Số hạng chứa
trong khai triển
là:
Công thức số hạng tổng quát: ta được số hạng chứa
là:
Số hạng chứa
trong khai triển
là:
Công thức số hạng tổng quát: ta được số hạng chứa
là:
Biết rằng
thỏa mãn biểu thức
. Tính giá trị biểu thức
?
Ta có:
Lại có:
Với số nguyên dương
, gọi
là hệ số của
trong khai triển thành đa thức của
. Tìm
để
.
Ta có:
Ta thấy không thoả mãn điều kiện bài toán.
Với ta có:
Do đó hệ số của trong khai triển thành đa thức của
.
.
Vậy là giá trị cần tìm.
Cho các chữ số 2, 3, 4, 5, 6, 7, 8, 9 số các số tự nhiên chẵn có 3 chữ số lập thành từ các chữ số đã cho là
Số tự nhiên có ba chữ số có dạng
Do số tự nhiên được tạo thành là số chẵn =>
=> c có 4 cách chọn
a có 8 cách chọn
b có 8 cách chọn
=> Số các số được tạo thành là 4.8.8 = 256 số
Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho
mà mỗi số
chữ số và trong đó có ít nhất hai chữ số
.
Đặt là các số tự nhiên thỏa yêu cầu bài toán.
{ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}
Với mỗi số thuộc A có chữ số
thì ta có thể bổ sung thêm
số
vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng
mà trong
không có chữ số 9}
mà trong
có đúng 1 chữ số 9}
Ta thấy tập A có
phần tử
Tính số phần tử của
Với và
với
. Từ đó ta suy ra
có
phần tử.
Tính số phần tử của
Để lập số của thuộc tập ta thực hiện liên tiếp hai bước sau:
Bước 1: Lập một dãy gồm chữ số thuộc tập
và tổng các chữ số chia hết cho 9. Số các dãy là
.
Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9.
Do đó có
phần tử.
Vậy số các số cần lập là:
.
Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.
Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử
=> Số cách chọn là: (cách)
Trong khai triển nhị thức Newton của
, số hạng thứ hai theo số mũ tăng dần của biến
là:
Ta có:
Quân đến nhà Hoàng để cùng Hoàng đến nhà An. Từ nhà Quân đến nhà Hoàng có 4 con đường đi, từ nhà Hoàng đến nhà An có 6 con đường đi. Hỏi Quân có bao nhiêu cách chọn con đường đi từ nhà đến nhà An?
Giai đoạn 1: Quân đi từ nhà đến nhà Hoàng có 4 cách.
Giai đoạn 2: Quân đi từ nhà Bình đến nhà An có 6 cách.
Vậy số cách Quân lựa chọn con đường đi từ nhà đến nhà An là: cách
Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn và sách Toán nằm ở giữa?
Chọn vị trí cho bộ sách Toán có 2 cách
Sắp xếp 3 bộ sách còn lại có 3! cách
Sắp xếp 3 quyển sách Toán có 3! cách
Sắp xếp 2 quyển sách Hóa có 2! cách
Sắp xếp 4 quyển sách Lý có 4! Cách
Sắp xếp 5 quyển sách Sinh có 5! Cách.
Vậy số cách sắp xếp số sách trên kệ theo từng môn và sách Toán nằm giữa là: cách.
Khai triển nhị thức
ta được kết quả là:
Khai triển nhị thức ta có:
Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.
TH1. Có đúng 1 học sinh khối 10: (cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)
TH2. Có đúng 2 học sinh khối 10: (cách).
Có
cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.
Một bài thi trắc nghiệm khách quan gồm 8 câu hỏi. Mỗi câu hỏi gồm 4 đáp án trả lời. Hỏi bài thi đó có tất cả bao nhiêu đáp án?
Mỗi câu hỏi gồm 4 đáp án, có 8 câu hỏi nên có: (đáp án). (quy tắc nhân)
Cho tập hợp
. Số tập con gồm 3 phần tử của
sao cho không có số
là:
Mỗi tập con gồm 3 phần tử của không có số
là tổ hợp chập 3 của 9 phần tử.
Số tập con gồm 3 phần tử của không có số
là.
.
Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?
Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
Gọi số cần tìm có dạng . Vì
chia hết cho 5 suy ra
.
TH1. Với suy ra có
số cần tìm.
TH2. Với , suy ra có
số cần tìm.
Vậy có tất cả 444 số cần tìm.
Biến đổi biểu thức
dưới dạng
. Tính giá trị biểu thức
?
Ta có:
Kết quả của phép tính
là:
Ta có: .
Hệ số của số hạng chứa
trong khai triển Newton
là:
Số hạng tổng quát của khái triển
Số của số hạng chứa :
. Hệ số của số hạng chứa
.
Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?
Từ nhà Nam đến nhà Hải có 4 con đường.
Từ nhà Hải đến nhà Cường có 6 con đường.
Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).
Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.