Tìm số các số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ?
Trường hợp 1: 3 chữ số đều lẻ. Có số thỏa mãn.
Trường hợp 2: số đó gồm 2 chữ số chẵn và 1 chữ số lẻ
- Chọn 2 chữ số chẵn khác nhau có cách.
- Chọn 1 chữ số lẻ có 5 cách.
- Từ 3 số đã chọn đó lập được số.
Do đó có dãy gồm 3 chữ số phân biệt, trong đó có 2 chữ số chẵn, 1 chữ số lẻ kể cả chữ số 0 đứng đầu.
Xét dãy số có 3 chữ số phân biệt, gồm 2 chữ số chẵn, 1 chữ số lẻ mà chữ số đầu bằng 0
- Chọn 1 chữ số lẻ có 5 cách.
- Chọn 1 chữ số chẵn khác chữ số 0 có 4 cách.
Vậy có số có 3 chữ số phân biệt, gồm 2 chữ số chẵn, 1 chữ số lẻ mà chữ số đầu bằng 0.
Do đó có số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ.