Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?

    Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.

  • Câu 2: Vận dụng

    Cho khai triển (1 - 2x)^{n} = a_{0} + a_{1}x + a_{2}x^{2} + ... +
a_{n}x^{n}. Tìm hệ số a_{5} biết rằng a_{0} + a_{1} + a_{2} = 71.

    Ta có (1 - 2x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}( - 2x)^{k}}. Vậy a_{0} = 1; a_{1} = - 2C_{n}^{1}; a_{2} = 4C_{n}^{2}.

    Theo bài ra a_{0} + a_{1} + a_{2} =
71 nên ta có:

    1 - 2C_{n}^{1} + 4C_{n}^{2} = 71
\Leftrightarrow 1 - 2\frac{n!}{1!(n - 1)!} + 4\frac{n!}{2!(n - 2)!} = 71
\Leftrightarrow 1 - 2n + 2n(n - 1) = 71 \Leftrightarrow 2n^{2} - 4n - 70
= 0 \Leftrightarrow n^{2} - 2n - 35 = 0 \Leftrightarrow n = 7 (thỏa mãn) hoặc n = - 5 (loại).

    Từ đó ta có a_{5} = C_{7}^{5}( - 2)^{5} =
- 672.

  • Câu 3: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn A;C ngồi ở hai đầu ghế là:

    Vì A; E ngồi ở hai đầu ghế nên ta có 3!.2! = 12 cách sắp xếp A;B;C;D;E

  • Câu 4: Nhận biết

    Cho hai dãy ghế được xếp như sau.

    Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?

    Xếp 4 bạn nam vào một dãy có 4! (cách xếp).

    Xếp 4 bạn nữ vào một dãy có 4! (cách xếp).

    Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.

    Số cách xếp theo yêu cầu là. 4!.4!.2^{4} (cách xếp).

  • Câu 5: Thông hiểu

    Một người có 5 chiếc áo trong đó có 3chiếc áo trắng. Người đó cũng có 3 chiếc cà vạt trong đó có 2 chiếc cà vạt màu vàng. Tìm số cách chọn một chiếc áo và một chiếc cà vạt sao cho đã chọn áo trắng thì không chọn cà vạt màu vàng.

    5 chiếc áo gồm: 3 trắng và 2 màu khác.

    3 chiếc cà vạt gồm: 2 vàng và 1 màu khác.

    Trường hợp 1: Áo trắng, cà vạt màu khác vàng.

    Áo trắng: có 3 cách chọn.

    Cà vạt màu khác vàng: 1 cách chọn.

    Suy ra có: 3.1 = 3 (cách).

    Trường hợp 2: Áo màu khác trắng, cà vạt màu bất kì.

    Áo màu khác trắng: 2 cách chọn.

    Cà vạt màu bất kì: 3 cách chọn.

    Suy ra có: 2.3 = 6 (cách).

    Vậy có: 3+6 = 9 (cách) chọn thỏa mãn yêu cầu đề bài.

  • Câu 6: Vận dụng

    Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?

    Gọi số in trên vé có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}}

    Số cách chọn a_{1} là 10 (a_{1} có thể là 0).

    Số cách chọn a_{2} là 9.

    Số cách chọn a_{3} là 8.

    Số cách chọn a_{4} là 7.

    Số cách chọn a_{5} là 6.

    Do đó có 10.9.8.7.6 = 23460 (số).

  • Câu 7: Thông hiểu

    Cho tập hợp B =
\left\{ 0,1,2,3,4,5,6,7 ight\}. Có bao nhiêu số tự nhiên không chia hết cho 2 gồm 5 chữ số khác nhau được lập từ tập hợp B?

    Gọi số tự nhiên có năm chữ số cần tìm có dạng \overline{abcde};(a eq 0)

    Số cách chọn e là: 4 cách

    Số cách chọn a là: 4 cách

    Số cách chọn b là: 6 cách

    Số cách chọn c là: 5 cách

    Số cách chọn d là: 4 cách

    Vậy số các số được tạo thành là: 4.6.6.5.4 = 2880 số.

  • Câu 8: Nhận biết

    Một trường THPT được cử một học sinh đi dự trại hè toàn quốc. Nhà trường quyết định chọn một học sinh tiên tiến trong lớp 11A hoặc lớp 12B. Hỏi nhà trường có bao nhiêu cách chọn, biết rằng lớp 11A có 31 học sinh tiên tiến và lớp 12B có 22 học sinh tiên tiến?

    Để chọn được một học sinh đi dự ta có 2 trường hợp:

    Trường hợp 1: Học sinh ở lớp 11A: có 31 cách

    Trường hợp 2: Học sinh ở lớp 12B: có 22 cách

    Vậy có 31 + 22 = 53 cách.

  • Câu 9: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 10: Vận dụng

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 11: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 12: Nhận biết

    Có bao nhiêu cách chọn ngẫu nhiên 3 viên bi từ một hộp có 20 viên bi.

     Chọn 3 viên bi từ 20 viên bi: C_{20}^3 cách.

  • Câu 13: Nhận biết

    Số hạng chứa x^{5} trong khai triển (x - 2)^{5} là:

    Công thức số hạng tổng quát: C_{5}^{k}.x^{k}.( - 2)^{5 - k} \Rightarrow k =
5 ta được số hạng chứa x^{5} là: x^{5}

  • Câu 14: Thông hiểu

    Tính tổng các hệ số trong khai triển (1 - 2x)^{2018}.

    Xét khai triển (1 - 2x)^{2018} =C_{2018}^{0} - 2x.C_{2018}^{1} + ( - 2x)^{2}.C_{2018}^{2}  + ... + ( - 2x)^{2018}.C_{2018}^{2018}

    Tổng các hệ số trong khai triển là: S =
C_{2018}^{0} - 2.C_{2018}^{1} + ( - 2)^{2}.C_{2018}^{2} + ( -
2)^{3}.C_{2018}^{3} + ... + ( - 2)^{2018}.C_{2018}^{2018}

    Cho x = 1 ta có: (1 - 2.1)^{2018} = C_{2018}^{0} - 2.1.C_{2018}^{1}+ ( - 2.1)^{2}.C_{2018}^{2} + ... + ( -2.1)^{2018}.C_{2018}^{2018}

    \Leftrightarrow ( - 1)^{2018} = S\Leftrightarrow S = 1

  • Câu 15: Thông hiểu

    Từ 6 chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và 2?

    Gọi số cần tìm có dạng \overline{abcde}

    Số cách sắp xếp số 1; 2 vào 5 vị trí ta có: A_{5}^{2} cách

    3 vị trí còn lại có A_{4}^{3} cách

    Vậy số cần thành lập là: A_{5}^{2}.A_{4}^{3} = 480 số.

  • Câu 16: Nhận biết

    Chọn đáp án đúng khi khai triển nhị thức (3x - 2y)^{4}?

    Ta có:

    (3x - 2y)^{4} = \sum_{k =
0}^{4}{C_{4}^{k}.(3x)^{4 - k}.( - 2y)^{k}}

    = 81x^{4} - 216x^{3}y + 216x^{2}y^{2} -
96xy^{3} + 16y^{4}

  • Câu 17: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 18: Nhận biết

    Trong khai triển nhị thức Newton của (1 + 3x)^{4}, số hạng thứ hai theo số mũ tăng dần của biến x là:

    Ta có:

    (1 + 3x)^{4} = C_{4}^{0} + C_{4}^{1}.3x
+ C_{4}^{2}.9x^{2} + ...

    C_{4}^{1}.3x = 12x

  • Câu 19: Thông hiểu

    Cho đa giác đều có tất cả 12 cạnh. Hỏi đa giác có bao nhiêu đường chéo?

    Từ 12 đỉnh của đa giác đều, ta xác định được C_{12}^{2} = 66 đoạn thẳng.

    Vậy đa giác đều có tất cả 66 - 12 =
54 đường chéo.

  • Câu 20: Thông hiểu

    Tìm số hạng chứa x^{4} trong khai triển (x^{2}-\frac{1}{x})^{n} biết A_{n}^{2}-C_{n}^{2}=10.

    Ta có:

    \begin{matrix}  A_n^2 - C_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 - \dfrac{{A_n^2}}{{2!}} = 10 \hfill \\   \Leftrightarrow \dfrac{1}{2}A_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 = 20 \Leftrightarrow n = 5 \hfill \\ \end{matrix}

    Khai triển biểu thức như sau:

    \begin{matrix}  {\left( {{x^2} - \dfrac{1}{x}} ight)^5} = \sumolimits_{k = 0}^5 {C_5^k.{{\left( {{x^2}} ight)}^{5 - k}}.{{\left( { - \dfrac{1}{x}} ight)}^k}}  \hfill \\   = \sumolimits_{k = 0}^5 {C_5^k.{{\left( { - 1} ight)}^k}.{x^{10 - 3k}}}  \hfill \\ \end{matrix}

    Số hạng chứa x^{4} nghĩa là: 10 - 3k = 4 \Rightarrow k = 2

    => Số hạng cần tìm là C_5^2 = 10

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo