Phát biểu nào sau đây đúng?
Phát biểu đúng là:
Phát biểu nào sau đây đúng?
Phát biểu đúng là:
Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau trong mỗi hàng dọc và tất cả các học sinh trong mỗi hàng ngang đều cùng trường?
Giả sử 4 hàng dọc được kí hiệu là
Mỗi hàng các vị trí lại được kí hiệu từ 1 đến 10
Theo yêu cầu bài toán thì:
Các bạn trường A được xếp ở D1 ghi số chẵn, D2 ghi số chẵn, D3 ghi số chẵn, D4 ghi số chẵn.
Các bạn trường B ở các vị trí còn lại hoặc ngược lại.
Nên số cách xếp là cách
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Một người vào cửa hàng ăn, người đó chọn thực đơn. Trong đó gồm
món ăn trong
món ăn,
loại quả tráng miệng trong
loại quả tráng miệng và
loại nước uống trong
loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?
Chọn một món ăn có 5 cách.
Chọn một loại quả tráng miệng có 4 cách.
Chọn một loại nước uống có 3 cách.
Áp dụng quy tắc nhân, có 5.4.3 = 60 cách chọn thực đơn.
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12
Chọn một bạn để xếp vào vị trí ghế số 1 có 12 cách.
Chọn một bạn để xếp vào vị trí ghế số 7 để khác giới với bạn vị trí ghế số 1 có 6 cách.
Chọn một bạn để xếp vào vị trí ghế số 2 có 10 cách.
Chọn một bạn để xếp vào vị trí ghế số 8 để khác giới với bạn vị trí ghế số 1 có 5 cách.
Cứ tuân theo cách xếp như vậy, ta có số cách xếp là:
Số các số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn là
Giả sử số tự nhiên thỏa mãn yêu cầu bài toán là: .
- Chọn a có 4 cách: a ∈ {2;4;6;8}.
- Chọn b có 5 cách: b ∈ {0;2;4;6;8}.
Vậy có tất cả: 4.5 = 20 số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn.
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Nếu chữ số hàng chục là thì số có chữ số hàng đơn vị là
thì số các chữ số nhỏ hơn
năm ở hàng đơn vị cũng bằng
. Do chữ số hang chục lớn hơn bằng
còn chữ số hang đơn vị thi
.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:
.
Có bao nhiêu cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?
Đánh số thứ tự các vị trí theo hàng dọc từ đến
.
Trường hợp 1. Nam đứng trước, nữ đứng sau.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Trường hợp 2. Nữ đứng trước, nam đứng sau.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Theo quy tắc cộng ta có. cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.
Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu?
Tổng số quả cầu trong hộp là 5 + 6 = 11
Mỗi cách lấy ngẫu nhiên 3 quả cầu trong 11 quả cầu trong hộp là tổ hợp chập 3 của 11 phần tử
Vậy số cách thỏa mãn yêu cầu bài toán là (cách).
Cho tập
. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5?
Vì x lẻ và không chia hết cho 5 nên => Có 3 cách chọn
Số các chọn các chữ số còn lại là:
Vậy 15120 số thỏa yêu cầu bài toán.
Có bao nhiêu cách xếp 6 người thành một hàng dọc
Xếp 6 người thành một hàng dọc có: 6! = 720 cách.
Hệ số của
trong khai triển
là:
Theo giả thiết: .
Vậy hệ số của là
.
Đội văn nghệ của nhà trường gồm
học sinh lớp 12A,
học sinh lớp 12B và
học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?
Tổng số học sinh trong đội văn nghệ của nhà trường là học sinh.
Số cách chọn học sinh bất kì trong
học sinh là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12A là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12B là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12C là.
cách.
Vậy có cách thỏa mãn yêu cầu bài toán.
Trong khai triển nhị thức
(
). Có tất cả 6 số hạng. Vậy n bằng:
Khai triển có 6 hạng tử
=>
Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton
?
Để có tổng các hệ số ta thay ta được:
Số cách lấy một chiếc bút trong hộp gồm 4 chiếc bút bi và 6 chiếc bút máy bằng:
Áp dụng quy tắc cộng ta có số cách lấy một chiếc bút là:
cách.
Một hộp có 3 viên bi trắng, 2 viên bi đen và 2 viên bi vàng. Hỏi có bao nhiêu cách lấy ngẫu nhiên 2 viên bi từ hộp đó.
Chọn 2 viên từ hộp 7 viên có: (cách).
Từ tập hợp các chữ số
có thể lập được bao nhiêu số có ba chữ số đôi một khác nhau và luôn có mặt số 1?
Gọi số tự nhiên có ba chữ số cần tìm có dạng
TH1: . Chọn b, c có 5.6 = 30 cách.
TH2: . Chọn b, c có 5.6 = 30 cách.
TH3: . Chọn b, c có 5.6 = 30 cách.
Vậy có thể lập được (số) thỏa mãn yêu cầu đề bài.
Khai triển biểu thức
ta thu được kết quả:
Ta có:
Tìm
thuộc tập hợp số tự nhiên, biết rằng
(
là số tổ hợp chập k của n phần tử).
Trước hết ta chứng minh công thức với
và
Thật vậy, (đpcm)
Áp dụng công thức trên ta có
Theo đề .