Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6 ight\}. Hỏi lập được bao nhiêu số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    Gọi \overline{abcde} là số số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    + TH1. e = 0. Chọn a,b,c,d \in A\backslash\left\{ 0
ight\}: A_{6}^{4} = 360
\Rightarrowcó 360 số.

    + TH2. e eq 0:Chọn e \in \left\{ 2;4;6 ight\}:3 (cách).

    Chọn a \in A\backslash\left\{ 0;e
ight\}:5 (cách).

    Chọn b,c,d \in A\backslash\left\{ a;e
ight\}: A_{5}^{3} = 60 (cách).

    \Rightarrow3.5.60 = 900 số.

    Vậy có. 900 + 360 = 1260số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

  • Câu 2: Nhận biết

    Cho tập A gồm 12 phần tử. Số tập con có 4 phần tử của tập A là:

    Theo định nghĩa tổ hợp. “ Giả sử tập An phần tử (n
\geq 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho”.

    Do đó theo yêu cầu bài toán số tập con có 4 phần tử của tập A là C_{12}^{4}.

  • Câu 3: Vận dụng

    Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

    Đối với bài toán ta xét 2 trường hợp.

    +) Đầu hàng và cuối hàng đều là gói bim bim. Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là. A_{3}^{2} (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau). Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{3}^{2}.6!

    +) Đầu hàng và cuối hàng đều là cốc mì ăn liền. Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là. A_{5}^{2}. Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{6}^{2}.6!

    \Rightarrow Số cách xếp tất cả là. 6!\left( A_{3}^{2} + A_{5}^{2} ight) =
18720.

  • Câu 4: Thông hiểu

    Từ khai triển biểu thức (x + 1)^{10} thành đa thức. Tổng các hệ số của đa thức là:

    Xét khai triển f(x) = (x + 1)^{10} =
\sum_{k = 0}^{10}C_{10}^{k}.x^{k}.

    Gọi S là tổng các hệ số trong khai triển thì ta có S = f(1) = (1 + 1)^{10}
= 2^{10} = 1024.

  • Câu 5: Thông hiểu

    Từ một hộp chứa 5 viên bi xanh, 3 viên bi đỏ và 2 viên bi vành, chọn ngẫu nhiên 4 viên bi. Tính số cách chọn để 4 viên bi lấy ra có số bi đỏ bằng số bi vàng?

    Th1: Chọn 1 bi đỏ, 1 bi vàng và 2 bi xanh có: C_{3}^{1}.C_{2}^{1}.C_{5}^{2} = 60 cách

    Th2: Chọn 2 bi đỏ và 2 bi vàng có: C_{3}^{2}.C_{2}^{2} = 3 cách

    Vậy số cách chọn 4 viên bi sao cho số bi đỏ bằng số bi vàng là 63 cách.

  • Câu 6: Thông hiểu

    Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?

    Gọi số cần tìm có dạng \overline{abc};\left( a,b \in \left\{ 1;2;5;7;8
ight\},c \in \left\{ 2;8 ight\} ight)

    Trường hợp 1: a = 2;b = 7;c = 8. Có 1 số thỏa mãn yêu cầu bài toán.

    Trường hợp2: a = 2;b < 7;c =
8

    a có 1 cách chọn.

    c có 1 cách chọn.

    b có 2 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.1.2 =
2 (số).

    Trường hợp 3: a < 2;c \in \left\{ 2;8
ight\}

    a có 1 cách chọn.

    c có 2 cách chọn.

    b có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.2.3 =
6 (số).

    Vậy có: 1 + 2 + 6 = 9 (số).

  • Câu 7: Nhận biết

    Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là

    Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: A_{12}^{3} = 1320 cách.

  • Câu 8: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển (3x + 2)^{4}?

    Số hạng tổng quát theo thứ tự giảm dần số mũ x là:

    C_{4}^{k}(3x)^{4 - k}.2^{k} =
C_{4}^{k}.3^{4 - k}.2^{k}.x^{4 - k}

    Số hạng chứa x^{3} ứng với 4 - k = 3 \Rightarrow k = 1

    Số hạng cần tìm là C_{4}^{1}.3^{4 -
1}.2.x^{4 - 1} = 216x^{3}.

  • Câu 9: Nhận biết

    Cho đa giác đều có 54 đường chéo. Hãy tính xem đa giác này có bao nhiêu cạnh?

    Đa giác n cạnh có n đỉnh.

    Mỗi đỉnh nối với n - 3 đỉnh khác để tạo ra đường chéo

    Do đó n đỉnh sẽ có n(n -
3)đường

    Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là: \frac{n(n - 3)}{2}

    Theo đề bài ta có:

    \frac{n(n - 3)}{2} = 54 \Leftrightarrow
n^{2} - 3n - 108 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = - 9(ktm) \\
n = 12(tm) \\
\end{matrix} ight.

    Vậy đa giác có 12 cạnh.

  • Câu 10: Nhận biết

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n gồm 4 chữ số đôi một khác nhau?

    Có thể lập được A_{5}^{4} = 120 số nguyên dương n gồm bốn chữ số đôi một khác nhau.

  • Câu 11: Thông hiểu

    Cho tập hợp các chữ số tự nhiên A = \left\{ 0,1,2,3,4,5,6 ight\}. Có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau và chia hết cho 5?

    Gọi số tự nhiên có 4 chữ số là: \overline{abcd};(a eq 0).

    Tổng quát:

    Số cách chọn d là 2 cách chọn.

    Số cách chọn a là 6 cách chọn.

    Số cách chọn b là 5 cách chọn.

    Số cách chọn c là 4 cách chọn.

    Áp dụng quy tắc nhân ta có: 2.6.5.4 =
240 số

    Vi phạm:

    a = 0 có 1 cách chọn.

    d = 5 có 1 cách chọn.

    b có 5 cách chọn.

    c có 4 cách chọn.

    Áp dụng quy tắc nhân: 1.1.5.4 =
20 số

    Số các số cần tìm là: 240 - 20 =
220 số.

  • Câu 12: Nhận biết

    Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra một học sinh đi dự trại hè của trường. Hỏi có bao nhiêu cách chọn?

    Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:

    Bước 2: Đếm số cách chọn.

    * Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.

    * Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.

    Bước 3: Áp dụng quy tắc cộng.

    Vậy có 20 + 25 = 45 cách chọn.

  • Câu 13: Nhận biết

    Số hạng chứa x^{4} trong khai triển biểu thức (2x + 3)^{5} là:

     Ta có: (2x+3)^5=32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243.

    Số hạng cần tìm là: 240x^{4}.

  • Câu 14: Vận dụng

    Trong khai triển của \left( x^{\frac{1}{15}}y^{\frac{1}{3}} +
x^{\frac{1}{3}}y^{\frac{1}{5}} ight)^{2019}, số hạng mà lũy thừa của xy bằng nhau là số hạng thứ bao nhiêu của khai triển?

    Ta có số hạng thứ k + 1 là : C_{2019}^{k}\left(
x^{\frac{1}{15}}y^{\frac{1}{3}} ight)^{2019 - k}\left(
x^{\frac{1}{3}}y^{\frac{1}{5}} ight)^{k} =
C_{2019}^{k}x^{\frac{2019}{15} + \frac{4}{15}k}y^{\frac{2019}{3} -
\frac{2}{15}k}

    Theo đề bài ta có; \frac{2019}{15} +
\frac{4}{15}k = \frac{2019}{3} - \frac{2}{15}k \Leftrightarrow k =
1346

    Vậy số hạng thỏa yêu cầu bài toán là số hạng thứ 1347.

  • Câu 15: Nhận biết

    Biết rằng khai triển nhị thức Newton (x + 2)^{n};\left( n\mathbb{\in N}
ight) có tất cả 6 số hạng. Hãy xác định n?

    Vì trong khai triển nhị thức Newton (x +
2)^{n};\left( n\mathbb{\in N} ight) đã cho có tất cả 6 số hạng nên n + 1 = 6 \Rightarrow n =
5

    Vậy n = 5 là giá trị cần tìm.

  • Câu 16: Nhận biết

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả là:

     Ta có: (x + 1)^{4} =x^{4}+4x^{3}+6x^{2}+4x+1.

  • Câu 17: Vận dụng

    Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8.

    Gọi x = \overline{abcd};\ a,b,c,d \in
\left\{ 0,1,2,4,5,6,8 ight\}.

    Cách 1: Tính trực tiếp

    x là số chẵn nên d \in \left\{ 0,2,4,6,8 ight\}.

    TH 1: d = 0 \Rightarrow có 1 cách chọn d.

    Với mỗi cách chọn d ta có 6 cách chọn a \in \left\{ 1,2,4,5,6,8
ight\}

    Với mỗi cách chọn a,d ta có 5 cách chọn b \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a ight\}

    Với mỗi cách chọn a,b,d ta có 4 cách chọn c \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a,b ight\}

    Suy ra trong trường hợp này có 1.6.5.4 =
120 số.

    TH 2: d eq 0 \Rightarrow d \in \left\{
2,4,6,8 ight\} \Rightarrow có 4 cách chọn d

    Với mỗi cách chọn d, do a eq 0 nên ta có 5 cách chọn

    a \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ d ight\}.

    Với mỗi cách chọn a,d ta có 5 cách chọn b \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a ight\}

    Với mỗi cách chọn a,b,d ta có 4 cách chọn c \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a,b ight\}

    Suy ra trong trường hợp này có 4.5.5.4 =
400 số.

    Vậy có tất cả 120 + 400 = 520 số cần lập.

  • Câu 18: Nhận biết

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ luôn luôn ngồi kề nhau?

    Coi 2 nữ là một phần tử A

    Xếp phần tử A và 3 nam vào dãy có 4! cách.

    Hoán đổi vị trí 2 nữ trong phần tử A có 2! cách.

    Do đó có 4!.2! = 48 cách.

  • Câu 19: Nhận biết

    Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?

    Học sinh nam có 280 cách chọn

    Học sinh nữ có 325 cách chọn

    Chọn một học sinh khối 11 đi dự dạ hội của học sinh thành phố thì có 280 + 325 = 605 cách.

  • Câu 20: Thông hiểu

    Biết rằng n\mathbb{\in N} thỏa mãn biểu thức A_{n}^{2} - C_{n}^{2} = 19900. Tính giá trị biểu thức B =\frac{n.C_{2n}^{n}}{C_{2n}^{n + 1}}?

    Ta có:

    A_{n}^{2} - C_{n}^{2} =19900

    \Leftrightarrow \frac{n!}{(n - 2)!} -\frac{n!}{2!(n - 2)!} = 19900

    \Leftrightarrow (n - 1).n = 39800\Leftrightarrow n = 200

    Lại có:

    B = \frac{n.C_{2n}^{n}}{C_{2n}^{n + 1}}= \frac{n(2n)!}{n!.n!} = \frac{(n + 1)!.(n - 1)!}{(2n)!} = n +1

    \Rightarrow B = 201

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo