Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một người vào cửa hàng ăn, người đó chọn thực đơn. Trong đó gồm 1 món ăn trong 5 món ăn, 1 loại quả tráng miệng trong 4 loại quả tráng miệng và 1 loại nước uống trong 3 loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?

    Chọn một món ăn có 5 cách.

    Chọn một loại quả tráng miệng có 4 cách.

    Chọn một loại nước uống có 3 cách.

    Áp dụng quy tắc nhân, có 5.4.3 = 60 cách chọn thực đơn.

  • Câu 2: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5 ight\}. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 2 suy ra e = \left\{ 0;2;4 ight\}.

    TH1. Với e = 0, khi đó 5 \times 4 \times 3 \times 2 =
120 số.

    TH2. Với e = \left\{ 2;4
ight\}, khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn

    d.

    Suy ra có 4 \times 4 \times 3 \times 2
\times 2 = 192 số. Vậy có tất cả 120 + 192 = 312 số cần tìm.

  • Câu 3: Thông hiểu

    Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?

    Gọi \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số cần tìm

    Ta có a_{6} \in \left\{ 1;\ 3;\ 5ight\}\left( a_{1} + a_{2} +a_{3} ight) - \left( a_{4} + a_{5} + a_{6} ight) = 1

    Với a_{6} = 1 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 2 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 4,\ 5 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 4,\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 3,\ 6 ight\} \\\end{matrix} ight.

    Với a_{6} = 3 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 4 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2;\ 4;\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 6 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 5 ight\} \\\end{matrix} ight.

    Với a_{6} = 5 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 6 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 4 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 3 ight\} \\\end{matrix} ight.

    Mỗi trường hợp có 3!.2! = 12 số thỏa mãn yêu cầu

    Vậy có tất cả 6.12 = 72 số cần tìm.

  • Câu 4: Nhận biết

    Đếm số cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài. Biết các sách Văn phải xếp kề nhau?

    Vì các sách Văn phải xếp kề nhau nên ta xem 5 cuốn sách Văn là một phần tử.

    Xếp 7 cuốn sách toán lên kệ có 7! cách.

    Giữa 7 cuốn sách Toán có 8 khoảng trống, ta xếp phần tử chứa 5 cuốn sách Văn vào 8 vị trí đó có 8 cách.

    5 cuốn sách Văn có thể hoán đổi vị trí cho nhau ta được 5! cách.

    Vậy số cách sắp xếp thỏa mãn yêu cầu bài toán là. 8.7!.5! = 8!.5!.

  • Câu 5: Nhận biết

    Phát biểu nào sau đây đúng?

    Phát biểu đúng là: (a + b)^{5} = a^{5} + 5a^{4}b + 10a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}

  • Câu 6: Thông hiểu

    Từ khai triển biểu thức (x + 1)^{10} thành đa thức. Tổng các hệ số của đa thức là:

    Xét khai triển f(x) = (x + 1)^{10} =
\sum_{k = 0}^{10}C_{10}^{k}.x^{k}.

    Gọi S là tổng các hệ số trong khai triển thì ta có S = f(1) = (1 + 1)^{10}
= 2^{10} = 1024.

  • Câu 7: Nhận biết

    Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

    Chọn 1 kiểu mặt từ 3 kiểu mặt có 3 cách.

    Chọn 1 kiểu dây từ 4 kiểu dây có 4 cách.

    Vậy theo quy tắc nhân có 12 cách chọn 1 chiếc đồng hồ gồm một mặt và một dây.

  • Câu 8: Thông hiểu

    Tìm số hạng chứa x^{5} trong khai triển \left( x - \frac{2}{x} ight)^{n}, biết n là số tự nhiên thỏa mãn C_{n}^{3} = \frac{4}{3}n +
2C_{n}^{2}.

    Điều kiện : n \geq 3,\ n \in
\mathbb{Z}.

    Ta có C_{n}^{3} = \frac{4}{3}n +2C_{n}^{2} \Leftrightarrow \frac{n!}{3!(n - 3)!} = \frac{4}{3}n +\frac{n!}{(n - 2)!}

    \Leftrightarrow n(n - 1)(n - 2) = 8n + 6n(n -1)

    \Leftrightarrow n^{2} - 3n + 2 = 8 + 6n -
6 \Leftrightarrow n^{2} - 9n = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 0 \\
n = 9 \\
\end{matrix} ight.. Đối chiếu điều kiện ta được n = 9.

    Số hạng tổng quát của khai triển \left( x
- \frac{2}{x} ight)^{9},là : C_{9}^{k}x^{9 - k}.\frac{( - 2)^{k}}{x^{k}} = ( -
2)^{k}C_{9}^{k}x^{9 - 2k}

    Số hạng này chứa x^{5}ứng với 9 - 2k = 5 \Leftrightarrow k =
2.

    Vậy hệ số của số hạng đó là 4.C_{9}^{2} =
144.

  • Câu 9: Nhận biết

    Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.

    Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử 

    => Số cách chọn là: A_{10}^2 = 90 (cách)

  • Câu 10: Nhận biết

    Phát biểu nào sau đây đúng?

    Phát biểu đúng là: {(a - b)^4} = {a^4} - 4{a^3}b + 6{a^2}{b^2} - 4a{b^3} + {b^4}

  • Câu 11: Thông hiểu

    Câu lạc bộ cầu lông gồm 12 tay vợt nam và 9 tay vợt nữ. Hỏi có bao nhiêu cách lập đội đôi nam nữ từ câu lạc bộ để tham gia giải đấu giao lưu các trường?

    Có 12 cách chọn 1 tay vợt nam

    Ứng với mỗi cách chọn 1 tay vợt nam ta có 9 cách chọn một tay vợt nữ

    Theo quy tắc nhân ta có: 9.12 = 108 cách chọn một đôi nam nữ tham gia giải đấu.

  • Câu 12: Vận dụng

    Chon là số tự nhiên thỏa mãn phương trình C_{n - 4}^{n - 6} +
nA_{n}^{2} = 454. Tìm hệ số của số hạng chứa x^{4} trong khai triển nhị thức Niu-tơn của \left( \frac{2}{x} - x^{3}
ight)^{n}( với x eq 0).

    Điều kiện n \geq 6n\mathbb{\in N}.

    C_{n - 4}^{n - 6} + nA_{n}^{2} = 454\Leftrightarrow \frac{(n - 4)!}{(n - 6)!2!} + n \cdot \frac{n!}{(n -2)!} = 454

    \Leftrightarrow \frac{(n - 5)(n - 4)}{2} + n^{2}(n - 1) = 454\Leftrightarrow 2n^{3} - n^{2} - 9n - 888 = 0 \Leftrightarrow n =8 (Vì n\mathbb{\in
N}).

    Khi đó ta có khai triển: \left( \frac{2}{x} - x^{3}
ight)^{8}.

    Số hạng tổng quát của khai triển là C_{8}^{k}\left( \frac{2}{x} ight)^{8 - k}\left(
- x^{3} ight)^{k} = C_{8}^{k}( - 1)^{k}2^{8 - k}x^{4k -
8}.

    Hệ số của số hạng chứa x^{4} ứng với k thỏa mãn: 4k - 8 = 4 \Leftrightarrow k =
3.

    Vậy hệ số của số hạng chứa x^{4}: C_{8}^{3}( -
1)^{3}2^{5} = - 1792.

  • Câu 13: Nhận biết

    Hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x - \frac{2}{x\sqrt{x}}
ight)^{12} (với x >
0) là:

    Số hạng tổng quát của khai triển \left( x
- \frac{2}{x\sqrt{x}} ight)^{12} (với x > 0) là:

    T_{k + 1} = C_{12}^{k}.x^{12 - k}.\left(
- \frac{2}{x\sqrt{x}} ight)^{k} = ( - 2)^{k}.C_{12}^{k}.x^{12 -
k}.x^{- \frac{3k}{2}} = ( - 2)^{k}.C_{12}^{k}.x^{12 -
\frac{5k}{2}}.

    Số hạng trên chứa x^{7} suy ra 12 - \frac{5k}{2} = 7 \Leftrightarrow k =
2.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển trên là = ( -
2)^{2}.C_{12}^{2} = 264.

  • Câu 14: Nhận biết

    Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?

     Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).

  • Câu 15: Thông hiểu

    Từ các số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau?

    Mỗi số tự nhiên có ba chữ số khác nhau được lập từ các số 1,2,3,4,5,6 là một chỉnh hợp chập 3 của 6 phần tử.

    Vậy từ các số 1,2,3,4,5,6 có thể lập được: A_{6}^{3} = 120 số tự nhiên có ba chữ số khác nhau.

  • Câu 16: Nhận biết

    Để giải một bài tập ta cần phải giải hai bài tập nhỏ. Bài tập 19 cách giải, bài tập 25 cách giải. Số các cách để giải hoàn thành bài tập trên là:

    Sô cách giải bài toán 1 : 9 cách.

    Số cách giải bài toán 2 : 5 cách.

    Áp dụng quy tắc nhân: 9 × 5 = 45 cách.

  • Câu 17: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 18: Nhận biết

    Tìm số tự nhiên n thỏa A_{n}^{2}=210

     Điều kiện: n \ge 2.

    Ta có: A_n^2 = 210 \Leftrightarrow \frac{{n!}}{{(n - 2)!}} = 210\Leftrightarrow n(n - 1) = 210 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 15}\\{n =  - 14}\end{array}} ight.

    Vậy n=15.

  • Câu 19: Vận dụng

    Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 5 suy ra e = \left\{ 0;5 ight\}.

    TH1. Với e = 0 suy ra có 4 \times 5 \times 4 \times 3 = 240 số cần tìm.

    TH2. Với e = 5, suy ra có 5 \times 4 \times 3 + 3 \times 4 \times 4 \times 3
= 204 số cần tìm.

    Vậy có tất cả 444 số cần tìm.

  • Câu 20: Thông hiểu

    Cho hai đường thẳng d_{1}d_{2} song song với nhau. Trên đường thẳng d_{1} lấy 5 điểm phân biệt, trên đường thẳng d_{2} lấy 4 điểm phân biệt. Số tam giác có 3 đỉnh là 3 điểm có được từ các điểm trên là bao nhiêu?

    Th1: Chọn 2 điểm trên đường thẳng d_{1} và 1 điểm trên đường thẳng d_{1} suy ra ta có: C_{5}^{2}.C_{4}^{1} = 40

    Th2: Chọn 1 điểm trên đường thẳng d_{1} và 2 điểm trên đường thẳng d_{1} suy ra ta có: C_{5}^{1}.C_{4}^{2} = 30

    Vậy số tam giác được tạo thành là: 30 + 40 = 70 tam giác.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo