Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.
Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.
Cho khai triển
trong đó
và các hệ số thỏa mãn hệ thức
. Hệ số lớn nhất là:
Xét khai triển .
Cho ta được
Khi đó .
Ta có hệ số
Hệ số lớn nhất nên
Vì nên nhận
Vậy hệ số lớn nhất .
Có bao nhiêu số hạng trong khai triển
?
Trong khai triển nhị thức có
nên có 5 số hạng.
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi riêng dãy?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Trường hợp 1: Các bạn nam ngồi dãy A, các bạn nữ ngồi dãy B
Số cách xếp là: cách.
Trường hợp 2: Các bạn nữ ngồi dãy A, các bạn nam ngồi dãy B
Số cách xếp là: cách.
Vậy số cách xếp là: cách.
Tính tổng các hệ số trong khai triển
.
Xét khai triển
Tổng các hệ số trong khai triển là:
Cho ta có:
Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?
Gọi số cần tìm có dạng . Vì
chia hết cho 6 suy ra
TH1. Với suy ra
, do đó gồm các bộ
suy ra có 24 số.
TH2. Với suy ra
, do đó gồm các bộ
,
suy ra có 42 số.
Vậy có tất cả số cần tìm.
Trong khai triển nhị thức
hệ số của
là
. Giá trị của n là
Khai triển biểu thức như sau:
Theo bài ra ta có:
Hệ số của là
khi đó: k = 1
Khai triển
thành đa thức ta được biểu thức gồm mấy số hạng?
Biểu thức khai triển thành đa thức có 5 hạng tử.
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi ở hai đầu ghế là:
Vì A; E ngồi ở hai đầu ghế nên ta có 3!.2! = 12 cách sắp xếp
Từ các số
có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?
TH1: số có 1 chữ số thì có 3 cách.
TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì cósố.
TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì cósố
Vậy có số.
Từ tập hợp các chữ số
có thể lập được bao nhiêu số có ba chữ số khác nhau thuộc khoảng
?
Gọi số tự nhiên có ba chữ số cần tìm có dạng
Số cần tìm thuộc khoảng nên
=> a có 2 cách chọn.
Số cách chọn b là 5 cách chọn
Số cách chọn c là 4 cách chọn
Vậy có thể lập được (số) thỏa mãn yêu cầu đề bài.
Hệ số của số hạng chứa
trong khai triển Newton
là:
Số hạng tổng quát của khái triển
Số của số hạng chứa :
. Hệ số của số hạng chứa
.
Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?
Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là
Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!
Vậy số cách trao các huy chương này là
Một người có 7 áo trong đó có 3 áo trắng và 5 cà vạt trong đó có 2 cà vạt vàng. Hỏi người đó có bao nhiêu cách chọn bộ áo và cà vạt nếu chọn áo nào cũng được và cà vạt nào cũng được?
Số cách chọn 1 một bộ áo và cà vạt là:
Từ các chữ số
,
,
,
,
,
có thể lập được bao nhiêu số tự nhiên gồm
chữ số đôi một khác nhau trong đó hai chữ số
và
không đứng cạnh nhau.
Số các số có chữ số được lập từ các chữ số
,
,
,
,
,
là
.
Số các số có chữ số và
đứng cạnh nhau:
.
Số các số có chữ số và
không đúng cạnh nhau là:
.
Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?
Số cách lấy 5 con trong đó có 1 con át và 1 con vua là .
Có bao nhiêu số tự nhiên có hai chữ số mà cả hai chữ số đó đều lẻ?
- Gọi số tự nhiên có hai chữ số cần lập thỏa mãn yêu cầu bài toán là (a, b ∈ {1;3;5;7;9})
+ a: có 5 cách chọn
+ b: có 5 cách chọn.
Dó đó có: 5 x 5 = 25 cách lập số có 2 chữ số mà cả hai chữ số đều lẻ.
Tổng số nguyên dương n thỏa mãn
là:
Điều kiện. .
hoặc
.
Vậy tổng số nguyên dương n bằng 11.
Từ các chữ số 6; 7; 8; 9. có thể lập được bao nhiêu chữ số tự nhiên có 3 chữ số.
Gọi số cần lập có dạng .
A: có 4 cách chọn.
B: có 4 cách chọn.
C: có 4 cách chọn.
Vậy có 4.4.4 = 64 (số) tự nhiên có 3 chữ số.
Mỗi bảng số xe gắn máy ở thành phố X có cấu tạo như sau. Phần đầu gồm hai chữ cái trong bảng chữ cái, phần sau gồm 4 chữ số trong các chữ số:
. Ví dụ:
... Hỏi có bao nhiêu cách tạo bảng số xe theo cấu tạo trên? (Giả sử bảng chữ cái có tất cả 26 chữ cái)
Chọn hai chữ cái cho phần đầu có (mỗi chữ số có 26 cách chọn)
Còn 4 chữ số cho phần đuôi có (mỗi chữ số có 10 cách chọn)
Vậy có thể tạo được