Cho hai điểm
. Viết phương trình tổng quát của mặt phẳng
vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp
bằng
đvtt.
Vecto pháp tuyến của
Phương trình
cắt 3 trục tọa độ tại
Thể tích hình chóp là:
Cho hai điểm
. Viết phương trình tổng quát của mặt phẳng
vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp
bằng
đvtt.
Vecto pháp tuyến của
Phương trình
cắt 3 trục tọa độ tại
Thể tích hình chóp là:
Trong không gian
, cho điểm
thuộc mặt phẳng
. Mệnh đề nào dưới đây đúng?
Ta có điểm thuộc mặt phẳng
nên:
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và cắt đường thẳng
tại
. Tính độ dài đoạn
.
Điểm . Mặt khác
nên
Điểm .
Cho mặt cầu tâm
, bán kính
. Xét mặt phẳng
thay đổi cắt mặt cầu theo giao tuyến là đường tròn
. Hình nón
có đỉnh S nằm trên mặt cầu, có đáy là đường tròn
và có chiều cao là
. Hình trụ
có đáy là đường tròn
và có cùng chiều cao với hình nón
. Tính thể tích
khối trụ được tạo nên bởi
theo
, biết
có giá trị lớn nhất.
Hình vẽ minh họa
Gọi khoảng cách từ dến mặt phẳng
là
với
, đường tròn
có bán kính là
.
Ta có và
.
Vậy
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm là điểm
, mặt phẳng
cắt mặt cầu
theo thiết diện là đường tròn có bán kính
. Diện tích của mặt cầu
là:
Ta có:
Vậy diện tích mặt cầu là: .
Trong không gian
cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Trong không gian với hệ tọa độ
, phương trình nào dưới đây là phương trình đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
?
Đường thẳng vuông góc với mặt phẳng
nên
có một vectơ chỉ phương là
.
Phương trình là
Kiểm tra được điểm thỏa mãn hệ (*).
Vậy phương trình: cũng là phương trình của
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
và đường thẳng
. Viết phương trình đường thẳng
nằm trong mặt phẳng
cắt đồng thời vuông góc với
?
Giao điểm I của d và (α) là nghiệm của hệ phương trình:
Mặt phẳng (α) có một vectơ pháp tuyến , đường thẳng d có một vectơ chỉ phương
Khi đó đường thẳng ∆ có một vectơ chỉ phương là
Đường thẳng ∆ qua điểm I (2; 4; −2) và có một vectơ chỉ phương nên có phương trình chính tắc:
Trong không gian với hệ tọa độ
, tìm tọa độ tâm
và bán kính
của mặt cầu ![]()
Tâm của có tọa độ là
Bán kính mặt cầu là:
.
Trong không gian với hệ trục tọa độ
, mặt cầu
đi qua điểm
và cắt các tia
lần lượt tại các điểm
khác
thỏa mãn tam giác
có trọng tâm là điểm
. Tọa độ tâm của mặt cầu
là:
Gọi tọa độ các điểm trên ba tia lần lượt là
với
Vì G là trọng tâm tam giác nên
Gọi phương trình mặt cầu cần tìm là:
Vì qua các điểm
nên ta có hệ phương trình:
Vậy tọa độ tâm của mặt cầu là:
.
Trong không gian
, cho ba điểm
. Đường thẳng
qua trực tâm
của tam giác
và nằm trong mặt phẳng
cùng tạo với các đường thẳng
một góc
có một véc-tơ chỉ phương là
với
là số nguyên tố và
là số nguyên. Giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo đề bài, ta suy ra:
Vì ∆ ⊂ (ABC) nên
Trường hợp 1: Xét hệ phương trình:
Chọn c = 11, ta có (kiểm tra lại điều kiện
ta thấy
đang xét thỏa mãn).
Trường hợp 2: Xét hệ phương trình
Chọn c = 2, ta có (kiểm tra lại điều kiện
ta thấy
đang xét không thỏa mãn).
Vậy
Trong không gian với hệ tọa độ
, cho mặt phẳng
. Trong các mệnh đề sau, mệnh đề nào sai?
Mặt phẳng (P) có một véc-tơ pháp tuyến .
Ta có nên
không cùng phương với
.
Suy ra không là vectơ pháp tuyến của (P).
Vậy khẳng định sai là: “Vectơ là một véc-tơ pháp tuyến của
”.
Trong không gian với hệ tọa độ
, cho ba mặt phẳng ![]()
![]()
. Một đường thẳng d thay đổi cắt ba mặt
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Dễ dàng nhận thấy (P)//(Q)//(R).
Kẻ đường thẳng qua B vuông góc với cả 3 mặt phẳng cắt (P) tại H và cắt (Q) tại K.
Ta có
Khi đó ta có:
Vậy .
Trong không gian
, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?
Phương trình không có
=> Loại
Phương trình có số hạng
=> Loại
Phương trình loại vì
Phương trình thỏa mãn vì
.
Trong không gian với hệ tọa độ
, gọi
là đường thẳng đi qua
, thuộc mặt phẳng
và cách điểm
một khoảng nhỏ nhất. Côsin của góc giữa
và trục tung bằng
Hình vẽ minh họa
Gọi H; K lần lượt là hình chiếu của M trên mặt phẳng (Oyz) và trên đường thẳng d.
Ta có:
Suy ra nhỏ nhất khi
. Khi đó d có một vecto chỉ phương là
Khi đó:
Trong không gian
, cho hai mặt phẳng
có các vectơ pháp tuyến là
. Góc
là góc giữa hai mặt phẳng đó
là biểu thức nào sau đây?
Theo công thức góc giữa hai mặt phẳng ta có:
Trong không gian với hệ tọa độ
, đường thẳng
đi qua điểm nào dưới đây?
Nếu một điểm nằm trên một đường thẳng thì khi thay tọa độ điểm đó vào phương trình đường thẳng thì sẽ thỏa mãn phương trình đường thẳng.
Lần lượt thay tọa độ M từ các phương án vào phương trình đường thẳng d ta được M(−3; 5; 3) thỏa mãn yêu cầu bài toán.
Trong không gian tọa độ
, cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân
giác trong góc A là
. Biết rằng điểm
thuộc đường thẳng AB và điểm
thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?
Giả sử , , ta có:
Theo bài ra: Vì d là đường phân giác của góc A nên:
Từ đây ta bình phương 2 vế được:
Vậy một véc tơ chỉ phương của AC là .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
lần lượt có phương trình là
và cho điểm
. Tìm phương trình mặt phẳng
đi qua điểm
và đồng thời vuông góc với hai mặt phẳng
?
Ta có:
Do vuông góc với
nên
Chọn
Hơn nữa đi qua
nên có phương trình là: