Trong không gian tọa độ
, cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Trong không gian tọa độ
, cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA = a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD. Tan của góc tạo bởi hai mặt phẳng (AMC) và (SBC) bằng:
Hình vẽ minh họa
Chọn hệ trục tọa độ sao cho , như hình vẽ:
Khi đó ta có:
và
Gọi là góc tạo bởi hai mặt phẳng
và
.
Ta có
Mà .
Suy ra .
Cho 2 đường thẳng
và 
Mặt phẳng (P) chứa (d) và song song với
có phương trình tổng quát :
Phương trình (d) cho và vectơ chỉ phương của (d) là:
Phương trình cho vectơ chỉ phương của
là :
Gọi là điểm bất kỳ thuộc mặt phẳng (P) thì :
Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.
Trong không gian với hệ tọa độ
, cho
. Viết phương trình mặt phẳng trung trực của
.
Mặt phẳng trung trực nhận
làm vectơ pháp tuyến và đi qua trung điểm
của
nên ta có phương trình mặt phẳng
là:
.
Trong không gian với hệ tọa độ
, tìm tọa độ tâm
và bán kính
của mặt cầu ![]()
Tâm của có tọa độ là
Bán kính mặt cầu là:
.
Trong không gian
, cho bốn điểm
. Mặt phẳng
chứa
và song song với
có phương trình là:
Ta có .
Mặt phẳng (P) đi qua , nhận
là vectơ pháp tuyến, có phương trình là
(Thỏa mãn song song CD nên thỏa mãn đề bài).
Cho mặt phẳng
và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Cho mặt phẳng và mặt cầu
. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là:
Áp dụng CT, ta có (P) cắt (S)
Trong không gian
, đường thẳng
không đi qua điểm nào dưới đây?
Ta có nên điểm
không thuộc đường thẳng
.
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Biết điểm
thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó giá trị
bằng:
Vì nên SMAB nhỏ nhất khi d(M, AB) nhỏ nhất. Phương trình của
Dễ dàng kiểm tra AB và d chéo nhau.
Gọi H là hình chiếu của M lên đường thẳng AB.
Khi đó nhỏ nhất khi MH là đoạn vuông góc chung của d và AB.
Ta có:
Vectơ chỉ phương của d và AB theo thứ tự là
Vậy
Trong không gian
, viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với trục
.
Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ .
Phương trình tổng quát của mặt phẳng (P) là
.
Trong không gian
, cho tứ diện đều
có
và hình chiếu vuông góc của
trên mặt phẳng
là
. Tìm tọa độ tâm
của mặt cầu ngoại tiếp tứ diện
?
Gọi
là tứ diện đều nên tâm
của mặt cầu ngoại tiếp trùng với trọng tâm tứ diện
Trong không gian
, cho các điểm
và
. Mặt phẳng
đi qua các điểm
sao cho khoảng cách từ điểm
đến
gấp hai lần khoảng cách từ điểm
đến
. Hỏi có bao nhiêu mặt phẳng
thỏa mãn đề bài?
Gọi là vectơ pháp tuyến của
. Khi đó
.
Do đó
Khoảng cách từ điểm B đến gấp hai lần khoảng cách từ điểm A đến
(luôn đúng)
Vậy có vô số mặt phẳng .
Trong không gian với hệ tọa độ Oxyz cho đường thẳng
và mặt phẳng
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Đường thẳng d có vectơ chỉ phương là
Mặt phẳng (P) có vectơ pháp tuyến là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .
Khi đó ta có:
Trong không gian với hệ tọa độ
, đường thẳng
đi qua điểm nào sau đây?
Thay tọa độ điểm vào phương trình đường thẳng
ta được
, do đó điểm này thuộc đường thẳng
.
Trong không gian với hệ trục tọa độ
, cho điểm
là hình chiếu vuông góc của gốc tọa độ
xuống mặt phẳng
, số đo góc giữa mặt phẳng
và mặt phẳng
bằng bao nhiêu?
Vì là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P) nên mặt phẳng
có vectơ pháp tuyến
.
Mặt phẳng có vectơ pháp tuyến
.
Gọi là số đo góc giữa mặt phẳng
và mặt phẳng
, ta có:
Trong không gian với hệ trục toạ độ
, tìm tất cả giá trị tham số
để đường thẳng
song song với mặt phẳng
.
Ta có:
qua điểm
và có VTCP là
(P) có VTPT là
Vì d // (P) nên
Với (loại).
Với (thỏa mãn).
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và cắt đường thẳng
tại
. Tính độ dài đoạn
.
Điểm . Mặt khác
nên
Điểm .
Trong hệ tọa độ
, cho mặt cầu
và mặt phẳng
. Gọi
là mặt phẳng song song với
và cắt
theo thiết diện là đường tròn
sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi
có thể tích lớn nhất. Phương trình của mặt phẳng
là
Hình vẽ minh họa
Mặt cầu (S) có tâm I(1; −2; 3) và bán kính
Gọi r là bán kính đường tròn (C) và H là hình chiếu của I lên (Q).
Đặt IH = x ta có:
Vậy thể tích khối nón tạo được là:
Gọi ta có:
chỉ có
Ta có bảng biến thiên như sau:
Vậy khi
Mặt phẳng (Q) // (P) nên
Vậy
Vậy mặt phẳng (Q) có phương trình hoặc
Trong không gian với hệ tọa độ
cho ba điểm
và
là trực tâm tam giác
. Tính
?
Ta có:
Lại có:
Cho mặt cầu tâm I bán kính
. Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng
. Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:
Theo đề bài, mặt phẳng cắt mặt cầu theo một đường tròn
.
Vậy .