Xác định số hạng không chứa x trong khai triển nhị thức Newton
. Biết rằng
.
Ta có:
Xét khai triển
Số hạng tổng quát
Số hạng không chứa x ứng với
Suy ra số hạng không chứa x là .
Xác định số hạng không chứa x trong khai triển nhị thức Newton
. Biết rằng
.
Ta có:
Xét khai triển
Số hạng tổng quát
Số hạng không chứa x ứng với
Suy ra số hạng không chứa x là .
Biết rằng
thỏa mãn biểu thức
. Tính giá trị biểu thức
?
Ta có:
Lại có:
Có bao nhiêu cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?
Đánh số thứ tự các vị trí theo hàng dọc từ đến
.
Trường hợp 1. Nam đứng trước, nữ đứng sau.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Trường hợp 2. Nữ đứng trước, nam đứng sau.
Xếp nữ (vào các vị trí đánh số ). Có
cách.
Xếp nam (vào các vị trí đánh số ). Có
cách.
Vậy trường hợp này có. cách.
Theo quy tắc cộng ta có. cách sắp xếp
nữ sinh,
nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.
Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có
sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở
vị trí khác nhau. Yêu cầu mỗi vị trí có đúng
sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho
người đó?
Mỗi cách xếp sinh viên vào
vị trí thỏa đề là một hoán vị của
phần tử.
Suy ra số cách xếp là cách.
Tìm số hạng chứa
trong khai triển
.
Số hạng thứ trong khai triển là:
.
Số hạng chứa có giá trị
thỏa mãn:
.
Vậy số hạng chứa trong khai triển là:
.
Giá trị của
bằng:
Ta có:
Cho tập hợp
. Có bao nhiêu số tự nhiên không chia hết cho 2 gồm 5 chữ số khác nhau được lập từ tập hợp
?
Gọi số tự nhiên có năm chữ số cần tìm có dạng
Số cách chọn e là: 4 cách
Số cách chọn a là: 4 cách
Số cách chọn b là: 6 cách
Số cách chọn c là: 5 cách
Số cách chọn d là: 4 cách
Vậy số các số được tạo thành là: số.
Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?
Từ nhà Nam đến nhà Hải có 4 con đường.
Từ nhà Hải đến nhà Cường có 6 con đường.
Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).
Cho khai triển
trong đó
và các hệ số thỏa mãn hệ thức
. Hệ số lớn nhất là:
Xét khai triển .
Cho ta được
Khi đó .
Ta có hệ số
Hệ số lớn nhất nên
Vì nên nhận
Vậy hệ số lớn nhất .
Từ
người cần chọn ra một đoàn đại biểu gồm
trưởng đoàn,
phó đoàn,
thư kí và
ủy viên. Số cách chọn thỏa mãn là:
Số cách chọn người trong
người làm trưởng đoàn là.
cách.
Số cách chọn người trong
người còn lại làm phó đoàn là.
cách.
Số cách chọn người trong
người còn lại làm thư kí là.
cách.
Số cách chọn người trong
người còn lại làm ủy viên là.
cách.
Vậy số cách chọn đoàn đại biểu là .
Tính tổng các chữ số gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5?
Có 120 số có 5 chữ số được lập từ 5 chữ số đã cho.
Bây giờ ta xét vị trí của một chữ số trong 5 số 1, 2, 3, 4, 5 chẳng hạn ta xét số 1. Số 1 có thể xếp ở 5 vị trí khác nhau, mỗi vị trí có 4!=24 số nên khi ta nhóm các các vị trí này lại có tổng là : .
Vậy tổng các số có 5 chữ số là : .
Trong một cuốc thi hùng biện, ban tổ chức đã công bố danh sách các chủ đề cho thí sinh gồm 8 chủ đề về lịch sử, 7 chủ đề môi trường, 10 chủ đề về con người và 6 chủ đề về văn hóa. Mỗi thí sinh tham gia thi chỉ được thi với 1 chủ đề. Hỏi mỗi thí sinh có bao nhiêu khả năng lựa chọn chủ đề?
Số cách chọn chủ đề thi của mỗi thí sinh là: 8 + 7 + 10 + 6 = 31.
Cho tập hợp
có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp
?
Mỗi tập con có 8 phần tử của tập hợp là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp
là.
.
Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?
Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá
C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. .
Vậy số cách xếp cần tìm. 8!.7.2! = 564480.
Câu lạc bộ cầu lông gồm 12 tay vợt nam và 9 tay vợt nữ. Hỏi có bao nhiêu cách lập đội đôi nam nữ từ câu lạc bộ để tham gia giải đấu giao lưu các trường?
Có 12 cách chọn 1 tay vợt nam
Ứng với mỗi cách chọn 1 tay vợt nam ta có 9 cách chọn một tay vợt nữ
Theo quy tắc nhân ta có: 9.12 = 108 cách chọn một đôi nam nữ tham gia giải đấu.
Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách chọn 2 người sao cho luôn có 2 màu áo khác nhau.
Trường hợp 1: 1 áo vàng + 1 áo đỏ
Có: (cách).
Trường hợp 2: 1 áo đỏ + 1 áo xanh
Có: (cách).
Trường hợp 3: 1 áo xanh + 1 áo vàng
Có: (cách)
Vậy có (cách).
Trong khai triển nhị thức Newton của
, số hạng thứ hai theo số mũ tăng dần của biến
là:
Ta có:
Viết khai triển theo công thức nhị thức Niu-tơn
.
Ta có:
Hay .
Một tổ gồm n học sinh, biết rằng có 210 cách chọn 3 học sinh trong tổ để làm ba việc khác nhau. Số n thỏa mãn hệ thức nào dưới đây?
Chọn một học sinh để làm việc thứ nhất, có n cách chọn.
Chọn một học sinh để làm việc thứ hai có n − 1 cách chọn.
Chọn một học sinh để làm việc thứ ba có n − 2 cách chọn.
Do đó có n(n−1)(n−2) = 210 cách chọn.
Tìm hệ số của
trong khai triển
thành đa thức?
Số hạng chứa trong khai triển
là
Số hạng chứa trong khai triển
là
Số hạng chứa trong khai triển
là
Do đó tổng các số hạng chứa trong khai triển đã cho là:
Vậy hệ số cần tìm là .