Trong hệ tọa độ
, cho hai điểm
. Phương trình mặt phẳng trung trực của đoạn thẳng
là
Gọi là mặt phẳng trung trực của
.
Tọa độ trung điểm của là
Vectơ pháp tuyến của là
Phương trình mặt phẳng
Trong hệ tọa độ
, cho hai điểm
. Phương trình mặt phẳng trung trực của đoạn thẳng
là
Gọi là mặt phẳng trung trực của
.
Tọa độ trung điểm của là
Vectơ pháp tuyến của là
Phương trình mặt phẳng
Trong không gian với hệ tọa độ Oxyz cho đường thẳng
và mặt phẳng
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Đường thẳng d có vectơ chỉ phương là
Mặt phẳng (P) có vectơ pháp tuyến là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .
Khi đó ta có:
Trong không gian với hệ tọa độ
,cho đường thẳng
và mặt phẳng
. Gọi
là giao điểm của
và
,
thuộc
sao cho
. Tính khoảng cách từ
đến mặt phẳng
.
Hình vẽ minh họa
Đường thẳng có một vectơ chỉ phương là:
Mặt phẳng có một vectơ pháp tuyến là
Ta có:
Gọi H là hình chiếu vuông góc của A lên mặt phẳng (α).
Khi đó tam giác ∆MAH vuông tại H nên
Vậy khoảng cách từ A đến mặt phẳng (α) bằng 3.
Trong không gian
, cho hai đường thẳng
. Gọi
là tập hợp tất cả các số
sao cho
chéo nhau và khoảng cách giữa chúng bằng
. Tính tổng tất cả các phần tử của
.
Vectơ chỉ phương của là
Khi đó: .
Gọi là mặt phẳng chứa
song song với
.
Tức là, qua
và nhận
làm vectơ pháp tuyến.
Ta có phương trình
Xét điểm . Do
chéo nhau nên
.
Lại có:
Vậy tổng các phần tử của S là .
Mặt cầu (S) có tâm A(1; -2; 2) và bán kính R = 8. Tìm phương trình mặt cầu (S).
Phương trình mặt cầu tâm bán kính R có dạng:
Trong không gian
, cho mặt cầu
. Tính bán kính
của
?
Bán kính mặt cầu là:
Trong không gian với hệ trục tọa độ
, cho đường thẳng
có phương trình tham số là
Gọi vectơ chỉ phương của đường thẳng
, ta chọn
Giả sử , chọn
suy ra phương trình tham số d là:
.
Trong không gian với hệ tọa độ
, điểm nào sau đây không thuộc mặt phẳng
?
Dễ thấy điểm không thuộc mặt phẳng
.
Trong không gian
, cho mặt phẳng
và mặt cầu
tâm
bán kính
. Bán kính đường tròn giao của mặt phẳng
và mặt cầu
là:
Hình vẽ minh họa
Gọi bán kính đường tròn giao của mặt phẳng và mặt cầu
là
Ta có:
Suy ra
Trong không gian
, phương trình của mặt phẳng
đi qua điểm
, đồng thời vuông góc với hai mặt phẳng
là:
Ta có lần lượt là vectơ pháp tuyến của các mặt phẳng
.
Do mặt phẳng vuông góc với hai mặt phẳng
nên
là một vectơ pháp tuyến của
.
Từ đó suy ra mặt phẳng có phương trình
.
Trong không gian
, cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Trong không gian với hệ tọa độ
, cho điểm
, điểm
và mặt cầu
. Gọi
là mặt phẳng qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến
là lớn nhất. Biết
là một vectơ pháp tuyến của
. Tính
.
Mặt cầu (S) có tâm I(5; −3; 7); bán kính .
Phương trình mặt phẳng
Vì (P) và (S) tiếp xúc nhau nên:
Ta có:
Ta có:
Áp dụng BĐT Bunhiacopxki ta có
Từ (*); (**); (***) ta có:
Dấu “=” xảy ra khi và chỉ khi:
.
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và
là giao tuyến của hai mặt phẳng
. Vị trí tương đối của hai đường thẳng là:
Xét hệ phương trình
Cho
Cho
Đường thẳng d1 đi qua M (1; 7; 3) và có vectơ chỉ phương
Đường thẳng d2 đi qua A (3; 1; −3) và có vectơ chỉ phương
Ta có
Do đó vị trí tương đối của hai đường thẳng là cắt nhau.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng
và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa hai mặt phẳng (SBD) và (ABCD). Nếu
thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng:
Hình vẽ minh họa
Gọi .
Hình vuông có độ dài đường chéo bằng
suy ra hình vuông đó có cạnh bằng
.
Ta có .
Ta có .
Chọn hệ trục tọa độ như hình vẽ. Ta có
.
Khi đó .
Mặt phẳng có vectơ pháp tuyến
.
Mặt phẳng có vectơ pháp tuyến
.
Suy ra .
Trong không gian
, cho hai mặt phẳng
có các vectơ pháp tuyến là
. Góc
là góc giữa hai mặt phẳng đó
là biểu thức nào sau đây?
Theo công thức góc giữa hai mặt phẳng ta có:
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Viết phương trình đường thẳng
đi qua
và song song với hai mặt phẳng
?
Ta có:
Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là .
Vậy phương trình đường thẳng d là
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Cho hai đường thẳng (d1 ):
và ![]()
Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?
Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :
có vectơ chỉ phương
và qua
.
có vectơ chỉ phương
và hệ phương trình
vô nghiệm.
.
Trong không gian với hệ tọa độ
, cho các điểm
. Bán kính mặt cầu ngoại tiếp tứ diện
là:
Gọi là mặt cầu ngoại tiếp tứ diện
Phương trình mặt cầu có dạng
Vì nên ta có:
Vậy bán kính mặt cầu là:
Cho hai điểm
. Viết phương trình tổng quát của mặt phẳng
vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp
bằng
đvtt.
Vecto pháp tuyến của
Phương trình
cắt 3 trục tọa độ tại
Thể tích hình chóp là: