Trong không gian với hệ tọa độ
, cho mặt phẳng
. Vectơ nào dưới đây là một vectơ pháp tuyến của
?
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến là:
Trong không gian với hệ tọa độ
, cho mặt phẳng
. Vectơ nào dưới đây là một vectơ pháp tuyến của
?
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến là:
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm nằm trên mặt phẳng
và đi qua ba điểm
. Tọa độ tâm
của mặt cầu
là:
Gọi tâm mặt cầu là và phương trình mặt cầu
Do
Lại có
Vậy là đáp án cần tìm.
Trong không gian với hệ toạ độ
, cho mặt phẳng
. Vectơ nào là vectơ pháp tuyến của mặt phẳng
?
Vectơ nào là vectơ pháp tuyến của mặt phẳng có tọa độ là
hoặc
.
Cho mặt phẳng
và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là:
Áp dụng CT, ta có (P) cắt (S)
Trong không gian với hệ tọa độ
, phương trình mặt cầu tâm
bán kính
là:
Phương trình mặt cầu tâm bán kính
là:
Tổng quát .
Trong không gian với hệ tọa độ
, cho điểm
và hai đường thẳng
. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm
, cắt
và vuông góc với
.
Gọi là đường thẳng đi qua điểm
, cắt
và vuông góc với
.
Giả sử .
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
và đường thẳng
. Tính góc giữa đường thẳng
và mặt phẳng
.
Ta có:
Do đó:
Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng .
Trong không gian với hệ tọa độ
, cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Trong không gian với hệ tọa độ , cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Phương trình nào sau đây là phương trình mặt cầu
tâm
và đi qua điểm
?
Vì mặt cầu tâm
và đi qua điểm
nên mặt cầu
nhận độ dài đoạn thẳng
làm bán kính.
Ta có:
Vậy phương trình mặt cầu cần tìm là: .
Trong không gian với hệ tọa độ
, cho các điểm
. Phương trình mặt phẳng
nào dưới đây đi qua
, gốc tọa độ
và cách đều hai điểm
và
?
Vì đi qua O nên phương trình mặt phẳng
có dạng
.
Vì A ∈ (P) và B, C cách đều (P) nên
Chọn a = −6, ta có b = 3, suy ra c = ±4.
Vậy có hai mặt phẳng thỏa mãn là hoặc
.
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Trong không gian
, cho mặt phẳng
có phương trình
. Xét mặt phẳng
, với
là tham số thực. Tìm tất cả giá trị của m để
tạo với
góc
.
Ta có: và
có vectơ pháp tuyến lần lượt là
Vì tạo với
góc
.
.
Trong không gian
, cho đường thẳng
. Điểm nào sau đây không thuộc đường thẳng
?
Thay vào
ta được:
Thay vào
ta được:
Thay vào
ta được:
hệ vô nghiệm nên
.
Thay vào
ta được:
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình mặt phẳng trung trực của đoạn thẳng
là:
Gọi (P) là mặt phẳng trung trực của đoạn thẳng AB.
Ta có
Suy ra một vectơ pháp tuyến của là
Hơn nữa, trung điểm của AB là I(2; 4; −3) thuộc mặt phẳng (P) nên
.
Cho hình hộp chữ nhật
có
trong hệ trục Oxyz sao cho A trùng với
lần lượt trùng với
. Gọi M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của giao tuyến (d) của mặt phẳng (MNP) và (xOy)
Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:
Như vậy ta tính được vecto và
theo a, b, c.
(MNP) có vecto pháp tuyến là tích có hướng của 2 vecto và
(MNP) có đi qua M và nhận làm 1 VTCP có phương trình là:
Cho hình chóp tứ giác đều S.ABCD có
. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:
Gọi O = AC ∩ BD
Tam giác SAO vuông nên suy ra
Gắn tọa độ như hình vẽ:
Ta có:
Vì G là trọng tâm tam giác SCD nên
Ta có:
Góc giữa đường thẳng BG với đường thẳng SA bằng:
Vậy đáp án cần tìm là: .
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) chéo nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:
Suy ra (D) và (d) chéo nhau.
Cho điểm P(-3 , 1, -1) và đường thẳng (d): ![]()
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Trong không gian cho ba điểm
và
. Biết mặt
phẳng qua
và tâm mặt cầu nội tiếp tứ diện
có một vectơ pháp tuyến là
. Tổng
là?
Phương trình là:
Phương trình là:
.
Phương trình là:
Phương trình là:
.
Gọi là tâm mặt cầu nội tiếp tứ diện
.
Do đó:
nằm cùng phía với A đối với
suy ra:
.
nằm cùng phía với B đối với
suy ra:
.
nằm cùng phía với C đối với
suy ra:
.
nằm cùng phía với O đối với
suy ra:
.
Suy ra:
Suy ra: ,
cùng phương với .
Suy ra có một VTPT là
.
Vậy: .
Trong không gian với hệ trục tọa độ
, cho điểm
và đường thẳng
. Tìm tọa độ hình chiếu vuông góc của
lên đường thẳng
.
Gọi (P) là mặt phẳng đi qua và vuông góc với đường thẳng d.
Suy ra (P) nhận làm vectơ pháp tuyến.
Phương trình mặt phẳng
.
Gọi H là hình chiếu vuông góc của M lên đường thẳng d, suy ra .
Tọa độ điểm H là nghiệm của hệ