Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Tìm tọa độ giao điểm của hai đường thẳng:
Theo đề bài, ta biến đổi được (b) có dạng:
Thay x, y, z vào phương trình x+2y+z =9 , ta có:
=> Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) chéo nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:
Suy ra (D) và (d) chéo nhau.
Trong không gian
, , cho hai mặt cầu
có phương trình lần lượt là
và
. Gọi
là mặt phẳng thay đổi tiếp xúc với cả hai mặt cầu
. Tính khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng
.
Hình vẽ minh họa
Mặt cầu (S1) có tâm I(2; 1; 1) và bán kính .
Mặt cầu (S2) có tâm J(2; 1; 5) và bán kính .
Gọi A, B lần lượt là hai tiếp điểm của (S1), (S2) với mặt phẳng (P).
Gọi M là giao điểm của IJ với mặt phẳng (P). Ta có:
Suy ra J là trung điểm của IM, do đó M(2; 1; 9).
Gọi véc-tơ pháp tuyến của mặt phẳng (P) là khi đó phương trình của mặt phẳng (P) là
Ta có:
Mặt khác
Áp dụng bất đẳng thức Bunhiacopxki ta có
Từ (1) và (3) ta có:
Từ (2) và (4) suy ra:
Vậy khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P) bằng .
Trong không gian với hệ toạ độ
, phương trình nào sau đây là phương trình mặt cầu
Phương trình mặt cầu tâm bán kính
có dạng:
Vậy đáp án cần tìm là: .
Cho hình vuông
có cạnh
. Trên hai tia
vuông góc và nằm cùng phía với mặt phẳng
lần lượt lấy hai điểm
sao cho
. Tính góc
giữa hai mặt phẳng
.
Cho hình vuông có cạnh
. Trên hai tia
vuông góc và nằm cùng phía với mặt phẳng
lần lượt lấy hai điểm
sao cho
. Tính góc
giữa hai mặt phẳng
.
Trong không gian
, cho mặt phẳng
. Tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm M đến mặt phẳng (P) là:
Trong hệ tọa độ
, cho đường thẳng
có vectơ chỉ phương
và mặt phẳng
có vectơ pháp tuyến
. Mệnh đề nào dưới đây đúng?
vuông góc
thì d có thể nằm trong
.
song song
thì
vuông góc
.
vuông góc
thì
cùng phương
.
Viết phương trình tổng quát của mặt phẳng
qua hai điểm
và song song với trục ![]()
Vì Vecto chỉ phương của (P) là:
Theo đề bài, ta có vecto chỉ phương thứ hai của (P) là:
Từ 2 VTCP, ta suy ra được VTPT của (P) là tích có hướng của 2 VTCT
Mp (P) đi qua và nhận vecto
làm 1 VTPT có phương trình là:
Trong không gian với hệ tọa độ
, mặt cầu
qua bốn điểm ![]()
. Phương trình mặt cầu
là:
Gọi phương trình mặt cầu có
Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình
. Suy ra tâm mặt cầu
và bán kính
Vậy phương trình mặt cầu cần tìm là:
Mặt phẳng
và đường thẳng
:
Theo đề bài, ta có vecto pháp tuyến của
Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: và
cũng có 2 VTPT lần lượt
Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT:
và tọa độ của A không thỏa mãn phương trình của (P).
Vậy (d) // (P) .
Trong không gian
, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?
Phương trình không có
=> Loại
Phương trình có số hạng
=> Loại
Phương trình loại vì
Phương trình thỏa mãn vì
.
Trong không gian tọa độ
, cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Trong hệ tọa độ
, cho mặt cầu
có đường kính
, với
. Viết phương trình
tiếp xúc với mặt cầu
tại
?
Hình vẽ minh họa
Vì mặt cầu có đường kính là AB nên tâm I của mặt cầu
là trung điểm của
.
Mặt cầu có tâm I(1; 1; 1).
Vì tiếp xúc với
tại
nên
đi qua
và nhận
làm vectơ pháp tuyến.
Suy ra
Trong không gian với hệ tọa độ
; cho điểm
. Gọi
là hình chiếu vuông góc của điểm
trên ba trục tọa độ
. Viết phương trình mặt phẳng
?
Có là hình chiếu của
lên các trục tọa độ nên mặt phẳng cần tìm là
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA = a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD. Tan của góc tạo bởi hai mặt phẳng (AMC) và (SBC) bằng:
Hình vẽ minh họa
Chọn hệ trục tọa độ sao cho , như hình vẽ:
Khi đó ta có:
và
Gọi là góc tạo bởi hai mặt phẳng
và
.
Ta có
Mà .
Suy ra .
Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(3; -1; 0) và đường thẳng d:
. Mặt phẳng
chứa d sao cho khoảng cách từ A đến lớn nhất có phương trình là:

Gọi H là hình chiếu vuông góc của A lên , K là hình chiếu vuông góc của A lên d.
Ta có: cố định và
Suy ra lớn nhất bằng AK khi
.
Ta có (d): qua M(2; -1; 1) , có VTCP
.
Gọi (P) là mặt phẳng qua A và chứa có VTPT .
Mặt phẳng có một VTPT là
và
qua M (2; -1; 1) có phương trình:
Trong không gian với hệ trục tọa độ
, cho điểm
là hình chiếu vuông góc của gốc tọa độ
xuống mặt phẳng
, số đo góc giữa mặt phẳng
và mặt phẳng
bằng bao nhiêu?
Vì là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P) nên mặt phẳng
có vectơ pháp tuyến
.
Mặt phẳng có vectơ pháp tuyến
.
Gọi là số đo góc giữa mặt phẳng
và mặt phẳng
, ta có:
Trong không gian với hệ tọa độ
, cho tam giác
có
. Đường cao kẻ từ
của tam giác
đi qua điểm nào trong các điểm sau?
Ta có:
Một vectơ chỉ phương của đường cao kẻ từ B của tam giác là
Phương trình đường cao kẻ từ B là: .
Ta thấy điểm thuộc đường thẳng trên.