Chọn đáp án đúng khi khai triển nhị thức
?
Ta có:
Chọn đáp án đúng khi khai triển nhị thức
?
Ta có:
Từ
người cần chọn ra một đoàn đại biểu gồm
trưởng đoàn,
phó đoàn,
thư kí và
ủy viên. Số cách chọn thỏa mãn là:
Số cách chọn người trong
người làm trưởng đoàn là.
cách.
Số cách chọn người trong
người còn lại làm phó đoàn là.
cách.
Số cách chọn người trong
người còn lại làm thư kí là.
cách.
Số cách chọn người trong
người còn lại làm ủy viên là.
cách.
Vậy số cách chọn đoàn đại biểu là .
Từ 9 chữ số
có thể lập được bao nhiêu số gồm 9 chữ số nếu như không có chữ số nào được lặp lại? Trong các số đó có bao nhiêu số mà các chữ số 1 và 7 không đứng cạnh nhau.
Từ 9 chữ số có thể lập được các số nếu như không có chữ số nào được lặp lại ta hiểu đó là số có 9 chữ số khác nhau.
Do đó sẽ có 9! số thỏa mãn.
Để tìm số mà các chữ số 1 và 7 không đứng cạnh nhau ta đi tìm các số mà 1 và 7 đứng cạnh nhau.
Coi 1 và 7 là 1 số thì ta sẽ có và
.
Đưa được về bài toán tìm số có 8 chữ số khác nhau.
Do đó số các số tìm được là 8! số.
Do 1 và 7 có 2 vị trí nên ta có 2.8! số.
Vậy số có 9 chữ số khác nhau không có 1 và 7 đứng cạnh là: số.
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là tổ hợp chập 3 của 7 phần từ.
=> Số tập hợp con là: tập hợp
Có bao nhiêu số tự nhiên gồm
chữ số lớn hơn
và đôi một khác nhau?
Gọi số tự nhiên cần tìm có dạng .
Khi đó: có 5 cách chọn,
có 4 cách chọn,
có 3 cách chọn,
có 2 cách chọn,
có 1 cách chọn.
Nên có tất cảsố.
Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa và 3 chuyến máy bay. Hỏi một ngày có bao nhiêu cách lựa chọn đi từ tỉnh A đến tỉnh B?
Trường hợp 1: Số cách chọn đi từ tỉnh A đến tỉnh B bằng ô tô: có 10 cách.
Trường hợp 2: Số cách chọn đi từ tỉnh A đến tỉnh B bằng tàu hỏa: có 5 cách.
Trường hợp 3: Số cách chọn đi từ tỉnh A đến tỉnh B bằng máy bay: có 3 cách.
Vậy số cách lựa chọn đi từ tỉnh A đến tỉnh B là: cách
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
Gọi số cần tìm có dạng . Vì
chia hết cho 5 suy ra
.
TH1. Với suy ra có
số cần tìm.
TH2. Với , suy ra có
số cần tìm.
Vậy có tất cả 444 số cần tìm.
Từ khai triển biểu thức
thành đa thức. Tổng các hệ số của đa thức là:
Xét khai triển .
Gọi là tổng các hệ số trong khai triển thì ta có
.
Cho hai đường thẳng
gồm
điểm phân biệt và
gồm
điểm phân biệt. Biết rằng
. Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?
Một tam giác được hình thành bởi ba điểm không thẳng hàng.
TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
Vậy số tam giác được tạo thành là .
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Tìm
thuộc tập hợp số tự nhiên, biết rằng
(
là số tổ hợp chập k của n phần tử).
Trước hết ta chứng minh công thức với
và
Thật vậy, (đpcm)
Áp dụng công thức trên ta có
Theo đề .
Từ 6 chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và chia hết cho 6?
Gọi số tự nhiên có 4 chữ số là
Số chia hết cho 6 là số chẵn và chia hết cho 3. Khi đó, xét bộ bốn chữ số có tổng chia hết cho 3 là:
Trường hợp 1:
Chọn a, b, c: cách chọn.
Trường hợp 2:
Chọn d có 2 cách chọn (vì
Chọn a, b, c: cách chọn
Khi đó có 6.2 = 12 số
Vậy 6 + 12 = 18 (số)
Tìm hệ số của số hạng chứa
trong khai triển của biểu thức
.
Ta có .
Số hạng chứa ứng với
.
Hệ số của số hạng chứa là
.
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế sao mỗi ghế có đúng một học sinh ngồi là
Số cách xếp 5 học sinh ngồi vào một dãy gồm 5 chiếc ghế là: 5! =120 (cách).
Trong khai triển nhị thức
(
). Có tất cả 6 số hạng. Vậy n bằng:
Khai triển có 6 hạng tử
=>
Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:
Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.
Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.
Vì vậy số hoán vị 6 đối tượng là 6!.
Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.
Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!
Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có ít nhất 1 nam?
Chọn ban điều hành gồm 3 học sinh không có học sinh nam nào có cách
Số cách chọn ban điều hành gồm 3 học sinh có ít nhất 1 nam có: cách.
Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của
?
Khi viết nhị thức dưới dạng khai triển
số hạng.
Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?
Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.
Một hộp chứa 5 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên 1 viên bi trong hộp. Số khả năng xảy ra là:
Áp dụng quy tắc cộng ta có số khả năng xảy ra là: 5 + 4 = 9 khả năng.