Với số nguyên dương
, gọi
là hệ số của
trong khai triển thành đa thức của
. Tìm
để
.
Ta có:
Ta thấy không thoả mãn điều kiện bài toán.
Với ta có:
Do đó hệ số của trong khai triển thành đa thức của
.
.
Vậy là giá trị cần tìm.
Với số nguyên dương
, gọi
là hệ số của
trong khai triển thành đa thức của
. Tìm
để
.
Ta có:
Ta thấy không thoả mãn điều kiện bài toán.
Với ta có:
Do đó hệ số của trong khai triển thành đa thức của
.
.
Vậy là giá trị cần tìm.
Trong khai triển nhị thức
(n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng:
Khai triển bậc (n-5) có 6 số hạng. Suy ra (n-5) = 5. Vậy n = 10.
Cho biểu thức
, khi khai triển nhị thức đã cho ta được bao nhiêu số hạng?
Trong khai triển nhị thức Newton có
số hạng.
Biết
là số nguyên dương thỏa mãn
, số hạng chứa
trong khai triển
là:
Ta có:
(vì
là số nguyên dương).
Số hạng tổng quát trong khai triển là:
.
Cho .
Vậy số hạng chứa trong khai triển
là
.
Có bao nhiêu số tự nhiên gồm
chữ số lớn hơn
và đôi một khác nhau?
Gọi số tự nhiên cần tìm có dạng .
Khi đó: có 5 cách chọn,
có 4 cách chọn,
có 3 cách chọn,
có 2 cách chọn,
có 1 cách chọn.
Nên có tất cảsố.
Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:
Số tập con có 3 phần tử từ tập 5 phần tử là: .
Mỗi bảng số xe gắn máy ở thành phố X có cấu tạo như sau. Phần đầu gồm hai chữ cái trong bảng chữ cái, phần sau gồm 4 chữ số trong các chữ số:
. Ví dụ:
... Hỏi có bao nhiêu cách tạo bảng số xe theo cấu tạo trên? (Giả sử bảng chữ cái có tất cả 26 chữ cái)
Chọn hai chữ cái cho phần đầu có (mỗi chữ số có 26 cách chọn)
Còn 4 chữ số cho phần đuôi có (mỗi chữ số có 10 cách chọn)
Vậy có thể tạo được
Một đoàn tàu có bốn toa đỗ ở ga. Có bốn hành khách bước lên tàu. Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là:
Mỗi hành khách có 4 cách chọn toa.
⇒ Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là: 4.4.4.4 = 44 = 256.
Cho tập
. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Một người có 7 áo trong đó có 3 áo trắng và 5 cà vạt trong đó có 2 cà vạt vàng. Hỏi người đó có bao nhiêu cách chọn bộ áo và cà vạt nếu chọn áo nào cũng được và cà vạt nào cũng được?
Số cách chọn 1 một bộ áo và cà vạt là:
Cho tập
gồm
phần tử. Số tập con có
phần tử của tập A là:
Theo định nghĩa tổ hợp. “ Giả sử tập có
phần tử
. Mỗi tập con gồm
phần tử của
được gọi là một tổ hợp chập
của
phần tử đã cho”.
Do đó theo yêu cầu bài toán số tập con có phần tử của tập A là
.
Một học sinh có 12 quyển sách đôi một khác nhau, trong đó có 2 sách Toán, 4 sách Văn, 6 sách Anh Văn. Hỏi có bao nhiêu cách xếp tất cả các quyển sách lên một kệ sách dài nếu mọi quyển sách cùng môn được xếp kề nhau?
Có 3! = 6 cách xếp 3 loại sách.
Có 2! = 2 cách xếp 2 sách Toán.
Có 4! = 24 cách xếp 4 sách Văn.
Vậy theo qui tắc nhân có tất cả 6.2.24 = 720 cách xếp thoả mãn yêu cầu đề bài
Cho biết hệ số của
trong khai triển
bằng
. Tìm
.
Ta có .
Hệ số của bằng
.
Vậy .
Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có
sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở
vị trí khác nhau. Yêu cầu mỗi vị trí có đúng
sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho
người đó?
Mỗi cách xếp sinh viên vào
vị trí thỏa đề là một hoán vị của
phần tử.
Suy ra số cách xếp là cách.
Từ tập A = {1; 2; 3; 4; 5; 6} có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và số đó không lớn hơn 456?
Ta có: là số cần tìm.
Trường hợp 1:
Chọn a ∈ {1; 2; 3}: 3 cách.
Chọn : 5 cách.
Chọn : 4 cách.
⇒ Có số.
Trường hợp 2:
Chọn a = 4: 1 cách.
Chọn b ∈ {1; 2; 3}: 3 cách.
Chọn : 4 cách.
⇒ Có: 1.3.4 = 12 số.
Trường hợp 3:
Chọn a = 4: 1 cách.
Chọn b = 5: 1 cách.
Chọn : 4 cách.
⇒ Có: 1.1.4 = 4 số.
Từ (1); (2); (3) có số thoả yêu cầu bài toán.
Một dạ tiệc có 10 nam và 6 nữ giỏi khiêu vũ. Người ta chọn 3 nam và 3 nữ để ghép thành 3 cặp. Hỏi có bao nhêu cách chọn?
Chọn 3 nam trong 10 nam có cách.
Chọn 3 nữ trong 6 nữ có cách.
Ghép 3 nam và 3 nữ để thành 3 cặp có 3! cách.
Theo quy tắc nhân có: cách chọn.
Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Lý và 3 cuốn sách Hóa. Thầy muốn lấy ra 5 cuốn và tặng cho 5 học sinh A, B, C, D, E mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng nếu sau khi tặng xong, mỗi một trong ba loại sách trên đều còn lại ít nhất một cuốn.
Số cách lấy 5 cuốn sách trong 10 cuốn để tặng 5 học sinh là:
Giả sử sau khi lấy 5 cuốn sách tặng cho học sinh mà số sách còn lại không đủ ba môn.
Khi đó xét các trường hợp sau:
Trường hợp 1: 4 sách Toán và 1 sách Lý hoặc Hóa cách.
Trường hợp 2: 3 sách Lý và 2 sách Toán hoặc Hóa cách.
Trường hợp 3: 3 sách Hóa và 2 sách Toán hoặc Lý cách.
Theo quy tắc cộng ta có: cách.
Như vậy số cách thỏa yêu cầu bài toán là:
(cách).
Cho đa giác đều
nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong
của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong
đỉnh của đa giác. Tìm
.
Số tam giác có 3 đỉnh là 3 trong 2n điểm là
Ứng với 2 đường chéo đi qua tâm của đa giác đều cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm
Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.
Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là
Theo giả thiết ta có:
Vậy .
Có bao nhiêu số hạng trong khai triển nhị thức
?
Trong khai triển nhị thức thì số các số hạng là
nên trong khai triển
có
số hạng.
Trong một cuốc thi hùng biện, ban tổ chức đã công bố danh sách các chủ đề cho thí sinh gồm 8 chủ đề về lịch sử, 7 chủ đề môi trường, 10 chủ đề về con người và 6 chủ đề về văn hóa. Mỗi thí sinh tham gia thi chỉ được thi với 1 chủ đề. Hỏi mỗi thí sinh có bao nhiêu khả năng lựa chọn chủ đề?
Số cách chọn chủ đề thi của mỗi thí sinh là: 8 + 7 + 10 + 6 = 31.