Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?

    Từ nhà Nam đến nhà Hải có 4 con đường.

    Từ nhà Hải đến nhà Cường có 6 con đường.

    Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).

  • Câu 2: Nhận biết

    Trong khai triển nhị thức Newton của (1 + 3x)^{4}, số hạng thứ hai theo số mũ tăng dần của biến x là:

    Ta có:

    (1 + 3x)^{4} = C_{4}^{0} + C_{4}^{1}.3x
+ C_{4}^{2}.9x^{2} + ...

    C_{4}^{1}.3x = 12x

  • Câu 3: Nhận biết

    Có bao nhiêu cách xếp 6 người thành một hàng dọc

     Xếp 6 người thành một hàng dọc có: 6! = 720 cách.

  • Câu 4: Vận dụng

    Cho tập hợp số: A = \left\{ 0,1,2,3,4,5,6 ight\}.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

    Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \{ 0,1,2,3\}, \{ 0,1,2,6\}, \{ 0,2,3,4\}, \{ 0,3,4,5\}, \{ 1,2,4,5\}, \{ 1,2,3,6\}, \left\{ 1,3,5,6 ight\}.

    Vậy số các số cần lập là: 4(4! - 3!) +
3.4! = 144 số.

  • Câu 5: Nhận biết

    Có 1 con mèo vàng, 1 con mèo đen, 1 con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào 6 cái ghế sao cho mỗi ghế chỉ có một con mèo. Đếm số cách xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau.

    Số cách xếp con mèo vàng và con mèo đen ở cạnh nhau là 2.

    Xem nhóm con mèo vàng và đen này là một phần tử, cùng với 1 con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím, ta được 5 phần tử. Xếp 5 phần tử này là. 5!

    Vậy có 2.5! = 240.

  • Câu 6: Nhận biết

    Có bao nhiêu cách chọn một học sinh từ nhóm gồm 15 học sinh nam và 20 học sinh nữ?

    Số cách chọn một học sinh trong nhóm học sinh là: 15 + 20 = 35 cách.

  • Câu 7: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có 1 nam và 2 nữ?

    Chọn ban điều hành gồm 3 học sinh gồm 1 nam và 2 nữ có C_{25}^{1}.C_{15}^{2} = 2625 cách.

  • Câu 8: Thông hiểu

    Hệ số của x^{3} trong khai triển 3x^{3} + (1 + x)^{5} bằng:

    Ta có:

    {(1 + x)^5} = \sumolimits_{k = 0}^5 {C_5^k{{.1}^{5 - k}}.{x^k}}

    Hệ số của x3 trong khai triển {(1 + x)^5} là: C_5^3{.1^{5 - 3}} = 10

    => Hệ số của x^{3} trong khai triển 3x^{3} + (1 + x)^{5} bằng: 3 + 10 = 13

  • Câu 9: Vận dụng

    Tìm hệ số của x^{4} trong khai triển nhị thức Newton \left( 2x + \frac{1}{\sqrt[5]{x}}
ight)^{n} với x > 0, biết n là số tự nhiên lớn nhất thỏa mãn A_{n}^{5} \leq 18A_{n -
2}^{4}.

    Điều kiện: \left\{ \begin{matrix}
n \geq 6 \\
n\mathbb{\in Z} \\
\end{matrix} ight.

    Khi đó A_{n}^{5} \leq 18A_{n - 2}^{4}
\Leftrightarrow \frac{n!}{(n - 5)!} \leq 18.\frac{(n - 2)!}{(n -
6)!}

    \Leftrightarrow n(n - 1)(n - 2)(n - 3)(n
- 4) \leq 18(n - 2)(n - 3)(n - 4)(n - 5)

    \Leftrightarrow n(n - 1) \leq 18(n -
5) \Leftrightarrow n^{2} - 19n + 90
\leq 0 \Leftrightarrow 9 \leq n
\leq 10\overset{n ightarrow \max}{ightarrow}n = 10.

    Số hạng tổng quát trong khai triển \left(
2x + \frac{1}{\sqrt[5]{x}} ight)^{10}T_{k + 1} = C_{10}^{k}.(2x)^{10 - k}.\left(
\frac{1}{\sqrt[5]{x}} ight)^{k}

    = C_{10}^{k}.2^{10 - k}.x^{10 - k}.x^{-
\frac{k}{5}} = C_{10}^{k}.2^{10 -
k}.x^{\frac{50 - 6k}{5}}.

    Tìm k sao cho \frac{50 - 6k}{5} = 4 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{4}C_{10}^{5}.2^{10 - 5} =
8064..

  • Câu 10: Thông hiểu

    Trong hộp có 5 quả cầu đỏ và 7 quả cầu xanh kích thước giống nhau. Lấy ngẫu nhiên 4 quả cầu từ hộp. Hỏi có bao nhiêu khả năng lấy được số quả cầu đỏ nhiều hơn số quả cầu xanh.

    Trường hợp 1: 4 quả đỏ + 0 quả xanh

    Chọn 4 quả đỏ từ 5 quả đỏ có: C_5^4 = 5 (cách).

    Trường hợp 2: 3 quả đỏ + 1 quả xanh

    Chọn 3 quả đỏ từ 5 quả đỏ, 1 quả xanh từ 7 quả xanh có: C_5^3.C_7^1 = 70 (cách).

    Vậy có 5+70=75 (cách).

  • Câu 11: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau?

    Gọi số tự nhiên có ba chữ số có dạng \overline{abc};(a eq 0)

    Có 9 cách chọn a

    Có 9 cách chọn b

    Có 8 cách chọn c

    => Số các số được tạo thành là: 9.9.8
= 648 số.

  • Câu 12: Nhận biết

    Một hộp chứa 5 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên 1 viên bi trong hộp. Số khả năng xảy ra là:

    Áp dụng quy tắc cộng ta có số khả năng xảy ra là: 5 + 4 = 9 khả năng.

  • Câu 13: Thông hiểu

    Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.

    Điều kiện: n \ge 3

    Số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A là tổ hợp chập 3 của n phần tử 

    => Số tam giác là: C_n^3 (tam giác)

    Số đoạn thẳng được nối từ 2 điểm thuộc A là tổ hợp chập n phần tử

    => Số đoạn thẳng là: C_n^2

    Theo bài ra ta có: 

    Số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.

    \begin{matrix}   \Rightarrow C_n^3 = 2C_n^2 \hfill \\   \Leftrightarrow \dfrac{{n!}}{{3!\left( {n - 3} ight)!}} = 2\dfrac{{n!}}{{2!\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)\left( {n - 3} ight)!}}{{6\left( {n - 3} ight)!}} = \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)!}}{{\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow n\left( {n - 1} ight)\left( {n - 2} ight) = 6n\left( {n - 1} ight) \hfill \\   \Leftrightarrow \left[ \begin{gathered}  n\left( {n - 1} ight) = 0 \hfill \\  n - 2 = 6 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  n = 0\left( {ktm} ight) \hfill \\  n = 1\left( {ktm} ight) \hfill \\  n = 8\left( {tm} ight) \hfill \\ \end{gathered}  ight. \hfill \\   \hfill \\ \end{matrix}

    Vậy n = 8.

  • Câu 14: Nhận biết

    Trong khai triển nhị thức (a + 2)^{n-5}(n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng:

     Khai triển bậc (n-5) có 6 số hạng. Suy ra (n-5) = 5. Vậy n = 10.

  • Câu 15: Thông hiểu

    Tổng các hệ số trong khai triển nhị thức Newton của (2x - 3)^{5} bằng:

    Ta có:

    (2x - 3)^{5} = C_{5}^{0}(2x)^{5}.( -
3)^{0} + C_{5}^{1}.(2x)^{4}.( - 3)^{1}

    + ... + C_{5}^{4}.(2x)^{1}.( - 3)^{4} +
C_{5}^{5}.(2x)^{0}.( - 3)^{5}

    = C_{5}^{0}2^{5}.( - 3)^{0}.x^{5} +
C_{5}^{1}.2^{4}.( - 3)^{1}.x^{4}

    + ... + C_{5}^{4}.2.( - 3)^{4}.x +
C_{5}^{5}.( - 3)^{5}

    Cho x = 1 ta được:

    (2.1 - 3)^{5} = C_{5}^{0}2^{5}.( -
3)^{0}.1^{5} + C_{5}^{1}.2^{4}.( - 3)^{1}.1^{4} + ... + C_{5}^{4}.2.( -
3)^{4}.1 + C_{5}^{5}.( - 3)^{5} = - 1

    Vậy tổng hệ số trong khai triển đã cho bằng -1.

  • Câu 16: Nhận biết

    Biểu thức C_{4}^{0}x^{4}+C_{4}^{1}x^{3}y+C_{4}^{2}x^{2}y^{2}+C_{4}^{3}xy^{3}+C_{4}^{4}y^{4} bằng:

    Ta có:

    C_{4}^{0}x^{4}+C_{4}^{1}x^{3}y+C_{4}^{2}x^{2}y^{2}+C_{4}^{3}xy^{3}+C_{4}^{4}y^{4} =(x + y)^{4}

  • Câu 17: Nhận biết

    Từ các chữ số 1, 2, 3, 4, 5. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Mỗi số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5 là một hoán vị của 5 phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là P_{5} = 5! =
120 (số).

  • Câu 18: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?

    Giả sử số đó là \overline{a_{1}a_{2}a_{3}}

    Trường hợp 1. a_{3} = 0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.

    Trường hợp 2. a_{3} = 5. Với a_{1} = 2 chọn a_{2} có 6 cách nên có 6 số thỏa mãn. Với a_{1} eq 2 chọn a_{1} có 5 cách chọn, và tất nhiên a_{2} = 2 nên có 5 số thỏa mãn. Do đó có 12 + 6 + 5 = 23 số thỏa mãn.

  • Câu 19: Thông hiểu

    Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn?

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 4 cách chọn (2,4,6,8)

    B: có 5 cách chọn (0,2,4,6,8)

    C: có 5 cách chọn (0,2,4,6,8)

    Vậy có 4.5.5 = 100 (số) có 3 chữ số và cả 3 chữ số đều chẵn.

     

  • Câu 20: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo