Trong không gian với hệ trục tọa độ
, cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Trong không gian với hệ trục tọa độ
, cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Trong không gian tọa độ
, cho hai mặt phẳng
và
. Tìm
để
vuông góc với
?
Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là .
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Cho hình lập phương
có tâm
. Gọi
là tâm của hình vuông
và điểm
sao cho
(tham khảo hình vẽ).

Khi đó cosin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng
Không mất tính tổng quát ta đặt cạnh của khối lập phương là 1.
Chọn hệ trục tọa độ sao cho A′(0;0;0), B′(1;0;0), D′(0;1;0) và A(0;0;1) (như hình vẽ)
Khi đó ta có:
Khi đó
là VTPT của mặt phẳng (MAB)
Lại có:
là VTPT của mặt phẳng (MC’D’)
Cosin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng:
Trong không gian với hệ tọa độ
, cho ba điểm
và mặt phẳng
. Điểm
nằm trên mặt phẳng
thỏa mãn
. Tính
?
Ta có
Với , ta có
Với , ta có
Từ (1); (2); (3) ta có hệ phương trình:
Trong hệ tọa độ
, điểm nào dưới đây thuộc đường thẳng
?
Dựa vào phương trình đường thẳng ta thấy đường thẳng đã cho đi qua điểm .
Trong không gian với hệ trục tọa độ
, giao điểm của mặt phẳng
và đường thẳng
là:
Gọi là giao điểm của đường thẳng d và mặt phẳng (P).
Ta có:
Suy ra .
Trong không gian với hệ tọa độ
, cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Trong không gian với hệ tọa độ , cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Trong không gian với hệ trục tọa độ
, cho điểm
và mặt phẳng
. Gọi
là hình chiếu vuông góc của
lên
. Tìm tọa độ điểm
?
Vì H là hình chiếu vuông góc của M lên (P) nên
Điểm H thuộc mặt phẳng (P) nên ta có phương trình:
Với giá trị nào của m thì mặt phẳng
cắt mặt cầu
?
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là
(P) cắt (S) khi:
Trong không gian với hệ toạ độ
, cho điểm
, Hai điểm
thay đổi sao cho
và
. Mặt phẳng
luôn tiếp xúc với một mặt cầu cố định đi qua
có bán kính là
Phương trình . Gọi
và
là tâm và bán kính mặt cầu cố định trong đề bài, phương trình mặt cầu là
.
Ta có khoảng cách từ đên
là
Vì
Nếu
Đẳng thức đúng với mọi nên
hay
, thay vào phương trình mặt cầu ta có R = 1.
Nếu
Đẳng thức đúng với mọi m ∈ (0; 1) nên hay
thay vào phương trình mặt cầu ta có
không thỏa mãn.
Vậy .
Trong không gian với hệ trục tọa độ
, cho hai đường thẳng
và
. Vị trí tương đối của
và
là
Đường thẳng d có vectơ chỉ phương và đi qua điểm M(−1; 0; 1).
Đường thẳng d’ có vectơ chỉ phương .
Hai vectơ và
cùng phương và điểm M không thuộc đường thẳng d’.
Do đó hai đường thẳng d và d’ song song với nhau.
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Trong không gian
, hãy tính
và
lần lượt là khoảng cách từ điểm
đến mặt phẳng
và mặt phẳng
?
Do mặt phẳng có phương trình y = 0 nên
Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên
Cho hai điểm
cố định trong không gian có độ dài
. Biết rằng tập hợp các điểm
trong không gian sao cho
là một mặt cầu. Bán kính mặt cầu đó bằng bao nhiêu?
Ta có:
(*)
Gọi thỏa mãn
nên
Từ (*) suy ra .
Hai đường thẳng
và ![]()
Ta có đường thẳng (d’) qua E (-1, -1, 0) có vecto chỉ phương
Hai pháp vecto của hai đường thẳng lần lượt là
Vecto chỉ phương của
Ta có: và tọa độ
thỏa mãn phương trình của
Trong không gian với hệ tọa độ
, cho mặt phẳng
và hai điểm
. Gọi
là mặt phẳng qua
và vuông góc với
. Phương trình nào là phương trình của mặt phẳng
?
Vì là mặt phẳng đi qua A, B và vuông góc với
nên mặt phẳng
nhận
làm hai vectơ chỉ phương.
Vectơ pháp tuyến của mặt phẳng là
Phương trình mặt phẳng
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và
. Mặt phẳng
qua
tạo với
một góc
và nhận vectơ
làm một vectơ pháp tuyến. Xác định tích
?
Hai đường phẳng có vectơ chỉ phương lần lượt là
Mặt phẳng (P) đi qua
Từ (1) và (2) suy ra
Trong không gian
, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính
?
Phương trình mặt cầu có bán kính
Xét phương trình mặt cầu ta có:
Trong không gian với hệ tọa độ Oxyz cho đường thẳng
và mặt phẳng
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Đường thẳng d có vectơ chỉ phương là
Mặt phẳng (P) có vectơ pháp tuyến là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .
Khi đó ta có: