Tìm hệ số của số hạng chứa
trong khai triển nhị thức Newton
?
Ta có:
Vậy hệ số của số hạng chứa trong khai triển nhị thức là:
.
Tìm hệ số của số hạng chứa
trong khai triển nhị thức Newton
?
Ta có:
Vậy hệ số của số hạng chứa trong khai triển nhị thức là:
.
Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:
Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.
Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ luôn luôn ngồi kề nhau?
Coi 2 nữ là một phần tử A
Xếp phần tử A và 3 nam vào dãy có 4! cách.
Hoán đổi vị trí 2 nữ trong phần tử A có 2! cách.
Do đó có cách.
Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
Số cách chọn 2 nam đứng ở đầu và cuối là. . Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là
. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là.
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. .
Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?
Gọi số in trên vé có dạng
Số cách chọn là 10 (
có thể là 0).
Số cách chọn là 9.
Số cách chọn là 8.
Số cách chọn là 7.
Số cách chọn là 6.
Do đó có 10.9.8.7.6 = 23460 (số).
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Một lớp có 15 nam và 20 nữ. Hỏi có bao nhiêu cách chọn 1 bạn đi trực nhật.
Trường hợp 1: Chọn 1 nam. Có 15 cách.
Trường hợp 2: Chọn 1 nữ. Có 20 cách.
Vậy có 15+20 = 35 cách.
Xác định số hạng không chứa x trong khai triển nhị thức Newton
. Biết rằng
.
Ta có:
Xét khai triển
Số hạng tổng quát
Số hạng không chứa x ứng với
Suy ra số hạng không chứa x là .
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi chính giữa là:
Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp
Câu lạc bộ cầu lông gồm 12 tay vợt nam và 9 tay vợt nữ. Hỏi có bao nhiêu cách lập đội đôi nam nữ từ câu lạc bộ để tham gia giải đấu giao lưu các trường?
Có 12 cách chọn 1 tay vợt nam
Ứng với mỗi cách chọn 1 tay vợt nam ta có 9 cách chọn một tay vợt nữ
Theo quy tắc nhân ta có: 9.12 = 108 cách chọn một đôi nam nữ tham gia giải đấu.
Cho tập hợp
. Có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau từ các chữ số thuộc tập hợp
?
Gọi số tự nhiên có ba chữ số là:
TH1: c = 0
Chữ số a có 6 cách chọn.
Với mỗi cách chọn a có 5 cách chọn chữ số b
=> Số các số tạo thành là: 1 . 5 . 6 = 30 (số)
TH2: => Chữ số c có 3 cách chọn.
Chữ số a có 5 cách chọn, với mỗi cách chọn a ta có 5 cách chọn b.
=> Số các số tạo thành là: 3 . 5 . 5 = 75 (số)
Vậy có tất cả 30 + 75 = 105 (số) thỏa mãn yêu cầu đề bài.
Trong khai triển nhị thức Newton
, hệ số của số hạng chứa
bằng:
Hệ số của số hạng chứa trong khai triển
là:
.
Để giải một bài tập ta cần phải giải hai bài tập nhỏ. Bài tập 1 có 9 cách giải, bài tập 2 có 5 cách giải. Số các cách để giải hoàn thành bài tập trên là:
Sô cách giải bài toán 1 : 9 cách.
Số cách giải bài toán 2 : 5 cách.
Áp dụng quy tắc nhân: 9 × 5 = 45 cách.
Cho đa giác đều có tất cả 12 cạnh. Hỏi đa giác có bao nhiêu đường chéo?
Từ 12 đỉnh của đa giác đều, ta xác định được đoạn thẳng.
Vậy đa giác đều có tất cả đường chéo.
Hệ số của số hạng chứa
trong khai triển nhị thức
(với
) là:
Số hạng tổng quát của khai triển (với
) là:
.
Số hạng trên chứa suy ra
.
Vậy hệ số của số hạng chứa trong khai triển trên là
.
Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton
?
Để có tổng các hệ số ta thay ta được:
Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?
Một tam giác được lập thành từ 3 điểm.
Cứ 2 điểm thuộc + 1 điểm nằm ngoài có sẵn, ta được một tam giác.
Số cách lấy 2 điểm từ 6 điểm thuộc là:
(cách).
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức
?
Ta có .
Để trong khai triển có số hạng là số nguyên thì
.
Ta có mà
. Suy ra có
số hạng là số nguyên trong khai triển của biểu thức.
Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?
Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là
Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!
Vậy số cách trao các huy chương này là