Số cách lấy một chiếc bút trong hộp gồm 4 chiếc bút bi và 6 chiếc bút máy bằng:
Áp dụng quy tắc cộng ta có số cách lấy một chiếc bút là:
cách.
Số cách lấy một chiếc bút trong hộp gồm 4 chiếc bút bi và 6 chiếc bút máy bằng:
Áp dụng quy tắc cộng ta có số cách lấy một chiếc bút là:
cách.
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức
?
Ta có .
Để trong khai triển có số hạng là số nguyên thì
.
Ta có mà
. Suy ra có
số hạng là số nguyên trong khai triển của biểu thức.
Cho đa giác đều có 54 đường chéo. Hãy tính xem đa giác này có bao nhiêu cạnh?
Đa giác n cạnh có n đỉnh.
Mỗi đỉnh nối với đỉnh khác để tạo ra đường chéo
Do đó n đỉnh sẽ có đường
Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là:
Theo đề bài ta có:
Vậy đa giác có 12 cạnh.
Từ các chữ số
,
,
,
,
,
có thể lập được bao nhiêu số tự nhiên gồm
chữ số đôi một khác nhau trong đó hai chữ số
và
không đứng cạnh nhau.
Số các số có chữ số được lập từ các chữ số
,
,
,
,
,
là
.
Số các số có chữ số và
đứng cạnh nhau:
.
Số các số có chữ số và
không đúng cạnh nhau là:
.
Từ các số
,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên có
chữ số khác nhau đôi một?
Mỗi cách lập số tự nhiên có 5 chữ số khác nhau đôi một hoán vị của 5 phần tử.
Vậy có số cần tìm.
Tìm hệ số không chứa
trong khai triển
, biết
là sô nguyên dương thỏa mãn
.
.
.
Số hạng không chứa ứng với
là
.
Có 3 cây bút đỏ, 4 cây bút xanh trong một hộp bút. Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?
Số cách lấy ra 1 cây bút là màu đỏ có 3 cách.
Số cách lấy ra 1 cây bút là màu xanh có 4 cách.
Theo quy tắc cộng, số cách lấy ra 1 cây bút từ hộp bút là: 3 + 4 = 7 cách.
Vậy có 7 cách lấy 1 cây bút từ hộp bút.
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Tìm hệ số của
trong khai triển nhị thức Newton của
?
Số hạng tổng quát là:
Hệ số của tìm được khi
Vậy hệ số của trong khai triển là
.
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi riêng dãy?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Trường hợp 1: Các bạn nam ngồi dãy A, các bạn nữ ngồi dãy B
Số cách xếp là: cách.
Trường hợp 2: Các bạn nữ ngồi dãy A, các bạn nam ngồi dãy B
Số cách xếp là: cách.
Vậy số cách xếp là: cách.
Biết hệ số của
trong khai triển của
là – 270. Giá trị của n là
Khai triển biểu thức như sau:
Hệ số của x3 trong khai triển bằng -270
=>
Cho đa giác đều
nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong
của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong
đỉnh của đa giác. Tìm
.
Số tam giác có 3 đỉnh là 3 trong 2n điểm là
Ứng với 2 đường chéo đi qua tâm của đa giác đều cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm
Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.
Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là
Theo giả thiết ta có:
Vậy .
Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:
Số tập con có 3 phần tử từ tập 5 phần tử là: .
Có bao nhiêu số tự nhiên lẻ trong khoảng (2000; 3000) có thể tạo nên bằng các chữ số
nếu các chữ số không nhất thiết khác nhau?
Gọi số tự nhiên trong khoảng có dạng
Vì là số tự nhiên lẻ nên c có 3 lựa chọn là
a, b có 6 lựa chọn.
Vậy có số tự nhiên thỏa mãn yêu cầu bài toán.
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Nếu chữ số hàng chục là thì số có chữ số hàng đơn vị là
thì số các chữ số nhỏ hơn
năm ở hàng đơn vị cũng bằng
. Do chữ số hang chục lớn hơn bằng
còn chữ số hang đơn vị thi
.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:
.
Khai triển nhị thức
ta được kết quả là:
Ta có: .
Khai triển biểu thức
ta được:
Ta có:
Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:
Khi đó công việc có thể được thực hiện bằng (cách) (theo quy tắc nhân)
Từ tập A = {1; 2; 3; 4; 5; 6} có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và số đó không lớn hơn 456?
Ta có: là số cần tìm.
Trường hợp 1:
Chọn a ∈ {1; 2; 3}: 3 cách.
Chọn : 5 cách.
Chọn : 4 cách.
⇒ Có số.
Trường hợp 2:
Chọn a = 4: 1 cách.
Chọn b ∈ {1; 2; 3}: 3 cách.
Chọn : 4 cách.
⇒ Có: 1.3.4 = 12 số.
Trường hợp 3:
Chọn a = 4: 1 cách.
Chọn b = 5: 1 cách.
Chọn : 4 cách.
⇒ Có: 1.1.4 = 4 số.
Từ (1); (2); (3) có số thoả yêu cầu bài toán.
Có bao nhiêu cách xếp 6 người thành một hàng dọc
Xếp 6 người thành một hàng dọc có: 6! = 720 cách.