Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có khai triển: \left( x +
\frac{1}{x^{2}} ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
k}\left( x^{- 2} ight)^{k}} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
3k}}.

    Số hạng tổng quát trong khai triển: C_{40}^{k}x^{40 - 3k}

    Số hạng chứa x^{31} ứng với: 40 - 3k = 31 \Leftrightarrow k =
3

    Vậy số hạng chứa x^{31} là: C_{40}^{3}x^{31}.

  • Câu 2: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 5 chữ số đôi một khác nhau và tận cùng bằng một chữ số khác 3.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa yêu cầu bài toán.

    Chọn a_{5} \in X\backslash\left\{ 3
ight\} có: 8 cách.

    Chọn a_{1} \in X\backslash\left\{ a_{5}
ight\} có: 8 cách.

    Chọn a_{2} \in X\backslash\left\{
a_{1};a_{5} ight\} có: 7 cách.

    Chọn a_{3} \in X\backslash\left\{
a_{1};a_{5};a_{2} ight\} có: 6 cách.

    Chọn a_{4} \in X\backslash\left\{
a_{1};a_{5};a_{2};a_{3} ight\} có: 5 cách.

    Theo quy tắc nhân có: 8.8.7.6.5 =
13440 số.

  • Câu 3: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 4: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?

    Giả sử số đó là \overline{a_{1}a_{2}a_{3}}

    Trường hợp 1. a_{3} = 0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.

    Trường hợp 2. a_{3} = 5. Với a_{1} = 2 chọn a_{2} có 6 cách nên có 6 số thỏa mãn. Với a_{1} eq 2 chọn a_{1} có 5 cách chọn, và tất nhiên a_{2} = 2 nên có 5 số thỏa mãn. Do đó có 12 + 6 + 5 = 23 số thỏa mãn.

  • Câu 5: Thông hiểu

    Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?

    TH1: Chọn 7 người 18 người không là cặp vợ chồng: C_{18}^{7}

    TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng: C_{4}^{1}.C_{18}^{6}

    TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng: \left(
C_{4}^{2} - 2 ight).C_{18}^{5}

    Vậy số cách chọn thỏa mãn là: C_{18}^{7}
+ C_{4}^{1}.C_{18}^{6} + \left( C_{4}^{2} - 2 ight).C_{18}^{5} =
140352 cách

  • Câu 6: Nhận biết

    Số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x} ight)^{40} là:

    Số hạng thứ k + 1 trong khai triển \left( x + \frac{1}{x}
ight)^{40} là:

    a_{k + 1} = C_{40}^{k}x^{40 - k}.\left(
\frac{1}{x} ight)^{k} = C_{40}^{k}x^{40 - k}x^{- k} = C_{40}^{k}x^{40
- 2k}.

    Số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x}
ight)^{40} tương ứng với: 40 - 2k
= 34 \Leftrightarrow k = 3.

    Vậy số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x}
ight)^{40} là: C_{40}^{3}x^{34}.

  • Câu 7: Nhận biết

    Có bao nhiêu cách xếp 5 bạn ABCDE vào 1 chiếc ghế dài sao cho bạn A ngồi chính giữa?

    Xếp bạn A ngồi chính giữa: có 1 cách.

    Khi đó xếp 4 bạn BCDE vào 4 vị trí còn lại, có 4! = 24 cách.

    Vậy có tất cả 24 cách xếp.

  • Câu 8: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 9: Nhận biết

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:

    Số tập hợp con cần tìm là số tổ hợp chập 3 của 7 phần tử.

    Vậy có C_{7}^{3} tập con cần tìm.

  • Câu 10: Thông hiểu

    Trong khai triển nhị thức (a + 2)^{2n+1} (n \in ℕ). Có tất cả 6 số hạng. Vậy n bằng:

    Khai triển có 6 hạng tử

    => \left( {2n + 1} ight) + 1 = 6 \Rightarrow n = 2

  • Câu 11: Thông hiểu

    Tính giá trị biểu thức S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    Áp dụng công thức (a + b)^{n} cho a = 2,b = 1,n = 5 ta có:

    S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    S = (2 + 1)^{5} = 243

  • Câu 12: Nhận biết

    Hệ số của số hạng chứa x^{6}trong khai triển Newton \left( x - \frac{2}{x^{2}}
ight)^{15}là:

    \left( x - \frac{2}{x^{2}} ight)^{15}
= \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}\left( - \frac{2}{x^{2}}
ight)^{k}} = \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}( - 2)^{k}\left(
x^{- 2} ight)^{k} =}\sum_{k = 0}^{15}{C_{15}^{k}( - 2)^{k}x^{15 -
3k}}

    Số hạng tổng quát của khái triển T_{k +
1} = C_{15}^{k}( - 2)^{k}x^{15 - 3k}

    Số của số hạng chứa x^{6}: 15 - 3k = 6 \Leftrightarrow k = 3. Hệ số của số hạng chứa x^{6}C_{15}^{k}( - 2)^{k} =
C_{15}^{3}( - 2)^{3} = - 3640.

  • Câu 13: Vận dụng

    Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chia hết cho 5?

    x chia hết cho 5 nên d chỉ có thể là 5 \Rightarrow có 1 cách chọn d.

    Có 6 cách , 5 cách chọn b và 4 cách chọn c.

    Vậy có 1.6.5.4 = 120 số thỏa yêu cầu bài toán.

  • Câu 14: Vận dụng

    Hệ số của x^{5} trong khai triển thành đa thức của (2 - 3x)^{2n} bằng bao nhiêu? Cho biết n là số tự nhiên thỏa mãn: C_{2n + 1}^{0} + C_{2n +
1}^{2} + C_{2n + 1}^{4} + ... + C_{2n + 1}^{2n} = 1024.

    Ta có (x + 1)^{2n + 1} = C_{2n +
1}^{0}.x^{2n + 1} + C_{2n + 1}^{1}.x^{2n} + ... + C_{2n + 1}^{2n}.x +
C_{2n + 1}^{2n + 1} (1)

    Thay x = 1 vào (1): 2^{2n +
1} = C_{2n + 1}^{0} + C_{2n + 1}^{1} + ... + C_{2n + 1}^{2n} + C_{2n +
1}^{2n + 1} (2)

    Thay x = - 1 vào (1): 0 = -
C_{2n + 1}^{0} + C_{2n + 1}^{1} - ... - C_{2n + 1}^{2n} + C_{2n + 1}^{2n
+ 1} (3)

    Phương trình (2) trừ (3) theo vế: 2^{2n + 1} = 2\left( C_{2n + 1}^{0} + C_{2n +
1}^{2} + ... + C_{2n + 1}^{2n} ight).

    Theo đề ta có 2^{2n + 1} = 2.1024
\Leftrightarrow n = 5

    Số hạng tổng quát của khai triển (2 -
3x)^{10}:

    T_{k + 1} = C_{10}^{k}.2^{10 - k}.( -
3x)^{k} = C_{10}^{k}.2^{10 - k}.( - 3)^{k}.x^{k}

    Theo giả thiết ta có k = 5.

    Vậy hệ số cần tìm C_{10}^{5}.2^{5}.( -
3)^{5} = - 1959552.

  • Câu 15: Thông hiểu

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n chia hết cho 55 và 555 < n
< 5555?

    Trường hợp 1: n gồm ba chữ số.

    Gọi n có dạng \overline{abc}.

    Vì n chia hết cho 5 nên c là chữ số 5.

    Vì n gồm ba chữ số nên thỏa mãn n < 5555.

    Để 555 < n ta có:

    Nếu a là chữ số 5 thì b có 2 lựa chọn là {8; 9}

    Nếu a có 2 lựa chọn là {8; 9} thì b có 5 lựa chọn

    2 + 2.5 = 12

    Trường hợp 2: n gồm bốn chữ số.

    Gọi n có dạng \overline{abcd}

    Vì n chia hết cho 5 nên d là chữ số 5

    Vì n gồm bốn chữ số nên thỏa mãn 555 < n

    Để n < 5555 ta có

    Nếu a; b đều là chữ số 5 thì c có 2 lựa chọn là {1; 4}

    Nếu a là chữ số 5 thì b có 2 lựa chọn là {1; 4} và c có 5 lựa chọn.

    Nếu a có 2 lựa chọn là {1; 4} thì b; c có 5 lựa chọn.

    2 + 2.5 + 2.5.5 = 62

    Vậy có 12 + 62 = 74 số n thỏa mãn yêu cầu bài toán.

  • Câu 16: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có ít nhất 1 nam?

    Chọn ban điều hành gồm 3 học sinh không có học sinh nam nào có C_{15}^{3} = 455 cách

    Số cách chọn ban điều hành gồm 3 học sinh có ít nhất 1 nam có: 9425 cách.

  • Câu 17: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12

    Trường hợp 1: Các bạn nam gồi ghế ghi số chẵn ở dãy A và số lẻ ở dãy B.

    Các bạn nữ ngồi ở ghế ghi số lẻ của dãy A và số chẵn ở dãy B có: 6!.6! cách.

    Trường hợp 2: Ngược lại có 6!.6! cách.

    Vậy số cách xếp là: 2.6!.6! =
1036800 cách.

  • Câu 18: Nhận biết

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ ngồi ở đầu và cuối dãy ghế?

    2 nữ ngồi ở đầu và cuối dãy ghế có 2! cách.

    3 nam ngồi ở 3 ghế giữa có 3! cách.

    Vậy có 2!.3! = 12 cách xếp.

  • Câu 19: Nhận biết

    Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?

    Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.

  • Câu 20: Nhận biết

    Bạn Dũng có 9 quyển truyện tranh khác nhau và 6 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.

    Bạn Dũng có số cách chọn ra một quyển sách để đọc vào cuối tuần là 9 + 6 = 15 cách.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 38 lượt xem
Sắp xếp theo