Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{1} = \frac{y}{- 1} =
\frac{z - 1}{- 3} và mặt phẳng (P):3x - 3y + 2z + 1 = 0. Mệnh đề nào sau đây là đúng?

    Viết lại đường thẳng d ở dạng tham số \left\{ \begin{matrix}
x = - 1 + t \\
y = - t \\
z = 1 - 3t \\
\end{matrix} ight.

    Xét phương trình 3.( - 1 + t) - 3.( - t)
+ 2.(1 - 3t) + 1 = 0 \Leftrightarrow 0 = 0

    Kết luận phương trình có vô số nghiệm \Rightarrow d \subset (P)

  • Câu 3: Vận dụng

    Trong không gian với hệ tọa đô Oxyz, cho điểm M(1;2;4). Gọi (P) là mặt phẳng đi qua M và cắt các tia Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho thể tích tứ diện O.ABC nhỏ nhất. (P) đi qua điểm nào dưới đây?

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    M \in (P) \Rightarrow (P):\frac{1}{a}
+ \frac{2}{b} + \frac{4}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{2}{b} +
\frac{4}{c} \geq 3\sqrt[3]{\frac{1.2.4}{abc}} \Rightarrow abc \geq
8.27

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq 36

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{2}{b} = \frac{4}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = 12 \\
\end{matrix} ight.

    Phương trình mặt phẳng (P)\frac{x}{3} + \frac{y}{6} + \frac{z}{12} = 1
\Rightarrow 4x + 2y + z - 12 = 0

    Mặt phẳng (P) đi qua điểm (2;2;0).

  • Câu 4: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu tâm I(2;1; - 2) bán kính R = 2 là:

    Phương trình mặt cầu tâm I(2;1; -
2) bán kính R = 2 là:

    (x - 2)^{2} + (y - 1)^{2} + (z + 2)^{2}
= 2^{2}

    Tổng quát x^{2} + y^{2} + z^{2} - 4x - 2y
+ 4z + 5 = 0.

  • Câu 5: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = - t \\
z = 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\frac{x - 1}{- 3} = \frac{y - 2}{1} =
\frac{z - 3}{2}. Vị trí tương đối của dd'

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u_{d}} = (3; - 1; - 2) và đi qua điểm M(−1; 0; 1).

    Đường thẳng d’ có vectơ chỉ phương \overrightarrow{u_{d'}} = ( -
3;1;2).

    Hai vectơ \overrightarrow{u_{d}}\overrightarrow{u_{d'}} cùng phương và điểm M không thuộc đường thẳng d’.

    Do đó hai đường thẳng d và d’ song song với nhau.

  • Câu 6: Nhận biết

    Trong không gian Oxyz, cho ba mặt phẳng (P),(Q),(R) lần lượt có phương trình là x - 4z + 8 = 0,2x - 8z = 0,y
= 0. Mệnh đề nào dưới đây đúng?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{p} = (1;0; - 4) và mặt phẳng (R) có một vectơ pháp tuyến là \overrightarrow{r} = (0;1;0)

    Do \overrightarrow{p} eq
k.\overrightarrow{r};\forall k\mathbb{\in R} nên vectơ \overrightarrow{p} không cùng phương với vectơ \overrightarrow{r}.

    Vậy mặt phẳng (R) cắt mặt phẳng (P).

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} + (z - 3)^{2} =
4. Tâm mặt cầu (S) có tọa độ là:

    Mặt cầu (S):(x - a)^{2} + (y - b)^{2} +
(z - c)^{2} = R^{2} có tâm là I(a;b;c)

    Mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} +
(z - 3)^{2} = 4 có tâm I(2; -
1;3).

  • Câu 8: Thông hiểu

    Trong không gian Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng cách lớn nhất, khi đó mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính thể tích V của khối chóp O.ABC.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng cách lớn nhất, khi đó mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính thể tích V của khối chóp O.ABC.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng

    Trong hệ tọa độ Oxyz, cho mặt phẳng (\alpha):2x + y - 2z + 9 = 0 và ba điểm A(2; 1; 0), B(0; 2; 1), C(1; 3;-1). Điểm M ∈ (α) sao cho \left| 2\overrightarrow{MA} +
3\overrightarrow{MB} - 4\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?

    Xét điểm I(a; b; c) thỏa mãn: 2\overrightarrow{IA} + 3\overrightarrow{IB} -
4\overrightarrow{IC} = \overrightarrow{0}

    Khi đó

    \left\{ \begin{matrix}
2(2 - a) - 3a - 4(1 - a) = 0\  \\
2(1 - b) + 3(2 - b) - 4(3 - b) = 0\  \\
- 2c + 3(1 - c) - 4( - 1 - c) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 0\  \\
b = - 4\  \\
c = 7 \\
\end{matrix} ight.\  \Rightarrow I(0; - 4;7)

    Khi đó:

    \left| 2\overrightarrow{MA} +
3\overrightarrow{MB} - 4\overrightarrow{MC} ight| = \left|
2\overrightarrow{MI} + 3\overrightarrow{MI} - 4\overrightarrow{MI} +
2\overrightarrow{IA} + 3\overrightarrow{IB} - 4\overrightarrow{IC}
ight| = IM

    Do đó \left| 2\overrightarrow{MA} +
3\overrightarrow{MB} - 4\overrightarrow{MC} ight| đạt giá trị nhỏ nhất thì M là hình chiếu của I trên mặt phẳng (\alpha).

    Do M(x;y;z) là hình chiếu của I trên mặt phẳng (\alpha) nên ta có:

    \left\{ \begin{matrix}
\overrightarrow{IM} = k.\overrightarrow{n} \\
M \in (\alpha) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2k\  \\
y + 4 = k\  \\
z - 7 = - 2k\  \\
2x + y - 2z + 9 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 1 \\
x = 2\  \\
y = - 3\  \\
z = 5 \\
\end{matrix} ight.

    Vậy M = (2; - 3;5) \Rightarrow x_{M} +
y_{M} + z_{M} = 4.

  • Câu 10: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M, nhận vectơ \overrightarrow{a} làm vectơ chỉ phương và đường thẳng d' đi qua điểm M', nhận vectơ \overrightarrow{a'} làm vectơ chỉ phương. Điều kiện để đường thẳng d song song với d' là:

    Điều kiện để d//d' là: \left\{ \begin{matrix}
\overrightarrow{a} = k.\overrightarrow{a'};(k eq 0) \\
M otin d' \\
\end{matrix} ight..

  • Câu 11: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(3;4;5) và mặt phẳng (P):x - y + 2z - 3 = 0. Gọi H là hình chiếu vuông góc của M lên (P). Tìm tọa độ điểm H?

    Vì H là hình chiếu vuông góc của M lên (P) nên H(3 + t;4 - t;5 + 2t)

    Điểm H thuộc mặt phẳng (P) nên ta có phương trình:

    (3 + t) - (4 - t) + 2(5 + 2t) - 3 =
0

    \Leftrightarrow t = - 1 \Leftrightarrow
H = (2;5;3)

  • Câu 12: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz ,cho đường thẳng d:\frac{x - 5}{2} = \frac{y + 7}{2} = \frac{z -
12}{- 1} và mặt phẳng (\alpha):x +
2y - 3z - 3 = 0. Gọi M là giao điểm của d(\alpha), A thuộc d sao cho AM
= \sqrt{14}. Tính khoảng cách từ A đến mặt phẳng (\alpha).

    Hình vẽ minh họa

    Đường thẳng d:\frac{x - 5}{2} = \frac{y +
7}{2} = \frac{z - 12}{- 1} có một vectơ chỉ phương là: \overrightarrow{u} = (2;2; - 1)

    Mặt phẳng (\alpha):x + 2y - 3z - 3 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1;2; - 3)

    Ta có: \sin\left( d;(\alpha) ight) =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{3\sqrt{14}}{14}

    Gọi H là hình chiếu vuông góc của A lên mặt phẳng (α).

    Khi đó tam giác ∆MAH vuông tại H nên \sin\left( d;(\alpha) ight) = \sin\widehat{AMH}
= \frac{AH}{AM}

    AH = \sin\left( d;(\alpha) ight).AM =
3

    Vậy khoảng cách từ A đến mặt phẳng (α) bằng 3.

  • Câu 13: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0. Có bao nhiêu điểm M trên trục Oy thỏa mãn M cách đều hai mặt phẳng (P)(Q)?

    M \in Oy nên M(0;y;0)

    Ta có: \left\{ \begin{matrix}d\left( M;(P) ight) = \dfrac{|y + 1|}{\sqrt{3}} \\d\left( M;(Q) ight) = \dfrac{| - y - 5|}{\sqrt{3}} \\\end{matrix} ight..

    Theo giả thiết:

    d\left( M;(P) ight) = d\left( M;(Q)
ight) \Leftrightarrow \frac{|y + 1|}{\sqrt{3}} = \frac{| - y -
5|}{\sqrt{3}}

    \Leftrightarrow \left\lbrack
\begin{matrix}
y + 1 = - y - 5 \\
y + 1 = y + 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
y = - 3(TM) \\
0y = 4(L) \\
\end{matrix} ight.

    \Rightarrow M(0; - 3;0)

    Vậy có 1 điểm M thỏa mãn bài.

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4y - 20 =
0 và mặt phẳng (\alpha):x + 2y - 2z
+ 7 = 0 cắt nhau theo một đường tròn có chu vi là:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; 2; 0) và bán kính R = 5.

    Ta có d\left( I,(\alpha) ight) = \
\frac{|1.1 + 2.2 - 2.0 + 7|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
4

    d(I,(α)) < R nên (α) cắt (S) theo giao tuyến là đường tròn (C).

    Gọi H là hình chiếu vuông góc của I trên (α) ⇒ H là tâm của (C).

    Lấy M ∈ (C) ⇒ M ∈ (S)

    Tam giác IHM vuông tại M \Rightarrow HM =
\sqrt{IM^{2} - IH^{2}} = \sqrt{5^{2} - 4^{2}} = 3

    Suy ra chu vi của đường tròn (C) bằng 2π . HM = 6π.

  • Câu 15: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có cạnh a. Góc giữa hai mặt phẳng (A'B'CD)(ACC'A') bằng:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz sao cho gốc tọa độ

    O \equiv A';Ox \equiv
A'D';Oy \equiv A'B';Oz \equiv AA'

    Khi đó: A(0;0;a),D(a;0;a),B(0;a;a),C(a;a;a)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{A'B'} = (0;a;0);\overrightarrow{A'D} =
(a;0;a) \\
\overrightarrow{A'A} = (0;0;a);\overrightarrow{A'C'} =
(a;a;0) \\
\end{matrix} ight.

    \Rightarrow \left\lbrack
\overrightarrow{A'B'};\overrightarrow{A'D} ightbrack =
\left( a^{2};0; - a^{2} ight)

    Chọn \overrightarrow{n_{1}} = (1;0; -
1) là vectơ pháp tuyến của mặt phẳng (AB'CD)

    \Rightarrow \left\lbrack
\overrightarrow{A'A};\overrightarrow{A'C'} ightbrack =
\left( - a^{2};a^{2};0 ight)

    Chọn \overrightarrow{n_{2}} = ( -
1;1;0) là vectơ pháp tuyến của mặt phẳng (ACC'A')

    Góc giữa hai mặt phẳng (A'B'CD)(ACC'A') bằng:

    \cos\alpha = \left| \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight) ight| = \frac{|
- 1|}{\sqrt{2}.\sqrt{2}} = \frac{1}{2} \Rightarrow \alpha =
60^{0}

  • Câu 16: Thông hiểu

    Cho hai mặt cầu sau:

    \left( S ight):{x^2} + {y^2} + {z^2} - 4x + 6y - 10z - 11 = 0;

    \left( {S'} ight):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0

    Xét vị trí tương đối của 2 mặt cầu?

    Tiếp xúc trong || tiếp xúc trong

    Đáp án là:

    Cho hai mặt cầu sau:

    \left( S ight):{x^2} + {y^2} + {z^2} - 4x + 6y - 10z - 11 = 0;

    \left( {S'} ight):{x^2} + {y^2} + {z^2} - 2x + 2y - 6z - 5 = 0

    Xét vị trí tương đối của 2 mặt cầu?

    Tiếp xúc trong || tiếp xúc trong

     Theo đề bài, ta suy ra các hệ số, tâm và bán kính của (S):

    \left( S ight):a = 2;\,\,b =  - 3;\,\,c = 5;\,\,d =  - 11 \Rightarrow Tâm I\left( {2, - 3,5} ight); bán kính R=7

    \left( {S'} ight) = a' = 1;\,\,b' =  - 1;\,c' = 3;\,\,d' =  - 5 \Rightarrow Tâm J\left( {1, - 1,3} ight); bán kính R'=4

    I{J^2} = {\left( {1 - 2} ight)^2} + {\left( { - 1 + 3} ight)^2} + {\left( {3 - 5} ight)^2} = 9 \Rightarrow IJ = 3 = R - R'

    (S) và (S') tiếp xúc trong.

  • Câu 17: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):8x - 4y - 8z - 11 =0,(Q):\sqrt{2}x - \sqrt{2}y + 7 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):8x - 4y - 8z - 11 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (8; - 4; -
8)

    (Q):\sqrt{2}x - \sqrt{2}y + 7 =
0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = \left( \sqrt{2}; -
\sqrt{2};0 ight)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 8.\sqrt{2} + 4.\sqrt{2} -
8.0 ight|}{\sqrt{8^{2} + ( - 4)^{2} + ( - 8)^{2}}.\sqrt{\left(
\sqrt{2} ight)^{2} + \left( - \sqrt{2} ight)^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 18: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 19: Vận dụng cao

    Cho lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác vuông tại B, AC = a\sqrt 3, góc \widehat {ACB} bằng 30^0. Góc giữa đường thẳng AB' và mặt phẳng (ABC) bằng 60^0. Bán kính mặt cầu ngoại tiếp tứ diện A'ABC bằng:

     Bán kính mặt cầu ngoại tiếp tứ diện

    Ta có {60^0} = \widehat {AB',\left( {ABC} ight)} = \widehat {AB',AB} = \widehat {B'AB}.

    Trong \Delta ABC, ta có

    AB = AC.\sin \widehat {ACB} = \frac{{a\sqrt 3 }}{2}.

    Trong \Delta B'BA, ta có

    BB' = AB.\tan \widehat {B'AB} = \frac{{3a}}{2}

    Gọi N là trung điểm AC , suy ra N là tâm đường tròn ngoại tiếp \Delta ABC.

    Gọi I  là trung điểm A'C, suy ra  IN\parallel AA' \Rightarrow IN \bot \left( {ABC} ight).

    Do đó IN là trục của \Delta ABC , suy ra IA = IB = IC.  (1)

    Hơn nữa, tam giác A'AC vuông tại A có I là trung điểm A'C nên IA'=IC=IA . (2)

    Từ (1) và (2), ta có IA'=IA=IB=IC hay I là tâm của mặt cầu ngoại tiếp hình chóp A'.ABC với bán kính R = IA' = \frac{{A'C}}{2} = \frac{{\sqrt {AA{'^2} + A{C^2}} }}{2} = \frac{{a\sqrt {21} }}{4}.

  • Câu 20: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo