Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ?
Mỗi cách xếp 10 học sinh thành một hàng ngang là một hoán vị của tập hợp có 10 phần tử.
Suy ra số cách sắp xếp là .
Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ?
Mỗi cách xếp 10 học sinh thành một hàng ngang là một hoán vị của tập hợp có 10 phần tử.
Suy ra số cách sắp xếp là .
Biến đổi biểu thức
dưới dạng
. Tính giá trị biểu thức
?
Ta có:
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.
Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?
Số cách lấy 5 con trong đó có 1 con át và 1 con vua là .
Số hạng chứa
trong khai triển
là:
Số hạng thứ trong khai triển
là:
.
Số hạng chứa trong khai triển
tương ứng với:
.
Vậy số hạng chứa trong khai triển
là:
.
Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.
Tìm số hạng chứa
trong khai triển
biết
.
Ta có:
Khai triển biểu thức như sau:
Số hạng chứa nghĩa là:
=> Số hạng cần tìm là
Từ các chữ số
, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 6 chữ số đôi một khác nhau trong đó phải có 1 và 3 đứng cạnh nhau, không kể thứ tự trước sau.
Gọi là số thỏa yêu cầu bài toán.
Chọn 2 vị trí cạnh nhau từ 6 vị trí (từ ) có: 5 cách.
Xếp số 1 và 3 vào 2 vị trí vừa chọn có: 2 cách.
Chọn số cho 4 vị trí từ tập có:
cách.
Theo quy tắc nhân có: số.
Số hạng tử trong khai triển
bằng
Số hạng tử trong khai triển là: 4 + 1 = 5 hạng tử.
Cho đa giác đều có tất cả 12 cạnh. Hỏi đa giác có bao nhiêu đường chéo?
Từ 12 đỉnh của đa giác đều, ta xác định được đoạn thẳng.
Vậy đa giác đều có tất cả đường chéo.
Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?
TH1: Chọn 7 người 18 người không là cặp vợ chồng:
TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng:
TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng:
Vậy số cách chọn thỏa mãn là: cách
Tìm hệ số của
trong khai triển nhị thức Newton
với
, biết
là số tự nhiên lớn nhất thỏa mãn
.
Điều kiện:
Khi đó
.
Số hạng tổng quát trong khai triển là
.
Tìm sao cho
.
Vậy hệ số của số hạng chứa là
.
Bạn Công muốn mua một chiếc áo mới và một chiếc quần mới để đi dự sinh nhật bạn mình. Ở cửa hàng có 12 chiếc áo khác nhau, quần có 15 chiếc khác nhau. Hỏi có bao nhiêu cách chọn một bộ quần và áo?
Số cách bạn Công chọn một chiếc áo mới là: 12 cách.
Số cách bạn Công chọn một chiếc quần mới là: 15 cách.
Theo quy tắc nhân, bạn Công có 12.15 = 180 cách để chọn một bộ quần và áo.
Cho tập
. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?
Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ
TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có:
TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có:
TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có:
Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: (số).
Có bao nhiêu số nguyên dương n gồm 3 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó chữ số hàng chục và chữ số hàng đơn vị của n giống hệt nhau?
Chọn có: 9 cách.
Chọn có: 10 cách.
Chọn có: 1 cách.
Theo quy tắc nhân có: số.
Ngân hàng câu hỏi kiểm tra Toán lớp 11A gồm 35 câu hỏi đại số và 15 câu hỏi hình học. Học sinh được chọn một câu hỏi để trả lời. Khi đó số khả năng có thể xảy ra bằng:
Áp dụng quy tắc cộng ta có số khả năng có thể xảy ra là: 35 + 15 = 50 khả năng.
Tính số cách chọn một học sinh trong khối lớp 10 tham gia công tác Đoàn. Biết rằng khối 10 có 350 học sinh nam và 245 học sinh nữ?
Áp dụng quy tắc cộng ta có số cách chọn học sinh tham gia công tác Đoàn là: 350 + 245 = 495.
Có bao nhiêu cách sắp xếp
học sinh thành một hàng dọc?
Số cách sắp xếp học sinh thành một hàng dọc là
.
Trong khai triển nhị thức
(n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng:
Khai triển bậc (n-5) có 6 số hạng. Suy ra (n-5) = 5. Vậy n = 10.
Dãy
trong đó mỗi kí tự
chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit trong đó có ít nhất ba kí tự 0 và ít nhất ba kí tự 1?
Trường hợp 1: dãy nhị phân có ba kí tự 0 và bảy kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 2: dãy nhị phân có bốn kí tự 0 và sáu kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 3: dãy nhị phân có năm kí tự 0 và năm kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 4: dãy nhị phân có sáu kí tự 0 và bốn kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 5: dãy nhị phân có bảy kí tự 0 và ba kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Vậy có dãy nhị phân 10 bit thỏa mãn yêu cầu bài toán.