Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hai đường thẳng d_{1}d_{2} song song với nhau. Trên đường thẳng d_{1} lấy 5 điểm phân biệt, trên đường thẳng d_{2} lấy 4 điểm phân biệt. Số tam giác có 3 đỉnh là 3 điểm có được từ các điểm trên là bao nhiêu?

    Th1: Chọn 2 điểm trên đường thẳng d_{1} và 1 điểm trên đường thẳng d_{1} suy ra ta có: C_{5}^{2}.C_{4}^{1} = 40

    Th2: Chọn 1 điểm trên đường thẳng d_{1} và 2 điểm trên đường thẳng d_{1} suy ra ta có: C_{5}^{1}.C_{4}^{2} = 30

    Vậy số tam giác được tạo thành là: 30 + 40 = 70 tam giác.

  • Câu 2: Vận dụng

    Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?

    TH1: số có 1 chữ số thì có 3 cách.

    TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì có3.2 = 6số.

    TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì có3.2.1 = 6số

    Vậy có3 + 6 + 6 = 15 số.

  • Câu 3: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 6 chữ số đôi một khác nhau trong đó phải có 1 và 3 đứng cạnh nhau, không kể thứ tự trước sau.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số thỏa yêu cầu bài toán.

    Chọn 2 vị trí cạnh nhau từ 6 vị trí (từ a_{1} ightarrow a_{6}) có: 5 cách.

    Xếp số 1 và 3 vào 2 vị trí vừa chọn có: 2 cách.

    Chọn số cho 4 vị trí từ tập X\backslash\left\{ 1;3 ight\} có: 7.6.5.4 = 840 cách.

    Theo quy tắc nhân có: 5.2.840 =
8400 số.

  • Câu 4: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 5: Nhận biết

    Cho tập hợp M30 phần tử. Số tập con gồm 5 phần tử của M là:

    Số tập con gồm 5 phần tử của M chính là số tổ hợp chập 5 của 30 phần tử, nghĩa là bằng C_{30}^{5}.

  • Câu 6: Nhận biết

    Số hạng không chứa x trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    Số hạng tổng quát trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    C_{5}^{k}.\left( x^{3} ight)^{5 -
k}.\left( - \frac{1}{x^{2}} ight)^{k} = C_{5}^{k}.( - 1)^{k}.x^{15 -
5k}

    Số hạng không chứa x khi và chỉ khi 15 -
5k = 0 \Rightarrow k = 3

    Vậy số hạng không chứa x là: C_{5}^{3}.(
- 1)^{3} = - 10.

  • Câu 7: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12

    Chọn một bạn để xếp vào vị trí ghế số 1 có 12 cách.

    Chọn một bạn để xếp vào vị trí ghế số 7 để khác giới với bạn vị trí ghế số 1 có 6 cách.

    Chọn một bạn để xếp vào vị trí ghế số 2 có 10 cách.

    Chọn một bạn để xếp vào vị trí ghế số 8 để khác giới với bạn vị trí ghế số 1 có 5 cách.

    Cứ tuân theo cách xếp như vậy, ta có số cách xếp là: 12.10.8.6.4.2.6.5.4.3.2 = 33177600

  • Câu 8: Thông hiểu

    Mỗi khi thực hiện giao dịch qua app thanh toán tiền, ngân hàng sẽ gửi một mã xác thực (OTP – One Time Password) gồm 6 chữ số từ 0 đến 9. Hỏi có thể có bao nhiêu mã OTP?

    Mỗi mã xác thực gồm 6 chữ số được tạo thành từ các số từ 0 đến 9

    => Với mỗi chữ số trong mã xác thực sẽ có 10 cách chọn

    => Số mã xác thực có thể tạo thành là: 10^{6} = 1000000 mã.

  • Câu 9: Nhận biết

    Giả sử một công việc phải hoàn thành qua 2 giai đoạn:

    Giai đoạn 1 có a cách thực hiện.

    Với mỗi cách thực hiện của giai đoạn 1 ta có b cách thực hiện cho giai đoạn 2.

    Khi đó số cách thực hiện công việc là:

    Áp dụng quy tắc nhân ta có số cách thực hiện công việc là a.b cách.

  • Câu 10: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

  • Câu 11: Nhận biết

    Tìm hệ số của x^{2}y^{2} trong khai triển nhị thức Newton của (x + 2y)^{4}?

    Số hạng tổng quát là: C_{n}^{k}a^{k}b^{n
- k} = C_{4}^{k}.x^{k}.(2y)^{2 - k} = C_{4}^{k}.2^{k}.x^{k}.y^{2 -
k}

    Hệ số của x^{2}y^{2} tìm được khi k = 2

    Vậy hệ số của x^{2}y^{2} trong khai triển là C_{4}^{2}.2^{2} =
12.

  • Câu 12: Nhận biết

    Một lớp học có 15 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là

    Số cách chọn một bạn nam là 15 cách.

    Số cách chọn một bạn nữ là 10 cách.

    Theo quy tắc nhân ta có số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là 15.10 = 150 cách.

  • Câu 13: Nhận biết

    Có bao nhiêu cách xếp 6 người thành một hàng dọc

     Xếp 6 người thành một hàng dọc có: 6! = 720 cách.

  • Câu 14: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

  • Câu 15: Nhận biết

    Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?

    Mỗi tập con có 8 phần tử của tập hợp E là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp E là. C_{10}^{8} = 45.

  • Câu 16: Vận dụng

    Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \left( \sqrt[3]{3} +
\sqrt[5]{5} ight)^{2019}?

    Ta có \left( \sqrt[3]{3} + \sqrt[5]{5}
ight)^{2019} = \sum_{k = 0}^{2019}{C_{2019}^{k}.\left( \sqrt[3]{3}
ight)^{2019 - k}.\left( \sqrt[5]{5} ight)^{k}} = \sum_{k =
0}^{2019}{C_{2019}^{k}.3^{\frac{2019 -
k}{3}}.5^{\frac{k}{5}}}.

    Để trong khai triển có số hạng là số nguyên thì \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
\frac{2019 - k}{3}\mathbb{\in N} \\
\frac{k}{5}\mathbb{\in N} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
673 - \frac{k}{3}\mathbb{\in N} \\
\frac{k}{5}\mathbb{\in N} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
k \vdots 15 \\
\end{matrix} ight..

    Ta có k \vdots 15 \Rightarrow k =
15m0 \leq k \leq 2019
\Leftrightarrow 0 \leq 15m \leq 2019 \Leftrightarrow 0 \leq m \leq
134,6. Suy ra có 135 số hạng là số nguyên trong khai triển của biểu thức.

  • Câu 17: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 18: Nhận biết

    Bạn Công muốn mua một chiếc áo mới và một chiếc quần mới để đi dự sinh nhật bạn mình. Ở cửa hàng có 12 chiếc áo khác nhau, quần có 15 chiếc khác nhau. Hỏi có bao nhiêu cách chọn một bộ quần và áo?

    Số cách bạn Công chọn một chiếc áo mới là: 12 cách.

    Số cách bạn Công chọn một chiếc quần mới là: 15 cách.

    Theo quy tắc nhân, bạn Công có 12.15 = 180 cách để chọn một bộ quần và áo.

  • Câu 19: Thông hiểu

    Từ khai triển biểu thức (x + 1)^{10} thành đa thức. Tổng các hệ số của đa thức là:

    Xét khai triển f(x) = (x + 1)^{10} =
\sum_{k = 0}^{10}C_{10}^{k}.x^{k}.

    Gọi S là tổng các hệ số trong khai triển thì ta có S = f(1) = (1 + 1)^{10}
= 2^{10} = 1024.

  • Câu 20: Thông hiểu

    Cho biết hệ số của x^{2} trong khai triển (1 + 2x)^{n} bằng 180. Tìm n.

    Ta có (1 + 2x)^{n} = C_{n}^{0} +
C_{n}^{1}.2x + C_{n}^{2}.(2x)^{2} + ... +
C_{n}^{n}(2x)^{n}.

    Hệ số của x^{2} bằng 180 \Leftrightarrow 4.C_{n}^{2} = 180
\Leftrightarrow 4\frac{n!}{2!(n - 2)!} = 180 \Leftrightarrow n(n - 1) =
90

    \Leftrightarrow n^{2} - n - 90 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = - 9(l) \\
n = 10 \\
\end{matrix} ight..

    Vậy n = 10.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo