Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?
Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.
Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?
Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.
Dãy
trong đó mỗi kí tự
chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.
Đáp án: 1024
Dãy trong đó mỗi kí tự
chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.
Đáp án: 1024
Có dãy nhị phân 10 bit.
Thực hiện khai triển nhị thức Newton
ta được kết quả là:
Ta có:
Từ các chữ số
,
,
,
,
,
có thể lập được bao nhiêu số tự nhiên lẻ có
chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?
Gọi là số cần tìm
Ta có và
Với thì
hoặc
Với thì
hoặc
Với thì
hoặc
Mỗi trường hợp có số thỏa mãn yêu cầu
Vậy có tất cả số cần tìm.
Một người có 5 chiếc áo trong đó có
chiếc áo trắng. Người đó cũng có 3 chiếc cà vạt trong đó có 2 chiếc cà vạt màu vàng. Tìm số cách chọn một chiếc áo và một chiếc cà vạt sao cho đã chọn áo trắng thì không chọn cà vạt màu vàng.
5 chiếc áo gồm: 3 trắng và 2 màu khác.
3 chiếc cà vạt gồm: 2 vàng và 1 màu khác.
Trường hợp 1: Áo trắng, cà vạt màu khác vàng.
Áo trắng: có 3 cách chọn.
Cà vạt màu khác vàng: 1 cách chọn.
Suy ra có: 3.1 = 3 (cách).
Trường hợp 2: Áo màu khác trắng, cà vạt màu bất kì.
Áo màu khác trắng: 2 cách chọn.
Cà vạt màu bất kì: 3 cách chọn.
Suy ra có: 2.3 = 6 (cách).
Vậy có: 3+6 = 9 (cách) chọn thỏa mãn yêu cầu đề bài.
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.
Cho tập
. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?
Gọi số cần tìm là số dạng . Vì
chia hết cho 3 suy ra
.
Khi đó bộ .
Với bộ suy ra có
số cần tìm.
Tương tự với các bộ số còn lại.
Từ các chữ số
, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 4 chữ số đôi một khác nhau và bắt đầu bằng 56 hoặc 65.
Gọi là số thỏa yêu cầu bài toán.
Chọn có: 2 cách.
Chọn có: 7 cách.
Chọn có: 6 cách.
Theo quy tắc nhân có: số.
Có bao nhiêu cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?
Đánh số thứ tự các vị trí theo hàng dọc từ đến
.
Trường hợp 1. Nam đứng trước, nữ đứng sau.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Trường hợp 2. Nữ đứng trước, nam đứng sau.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Theo quy tắc cộng ta có. cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.
Số cách chọn một học sinh trong nhóm gồm 5 nữ và 4 nam là:
Áp dụng quy tắc cộng ta có số cách chọn một học sinh là: 5 + 4 = 9 cách.
Số hạng chứa
trong khai triển
là:
Công thức số hạng tổng quát: ta được số hạng chứa
là:
Tìm số hạng chứa
trong khai triển
biết
.
Ta có:
Khai triển biểu thức như sau:
Số hạng chứa nghĩa là:
=> Số hạng cần tìm là
Có thể lập được bao nhiêu số tự nhiên có 4 chữ số từ tập hợp các chữ số
?
Gọi số tự nhiên có 4 chữ số là: .
Mỗi chữ số có 6 cách chọn.
Mà số cần lập gồm 4 chữ số nên theo quy tắc nhân có thể lập được số.
Cho khai triển
trong đó
và các hệ số thỏa mãn hệ thức
. Hệ số lớn nhất là:
Xét khai triển .
Cho ta được
Khi đó .
Ta có hệ số
Hệ số lớn nhất nên
Vì nên nhận
Vậy hệ số lớn nhất .
Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau mỗi hàng ngang và tất cả các học sinh trong mỗi hàng đều cùng trường?
Giả sử 4 hàng dọc được kí hiệu là
Theo yêu cầu thì:
Các bạn trường A được xếp ở
Các bạn trường B được xếp ở hoặc ngược lại.
Nên số cách xếp là cách.
Một học sinh có 12 quyển sách đôi một khác nhau, trong đó có 2 sách Toán, 4 sách Văn, 6 sách Anh Văn. Hỏi có bao nhiêu cách xếp tất cả các quyển sách lên một kệ sách dài nếu mọi quyển sách cùng môn được xếp kề nhau?
Có 3! = 6 cách xếp 3 loại sách.
Có 2! = 2 cách xếp 2 sách Toán.
Có 4! = 24 cách xếp 4 sách Văn.
Vậy theo qui tắc nhân có tất cả 6.2.24 = 720 cách xếp thoả mãn yêu cầu đề bài
Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là
Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: cách.
Số hạng thứ
trong khai triển
bằng?
Ta có
Số hạng thứ trong khai triển tương ứng với
.
.
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Nếu chữ số hàng chục là thì số có chữ số hàng đơn vị là
thì số các chữ số nhỏ hơn
năm ở hàng đơn vị cũng bằng
. Do chữ số hang chục lớn hơn bằng
còn chữ số hang đơn vị thi
.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:
.
Tìm hệ số của
trong khai triển
với
biết
là số nguyên dương thỏa mãn ![]()
Đk:
Với , nhị thức trở thành
Số hạng tổng quát là
Từ yêu cầu bài toán ta cần có:
Vậy hệ số của số hạng chứa là
.