Đề kiểm tra 15 phút Chương 5 Phương pháp tọa độ trong không gian KNTT

Mô tả thêm: Bài kiểm tra 15 phút Phương pháp tọa độ trong không gian của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai mặt phẳng \left( \alpha  ight):x + 5y - z + 1 = 0,\left( \beta  ight):2x - y + z + 4 = 0.

    Gọi \varphi là góc nhọn tạo bởi (\alpha)(\beta) thì giá trị đúng của cos \varphi là:

    Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:

    (\alpha) có vectơ pháp tuyến \overrightarrow a  = \left( {1,5, - 2} ight)

    (\beta) có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1,1} ight)

    Áp dụng công thức tính cosin giữa 2 vecto, ta có:

    \cos \varphi  = \frac{{\left| {1.2 + 5\left( { - 1} ight) + \left( { - 2} ight).1} ight|}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} ight)}^2}} .\sqrt {{2^2} + {{\left( { - 1} ight)}^2} + {1^2}} }} = \frac{{\sqrt 5 }}{6}

  • Câu 2: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = a\sqrt 6 và vuông góc với đáy (ABCD). Tính theo a diện tích mặt cầu ngoại tiếp hình chóp S.ABCD ta được:

     Tính diện tích mặt cầu

    Gọi O = AC \cap BD, suy ra O là tâm đường tròn ngoại tiếp hình vuông ABCD.

    Gọi I là trung điểm SC, suy ra IO\parallel SA \Rightarrow IO \bot \left( {ABCD} ight)

    Do đó IO là trục của hình vuông ABCD, suy ra IA = IB = IC = ID.  (1)

    Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên IS = IC = IA.   (2)

    Từ (1) và (2), ta có: R = IA = IB = IC = ID = IS = \frac{{SC}}{2} = a\sqrt 2

    Vậy diện tích mặt cầu S = 4\pi {R^2} = 8\pi {a^2} (đvdt).

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. bằng:

    Đường thẳng \Delta đi qua N(0;2;3), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1;2).

    Ta có \overrightarrow{MN} = ( -
2;6;4)\left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack = (16;8; -
4).

    Vậy khoảng cách từ M đến đường thẳng \Delta là:

    d(M;\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ vuông góc Oxyz, cho mặt phẳng (P):2x + y + 6z - 1 = 0 và hai điểm A(1; - 1;0),B( - 1;0;1). Hình chiếu vuông góc của đoạn thẳng AB trên mặt phẳng (P) có độ dài bao nhiêu?

    Ta có \overrightarrow{BA} = (2; - 1; -
1). Gọi α là góc giữa đường thẳng AB và (P).

    Khi đó: \sin\alpha = \left(
\overrightarrow{BA};\overrightarrow{n_{(P)}} ight) = \frac{\left| 2.2
+ 1.( - 1) + 6.( - 1) ight|}{\sqrt{41}.\sqrt{6}} =
\frac{3}{\sqrt{246}}

    Hình chiếu vuông góc của đoạn thẳng AB trên mặt phẳng (P) có độ dài bằng:

    AB.cos\alpha = AB.\sqrt{1 -\sin^{2}\alpha}= \sqrt{6.\left( 1 - \frac{9}{246} ight)} =\sqrt{\frac{237}{41}}

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x + 2y - 2z + 1 = 0(Q):x + my + (m - 1)z + 2019 = 0. Khi hai mặt phẳng (P), (Q) tạo với nhau một góc nhỏ nhất thì mặt phẳng (Q) đi qua điểm M nào sau đây?

    Gọi \alpha là góc giữa (P)(Q).

    Ta có:

    \cos\alpha = \dfrac{\left|{\overrightarrow{n}}_{P} \cdot {\overrightarrow{n}}_{Q} ight|}{\left|{\overrightarrow{n}}_{P} ight| \cdot \left| {\overrightarrow{n}}_{Q}ight|}= \dfrac{1}{3\sqrt{2m^{2} - 2m + 2}} = \dfrac{1}{3\sqrt{2\left( m- \dfrac{1}{2} ight)^{2} + \dfrac{3}{2}}}

    \leq \dfrac{1}{3\sqrt{2\left( m -\dfrac{1}{2} ight)^{2} + \dfrac{3}{2}}} \leq\dfrac{1}{3\sqrt{\dfrac{3}{2}}}

    Do 0 \leq \alpha \leq 90^{\circ} nên \alpha nhỏ nhất khi \cos\alpha lớn nhất \Leftrightarrow m =
\frac{1}{2}.

    \Rightarrow (Q):2x + y - z + 4038 = 0
\Rightarrow M( - 2019;1;1) \in (Q).

  • Câu 6: Thông hiểu

    Viết phương trình tổng quát của mặt phẳng (P) qua hai điểm E\left( {\,3,\,\, - 2,\,\,4\,} ight);\,\,\,F\left( {\,1,\,\,\,3,\,\,6\,} ight) và song song với trục y'Oy

     Vì  \left( P ight)//y'Oy \Rightarrow Vecto chỉ phương của (P)  là: \overrightarrow {{e_2}}  = \left( {0,1,0} ight)

    Theo đề bài, ta có vecto chỉ phương thứ hai của (P) là: \overrightarrow {EF}  = \left( { - 2,5,2} ight)
    Từ 2 VTCP, ta suy ra được VTPT của (P) là tích có hướng của 2 VTCT

    \Rightarrow \overrightarrow n  = \left[ {\overrightarrow {{e_2}} ,\overrightarrow {EF} } ight] = 2\left( {1,0,1} ight)

    Mp (P) đi qua E (3,-2,4) và nhận vecto \vec{n_p}(1, 0, 1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 3} ight).1 + \left( {y + 2} ight).0 + \left( {z - 4} ight).1

    \Leftrightarrow x + z - 7 = 0

  • Câu 7: Vận dụng

    Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):x + y - 2z - 5 = 0 và đường thẳng\Delta:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z}{3}. Gọi A là giao điểm của \Delta(P)M là điểm thuộc đường thẳng \Delta sao cho AM = \sqrt{84}. Tính khoảng cách từ M đến mặt phẳng (P).

    Gọi \alpha = \left( \Delta,(P)
ight)

    Khi đó ta có: \cos\alpha = \frac{|1.2 +
1.1 - 2.3|}{\sqrt{1^{2} + 1^{2} + ( - 2)^{2}}.\sqrt{2^{2} + 1^{2} +
3^{2}}} = \frac{\sqrt{21}}{14}

    Gọi H là hình chiếu của M lên mặt phẳng (P), khi đó:

    HM = MA.cos\alpha = \sqrt{84}.\frac{\sqrt{21}}{14}
= 3

  • Câu 8: Nhận biết

    Trong không gian Oxyz đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} = 1 và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa mặt phẳng (\alpha) và đường thẳng \Delta bằng:

    Mặt phẳng (\alpha):x - y + 2z =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    Đường thẳng \Delta:\frac{x}{1} =
\frac{y}{2} = \frac{z}{- 1} = 1 có một vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    Gọi α là góc giữa đường thẳng \Delta và mặt phẳng (\alpha):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho A(1;2;0),B(3; - 1;1),C(1;1;1). Tính diện tích tam giác ABC?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3;1) \\
\overrightarrow{AC} = (0; - 1;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 2; - 2; -
2)

    Lại có diện tích tam giác ABC là:

    S_{ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\sqrt{3}

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và hai mặt phẳng (P):2x + 3y = 0,(Q):3x + 4y = 0. Dường thẳng đi qua A và song song với hai mặt phẳng (P),(Q) có phương trình là

    Gọi \Delta là đường thẳng cần tìm.

    Mặt phẳng (P) có một véc-tơ pháp tuyến là {\overrightarrow{n}}_{1} =
(2;3;0)(Q) có một vectơ pháp tuyến là {\overrightarrow{n}}_{2}
= (3;4;0). Ta có \left\lbrack
{\overrightarrow{n}}_{1},{\overrightarrow{n}}_{2} ightbrack =
(0;0;2).

    Khi đó, \Delta đi qua điểm A và nhận véc-tơ \overrightarrow{u} = (0;0;1) làm vec-tơ chỉ phương. Phương trình đường thẳng \Delta\left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 3 + t \\
\end{matrix} ight.
    Với t = - 3 thì điểm B(1;2;0) thuộc \Delta. Viết lại phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = t \\
\end{matrix} ight.

  • Câu 11: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) và mặt phẳng (P):2x - y + 3z + 1 = 0. Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình là:

    Do đường thẳng \Delta cần tìm vuông góc với mặt phẳng (P) nên vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = (2; - 1;3) cũng là vectơ chỉ phương của \Delta.

    Mặt khác \Delta đi qua điểm M(1;1;2) nên phương trình chính tắc của \Delta là: \frac{x - 1}{2} = \frac{y - 1}{- 1} = \frac{z -
2}{3}

  • Câu 12: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} =1,\left( S_{2} ight):x^{2} + (y -4)^{2} + z^{2} = 4 và các điểm A(4;0;0),B\left( \frac{1}{4};0;0ight),C(1;4;0),D(4;4;0). Gọi M là điểm thay đổi trên \left( S_{1} ight),N là điểm thay đổi trên \left( S_{2} ight). Giá trị nhỏ nhất của biểu thức Q = MA + 2ND + 4MN +6BC là:

    Hình vẽ minh họa

    Mặt cầu \left( S_{1} ight) có tâm O(0;0;0) bán kính bằng 1; mặt cầu \left( S_{2} ight) có tâm I(0;4;0) bán kính bằng 2 .
    Ta có 4 diểm O,A,D,I là 4 dỉnh của hình vuông cạnh bằng 4 và OB =\frac{1}{4},IC = 1.
    Ta có \bigtriangleup OMA \backsim\bigtriangleup OBM (c.g.c) \Rightarrow \frac{MA}{BM} = \frac{OM}{OB}\Rightarrow MA = 4MB.
    Ta có \bigtriangleup IND \backsim\bigtriangleup ICN (c.g.c) \Rightarrow \frac{ND}{CN} = \frac{IN}{IC} = 2\Rightarrow ND = 2NC.

    Q = 4MB + 4NC + 4MN + 6BC

    = 4(BM + MN + NC) + 6BC

    \  \geq 4BC + 6BC = 10BC = 10 \cdot\frac{\sqrt{265}}{4} = \frac{5\sqrt{265}}{2}

    Vậy Q nhỏ nhất là bằng \frac{5\sqrt{265}}{2}, dấu " = " xảy ra khi M,N là giao điểm của BC với các mặt cầu.

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Đường thẳng \Delta đi qua C và song song với AB có phương trình là:

    Một vectơ chỉ phương của đường thẳng ∆ là \overrightarrow{BA} = (1;2;1)

    Vậy phương trình tham số của đường thẳng ∆ là \left\{ \begin{matrix}
x = 2 + t \\
y = 1 + 2t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 14: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; -1). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +3\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; -1). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +3\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, mặt cầu (S) đi qua điểm O và cắt các tia Ox;Oy;Oz lần lượt tại các điểm A;B;C khác O thỏa mãn tam giác ABC có trọng tâm là điểm G( - 6; - 12;18). Tọa độ tâm của mặt cầu (S) là:

    Gọi tọa độ các điểm trên ba tia Ox;Oy;Oz lần lượt là A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0

    Vì G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{a}{3} = - 6 \\
\frac{b}{3} = - 12 \\
\frac{c}{3} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 18 \\
b = - 36 \\
c = 54 \\
\end{matrix} ight.

    Gọi phương trình mặt cầu cần tìm là:

    (S):x^{2} + y^{2} + z^{2} - 2mx - 2ny -
2pz + q = 0

    (S) qua các điểm OABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}
q = 0 \\
36m + q = - 18^{2} \\
72n + q = - 36^{2} \\
- 108p + q = - 54^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
q = 0 \\
m = - 9 \\
n = - 18 \\
p = 27 \\
\end{matrix} ight.

    Vậy tọa độ tâm của mặt cầu (S) là: ( - 9; - 18;27).

  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Mặt phẳng (P) có một véctơ pháp tuyến \overrightarrow{n} =
\overrightarrow{AB} = (1;1;2)

    Phương trình mặt phẳng (P) là: x + y - 1 + 2(z - 1) = 0 hay (P):x + y + 2z - 3 = 0.

  • Câu 17: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    Ta có:

    x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    \Leftrightarrow (x - 4)^{2} + (y +
1)^{2} + z^{2} = 16

    Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là: I(4; - 1;0),R = 4

  • Câu 18: Vận dụng cao

    Cho 2 đường thẳng (d)\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 1 + t\\z = 1\end{array} ight. và  (\triangle )\left\{ \begin{array}{l}x = 1\\y = 1 + t\\z = 3 - t\end{array} ight.

    Mặt phẳng (P) chứa (d) và song song với (\triangle ) có phương trình tổng quát :

    Phương trình (d) cho A(2, - 1,1) \in (d) và vectơ chỉ phương của (d) là: \overrightarrow a  = (2,1,0)

    Phương trình (\triangle ) cho vectơ chỉ phương của (\triangle ) là : \overrightarrow b  = (0,1, - 1)

    Gọi M(x,y,z) là điểm bất kỳ thuộc mặt phẳng (P) thì :

    \begin{array}{l}\overrightarrow {AM}  = (x - 2,y + 1,z - 1);\,\,\,\,\left[ {\overrightarrow a ,\overrightarrow b } ight] = ( - 1,2,2)\\\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AM}  = 0 \Leftrightarrow  - (x - 2) + 2(y + 1) + 2(z - 1) = 0\\ \Leftrightarrow x - 2y - 2z - 2 = 0\end{array}

    Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.

  • Câu 19: Vận dụng

    Cho điểm A\left( {2,3,5} ight) và mặt phẳng \left( P ight):2x + 3y + z - 17 = 0. Gọi A’ là điểm đối xứng của A qua (P).Tọa độ điểm A’ là :

    Phương trình tham số của đường thẳng (d) qua A vuông góc với (P): \left\{ \begin{array}{l}x = 2 + 2t\\y = 3 + 3t\\z = 5 + t\end{array} ight..

    Thế x, y, z theo t vào phương trình của (P), ta được:

    \begin{array}{l}2.(2 + 2t) + 3(3 + 3t) + 5 + t - 17 = 0\\ \Leftrightarrow 4 + 4t + 9 + 9t + 5 + t - 17 = 0\\ \Leftrightarrow 14t + 1 = 0\\ \Leftrightarrow t = \frac{{ - 1}}{{14}}\end{array}

    Thế tiếp t =  - \frac{1}{{14}} vào phương trình của (d) được giao điểm I của  (d) và (P): I\left( {\frac{{26}}{{14}},\frac{{39}}{{14}},\frac{{69}}{{14}}} ight)

    Mặt khác, I là trung điểm của AA' nên suy ra được: \Rightarrow A'\left( {\frac{{12}}{7},\frac{{18}}{7},\frac{{34}}{7}} ight)

  • Câu 20: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình mặt cầu tâm I bán kính IM?

    Hình chiếu vuông góc của M trên Ox là: I(1;0;0)

    \Rightarrow IM = \sqrt{13}

    Suy ra phương trình mặt cầu tâm I bán kính IM là: (x -
1)^{2} + y^{2} + z^{2} = 13.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương pháp tọa độ trong không gian KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo