Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian Oxyz cho điểm H(1;2; - 3). Viết phương trình mặt phẳng (\alpha) đi qua H và cắt các trục tọa độ Ox,Oy,Oz tại A,B,C sao cho H là trực tâm của tam giác ABC?

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c),abc
eq 0.

    Khi đó: (\alpha):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1

    Ta có: \frac{x}{1} + \frac{y}{2} +
\frac{z}{- 3} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2;3) \\
\overrightarrow{HB} = ( - 1;b - 2;3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. vì H là trực tâm của tam giác ABC suy ra \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = 0 \\
\overrightarrow{HB}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b + 3c = 0 \\
a + 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = - 3c

    Mặt khác H \in (\alpha) \Rightarrow
\frac{1}{a} + \frac{2}{b} - \frac{3}{c} = 1 \Rightarrow \frac{1}{- 3c} +
\frac{4}{- 3c} - \frac{3}{c} = 1

    \Leftrightarrow 14 = - 3c
\Leftrightarrow c = \frac{- 14}{3} \Rightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    Vậy (\alpha):\frac{x}{14} + \frac{y}{7} +\dfrac{z}{- \dfrac{14}{3}} = 1 hay (\alpha):x + 2y - 3z - 14 = 0.

  • Câu 2: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;2; - 2),B(3; - 1;0). Đường thẳng AB cắt mặt phẳng (P):x + y - z + 2 = 0 tại điểm I. Tỉ số \frac{IA}{IB} bằng

    Ta có: \frac{IA}{IB} = \frac{d\left(
A;(P) ight)}{d\left( B;(P) ight)} =
\frac{8}{\sqrt{3}}:\frac{4}{\sqrt{3}} = 2

  • Câu 3: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x + 3y - 5z + 6 = 0(\beta):x - y + 3z - 6 = 0. Phương trình tham số của d là:

    Nhận thấy A(1;1;2),B(2; - 1;1) đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng d.

    Ta có \overrightarrow{AB} = (1; - 2; -
1) là một vectơ chỉ phương của d.

    Khi đó phương trình tham số của d là: \left\{
\begin{matrix}
x = 1 + t \\
y = 1 - 2t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 4: Nhận biết

    Cho mặt cầu S\left( {O;R} ight) và mặt phẳng (\alpha). Biết khoảng cách từ O đến (\alpha) bằng \frac{R}{2}. Khi đó thiết diện tạo bởi mặt phẳng (\alpha) với S\left( {O;R} ight) là một đường tròn có đường kính bằng:

     Tìm đường kính

    Gọi H là hình chiếu của O xuống (\alpha) .

    Ta có d\left[ {O,\left( \alpha  ight)} ight] = OH = \frac{R}{2} < R nên (\alpha) cắt S\left( {O;R} ight) theo đường tròn C\left( {H;r} ight).

    Bán kính đường tròn C\left( {H;r} ight)r = \sqrt {{R^2} - O{H^2}}  = \frac{{R\sqrt 3 }}{2}.

    Suy ra đường kính bằng R\sqrt 3.

  • Câu 5: Vận dụng cao

    Trong không gian Oxyz, cho tam giác ABC vuông tại A, \widehat{ABC} = 30^{0}, BC = 3\sqrt{2}, đường thẳng BC có phương trình \frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{-
4}, đường thẳng AB nằm trong mặt phẳng (\alpha):x + z - 3 =
0. Biết rằng đỉnh C có cao độ âm. Tìm hoành độ của đỉnh A.

    Hình vẽ minh họa:

    Tọa độ điểm B là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
\frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{- 4} \\
x + z - 3 = 0 \\
\end{matrix} ight.\  \Rightarrow B(2;3;1)

    Do C ∈ BC nên C(4 + c;5 + c; - 7 -
4c)

    Theo giả thiết BC = 3\sqrt{2} nên: 18(2 + c)^{2} = 18 \Leftrightarrow
\left\lbrack \begin{matrix}
c = - 1 \Rightarrow C(3;4; - 3) \\
c = - 3 \Rightarrow C(1;2;5) \\
\end{matrix} ight.

    Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).

    Gọi A(x;y;3 - x) \in (\alpha). Do \widehat{ABC} = 30^{0} nên:

    \left\{ \begin{matrix}
AB = \frac{3\sqrt{6}}{2} \\
AC = \frac{3\sqrt{2}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(x - 2)^{2} + (y - 3)^{2} + (2 - z)^{2} = \frac{27}{2} \\
(x - 3)^{2} + (y - 4)^{2} + (6 - z)^{2} = \frac{9}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
2x^{2} - 18x + y^{2} - 8y + \frac{113}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10x + 2y - 53 = 0 \\
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
2x^{2} - 8x + \left( \frac{53 - 10x}{2} ight)^{2} - 6.\left( \frac{53
- 10x}{2} ight) + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 4 \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Rightarrow A\left( \frac{9}{2};4; - \frac{3}{2}
ight)

    Vậy đáp án cần tìm là \frac{9}{2}.

  • Câu 6: Thông hiểu

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 - t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{2} = \frac{y - m}{1} = \frac{z
+ 2}{- 1}, (với m là tham số). Tìm m để hai đường thẳng d_{1}d_{2} cắt nhau

    Ta có:

    d_{1} đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(1; - 1;2)

    d_{2} đi qua điểm M2(1; m; −2) và có vectơ chỉ phương \overrightarrow{u_{2}} = (2;1; - 1)

    Ta có: \left\{ \begin{matrix}
\left\lbrack \overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack
= ( - 1;5;3) \\
\overrightarrow{M_{1}M_{2}} = (0;m - 2; - 5) \\
\end{matrix} ight.

    d_{1}d_{2} cắt nhau \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0

    \Leftrightarrow - 1\ .0 + 5(m - 2) - 15
= 0 \Leftrightarrow m = 5

  • Câu 7: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x-1)^2+(y-2)^2+(z-3)^2=9  tâm I và mặt phẳng (P):2x+2y-z+24=0. Gọi H là hình chiếu vuông góc của I trên (P). Điểm M thuộc (S) sao cho đoạn MH có độ dài lớn nhất. Tìm tọa độ điểm M.

     Ta có tâm I(1;2;3)  và bán kính R=3. Do d(I;(P))=9>R  nên mặt phẳng (P) không cắt mặt cầu (S) . Do H là hình chiếu của I lên (P) và MH lớn nhất nên M là giao điểm của đường thẳng IH với mp (P) .

    \overrightarrow {IH} =\vec n_{(P)}=(2;2;-1).

    Phương trình đường thẳng IH là \left\{\begin{matrix} x=1+2t \\ y=2+2t \\ z=3-t \end{matrix}ight..

    Giao điểm của IH với (S): 9t^2=9 \Leftrightarrow t=\pm 1 \Rightarrow M_1 (3;4;2) \mbox{  và } M_2 (-1;0;4)

    Suy ra:

    M_1H=d(M_1;(P))=12;

    M_2H=d(M_2;(P))=6.

    Vậy điểm cần tìm là M(3;4;2).

  • Câu 8: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} + 2x - 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Ta có:

    x^{2} + y^{2} + z^{2} + 2x - 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.( - 1)x - 2.0.y - 2.1z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 0 \\
c = 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I( - 1;0;1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{( - 1)^{2} + 0^{2} + 1^{2} - 7} = 3

  • Câu 9: Nhận biết

    Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A\left( {\,2,\,\,0,\,\,3\,} ight);\,\,\,B\left( {\,4,\,\, - 3,\,\,2\,} ight);\,\,\,C\left( {\,0,\,\,2,\,\,5\,} ight)

    Theo đề bài, ta có cặp vecto chỉ phương của \left( P ight):\overrightarrow {AB}  = \left( {2, - 3, - 1} ight);\overrightarrow {AC}  = \left( { - 2,2,2} ight)

    Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của

    \left( P ight):\overrightarrow n  = \left( { - 4, - 2, - 2} ight) =  - 2\left( {2,1,1} ight)

    Mp (P) đi qua A (2,0,3) và nhận vecto có tọa độ (2,1,1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 2} ight)2 + y.1 + \left( {z - 3} ight).1 = 0

    \Leftrightarrow 2x + y + z - 7 = 0

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{2} = \frac{y - 3}{- 1} = \frac{z -
1}{1} cắt mặt phẳng (P):2x - 3y + z
- 2 = 0 tại điểm I(a;b;c). Khi đó a + b + c bằng:

    Ta có \left\{ I ight\} = d \cap
(P) suy ra \left\{ \begin{matrix}
I \in d \\
I \in (P) \\
\end{matrix} ight.

    I \in d nên tọa độ của I có dạng (1 + 2t;3 - t;1 + t),t\mathbb{\in
R}.

    I \in (P) nên ta có phương trình:

    2(1 + 2t) - 3(3 - t) + 1 + t - 2 = 0
\Leftrightarrow t = 1

    Vậy I(3;2;2) suy ra a + b + c = 3 + 2 + 2 = 7.

  • Câu 11: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:

     \overrightarrow {AB}  = \left( { - 1,2, - 2} ight): vectơ chỉ phương của trục Ox: \overrightarrow i  = \left( {1,0,0} ight) .

    \left[ {\overrightarrow {AB} ,\overrightarrow i } ight] = \left( {0, - 2, - 2} ight): Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng y + z + D = 0, qua A nên:- 1 + 1 + D = 0 \Leftrightarrow D = 0

    Vậy ta có phương trình mp cần tìm là:  y+z=0

  • Câu 12: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2;1)

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;0)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .

    Khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|} = \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha = 60^{0}

  • Câu 14: Thông hiểu

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).

     Theo đề bài, mặt cầu (S) có tâm I\left( { - 2,1, - 3} ight) và vecto pháp tuyến của (P):\,\,\overrightarrow n  = \left( {3,2,6} ight)

    \begin{array}{l}IH \bot \left( P ight) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t\\H \in \left( P ight) \Rightarrow 3\left( { - 2 + 3t} ight) + 2\left( {1 + 2t} ight) + 6\left( { - 3 + 6t} ight) + 1 = 0 \Leftrightarrow t = \dfrac{3}{7}\\ \Rightarrow H\left( { - \dfrac{5}{7},\dfrac{{13}}{7}, - \dfrac{3}{7}} ight)\end{array}

  • Câu 15: Vận dụng

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau d_{1}:\frac{x - 3}{1} = \frac{y + 1}{- 1} =\frac{z - 4}{1},d_{2}:\frac{x - 2}{2} = \frac{y - 4}{- 1} = \frac{z +3}{4}. Viết phương trình đường vuông góc chung của d_{1},d_{2}.

    Đường thẳng d_{1},d_{2} lần lượt có vectơ chỉ phương là \overrightarrow{u_{1}} = (1; -
1;1),\overrightarrow{u_{2}} = (2; - 1;4)

    Gọi ∆ là đường vuông góc chung giữa d_{1}d_{2}, suy ra ∆ có vectơ chỉ phương \overrightarrow{u_{\Delta}} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack = ( - 3; -
2;1)

    Giả sử ∆ giao với d_{1},d_{2} lần lượt tại \left\{ \begin{matrix}
M(3 + m; - 1 - m;4 + m) \\
N(2 + 2n;4 - n; - 3 + 4n) \\
\end{matrix} ight., khi đó ta có \overrightarrow{MN} = ( - m + 2n - 1;m - n + 5; -
m + 4n - 7)

    Do ∆ là đường vuông góc chung, suy ra:

    \left\{ \begin{matrix}
\overrightarrow{u_{1}}.\overrightarrow{MN} = 0 \\
\overrightarrow{u_{2}.}\overrightarrow{MN} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3m + 7n - 13 = 0\  \\
- 7m + 21n - 35 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = - 2 \\
n = 1 \\
\end{matrix} ight.

    Từ đó suy ra đường thẳng ∆ có véc tơ chỉ phương \overrightarrow{u_{\Delta}} và đi qua điểm M(1; 1; 2).

    Vậy ta có phương trình đường thẳng: \Delta:\frac{x - 1}{3} = \frac{y - 1}{2} = \frac{z
- 2}{- 1}

  • Câu 17: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E,M lần lượt là trung điểm của các cạnh BCSA, \alpha là góc tạo bởi đường thẳng EM và mặt phẳng (SBD). Tính \tan\alpha?

    Hình vẽ minh họa

    Không mất tính tổng quát, giả sử các cạnh của hình chóp bằng 2\sqrt{2}.

    Chọn hệ trục tọa độ như hình vẽ.

    Khi đó: E(1;1;0),M(0; -
1;1),\overrightarrow{ME} = (1;2; - 1)\overrightarrow{OC} = (0;2;0) là vectơ pháp tuyến của (SBD).

    Do đó:

    \sin\alpha = \sin\left( EM,(SBD) ight)
= \left| \cos\left( \overrightarrow{EM};\overrightarrow{OC} ight)
ight| = \frac{\left| \overrightarrow{EM}.\overrightarrow{OC}
ight|}{\left| \overrightarrow{EM} ight|.\left| \overrightarrow{OC}
ight|} = \frac{2}{\sqrt{6}}

    Vậy \tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{\sin\alpha}{\sqrt{1 - \left(
\sin\alpha ight)^{2}}} = \sqrt{2}

  • Câu 18: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (Q):x + 2y - z - 5 = 0 và đường thẳng d:\frac{x + 1}{2} = \frac{y + 1}{1} =
\frac{z - 3}{1}. Phương trình mặt phẳng (P) chứa đường thẳng d và tạo với mặt phẳng (Q) một góc nhỏ nhất là

    Vì (P) chứa d nên phương trình của (P) có dạng (P):a(x + 1) + b(y + 1) + c(z - 3) = 0 với \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} > 0 \\
2a + b + c = 0 \\
\end{matrix} ight..

    Gọi α là góc giữa (P) và (Q), ta có:

    \cos\alpha = \frac{\left|
\overrightarrow{n_{P}}.\overrightarrow{n_{Q}} ight|}{\left|
\overrightarrow{n_{P}} ight|.\left| \overrightarrow{n_{Q}} ight|} =
\frac{|a + 2b - c|}{\sqrt{a^{2} + b^{2} + c^{2}}.\sqrt{6}} =
\frac{\left| 3(a + b) ight|}{\sqrt{5a^{2} + 4ab +
2b^{2}}.\sqrt{6}}

    Nếu a = 0 thì \cos\alpha = \frac{\sqrt{3}}{2} \Rightarrow \alpha
= 30^{0}

    Nếu a eq 0 thì \cos\alpha = \frac{\left| 3(1 + t)
ight|}{\sqrt{6}.\sqrt{5 + 4t + 2t^{2}}};\left( t = \frac{b}{a}
ight).

    Khi đó 0 \leq \cos\alpha <
\frac{\sqrt{3}}{2}

    Ta có α nhỏ nhất khi và chỉ khi cosα lớn nhất.

    Do đó \alpha = 30^{0}\cos\alpha = \frac{\sqrt{3}}{2}.

    Khi đó a = 0, chọn b = 1,\ c = - 1.

    Vậy phương trình mặt phẳng (P) cần tìm là: (P):y - z + 4 = 0.

  • Câu 19: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) có phương trình dạng x^{2} + y^{2} + z^{2} - 4x + 2y - 2az + 10a =
0. Tập hợp các giá trị thực của tham số a để (S) có chu vi 8\pi?

    Đường tròn lớn có chu vi là 8\pi nên bán kính của (S)\frac{8\pi}{2\pi} = 4

    Từ phương trình của (S) suy ra bán kính của (S)R = \sqrt{2^{2} + 1^{2} + a^{2} -
10a}

    Do đó \sqrt{2^{2} + 1^{2} + a^{2} - 10a}
= 4 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = 11 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: a \in \left\{ -
1;11 ight\}

  • Câu 20: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\frac{x - 1}{3} = \frac{y + 2}{- 4} = \frac{z -
3}{- 5} đi qua điểm nào sau đây?

    Thay tọa độ điểm (1; - 2;3) vào phương trình đường thẳng d ta được \frac{0}{3} = \frac{0}{- 4} = \frac{0}{-
5}, do đó điểm này thuộc đường thẳng d.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo