Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Để giải một bài tập ta cần phải giải hai bài tập nhỏ. Bài tập 19 cách giải, bài tập 25 cách giải. Số các cách để giải hoàn thành bài tập trên là:

    Sô cách giải bài toán 1 : 9 cách.

    Số cách giải bài toán 2 : 5 cách.

    Áp dụng quy tắc nhân: 9 × 5 = 45 cách.

  • Câu 2: Thông hiểu

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n < 200 và n là số chẵn?

    Trường hợp 1: n gồm một chữ số.

    Vì n < 200 và n là số chẵn nên có 2 số thỏa mãn là 4; 8

    Trường hợp 2: n gồm hai chữ số.

    Gọi n có dạng \overline{ab} thỏa mãn n < 200 và để n là số chẵn ta có

    b có 2 lựa chọn là {4; 8}

    a có 5 lựa chọn.

    2.5 = 10

    Trường hợp 3: n gồm ba chữ số. Vì n < 200 nên gọi n có dạng \overline{1bc}  và để n là số chẵn ta có

    c có 2 lựa chọn là {4; 8}

    b có 5 lựa chọn. Có 2.5 = 10

    Vậy có 10 + 10 + 2 = 22 số n thỏa mãn yêu cầu bài toán.

  • Câu 3: Thông hiểu

    Cho x là số thực dương, số hạng không chứa x trong khai triển nhị thức \left( x + \frac{2}{\sqrt{x}}
ight)^{30}là:

    Ta có \left( x + \frac{2}{\sqrt{x}}
ight)^{30} = \left( x + 2x^{- \frac{1}{2}} ight)^{30} = \sum_{k =
0}^{30}{C_{30}^{k}x^{30 - k}\left( 2x^{\frac{- 1}{2}} ight)^{k} =
\sum_{k = 0}^{30}{C_{30}^{k}2^{k}x^{30 - \frac{3}{2}k}}}

    Số hạng tổng quát thứ k + 1 trong khai triển là T_{k + 1} =
C_{30}^{k}2^{k}x^{30 - \frac{3}{2}k}.

    Số hạng này không chứa x tương ứng với trường hợp 30 - \frac{3k}{2} = 0
\Leftrightarrow k = 20.

    Vậy số hạng không chứa x trong khai triển là T_{21} = C_{30}^{20}2^{20} =
2^{20}C_{30}^{10}.

  • Câu 4: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 5: Thông hiểu

    Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau trong mỗi hàng dọc cũng như trong mỗi hàng ngang?

    Giả sử 4 hàng dọc được kí hiệu là D_{1};D_{2};D_{3};D_{4}

    Mỗi hàng các vị trí lại được kí hiệu từ 1 đến 10

    Theo yêu cầu bài toán thì:

    Các bạn trường A được xếp ở D1 ghi số chẵn, D2 ghi số lẽ, D3 ghi số chẵn, D4 ghi số lẽ.

    Các bạn trường B ở các vị trí còn lại hoặc ngược lại.

    Nên số cách xếp là 2.20!.20! cách.

  • Câu 6: Vận dụng

    Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 5 suy ra e = \left\{ 0;5 ight\}.

    TH1. Với e = 0 suy ra có 4 \times 5 \times 4 \times 3 = 240 số cần tìm.

    TH2. Với e = 5, suy ra có 5 \times 4 \times 3 + 3 \times 4 \times 4 \times 3
= 204 số cần tìm.

    Vậy có tất cả 444 số cần tìm.

  • Câu 7: Nhận biết

    Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.

    Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử 

    => Số cách chọn là: A_{10}^2 = 90 (cách)

  • Câu 8: Nhận biết

    Cho các số 1,5, 6,7. Hỏi lập được bao nhiêu số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho?

    Số các số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho là: 4! = 24số.

  • Câu 9: Thông hiểu

    Từ các số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau?

    Mỗi số tự nhiên có ba chữ số khác nhau được lập từ các số 1,2,3,4,5,6 là một chỉnh hợp chập 3 của 6 phần tử.

    Vậy từ các số 1,2,3,4,5,6 có thể lập được: A_{6}^{3} = 120 số tự nhiên có ba chữ số khác nhau.

  • Câu 10: Nhận biết

    Số hạng chứa x^{5} trong khai triển (x - 2)^{5} là:

    Công thức số hạng tổng quát: C_{5}^{k}.x^{k}.( - 2)^{5 - k} \Rightarrow k =
5 ta được số hạng chứa x^{5} là: x^{5}

  • Câu 11: Nhận biết

    3 cây bút đỏ, 4 cây bút xanh trong một hộp bút. Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?

    Số cách lấy ra 1 cây bút là màu đỏ có 3 cách.

    Số cách lấy ra 1 cây bút là màu xanh có 4 cách.

    Theo quy tắc cộng, số cách lấy ra 1 cây bút từ hộp bút là: 3 + 4 = 7 cách.

    Vậy có 7 cách lấy 1 cây bút từ hộp bút.

  • Câu 12: Thông hiểu

    Từ một hộp chứa 5 viên bi xanh, 3 viên bi đỏ và 2 viên bi vành, chọn ngẫu nhiên 4 viên bi. Tính số cách chọn để 4 viên bi lấy ra có số bi đỏ bằng số bi vàng?

    Th1: Chọn 1 bi đỏ, 1 bi vàng và 2 bi xanh có: C_{3}^{1}.C_{2}^{1}.C_{5}^{2} = 60 cách

    Th2: Chọn 2 bi đỏ và 2 bi vàng có: C_{3}^{2}.C_{2}^{2} = 3 cách

    Vậy số cách chọn 4 viên bi sao cho số bi đỏ bằng số bi vàng là 63 cách.

  • Câu 13: Nhận biết

    Tìm hệ số của số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có: \left( x + \frac{1}{x^{2}}
ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}.x^{40 - k}}.\left(
\frac{1}{x^{2}} ight)^{k} = \sum_{k = 0}^{40}{C_{40}^{k}.x^{40 -
3k}}.

    Số hạng tổng quát của khai triển là: T_{k
+ 1} = C_{40}^{k}.x^{40 - 3k}.

    Số hạng chứa x^{31} trong khai triển tương ứng với 40 - 3k = 31
\Leftrightarrow k = 3.

    Vậy hệ số cần tìm là: C_{40}^{3} =
C_{40}^{37} (theo tính chất của tổ hợp: C_{n}^{k} = C_{n}^{n - k}).

  • Câu 14: Vận dụng

    Với n là số nguyên dương thỏa mãn C_{n}^{1}+C_{n}^{2}=10 , hệ số của x^{5} trong khai triển của biểu thức bằng (x^{3}+\frac{2}{x})^{n}.

     Giải phương trình C_{n}^{1}+C_{n}^{2}=10

    Điều kiện n \ge2.

    Ta có: C_n^1 + C_n^2 = 10 \Leftrightarrow \frac{{n!}}{{1!(n - 1)!}} + \frac{{n!}}{{2!(n - 2)!}} = 10\Leftrightarrow n + \frac{1}{2}n(n - 1) = 10 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 4}\\{n =  - 5}\end{array}} ight..

    Vậy n=4.

    Ta có: (x^{3}+\frac{2}{x})^{4} =\frac{{{x^{16}} + 8{x^{12}} + 24{x^8} + 32{x^4} + 16}}{{{x^4}}}= {x^{12}} + 8{x^8} + 24{x^4} + 32 + \frac{{16}}{{{x^4}}}.

    Hệ số của x^5 trong khai triển bằng 0.

  • Câu 15: Nhận biết

    Số hạng tử trong khai triển {(x - 2y)^4} bằng

    Số hạng tử trong khai triển {(x - 2y)^4} là: 4 + 1 = 5 hạng tử.

  • Câu 16: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

  • Câu 17: Nhận biết

    Có bao nhiêu số tự nhiên có hai chữ số mà cả hai chữ số đó đều lẻ?

    - Gọi số tự nhiên có hai chữ số cần lập thỏa mãn yêu cầu bài toán là \overline{ab} (a, b ∈ {1;3;5;7;9})

    + a: có 5 cách chọn

    + b: có 5 cách chọn.

    Dó đó có: 5 x 5 = 25 cách lập số có 2 chữ số mà cả hai chữ số đều lẻ.

  • Câu 18: Thông hiểu

    Biết hệ số của x^{2} trong khai triển của (1 - 3x)^{n}90. Tìm n.

    Số hạng thứ k + 1 trong khai triển của (1 - 3x)^{n} là: T_{k + 1} = C_{n}^{k}( - 3)^{k}x^{k}.

    Số hạng chứa x^{2} ứng với k = 2.

    Ta có: C_{n}^{2}( - 3)^{2} = 90
\Leftrightarrow C_{n}^{2} = 10 (với n \geq 2; n
\in \mathbb{N})

    \Leftrightarrow \frac{n!}{2!(n - 2)!} =
10 \Leftrightarrow n(n - 1) = 20 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 5 \\
n = - 4(L) \\
\end{matrix} ight.. Vậy n =
5.

  • Câu 19: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 20: Nhận biết

    Đếm số tập con gồm 3 phần tử được lấy ra từ tập A = \left\{ a;b;c;d;e;f ight\}?

    Mỗi tập con tập gồm 3phần tử được lấy ra từ tập A6 phần tử là một tổ hợp chập 3 của 6 phần tử.

    Vậy số tập con gồm 3 phần tử của AC_{6}^{3} = 20 tập con.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo