Số hạng chứa
trong khai triển
là:
Công thức số hạng tổng quát: ta được số hạng chứa
là:
Số hạng chứa
trong khai triển
là:
Công thức số hạng tổng quát: ta được số hạng chứa
là:
Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số
.
Gọi .
Cách 1: Tính trực tiếp
Vì là số chẵn nên
.
TH 1: có 1 cách chọn
.
Với mỗi cách chọn ta có 6 cách chọn
Với mỗi cách chọn ta có 5 cách chọn
Với mỗi cách chọn ta có
cách chọn
Suy ra trong trường hợp này có số.
TH 2: có 4 cách chọn d
Với mỗi cách chọn , do
nên ta có 5 cách chọn
.
Với mỗi cách chọn ta có 5 cách chọn
Với mỗi cách chọn ta có
cách chọn
Suy ra trong trường hợp này có số.
Vậy có tất cả số cần lập.
Cho hai đường thẳng
gồm
điểm phân biệt và
gồm
điểm phân biệt. Biết rằng
. Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?
Một tam giác được hình thành bởi ba điểm không thẳng hàng.
TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
Vậy số tam giác được tạo thành là .
Khai triển biểu thức
ta thu được kết quả là:
Ta có: .
Một nhóm học sinh gồm
học sinh nam và
học sinh nữ. Hỏi có bao nhiêu cách sắp xếp
học sinh trên thành
hàng dọc sao cho nam nữ đứng xen kẽ?
Xếp học sinh nam thành hàng dọc có
cách xếp.
Giữa học sinh nam có
khoảng trống ta xếp các bạn nữ vào vị trí đó nên có
cách xếp.
Theo quy tắc nhân có cách xếp thoả mãn.
Biết rằng khai triển nhị thức Newton
với
có tất cả 6 số hạng. Hãy xác định
?
Vì trong khai triển nhị thức Newton đã cho có tất cả 6 số hạng nên
Vậy n = 8 là giá trị cần tìm.
Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau trong mỗi hàng dọc và tất cả các học sinh trong mỗi hàng ngang đều cùng trường?
Giả sử 4 hàng dọc được kí hiệu là
Mỗi hàng các vị trí lại được kí hiệu từ 1 đến 10
Theo yêu cầu bài toán thì:
Các bạn trường A được xếp ở D1 ghi số chẵn, D2 ghi số chẵn, D3 ghi số chẵn, D4 ghi số chẵn.
Các bạn trường B ở các vị trí còn lại hoặc ngược lại.
Nên số cách xếp là cách
Tổng số nguyên dương n thỏa mãn
là:
Điều kiện. .
hoặc
.
Vậy tổng số nguyên dương n bằng 11.
Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:
Số tập con có 3 phần tử từ tập 5 phần tử là: .
Tính giá trị biểu thức:
.
Xét khai triển
Thay ta được:
Tìm hệ số của
trong khai triển ![]()
Số hạng tổng quát của khai triển đã cho là
với ,
. Số hạng này chứa
khi và chỉ khi
(thỏa mãn).
Vậy hệ số của trong khai triển
là
.
Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?
Gọi số cần tìm có dạng
Trường hợp 1: . Có 1 số thỏa mãn yêu cầu bài toán.
Trường hợp 2:
a có 1 cách chọn.
b có 2 cách chọn.
c có 3 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Trường hợp 3:
a có 1 cách chọn.
b có 1 cách chọn.
c có 2 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Trường hợp 4: a < 2.
a có 1 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
⇒ Vậy có (số).
Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra một học sinh đi dự trại hè của trường. Hỏi có bao nhiêu cách chọn?
Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:
Bước 2: Đếm số cách chọn.
* Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.
* Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.
Bước 3: Áp dụng quy tắc cộng.
Vậy có 20 + 25 = 45 cách chọn.
Một học sinh có 12 quyển sách đôi một khác nhau, trong đó có 2 sách Toán, 4 sách Văn, 6 sách Anh Văn. Hỏi có bao nhiêu cách xếp tất cả các quyển sách lên một kệ sách dài nếu mọi quyển sách cùng môn được xếp kề nhau?
Có 3! = 6 cách xếp 3 loại sách.
Có 2! = 2 cách xếp 2 sách Toán.
Có 4! = 24 cách xếp 4 sách Văn.
Vậy theo qui tắc nhân có tất cả 6.2.24 = 720 cách xếp thoả mãn yêu cầu đề bài
Với số nguyên dương
, gọi
là hệ số của
trong khai triển thành đa thức của
. Tìm
để
.
Ta có:
Ta thấy không thoả mãn điều kiện bài toán.
Với ta có:
Do đó hệ số của trong khai triển thành đa thức của
.
.
Vậy là giá trị cần tìm.
Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?
Số cách chọn một quyển sách là 8 cách.
Số cách chọn một cái bút là 10 cách.
=> Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách.
Cho tập
gồm
phần tử. Số tập con gồm
phần tử của M là:
Số tập con gồm phần tử của
là số cách chọn
phần tử bất kì trong
phần tử của
.
Do đó số tập con gồm phần tử của
là
.
Có bao nhiêu cách chọn một học sinh từ nhóm gồm 15 học sinh nam và 20 học sinh nữ?
Số cách chọn một học sinh trong nhóm học sinh là: 15 + 20 = 35 cách.
Cho tập
. Hỏi lập được bao nhiêu số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
Gọi là số số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
+ TH1. . Chọn
có 360 số.
+ TH2. Chọn
3 (cách).
Chọn 5 (cách).
Chọn
(cách).
có
số.
Vậy có. số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.
Trường hợp 1: An và Bình không có mặt trong tổ công tác:
Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có cách.
Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:
Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có cách
Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có cách.
Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng
Như vậy có tất cả số cách là: cách