Tìm số hạng chứa
trong khai triển
.
Ta có công thức của số hạng tổng quát:
Số hạng chứa khi và chỉ khi
.
Vậy số hạng chứa trong khai triển là
.
Tìm số hạng chứa
trong khai triển
.
Ta có công thức của số hạng tổng quát:
Số hạng chứa khi và chỉ khi
.
Vậy số hạng chứa trong khai triển là
.
Có 3 cây bút đỏ, 4 cây bút xanh trong một hộp bút. Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?
Số cách lấy ra 1 cây bút là màu đỏ có 3 cách.
Số cách lấy ra 1 cây bút là màu xanh có 4 cách.
Theo quy tắc cộng, số cách lấy ra 1 cây bút từ hộp bút là: 3 + 4 = 7 cách.
Vậy có 7 cách lấy 1 cây bút từ hộp bút.
Cho tập hợp các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau là:
Mỗi số tự nhiên có 3 chữ số khác nhau được lập từ tập hợp B là chỉnh hợp chập 3 của 5 nghĩa.
Suy ra có thể lập được số thỏa mãn yêu cầu đề bài.
Khai triển
. Hỏi có tất cả bao nhiêu số hạng hữu tỉ trong khai triển trên?
Ta có
Số hạng hữu tỉ trong khai triển tương ứng với .
Vậy số các giá trị là:
.
Tìm số tự nhiên
thỏa ![]()
Điều kiện: .
Ta có:
Vậy .
Hệ số của
trong khai triển
là:
Ta có số hạng tổng quát:
Số hạng chứa nên
Vậy hệ số của trong khai triển đã cho là:
.
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
Gọi số cần tìm có dạng . Vì
chia hết cho 5 suy ra
.
TH1. Với suy ra có
số cần tìm.
TH2. Với , suy ra có
số cần tìm.
Vậy có tất cả 444 số cần tìm.
Tìm số hạng chứa
trong khai triển
thành đa thức?
Số hạng chứa trong khai triển
là
Số hạng chứa trong khai triển
là
Do đó số hạng chứa trong khai triển
đã cho là:
Vậy số hạng cần tìm là .
Cho tập
gồm
phần tử. Số tập con gồm
phần tử của M là:
Số tập con gồm phần tử của
là số cách chọn
phần tử bất kì trong
phần tử của
.
Do đó số tập con gồm phần tử của
là
.
Tìm hệ số của
trong khai triển ![]()
Số hạng tổng quát của khai triển đã cho là
với ,
. Số hạng này chứa
khi và chỉ khi
(thỏa mãn).
Vậy hệ số của trong khai triển
là
.
Cho các chữ số
,
,
,
,
,
. Từ các chữ số đã cho lập được bao nhiêu số tự nhiên chẵn có
chữ số và các chữ số đôi một bất kỳ khác nhau?
Gọi số cần tìm là: (với
,
).
Trường hợp 1:
Chọn , nên có
cách chọn.
Chọn nên có
cách chọn.
Chọn có
cách chọn.
Chọn có
cách chọn.
Suy ra, có số.
Trường hợp 2:
Chọn , nên có
cách chọn.
Chọn nên có
cách chọn.
Chọn có
cách chọn.
Chọn có
cách chọn.
Suy ra, có số.
Vậy có tất cả: số.
Phát biểu nào sau đây đúng?
Phát biểu đúng là:
Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?
Gọi số cần tìm có dạng . Vì
chia hết cho 10 suy ra
.
TH1. Với , ta có
+ Nếu suy ra
, do đó có 2 số cần tìm.
+ Nếu suy ra
và
, do đó có 14 số cần tìm.
TH2. Với suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn
C.
Suy ra có số cần tìm. Vậy có tất cả 114 số cần tìm.
Có bao nhiêu số tự nhiên có
chữ số?
Cách 1: Số có chữ số là từ
đến
nên có
số.
Cách 2:
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.
Có bao nhiêu cách xếp 5 bạn A, B, C, D, E vào 1 chiếc ghế dài sao cho bạn A ngồi chính giữa?
Xếp bạn A ngồi chính giữa: có 1 cách.
Khi đó xếp 4 bạn B, C, D, E vào 4 vị trí còn lại, có 4! = 24 cách.
Vậy có tất cả 24 cách xếp.
Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ luôn luôn ngồi kề nhau?
Coi 2 nữ là một phần tử A
Xếp phần tử A và 3 nam vào dãy có 4! cách.
Hoán đổi vị trí 2 nữ trong phần tử A có 2! cách.
Do đó có cách.
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Trong menu của một nhà hàng gồm 5 món mặn, 5 món tráng miệng và 3 loại nước uống. Thực khách đến ăn sẽ được lên thực đơn gồm 1 món mặn, 1 món tráng miệng và 1 loại nước uống. Số thực đơn có thể có là:
Chọn món mặn có 5 cách chọn.
Số cách chọn món tráng miệng là 5 cách.
Số cách chọn một loại nước uống là 3 cách.
Theo quy tắc nhân ta có: (cách).
Lớp 11A có 20 học sinh nam và 15 học sinh nữ. Giáo viên chủ nhiệm muốn chọn một nhóm học sinh đại diện gồm 3 học sinh nam và 2 học sinh nữ. Hỏi có bao nhiêu cách chọn nhóm học sinh đại diện?
Số cách chọn 3 học sinh nam là cách.
Số cách chọn 2 học sinh nữ là: cách.
Vậy số cách chọn nhóm học sinh đại diện là: cách.
Gọi
là tập hợp tất cả các số tự nhiên gồm 5 chữ số đôi một khác nhau được lập từ các chữ số
Tính tổng tất cả các số thuộc tập ![]()
Số các số tự nhiên gồm 5 chữ số đôi một khác nhau được lập từ là
số.
Vì vai trò các chữ số như nhau nên mỗi chữ số xuất hiện ở hàng đơn vị là
lần.
Tổng các chữ số ở hàng đơn vị là .
Tương tự thì mỗi lần xuất hiện ở các hàng chục, trăm, nghìn, chục nghìn của mỗi chữ số là 24 lần.
Vậy tổng các số thuộc tập là
.