Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2;0;1),C( -
2;2;3). Đường thẳng \Delta qua trực tâm H của tam giác ABC và nằm trong mặt phẳng (ABC) cùng tạo với các đường thẳng AB;AC một góc \alpha < 45^{0} có một véc-tơ chỉ phương là \overrightarrow{u} =
(a;b;c) với c là số nguyên tố và a;b là số nguyên. Giá trị biểu thức ab + bc + ca bằng bao nhiêu?

    Ta có:

    \overrightarrow{AB} = (1; -
2;2);\overrightarrow{AC} = ( - 3;0;4)

    \overrightarrow{n_{(ABC)}} =
\left\lbrack \overrightarrow{AB};\overrightarrow{AC} ightbrack = ( -
8; - 10; - 6)

    \cos(AB;\Delta) = \frac{|a - 2b +
2c|}{3\sqrt{a^{2} + b^{2} + c^{2}}}

    \cos(AC;\Delta) = \frac{| - 3a +
4c|}{5\sqrt{a^{2} + b^{2} + c^{2}}}

    Theo đề bài, ta suy ra:

    \cos(AB;\Delta) =
\cos(AC;\Delta)

    \Leftrightarrow 5|a - 2b + 2c| = 3| - 3a
+ 4c|

    \Leftrightarrow \left\lbrack
\begin{matrix}
7a - 5b - c = 0\ \ \ (1) \\
2a + 5b - 11c = 0\ \ \ (2) \\
\end{matrix} ight.

    Vì ∆ ⊂ (ABC) nên \overrightarrow{u}.\overrightarrow{n_{(ABC)}} = 0
\Leftrightarrow 4a + 5b + 3c = 0\ \ (3)

    Trường hợp 1: Xét hệ phương trình:

    \left\{ \begin{matrix}7a - 5b - c = 0 \\4a + 5b + 3c = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{- 2c}{11} \\b = \dfrac{- 5c}{11} \\\end{matrix} ight.\  \Leftrightarrow \overrightarrow{u} = \left(\dfrac{- 2c}{11};\dfrac{- 5c}{11};c ight)

    Chọn c = 11, ta có \overrightarrow{u} = (
- 2; - 5;11) (kiểm tra lại điều kiện \alpha < 45^{0} ta thấy \overrightarrow{u} đang xét thỏa mãn).

    Trường hợp 2: Xét hệ phương trình

    \left\{ \begin{matrix}
2a + 5b - 11c = 0 \\
4a + 5b + 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 7c \\
b = 5c \\
\end{matrix} ight.\  \Leftrightarrow \overrightarrow{u} = ( -
7c;5c;c)

    Chọn c = 2, ta có \overrightarrow{u} = (
- 14;10;2) (kiểm tra lại điều kiện \alpha < 45^{0} ta thấy \overrightarrow{u} đang xét không thỏa mãn).

    Vậy ab + bc + ca = −67

  • Câu 2: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(0;0;1),B( - 3;2;0),C(2; - 2;3). Đường cao kẻ từ B của tam giác ABC đi qua điểm nào trong các điểm sau?

    Ta có: \overrightarrow{AB} = ( -
3;2;1),\overrightarrow{AC} = (2; - 2;2)

    \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(2;4;2)

    Một vectơ chỉ phương của đường cao kẻ từ B của tam giác ABC\overrightarrow{u} = \frac{1}{12}.\left\lbrack
\overrightarrow{n};\overrightarrow{AC} ightbrack = (1;0; -
1)

    Phương trình đường cao kẻ từ B là: \left\{ \begin{matrix}
x = - 3 + t \\
y = 2 \\
z = - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Ta thấy điểm P( - 1;2; - 2) thuộc đường thẳng trên.

  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0. Mệnh đề nào dưới đây đúng?

    Ta có điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0 nên:

    2a - b + 1 - 3 = 0 \Leftrightarrow 2a -
b = 2

  • Câu 4: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a, gọi α là góc giữa đường thẳng AB' và mặt phẳng (BB'D'D). Tính sinα.

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz với A \equiv
O(0;0;0),B(a;0;0),C(a;a;0),D(0;a;0),A^{'}(0;0;a),

    B^{'}(a;0;a),C^{'}(a;a;a),D^{'}(0;a;a)

    Ta thấy OC\bot\left( BB^{'}D^{'}D
ight)\overrightarrow{OC} =
(a;a;0) nên suy ra mặt phẳng \left(
BB^{'}D^{'}D ight) có một vec tơ pháp tuyến là \overrightarrow{n} = (1;1;0.).

    Đường thẳng A^{'}B có vectơ chỉ phương là \overrightarrow{A^{'}B} =
(a;0; - a) ta chọn \overrightarrow{u} = (1;0; - 1).

    Ta có \sin\alpha =\frac{|\overrightarrow{n} \cdot\overrightarrow{u}|}{|\overrightarrow{n}| \cdot |\overrightarrow{u}|}=\frac{|1 \cdot 1 + 1 \cdot 0 + 0 \cdot ( - 1)|}{\sqrt{1^{2} + 1^{2} +0^{2}} \cdot \sqrt{1^{2} + 0^{2} + ( - 1)^{2}}} =\frac{1}{2}.

  • Câu 5: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + y - z - 3 = 0,(\beta):2x - y + 5 =0. Viết phương trình của mặt phẳng (P) song song với trục Oz và chứa giao tuyến của (\alpha)(\beta)?

    Mặt phẳng (P) chứa giao tuyến của hai mặt phẳng (\alpha)(\beta) nên có dạng:

    m(2x + y - z - 3) + n(2x - y + 5) =
0

    \Leftrightarrow (2m + 2n)x + (m - n)y -
mz - 3m + 5n = 0

    Mặt phẳng (P) song song với trục Oz nên m = 0.

    Chọn n = 1 ta có (P):2x - y + 5 =
0

  • Câu 6: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 7: Nhận biết

    Trong không gian Oxyz, đường thẳng \Delta:\frac{x - 1}{2} = \frac{y +
2}{1} = \frac{z}{- 1} không đi qua điểm nào dưới đây?

    Ta có \frac{- 1 - 1}{2} eq \frac{2 +
2}{1} eq \frac{0}{- 1} nên điểm (
- 1;2;0) không thuộc đường thẳng \Delta.

  • Câu 8: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau d_{1}:\frac{x - 3}{1} = \frac{y + 1}{- 1} =\frac{z - 4}{1},d_{2}:\frac{x - 2}{2} = \frac{y - 4}{- 1} = \frac{z +3}{4}. Viết phương trình đường vuông góc chung của d_{1},d_{2}.

    Đường thẳng d_{1},d_{2} lần lượt có vectơ chỉ phương là \overrightarrow{u_{1}} = (1; -
1;1),\overrightarrow{u_{2}} = (2; - 1;4)

    Gọi ∆ là đường vuông góc chung giữa d_{1}d_{2}, suy ra ∆ có vectơ chỉ phương \overrightarrow{u_{\Delta}} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack = ( - 3; -
2;1)

    Giả sử ∆ giao với d_{1},d_{2} lần lượt tại \left\{ \begin{matrix}
M(3 + m; - 1 - m;4 + m) \\
N(2 + 2n;4 - n; - 3 + 4n) \\
\end{matrix} ight., khi đó ta có \overrightarrow{MN} = ( - m + 2n - 1;m - n + 5; -
m + 4n - 7)

    Do ∆ là đường vuông góc chung, suy ra:

    \left\{ \begin{matrix}
\overrightarrow{u_{1}}.\overrightarrow{MN} = 0 \\
\overrightarrow{u_{2}.}\overrightarrow{MN} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3m + 7n - 13 = 0\  \\
- 7m + 21n - 35 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = - 2 \\
n = 1 \\
\end{matrix} ight.

    Từ đó suy ra đường thẳng ∆ có véc tơ chỉ phương \overrightarrow{u_{\Delta}} và đi qua điểm M(1; 1; 2).

    Vậy ta có phương trình đường thẳng: \Delta:\frac{x - 1}{3} = \frac{y - 1}{2} = \frac{z
- 2}{- 1}

  • Câu 9: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 10: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 11: Thông hiểu

    Trong không gian Oxyz, gọi (P) là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Ta có: (Q) có một vectơ pháp tuyến là \overrightarrow{n}(1;1;1).

    Từ giả thiết, ta suy ra (P) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n};\overrightarrow{i} ightbrack = (0;1; -
1).

    Do (P) đi qua gốc tọa độ O nên phương trình của (P) là y - z = 0.

  • Câu 12: Nhận biết

    Cho mặt cầu S(O; R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC = R\sqrt 3. Khi đó khoảng cách từ O đến BC bằng:

     Gọi H là hình chiếu của O lên BC.

    Ta có OB=OC=R , suy ra H là trung điểm của BC nên HC = \frac{{CD}}{2} = \frac{{R\sqrt 3 }}{2}

    Suy ra OH = \sqrt {O{C^2} - H{C^2}}  = \frac{R}{2}.

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu tâm I(2;1; - 2) bán kính R = 2 là:

    Phương trình mặt cầu tâm I(2;1; -
2) bán kính R = 2 là:

    (x - 2)^{2} + (y - 1)^{2} + (z + 2)^{2}
= 2^{2}

    Tổng quát x^{2} + y^{2} + z^{2} - 4x - 2y
+ 4z + 5 = 0.

  • Câu 14: Thông hiểu

    Trong không gian Oxyz, cho tứ diện ABCD có tọa độ đỉnh A(2;0;0),B(0;4;0),C(0;0;6),D(2;4;6). Gọi (S) là mặt cầu ngoại tiếp tứ diện ABCD. Viết phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)?

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    (S) là mặt cầu ngoại tiếp tứ diện ABCD nên ta có hệ phương trình

    \left\{ \begin{matrix}
2^{2} + 0^{2} + 0^{2} - 2.a.2 - 2.b.0 - 2.c.0 + d = 0 \\
0^{2} + 4^{2} + 0^{2} - 2.a.0 - 2.b.4 - 2.c.0 + d = 0 \\
0^{2} + 0^{2} + 6^{2} - 2.a.0 - 2.b.0 - 2.c.6 + d = 0 \\
2^{2} + 4^{2} + 6^{2} - 2.a.2 - 2.b.4 - 2.c.6 + d = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4a + d = - 4 \\
- 8b + d = - 16 \\
- 12c + d = - 36 \\
- 4a - 8b - 12c + d = - 56 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
d = 0 \\
\end{matrix} ight.. Suy ra tâm mặt cầu I(1;2;3) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{14}

    Vậy phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)là:

    (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2}
= 56

  • Câu 15: Nhận biết

    Trong không gian Oxyz, hãy tính pq lần lượt là khoảng cách từ điểm M(5; - 2;0) đến mặt phẳng (Oxz) và mặt phẳng (P):3x - 4z + 5 = 0?

    Do mặt phẳng (Oxz) có phương trình y = 0 nên

    p = d\left( M;(Oxz) ight) = \frac{| -
2|}{\sqrt{0^{2} + 1^{2} + 0^{2}}} = 2

    Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên

    q = d\left( M;(P) ight) = \frac{|3.5 -
4.0 + 5|}{\sqrt{3^{2} + 0^{2} + ( - 4)^{2}}} = 4

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, cho điểm A(0;1;1) và hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 \\
y = - 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{3} = \frac{y - 2}{1} =
\frac{z}{1}. Gọi d là đường thẳng đi qua điểm A, cắt đường thẳng d_{1} và vuông góc với đường thẳng d_{2}. Đường thẳng d đi qua điểm nào trong các điểm dưới đây?

    Gọi \left\{ \begin{matrix}
B = d_{1} \cap d \\
B \in d_{1} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
B( - 1; - 1 + t;t) \\
\overrightarrow{AB} = ( - 1;t - 2;t - 1) \\
\end{matrix} ight.

    d_{2} có một vectơ chỉ phương \overrightarrow{u} = (3;1;1).

    Do d\bot d_{2} nên \overrightarrow{u}.\overrightarrow{AB} = 0
\Leftrightarrow - 3 + t - 2 + t - 1 = 0

    \Leftrightarrow t = 3 \Rightarrow
\overrightarrow{AB} = ( - 1;1;2)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AN} = (2;0;6);\overrightarrow{AQ} = (3;1;4) \\
\overrightarrow{AP} = ( - 2; - 4;10);\overrightarrow{AM} = (1; - 1; - 2)
\\
\end{matrix} ight.

    Suy ra đường thẳng d đi qua M.

  • Câu 17: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + z - 3 = 0 và điểm A(1;2;0). Viết phương trình đường thẳng qua A và vuông góc với (P).

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; -
2;1) nên đường thẳng cần tìm có vectơ chỉ phương là \overrightarrow{n} = (1; - 2;1).

    Vậy phương trình đường thẳng đi qua A và vuông góc với (P) là: \frac{x - 1}{1} = \frac{y - 2}{- 2} =
\frac{z}{1}

  • Câu 18: Vận dụng cao

    Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Mặt phẳng (AB'C') tạo với mặt đáy góc 60^0 và điểm G là trọng tâm tam giác ABC. Bán kính mặt cầu ngoại tiếp khối chóp G.A'B'C' bằng:

      Bán kính mặt cầu

    Gọi M là trung điểm B’C’, ta có

    {60^0} = \widehat {\left( {AB'C'} ight),\left( {A'B'C'} ight)} = \widehat {AM,A'M} = \widehat {AMA'}.

    Trong \Delta AA'M, có A'M = \frac{{a\sqrt 3 }}{2};

    AA' = A'M.\tan \widehat {AMA'} = \frac{{3a}}{2}.

    Gọi G’ là trọng tâm tam giác đều A’B’C’, suy ra G’ cũng là tâm đường tròn ngoại tiếp \Delta A'B'C'.

    Vì lặng trụ đứng nên GG' \bot \left( {A'B'C'} ight).

    Do đó GG' là trục của tam giác A'B'C'.

    Trong mặt phẳng \left( {GC'G'} ight), kẻ trung trực d của đoạn thẳng GC' cắt GG' tại I. Khi đó I là tâm mặt cầu ngoại tiếp khối chóp G.A'B'C' , bán kính R = GI

    Ta có \Delta GPI\,\backsim\,\,\,\Delta GG'C' \Rightarrow \frac{{GP}}{{GI}} = \frac{{GG'}}{{GC'}}

    \Rightarrow R = GI = \frac{{GP.GC'}}{{GG'}} = \frac{{GC{'^2}}}{{2GG'}} = \frac{{GG{'^2} + G'C{'^2}}}{{2GG'}} = \frac{{31a}}{{36}}.

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P): - \sqrt{3}x + y + 1 = 0. Tính góc tạo bởi (P) với trục Ox?

    Mặt phẳng (P): - \sqrt{3}x + y + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = \left( - \sqrt{3};1;0
ight)

    Trục Ox có một vectơ chỉ phương là \overrightarrow{i} = (1;0;0)

    Gọi α là góc giữa Ox và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 20: Thông hiểu

    Với giá trị nào của m thì mặt phẳng \left( Q ight):x + y + z + 3 = 0 cắt mặt cầu

    \left( S ight):{x^2} + {y^2} + {z^2} - 2\left( {m + 1} ight)x + 2my - 2mz + 2{m^2} + 9 = 0?

    Theo đề bài, ta xác định các hệ số của (S):

    a = m + 1;b =  - m;c = m;d = 2{m^2} + 9.

    Suy ra tâm I có tọa độ là I\left( {m + 1, - m,m} ight)

    \Rightarrow {R^2} = {\left( {m + 1} ight)^2} + {m^2} + {m^2} - 2{m^2} - 9 = {m^2} + 2m - 8 > 0

    \Rightarrow m <  - 4 \vee m > 2

    (P) cắt (S) khi:

    d\left( {I,P} ight) < R \Leftrightarrow \frac{{\left| {m + 4} ight|}}{{\sqrt 3 }} < \sqrt {{m^2} + 2m - 8}  \Leftrightarrow m <  - 4 \vee m > 5

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo