Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:
Số tập con có 3 phần tử từ tập 5 phần tử là: .
Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:
Số tập con có 3 phần tử từ tập 5 phần tử là: .
Có bao nhiêu cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?
Đánh số thứ tự các vị trí theo hàng dọc từ đến
.
Trường hợp 1. Nam đứng trước, nữ đứng sau.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Trường hợp 2. Nữ đứng trước, nam đứng sau.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Theo quy tắc cộng ta có. cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.
Giả sử rằng:
![]()
![]()
![]()
Hãy tính
?
Ta có:
Hệ số
trong khai triển nhị thức
bằng:
Hệ số của trong khai triển
là:
.
Cho các chữ số 2, 3, 4, 5, 6, 7, 8, 9 số các số tự nhiên chẵn có 3 chữ số lập thành từ các chữ số đã cho là
Số tự nhiên có ba chữ số có dạng
Do số tự nhiên được tạo thành là số chẵn =>
=> c có 4 cách chọn
a có 8 cách chọn
b có 8 cách chọn
=> Số các số được tạo thành là 4.8.8 = 256 số
Từ một hộp chứa 5 viên bi xanh, 3 viên bi đỏ và 2 viên bi vành, chọn ngẫu nhiên 4 viên bi. Tính số cách chọn để 4 viên bi lấy ra có số bi đỏ bằng số bi vàng?
Th1: Chọn 1 bi đỏ, 1 bi vàng và 2 bi xanh có: cách
Th2: Chọn 2 bi đỏ và 2 bi vàng có: cách
Vậy số cách chọn 4 viên bi sao cho số bi đỏ bằng số bi vàng là 63 cách.
Tìm số hạng không chứa
trong khai triển nhị thức Newton của
. Cho biết
(
là số tổ hợp chập
của
phần tử).
Xét khai triển
Đạo hàm hai vế của ta được:
Trong công thức ta cho
ta được:
.
Khi đó, .
Do đó số hạng không chứa trong khai triển
nếu
hay
.
Suy ra số hạng cần tìm là .
Cho tập
. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.
Gọi là số cần lập,
có 1 cách chọn, cách chọn
Trường hợp này có 360 số
có một cách chọn, số cách chọn
Trường hợp này có 300 số.
Vậy có số thỏa yêu cầu bài toán.
Từ các chữ số
,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm
chữ số đôi một khác nhau?
Mỗi số tự nhiên gồm chữ số khác nhau được lập từ các số
,
,
,
,
là một hoán vị của
phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là
(số).
Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Giả sử số đó là
Trường hợp 1. xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2. . Với
chọn
có 6 cách nên có 6 số thỏa mãn. Với
chọn
có 5 cách chọn, và tất nhiên
nên có 5 số thỏa mãn. Do đó có
số thỏa mãn.
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi chính giữa là:
Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp
Từ các chữ số 1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau.
Gọi số cần lập có dạng .
A: có 5 cách chọn.
B: có 4 cách chọn.
C: có 3 cách chọn.
Vậy có 5.4.3 = 60 (số) có 3 chữ số đôi một khác nhau.
Số cách lấy một chiếc bút trong hộp gồm 4 chiếc bút bi và 6 chiếc bút máy bằng:
Áp dụng quy tắc cộng ta có số cách lấy một chiếc bút là:
cách.
Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.
Trường hợp 1: An và Bình không có mặt trong tổ công tác:
Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có cách.
Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:
Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có cách
Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có cách.
Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng
Như vậy có tất cả số cách là: cách
Trong khai triển nhị thức Newton
, hệ số của số hạng chứa
bằng:
Hệ số của số hạng chứa trong khai triển
là:
.
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.
Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn hai học sinh trong đó có một nam và một nữ đi dự trại hè của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?
Học sinh nam có 280 cách chọn
Học sinh nữ có 325 cách chọn
Chọn hai học sinh trong đó có một nam và một nữ đi dự trại hè là:
Từ các số
có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau?
Mỗi số tự nhiên có ba chữ số khác nhau được lập từ các số là một chỉnh hợp chập 3 của 6 phần tử.
Vậy từ các số có thể lập được:
số tự nhiên có ba chữ số khác nhau.
Tìm hệ số của số hạng chứa
trong khai triển
.
Ta có: .
Số hạng tổng quát của khai triển là: .
Số hạng chứa trong khai triển tương ứng với
.
Vậy hệ số cần tìm là: (theo tính chất của tổ hợp:
).
Tìm số hạng chứa
trong khai triển
biết
là số tự nhiên thỏa mãn
.
Điều kiện : .
Ta có
. Đối chiếu điều kiện ta được
.
Số hạng tổng quát của khai triển là :
Số hạng này chứa ứng với
.
Vậy hệ số của số hạng đó là .