Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:
Số các chỉnh hợp chập của
phần tử là
.
Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:
Số các chỉnh hợp chập của
phần tử là
.
Từ
người cần chọn ra một đoàn đại biểu gồm
trưởng đoàn,
phó đoàn,
thư kí và
ủy viên. Số cách chọn thỏa mãn là:
Số cách chọn người trong
người làm trưởng đoàn là.
cách.
Số cách chọn người trong
người còn lại làm phó đoàn là.
cách.
Số cách chọn người trong
người còn lại làm thư kí là.
cách.
Số cách chọn người trong
người còn lại làm ủy viên là.
cách.
Vậy số cách chọn đoàn đại biểu là .
Cho tập hợp
gồm
phần tử. Số các tổ hợp chập
của
phần tử từ tập hợp
(với
) được xác định bởi công thức là:
Số các tổ hợp chập của
phần tử từ tập hợp
(với
) được xác định bởi công thức là:
.
Dãy
trong đó mỗi kí tự
chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit trong đó có ít nhất ba kí tự 0 và ít nhất ba kí tự 1?
Trường hợp 1: dãy nhị phân có ba kí tự 0 và bảy kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 2: dãy nhị phân có bốn kí tự 0 và sáu kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 3: dãy nhị phân có năm kí tự 0 và năm kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 4: dãy nhị phân có sáu kí tự 0 và bốn kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 5: dãy nhị phân có bảy kí tự 0 và ba kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Vậy có dãy nhị phân 10 bit thỏa mãn yêu cầu bài toán.
Có bao nhiêu số tự nhiên có hai chữ số mà cả hai chữ số đó đều lẻ?
- Gọi số tự nhiên có hai chữ số cần lập thỏa mãn yêu cầu bài toán là (a, b ∈ {1;3;5;7;9})
+ a: có 5 cách chọn
+ b: có 5 cách chọn.
Dó đó có: 5 x 5 = 25 cách lập số có 2 chữ số mà cả hai chữ số đều lẻ.
Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?
Gọi số cần tìm có dạng . Vì
chia hết cho 10 suy ra
.
TH1. Với , ta có
+ Nếu suy ra
, do đó có 2 số cần tìm.
+ Nếu suy ra
và
, do đó có 14 số cần tìm.
TH2. Với suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn
C.
Suy ra có số cần tìm. Vậy có tất cả 114 số cần tìm.
Tính tổng
?
Xét khai triển
Chọn ta được:
Có 1 con mèo vàng,
con mèo đen,
con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào
cái ghế sao cho mỗi ghế chỉ có một con mèo. Đếm số cách xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau.
Số cách xếp con mèo vàng và con mèo đen ở cạnh nhau là .
Xem nhóm con mèo vàng và đen này là một phần tử, cùng với con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím, ta được
phần tử. Xếp
phần tử này là.
Vậy có .
Cho tập hợp các chữ số tự nhiên
. Có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau và chia hết cho 5?
Gọi số tự nhiên có 4 chữ số là: .
Tổng quát:
Số cách chọn là 2 cách chọn.
Số cách chọn a là 6 cách chọn.
Số cách chọn b là 5 cách chọn.
Số cách chọn c là 4 cách chọn.
Áp dụng quy tắc nhân ta có: số
Vi phạm:
a = 0 có 1 cách chọn.
d = 5 có 1 cách chọn.
b có 5 cách chọn.
c có 4 cách chọn.
Áp dụng quy tắc nhân: số
Số các số cần tìm là: số.
Hệ số của số hạng chứa
trong khai triển Newton
là:
Số hạng tổng quát của khái triển
Số của số hạng chứa :
. Hệ số của số hạng chứa
.
Tìm hệ số của
trong khai triển nhị thức Newton
với
, biết
là số tự nhiên lớn nhất thỏa mãn
.
Điều kiện:
Khi đó
.
Số hạng tổng quát trong khai triển là
.
Tìm sao cho
.
Vậy hệ số của số hạng chứa là
.
Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số vé gồm 5 chữ số khác nhau?
Gọi số in trên vé có dạng
Số cách chọn là 10 (
có thể là 0).
Số cách chọn là 9.
Số cách chọn là 8.
Số cách chọn là 7.
Số cách chọn là 6.
Vậy có 10.9.8.7.6 = 30240 cách
Tổng tất cả các nghiệm của phương trình
bằng:
Điều kiện xác định:
Ta có:
Vật tổng các nghiệm phương trình là:
Số hạng không chứa
trong khai triển nhị thức
là:
Số hạng tổng quát trong khai triển nhị thức là:
Số hạng không chứa x khi và chỉ khi
Vậy số hạng không chứa x là: .
Cho khai triển
với
. Tìm hệ số của số hạng chứa
trong khai triển trên.
Ta có: .
Số hạng chứa ứng với
. Vậy hệ số của số hạng chứa
bằng
.
Một lớp có 34 học sinh. Hỏi có bao nhiêu cách chọn 3 học sinh để làm lớp trưởng, lớp phó, bí thư?
Chọn 3 học sinh từ 34 học sinh rồi xếp vào 3 vai trò lớp trưởng, lớp phó, bí thư có cách.
Tính tổng các hệ số trong khai triển
.
Xét khai triển
Tổng các hệ số trong khai triển là:
Cho ta có:
Có bao nhiêu cách chọn ngẫu nhiên 3 viên bi từ một hộp có 20 viên bi.
Chọn 3 viên bi từ 20 viên bi: cách.
Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.
Điều kiện:
Số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A là tổ hợp chập 3 của n phần tử
=> Số tam giác là: (tam giác)
Số đoạn thẳng được nối từ 2 điểm thuộc A là tổ hợp chập n phần tử
=> Số đoạn thẳng là:
Theo bài ra ta có:
Số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.
Vậy n = 8.
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con
đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn
đường đi đến nhà Cường cùng Bình (như hình vẽ dưới đây và không có con đường nào khác)?

Chọn đường đi từ nhà An đến nhà Bình có 4 cách chọn.
Chọn đường đi từ nhà Bình đến nhà Cường có 6 cách chọn.
Vậy theo quy tắc nhân có 4.6 = 24 cách cho An chọn đường đi đến nhà Cường cùng Bình.