Khai triển nhị thức
ta được kết quả là:
Khai triển nhị thức ta có:
Khai triển nhị thức
ta được kết quả là:
Khai triển nhị thức ta có:
Cho
là số nguyên dương thỏa mãn
. Tìm hệ số của số hạng chứa
của khai triển biểu thức
.
.
Khi đó .
Công thức số hạng tổng quát: .
Số hạng chứa .
Vậy hệ số của số hạng chứa trong khai triển là
.
Có bao nhiêu số tự nhiên chia hết cho 2 và gồm 4 chữ số?
Gọi số thỏa mãn đề bài có dạng .
Trường hợp 1: C bằng 0. Suy ra có 1 cách chọn.
Vị trí A: có 9 cách chọn, khác số 0.
Vị trí B: có 10 cách chọn.
Suy ra có: 1.9.10 = 90 (số).
Trường hợp 2: C khác 0. Suy ra C có 4 cách chọn (2, 4, 6, 8).
Vị trí A: có 9 cách chọn, khác số 0.
Ví trí B: Có 10 cách chọn.
Suy ra có: 4.9.10 = 360 (số).
Vậy, áp dụng quy tắc cộng, có 90 + 360 = 450 (số).
Từ các chữ số
,
,
,
,
,
có thể lập được bao nhiêu số tự nhiên lẻ có
chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?
Gọi là số cần tìm
Ta có và
Với thì
hoặc
Với thì
hoặc
Với thì
hoặc
Mỗi trường hợp có số thỏa mãn yêu cầu
Vậy có tất cả số cần tìm.
Tìm hệ số của số hạng chứa
trong khai triển nhị thức Newton
?
Ta có:
Vậy hệ số của số hạng chứa trong khai triển nhị thức là:
.
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).
Cho khai triển
với
. Tìm hệ số của số hạng chứa
trong khai triển trên.
Ta có: .
Số hạng chứa ứng với
. Vậy hệ số của số hạng chứa
bằng
.
Cho tập hợp M = {a; b; c}. Số hoán vị của ba phần tử của M là:
Số hoán vị của ba phần tử của M là: 3! = 6.
Cho biết hệ số của
trong khai triển
bằng
. Tìm
.
Ta có .
Hệ số của bằng
.
Vậy .
Cho tập
. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.
Vì lẻ và không chia hết cho 5 nên
có 3 cách chọn
Số các chọn các chữ số còn lại là:
Vậy số thỏa yêu cầu bài toán.
Tính số cách sắp xếp
nam sinh và
nữ sinh vào một dãy ghế hàng ngang có
chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.
Sắp xếp nữ sinh vào
ghế.
cách.
Xem nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với
nam sinh. có
cách
vậy có cách sắp xếp.
Có bao nhiêu cách chọn một học sinh từ nhóm gồm 15 học sinh nam và 20 học sinh nữ?
Số cách chọn một học sinh trong nhóm học sinh là: 15 + 20 = 35 cách.
Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Giả sử số đó là
Trường hợp 1. xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2. . Với
chọn
có 6 cách nên có 6 số thỏa mãn. Với
chọn
có 5 cách chọn, và tất nhiên
nên có 5 số thỏa mãn. Do đó có
số thỏa mãn.
Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:
Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.
Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.
Vì vậy số hoán vị 6 đối tượng là 6!.
Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.
Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!
Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.
Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 5?
Số tự nhiên có 5 chữ số có dạng:
Do số cần tìm chia hết cho 5 => => e có 2 cách chọn.
a có 9 cách chọn
b, c, d có 10 cách chọn
=> Số các số tạo thành là: 2.9.10.10.10 = 18 000 số.
Có 1 con mèo vàng,
con mèo đen,
con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào
cái ghế sao cho mỗi ghế chỉ có một con mèo. Đếm số cách xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau.
Số cách xếp con mèo vàng và con mèo đen ở cạnh nhau là .
Xem nhóm con mèo vàng và đen này là một phần tử, cùng với con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím, ta được
phần tử. Xếp
phần tử này là.
Vậy có .
Cho hai số tự nhiên
sao cho
. Chọn khẳng định đúng sau đây?
Khẳng định đúng là: .
Có bao nhiêu số hạng trong khai triển
?
Trong khai triển nhị thức có
nên có 5 số hạng.
Mỗi bảng số xe gắn máy ở thành phố X có cấu tạo như sau. Phần đầu gồm hai chữ cái trong bảng chữ cái, phần sau gồm 4 chữ số trong các chữ số:
. Ví dụ:
... Hỏi có bao nhiêu cách tạo bảng số xe theo cấu tạo trên? (Giả sử bảng chữ cái có tất cả 26 chữ cái)
Chọn hai chữ cái cho phần đầu có (mỗi chữ số có 26 cách chọn)
Còn 4 chữ số cho phần đuôi có (mỗi chữ số có 10 cách chọn)
Vậy có thể tạo được
Cho tập
. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.