Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 2: Nhận biết

    Tìm hệ số của số hạng chứa x^{2} trong khai triển (x + 3)^{4}?

    Ta có: (x + 3)^{4} = x^{4} + 4x^{3}.3 +
6.x^{2}.3^{2} + 4.x.3^{3} + 3^{4}

    Hệ số chứa x^{2} trong khai triển là: 6.3^{2} = 54.

  • Câu 3: Thông hiểu

    Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện C_{m}^{2}=153 và C_{m}^{n}=C_{m}^{n+2}. Khi đó m + n bằng

    Điều kiện: m,n \in \mathbb{N},m \geqslant 2,0 \leqslant n < m

    Ta có: C_m^n = C_m^{m - n}  

    \begin{matrix}  C_m^n = C_m^{n + 2} \hfill \\   \Leftrightarrow C_m^{m - n} = C_m^{n + 2} \hfill \\   \Rightarrow m - n = n + 2 \hfill \\   \Rightarrow n = \dfrac{{m - 2}}{2} \hfill \\ \end{matrix}

    Mặt khác ta có:

     \begin{matrix}  C_m^2 = 153 \hfill \\   \Leftrightarrow \dfrac{{m\left( {m - 1} ight)\left( {m - 2} ight)!}}{{2!\left( {m - 2} ight)!}} = 153 \hfill \\   \Leftrightarrow m\left( {m - 1} ight) = 306 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 18\left( {tm} ight)} \\   {m =  - 17\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => n=8

    vậy tổng m và n là: 18 + 8 = 26.

     

  • Câu 4: Nhận biết

    Có thể lập được bao nhiêu số tự nhiên có 4 chữ số từ tập hợp các chữ số M = \left\{
1;2;3;4;5;6 ight\}?

    Gọi số tự nhiên có 4 chữ số là: \overline{abcd};(a eq 0).

    Mỗi chữ số có 6 cách chọn.

    Mà số cần lập gồm 4 chữ số nên theo quy tắc nhân có thể lập được 6^{4} số.

  • Câu 5: Thông hiểu

    Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số 1 xếp kề nhau?

    Gọi 11111 là số a.

    Vậy ta cần sắp các số a, 2, 3, 4, 5.

    ⇒ Số cách sắp xếp số thỏa mãn là: 1.2.3.4.5 = 120 (số).

  • Câu 6: Vận dụng

    Từ các số 1,2,3 có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?

    TH1: số có 1 chữ số thì có 3 cách.

    TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì có3.2 = 6số.

    TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì có3.2.1 = 6số

    Vậy có3 + 6 + 6 = 15 số.

  • Câu 7: Nhận biết

    Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?

    Số cách chọn một quyển sách là 8 cách.

    Số cách chọn một cái bút là 10 cách. 

    => Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách. 

  • Câu 8: Thông hiểu

    Tìm số hạng chứa x^{5} trong khai triển \left( x - \frac{2}{x} ight)^{n}, biết n là số tự nhiên thỏa mãn C_{n}^{3} = \frac{4}{3}n +
2C_{n}^{2}.

    Điều kiện : n \geq 3,\ n \in
\mathbb{Z}.

    Ta có C_{n}^{3} = \frac{4}{3}n +2C_{n}^{2} \Leftrightarrow \frac{n!}{3!(n - 3)!} = \frac{4}{3}n +\frac{n!}{(n - 2)!}

    \Leftrightarrow n(n - 1)(n - 2) = 8n + 6n(n -1)

    \Leftrightarrow n^{2} - 3n + 2 = 8 + 6n -
6 \Leftrightarrow n^{2} - 9n = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 0 \\
n = 9 \\
\end{matrix} ight.. Đối chiếu điều kiện ta được n = 9.

    Số hạng tổng quát của khai triển \left( x
- \frac{2}{x} ight)^{9},là : C_{9}^{k}x^{9 - k}.\frac{( - 2)^{k}}{x^{k}} = ( -
2)^{k}C_{9}^{k}x^{9 - 2k}

    Số hạng này chứa x^{5}ứng với 9 - 2k = 5 \Leftrightarrow k =
2.

    Vậy hệ số của số hạng đó là 4.C_{9}^{2} =
144.

  • Câu 9: Vận dụng

    Khai triển nhị thức newton của P(x) = (\sqrt[3]{2}x + 3)^{2018} thành đa thức thì có tất cả bao nhiêu số hạng có hệ số nguyên dương?

    P(x) = (\sqrt[3]{2}x + 3)^{2018} =
\sum_{k = 0}^{2018}{\left( \sqrt[3]{2}x ight)^{2018 - k}3^{k}} =
\sum_{k = 0}^{2018}{2^{\frac{2018 - k}{3}}.3^{k}x^{2018 -
k}}

    Để hệ số nguyên dương thì (2018 - k)
\vdots 3 \Leftrightarrow 2018 - k = 3t \Leftrightarrow k = 2018 -
3t,do 0 \leq k \leq 2018 nên ta có 0 \leq 2018 - 3t \leq 2018
\Leftrightarrow 0 \leq t \leq \frac{2018}{3} \approx 672,6 vậy t=0,1,2….672 nên có 673 giá trị.

  • Câu 10: Nhận biết

    Giả sử một công việc phải hoàn thành qua 2 giai đoạn:

    Giai đoạn 1 có a cách thực hiện.

    Với mỗi cách thực hiện của giai đoạn 1 ta có b cách thực hiện cho giai đoạn 2.

    Khi đó số cách thực hiện công việc là:

    Áp dụng quy tắc nhân ta có số cách thực hiện công việc là a.b cách.

  • Câu 11: Nhận biết

    Cho các số 1,5, 6,7. Hỏi lập được bao nhiêu số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho?

    Số các số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho là: 4! = 24số.

  • Câu 12: Nhận biết

    Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?

    Mỗi tập con có 8 phần tử của tập hợp E là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp E là. C_{10}^{8} = 45.

  • Câu 13: Nhận biết

    Biểu thức A =
32x^{5} - 80x^{4} + 80x^{3} - 40x^{2} + 10x - 1 là khai triển của nhị thức nào dưới đây?

    Ta có:

    A = (2x + 1)^{5} = 32x^{5} - 80x^{4} +
80x^{3} - 40x^{2} + 10x - 1

  • Câu 14: Vận dụng

    Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

    Đối với bài toán ta xét 2 trường hợp.

    +) Đầu hàng và cuối hàng đều là gói bim bim. Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là. A_{3}^{2} (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau). Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{3}^{2}.6!

    +) Đầu hàng và cuối hàng đều là cốc mì ăn liền. Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là. A_{5}^{2}. Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{6}^{2}.6!

    \Rightarrow Số cách xếp tất cả là. 6!\left( A_{3}^{2} + A_{5}^{2} ight) =
18720.

  • Câu 15: Thông hiểu

    Từ 6 chữ số 0;1;2;3;4;5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau sao cho chữ số 2 vs 3 đứng cạnh nhau.

    Gọi số cần tìm có dạng \overline{abcdef};(a eq 0) với a,b,c \in \left\{ 2;4;6;8 ight\}.

    Vì 2 và 3 đứng cạnh nhau ta gộp 2 và 3 thành 1 số \overline{23} hoặc \overline{32} thành 1 vị trí

    Do đó ta còn lại 5 vị trí \overline{abcde}

    Từ 5 chữ số trên ta lập được 5! số khác nhau có dạng \overline{abcde}

    Cho a = 0 ta lập được 4! các số dạng \overline{0bcde}

    Nên sẽ có 5! – 4! = 96 số có 5 chữ số khác nhau.

    Mặt khác ta gộp 2 và 3 thành 1 số \overline{23} hoặc \overline{32} thành 1 vị trí nên ta sẽ có số các số cần tìm là: 96.2 = 192 số thỏa mãn đề bài.

  • Câu 16: Nhận biết

    Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của (3 -
2x)^{5}?

    Khi viết nhị thức (3 - 2x)^{5} dưới dạng khai triển 5 + 1 = 6 số hạng.

  • Câu 17: Thông hiểu

    Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?

    Gọi số cần tìm có dạng \overline{abc};\left( a,b \in \left\{ 1;2;5;7;8
ight\},c \in \left\{ 2;8 ight\} ight)

    Trường hợp 1: a = 2;b = 7;c = 8. Có 1 số thỏa mãn yêu cầu bài toán.

    Trường hợp2: a = 2;b < 7;c =
8

    a có 1 cách chọn.

    c có 1 cách chọn.

    b có 2 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.1.2 =
2 (số).

    Trường hợp 3: a < 2;c \in \left\{ 2;8
ight\}

    a có 1 cách chọn.

    c có 2 cách chọn.

    b có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.2.3 =
6 (số).

    Vậy có: 1 + 2 + 6 = 9 (số).

  • Câu 18: Nhận biết

    Tìm số tự nhiên n thỏa A_{n}^{2}=210

     Điều kiện: n \ge 2.

    Ta có: A_n^2 = 210 \Leftrightarrow \frac{{n!}}{{(n - 2)!}} = 210\Leftrightarrow n(n - 1) = 210 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 15}\\{n =  - 14}\end{array}} ight.

    Vậy n=15.

  • Câu 19: Thông hiểu

    Biểu thức Q =
x^{5} - 5x^{4}y + 10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5} là khai triển của nhị thức nào dưới đây?

    Ta có:

    Q = x^{5} - 5x^{4}y + 10x^{3}y^{2} -
10x^{2}y^{3} + 5xy^{4} - y^{5}

    Q = C_{5}^{0}x^{5} + C_{5}^{1}x^{4}( -
y)^{1} + C_{5}^{2}.x^{3}( - y)^{2}

    + C_{5}^{3}x^{2}( - y)^{3} +
C_{5}^{4}.x.( - y)^{4} + C_{5}^{5}( - y)^{5}

    Q = (x - y)^{5}

  • Câu 20: Nhận biết

    Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là

    Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: A_{12}^{3} = 1320 cách.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo