Trong không gian với hệ trục tọa độ
, phương trình nào sau đây không phải là phương trình của một mặt cầu?
Phương trình là phương trình của một mặt cầu nếu
.
Vậy phương trình không phải phương trình mặt cầu là:
Trong không gian với hệ trục tọa độ
, phương trình nào sau đây không phải là phương trình của một mặt cầu?
Phương trình là phương trình của một mặt cầu nếu
.
Vậy phương trình không phải phương trình mặt cầu là:
Trong không gian
, viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với trục
.
Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ .
Phương trình tổng quát của mặt phẳng (P) là
.
Trong không gian
, cho hai mặt phẳng
có các vectơ pháp tuyến là
. Góc
là góc giữa hai mặt phẳng đó
là biểu thức nào sau đây?
Theo công thức góc giữa hai mặt phẳng ta có:
Trong không gian
, cho ba mặt phẳng
lần lượt có phương trình là
. Mệnh đề nào dưới đây đúng?
Mặt phẳng (P) có một vectơ pháp tuyến là và mặt phẳng (R) có một vectơ pháp tuyến là
Do nên vectơ
không cùng phương với vectơ
.
Vậy mặt phẳng (R) cắt mặt phẳng (P).
Trong không gian với hệ tọa độ
cho mặt phẳng
và đường thẳng
. Gọi
là giao điểm của
và
và
là điểm thuộc đường thẳng
sao cho
. Tính khoảng cách từ
đến mặt phẳng
.
Gọi
Khi đó ta có:
Gọi là hình chiếu của
lên mặt phẳng
, khi đó:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Mặt phẳng (P) chứa đường thẳng
và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là
. Tính tổng ![]()
Hình vẽ minh họa
Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương
Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.
Phương trình tham số của
Lấy điểm N(1; 2; 0) ∈ ∆.
Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.
Khi đó
Lại có:
Vậy lớn nhất khi và chỉ khi H trùng với K
Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).
Vectơ pháp tuyến của (Q) là
Vectơ pháp tuyến của (P) là
Phương trình mặt phẳng (P) là
Vậy
Trong không gian với hệ tọa độ
, cho mặt phẳng
và mặt cầu
. Khẳng định nào sau đây đúng?
Mặt cầu (S) có tâm , bán kính
Ta có:
Do đó (P) cắt mặt cầu (S).
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng ![]()
. Viết phương trình của mặt phẳng
song song với trục
và chứa giao tuyến của
và
?
Mặt phẳng chứa giao tuyến của hai mặt phẳng
và
nên có dạng:
Mặt phẳng song song với trục
nên
.
Chọn n = 1 ta có
Trong không gian với hệ trục tọa độ
, cho hai đường thẳng
và
. Vị trí tương đối của
và
là
Đường thẳng d có vectơ chỉ phương và đi qua điểm M(−1; 0; 1).
Đường thẳng d’ có vectơ chỉ phương .
Hai vectơ và
cùng phương và điểm M không thuộc đường thẳng d’.
Do đó hai đường thẳng d và d’ song song với nhau.
Trong không gian với hệ tọa độ
, mặt phẳng
cắt mặt cầu
theo thiết diện là đường tròn bán kính
bằng bao nhiêu?
Mặt cầu có tâm
và bán kính
.
Khoảng cách từ tâm đến
bằng
.
Cho hai đường thẳng 
Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).
Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP
Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :
Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :
Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):
Trong không gian
đường thẳng
và mặt phẳng
. Góc giữa mặt phẳng
và đường thẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng và mặt phẳng
:
Trong không gian
, cho hai đường thẳng cắt nhau ![]()
. Trong mặt phẳng
, hãy viết phương trình đường phân giác
của góc nhọn tạo bởi ![]()
Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là
Ta có , suy ra góc giữa hai vectơ
và
là góc tù.
Lại có
Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là
Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là
Vậy phương trình đường thẳng d là:
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương và đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương. Điều kiện để đường thẳng
song song với
là:
Điều kiện để là:
.
Trong không gian với hệ trục tọa độ
, cho các điểm ![]()
và điểm
thuộc trục
sao cho hai mặt phẳng
và
vuông góc với nhau. Tính góc giữa hai mặt phẳng
và
.
Ta có: thuộc trục
.
Ta có .
Mặt phẳng có một vectơ pháp tuyến là
, mặt phẳng
có một vectơ pháp tuyến là
.
Hai mặt phẳng và
vuông góc với nhau khi và chỉ khi
Mặt phẳng có một vectơ pháp tuyến là
.
Gọi là góc giữa hai mặt phẳng
và
. Khi đó
Vậy góc cần tìm bằng
Trong không gian
, cho ba điểm
, trong đó
và
. Biết mặt phẳng
tiếp xúc với mặt cầu
. Thể tích của khối tứ diện
là:
Mặt phẳng (ABC) có phương trình là
Mặt cầu (S) có tâm là I(1; 2; 3) và bán kính . Khi đó:
Áp dụng bất đẳng thức Cauchy - Schwarz, ta có:
Dấu đẳng thức xảy ra khi a = 2b = 3c. Thay vào giả thiết ta có:
Vì OABC là tứ diện vuông tại O nên
Trong không gian với hệ tọa độ
, cho điểm
. Mặt cầu
có tâm
và đi qua hai điểm
có phương trình là:
Ta có:
Vì đi qua hai điểm
nên
Vậy phương trình mặt cầu cần tìm là: .
Trong không gian với hệ tọa độ
, cho hai đường thẳng:
và ![]()
a) Vectơ có tọa độ
là một vectơ chỉ phương của
. Sai||Đúng
b) Đường thẳng
đi qua điểm
. Đúng||Sai
c) Đường thẳng
đi qua
và vuông góc với
có phương trình tham số là
. Đúng||Sai
d) Góc giữa hai đường thẳng
và
khoảng
. Sai||Đúng
Trong không gian với hệ tọa độ , cho hai đường thẳng:
và
a) Vectơ có tọa độ là một vectơ chỉ phương của
. Sai||Đúng
b) Đường thẳng đi qua điểm
. Đúng||Sai
c) Đường thẳng đi qua
và vuông góc với
có phương trình tham số là
. Đúng||Sai
d) Góc giữa hai đường thẳng và
khoảng
. Sai||Đúng
a) Vectơ có tọa độ là một vectơ chỉ phương của
nên mệnh đề sai
b) Mệnh đề đúng
c) Gọi
nên mệnh đề đúng
d) Góc giữa hai đường thẳng luôn là góc nhọn nên mệnh đề sai
Trong không gian với hệ tọa đô
, cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các tia
lần lượt tại các điểm
sao cho thể tích tứ diện
nhỏ nhất.
đi qua điểm nào dưới đây?
Gọi với
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Mặt phẳng đi qua điểm
.
Trong không gian với hệ tọa độ
cho hai mặt phẳng
và
. Có bao nhiêu điểm
trên trục
thỏa mãn
cách đều hai mặt phẳng
và
?
Vì nên
Ta có: .
Theo giả thiết:
Vậy có 1 điểm thỏa mãn bài.