Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số các hoán vị của n phần tử là:

     Số các hoán vị của n phần tử là: n!.

  • Câu 2: Vận dụng

    Cho khai triển (1
+ 3x)^{n} = a_{0} + a_{1}x^{1} + ... + a_{n}x^{n} trong đó n\mathbb{\in N}* và các hệ số thỏa mãn hệ thức a_{0} + \frac{a_{1}}{3} + ... +
\frac{a_{n}}{3^{n}} = 4096. Hệ số lớn nhất là:

    Xét khai triển (1 + 3x)^{n} = a_{0} +
a_{1}x^{1} + ... + a_{n}x^{n}.

    Cho x = \frac{1}{3} ta được \left( 1 + 3.\frac{1}{3} ight)^{n} = a_{0}
+ \frac{a_{1}}{3^{1}} + ... + \frac{a_{n}}{3^{n}} \Rightarrow 2^{n} =
4096 \Leftrightarrow n = 12.

    Khi đó (1 + 3x)^{12} = \sum_{k =
0}^{12}{C_{12}^{k}.3^{k}.x^{k}}.

    Ta có hệ số a_{k} = 3^{k}C_{12}^{k} =
3^{k}.\frac{12!}{k!.(12 - k)!}

    Hệ số a_{k} lớn nhất nên \left\{ \begin{matrix}
a_{k} \geq a_{k - 1} \\
a_{k} \geq a_{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k - 1}.\frac{12!}{(k - 1)!.(12 -
k + 1)!} \\
3^{k}.\frac{12!}{k!.(12 - k)!} \geq 3^{k + 1}.\frac{12!}{(k + 1)!.(12 -
k - 1)!} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{3}{k} \geq \frac{1}{13 - k} \\
\frac{1}{12 - k} \geq \frac{3}{k + 1} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
39 - 3k \geq k \\
k + 1 \geq 36 - 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k \leq \frac{39}{4} \\
k \geq \frac{35}{4} \\
\end{matrix} ight.

    k\mathbb{\in N} nên nhận k = 9.

    Vậy hệ số lớn nhất a_{9} =
3^{9}.C_{12}^{9} = 4330260..

  • Câu 3: Nhận biết

    Có bao nhiêu số hạng trong khai triển (6x + 4)^{4}?

    Trong khai triển nhị thức (6x +
4)^{4}n = 4 nên có 5 số hạng.

  • Câu 4: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi riêng dãy?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Trường hợp 1: Các bạn nam ngồi dãy A, các bạn nữ ngồi dãy B

    Số cách xếp là: 6!.6! cách.

    Trường hợp 2: Các bạn nữ ngồi dãy A, các bạn nam ngồi dãy B

    Số cách xếp là: 6!.6! cách.

    Vậy số cách xếp là: 2.6!.6! =
1036800 cách.

  • Câu 5: Thông hiểu

    Tính tổng các hệ số trong khai triển (1 - 2x)^{2018}.

    Xét khai triển (1 - 2x)^{2018} =C_{2018}^{0} - 2x.C_{2018}^{1} + ( - 2x)^{2}.C_{2018}^{2}  + ... + ( - 2x)^{2018}.C_{2018}^{2018}

    Tổng các hệ số trong khai triển là: S =
C_{2018}^{0} - 2.C_{2018}^{1} + ( - 2)^{2}.C_{2018}^{2} + ( -
2)^{3}.C_{2018}^{3} + ... + ( - 2)^{2018}.C_{2018}^{2018}

    Cho x = 1 ta có: (1 - 2.1)^{2018} = C_{2018}^{0} - 2.1.C_{2018}^{1}+ ( - 2.1)^{2}.C_{2018}^{2} + ... + ( -2.1)^{2018}.C_{2018}^{2018}

    \Leftrightarrow ( - 1)^{2018} = S\Leftrightarrow S = 1

  • Câu 6: Vận dụng

    Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcd} chia hết cho 6 suy ra \left\{ \begin{matrix}
e = \left\{ 0;2 ight\} \\
(a + b + c + d + e) \vdots 3 \\
\end{matrix} ight.

    TH1. Với e = 0 suy ra a + b + c + d \vdots 3, do đó gồm các bộ (1;2;5;7) suy ra có 24 số.

    TH2. Với e = 2 suy ra a + b + c + d + 2 \vdots 3, do đó gồm các bộ (0;1;5;7), (1;5;7;9) suy ra có 42 số.

    Vậy có tất cả 24 + 42 = 66 số cần tìm.

  • Câu 7: Thông hiểu

    Trong khai triển nhị thức (2x^{2}+\frac{1}{x})^{n} hệ số của x^{3}2^{2}C_{n}^{1}. Giá trị của n là

    Khai triển biểu thức như sau:

    \begin{matrix}  {\left( {2{x^2} + \dfrac{1}{x}} ight)^n} = \sum\limits_{k = 0}^n {C_n^k.{{\left( {2{x^2}} ight)}^{n - k}}.{{\left( {\dfrac{1}{x}} ight)}^k}}  \hfill \\   = \sum\limits_{k = 0}^n {C_n^k{{.2}^{n - k}}.{x^{2\left( {n - k} ight) - k}}}  \hfill \\   = \sum\limits_{k = 0}^n {C_n^k{{.2}^{n - k}}.{x^{2n - 3k}}}  \hfill \\ \end{matrix}

    Theo bài ra ta có:

    Hệ số của x^{3}2^{2}C_{n}^{1} khi đó: k = 1

    n - k = 3 \Rightarrow n = 3

  • Câu 8: Nhận biết

    Khai triển (x +
3y)^{4} thành đa thức ta được biểu thức gồm mấy số hạng?

    Biểu thức (x + 3y)^{4} khai triển thành đa thức có 5 hạng tử.

  • Câu 9: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn A;C ngồi ở hai đầu ghế là:

    Vì A; E ngồi ở hai đầu ghế nên ta có 3!.2! = 12 cách sắp xếp A;B;C;D;E

  • Câu 10: Vận dụng

    Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?

    TH1: số có 1 chữ số thì có 3 cách.

    TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì có3.2 = 6số.

    TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì có3.2.1 = 6số

    Vậy có3 + 6 + 6 = 15 số.

  • Câu 11: Thông hiểu

    Từ tập hợp các chữ số A = \left\{ 1,2,3,4,5,6 ight\} có thể lập được bao nhiêu số có ba chữ số khác nhau thuộc khoảng (300;500)?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc};(a eq 0)

    Số cần tìm thuộc khoảng (300;500) nên a \in \left\{ 3;4 ight\}=> a có 2 cách chọn.

    Số cách chọn b là 5 cách chọn

    Số cách chọn c là 4 cách chọn

    Vậy có thể lập được 2.5.4 =
40(số) thỏa mãn yêu cầu đề bài.

  • Câu 12: Nhận biết

    Hệ số của số hạng chứa x^{6}trong khai triển Newton \left( x - \frac{2}{x^{2}}
ight)^{15}là:

    \left( x - \frac{2}{x^{2}} ight)^{15}
= \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}\left( - \frac{2}{x^{2}}
ight)^{k}} = \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}( - 2)^{k}\left(
x^{- 2} ight)^{k} =}\sum_{k = 0}^{15}{C_{15}^{k}( - 2)^{k}x^{15 -
3k}}

    Số hạng tổng quát của khái triển T_{k +
1} = C_{15}^{k}( - 2)^{k}x^{15 - 3k}

    Số của số hạng chứa x^{6}: 15 - 3k = 6 \Leftrightarrow k = 3. Hệ số của số hạng chứa x^{6}C_{15}^{k}( - 2)^{k} =
C_{15}^{3}( - 2)^{3} = - 3640.

  • Câu 13: Nhận biết

    Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?

    Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là C_{8}^{3}

    Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!

    Vậy số cách trao các huy chương này là C_{8}^{3}.3! = 336

  • Câu 14: Nhận biết

    Một người có 7 áo trong đó có 3 áo trắng và 5 cà vạt trong đó có 2 cà vạt vàng. Hỏi người đó có bao nhiêu cách chọn bộ áo và cà vạt nếu chọn áo nào cũng được và cà vạt nào cũng được?

    Số cách chọn 1 một bộ áo và cà vạt là: 5.7 = 35

  • Câu 15: Thông hiểu

    Từ các chữ số 0, 2, 3, 5, 6, 8 có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau trong đó hai chữ số 05 không đứng cạnh nhau.

    Số các số có 6 chữ số được lập từ các chữ số 0, 2, 3, 5, 6, 86! - 5!.

    Số các số có chữ số 05 đứng cạnh nhau: 2.5! - 4!.

    Số các số có chữ số 05 không đúng cạnh nhau là: 6! - 5! - (2.5! - 4!) = 384.

  • Câu 16: Nhận biết

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?

    Số cách lấy 5 con trong đó có 1 con át và 1 con vua là C_{4}^{1}C_{4}^{1}.C_{44}^{3} =
211904.

  • Câu 17: Nhận biết

    Có bao nhiêu số tự nhiên có hai chữ số mà cả hai chữ số đó đều lẻ?

    - Gọi số tự nhiên có hai chữ số cần lập thỏa mãn yêu cầu bài toán là \overline{ab} (a, b ∈ {1;3;5;7;9})

    + a: có 5 cách chọn

    + b: có 5 cách chọn.

    Dó đó có: 5 x 5 = 25 cách lập số có 2 chữ số mà cả hai chữ số đều lẻ.

  • Câu 18: Vận dụng

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 19: Nhận biết

    Từ các chữ số 6; 7; 8; 9. có thể lập được bao nhiêu chữ số tự nhiên có 3 chữ số.

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 4 cách chọn.

    B: có 4 cách chọn.

    C: có 4 cách chọn.

    Vậy có 4.4.4 = 64 (số) tự nhiên có 3 chữ số.

  • Câu 20: Thông hiểu

    Mỗi bảng số xe gắn máy ở thành phố X có cấu tạo như sau. Phần đầu gồm hai chữ cái trong bảng chữ cái, phần sau gồm 4 chữ số trong các chữ số: 0,1,2,3,4,5,6,7,8,9. Ví dụ: SA0979;EY3535; ... Hỏi có bao nhiêu cách tạo bảng số xe theo cấu tạo trên? (Giả sử bảng chữ cái có tất cả 26 chữ cái)

    Chọn hai chữ cái cho phần đầu có 26^{2} (mỗi chữ số có 26 cách chọn)

    Còn 4 chữ số cho phần đuôi có 10^{4} (mỗi chữ số có 10 cách chọn)

    Vậy có thể tạo được 26^{2}.10^{4} =
6760000

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo