Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Chọn đáp án đúng khi khai triển nhị thức (3x - 2y)^{4}?

    Ta có:

    (3x - 2y)^{4} = \sum_{k =
0}^{4}{C_{4}^{k}.(3x)^{4 - k}.( - 2y)^{k}}

    = 81x^{4} - 216x^{3}y + 216x^{2}y^{2} -
96xy^{3} + 16y^{4}

  • Câu 2: Thông hiểu

    Cho tập hợp các chữ số C = \left\{ 1,2,3,4,5 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau là:

    Mỗi số tự nhiên có 5 chữ số khác nhau được lập từ tập hợp C là một hoán vị của 5.

    Suy ra có thể lập được 5! = 120 số thỏa mãn yêu cầu đề bài.

  • Câu 3: Nhận biết

    Tính số cách sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.

    Sắp xếp 4 nữ sinh vào 4 ghế. 4! cách.

    Xem 4 nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với 6 nam sinh. có 7! cách

    vậy có 7! \times 4! cách sắp xếp.

  • Câu 4: Thông hiểu

    Cho hai đường thẳng song song d và d’. Trên đường thẳng d lấy 10 điểm phân biệt, trên đường thẳng d’ lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 điểm vừa nói trên.

    Trường hợp 1: Lấy 2 điểm trên d và 1 điểm trên d’

    Trường hợp 2: Lấy 1 điểm trên d và 2 điểm trên d’.

    Số tam giác thỏa bài toán là: C_{10}^{2}.C_{15}^{1} + C_{10}^{1}.C_{15}^{2} =
1725 tam giác.

  • Câu 5: Nhận biết

    Từ các chữ số 6; 7; 8; 9. có thể lập được bao nhiêu chữ số tự nhiên có 3 chữ số.

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 4 cách chọn.

    B: có 4 cách chọn.

    C: có 4 cách chọn.

    Vậy có 4.4.4 = 64 (số) tự nhiên có 3 chữ số.

  • Câu 6: Nhận biết

    Hệ số của x^{2} trong khai triển (x + 1)^{5} là:

     Ta có: {(x + 1)^5} ={x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 5x + 1.

    Hệ số của x^2 là 10.

  • Câu 7: Nhận biết

    Một hộp có 3 viên bi trắng, 2 viên bi đen và 2 viên bi vàng. Hỏi có bao nhiêu cách lấy ngẫu nhiên 2 viên bi từ hộp đó.

     Chọn 2 viên từ hộp 7 viên có: C_7^2 = 21 (cách).

  • Câu 8: Nhận biết

    Khối lớp 11 có 300 học sinh nam và 250 học sinh nữ. Nhà trường cần chọn hai học sinh làm đại diện cho khối 11 trong đó có 1 học sinh nam và 1 học sinh nữ. Số cách chọn là:

    Áp dụng quy tắc nhân ta có số cách chọn 1 học sinh nam và 1 học sinh nữ là:

    300.250 = 75000 cách chọn.

  • Câu 9: Vận dụng

    Cho khai triển (1 - 2x)^{n} = a_{0} + a_{1}x + a_{2}x^{2} + ... +
a_{n}x^{n}. Tìm hệ số a_{5} biết rằng a_{0} + a_{1} + a_{2} = 71.

    Ta có (1 - 2x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}( - 2x)^{k}}. Vậy a_{0} = 1; a_{1} = - 2C_{n}^{1}; a_{2} = 4C_{n}^{2}.

    Theo bài ra a_{0} + a_{1} + a_{2} =
71 nên ta có:

    1 - 2C_{n}^{1} + 4C_{n}^{2} = 71
\Leftrightarrow 1 - 2\frac{n!}{1!(n - 1)!} + 4\frac{n!}{2!(n - 2)!} = 71
\Leftrightarrow 1 - 2n + 2n(n - 1) = 71 \Leftrightarrow 2n^{2} - 4n - 70
= 0 \Leftrightarrow n^{2} - 2n - 35 = 0 \Leftrightarrow n = 7 (thỏa mãn) hoặc n = - 5 (loại).

    Từ đó ta có a_{5} = C_{7}^{5}( - 2)^{5} =
- 672.

  • Câu 10: Thông hiểu

    Có bao nhiêu số nguyên dương n gồm 3 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó chữ số hàng chục và chữ số hàng đơn vị của n giống hệt nhau và hai chữ số này khác chữ số hàng trăm của n?

    Chọn a_{1} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Chọn a_{2} \in X\backslash\left\{ a_{1}
ight\} có: 9 cách.

    Chọn a_{3} = a_{2} có: 1 cách.

    Theo quy tắc nhân có: 9.9 =
81 số.

  • Câu 11: Vận dụng

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 12: Nhận biết

    Từ các số 1, 2, 3, 4, 5. Hỏi có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau đôi một?

    Mỗi cách lập số tự nhiên có 5 chữ số khác nhau đôi một hoán vị của 5 phần tử.

    Vậy có 5! = 120số cần tìm.

  • Câu 13: Vận dụng

    Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).

    Thứ 2: có 12 cách chọn bạn đi thăm

    Thứ 3: có 12 cách chọn bạn đi thăm

    Thứ 4: có 12 cách chọn bạn đi thăm

    Thứ 5: có 12 cách chọn bạn đi thăm

    Thứ 6: có 12 cách chọn bạn đi thăm

    Thứ 7: có 12 cách chọn bạn đi thăm

    Chủ nhật: có 12 cách chọn bạn đi thăm

    Vậy theo quy tắc nhân, có 12^{7} =
35831808 (kế hoạch).

  • Câu 14: Nhận biết

    Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:

    Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.

  • Câu 15: Thông hiểu

    Biết n là số nguyên dương thỏa mãn C_{n}^{n - 1} +
C_{n}^{n - 2} = 78, số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n} là:

    Ta có: C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow \frac{n!}{(n - 1)!.1!} + \frac{n!}{(n - 2)!.2!} = 78
\Leftrightarrow n + \frac{(n - 1)n}{2} = 78

    \Leftrightarrow n^{2} + n - 156 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 12 \\
n = - 13 \\
\end{matrix} ight.\  \Leftrightarrow n = 12 (vì n là số nguyên dương).

    Số hạng tổng quát trong khai triển \left(
x^{3} - \frac{2}{x} ight)^{12}là: ( - 1)^{k}C_{12}^{k}\left( x^{3} ight)^{12 -
k}\left( \frac{2}{x} ight)^{k} = ( - 1)^{k}C_{12}^{k}.2^{k}.x^{36 -
4k}.

    Cho 36 - 4k = 8 \Leftrightarrow k =
7.

    Vậy số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x}
ight)^{12}-
C_{12}^{7}.2^{7}.x^{8} = - 101376x^{8}.

  • Câu 16: Thông hiểu

    Biểu thức Q =
x^{5} - 5x^{4}y + 10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5} là khai triển của nhị thức nào dưới đây?

    Ta có:

    Q = x^{5} - 5x^{4}y + 10x^{3}y^{2} -
10x^{2}y^{3} + 5xy^{4} - y^{5}

    Q = C_{5}^{0}x^{5} + C_{5}^{1}x^{4}( -
y)^{1} + C_{5}^{2}.x^{3}( - y)^{2}

    + C_{5}^{3}x^{2}( - y)^{3} +
C_{5}^{4}.x.( - y)^{4} + C_{5}^{5}( - y)^{5}

    Q = (x - y)^{5}

  • Câu 17: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

  • Câu 18: Thông hiểu

    Cho đa giác đều có tất cả 12 cạnh. Hỏi đa giác có bao nhiêu đường chéo?

    Từ 12 đỉnh của đa giác đều, ta xác định được C_{12}^{2} = 66 đoạn thẳng.

    Vậy đa giác đều có tất cả 66 - 12 =
54 đường chéo.

  • Câu 19: Nhận biết

    Có bao nhiêu số hạng trong khai triển nhị thức (2x - 3)^{2018}?

    Trong khai triển nhị thức (a +
b)^{n} thì số các số hạng là n +
1 nên trong khai triển (2x -
3)^{2018}2019 số hạng.

  • Câu 20: Nhận biết

    Cho tập A gồm 12 phần tử. Số tập con có 4 phần tử của tập A là:

    Theo định nghĩa tổ hợp. “ Giả sử tập An phần tử (n
\geq 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho”.

    Do đó theo yêu cầu bài toán số tập con có 4 phần tử của tập A là C_{12}^{4}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo