Tìm số hạng chứa
trong khai triển
biết
.
Ta có:
Khai triển biểu thức như sau:
Số hạng chứa nghĩa là:
=> Số hạng cần tìm là
Tìm số hạng chứa
trong khai triển
biết
.
Ta có:
Khai triển biểu thức như sau:
Số hạng chứa nghĩa là:
=> Số hạng cần tìm là
Cho đa giác đều
nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong
của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong
đỉnh của đa giác. Tìm
.
Số tam giác có 3 đỉnh là 3 trong 2n điểm là
Ứng với 2 đường chéo đi qua tâm của đa giác đều cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm
Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.
Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là
Theo giả thiết ta có:
Vậy .
Giá trị của n bằng bao nhiêu, biết ![]()
Điều kiện: .
Thay vào phương trình, ta được
(đúng). Do đó
là nghiệm của phương trình.
Số cách lấy một chiếc bút trong hộp gồm 4 chiếc bút bi và 6 chiếc bút máy bằng:
Áp dụng quy tắc cộng ta có số cách lấy một chiếc bút là:
cách.
Hệ số của
trong khai triển
là:
Theo giả thiết: .
Vậy hệ số của là
.
Biết
là số nguyên dương thỏa mãn
, số hạng chứa
trong khai triển
là:
Ta có:
(vì
là số nguyên dương).
Số hạng tổng quát trong khai triển là:
.
Cho .
Vậy số hạng chứa trong khai triển
là
.
Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?
Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là
Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!
Vậy số cách trao các huy chương này là
Số cách xếp 5 học sinh ngồi vào một bàn dài là:
Ta có số cách xếp 5 học sinh vào một bàn dài là số các hoán vị của học sinh đó. Vậy kết quả là:
.
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Cho đa giác đều có 54 đường chéo. Hãy tính xem đa giác này có bao nhiêu cạnh?
Đa giác n cạnh có n đỉnh.
Mỗi đỉnh nối với đỉnh khác để tạo ra đường chéo
Do đó n đỉnh sẽ có đường
Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là:
Theo đề bài ta có:
Vậy đa giác có 12 cạnh.
Khai triển biểu thức
ta thu được kết quả là:
Ta có: .
Cho biểu thức
với
,
. Số hạng không chứa
trong khai triển Niu-tơn của
là:
Ta có .
Nên .
Số hạng tổng quát của khai triển là: .
Khi thì số hạng không chứa
là
.
Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?
Số cách chọn sách Toán là 20 cách.
Số cách chọn sách Vật lí là 40 cách.
Số cách chọn sách Hóa học là 50 cách.
Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.
Tìm hệ số của số hạng chứa
trong khai triển nhị thức Newton
?
Ta có:
Vậy hệ số của số hạng chứa trong khai triển nhị thức là:
.
Thầy giáo chủ nhiệm có 10 quyển sách khác nhau và 8 quyển vở khác nhau. Thầy chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi. Hỏi có bao nhiêu cách chọn khác nhau?
Chọn một quyển sách có 10 cách chọn.
Chọn một quyển vở có 8 cách chọn.
Áp dụng quy tắc cộng có 18 cách chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi.
Cho tập hợp
. Có thể lập được bao nhiêu số tự nhiên chẵn có 4 chữ số đôi một khác nhau từ các chữ số thuộc tập hợp
?
Gọi số tự nhiên có bốn chữ số là:
TH1: d = 0 => d có 1 cách.
Số cách chọn a, b, c lần lượt là 5, 4, 3
=> Số các số tạo thành là: 1.5.4.3 = 60 (số)
TH2: => Chữ số d có 2 cách chọn.
=> Chữ số a có 4 cách.
=> Số cách chọn b, c lần lượt là 4, 3 cách.
=> Số các số tạo thành là: 2.4.4.3 = 96 (số)
Vậy có tất cả 60 + 96 = 156 (số) thỏa mãn yêu cầu đề bài.
Từ các số
có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?
TH1: số có 1 chữ số thì có 3 cách.
TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì cósố.
TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì cósố
Vậy có số.
Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được 2 con át?
Số cách lấy 5 con trong đó có 2 con át là: .
Cho tập hợp
. Có bao nhiêu số tự nhiên không chia hết cho 2 gồm 5 chữ số khác nhau được lập từ tập hợp
?
Gọi số tự nhiên có năm chữ số cần tìm có dạng
Số cách chọn e là: 4 cách
Số cách chọn a là: 4 cách
Số cách chọn b là: 6 cách
Số cách chọn c là: 5 cách
Số cách chọn d là: 4 cách
Vậy số các số được tạo thành là: số.
Giá trị của
thoả mãn phương trình
là:
Điều kiện: .
Thay vào phương trình, ta được:
(2 vế bằng nhau). Do đó
là nghiệm của phương trình.