Phương trình tổng quát của mặt phẳng đi qua
và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Phương trình tổng quát của mặt phẳng đi qua
và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng
?
Ta có
Vì điểm nên
không phải là phương trình đường thẳng AB.
Các đường thẳng còn lại đều có vectơ chỉ phương là (1; 1; −5) và đi qua điểm A(2; 3; −1) hoặc đi qua điểm B(1; 2; 4).
Trong không gian
, cho điểm
. Hỏi có bao nhiêu mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại
sao cho
?
Từ giả thiết, ta có thể coi (với
).
Khi đó, phương trình mặt phẳng (P) là .
Do (P) đi qua M(−1; 0; 3) nên .
Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.
Cũng theo trên, b = ±a, nên có 2 giá trị của b.
Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.
Cho đường thẳng
và mặt phẳng
. Mặt phẳng (P) qua d và tạo với
một góc nhỏ nhất. Một véc tơ pháp tuyến của (P) là:

Gọi ;
H là hình chiếu vuông góc của B lên ; K là hình chiếu của H lên
.
Suy ra: cố định;
.
Mà (vì
)
Suy ra nhỏ nhất bằng
khi
.
Khi đó và có một VTCP
.
Vậy (P) có một VTPT là .
Cho hình lập phương
có cạnh bằng 1 có
trùng với ba trục
. Viết phương trình mặt cầu
tiếp xúc với tất cả các cạnh của hình lập phương.
tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.
Tâm là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng
Bán kính
Trong không gian
, cho ba điểm
. Đường thẳng
qua trực tâm
của tam giác
và nằm trong mặt phẳng
cùng tạo với các đường thẳng
một góc
có một véc-tơ chỉ phương là
với
là số nguyên tố và
là số nguyên. Giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo đề bài, ta suy ra:
Vì ∆ ⊂ (ABC) nên
Trường hợp 1: Xét hệ phương trình:
Chọn c = 11, ta có (kiểm tra lại điều kiện
ta thấy
đang xét thỏa mãn).
Trường hợp 2: Xét hệ phương trình
Chọn c = 2, ta có (kiểm tra lại điều kiện
ta thấy
đang xét không thỏa mãn).
Vậy
Trong không gian với hệ tọa độ
, đường thẳng
đi qua điểm nào sau đây?
Thay tọa độ điểm vào phương trình đường thẳng
ta được
, do đó điểm này thuộc đường thẳng
.
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Mặt phẳng
vuông góc với cả
và
đồng thời cắt trục
tại điểm có hoành độ bằng
. Phương trình của mặt phẳng
là:
Ta có: (P) có vectơ pháp tuyến , (Q) có vectơ pháp tuyến
.
Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là
Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).
Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến nên (α) có phương trình
.
Khoảng cánh giữa hai đường thẳng :
và
là:
Chuyển d1 về dạng tham số :
Qua đó, ta có và 1 vectơ chỉ phương của (d1):
.
Chuyển (d2) về dạng tham số :
Qua đó, ta có và 1 vectơ chỉ phương của
Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:
.
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Trong không gian với hệ tọa độ
, cho mặt cầu
. Tính bán kính của mặt cầu
?
Phương trình mặt cầu:
với
có tâm
và bán kính
Ta có:
Khi đó
Trong không gian với hệ tọa độ
, cho ba điểm
với
. Biết rằng mặt phẳng
đi qua điểm
và tiếp xúc với mặt cầu
. Tính
.
Mặt phẳng đi qua ba điểm
nên có phương trình là:
Ta có nên
.
Mặt cầu (S) có tâm và bán kính
.
tiếp xúc với (S)
Trong không gian với hệ tọa độ
, cho điểm
và vectơ
. Viết phương trình mặt phẳng
đi qua điểm
và có vectơ pháp tuyến
.
Phương trình tổng quát của mặt phẳng (P) có dạng:
Đường thẳng (d):
có phương trình tham số là:
Ta có đường thẳng (d) qua A ( 2, -1, 4) và có vectơ chỉ phương là có phương trình tham số là:
=> (d)
Trong không gian
, cho hai mặt phẳng
có các vectơ pháp tuyến là
. Góc
là góc giữa hai mặt phẳng đó
là biểu thức nào sau đây?
Theo công thức góc giữa hai mặt phẳng ta có:
Trong không gian
, cho hai mặt phẳng
(với
là tham số thực). Khi hai mặt phẳng
và
tạo với nhau một góc nhỏ nhất thì điểm
nào dưới đây nằm trong
?
Ta có: có 1 VTPT
có 1 VTPT
.
Gọi là góc giữa
và
.
Ta có:
.
Do nên
nhỏ nhất khi
lớn nhất
nhỏ nhất
.
.
Trong không gian với hệ toạ độ
, mặt phẳng
đi qua hai điểm
và vuông góc với mặt phẳng
. Tính tổng
.
Từ giả thiết ta có hệ phương trình:
Trong không gian với hệ toạ độ
, cho điểm
. Gọi
là hình chiếu vuông góc của
trên trục
. Phương trình nào dưới đây là phương trình mặt cầu tâm
bán kính
?
Hình chiếu vuông góc của trên
là:
Suy ra phương trình mặt cầu tâm bán kính
là:
.
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Viết phương trình đường thẳng
đi qua
và song song với hai mặt phẳng
?
Ta có:
Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là .
Vậy phương trình đường thẳng d là
Trong không gian với hệ tọa độ
, cho mặt cầu ![]()
Ta có:
Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là: