Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.
Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử
=> Số cách chọn là: (cách)
Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.
Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử
=> Số cách chọn là: (cách)
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).
Số các số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn là
Giả sử số tự nhiên thỏa mãn yêu cầu bài toán là: .
- Chọn a có 4 cách: a ∈ {2;4;6;8}.
- Chọn b có 5 cách: b ∈ {0;2;4;6;8}.
Vậy có tất cả: 4.5 = 20 số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn.
Khai triển biểu thức
ta được:
Ta có:
Một học sinh có 12 quyển sách đôi một khác nhau, trong đó có 2 sách Toán, 4 sách Văn, 6 sách Anh Văn. Hỏi có bao nhiêu cách xếp tất cả các quyển sách lên một kệ sách dài nếu mọi quyển sách cùng môn được xếp kề nhau?
Có 3! = 6 cách xếp 3 loại sách.
Có 2! = 2 cách xếp 2 sách Toán.
Có 4! = 24 cách xếp 4 sách Văn.
Vậy theo qui tắc nhân có tất cả 6.2.24 = 720 cách xếp thoả mãn yêu cầu đề bài
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
Gọi số cần tìm có dạng . Vì
chia hết cho 5 suy ra
.
TH1. Với suy ra có
số cần tìm.
TH2. Với , suy ra có
số cần tìm.
Vậy có tất cả 444 số cần tìm.
Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?
Số cách chọn một quyển sách là 8 cách.
Số cách chọn một cái bút là 10 cách.
=> Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách.
Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?
Gọi số cần tìm có dạng
Trường hợp 1: . Có 1 số thỏa mãn yêu cầu bài toán.
Trường hợp2:
a có 1 cách chọn.
c có 1 cách chọn.
b có 2 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Trường hợp 3:
a có 1 cách chọn.
c có 2 cách chọn.
b có 3 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Vậy có: (số).
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi xen kẽ nhau trong từng dãy?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Chọn 3 bạn nam, 3 bạn nữ để xếp vào dãy A có
Trong dãy đó xếp sao cho nam và nữ ngồi xen kẽ nhau có: cách.
Xếp 3 nam, 3 nữ còn lại vào dãy B sao cho nam và nữ ngồi xen kẽ nhau có cách.
Vậy số cách xếp là: cách.
Khai triển nhị thức Niu-tơn của
có bao nhiêu số hạng?
Ta có: Khai triển nhị thức Niu-tơn có
số hạng.
Vậy trong khai triển nhị thức Niu-tơn của có
số hạng.
Cho khai triển
trong đó
và các hệ số thỏa mãn hệ thức
. Hệ số lớn nhất là:
Xét khai triển .
Cho ta được
Khi đó .
Ta có hệ số
Hệ số lớn nhất nên
Vì nên nhận
Vậy hệ số lớn nhất .
Có 3 học sinh nam và 7 học sinh nữ. Hỏi có bao nhiêu cách chọn 3 bạn gồm cả nam và nữ đi trực nhật.
Trường hợp 1: 2 nam + 1 nữ
Có cách.
Trường hợp 2: 1 nam + 2 nữ
Có cách.
Vậy có cách.
Khối lớp 11 có 300 học sinh nam và 250 học sinh nữ. Nhà trường cần chọn hai học sinh làm đại diện cho khối 11 trong đó có 1 học sinh nam và 1 học sinh nữ. Số cách chọn là:
Áp dụng quy tắc nhân ta có số cách chọn 1 học sinh nam và 1 học sinh nữ là:
cách chọn.
Từ tập hợp các chữ số
có thể lập được bao nhiêu số lẻ có bốn chữ số khác nhau?
Gọi số tự nhiên có bốn chữ số cần tìm có dạng
Ta có: là số lẻ nên
là số lẻ. => Số cách chọn d có 3 cách.
Tiếp theo chọn a có 5 cách chọn
Sau đó chọn b có 4 cách chọn
Cuối cùng chọn c có 3 cách chọn
Vậy có thể lập được (số) thỏa mãn yêu cầu đề bài.
Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?
Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.
Tính giá trị biểu thức ![]()
Áp dụng công thức cho
ta có:
Biết rằng khai triển nhị thức Newton
có tất cả 6 số hạng. Hãy xác định
?
Vì trong khai triển nhị thức Newton đã cho có tất cả 6 số hạng nên
Vậy n = 5 là giá trị cần tìm.
Tổng hệ số của
và
trong khai triển
là:
Ta có: .
Tổng hệ số của và
bằng
.
Cho
chữ số
số các số tự nhiên chẵn có
chữ số lập thành từ
chữ số đó:
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.