Phương trình nào sau đây là phương trình mặt cầu tâm
và đi qua điểm
?
Vì mặt cầu tâm
và đi qua điểm
nên mặt cầu
nhận độ dài đoạn thẳng
làm bán kính.
Ta có:
Vậy phương trình mặt cầu cần tìm là: .
Phương trình nào sau đây là phương trình mặt cầu tâm
và đi qua điểm
?
Vì mặt cầu tâm
và đi qua điểm
nên mặt cầu
nhận độ dài đoạn thẳng
làm bán kính.
Ta có:
Vậy phương trình mặt cầu cần tìm là: .
Cho hai đường thẳng (d1 ): và
Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?
Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :
có vectơ chỉ phương
và qua
.
có vectơ chỉ phương
và hệ phương trình
vô nghiệm.
.
Trong không gian , điểm
thuộc trục
và cách đều hai mặt phẳng
và
có tọa độ là?
Ta có suy ra
.
Theo đề bài ra ta có:
Vậy .
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là:
Áp dụng CT, ta có (P) cắt (S)
Trong không gian tọa độ , cho hai mặt phẳng
và
. Tìm
để
vuông góc với
?
Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là .
Trong không gian với hệ tọa độ , cho hai điểm
. Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng
?
Ta có
Vì điểm nên
không phải là phương trình đường thẳng AB.
Các đường thẳng còn lại đều có vectơ chỉ phương là (1; 1; −5) và đi qua điểm A(2; 3; −1) hoặc đi qua điểm B(1; 2; 4).
Cho hai mặt phẳng .
Gọi là góc nhọn tạo bởi
và
thì giá trị đúng của
là:
Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:
có vectơ pháp tuyến
có vectơ pháp tuyến
Áp dụng công thức tính cosin giữa 2 vecto, ta có:
Cho tam giác ABC có . Viết phương trình tổng quát của đường trung trực (d) của cạnh BC của tam giác ABC.
Theo đề bài, ta tính được
Từ đó, suy ra VTPT của mặt phẳng (ABC) là:
Phương trình (ABC) là:
Mặt khác, ta có M là trung điểm của BC nên M có tọa độ là M (-2, 8, -5)
Phương trình mặt phẳng trung trực (P) của cạnh BC là:
Phương trình tổng quát của đường trung trực (d) của cạnh BC:
Cho hình chóp có đáy
là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên mặt phẳng
là trung điểm H của cạnh BC. Góc giữa đường thẳng SA và mặt phẳng
bằng
. Gọi G là trọng tâm tam giác SAC, R là bán kính mặt cầu có tâm G và tiếp xúc với mặt phẳng
. Đẳng thức nào sau đây sai?
Ta có .
Tam giác ABC đều cạnh a nên .
Trong tam giác vuông SHA, ta có .
Vì mặt cầu có tâm G và tiếp xúc với (SAB) nên bán kính mặt cầu .
Ta có
Gọi M, E lần lượt là trung điểm của AB và MB.
Suy ra và
.
Gọi K là hình chiếu vuông góc của H trên SE , suy ra (1).
Ta có (2)
Từ (1) và (2) , suy ra nên
.
Trong tam giác vuông SHE, ta có .
Vậy .
Trong không gian , đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Ta có một vectơ pháp tuyến của mặt phẳng là
Đường thẳng đi qua điểm và vuông góc với mặt phẳng
có một vectơ chỉ phương là
nên có phương trình là
.
Trong không gian với hệ tọa độ , mặt phẳng
cắt mặt cầu
theo giao tuyến là đường tròn có diện tích là:
Mặt cầu có tâm
và bán kính
Khoảng cách từ đến (P):
Bán kính đường tròn giao tuyến
Diện tích đường tròn giao tuyến .
Cho hình chóp có đáy
là hình vuông cạnh
,
, hình chiếu vuông góc
của S trên mặt phẳng
là trung điểm của đoạn
. Gọi
là trung điểm đoạn
(tham khảo hình vẽ)
Cho hình chóp có đáy
là hình vuông cạnh
,
, hình chiếu vuông góc
của S trên mặt phẳng
là trung điểm của đoạn
. Gọi
là trung điểm đoạn
(tham khảo hình vẽ)
Trong không gian với hệ trục tọa độ , giao điểm của mặt phẳng
và đường thẳng
là:
Gọi là giao điểm của đường thẳng d và mặt phẳng (P).
Ta có:
Suy ra .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa hai mặt phẳng (SBD) và (ABCD). Nếu
thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng:
Hình vẽ minh họa
Gọi .
Hình vuông có độ dài đường chéo bằng
suy ra hình vuông đó có cạnh bằng
.
Ta có .
Ta có .
Chọn hệ trục tọa độ như hình vẽ. Ta có
.
Khi đó .
Mặt phẳng có vectơ pháp tuyến
.
Mặt phẳng có vectơ pháp tuyến
.
Suy ra .
Trong không gian cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Trong không gian với hệ tọa độ , cho đường thẳng
. Gọi ∆’ là đường thẳng đối xứng với đường thẳng ∆ qua (Oxy). Tìm một vectơ chỉ phương của đường thẳng ∆’.
Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm A(4; 11; 0).
Ta thấy B(1; 2; 3) ∈ ∆ và B’(1; 2; −3) là điểm đối xứng của điểm B qua mặt phẳng (Oxy).
Đường thẳng ∆’ đi qua các điểm A, B’.
Ta có , từ đó suy ra
là một vectơ chỉ phương của đường thẳng ∆’.
Trong không gian với hệ tọa độ cho
và mặt phẳng
. Mặt phẳng
chứa
và vuông góc với mặt phẳng
. Tìm phương trình mặt phẳng
.
Ta có
Do mặt phẳng Q chứa A, B và vuông góc với mặt phẳng (P)
Do đó .
Trong không gian tọa độ , cho mặt phẳng
và đường thẳng
, sin của góc giữa đường thẳng
và mặt phẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P):
Cho hình lập phương có cạnh bằng
, gọi α là góc giữa đường thẳng AB' và mặt phẳng
. Tính sinα.
Hình vẽ minh họa
Chọn hệ trục tọa độ với
,
Ta thấy và
nên suy ra mặt phẳng
có một vec tơ pháp tuyến là
.
Đường thẳng có vectơ chỉ phương là
ta chọn
.
Ta có .
Trong không gian với hệ tọa độ , tìm tọa độ tâm
và bán kính
của mặt cầu
Tâm của có tọa độ là
Bán kính mặt cầu là:
.