Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho tập A =
\left\{ 1,2,3,4,5,6,7,8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

    x lẻ và không chia hết cho 5 nên d \in \left\{ 1,3,7 ight\} \Rightarrow
d có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 2: Nhận biết

    Có bao nhiêu số tự nhiên có ba chữ số dạng \overline{abc} với a, b, c \in\left\{ 0;1;\ 2;\ 3;\ 4;5;6 ight\} sao cho a < b < c.

    Vì số tự nhiên có ba chữ số dạng \overline{abc} với a, b, c \in\left\{ 0;1;\ 2;\ 3;\ 4;5;6 ight\} sao cho a < b < c nên a, b, c \in\left\{ 1;\ 2;\ 3;\ 4;5;6 ight\}. Suy ra số các số có dạng \overline{abc}C_{6}^{3} = 20.

  • Câu 3: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 4: Nhận biết

    Số hạng tử trong khai triển {(x - 2y)^4} bằng

    Số hạng tử trong khai triển {(x - 2y)^4} là: 4 + 1 = 5 hạng tử.

  • Câu 5: Thông hiểu

    Có bao nhiêu số tự nhiên lẻ trong khoảng (2000; 3000) có thể tạo nên bằng các chữ số 1,2,3,4,5,6 nếu các chữ số không nhất thiết khác nhau?

    Gọi số tự nhiên trong khoảng (2000;3000) có dạng \overline{2abc}

    Vì là số tự nhiên lẻ nên c có 3 lựa chọn là \left\{ 1;3;5 ight\}

    a, b có 6 lựa chọn.

    Vậy có 6.6.3 = 108 số tự nhiên thỏa mãn yêu cầu bài toán.

  • Câu 6: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam đứng cạnh nhau và nữ đứng cạnh nhau:

    Trường hợp 1: Nữ đứng trước

    Có 6 vị trí để xếp, vì nam đứng cạnh nhau và nữ đứng cạnh nhau nên nữ sẽ đứng vị trí số 1, 2, 3 còn nam đứng vị trí số 4, 5, 6

    Sắp xếp học sinh nữ vào vị trí 1, 2, 3

    Vị trí số 1 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nữ)

    Vị trí số 2 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nữ còn lại)

    Vị trí số 3 có 1 cách chọn (vì chỉ còn 1 bạn nữ để chọn)

    Có 6 vị trí để xếp, vì nam nữ đứng xen kẽ nên nữ sẽ đứng vị trí số 1, 3, 5 còn nam đứng vị trí số 2, 4, 6.

    Sắp xếp học sinh nam vào vị trí 4, 5, 6

    Vị trí số 4 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nam)

    Vị trí số 5 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nam còn lại)

    Vị trí số 6 có 1 cách chọn (vì chỉ còn 1 bạn nam để chọn)

    Trường hợp 1 có 3.2.1.3.2.1 = 36 (cách xếp)

    Trường hợp 2: Nam đứng trước

    Tương tự như trường hợp 1, trường hợp 2 có 36 (cách xếp)

    Vậy áp dụng quy tắc cộng ta có cả hai trường hợp có 36 + 36 = 72 (cách xếp).

  • Câu 7: Vận dụng

    Chon là số tự nhiên thỏa mãn phương trình C_{n - 4}^{n - 6} +
nA_{n}^{2} = 454. Tìm hệ số của số hạng chứa x^{4} trong khai triển nhị thức Niu-tơn của \left( \frac{2}{x} - x^{3}
ight)^{n}( với x eq 0).

    Điều kiện n \geq 6n\mathbb{\in N}.

    C_{n - 4}^{n - 6} + nA_{n}^{2} = 454\Leftrightarrow \frac{(n - 4)!}{(n - 6)!2!} + n \cdot \frac{n!}{(n -2)!} = 454

    \Leftrightarrow \frac{(n - 5)(n - 4)}{2} + n^{2}(n - 1) = 454\Leftrightarrow 2n^{3} - n^{2} - 9n - 888 = 0 \Leftrightarrow n =8 (Vì n\mathbb{\in
N}).

    Khi đó ta có khai triển: \left( \frac{2}{x} - x^{3}
ight)^{8}.

    Số hạng tổng quát của khai triển là C_{8}^{k}\left( \frac{2}{x} ight)^{8 - k}\left(
- x^{3} ight)^{k} = C_{8}^{k}( - 1)^{k}2^{8 - k}x^{4k -
8}.

    Hệ số của số hạng chứa x^{4} ứng với k thỏa mãn: 4k - 8 = 4 \Leftrightarrow k =
3.

    Vậy hệ số của số hạng chứa x^{4}: C_{8}^{3}( -
1)^{3}2^{5} = - 1792.

  • Câu 8: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 9: Thông hiểu

    Cho biết hệ số của x^{2} trong khai triển (1 + 2x)^{n} bằng 180.Tìm n.

    Ta có: T_{k + 1} =
C_{n}^{k}.2^{k}x^{k}..

    Hệ số của x^{2} trong khai triển bằng 180

    C_{n}^{2}.2^{2} = 180 \Leftrightarrow\frac{n!}{(n - 2).2}.2^{2} = 180 \Leftrightarrow n(n - 1) = 90

    \Leftrightarrow n^{2} - n - 90 = 0 \Leftrightarrow \left\lbrack\begin{matrix}n = 10 \ = - 9(l) \\\end{matrix} ight.

  • Câu 10: Thông hiểu

    Biết hệ số của x^{2} trong khai triển nhị thức Newton của (1 - 3x)^{n};\left( n\mathbb{\in N}
ight)135. Xác định giá trị n?

    Số hạng thứ k + 1 trong khai triển (1 - 3x)^{n} là:

    T_{k + 1} = C_{n}^{k}.( -
3)^{k}.x^{k} với 1 \leq k \leq
nn,k \in
\mathbb{N}^{*}

    Số hạng chứa x^{2} ứng với k = 2

    Ta có:

    C_{n}^{2}.( - 3)^{2} = 135
\Leftrightarrow C_{n}^{2} = 15

    \Leftrightarrow \frac{n!}{2!(n - 2)!} =
15 \Leftrightarrow n(n - 1) = 30

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = 6(TM) \\
n = - 5(L) \\
\end{matrix} ight.

    Vậy n = 6.

  • Câu 11: Nhận biết

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ ngồi ở đầu và cuối dãy ghế?

    2 nữ ngồi ở đầu và cuối dãy ghế có 2! cách.

    3 nam ngồi ở 3 ghế giữa có 3! cách.

    Vậy có 2!.3! = 12 cách xếp.

  • Câu 12: Nhận biết

    Tìm hệ số h của số hạng chứa x^{5} trong khai triển \left( x^{2} + \frac{2}{x}
ight)^{7}.

    Ta có: \left( x^{2} + \frac{2}{x}
ight)^{7} = {\sum_{k = 0}^{7}{C_{7}^{k}\left( x^{2} ight)^{k}\left(
\frac{2}{x} ight)}}^{7 - k} = \sum_{k = 0}^{7}{C_{7}^{k}.2^{7 -
k}.x^{3k - 7}}

    Ta có: 3k - 7 = 5, suy ra k = 4.

    Vậy hệ số h của số hạng chứa x^{5} trong khai triển\left( x^{2} + \frac{2}{x} ight)^{7}h = C_{7}^{4}.2^{3} = 280.

  • Câu 13: Nhận biết

    Cho tập hợp D gồm x phần tử. Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là:

    Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 14: Thông hiểu

    Tìm tất cả các số tự nhiên có đúng 5 chữ số sao cho trong mỗi số đó chữ số đứng sau lớn hơn chữ số đứng liền trước?

    Gọi số có 5 chữ cố có dạng là \overline{abcde}. Điều kiện a eq 0;a < b < c < d <
e

    Ta chuyển bài toán về tìm số các số tự nhiên có 5 chữ số khác nhau lập từ các chữ số 1;2;3;4;5;6;7;8;9 để lập số thoả yêu cầu của bài toán.

    Do đó sẽ có số các số có 5 chữ số khác nhau lập từ 1;2;3;4;5;6;7;8;9C_{9}^{5} = 126 số

  • Câu 15: Nhận biết

    Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ?

    Mỗi cách xếp 10 học sinh thành một hàng ngang là một hoán vị của tập hợp có 10 phần tử.

    Suy ra số cách sắp xếp là P_{10}.

  • Câu 16: Nhận biết

    Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?

    Từ nhà Nam đến nhà Hải có 4 con đường.

    Từ nhà Hải đến nhà Cường có 6 con đường.

    Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).

  • Câu 17: Thông hiểu

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng:

    Điều kiện n \geq 2,n\mathbb{\in
N}

    Ta có:

    A_{n}^{2} - 3C_{n}^{2} = 15 -
5n

    \Leftrightarrow \frac{n!}{(n - 2)!} -
3.\frac{n!}{2!(n - 2)!} = 15 - 5n

    \Leftrightarrow n(n - 1) - \frac{3n(n -
1)}{2} = 15 - 5n

    \Leftrightarrow - n^{2} + 11n - 30 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 5 \\
n = 6 \\
\end{matrix} ight.\ (tm)

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng 11.

  • Câu 18: Nhận biết

    Bạn Công muốn mua một chiếc áo mới và một chiếc quần mới để đi dự sinh nhật bạn mình. Ở cửa hàng có 12 chiếc áo khác nhau, quần có 15 chiếc khác nhau. Hỏi có bao nhiêu cách chọn một bộ quần và áo?

    Số cách bạn Công chọn một chiếc áo mới là: 12 cách.

    Số cách bạn Công chọn một chiếc quần mới là: 15 cách.

    Theo quy tắc nhân, bạn Công có 12.15 = 180 cách để chọn một bộ quần và áo.

  • Câu 19: Nhận biết

    Cho khai triển \left( x + \frac{2}{\sqrt{x}}
ight)^{6}với x > 0. Tìm hệ số của số hạng chứa x^{3} trong khai triển trên.

    Ta có: \left( x + \frac{2}{\sqrt{x}}
ight)^{6} = \sum_{k = 0}^{6}{C_{6}^{k}x^{6 - k}\left(
\frac{2}{\sqrt{x}} ight)^{k} = \sum_{k = 0}^{6}{2^{k}C_{6}^{k}x^{6 -
\frac{3k}{2}}}}.

    Số hạng chứa x^{3} ứng với \mathbf{6}\mathbf{-}\frac{\mathbf{3}\mathbf{k}}{\mathbf{2}}\mathbf{=}\mathbf{3}\mathbf{\Rightarrow
k =}\mathbf{2}. Vậy hệ số của số hạng chứa x^{3} bằng 2^{2}.C_{6}^{2} = 60.

  • Câu 20: Nhận biết

    3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau?

    Số cách xếp 3 viên bi đen khác nhau thành một dãy bằng. 3!.

    Số cách xếp 4 viên bi đỏ khác nhau thành một dãy bằng. 4!.

    Số cách xếp 5 viên bi đen khác nhau thành một dãy bằng. 5!.

    Số cách xếp 3 nhóm bi thành một dãy bằng. 3!.

    Vậy số cách xếp thỏa yêu cầu đề bài bằng 3!.4!.5!.3! = 103680 cách.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 59 lượt xem
Sắp xếp theo