Nghiệm của phương trình
thuộc khoảng nào?
Điều kiện xác định
Ta có:
Vậy nghiệm phương trình thuộc khoảng .
Nghiệm của phương trình
thuộc khoảng nào?
Điều kiện xác định
Ta có:
Vậy nghiệm phương trình thuộc khoảng .
Cho tập
. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?
Gọi số cần tìm là số dạng . Vì
chia hết cho 3 suy ra
.
Khi đó bộ .
Với bộ suy ra có
số cần tìm.
Tương tự với các bộ số còn lại.
Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?
Gọi số cần tìm có dạng
Trường hợp 1: . Có 1 số thỏa mãn yêu cầu bài toán.
Trường hợp 2:
a có 1 cách chọn.
b có 2 cách chọn.
c có 3 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Trường hợp 3:
a có 1 cách chọn.
b có 1 cách chọn.
c có 2 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Trường hợp 4: a < 2.
a có 1 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
⇒ Vậy có (số).
Cho tập
gồm
phần tử. Số tập con gồm
phần tử của M là:
Số tập con gồm phần tử của
là số cách chọn
phần tử bất kì trong
phần tử của
.
Do đó số tập con gồm phần tử của
là
.
Từ 6 chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và chia hết cho 3?
Gọi số tự nhiên có 4 chữ số là
Bộ bốn chữ số có tổng chia hết cho 3 là:
Trường hợp 1:
Chọn a: 3 cách (vì a ≠ 0).
Chọn b, c, d: cách chọn.
Khi đó: 3.6=18 (cách).
Trường hợp 2:
Chọn :
Vậy 6 + 24 = 30 (số)
Cho các số
. Số các số tự nhiên gồm
chữ số lấy từ
chữ số trên sao cho chữ số đầu tiên bằng
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Cho
. Từ tập hợp này lập được bao nhiêu số tự nhiên có
chữ số đôi một khác nhau?
Mỗi số tự nhiên tự nhiên có chữ số khác nhau được lập từ tập
là hoán vị của
phần tử.
Vậy có số cần tìm.
Số cách xếp 5 học sinh ngồi vào một bàn dài là:
Ta có số cách xếp 5 học sinh vào một bàn dài là số các hoán vị của học sinh đó. Vậy kết quả là:
.
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có 1 nam và 2 nữ?
Chọn ban điều hành gồm 3 học sinh gồm 1 nam và 2 nữ có cách.
Có 3 cây bút đỏ, 4 cây bút xanh trong một hộp bút. Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?
Số cách lấy ra 1 cây bút là màu đỏ có 3 cách.
Số cách lấy ra 1 cây bút là màu xanh có 4 cách.
Theo quy tắc cộng, số cách lấy ra 1 cây bút từ hộp bút là: 3 + 4 = 7 cách.
Vậy có 7 cách lấy 1 cây bút từ hộp bút.
Cho hai số tự nhiên
sao cho
. Chọn khẳng định đúng sau đây?
Khẳng định đúng là: .
Tìm hệ số của số hạng chứa
trong khai triển
, biết rằng
là số tổ hợp chập
của
phần tử).
Xét phương trình
Điều kiện:
Với ta có:
Số hạng tổng quát của khai triển là
Cho hệ số của số hạng chứa
trong khai triển là
.
Biết rằng khai triển nhị thức Newton
có tất cả 6 số hạng. Hãy xác định
?
Vì trong khai triển nhị thức Newton đã cho có tất cả 6 số hạng nên
Vậy n = 5 là giá trị cần tìm.
Khai triển
thành đa thức ta được biểu thức gồm mấy số hạng?
Biểu thức khai triển thành đa thức có 5 hạng tử.
Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton
?
Để có tổng các hệ số ta thay ta được:
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi riêng dãy?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Trường hợp 1: Các bạn nam ngồi dãy A, các bạn nữ ngồi dãy B
Số cách xếp là: cách.
Trường hợp 2: Các bạn nữ ngồi dãy A, các bạn nam ngồi dãy B
Số cách xếp là: cách.
Vậy số cách xếp là: cách.
Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:
Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.
Cho biểu thức
, khi khai triển nhị thức đã cho ta được bao nhiêu số hạng?
Trong khai triển nhị thức Newton có
số hạng.
Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
Số cách chọn 2 nam đứng ở đầu và cuối là. . Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là
. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là.
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. .
Tìm số hạng chứa
trong khai triển
biết
là số tự nhiên thỏa mãn
.
Điều kiện : .
Ta có
. Đối chiếu điều kiện ta được
.
Số hạng tổng quát của khai triển là :
Số hạng này chứa ứng với
.
Vậy hệ số của số hạng đó là .