Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tập hợp D gồm x phần tử. Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là:

    Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 2: Thông hiểu

    Có bao nhiêu số nguyên dương n gồm 3 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó chữ số hàng chục và chữ số hàng đơn vị của n giống hệt nhau và hai chữ số này khác chữ số hàng trăm của n?

    Chọn a_{1} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Chọn a_{2} \in X\backslash\left\{ a_{1}
ight\} có: 9 cách.

    Chọn a_{3} = a_{2} có: 1 cách.

    Theo quy tắc nhân có: 9.9 =
81 số.

  • Câu 3: Nhận biết

    Có sáu quả cầu xanh đánh số từ 1 đến 6, năm quả cầu đỏ đánh số từ 1 đến 5 và bảy quả cầu vàng đánh số từ 1 đến 7. Hỏi có bao nhiêu cách lấy ra ba quả cầu vừa khác màu vừa khác số?

    +) Chọn 1 quả màu đỏ có 5 cách.

    +) Chọn 1 quả màu xanh khác số với quả màu đỏ có 5 cách.

    +) Chọn 1 quả màu vàng khác số với quả màu đỏ và quả màu xanh có 5 cách.

    Vậy số cách lấy ra 3 quả cầu vừa khác màu, vừa khác số là: 5.5.5 = 125.

  • Câu 4: Nhận biết

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ luôn luôn ngồi kề nhau?

    Coi 2 nữ là một phần tử A

    Xếp phần tử A và 3 nam vào dãy có 4! cách.

    Hoán đổi vị trí 2 nữ trong phần tử A có 2! cách.

    Do đó có 4!.2! = 48 cách.

  • Câu 5: Thông hiểu

    Cho tập hợp các chữ số C = \left\{ 1,2,3,4,5 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau là:

    Mỗi số tự nhiên có 5 chữ số khác nhau được lập từ tập hợp C là một hoán vị của 5.

    Suy ra có thể lập được 5! = 120 số thỏa mãn yêu cầu đề bài.

  • Câu 6: Nhận biết

    Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?

    Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.

  • Câu 7: Nhận biết

    Có bao nhiêu số hạng trong khai triển nhị thức (2x - 3)^{2018}?

    Trong khai triển nhị thức (a +
b)^{n} thì số các số hạng là n +
1 nên trong khai triển (2x -
3)^{2018}2019 số hạng.

  • Câu 8: Thông hiểu

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng:

    Điều kiện n \geq 2,n\mathbb{\in
N}

    Ta có:

    A_{n}^{2} - 3C_{n}^{2} = 15 -
5n

    \Leftrightarrow \frac{n!}{(n - 2)!} -
3.\frac{n!}{2!(n - 2)!} = 15 - 5n

    \Leftrightarrow n(n - 1) - \frac{3n(n -
1)}{2} = 15 - 5n

    \Leftrightarrow - n^{2} + 11n - 30 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 5 \\
n = 6 \\
\end{matrix} ight.\ (tm)

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng 11.

  • Câu 9: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 10: Thông hiểu

    Cho khai triển (1
- 2x)^{20} = a_{0} + a_{1}x + a_{2}x^{2} + \cdots +
a_{20}x_{20}. Giá trị của a_{0} +
a_{1} + a_{2} + \cdots + a_{20} bằng:

    (1 - 2x)^{20} = a_{0} + a_{1}x +
a_{2}x^{2} + \cdots + a_{20}x_{20} (1).

    Thay x = 1 vào (1) ta có: a_{0} + a_{1} +
a_{2} + \cdots + a_{20} = ( - 1)^{20} = 1.

  • Câu 11: Vận dụng

    Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.

    TH1. Có đúng 1 học sinh khối 10: 5.1.C_{5}^{4} + 5.C_{5}^{4}.1 = 50(cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)

    TH2. Có đúng 2 học sinh khối 10: C_{5}^{2}.C_{5}^{3}.C_{5}^{5} +
C_{5}^{2}.C_{5}^{4}.C_{5}^{4} + C_{5}^{2}.C_{5}^{5}.C_{5}^{3} =
450(cách).

    \Rightarrow50 + 450 = 500 cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.

  • Câu 12: Nhận biết

    Một bài trắc nghiệm khách quan có 10 câu hỏi. Mỗi câu hỏi có 4 phương án trả lời. Có bao nhiêu phương án trả lời?

    Mỗi câu hỏi có 4 cách chọn phương án trả lời.

    Mười câu hỏi sẽ có số cách chọn phương án trả lời là 410.

  • Câu 13: Nhận biết

    Cho các chữ số 2,3,4,5,6,7. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số khác nhau?

    Số cách lập số tự nhiên có 6 chữ số khác nhau từ các chữ số đã cho là số hoán vị của 6 phần tử, do đó có 6! = 720.

  • Câu 14: Nhận biết

    Tìm hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}, (biết x eq 0).

    Số hạng tổng quát trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}.

    T_{k + 1} = C_{13}^{k}x^{13 - k}\left(
\frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - 2k}.

    T_{k + 1} chứa x^{7} \Leftrightarrow 13 - 2k = 7 \Leftrightarrow
k = 3.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x +
\frac{1}{x} ight)^{13} bằng: C_{13}^{3} = 286.

  • Câu 15: Thông hiểu

    Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?

     Số cách lập nhóm có hai học sinh là: C_{10}^2 cách

    Số học sinh còn lại 8 học sinh (vì 2 học sinh lập nhóm đầu tiên)

    => Số cách lập nhóm có 3 học sinh là: C_8^3 cách

    Số học sinh còn lại còn 5 học sinh để lập nhóm 5 học sinh 

    => Số cách lập nhóm 5 học sinh là: C_5^5 cách

    Mà các cách lập nhóm liên quan đến nhau

    => Số cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh là

    C_{10}^{2}\times C_{8}^{3}\times C_{5}^{5} cách.

  • Câu 16: Thông hiểu

    Biết hệ số của x^{2} trong khai triển nhị thức Newton của (1 - 3x)^{n};\left( n\mathbb{\in N}
ight)135. Xác định giá trị n?

    Số hạng thứ k + 1 trong khai triển (1 - 3x)^{n} là:

    T_{k + 1} = C_{n}^{k}.( -
3)^{k}.x^{k} với 1 \leq k \leq
nn,k \in
\mathbb{N}^{*}

    Số hạng chứa x^{2} ứng với k = 2

    Ta có:

    C_{n}^{2}.( - 3)^{2} = 135
\Leftrightarrow C_{n}^{2} = 15

    \Leftrightarrow \frac{n!}{2!(n - 2)!} =
15 \Leftrightarrow n(n - 1) = 30

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = 6(TM) \\
n = - 5(L) \\
\end{matrix} ight.

    Vậy n = 6.

  • Câu 17: Nhận biết

    Biết rằng khai triển nhị thức Newton (m + 2)^{n - 3} với n\mathbb{\in N},n > 3;m eq - 2 có tất cả 6 số hạng. Hãy xác định n?

    Vì trong khai triển nhị thức Newton (m +
2)^{n - 3} đã cho có tất cả 6 số hạng nên n - 3 = 5 \Rightarrow n = 8

    Vậy n = 8 là giá trị cần tìm.

  • Câu 18: Nhận biết

    Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là

    Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).

  • Câu 19: Vận dụng

    Cho biểu thức P
= \left( \frac{x + 1}{\sqrt[3]{x^{2}} - \sqrt[3]{x} + 1} - \frac{x -
1}{x - \sqrt{x}} ight)^{10} với x
> 0, x eq 1. Số hạng không chứa x trong khai triển Niu-tơn của P là:

    Ta có \frac{x + 1}{\sqrt[3]{x^{2}} -
\sqrt[3]{x} + 1} - \frac{x - 1}{x - \sqrt{x}} = \sqrt[3]{x} + 1 -
\frac{\sqrt{x} + 1}{\sqrt{x}} = \sqrt[3]{x} -
\frac{1}{\sqrt{x}}.

    Nên P = \left( \frac{x +
1}{\sqrt[3]{x^{2}} - \sqrt[3]{x} + 1} - \frac{x - 1}{x - \sqrt{x}}
ight)^{10} = \left( \sqrt[3]{x} - \frac{1}{\sqrt{x}}
ight)^{10}.

    Số hạng tổng quát của khai triển là: C_{10}^{k}x^{\frac{10 - k}{3}}.\left( \frac{-
1}{\sqrt{x}} ight)^{k} = ( - 1)^{k}C_{10}^{k}x^{\frac{20 -
5k}{6}}.

    Khi k = 4 thì số hạng không chứa x(
- 1)^{4}C_{10}^{4} = 210.

  • Câu 20: Vận dụng

    Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số 2011 chữ số và trong đó có ít nhất hai chữ số 9.

    Đặt X là các số tự nhiên thỏa yêu cầu bài toán.

    A ={ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}

    Với mỗi số thuộc A có m chữ số (m \leq 2008) thì ta có thể bổ sung thêm 2011 - m số 0 vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng \overline{a_{1}a_{2}...a_{2011}};\ a_{i} \in
\left\{ 0,1,2,3,...,9 ight\}

    A_{0} = \left\{ a \in A| ight.mà trong a không có chữ số 9}

    A_{1} = \left\{ a \in A| ight. mà trong a có đúng 1 chữ số 9}

    \bullet Ta thấy tập A có 1 + \frac{9^{2011} - 1}{9} phần tử

    \bullet Tính số phần tử của A_{0}

    Với x \in A_{0} \Rightarrow x =
\overline{a_{1}...a_{2011}};a_{i} \in \left\{ 0,1,2,...,8 ight\}\ i =
\overline{1,2010}a_{2011} = 9 -
r với r \in \lbrack 1;9brack,r
\equiv \sum_{i = 1}^{2010}a_{i}. Từ đó ta suy ra A_{0}9^{2010} phần tử.

    \bullet Tính số phần tử của A_{1}

    Để lập số của thuộc tập A_{1} ta thực hiện liên tiếp hai bước sau:

    Bước 1: Lập một dãy gồm 2010 chữ số thuộc tập \left\{ 0,1,2...,8
ight\} và tổng các chữ số chia hết cho 9. Số các dãy là 9^{2009}.

    Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9.

    Do đó A_{1}2010.9^{2009} phần tử.

    Vậy số các số cần lập là:

    1 + \frac{9^{2011} - 1}{9} - 9^{2010} -
2010.9^{2009} = \frac{9^{2011} - 2019.9^{2010} + 8}{9}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 47 lượt xem
Sắp xếp theo