Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n là bội số của 5?

    Gọi tập X = \left\{ 0;1;2;3;4;5;6;7;8;9
ight\}n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa mãn yêu cầu:

    Chọn a_{1} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Chọn a_{2} \in X có: 10 cách.

    Chọn a_{3} \in X có: 10 cách.

    Chọn a_{4} \in X có: 10 cách.

    Chọn a_{5} \in \left\{ 0;5
ight\} có: 2 cách.

    Theo quy tắc nhân có: 9.10.10.10.2 =
18000 số.

  • Câu 2: Thông hiểu

    Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n là một số lẻ?

    Gọi tập X = \left\{ 0;1;2;3;4;5;6;7;8;9
ight\}n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa mãn yêu cầu:

    Chọn a_{1} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Chọn a_{2} \in X có: 10 cách.

    Chọn a_{3} \in X có: 10 cách.

    Chọn a_{4} \in X có: 10 cách.

    Chọn a_{5} \in \left\{ 1;3;5;7;9
ight\} có: 5 cách.

    Theo quy tắc nhân có: 9.10.10.10.5 =
45000 số.

  • Câu 3: Nhận biết

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?

    Số cách lấy 5 con trong đó có 1 con át và 1 con vua là C_{4}^{1}C_{4}^{1}.C_{44}^{3} =
211904.

  • Câu 4: Thông hiểu

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng:

    Điều kiện n \geq 2,n\mathbb{\in
N}

    Ta có:

    A_{n}^{2} - 3C_{n}^{2} = 15 -
5n

    \Leftrightarrow \frac{n!}{(n - 2)!} -
3.\frac{n!}{2!(n - 2)!} = 15 - 5n

    \Leftrightarrow n(n - 1) - \frac{3n(n -
1)}{2} = 15 - 5n

    \Leftrightarrow - n^{2} + 11n - 30 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 5 \\
n = 6 \\
\end{matrix} ight.\ (tm)

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng 11.

  • Câu 5: Vận dụng

    Cho n là số tự nhiên thỏa mãn C_{n}^{0} + 2.C_{n}^{1}
+ 2^{2}.C_{n}^{2} + ... + 2^{n}.C_{n}^{n} = 59049. Biết số hạng thứ 3 trong khai triển Newton của \left( x^{2} - \frac{3}{x}
ight)^{n} có giá trị bằng \frac{81}{2}n. Tìm giá trị của x.

    Ta có: C_{n}^{0} + 2.C_{n}^{1} +2^{2}.C_{n}^{2} + ... + 2^{n}.C_{n}^{n} = 59049

    \Rightarrow (2 + 1)^{n}= 59049 \Leftrightarrow 3^{n} = 3^{10} \Leftrightarrow n =10.

    Ta được nhị thức \left( x^{2} -
\frac{3}{x} ight)^{10}.

    Số hạng thứ ba của khai triển là T_{3} =
C_{10}^{2}.\left( x^{2} ight)^{8}.\left( - \frac{3}{x} ight)^{2} =
405x^{14}.

    Theo giả thiết ta có: 405x^{14} =
\frac{81}{2}n \Leftrightarrow 405x^{14} = 405 \Leftrightarrow x^{14} = 1 \Leftrightarrow x = \pm 1.

  • Câu 6: Nhận biết

    Trong khai triển (x + 2y)^{5} số hạng chứa x^{2}y^{3} là:

     Ta có: (x+2y)^5={x^5} + 10{x^4}y + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}.

    Vậy số hạng cần tìm là: 80x^{2}y^{3}.

  • Câu 7: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 8: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 9: Nhận biết

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:

    Số tập hợp con cần tìm là số tổ hợp chập 3 của 7 phần tử.

    Vậy có C_{7}^{3} tập con cần tìm.

  • Câu 10: Thông hiểu

    Tìm hệ số của x^{6} trong khai triển \left( \frac{1}{x} + x^{3} ight)^{3n +
1}với x eq 0, biết n là số nguyên dương thỏa mãn 3C_{n + 1}^{2} + nP_{2} = 4A_{n}^{2}.

    Đk:n \geq 2,\ \ n \in
\mathbb{N.}

    \ \ \ \ \ \ \ 3C_{n + 1}^{2} + nP_{2} =
4A_{n}^{2}

    \Leftrightarrow 3\frac{(n + 1)!}{(n -
1)!2!} + 2!n = 4\frac{n!}{(n - 2)!}

    \Leftrightarrow \frac{3}{2}n(n + 1) + 2n
= 4n(n - 1)

    \Leftrightarrow \frac{5}{2}n^{2} -
\frac{15}{2}n = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0\ \ \ \ (L) \\
n = 3 \\
\end{matrix} ight.

    Với n = 3, nhị thức trở thành \left( \frac{1}{x} + x^{3}
ight)^{10}.

    Số hạng tổng quát là C_{10}^{k}.\left(
\frac{1}{x} ight)^{10 - k}.\left( x^{3} ight)^{k} = C_{10}^{k}.x^{4k
- 10}

    Từ yêu cầu bài toán ta cần có: 4k - 10 =
6 \Leftrightarrow k = 4.

    Vậy hệ số của số hạng chứa x^{6}C_{10}^{4} = 210..

  • Câu 11: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 12: Thông hiểu

    Nghiệm của phương trình C_{x}^{1} + C_{x}^{2} + C_{x}^{3} =
\frac{7}{2}x thuộc khoảng nào?

    Điều kiện xác định x\mathbb{\in N};x \geq
3

    Ta có:

    C_{x}^{1} + C_{x}^{2} + C_{x}^{3} =
\frac{7}{2}x

    \Leftrightarrow \frac{x!}{(x - 1)!} +
\frac{x!}{2!(x - 2)!} + \frac{x!}{3!(x - 3)!} =
\frac{7}{2}x

    \Leftrightarrow x + \frac{x(x - 1)}{2} +
\frac{x(x - 1)(x - 2)}{6} = \frac{7}{2}x

    \Leftrightarrow 1 + \frac{x - 1}{2} +
\frac{(x - 1)(x - 2)}{6} = \frac{7}{2}

    \Leftrightarrow 6 + 3x - 3 + x^{2} - 3x
+ 2 - 21 = 0

    \Leftrightarrow x^{2} = 16
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 4(ktm) \\
\end{matrix} ight.

    Vậy nghiệm phương trình thuộc khoảng (3;5).

  • Câu 13: Vận dụng

    Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    +TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} +
C_{5}^{3}. Vậy số cách lập nhóm trong trường hợp này là. 2.\left( C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1}
+ C_{5}^{3} ight)

    +TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là C_{5}^{1}C_{6}^{1}
+ C_{5}^{2}. Vậy số cách lập nhóm trong trường hợp này là. C_{5}^{1}.C_{6}^{1} +
C_{5}^{2}.

    Vậy số cách lập cần tìm là. 2.\left(
C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} + C_{5}^{3} ight) +
C_{5}^{1}.C_{6}^{1} + C_{5}^{2} = 375.

  • Câu 14: Nhận biết

    Bạn Anh muốn qua nhà bạn Bình để rủ Bình đến nhà bạn Châu chơi. Từ nhà Anh đến nhà Bình có 3con đường. Từ nhà Bình đến nhà Châu có 5con đường. Hỏi bạn Anh có bao nhiêu cách chọn đường đi từ nhà mình đến nhà bạn Châu.

    Từ nhà Anh đến nhà Bình có 3 cách chọn 1 con đường.

    Từ nhà bạn Bình đến nhà Châu có 5 cách chọn 1 con đường.

    Theo quy tắc nhân, số cách chọn đường đi từ nhà Anh đến nhà Châu là 5.3 = 15.

  • Câu 15: Thông hiểu

    Biết rằng (7 -
8x)^{5} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + a_{4}x^{4} +
a_{5}x^{5}. Chọn kết luận đúng?

    Thay x = 1 vào (7 - 8x)^{5} ta được:

    (7 - 8.1)^{5}

    = a_{0} + a_{1}.1 + a_{2}.1^{2} +
a_{3}.1^{3} + a_{4}.1^{4} + a_{5}.1^{5}

    = a_{0} + a_{1} + a_{2} + a_{3} + a_{4}
+ a_{5}

    = \sum_{i = 0}^{5}a_{i} = -
1

  • Câu 16: Nhận biết

    Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là

    Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: A_{12}^{3} = 1320 cách.

  • Câu 17: Nhận biết

    Biểu thức A =
32x^{5} - 80x^{4} + 80x^{3} - 40x^{2} + 10x - 1 là khai triển của nhị thức nào dưới đây?

    Ta có:

    A = (2x + 1)^{5} = 32x^{5} - 80x^{4} +
80x^{3} - 40x^{2} + 10x - 1

  • Câu 18: Nhận biết

    Khai triển biểu thức \left( x^{2} - 5y ight)^{5} ta được:

    Ta có:

    \left( x^{2} - 5y
ight)^{5}

    = C_{5}^{0}.\left( x^{2} ight)^{5} +
C_{5}^{1}\left( x^{2} ight)^{4}.( - 5y) + C_{5}^{2}.\left( x^{2}
ight)^{3}.( - 5y)^{2}

    + C_{5}^{3}.\left( x^{2} ight)^{2}.( -
5y)^{3} + C_{5}^{4}.\left( x^{2} ight)^{1}.( - 5y)^{4} +
C_{5}^{5}.\left( x^{2} ight)^{0}.( - 5y)^{5}

    =x^{10} - 25x^{8}y + 250x^{6}y^{2} -1250x^{4}y^{3} + 3125x^{2}y^{4} - 3125y^{5}

  • Câu 19: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6 ight\}. Hỏi lập được bao nhiêu số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    Gọi \overline{abcde} là số số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

    + TH1. e = 0. Chọn a,b,c,d \in A\backslash\left\{ 0
ight\}: A_{6}^{4} = 360
\Rightarrowcó 360 số.

    + TH2. e eq 0:Chọn e \in \left\{ 2;4;6 ight\}:3 (cách).

    Chọn a \in A\backslash\left\{ 0;e
ight\}:5 (cách).

    Chọn b,c,d \in A\backslash\left\{ a;e
ight\}: A_{5}^{3} = 60 (cách).

    \Rightarrow3.5.60 = 900 số.

    Vậy có. 900 + 360 = 1260số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.

  • Câu 20: Nhận biết

    Bạn Công muốn mua một chiếc áo mới và một chiếc quần mới để đi dự sinh nhật bạn mình. Ở cửa hàng có 12 chiếc áo khác nhau, quần có 15 chiếc khác nhau. Hỏi có bao nhiêu cách chọn một bộ quần và áo?

    Số cách bạn Công chọn một chiếc áo mới là: 12 cách.

    Số cách bạn Công chọn một chiếc quần mới là: 15 cách.

    Theo quy tắc nhân, bạn Công có 12.15 = 180 cách để chọn một bộ quần và áo.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 60 lượt xem
Sắp xếp theo