Hệ số của số hạng chứa
trong khai triển nhị thức
(với
) là:
Số hạng tổng quát của khai triển (với
) là:
.
Số hạng trên chứa suy ra
.
Vậy hệ số của số hạng chứa trong khai triển trên là
.
Hệ số của số hạng chứa
trong khai triển nhị thức
(với
) là:
Số hạng tổng quát của khai triển (với
) là:
.
Số hạng trên chứa suy ra
.
Vậy hệ số của số hạng chứa trong khai triển trên là
.
Biết rằng
thỏa mãn biểu thức
. Tính giá trị biểu thức
?
Ta có:
Lại có:
Một hộp có 5 bi đỏ và 4 bi vàng. Số cách lấy ra hai viên bi từ hộp là:
Số cách lấy 2 viên bi từ 9 viên bi là: (cách).
Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton
?
Để có tổng các hệ số ta thay ta được:
Một người có 7 áo trong đó có 3 áo trắng và 5 cà vạt trong đó có 2 cà vạt vàng. Hỏi người đó có bao nhiêu cách chọn bộ áo và cà vạt nếu đã chọn áo trắng thì không chọn cà vạt vàng?
Số cách chọn áo trắng không chọn cà vạt vàng là:
Số cách chọn bộ áo và cà vạt sao cho không phải áo trắng và cà vạt bất kì trong 5 cái cà vạt là:
Số cách chọn bộ áo và cà vạt sao cho áo trắng thì không chọn cà vạt vàng là
Sắp xếp 5 bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Đếm số cách sắp xếp thỏa mãn bạn An và bạn Dũng không ngồi cạnh nhau?
+) Xếp bạn vào
chỗ ngồi có
cách.
+) Xếp An và Dũng ngồi cạnh nhau có cách. Xem An và Dũng là
phần tử cùng với
bạn còn lại là
phần tử xếp vào
chỗ. Suy ra số cách xếp
bạn sao cho An và Dũng luôn ngồi cạnh nhau là.
cách.
Vậy số cách xếp bạn vào
ghế sao cho An và Dũng không ngồi cạnh nhau là.
.
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức
?
Ta có .
Để trong khai triển có số hạng là số nguyên thì
.
Ta có mà
. Suy ra có
số hạng là số nguyên trong khai triển của biểu thức.
Tìm số hạng không chứa
trong khai triển
.
Công thức số hạng thứ của khai triển
là:
.
Số hạng không chứa ứng với
(thỏa mãn).
Suy ra .
Có 3 người đàn ông, 2 người đàn bà và 1 đứa trẻ được xếp ngồi vào 6 cái ghế xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho đứa trẻ ngồi giữa hai người đàn bà?
Ta đánh số thứ tự cho 6 chiếc ghế từ số 1 đến số 6
Ta thực hiện việc xếp 6 người vào 6 chiếc ghế sao cho đứa trẻ ngồi giữa hai người đàn bà như sau:
Xếp đứa trẻ ngồi vào 1 trong các ghế có số thứ tự từ 2 đến 5 có 4 cách.
Xếp hai người đàn bà vào 2 ghế bên cạnh đứa trẻ có 2 cách.
Xếp 3 người đàn ông vào 3 ghế còn lại: có 3! cách.
Áp dụng quy tắc nhân, có tất cả: cách.
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Hệ số
trong khai triển nhị thức
bằng:
Hệ số của trong khai triển
là:
.
Cho tập
. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5?
Vì x lẻ và không chia hết cho 5 nên => Có 3 cách chọn
Số các chọn các chữ số còn lại là:
Vậy 15120 số thỏa yêu cầu bài toán.
Có 3 cây bút đỏ, 4 cây bút xanh trong một hộp bút. Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?
Số cách lấy ra 1 cây bút là màu đỏ có 3 cách.
Số cách lấy ra 1 cây bút là màu xanh có 4 cách.
Theo quy tắc cộng, số cách lấy ra 1 cây bút từ hộp bút là: 3 + 4 = 7 cách.
Vậy có 7 cách lấy 1 cây bút từ hộp bút.
Cho tập
. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?
Gọi số cần tìm là số dạng . Vì
chia hết cho 3 suy ra
.
Khi đó bộ .
Với bộ suy ra có
số cần tìm.
Tương tự với các bộ số còn lại.
Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.
Vì chữ số đứng đầu chẵn nên có
cách chọn, chữ số đứng cuối lẻ nên
có 4 cách chọn. Các số còn lại có
cách chọn
Vậy có số thỏa yêu cầu bài toán.
Tìm hệ số của số hạng chứa
trong khai triển
.
Ta có: .
Số hạng tổng quát của khai triển là: .
Số hạng chứa trong khai triển tương ứng với
.
Vậy hệ số cần tìm là: (theo tính chất của tổ hợp:
).
Có sáu quả cầu xanh đánh số từ 1 đến 6, năm quả cầu đỏ đánh số từ 1 đến 5 và bảy quả cầu vàng đánh số từ 1 đến 7. Hỏi có bao nhiêu cách lấy ra ba quả cầu vừa khác màu vừa khác số?
+) Chọn 1 quả màu đỏ có 5 cách.
+) Chọn 1 quả màu xanh khác số với quả màu đỏ có 5 cách.
+) Chọn 1 quả màu vàng khác số với quả màu đỏ và quả màu xanh có 5 cách.
Vậy số cách lấy ra 3 quả cầu vừa khác màu, vừa khác số là: 5.5.5 = 125.
Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:
Khi đó công việc có thể được thực hiện bằng (cách) (theo quy tắc nhân)
Có bao nhiêu cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?
Đánh số thứ tự các vị trí theo hàng dọc từ đến
.
Trường hợp 1. Nam đứng trước, nữ đứng sau.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Trường hợp 2. Nữ đứng trước, nam đứng sau.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Theo quy tắc cộng ta có. cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.
Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Giả sử số đó là
Trường hợp 1. xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2. . Với
chọn
có 6 cách nên có 6 số thỏa mãn. Với
chọn
có 5 cách chọn, và tất nhiên
nên có 5 số thỏa mãn. Do đó có
số thỏa mãn.