Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Số tập hợp con cần tìm là số tổ hợp chập 3 của 7 phần tử.
Vậy có tập con cần tìm.
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Số tập hợp con cần tìm là số tổ hợp chập 3 của 7 phần tử.
Vậy có tập con cần tìm.
Từ một hộp chứa 5 viên bi xanh, 3 viên bi đỏ và 2 viên bi vành, chọn ngẫu nhiên 4 viên bi. Tính số cách chọn để 4 viên bi lấy ra có số bi đỏ bằng số bi vàng?
Th1: Chọn 1 bi đỏ, 1 bi vàng và 2 bi xanh có: cách
Th2: Chọn 2 bi đỏ và 2 bi vàng có: cách
Vậy số cách chọn 4 viên bi sao cho số bi đỏ bằng số bi vàng là 63 cách.
Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:
Gọi số cần tìm có dạng
Số cách chọn là 1 cách, (
)
Số cách chọn là 9 cách;
Số cách chọn là
cách
Vậy có số.
Cho tập
. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Hệ số của
trong khai triển
là:
Ta có: .
Hệ số của là 10.
Có sáu quả cầu xanh đánh số từ 1 đến 6, năm quả cầu đỏ đánh số từ 1 đến 5 và bảy quả cầu vàng đánh số từ 1 đến 7. Hỏi có bao nhiêu cách lấy ra ba quả cầu vừa khác màu vừa khác số?
+) Chọn 1 quả màu đỏ có 5 cách.
+) Chọn 1 quả màu xanh khác số với quả màu đỏ có 5 cách.
+) Chọn 1 quả màu vàng khác số với quả màu đỏ và quả màu xanh có 5 cách.
Vậy số cách lấy ra 3 quả cầu vừa khác màu, vừa khác số là: 5.5.5 = 125.
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?
Từ nhà An đến nhà Bình có 4 cách chọn đường.
Từ nhà Bình đến nhà Cường có 6 cách chọn đường.
Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).
Bạn Anh muốn qua nhà bạn Bình để rủ Bình đến nhà bạn Châu chơi. Từ nhà Anh đến nhà Bình có 3con đường. Từ nhà Bình đến nhà Châu có 5con đường. Hỏi bạn Anh có bao nhiêu cách chọn đường đi từ nhà mình đến nhà bạn Châu.
Từ nhà Anh đến nhà Bình có 3 cách chọn 1 con đường.
Từ nhà bạn Bình đến nhà Châu có 5 cách chọn 1 con đường.
Theo quy tắc nhân, số cách chọn đường đi từ nhà Anh đến nhà Châu là 5.3 = 15.
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Từ các số
có thể lập được bao nhiêu số tự nhiên khác nhau và mỗi số có các chữ số khác nhau?
TH1: số có 1 chữ số thì có 3 cách.
TH2: số có 2 chữ số và mỗi số có các chữ số khác nhau thì cósố.
TH3: số có 3 chữ số và mỗi số có các chữ số khác nhau thì cósố
Vậy có số.
Tìm hệ số của
trong khai triển
với
biết
là số nguyên dương thỏa mãn ![]()
Đk:
Với , nhị thức trở thành
Số hạng tổng quát là
Từ yêu cầu bài toán ta cần có:
Vậy hệ số của số hạng chứa là
.
Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?
Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là .
Trường hợp này có 2!.6 số.
Chữ số cuối bằng 2 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 4 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 8 ta có các bộ , hoán vị được
số.
Kết hợp lại ta có 35 số.
Tìm số hạng chứa
trong khai triển
. Cho biết
là số nguyên dương thỏa mãn hệ thức
.
Từ giả thiết ta suy ra .
Mặt khác: nên ta có:
Suy ra: .
Số hạng tổng quát trong khai triển là:
.
Hệ số của là
với
thỏa mãn:
.
Vậy hệ số của là
.
Có
học sinh và
thầy giáo được xếp thành hàng ngang. Đếm số cách xếp sao cho hai thầy giáo không đứng cạnh nhau?
Xếp 8 người thành hàng ngang có cách.
Xếp 8 người thành hàng ngang sao cho 2 thầy giáo đứng cạnh nhau có cách.
Vậy số cách xếp cần tìm là. cách.
Viết khai triển theo công thức nhị thức Niu-tơn
.
Ta có:
Hay .
Có tất cả bao nhiêu cách xếp
quyển sách khác nhau vào một hàng ngang trên giá sách?
Mỗi cách sắp xếp quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của
phần tử. Vậy số cách sáp xếp là
.
Trong khai triển nhị thức
(
). Có tất cả 6 số hạng. Vậy n bằng:
Khai triển có 6 hạng tử
=>
Từ tập hợp các chữ số
có thể lập được bao nhiêu số có ba chữ số đôi một khác nhau và luôn có mặt số 1?
Gọi số tự nhiên có ba chữ số cần tìm có dạng
TH1: . Chọn b, c có 5.6 = 30 cách.
TH2: . Chọn b, c có 5.6 = 30 cách.
TH3: . Chọn b, c có 5.6 = 30 cách.
Vậy có thể lập được (số) thỏa mãn yêu cầu đề bài.
Trong hộp có 5 quả cầu đỏ và 7 quả cầu xanh kích thước giống nhau. Lấy ngẫu nhiên 4 quả cầu từ hộp. Hỏi có bao nhiêu khả năng lấy được số quả cầu đỏ nhiều hơn số quả cầu xanh.
Trường hợp 1: 4 quả đỏ + 0 quả xanh
Chọn 4 quả đỏ từ 5 quả đỏ có: (cách).
Trường hợp 2: 3 quả đỏ + 1 quả xanh
Chọn 3 quả đỏ từ 5 quả đỏ, 1 quả xanh từ 7 quả xanh có: (cách).
Vậy có (cách).
Có bao nhiêu số hạng trong khai triển
?
Trong khai triển nhị thức có
nên có 5 số hạng.