Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x + 4y + 2z + 4 = 0 và điểm M(1; - 2;3). Tính khoảng cách d từ M đến (P).

    Khoảng cách từ M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{|3.1 - 4.2
+ 2.3 + 4|}{\sqrt{3^{2} + 4^{2} + 2^{2}}} =
\frac{5}{\sqrt{29}}

  • Câu 2: Nhận biết

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} ,  \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) cắt nhau khi và chỉ khi:

     Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB}  = 0 \Rightarrow \left( D ight)và (d)  cùng nằm trong một mặt phẳng

    Để (D) và d cắt nhau, ta sẽ xét tỉ số sau:

      {a_1}:{a_2}:{a_3} e {b_1}:{b_2}:{b_3} \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} e \frac{{{a_2}}}{{{b_2}}} e \frac{{{a_3}}}{{{b_3}}} \Rightarrow \left( D ight)

    và (d) cắt nhau.

  • Câu 3: Vận dụng

    Trong không gian Oxyz, cho mặt phẳng (\alpha):x - y + z - 3 = 0. Viết phương trình mặt phẳng (\beta) sao cho phép đối xứng qua mặt phẳng (Oxy) biến mặt phẳng (\alpha) thành mặt phẳng (\beta).

    Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là A(3;0;0),B(0; - 3;0),C(0;0;3).

    Ta có A; B ∈ (Oxy)C ∈ Oz.

    Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.

    Ta có Đ(Oxy):(\alpha) ightarrow (\beta)
\Rightarrow Đ(Oxy):(A;B;C) ightarrow (A;B;C'), (ảnh của A, B trùng với chính nó vì A,B \in
(Oxy)).

    Do C’ đối xứng với C(0;0;3) qua mặt phẳng Oxy, suy ra C'(0;0; -
3)

    Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:

    \frac{x}{3} + \frac{y}{- 3} + \frac{z}{-
3} = 1 \Leftrightarrow (\beta):x - y - z - 3 = 0

  • Câu 4: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 3;4), đường thẳng d:\frac{x + 2}{3} = \frac{y - 5}{- 5} = \frac{z -
2}{- 1} và mặt phẳng (P):2x + z - 2
= 0. Viết phương trình đường thẳng \Delta qua M vuông góc với d và song song với (P).

    Đường thẳng d:\frac{x + 2}{3} = \frac{y -
5}{- 5} = \frac{z - 2}{- 1} có vec tơ chỉ phương \overrightarrow{u_{d}} = (3; - 5; -
1).

    Mặt phẳng (P):2x + z - 2 = 0 có vec tơ pháp tuyến \overrightarrow{n_{(P)}} =
(2;0;1).

    Đường thẳng ∆ vuông góc với d nên vectơ chỉ phương \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Đường thẳng ∆ song song với (P) nên \overrightarrow{u_{d}}\bot\overrightarrow{u_{\Delta}}

    Ta có \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ightbrack = ( - 5; -
5;10)

    Suy ra vec tơ chỉ phương của đường thẳng ∆ là \overrightarrow{u_{\Delta}} = \frac{-
1}{5}.\left\lbrack \overrightarrow{u_{d}};\overrightarrow{n_{(P)}}
ightbrack = (1;1; - 2)

    Vậy phương trình đường thẳng ∆ là \Delta:\frac{x - 1}{1} = \frac{y + 3}{1} = \frac{z
- 4}{- 2}.

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 7}{1} = \frac{y - 3}{2} = \frac{z- 9}{- 1};d_{2}:\frac{x - 3}{- 1} = \frac{y - 1}{2} = \frac{z -1}{3}?

    Gọi \overrightarrow{u_{1}};\overrightarrow{u_{2}} lần lượt là vectơ chỉ phương của d1 và d2 ta chọn \overrightarrow{u_{1}} = (1;2; -
1);\overrightarrow{u_{2}} = ( - 1;2;3)

    Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn M_{1}(7;\ 3;\
9);M_{2}( - 1;2;3) suy ra \overrightarrow{M_{1}M_{2}} = ( - 8; - 1; -
6)

    Khi đó \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = (8; -
2;4)\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0. Do đó (d1) và (d2) chéo nhau.

  • Câu 6: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 7: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (Q):x + 2y - z - 5 = 0 và đường thẳng d:\frac{x + 1}{2} = \frac{y + 1}{1} =
\frac{z - 3}{1}. Phương trình mặt phẳng (P) chứa đường thẳng d và tạo với mặt phẳng (Q) một góc nhỏ nhất là

    Vì (P) chứa d nên phương trình của (P) có dạng (P):a(x + 1) + b(y + 1) + c(z - 3) = 0 với \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} > 0 \\
2a + b + c = 0 \\
\end{matrix} ight..

    Gọi α là góc giữa (P) và (Q), ta có:

    \cos\alpha = \frac{\left|
\overrightarrow{n_{P}}.\overrightarrow{n_{Q}} ight|}{\left|
\overrightarrow{n_{P}} ight|.\left| \overrightarrow{n_{Q}} ight|} =
\frac{|a + 2b - c|}{\sqrt{a^{2} + b^{2} + c^{2}}.\sqrt{6}} =
\frac{\left| 3(a + b) ight|}{\sqrt{5a^{2} + 4ab +
2b^{2}}.\sqrt{6}}

    Nếu a = 0 thì \cos\alpha = \frac{\sqrt{3}}{2} \Rightarrow \alpha
= 30^{0}

    Nếu a eq 0 thì \cos\alpha = \frac{\left| 3(1 + t)
ight|}{\sqrt{6}.\sqrt{5 + 4t + 2t^{2}}};\left( t = \frac{b}{a}
ight).

    Khi đó 0 \leq \cos\alpha <
\frac{\sqrt{3}}{2}

    Ta có α nhỏ nhất khi và chỉ khi cosα lớn nhất.

    Do đó \alpha = 30^{0}\cos\alpha = \frac{\sqrt{3}}{2}.

    Khi đó a = 0, chọn b = 1,\ c = - 1.

    Vậy phương trình mặt phẳng (P) cần tìm là: (P):y - z + 4 = 0.

  • Câu 8: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (2; 1; 3) , B (6; 5; 5). Gọi (S) là mặt cầu có đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao tuyến của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rằng (P) : 2x + by + cz + d = 0 với b, c, d ∈ \mathbb{Z}. Tính giá trị T = b − c + d.

    Hình vẽ minh họa

    Ta có: \overrightarrow{AB} =
(4;4;2)\overrightarrow{AB}\bot(P) nên \frac{2}{4} = \frac{b}{4} = \frac{c}{2}
\Rightarrow \left\{ \begin{matrix}
b = 2 \\
c = 1 \\
\end{matrix} ight.

    Suy ra (P): 2x + 2y + z + d = 0.

    Ta có AB = 6. Gọi I là trung điểm của đoạn thẳng AB, suy ra I (4; 3; 4).

    Ta có (S) là mặt cầu có đường kính AB nên (S)I(4;3;4);R = \frac{AB}{2} = 3

    Gọi r là bán kính đường tròn tâm H.

    Khi đó, thể tích khối nón đỉnh cần tìm được xác định bởi công thức

    Ta có:

    V = \frac{1}{3}\pi r^{2}AH =
\frac{1}{3}\pi r^{2}(R + IH)

    = \frac{1}{3}\pi r^{2}\left( R +
\sqrt{R^{2} - r^{2}} ight)

    = \frac{1}{3}\pi r^{2}\left( 3r^{2} +
r^{2}.\sqrt{9 - r^{2}} ight)

    Đặt f(r) = 3r^{2} + r^{2}.\sqrt{9 -
r^{2}};r \in (0;3brack

    \Rightarrow f'(r) = r\left( 6 +
2\sqrt{9 - r^{2}} - \frac{r^{2}}{\sqrt{9 - r^{2}}} ight)

    \Rightarrow f'(r) = 0\Leftrightarrow \left\lbrack \begin{matrix}r = 0(ktm) \\6 + 2\sqrt{9 - r^{2}} - \dfrac{r^{2}}{\sqrt{9 - r^{2}}} = 0 \\\end{matrix} ight.

    \Leftrightarrow 2\sqrt{9 - r^{2}} =
r^{2} - 6;\left( r^{2} \geq 6 ight)

    \Leftrightarrow r^{4} - 8r^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
r = 0(L) \\
r^{2} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
r = - 2\sqrt{2}(L) \\
r = 2\sqrt{2}(tm) \\
\end{matrix} ight.

    \Rightarrow HI = \sqrt{R^{2} - r^{2}} =
1

    \Rightarrow \frac{AH}{AI} = \frac{AI +
HI}{AI} = \frac{R + HI}{R} = \frac{4}{3}

    \Rightarrow AH = \frac{4}{3}AI
\Rightarrow \overrightarrow{AH} = \frac{4}{3}\overrightarrow{AI}
\Rightarrow H\left( \frac{13}{3};\frac{11}{3};\frac{13}{3}
ight)

    H\left(
\frac{13}{3};\frac{11}{3};\frac{13}{3} ight) \in (P):2x + 2y + z + d =
0 \Rightarrow d = - 21

    Vậy T = b − c + d = −20.

  • Câu 9: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y + z - 6 = 0. Điểm nào dưới đây không thuộc mặt phẳng (\alpha)?

    Điểm M(1; - 1;1) không thuộc mặt phẳng (\alpha):x + y + z - 6 =
0.

  • Câu 10: Vận dụng

    Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;5;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y}{1} = \frac{z -
2}{2}. Gọi (P) là mặt phẳng chứa d sao cho khoảng cách từ điểm A đến (P) là lớn nhất. Khoảng cách từ gốc tọa độ O đến (P) bằng:

    Gọi K là hình chiếu vuông góc của A trên d và H là hình chiếu vuông góc của A trên (P) thì d(A,(P)) = AH ≤ AK không đổi.

    Vậy d(A,(P)) lớn nhất khi và chỉ khi H ≡ K, khi đó (P) là mặt phẳng chứa d và vuông góc với AK.

    Ta tìm được (P):x - 4y + z - 3 = 0
\Rightarrow d\left( O;(P) ight) = \frac{3}{\sqrt{18}} =
\frac{1}{\sqrt{2}}.

  • Câu 11: Nhận biết

    Trong không gian Oxyz đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} = 1 và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa mặt phẳng (\alpha) và đường thẳng \Delta bằng:

    Mặt phẳng (\alpha):x - y + 2z =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    Đường thẳng \Delta:\frac{x}{1} =
\frac{y}{2} = \frac{z}{- 1} = 1 có một vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    Gọi α là góc giữa đường thẳng \Delta và mặt phẳng (\alpha):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 12: Thông hiểu

    Khi đặt hệ tọa độ Oxyz vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu (S) (tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} + 14x + 12y - 10z + 29 =
0. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.

    Đáp án : 18km

    Đáp án là:

    Khi đặt hệ tọa độ Oxyz vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu (S) (tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} + 14x + 12y - 10z + 29 =
0. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.

    Đáp án : 18km

    Ta có x^{2} + y^{2} + z^{2} + 14x + 12y -
10z + 29 = 0

    \Leftrightarrow (x + 7)^{2} + (y + 6)^{2}
+ (z - 5)^{2} = 9^{2}.

    Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là 18km.

    Đáp số: 18km.

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x - 2y + 2z
- 19 = 0 và mặt phẳng (P):2x - y -
2z + m + 3 = 0, với m là tham số. Gọi T là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi 6\pi. Tổng giá trị của tất cả các phần tử thuộc T bằng:

    Mặt cầu (S):(x - 2)^{2} + (y - 1)^{2} +
(z + 1)^{2} = 25 có tâm I(2; 1; −1) và bán kính R = 5.

    Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.

    Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:

    d\left( I;(P) ight) = \sqrt{R^{2} -
r^{2}} = 4

    \Leftrightarrow \frac{|4 - 1 + 2 + m +
3|}{3} = 4

    \Leftrightarrow |m + 8| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = - 20 \\
\end{matrix} ight.

    Vậy tổng giá trị của các phần tử thuộc T bằng −16.

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;6; - 7);B(3;2;1). Phương trình mặt phẳng trung trực của đoạn thẳng AB là:

    Gọi (P) là mặt phẳng trung trực của đoạn thẳng AB.

    Ta có \overrightarrow{AB} = (2; -
4;8)

    Suy ra một vectơ pháp tuyến của (P)\overrightarrow{n_{(P)}} = (1; - 2;4)

    Hơn nữa, trung điểm của AB là I(2; 4; −3) thuộc mặt phẳng (P) nên

    (P):(x - 2) - 2(y - 4) + 4(z + 3) = 0

    \Leftrightarrow x - 2y + 4z + 18 =
0.

  • Câu 15: Thông hiểu

    Cho A(1;2;3) và mặt phẳng (P):x + y + z - 2 = 0. Mặt phẳng (Q) song song với mặt phẳng (P)(Q)cách điểm A một khoảng bằng 3\sqrt{3}. Phương trình mặt phẳng (Q) là:

    (P)//(Q) \Rightarrow (Q):x + y + z + d
= 0;(d eq - 2)

    d\left( A;(Q) ight) = 3\sqrt{3}
\Leftrightarrow |6 + d| = 9 \Leftrightarrow \left\lbrack \begin{matrix}
d = 3 \\
d = - 15 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
\left( Q_{1} ight):x + y + z + 3 = 0\  \\
\left( Q_{2} ight):x + y + z - 15 = 0 \\
\end{matrix} ight..

  • Câu 16: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 17: Nhận biết

    Trong không gian Oxyz, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?

    Phương trình x^{2} + z^{2} + 3x - 2y + 4z
- 1 = 0 không có y^{2}=> Loại

    Phương trình x^{2} + y^{2} + z^{2} + 2xy
- 4y + 4z - 1 = 0 có số hạng 2xy => Loại

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
2y - 4z + 8 = 0 loại vì

    a^{2} + b^{2} + c^{2} - d = 1 + 1 + 4 -
8 < 0

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
4z - 1 = 0 thỏa mãn vì

    a^{2} +
b^{2} + c^{2} - d = 1 + 0 + 4 + 1 = 6 > 0.

  • Câu 18: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng \Delta?

    Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:

    \left\{ \begin{matrix}
- 1 = 1 + 2t \\
- 4 = - 1 + 3t \\
3 = 2 - t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 \Rightarrow M( - 1; -
4;3) \in \Delta.

  • Câu 19: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P) có phương trình x - 2y + 2z - 5 = 0. Xét mặt phẳng (Q):x + (2m - 1)z + 7 = 0, với m là tham số thực. Tìm tất cả giá trị của m để (P) tạo với (Q) góc \frac{\pi}{4}.

    Ta có: (P)(Q) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{(P)}} = (1; -
2;2),\overrightarrow{n_{(Q)}} = (1;0;2m - 1)

    (P) tạo với (Q) góc \frac{\pi}{4}.

    \cos\frac{\pi}{4} = \cos\left(
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ight)

    \Leftrightarrow \frac{1}{\sqrt{2}} =
\frac{\left| 1 + 2(2m - 1) ight|}{3\sqrt{1 + (2m -
1)^{2}}}

    \Leftrightarrow 2(4m - 1)^{2} = 9\left(
4m^{2} - 4m + 2 ight)

    \Leftrightarrow 4m^{2} - 20m + 16 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 4 \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo