Trong không gian với hệ tọa độ
, cho các điểm
. Bán kính mặt cầu ngoại tiếp tứ diện
là:
Gọi là mặt cầu ngoại tiếp tứ diện
Phương trình mặt cầu có dạng
Vì nên ta có:
Vậy bán kính mặt cầu là:
Trong không gian với hệ tọa độ
, cho các điểm
. Bán kính mặt cầu ngoại tiếp tứ diện
là:
Gọi là mặt cầu ngoại tiếp tứ diện
Phương trình mặt cầu có dạng
Vì nên ta có:
Vậy bán kính mặt cầu là:
Trong không gian tọa độ
, cho đường thẳng
và điểm
. Điểm đối xứng với điểm
qua đường thẳng
có tọa độ là:
Gọi
Vectơ chỉ phương của d là
Vì
Suy ra M(1; 1; 2), gọi A’(x; y; z) là điểm đối xứng của A qua d thì:
Điểm đối xứng với điểm qua đường thẳng
có tọa độ là:
.
Trong không gian với hệ toạ độ
, cho hai điểm
. Gọi
là mặt phẳng đi qua
sao cho khoảng cách từ
đến
là lớn nhất. Khi đó, khoảng cách
từ
đến mặt phẳng
bằng bao nhiêu?
Trong không gian với hệ toạ độ , cho hai điểm
. Gọi
là mặt phẳng đi qua
sao cho khoảng cách từ
đến
là lớn nhất. Khi đó, khoảng cách
từ
đến mặt phẳng
bằng bao nhiêu?
Trong không gian với hệ tọa độ
, mặt cầu
qua bốn điểm ![]()
. Phương trình mặt cầu
là:
Gọi phương trình mặt cầu có
Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình
. Suy ra tâm mặt cầu
và bán kính
Vậy phương trình mặt cầu cần tìm là:
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
. Phương trình tham số của
là:
Đường thẳng vuông góc với mặt phẳng
nên nhận vectơ
làm véc-tơ chỉ phương.
Suy ra, phương trình đường thẳng: .
Trong không gian Oxyz, cho mặt phẳng
và hai điểm
. Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

Gọi (Q) là mặt phẳng qua A và song song (P).
Ta có: nằm về hai phía với (P).
Gọi H là hình chiếu vuông góc của B lên (Q) BH cố định và
.
Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay .
Ta có: bé nhất bằng BH khi K trùng với điểm H.
Gọi là VTPT của (ABH)
Ta có đường thẳng d cần lập qua A, H và có VTCP là
Vậy phương trình đường thẳng d cần lập là:
Trong không gian
, cho mặt cầu
có tọa độ tâm
là:
Tâm của có tọa độ là
.
Cho hình chóp
có đáy
là tam giác vuông tại C và
. Mặt phẳng
vuông góc với đáy,
,
. Bán kính mặt cầu ngoại tiếp hình chóp
là:

Gọi M là trung điểm AB , suy ra và
.
Do đó SM là trục của tam giác ABC.
Trong mặt phẳng , kẻ đường trung trực d của đoạn SB cắt SM tại I . Khi đó I là tâm mặt cầu ngoại tiếp hình chóp
, bán kính
Ta có
Trong tam giác vuông SMB, ta có .
Ta có , suy ra
Cho hình lập phương
có cạnh
. Góc giữa hai mặt phẳng
và
bằng:
Hình vẽ minh họa
Chọn hệ trục tọa độ Oxyz sao cho gốc tọa độ
Khi đó:
Chọn là vectơ pháp tuyến của mặt phẳng
Chọn là vectơ pháp tuyến của mặt phẳng
Góc giữa hai mặt phẳng và
bằng:
Trong không gian với hệ trục
, cho mặt phẳng
và đường thẳng
. Côsin của góc tạo bởi đường thẳng
và mặt phẳng
là
Ta có:
Khi đó
Vì nên
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và đường thẳng
. Viết phương trình đường thẳng
đi qua
, đồng thời vuông góc với cả hai đường thẳng
và
.
Đường thẳng và
có vectơ chỉ phương lần lượt là
Gọi là vectơ chỉ phương của đường thẳng ∆.
Do
Mà ∆ đi qua do đó ∆ có phương trình là
.
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
thuộc
là điểm thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
bằng?
Hình vẽ minh họa
Ta có: có một vectơ chỉ phương là
Ta có cùng phương với
Mà đồng phẳng.
Xét mặt phẳng chứa và
. Gọi
là điểm đối xứng của
qua
là mặt phẳng qua
, vuông góc với
.
Khi đó, giao điểm của
với
là trung điểm của
.
có 1 vectơ pháp tuyến
đi qua
có phương trình:
Giả sử
.
Ta có khi và chỉ khi
trùng với
là giao điểm của
và
.
.
Trong không gian với hệ tọa độ
cho điểm
và hai mặt phẳng
. Viết phương trình mặt phẳng
chứa
, vuông góc với cả hai mặt phẳng
?
Gọi lần lượt là vectơ pháp tuyến của mặt phẳng
và
.
Khi đó mặt phẳng nhận vectơ
làm một vectơ pháp tuyến.
Do đó có phương trình
.
Trong không gian
cho
. Viết phương trình mặt phẳng
?
Phương trình mặt phẳng là
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Cho hai điểm
và mặt phẳng
Mặt phẳng
chứa hai điểm A,B và vuông góc với mặt phẳng
có phương trình:
Theo đề bài, ta có: ;
Suy ra ;
có vectơ pháp tuyến
Ta có cùng phương với vectơ
Chọn làm 1 vectơ pháp tuyến cho mặt phẳng
.
Phương trình mặt phẳng có dạng:
Mặt phẳng :
Trong không gian với hệ tọa độ
, cho đường thẳng
. Vectơ nào dưới đây là vectơ chỉ phương của
?
Ta có: suy ra vectơ chỉ phương của đường thẳng d là
Trong không gian tọa độ
, cho mặt phẳng
và đường thẳng
, sin của góc giữa đường thẳng
và mặt phẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P):
Trong không gian
cho hai mặt phẳng ![]()
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Trong không gian
, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính
?
Phương trình mặt cầu có bán kính
Xét phương trình mặt cầu ta có: