = - 8 \\
\end{matrix} ight.\  \Leftrightarrow n = 13.

    \left( x^{3} + 2y^{2} ight)^{13} =
\sum_{0}^{13}{C_{13}^{k}\left( x^{3} ight)^{13 - k}\left( 2y^{2}
ight)^{k}} = \sum_{0}^{13}{C_{13}^{k}2^{k}x^{39 -
3k}y^{2k}}.

    Ta có: 39 - 3k + 2k = 34 \Leftrightarrow
k = 5. Vậy hệ số C_{13}^{5}2^{5} =
41184.

  • Câu 9: Thông hiểu

    Biểu thức Q =
x^{5} - 5x^{4}y + 10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5} là khai triển của nhị thức nào dưới đây?

    Ta có:

    Q = x^{5} - 5x^{4}y + 10x^{3}y^{2} -
10x^{2}y^{3} + 5xy^{4} - y^{5}

    Q = C_{5}^{0}x^{5} + C_{5}^{1}x^{4}( -
y)^{1} + C_{5}^{2}.x^{3}( - y)^{2}

    + C_{5}^{3}x^{2}( - y)^{3} +
C_{5}^{4}.x.( - y)^{4} + C_{5}^{5}( - y)^{5}

    Q = (x - y)^{5}

  • Câu 10: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 11: Nhận biết

    Cho tập hợp S =
\left\{ 1,2,3,4,7,8 ight\}, lấy ngẫu nhiên 1 chữ số. Các kết quả thuận lợi cho C “biến cố lấy được chữ số lẻ” là:

    Các kết quả thuận lợi cho biến cố lấy được chữ số lẻ là: C = \left\{ 1;3;7 ight\}

  • Câu 12: Nhận biết

    Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là

    Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).

  • Câu 13: Nhận biết

    Hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x - \frac{2}{x\sqrt{x}}
ight)^{12} (với x >
0) là:

    Số hạng tổng quát của khai triển \left( x
- \frac{2}{x\sqrt{x}} ight)^{12} (với x > 0) là:

    T_{k + 1} = C_{12}^{k}.x^{12 - k}.\left(
- \frac{2}{x\sqrt{x}} ight)^{k} = ( - 2)^{k}.C_{12}^{k}.x^{12 -
k}.x^{- \frac{3k}{2}} = ( - 2)^{k}.C_{12}^{k}.x^{12 -
\frac{5k}{2}}.

    Số hạng trên chứa x^{7} suy ra 12 - \frac{5k}{2} = 7 \Leftrightarrow k =
2.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển trên là = ( -
2)^{2}.C_{12}^{2} = 264.

  • Câu 14: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 15: Thông hiểu

    Cho hai đường thẳng song song d và d’. Trên đường thẳng d lấy 10 điểm phân biệt, trên đường thẳng d’ lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 điểm vừa nói trên.

    Trường hợp 1: Lấy 2 điểm trên d và 1 điểm trên d’

    Trường hợp 2: Lấy 1 điểm trên d và 2 điểm trên d’.

    Số tam giác thỏa bài toán là: C_{10}^{2}.C_{15}^{1} + C_{10}^{1}.C_{15}^{2} =
1725 tam giác.

  • Câu 16: Thông hiểu

    Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác có 3 người, cần có cả nam và nữ, cần có cả nhà toán học và nhà vật lý. Hỏi có bao nhiêu cách?

    Trường hợp 1: 2 nhà toán học nữ và 1 nhà vật lý nam có C_{3}^{2}.C_{4}^{1} = 12 cách

    Trường hợp 2: 1 nhà toán học nữ và 2 nhà vật lý nam có C_{3}^{1}.C_{4}^{2} = 18 cách

    Trường hợp 3: 1 nhà toán học nữ, 1 nhà toán học nam và 1 nhà vật lý nam có C_{3}^{1}.C_{5}^{1}.C_{4}^{1} =
60 cách

    Theo quy tắc cộng có: 12 + 18 + 60 =
90 cách lập.

  • Câu 17: Nhận biết

    Hệ số x^{4} trong khai triển nhị thức (3x - 4)^{5} bằng:

    Hệ số của x^{4} trong khai triển (3x - 4)^{5} là: C_{5}^{1}.(3x)^{4}.( - 4)^{1} = -
1620.

  • Câu 18: Thông hiểu

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n > 800 và gồm các chữ số đôi một khác nhau.

    Trường hợp 1: n gồm ba chữ số.

    Gọi n = \overline{abc}.

    Để n > 800 và gồm các chữ số đôi một khác nhau thì

    a có 2 lựa chọn là \left\{ 8;9
ight\}

    b có 4 lựa chọn vì phải khác a

    c có 3 lựa chọn vì phải khác a; b

    Vậy có 2.4.3 = 24 số.

    Trường hợp 2: n gồm bốn chữ số. Thỏa mãn n > 800.

    Để n gồm các chữ số đôi một khác nhau thì có A_{5}^{4} = 120 thỏa mãn.

    Trường hợp 3: n gồm năm chữ số. Thỏa mãn n > 800.

    Để n gồm các chữ số đôi một khác nhau thì có A_{5}^{4} = 120 thỏa mãn.

    Vậy có 120 + 120 + 24 = 264 số n thỏa mãn yêu cầu bài toán.

  • Câu 19: Nhận biết

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là tổ hợp chập 3 của 7 phần từ.

    => Số tập hợp con là: C_{7}^{3} tập hợp

  • Câu 20: Nhận biết

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Đáp án là:

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Chọn 1 sinh viên làm lớp trưởng có 33 cách

    Chọn 1 sinh viên làm lớp phó có 32 cách

    Chọn 1 sinh viên làm bí thư có 31 cách

    33.32.31 = 32736 cách

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo