Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Phương trình P_{x + 3} = 825.A_{x}^{2}.P_{x - 5} có tất cả bao nhiêu nghiệm?

    Điều kiện xác định x\mathbb{\in N};x \geq
6

    Ta có:

    P_{x + 3} = 825.A_{x}^{2}.P_{x -
5}

    \Leftrightarrow (x + 3)! = 825x.(x -
1).(x - 5)!

    \Leftrightarrow \frac{(x + 3)!}{(x -
5)!} = 825x.(x - 1)

    \Leftrightarrow (x + 3)(x + 2)(x + 1)x(x
- 1)(x - 2)(x - 3)(x - 4) = 825x.(x - 1)

    \Leftrightarrow (x + 3)(x + 2)(x + 1)(x
- 2)(x - 3)(x - 4) = 825

    \Leftrightarrow \left( x^{2} - x - 2
ight)\left( x^{2} - x - 6 ight)\left( x^{2} - x - 12 ight) = 825\
\ (*)

    Đặt x^{2} - x - 2 = t phương trình (*) trở thành:

    t(t - 4)(t - 10) = 825

    \Leftrightarrow t^{2} - 14t^{2} - 825 =
0 \Leftrightarrow t = 15

    Khi đó x^{2} - x - 2 = 15 \Leftrightarrow
x^{2} - x - 17 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{1 + \sqrt{69}}{2}(ktm) \\x = \dfrac{1 - \sqrt{69}}{2}(ktm) \\\end{matrix} ight.

    Vậy không có giá trị nào của x thỏa mãn điều kiện.

  • Câu 2: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 3: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x - 3)^{4} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (x + 2)^{5}C_{5}^{2}.2^{2}.x^{3} = 40x^{3}

    Số hạng chứa x^{3} trong khai triển (x - 3)^{4}C_{4}^{1}.( - 3)^{1}.x^{3} = -
12x^{3}

    Do đó số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x -
3)^{4} đã cho là: 40x^{3} - ( -
12)x^{3} = 52x^{3}

    Vậy số hạng cần tìm là 52x^{3}.

  • Câu 4: Thông hiểu

    Từ khai triển biểu thức (x + 1)^{10} thành đa thức. Tổng các hệ số của đa thức là:

    Xét khai triển f(x) = (x + 1)^{10} =
\sum_{k = 0}^{10}C_{10}^{k}.x^{k}.

    Gọi S là tổng các hệ số trong khai triển thì ta có S = f(1) = (1 + 1)^{10}
= 2^{10} = 1024.

  • Câu 5: Thông hiểu

    Có bao nhiêu số tự nhiên lẻ trong khoảng (2000; 3000) có thể tạo nên bằng các chữ số 1,2,3,4,5,6 nếu các chữ số khác nhau?

    Gọi số tự nhiên trong khoảng (2000;3000) có dạng \overline{2abc}

    Vì là số tự nhiên lẻ nên c có 3 lựa chọn là \left\{ 1;3;5 ight\}

    a có 4 lựa chọn vì khác 2 và c

    b có 3 lựa chọn vì khác 2 và c, a.

    Vậy có 3.4.3 = 36 số tự nhiên thỏa mãn yêu cầu bài toán.

  • Câu 6: Nhận biết

    Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?

     Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).

  • Câu 7: Nhận biết

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả:

    Ta có: (x + 1)^{4} = x^{4} + 4x^{3} + 6x^{2} +
4x + 1

  • Câu 8: Nhận biết

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Đáp án là:

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Chọn 1 sinh viên làm lớp trưởng có 33 cách

    Chọn 1 sinh viên làm lớp phó có 32 cách

    Chọn 1 sinh viên làm bí thư có 31 cách

    33.32.31 = 32736 cách

  • Câu 9: Nhận biết

    Hệ số của x^{2} trong khai triển (2x + 3)^{5} là:

    Ta có số hạng tổng quát: T_{k + 1} =C_{5}^{k}.(2x)^{5 - k}.3^{k} = C_{5}^{k}.2^{5 - k}.x^{5 -k}.3^{k}

    Số hạng chứa x^{2} nên 5 - k = 2 \Rightarrow k = 3

    Vậy hệ số của x^{2} trong khai triển đã cho là: C_{5}^{3}.2^{2}.3^{3}.

  • Câu 10: Vận dụng

    Tìm số hạng không chứa x trong khai triển nhị thức Newton của \left( 2x^{2} - \frac{3}{x}
ight)^{n} (x eq 0). Cho biết 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + nC_{n}^{n} = 256n (C_{n}^{k} là số tổ hợp chập k của n phần tử).

    Xét khai triển (1 + x)^{n} = C_{n}^{0} +
C_{n}^{1}x + C_{n}^{2}x^{2} + C_{n}^{3}x^{3} + ... +
C_{n}^{n}x^{n} (1)

    Đạo hàm hai vế của (1) ta được: n(1 + x)^{n - 1} = C_{n}^{1} + 2C_{n}^{2}x +
3C_{n}^{3}x^{2} + ... + nC_{n}^{n}x^{n - 1} (2)

    Trong công thức (2) ta cho x = 1 ta được:

    n2^{n - 1} = C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + nC_{n}^{n} \Leftrightarrow n.2^{n - 1} = 256n \Leftrightarrow 2^{n - 1} = 256 \Leftrightarrow n = 9.

    Khi đó, \left( 2x^{2} - \frac{3}{x}
ight)^{n} = \left( 2x^{2} - \frac{3}{x} ight)^{9} = \sum_{n =
0}^{9}{C_{9}^{k}( - 3)^{k}2^{9 - k}.x^{18 - 3k}}.

    Do đó số hạng không chứa x trong khai triển \left( 2x^{2} - \frac{3}{x}
ight)^{9} nếu 18 - 3k =
0 hay k = 6.

    Suy ra số hạng cần tìm là C_{9}^{6}( -
3)^{6}2^{3} = 489888.

  • Câu 11: Nhận biết

    Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?

    Mỗi cách phân công \mathbf{3} bạn An, Bình, Công vào 3 chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của 3 phần tử. Vậy có 3!\ \  = \ \ 6 cách.

  • Câu 12: Thông hiểu

    Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.

    Điều kiện: n \ge 3

    Số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A là tổ hợp chập 3 của n phần tử 

    => Số tam giác là: C_n^3 (tam giác)

    Số đoạn thẳng được nối từ 2 điểm thuộc A là tổ hợp chập n phần tử

    => Số đoạn thẳng là: C_n^2

    Theo bài ra ta có: 

    Số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.

    \begin{matrix}   \Rightarrow C_n^3 = 2C_n^2 \hfill \\   \Leftrightarrow \dfrac{{n!}}{{3!\left( {n - 3} ight)!}} = 2\dfrac{{n!}}{{2!\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)\left( {n - 3} ight)!}}{{6\left( {n - 3} ight)!}} = \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)!}}{{\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow n\left( {n - 1} ight)\left( {n - 2} ight) = 6n\left( {n - 1} ight) \hfill \\   \Leftrightarrow \left[ \begin{gathered}  n\left( {n - 1} ight) = 0 \hfill \\  n - 2 = 6 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  n = 0\left( {ktm} ight) \hfill \\  n = 1\left( {ktm} ight) \hfill \\  n = 8\left( {tm} ight) \hfill \\ \end{gathered}  ight. \hfill \\   \hfill \\ \end{matrix}

    Vậy n = 8.

  • Câu 13: Nhận biết

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được 2 con át?

    Số cách lấy 5 con trong đó có 2 con át là: C_{4}^{2}.C_{48}^{3} = 103776.

  • Câu 14: Vận dụng

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 15: Nhận biết

    Tính số cách chọn một học sinh trong khối lớp 10 tham gia công tác Đoàn. Biết rằng khối 10 có 350 học sinh nam và 245 học sinh nữ?

    Áp dụng quy tắc cộng ta có số cách chọn học sinh tham gia công tác Đoàn là: 350 + 245 = 495.

  • Câu 16: Thông hiểu

    Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n là một số lẻ?

    Gọi tập X = \left\{ 0;1;2;3;4;5;6;7;8;9
ight\}n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa mãn yêu cầu:

    Chọn a_{1} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Chọn a_{2} \in X có: 10 cách.

    Chọn a_{3} \in X có: 10 cách.

    Chọn a_{4} \in X có: 10 cách.

    Chọn a_{5} \in \left\{ 1;3;5;7;9
ight\} có: 5 cách.

    Theo quy tắc nhân có: 9.10.10.10.5 =
45000 số.

  • Câu 17: Nhận biết

    Cho hai số tự nhiên k,x sao cho 0
\leq k \leq n. Chọn khẳng định đúng sau đây?

    Khẳng định đúng là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 18: Nhận biết

    Trong khai triển (x + 2y)^{5} số hạng chứa x^{2}y^{3} là:

     Ta có: (x+2y)^5={x^5} + 10{x^4}y + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}.

    Vậy số hạng cần tìm là: 80x^{2}y^{3}.

  • Câu 19: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có ít nhất 1 nam?

    Chọn ban điều hành gồm 3 học sinh không có học sinh nam nào có C_{15}^{3} = 455 cách

    Số cách chọn ban điều hành gồm 3 học sinh có ít nhất 1 nam có: 9425 cách.

  • Câu 20: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo