Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?

    Từ nhà Nam đến nhà Hải có 4 con đường.

    Từ nhà Hải đến nhà Cường có 6 con đường.

    Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).

  • Câu 2: Thông hiểu

    Hệ số lớn nhất trong khai triển \left( \frac{1}{4} + \frac{3}{4}x
ight)^{4}là:

    Ta có \left( \frac{1}{4} + \frac{3}{4}x
ight)^{4} = \sum_{k = 0}^{4}{C_{4}^{k}.\left( \frac{1}{4} ight)^{4 -
k}.\left( \frac{3}{4} ight)^{k}}

    = \frac{1}{256} + \frac{3}{64}x +
\frac{27}{128}x^{2} + \frac{27}{64}x^{3} +
\frac{81}{256}x^{4}

    Vậy hệ số lớn nhất trong khai triển là \frac{27}{64}.

  • Câu 3: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?

    Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là (1;2),(1;5),(1;8),(2;4),(4;5),(4;8).

    Trường hợp này có 2!.6 số.

    Chữ số cuối bằng 2 ta có các bộ (1;0),(4;0),(1;3),(3;4),(5;8), hoán vị được 2!.3 + 2 số.

    Chữ số cuối bằng 4 ta có các bộ (2;0),(2;3),(3;5),(3;8), hoán vị được 2!.3 + 1 số.

    Chữ số cuối bằng 8 ta có các bộ (0;1),(0;4),(1;3),(2;5),(3;4), hoán vị được 2!.3 + 2 số.

    Kết hợp lại ta có 35 số.

  • Câu 4: Thông hiểu

    Cho tập hợp E ={0; 1; 2; 3; 4; 5; 6; 7}. Có thể lập bao nhiêu số gồm 5 chữ số khác nhau đôi một lấy từ E trong đó một trong ba chữ số đầu tiên bằng 1?

    Gọi số cần tìm là \overline{abcde}

    Trường hợp 1: a = 1.

    Chọn b: 7 cách.

    Chọn c: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo Quy tắc nhân có: 7.6.5.4 840 = số.

    Trường hợp 2: b =1.

    Chọn a: 6 cách.

    Chọn c: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo quy tắc nhân có: 6.6.5.4 720 = số.

    Trường hợp 3: c =1.

    Chọn a: 6 cách.

    Chọn b: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo quy tắc nhân có: 6.6.5.4 =720 số.

    ⇒ Theo quy tắc cộng có tất cả 840 + 720 +720 = 2280 số

  • Câu 5: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 6: Nhận biết

    Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?

    Mỗi tập con có 8 phần tử của tập hợp E là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp E là. C_{10}^{8} = 45.

  • Câu 7: Nhận biết

    Số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x} ight)^{40} là:

    Số hạng thứ k + 1 trong khai triển \left( x + \frac{1}{x}
ight)^{40} là:

    a_{k + 1} = C_{40}^{k}x^{40 - k}.\left(
\frac{1}{x} ight)^{k} = C_{40}^{k}x^{40 - k}x^{- k} = C_{40}^{k}x^{40
- 2k}.

    Số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x}
ight)^{40} tương ứng với: 40 - 2k
= 34 \Leftrightarrow k = 3.

    Vậy số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x}
ight)^{40} là: C_{40}^{3}x^{34}.

  • Câu 8: Nhận biết

    Trong khai triển (x + 2y)^{5} số hạng chứa x^{2}y^{3} là:

     Ta có: (x+2y)^5={x^5} + 10{x^4}y + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}.

    Vậy số hạng cần tìm là: 80x^{2}y^{3}.

  • Câu 9: Nhận biết

    Tính số cách sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.

    Sắp xếp 4 nữ sinh vào 4 ghế. 4! cách.

    Xem 4 nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với 6 nam sinh. có 7! cách

    vậy có 7! \times 4! cách sắp xếp.

  • Câu 10: Thông hiểu

    Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.

    Trường hợp 1: An và Bình không có mặt trong tổ công tác:

    Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có C_{12}^{6} cách.

    Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:

    Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có C_{12}^{5} cách

    Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có C_{12}^{5} cách.

    Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng

    Như vậy có tất cả số cách là: \left(
C_{12}^{6} + C_{12}^{5} + C_{12}^{5} ight).6 = 15048 cách

  • Câu 11: Nhận biết

    Tìm số tự nhiên n thỏa A_{n}^{2}=210

     Điều kiện: n \ge 2.

    Ta có: A_n^2 = 210 \Leftrightarrow \frac{{n!}}{{(n - 2)!}} = 210\Leftrightarrow n(n - 1) = 210 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 15}\\{n =  - 14}\end{array}} ight.

    Vậy n=15.

  • Câu 12: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam đứng cạnh nhau và nữ đứng cạnh nhau:

    Trường hợp 1: Nữ đứng trước

    Có 6 vị trí để xếp, vì nam đứng cạnh nhau và nữ đứng cạnh nhau nên nữ sẽ đứng vị trí số 1, 2, 3 còn nam đứng vị trí số 4, 5, 6

    Sắp xếp học sinh nữ vào vị trí 1, 2, 3

    Vị trí số 1 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nữ)

    Vị trí số 2 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nữ còn lại)

    Vị trí số 3 có 1 cách chọn (vì chỉ còn 1 bạn nữ để chọn)

    Có 6 vị trí để xếp, vì nam nữ đứng xen kẽ nên nữ sẽ đứng vị trí số 1, 3, 5 còn nam đứng vị trí số 2, 4, 6.

    Sắp xếp học sinh nam vào vị trí 4, 5, 6

    Vị trí số 4 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nam)

    Vị trí số 5 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nam còn lại)

    Vị trí số 6 có 1 cách chọn (vì chỉ còn 1 bạn nam để chọn)

    Trường hợp 1 có 3.2.1.3.2.1 = 36 (cách xếp)

    Trường hợp 2: Nam đứng trước

    Tương tự như trường hợp 1, trường hợp 2 có 36 (cách xếp)

    Vậy áp dụng quy tắc cộng ta có cả hai trường hợp có 36 + 36 = 72 (cách xếp).

  • Câu 13: Nhận biết

    Từ các chữ số  1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau.

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 5 cách chọn.

    B: có 4 cách chọn. 

    C: có 3 cách chọn.

    Vậy có 5.4.3 = 60 (số) có 3 chữ số đôi một khác nhau.

  • Câu 14: Nhận biết

    Tìm hệ số của số hạng chứa x^{3} trong khai triển nhị thức Newton \left( \frac{2}{3}x + \frac{1}{4}
ight)^{5}?

    Ta có:

    \left( \frac{2}{3}x + \frac{1}{4}
ight)^{5} = \frac{32}{243}x^{5} + \frac{20}{81}x^{4} +
\frac{5}{27}x^{3} + \frac{5}{72}x^{2} + \frac{3}{384}x +
\frac{1}{1024}

    Vậy hệ số của số hạng chứa x^{3} trong khai triển nhị thức là: \frac{5}{27}.

  • Câu 15: Thông hiểu

    Tổng tất cả các nghiệm của phương trình P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight) bằng:

    Điều kiện xác định: x\mathbb{\in N};x
\geq 2

    Ta có:

    P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight)

    \Leftrightarrow x!.\frac{x!}{(x - 2)!} +
72 = 6\left\lbrack 2x! + \frac{x!}{(x - 2)!} ightbrack

    \Leftrightarrow x!.x(x - 1) + 72 =
6\left\lbrack 2.x! + 2(x - 1) ightbrack

    \Leftrightarrow x(x - 1)(x! - 6) + 12(6
- x!) = 0

    \Leftrightarrow (x! - 6)\left\lbrack x(x
- 1) - 12 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x! - 6 = 0 \\
x^{2} - x - 12 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3(tm) \\
\left\lbrack \begin{matrix}
x = - 3(ktm) \\
x = 4(tm) \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vật tổng các nghiệm phương trình là: T =
3 + 4 = 7

  • Câu 16: Vận dụng

    Trong khai triển (1 - 2x)^{20} = a_{0} + a_{1}x + a_{2}x^{2} + \
...\  + a_{20}x^{20}. Tính giá trị a_{0} - a_{1} + a_{2}

    Ta có (1 - 2x)^{20} = \sum_{k =
0}^{20}C_{20}^{k}( - 2)^{k}x^{k}, (k \in Z) \Rightarrow a_{0} = C_{20}^{0}, a_{1} = - 2.C_{20}^{1}, a_{2} = ( - 2)^{2}C_{20}^{2} =
4C_{20}^{2}.

    Vậy a_{0} - a_{1} + a_{2} = C_{20}^{0} +
2C_{20}^{1} + 4C_{20}^{2} = 801.

  • Câu 17: Nhận biết

    Cho tập hợp M30 phần tử. Số tập con gồm 5 phần tử của M là:

    Số tập con gồm 5 phần tử của M chính là số tổ hợp chập 5 của 30 phần tử, nghĩa là bằng C_{30}^{5}.

  • Câu 18: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 19: Thông hiểu

    Tìm hệ số của x^{25}y^{10} trong khai triển \left( x^{3} + xy ight)^{15}.

    Số hạng tổng quát của khai triển đã cho là C_{15}^{k}.\left( x^{3} ight)^{15 - k}.(xy)^{k}
= C_{15}^{k}.x^{45 - 2k}.y^{k},

    với 0 \leq k \leq 15, k \in \mathbb{N}. Số hạng này chứa x^{25}y^{10} khi và chỉ khi k = 10 (thỏa mãn).

    Vậy hệ số của x^{25}y^{10} trong khai triển \left( x^{3} + xy
ight)^{15}là C_{15}^{10} =
3003..

  • Câu 20: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0,2,4,6,8 với điều các chữ số đó không lặp lại?

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a4 cách chọn

    b4 cách chọn

    c3 cách chọn

    Vậy có: 4.4.3 = 48 số.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo