Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số cách xếp 5 học sinh ngồi vào một bàn dài là:

    Ta có số cách xếp 5 học sinh vào một bàn dài là số các hoán vị của 5học sinh đó. Vậy kết quả là: P_{5} = 5! = 120.

  • Câu 2: Thông hiểu

    Nghiệm của phương trình C_{x}^{1} + C_{x}^{2} + C_{x}^{3} =
\frac{7}{2}x thuộc khoảng nào?

    Điều kiện xác định x\mathbb{\in N};x \geq
3

    Ta có:

    C_{x}^{1} + C_{x}^{2} + C_{x}^{3} =
\frac{7}{2}x

    \Leftrightarrow \frac{x!}{(x - 1)!} +
\frac{x!}{2!(x - 2)!} + \frac{x!}{3!(x - 3)!} =
\frac{7}{2}x

    \Leftrightarrow x + \frac{x(x - 1)}{2} +
\frac{x(x - 1)(x - 2)}{6} = \frac{7}{2}x

    \Leftrightarrow 1 + \frac{x - 1}{2} +
\frac{(x - 1)(x - 2)}{6} = \frac{7}{2}

    \Leftrightarrow 6 + 3x - 3 + x^{2} - 3x
+ 2 - 21 = 0

    \Leftrightarrow x^{2} = 16
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 4(ktm) \\
\end{matrix} ight.

    Vậy nghiệm phương trình thuộc khoảng (3;5).

  • Câu 3: Nhận biết

    Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?

    Từ nhà Nam đến nhà Hải có 4 con đường.

    Từ nhà Hải đến nhà Cường có 6 con đường.

    Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).

  • Câu 4: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a + b (cách) (theo quy tắc nhân)

  • Câu 5: Thông hiểu

    Tính giá trị biểu thức S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    Áp dụng công thức (a + b)^{n} cho a = 2,b = 1,n = 5 ta có:

    S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    S = (2 + 1)^{5} = 243

  • Câu 6: Thông hiểu

    Trong một hộp chứa 5 viên bi màu trắng đánh số từ 1 đến 5, 7 viên bi xanh đánh số từ 1 đến 7 và 9 viên bi vàng đánh số từ 1 đến 9. Chọn ngẫu nhiên hai viên bi. Số cách chọn được hai viên bi khác màu là:

    Chọn được 1 viên bi trắng + 1 viên bi xanh ta có: 5.7 = 35 cách chọn.

    Chọn được 1 viên bi trắng + 1 viên bi vàng ta có: 5.9 = 45 cách chọn.

    Chọn được 1 viên bi xanh + 1 viên bi vàng ta có: 7.9 = 63 cách chọn.

    Vậy số cách chọn được hai viên bi khác màu là 35 + 45 + 63 = 143 cách chọn.

  • Câu 7: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 8: Vận dụng

    Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?

    Gọi số cần tìm có dạng \overline{abcd}. Vì \overline{abcd} chia hết cho 10 suy ra d = 0.

    TH1. Với a = 5, ta có

    + Nếu b = 4 suy ra c = \left\{ 0;1 ight\}, do đó có 2 số cần tìm.

    + Nếu b < 4 suy ra b = \left\{ 0;1 ight\}c = \left\{ 0;1;4;5;6;7;9 ight\}, do đó có 14 số cần tìm.

    TH2. Với a < 5
\Rightarrow a = \left\{ 1;4 ight\} suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn

    C.

    Suy ra có 2 \times 7 \times 7 =
98 số cần tìm. Vậy có tất cả 114 số cần tìm.

  • Câu 9: Nhận biết

    Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của (3 -
2x)^{5}?

    Khi viết nhị thức (3 - 2x)^{5} dưới dạng khai triển 5 + 1 = 6 số hạng.

  • Câu 10: Thông hiểu

    Khai triển nhị thức {(2x - y)^5} ta được kết quả là:

    Khai triển nhị thức {(2x - y)^5} ta có:

    \begin{matrix}  {(2x - y)^5} = \sumolimits_{k = 0}^5 {C_5^k.{{\left( {2x} ight)}^{5 - k}}.{{\left( { - y} ight)}^k}}  \hfill \\  k = 1 \Rightarrow C_5^1.{\left( {2x} ight)^4}.{\left( { - y} ight)^1} =  - 80{x^4}y \hfill \\  k = 2 \Rightarrow C_5^2.{\left( {2x} ight)^3}.{\left( { - y} ight)^2} = 80{x^3}{y^2} \hfill \\  k = 3 \Rightarrow C_5^3.{\left( {2x} ight)^2}.{\left( { - y} ight)^3} =  - 40{x^2}{y^3} \hfill \\  k = 4 \Rightarrow C_5^4.{\left( {2x} ight)^1}.{\left( { - y} ight)^4} = 10x{y^4} \hfill \\  k = 5 \Rightarrow C_5^5.{\left( {2x} ight)^0}.{\left( { - y} ight)^5} =  - {y^5} \hfill \\  {(2x - y)^5} =  - 80{x^4}y + 80{x^3}{y^2} - 40{x^2}{y^3} + 10x{y^4} - {y^5} \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Cho tập hợp M = {a; b; c}. Số hoán vị của ba phần tử của M là:

     Số hoán vị của ba phần tử của M là: 3! = 6.

  • Câu 12: Vận dụng

    Cho tập A =
\left\{ 0,1,2,3,4,5,6 ight\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.

    Gọi x = \overline{abcde} là số cần lập, e \in \left\{ 0,5 ight\},a eq
0

    \bullet e = 0 \Rightarrow e có 1 cách chọn, cách chọn a,b,c,d:6.5.4.3

    Trường hợp này có 360 số

    e = 5 \Rightarrow e có một cách chọn, số cách chọn a,b,c,d:5.5.4.3 =
300

    Trường hợp này có 300 số.

    Vậy có 660 số thỏa yêu cầu bài toán.

  • Câu 13: Nhận biết

    Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?

    Số cách chọn sách Toán là 20 cách.

    Số cách chọn sách Vật lí là 40 cách.

    Số cách chọn sách Hóa học là 50 cách.

    Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.

  • Câu 14: Nhận biết

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?

    Số cách lấy 5 con trong đó có 1 con át và 1 con vua là C_{4}^{1}C_{4}^{1}.C_{44}^{3} =
211904.

  • Câu 15: Thông hiểu

    Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn?

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 4 cách chọn (2,4,6,8)

    B: có 5 cách chọn (0,2,4,6,8)

    C: có 5 cách chọn (0,2,4,6,8)

    Vậy có 4.5.5 = 100 (số) có 3 chữ số và cả 3 chữ số đều chẵn.

     

  • Câu 16: Thông hiểu

    : Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn?

    Có 4 bộ sách được sắp 4 vị trí có 4! cách

    Sắp xếp 3 quyển sách Toán có 3! cách

    Sắp xếp 2 sách Hóa có 2! cách

    Sắp xếp 4 quyển sách Lý có 4! cách

    Sắp xếp 5 quyển sách Sinh có 5! cách

    Vậy số cách sắp xếp số sách trên kệ theo từng môn là: 4!.2!.3!.4!.5! = 829440 cách.

  • Câu 17: Nhận biết

    Trong khai triển (x + 2y)^{5} số hạng chứa x^{2}y^{3} là:

     Ta có: (x+2y)^5={x^5} + 10{x^4}y + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}.

    Vậy số hạng cần tìm là: 80x^{2}y^{3}.

  • Câu 18: Nhận biết

    Có bao nhiêu cách xếp 6 người thành một hàng dọc

     Xếp 6 người thành một hàng dọc có: 6! = 720 cách.

  • Câu 19: Vận dụng

    Cho khai triển (1 - 2x)^{n} = a_{0} + a_{1}x + a_{2}x^{2} + ... +
a_{n}x^{n}. Tìm hệ số a_{5} biết rằng a_{0} + a_{1} + a_{2} = 71.

    Ta có (1 - 2x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}( - 2x)^{k}}. Vậy a_{0} = 1; a_{1} = - 2C_{n}^{1}; a_{2} = 4C_{n}^{2}.

    Theo bài ra a_{0} + a_{1} + a_{2} =
71 nên ta có:

    1 - 2C_{n}^{1} + 4C_{n}^{2} = 71
\Leftrightarrow 1 - 2\frac{n!}{1!(n - 1)!} + 4\frac{n!}{2!(n - 2)!} = 71
\Leftrightarrow 1 - 2n + 2n(n - 1) = 71 \Leftrightarrow 2n^{2} - 4n - 70
= 0 \Leftrightarrow n^{2} - 2n - 35 = 0 \Leftrightarrow n = 7 (thỏa mãn) hoặc n = - 5 (loại).

    Từ đó ta có a_{5} = C_{7}^{5}( - 2)^{5} =
- 672.

  • Câu 20: Nhận biết

    Có bao nhiêu số hạng trong khai triển (6x + 4)^{4}?

    Trong khai triển nhị thức (6x +
4)^{4}n = 4 nên có 5 số hạng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo