Trong không gian
, cho mặt phẳng
. Tính góc tạo bởi
với trục
?
Mặt phẳng có một vectơ pháp tuyến là
Trục có một vectơ chỉ phương là
Gọi α là góc giữa và mặt phẳng
:
Trong không gian
, cho mặt phẳng
. Tính góc tạo bởi
với trục
?
Mặt phẳng có một vectơ pháp tuyến là
Trục có một vectơ chỉ phương là
Gọi α là góc giữa và mặt phẳng
:
Trong không gian
, cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Trong không gian với hệ tọa độ
, cho đường thẳng
cắt mặt phẳng
tại điểm
. Khi đó
bằng:
Ta có suy ra
Vì nên tọa độ của I có dạng
.
Vì nên ta có phương trình:
Vậy suy ra
.
Trong hệ tọa độ
, cho mặt cầu
có tâm
và có thể tích bằng
. Khi đó phương trình mặt cầu
là:
Thể tích mặt cầu là:
Vậy phương trình mặt cầu tâm có bán kính
là:
Trong không gian với hệ tọa độ
, điểm nào sau đây không thuộc mặt phẳng
?
Dễ thấy điểm không thuộc mặt phẳng
.
Trong hệ tọa độ
, cho đường thẳng
có vectơ chỉ phương
và mặt phẳng
có vectơ pháp tuyến
. Mệnh đề nào dưới đây đúng?
vuông góc
thì d có thể nằm trong
.
song song
thì
vuông góc
.
vuông góc
thì
cùng phương
.
Trong không gian với hệ tọa độ
, cho điểm
, điểm
và mặt cầu
. Gọi
là mặt phẳng qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến
là lớn nhất. Biết
là một vectơ pháp tuyến của
. Tính
.
Mặt cầu (S) có tâm I(5; −3; 7); bán kính .
Phương trình mặt phẳng
Vì (P) và (S) tiếp xúc nhau nên:
Ta có:
Ta có:
Áp dụng BĐT Bunhiacopxki ta có
Từ (*); (**); (***) ta có:
Dấu “=” xảy ra khi và chỉ khi:
.
Trong không gian với hệ tọa độ
, cho mặt cầu
và mặt phẳng
. Mặt phẳng
song song với
và tiếp xúc với
là
Ta có:
(S) có tâm , bán kính
. (P) song song với (α)
⇒, với
Do mặt phẳng (P) tiếp xúc với (S) nên , so với điều kiện ta nhận
.
Vậy .
Trong không gian với hệ trục
, cho mặt phẳng
và đường thẳng
. Côsin của góc tạo bởi đường thẳng
và mặt phẳng
là
Ta có:
Khi đó
Vì nên
Trong không gian với hệ tọa độ
, cho các điểm
. Phương trình mặt phẳng
nào dưới đây đi qua
, gốc tọa độ
và cách đều hai điểm
và
?
Vì đi qua O nên phương trình mặt phẳng
có dạng
.
Vì A ∈ (P) và B, C cách đều (P) nên
Chọn a = −6, ta có b = 3, suy ra c = ±4.
Vậy có hai mặt phẳng thỏa mãn là hoặc
.
Trong không gian
,cho tam giác
vuông tại
,
, đường thẳng
có phương trình
, đường thẳng
nằm trên mặt phẳng
. Biết
là điểm có hoành độ dương, gọi
là tọa độ của
. Tính
?
Hình vẽ minh họa
Ta thấy đường thẳng AB có một VTCP là , mặt phẳng (α) có một VTPT là
nên góc giữa AB và (α) là
với
Suy ra
Hơn nữa, AC ⊂ (α) và BC ⊥ AC nên C là hình chiếu của B trên (α).
Ta tìm tọa độ của
Ta viết lại . Điểm A là giao điểm của AB và (α).
Xét phương trình .
Vậy .
Gọi , ta có
Suy ra t’ = −1 hoặc t’ = −3.
Mà B có hoành độ dương nên ta chọn t = −1, khi đó B(2; 3; −4).
Đường thẳng BC vuông góc với (α) nên nhận làm một VTCP, do đó
C chính là giao điểm của BC và (α).
Xét phương trình
Suy ra . Vậy
.
Trong không gian với hệ tọa độ
, đường thẳng
đi qua điểm nào sau đây?
Thay tọa độ điểm vào phương trình đường thẳng
ta được
, do đó điểm này thuộc đường thẳng
.
Trong không gian
cho mặt cầu
Đường kính của
bằng
Ta có bán kính của là
nên đường kính của
bằng
.
Trong không gian với hệ tọa độ
, cho tam giác
có
. Độ dài đường cao của tam giác
kẻ từ
là:
Ta có:
Mà
Cho hình chóp
có đáy
là hình chữ nhật với
. Cạnh bên SA vuông góc với đáy và góc giữa SC với đáy bằng
. Gọi N là trung điểm SA, h là chiều cao của khối chóp
và R là bán kính mặt cầu ngoại tiếp khối chóp
. Biểu thức liên hệ giữa R và h là:

Ta có .
Trong , ta có
Ta có .
Mặt khác, ta lại có .
Do đó hai điểm A, B cùng nhìn đoạn dưới một góc vuông nên hình chóp N.ABC nội tiếp mặt cầu tâm J là trung điểm NC, bán kính
.
Trong không gian với hệ tọa độ
, cho hai điểm
. Đường thẳng
đi qua tâm đường tròn nội tiếp tam giác
và vuông góc với mặt phẳng
. Hỏi
đi qua điểm nào dưới đây?
Ta có:
Gọi I là tâm đường tròn nội tiếp tam giác .
Phương trình đường thẳng
Đường thẳng ∆ đi qua điểm M(1; −1; 1).
Trong không gian
,cho hai đường thẳng
và
. Khoảng cách giữa hai đường thẳng
và
là:
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Khoảng cách giữa hai đường thẳng và
là:
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
và đường thẳng
. Tính góc giữa đường thẳng
và mặt phẳng
.
Ta có:
Do đó:
Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng .
Cho điểm P(-3 , 1, -1) và đường thẳng (d): ![]()
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Trong không gian với hệ tọa độ
, cho hai điểm
. Tìm tọa độ điểm
thuộc
sao cho
ngắn nhất.
Gọi là điểm sao cho
Suy ra J(2; 3; 1).
Khi đó
Vậy đạt GTNN khi và chỉ khi
đạt GTNN hay M là hình chiếu của J lên mặt phẳng (Oxy).
Vậy M(2; 3; 0).