Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 6 chữ số đôi một khác nhau trong đó phải có 1 và 3 đứng cạnh nhau, không kể thứ tự trước sau.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số thỏa yêu cầu bài toán.

    Chọn 2 vị trí cạnh nhau từ 6 vị trí (từ a_{1} ightarrow a_{6}) có: 5 cách.

    Xếp số 1 và 3 vào 2 vị trí vừa chọn có: 2 cách.

    Chọn số cho 4 vị trí từ tập X\backslash\left\{ 1;3 ight\} có: 7.6.5.4 = 840 cách.

    Theo quy tắc nhân có: 5.2.840 =
8400 số.

  • Câu 2: Nhận biết

    Số các số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn là

    Giả sử số tự nhiên thỏa mãn yêu cầu bài toán là: \overline{ab}.

    - Chọn a có 4 cách: a ∈ {2;4;6;8}.

    - Chọn b có 5 cách: b ∈ {0;2;4;6;8}.

    Vậy có tất cả: 4.5 = 20 số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn.

  • Câu 3: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 4: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 5: Nhận biết

    Khai triển (x +
3y)^{4} thành đa thức ta được biểu thức gồm mấy số hạng?

    Biểu thức (x + 3y)^{4} khai triển thành đa thức có 5 hạng tử.

  • Câu 6: Thông hiểu

    Một tổ gồm 7 học sinh trong đó có 4 nam, 3 nữ cùng với 2 cô giáo xếp thành một hàng dọc để tham gia trò chơi đồng đội. Hỏi có bao nhiêu cách xếp hàng cho nhóm 3 học sinh nữ luôn đứng cạnh nhau và nhóm hai cô giáo cũng đứng cạnh nhau?

    Xếp nhóm A gồm 3 học sinh nữ đứng cạnh nhau có: 3! = 6 cách.

    Xếp nhóm B gồm 2 cô giáo đứng cạnh nhau có: 2! = 2 cách.

    Xếp nhóm A và nhóm B với 4 học sinh nam còn lại có 6! = 720 cách.

    Theo quy tắc nhân ta có: 6.2.720 =
8640 cách.

  • Câu 7: Nhận biết

    Một hộp có 5 bi đỏ và 4 bi vàng. Số cách lấy ra hai viên bi từ hộp là:

     Số cách lấy 2 viên bi từ 9 viên bi là: C_9^2=36 (cách).

  • Câu 8: Nhận biết

    Số các hoán vị của n phần tử là:

     Số các hoán vị của n phần tử là: n!.

  • Câu 9: Vận dụng

    Tìm số hạng không chứa x trong khai triển nhị thức Newton của \left( 2x^{2} - \frac{3}{x}
ight)^{n} (x eq 0). Cho biết 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + nC_{n}^{n} = 256n (C_{n}^{k} là số tổ hợp chập k của n phần tử).

    Xét khai triển (1 + x)^{n} = C_{n}^{0} +
C_{n}^{1}x + C_{n}^{2}x^{2} + C_{n}^{3}x^{3} + ... +
C_{n}^{n}x^{n} (1)

    Đạo hàm hai vế của (1) ta được: n(1 + x)^{n - 1} = C_{n}^{1} + 2C_{n}^{2}x +
3C_{n}^{3}x^{2} + ... + nC_{n}^{n}x^{n - 1} (2)

    Trong công thức (2) ta cho x = 1 ta được:

    n2^{n - 1} = C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + nC_{n}^{n} \Leftrightarrow n.2^{n - 1} = 256n \Leftrightarrow 2^{n - 1} = 256 \Leftrightarrow n = 9.

    Khi đó, \left( 2x^{2} - \frac{3}{x}
ight)^{n} = \left( 2x^{2} - \frac{3}{x} ight)^{9} = \sum_{n =
0}^{9}{C_{9}^{k}( - 3)^{k}2^{9 - k}.x^{18 - 3k}}.

    Do đó số hạng không chứa x trong khai triển \left( 2x^{2} - \frac{3}{x}
ight)^{9} nếu 18 - 3k =
0 hay k = 6.

    Suy ra số hạng cần tìm là C_{9}^{6}( -
3)^{6}2^{3} = 489888.

  • Câu 10: Nhận biết

    Từ các chữ số  1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau.

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 5 cách chọn.

    B: có 4 cách chọn. 

    C: có 3 cách chọn.

    Vậy có 5.4.3 = 60 (số) có 3 chữ số đôi một khác nhau.

  • Câu 11: Nhận biết

    Tìm hệ số h của số hạng chứa x^{5} trong khai triển \left( x^{2} + \frac{2}{x}
ight)^{7}.

    Ta có: \left( x^{2} + \frac{2}{x}
ight)^{7} = {\sum_{k = 0}^{7}{C_{7}^{k}\left( x^{2} ight)^{k}\left(
\frac{2}{x} ight)}}^{7 - k} = \sum_{k = 0}^{7}{C_{7}^{k}.2^{7 -
k}.x^{3k - 7}}

    Ta có: 3k - 7 = 5, suy ra k = 4.

    Vậy hệ số h của số hạng chứa x^{5} trong khai triển\left( x^{2} + \frac{2}{x} ight)^{7}h = C_{7}^{4}.2^{3} = 280.

  • Câu 12: Nhận biết

    Một lớp học có 15 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là

    Số cách chọn một bạn nam là 15 cách.

    Số cách chọn một bạn nữ là 10 cách.

    Theo quy tắc nhân ta có số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là 15.10 = 150 cách.

  • Câu 13: Thông hiểu

    Xét những số gồm 9 chữ số, trong đó có năm chữ số 1 và bốn chữ số còn lại 2;3;4;5. Hỏi có bao nhiêu số như vậy biết rằng năm chữ số 1 được xếp kế nhau.

    Xếp năm chữ số 1 kế nhau vào 9 vị trí có 5 cách.

    Xếp 2;3;4;5 vào 4 vị trí còn lại có 4! cách.

    Theo quy tắc nhân, ta được 5.4! =
120 (số).

  • Câu 14: Vận dụng

    Tính tổng các chữ số gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5?

    Có 120 số có 5 chữ số được lập từ 5 chữ số đã cho.

    Bây giờ ta xét vị trí của một chữ số trong 5 số 1, 2, 3, 4, 5 chẳng hạn ta xét số 1. Số 1 có thể xếp ở 5 vị trí khác nhau, mỗi vị trí có 4!=24 số nên khi ta nhóm các các vị trí này lại có tổng là : 24\left( 10^{4} + 10^{3} + 10^{2} + 10 + 1 ight)
= 24.11111.

    Vậy tổng các số có 5 chữ số là : 24.11111(1 + 2 + 3 + 4 + 5) =
3999960.

  • Câu 15: Thông hiểu

    Tìm hệ số của x^{6} trong khai triển \left( \frac{1}{x} + x^{3} ight)^{3n +
1}với x eq 0, biết n là số nguyên dương thỏa mãn 3C_{n + 1}^{2} + nP_{2} = 4A_{n}^{2}.

    Đk:n \geq 2,\ \ n \in
\mathbb{N.}

    \ \ \ \ \ \ \ 3C_{n + 1}^{2} + nP_{2} =
4A_{n}^{2}

    \Leftrightarrow 3\frac{(n + 1)!}{(n -
1)!2!} + 2!n = 4\frac{n!}{(n - 2)!}

    \Leftrightarrow \frac{3}{2}n(n + 1) + 2n
= 4n(n - 1)

    \Leftrightarrow \frac{5}{2}n^{2} -
\frac{15}{2}n = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0\ \ \ \ (L) \\
n = 3 \\
\end{matrix} ight.

    Với n = 3, nhị thức trở thành \left( \frac{1}{x} + x^{3}
ight)^{10}.

    Số hạng tổng quát là C_{10}^{k}.\left(
\frac{1}{x} ight)^{10 - k}.\left( x^{3} ight)^{k} = C_{10}^{k}.x^{4k
- 10}

    Từ yêu cầu bài toán ta cần có: 4k - 10 =
6 \Leftrightarrow k = 4.

    Vậy hệ số của số hạng chứa x^{6}C_{10}^{4} = 210..

  • Câu 16: Nhận biết

    Tìm hệ số của số hạng chứa x^{2} trong khai triển (x + 3)^{4}?

    Ta có: (x + 3)^{4} = x^{4} + 4x^{3}.3 +
6.x^{2}.3^{2} + 4.x.3^{3} + 3^{4}

    Hệ số chứa x^{2} trong khai triển là: 6.3^{2} = 54.

  • Câu 17: Thông hiểu

    Từ tập hợp các chữ số A = \left\{ 1,3,4,5,6,8,9 ight\} có thể lập được bao nhiêu số có ba chữ số đôi một khác nhau và luôn có mặt số 1?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc}

    TH1: \overline{1bc}. Chọn b, c có 5.6 = 30 cách.

    TH2: \overline{a1c}. Chọn b, c có 5.6 = 30 cách.

    TH3: \overline{ab1}. Chọn b, c có 5.6 = 30 cách.

    Vậy có thể lập được 30 + 30 + 30 =
90(số) thỏa mãn yêu cầu đề bài.

  • Câu 18: Nhận biết

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:

    Số tập hợp con cần tìm là số tổ hợp chập 3 của 7 phần tử.

    Vậy có C_{7}^{3} tập con cần tìm.

  • Câu 19: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 20: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển (3x + 2)^{4}?

    Số hạng tổng quát theo thứ tự giảm dần số mũ x là:

    C_{4}^{k}(3x)^{4 - k}.2^{k} =
C_{4}^{k}.3^{4 - k}.2^{k}.x^{4 - k}

    Số hạng chứa x^{3} ứng với 4 - k = 3 \Rightarrow k = 1

    Số hạng cần tìm là C_{4}^{1}.3^{4 -
1}.2.x^{4 - 1} = 216x^{3}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 56 lượt xem
Sắp xếp theo