Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    : Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn?

    Có 4 bộ sách được sắp 4 vị trí có 4! cách

    Sắp xếp 3 quyển sách Toán có 3! cách

    Sắp xếp 2 sách Hóa có 2! cách

    Sắp xếp 4 quyển sách Lý có 4! cách

    Sắp xếp 5 quyển sách Sinh có 5! cách

    Vậy số cách sắp xếp số sách trên kệ theo từng môn là: 4!.2!.3!.4!.5! = 829440 cách.

  • Câu 2: Thông hiểu

    Có nhiều nhất bao nhiêu biển đăng ký xe máy nếu mỗi biển chứa một dãy gồm một chữ cái, tiếp đến một chữ số khác 0 và cuối cùng là 5 chữ số.

    Đáp án: 23400000

    Đáp án là:

    Có nhiều nhất bao nhiêu biển đăng ký xe máy nếu mỗi biển chứa một dãy gồm một chữ cái, tiếp đến một chữ số khác 0 và cuối cùng là 5 chữ số.

    Đáp án: 23400000

    Bước 1: Chọn 1 chữ cái trong 26 chữ cái có 26 cách.

    Bước 2 chọn 1 chữ số khác 0 từ 9 chữ số.

    ⇒ Cuối cùng 5 chữ số còn lại mỗi số có 10 cách chọn.

    ⇒ Số các biển số xe thỏa mãn là: 26.9.10.10.10.10.10 = 23400000 biển.

  • Câu 3: Nhận biết

    Cho tập hợp M10 phần tử. Số tập con gồm hai phần từ của M là:

    Mỗi cách lấy ra 2 phần tử trong 10 phần tử của M để tạo thành tập con gồm 2 phần tử là một tổ hợp chập 2 của 10phần tử \Rightarrow Số tập con của M gồm 2 phần tử là C_{10}^{2}.

  • Câu 4: Nhận biết

    Có bao nhiêu số hạng trong khai triển (6x + 4)^{4}?

    Trong khai triển nhị thức (6x +
4)^{4}n = 4 nên có 5 số hạng.

  • Câu 5: Nhận biết

    Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?

    Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là C_{8}^{3}

    Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!

    Vậy số cách trao các huy chương này là C_{8}^{3}.3! = 336

  • Câu 6: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 7: Thông hiểu

    Có 3 học sinh nam và 7 học sinh nữ. Hỏi có bao nhiêu cách chọn 3 bạn gồm cả nam và nữ đi trực nhật.

     Trường hợp 1: 2 nam + 1 nữ

    C_3^2.C_7^1 = 21 cách.

    Trường hợp 2: 1 nam + 2 nữ

    C_3^1.C_7^2 = 63 cách.

    Vậy có 21+63=84 cách.

  • Câu 8: Vận dụng

    Cho tập A =
\left\{ 1;2;3;4;5;6;7;8;9 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?

    Gọi \overline{125ab} là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.

    Suy ra b có 3 cách chọn, a có 5 cách chọn \Rightarrow3 \times 5 = 15 số.

    Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A4 \times 8 \times 7 \times 6
\times 5 = 6720 số.

    Suy ra có tất cả 6720 - 15 =
6705 số cần tìm.

  • Câu 9: Nhận biết

    6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Đếm số cách xếp sao cho hai thầy giáo không đứng cạnh nhau?

    Xếp 8 người thành hàng ngang có P_{8} cách.

    Xếp 8 người thành hàng ngang sao cho 2 thầy giáo đứng cạnh nhau có 7.2!.6! cách.

    Vậy số cách xếp cần tìm là. P_{8} -
7.2!.6! = 30240 cách.

  • Câu 10: Nhận biết

    Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn hai học sinh trong đó có một nam và một nữ đi dự trại hè của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?

    Học sinh nam có 280 cách chọn

    Học sinh nữ có 325 cách chọn

    Chọn hai học sinh trong đó có một nam và một nữ đi dự trại hè là: 280.325 = 91000

  • Câu 11: Nhận biết

    Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?

     Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).

  • Câu 12: Thông hiểu

    Tìm hệ số của x^{5} trong khai triển (1 + 3x)^{2n} biết A_{n}^{3} + 2A_{n}^{2} = 100.

    Ta có: A_{n}^{3} + 2A_{n}^{2} = 100
\Leftrightarrow \frac{n!}{(n - 3)!} + 2\frac{n!}{(n - 2)!} = 100
\Leftrightarrow n(n - 1)(n - 2) + 2n(n - 1) = 100

    \Leftrightarrow n^{3} - n^{2} - 100 = 0
\Leftrightarrow n = 5.

    Ta có: (1 + 3x)^{2n} = (1 + 3x)^{10} =
\sum_{k = 0}^{10}{C_{10}^{k}(3x)^{k}}.

    Hệ số x^{5} sẽ là C_{10}^{5}3^{5} = 61236.

  • Câu 13: Vận dụng

    Tìm hệ số của x^{4} trong khai triển nhị thức Newton \left( 2x + \frac{1}{\sqrt[5]{x}}
ight)^{n} với x > 0, biết n là số tự nhiên lớn nhất thỏa mãn A_{n}^{5} \leq 18A_{n -
2}^{4}.

    Điều kiện: \left\{ \begin{matrix}
n \geq 6 \\
n\mathbb{\in Z} \\
\end{matrix} ight.

    Khi đó A_{n}^{5} \leq 18A_{n - 2}^{4}
\Leftrightarrow \frac{n!}{(n - 5)!} \leq 18.\frac{(n - 2)!}{(n -
6)!}

    \Leftrightarrow n(n - 1)(n - 2)(n - 3)(n
- 4) \leq 18(n - 2)(n - 3)(n - 4)(n - 5)

    \Leftrightarrow n(n - 1) \leq 18(n -
5) \Leftrightarrow n^{2} - 19n + 90
\leq 0 \Leftrightarrow 9 \leq n
\leq 10\overset{n ightarrow \max}{ightarrow}n = 10.

    Số hạng tổng quát trong khai triển \left(
2x + \frac{1}{\sqrt[5]{x}} ight)^{10}T_{k + 1} = C_{10}^{k}.(2x)^{10 - k}.\left(
\frac{1}{\sqrt[5]{x}} ight)^{k}

    = C_{10}^{k}.2^{10 - k}.x^{10 - k}.x^{-
\frac{k}{5}} = C_{10}^{k}.2^{10 -
k}.x^{\frac{50 - 6k}{5}}.

    Tìm k sao cho \frac{50 - 6k}{5} = 4 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{4}C_{10}^{5}.2^{10 - 5} =
8064..

  • Câu 14: Vận dụng

    Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?

    Chọn 4 Toán, 2 Văn, 2 Lí có C_{10}^{4}C_{5}^{2}C_{8}^{2} cách.

    Chọn 4 Toán, 1 Văn, 3 Lí có C_{10}^{4}C_{5}^{1}C_{8}^{3} cách.

    Chọn 5 Toán, 2 Văn, 1 Lí có C_{10}^{5}C_{5}^{2}C_{8}^{1} cách.

    Chọn 5 Toán, 1 Văn, 2 Lí có C_{10}^{5}C_{5}^{1}C_{8}^{2} cách.

    Chọn 6 Toán, 1 Văn, 1 Lí có C_{10}^{6}C_{5}^{1}C_{8}^{1} cách.

    Tổng lại ta được 181440 cách thỏa mãn.

  • Câu 15: Nhận biết

    Cho khai triển \left( x + \frac{2}{\sqrt{x}}
ight)^{6}với x > 0. Tìm hệ số của số hạng chứa x^{3} trong khai triển trên.

    Ta có: \left( x + \frac{2}{\sqrt{x}}
ight)^{6} = \sum_{k = 0}^{6}{C_{6}^{k}x^{6 - k}\left(
\frac{2}{\sqrt{x}} ight)^{k} = \sum_{k = 0}^{6}{2^{k}C_{6}^{k}x^{6 -
\frac{3k}{2}}}}.

    Số hạng chứa x^{3} ứng với \mathbf{6}\mathbf{-}\frac{\mathbf{3}\mathbf{k}}{\mathbf{2}}\mathbf{=}\mathbf{3}\mathbf{\Rightarrow
k =}\mathbf{2}. Vậy hệ số của số hạng chứa x^{3} bằng 2^{2}.C_{6}^{2} = 60.

  • Câu 16: Nhận biết

    Cho tập hợp D gồm x phần tử. Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là:

    Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 17: Thông hiểu

    Cho biết hệ số của x^{2} trong khai triển (1 + 2x)^{n} bằng 180.Tìm n.

    Ta có: T_{k + 1} =
C_{n}^{k}.2^{k}x^{k}..

    Hệ số của x^{2} trong khai triển bằng 180

    C_{n}^{2}.2^{2} = 180 \Leftrightarrow\frac{n!}{(n - 2).2}.2^{2} = 180 \Leftrightarrow n(n - 1) = 90

    \Leftrightarrow n^{2} - n - 90 = 0 \Leftrightarrow \left\lbrack\begin{matrix}n = 10 \ = - 9(l) \\\end{matrix} ight.

  • Câu 18: Nhận biết

    Cho tập hợp S =
\left\{ 1,2,3,4,7,8 ight\}, lấy ngẫu nhiên 1 chữ số. Các kết quả thuận lợi cho C “biến cố lấy được chữ số lẻ” là:

    Các kết quả thuận lợi cho biến cố lấy được chữ số lẻ là: C = \left\{ 1;3;7 ight\}

  • Câu 19: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 3 chữ số?

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Vị trí A: có 9 cách chọn từ 1 đến 9 (bỏ số 0).

    Vị trí B: có 10 cách chọn từ 0 đến 9.

    Vị trí C: có 10 cách chọn từ 0 đến 9.

    Áp dụng quy tắc nhân, có 9.10.10 = 900 (số).

  • Câu 20: Vận dụng

    Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?

    Gọi số in trên vé có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}}

    Số cách chọn a_{1} là 10 (a_{1} có thể là 0).

    Số cách chọn a_{2} là 9.

    Số cách chọn a_{3} là 8.

    Số cách chọn a_{4} là 7.

    Số cách chọn a_{5} là 6.

    Do đó có 10.9.8.7.6 = 23460 (số).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 47 lượt xem
Sắp xếp theo