Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:

     \overrightarrow {AB}  = \left( { - 1,2, - 2} ight): vectơ chỉ phương của trục Ox: \overrightarrow i  = \left( {1,0,0} ight) .

    \left[ {\overrightarrow {AB} ,\overrightarrow i } ight] = \left( {0, - 2, - 2} ight): Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng y + z + D = 0, qua A nên:- 1 + 1 + D = 0 \Leftrightarrow D = 0

    Vậy ta có phương trình mp cần tìm là:  y+z=0

  • Câu 2: Nhận biết

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 3: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + 3y - z - 1 = 0(\beta):4x + 6y - mz - 2 = 0. Tìm m để hai mặt phẳng (\alpha)(\beta) song song với nhau.

    Mặt phẳng (\alpha) có vectơ pháp tuyến \overrightarrow{n_{1}} = (2;3; -
1)

    Mặt phẳng (\beta) có vectơ pháp tuyến \overrightarrow{n_{2}} = (4;6; -
m)

    Để (\alpha)//(\beta) thì \frac{2}{4} = \frac{3}{6} = \frac{- 1}{- m} eq
\frac{- 1}{- 2}

    Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 4: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Ta có:

    x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.0.x - 2.1y - 2.( - 1)z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = - 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I(0;1; - 1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{0^{2} + 1^{2} + ( - 1)^{2} - 7} = 3

  • Câu 5: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 6: Vận dụng cao

    Trong không gian Oxyz, cho ba điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c), trong đó a > 0, b > 0, c > 0\frac{1}{a} + \frac{2}{b} +
\frac{3}{c} = 7. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S): (x − 1)^2 + (y − 2)^2 + (z − 3)^2 = 72/7. Thể tích của khối tứ diện OABC là:

    Mặt phẳng (ABC) có phương trình là \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

    Mặt cầu (S) có tâm là I(1; 2; 3) và bán kính R =
\sqrt{\frac{72}{7}}. Khi đó:

    d\left( I;(ABC) ight) = \dfrac{\left|\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} ight|}{\sqrt{\dfrac{1}{a^{2}} +\dfrac{1}{b^{2}} + \dfrac{1}{c^{2}}}} = \sqrt{\dfrac{72}{7}}

    \Leftrightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} = \frac{7}{2}

    Áp dụng bất đẳng thức Cauchy - Schwarz, ta có:

    49 = \left( \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} ight)^{2} \leq \left( 1^{2} + 2^{2} + 3^{2} ight)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} ight) =
\frac{7}{2}.14 = 49

    Dấu đẳng thức xảy ra khi a = 2b = 3c. Thay vào giả thiết ta có:

    a = 2;b = 1;c = \frac{2}{3}

    Vì OABC là tứ diện vuông tại O nên V_{OABC} = \frac{abc}{2} =
\frac{2}{9}

  • Câu 7: Thông hiểu

    Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với A\left( {\,1,\,\,4,\,\,3\,} ight);\,\,B\left( {\,3,\,\, - 6,\,\,5\,} ight).

    Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là: I\left( {2, - 1,4} ight)

    Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận \vec{AB} làm 1 VTPT. Ta có VTPT của \left( P ight):\,\,\overrightarrow {AB}  = 2\left( {1, - 5,1} ight)

    \Rightarrow \left( P ight):\left( {x - 2} ight)1 + \left( {y + 1} ight)\left( { - 5} ight) + \left( {z - 4} ight).1 = 0

    \Leftrightarrow x - 5y + z - 11 = 0

  • Câu 8: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) có phương trình dạng x^{2} + y^{2} + z^{2} - 4x + 2y - 2az + 10a =
0. Tập hợp các giá trị thực của tham số a để (S) có chu vi 8\pi?

    Đường tròn lớn có chu vi là 8\pi nên bán kính của (S)\frac{8\pi}{2\pi} = 4

    Từ phương trình của (S) suy ra bán kính của (S)R = \sqrt{2^{2} + 1^{2} + a^{2} -
10a}

    Do đó \sqrt{2^{2} + 1^{2} + a^{2} - 10a}
= 4 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = 11 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: a \in \left\{ -
1;11 ight\}

  • Câu 9: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 10: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
2}{2}. Tìm tọa độ hình chiếu vuông góc của M lên đường thẳng d.

    Gọi (P) là mặt phẳng đi qua M(2;0;1) và vuông góc với đường thẳng d.

    Suy ra (P) nhận \overrightarrow{u_{d}} =
(1;2;1) làm vectơ pháp tuyến.

    Phương trình mặt phẳng

    (P):(x - 2) + 2y + z - 1 =
0

    \Leftrightarrow x + 2y + z - 3 =
0.

    Gọi H là hình chiếu vuông góc của M lên đường thẳng d, suy ra H = d \cap (P).

    Tọa độ điểm H là nghiệm của hệ

    \left\{ \begin{matrix}\dfrac{x - 1}{1} = \dfrac{y}{2} = \dfrac{z - 2}{2} \\x + 2y + z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2x - y = 2 \\y - 2z = - 4 \\x + 2y + z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 1 \\y = 0 \\z = 2 \\\end{matrix} ight.

  • Câu 11: Thông hiểu

    Tìm tập hợp các tâm I của mặt cầu sau nằm trên?

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {1 - m} ight)x + 2\left( {3 - 2m} ight)y + 2\left( {m - 2} ight)z + 5{m^2} - 9m + 6 = 0

    Theo đề bài, ta xác định các hệ số của (S)

    a = m - 1;\,\,b = 2m - 3;\,\,c = 2 - m;\,\,d = 5{m^2} - 9m + 6

    Suy ra ta gọi được tâm I của mặt cầu có tọa độ là I\left( {x = m - 1;y = 2m - 3;z = 2 - m} ight)

    \Rightarrow x + 1 = \frac{{y + 3}}{2} = 2 - z

    Xét (S) là mặt cầu \Leftrightarrow {\left( {m - 1} ight)^2} + {\left( {2m - 3} ight)^2} + {\left( {2 - m} ight)^2} - 5{m^2} + 9m - 6 > 0

    \begin{array}{l} \Leftrightarrow {m^2} - 9m + 8 > 0 \Leftrightarrow m < 1 \vee m > 8\\ \Leftrightarrow m - 1 < 0 \vee m - 1 > 7 \Leftrightarrow x < 0 \vee x > 7\end{array}

    Vậy tập hợp các điểm I là phân đường thẳng  x + 1 = \frac{{y + 3}}{2} = 2 - z

    tương ứng với x < 0\,\,\, \vee \,\,\,x > 7.

  • Câu 12: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} = \frac{y - 2}{- 2} =
\frac{z + 1}{- 1}d_{2}:\left\{
\begin{matrix}
x = t \\
y = 0 \\
z = - t \\
\end{matrix} ight.. Mặt phẳng (P) qua d_{1} tạo với d_{2} một góc 45^{0} và nhận vectơ \overrightarrow{n} = (1;b;c) làm một vectơ pháp tuyến. Xác định tích b.c?

    Hai đường phẳng d_{1};d_{2} có vectơ chỉ phương lần lượt là \overrightarrow{u_{1}} = (2; - 2; -
1),\overrightarrow{u_{2}} = (1;0 - 1)

    Mặt phẳng (P) đi qua d_{1} \Rightarrow
\overrightarrow{n}.\overrightarrow{u_{1}} = 0 \Leftrightarrow 2 - 2b - c
= 0\ \ (1)

    \Rightarrow \sin\left( d_{2};(P) ight)= \frac{\left| \overrightarrow{n}.\overrightarrow{u_{2}} ight|}{\left|\overrightarrow{n} ight|.\left| \overrightarrow{u_{2}} ight|} =\sin45^{0}

    \Leftrightarrow \frac{|1 -
c|}{\sqrt{b^{2} + c^{2} + 1}.\sqrt{2}} = \frac{\sqrt{2}}{2}

    \Leftrightarrow |1 - c| = \sqrt{b^{2} +
c^{2} + 1} \Leftrightarrow b^{2} + 2c = 0(2)

    Từ (1) và (2) suy ra \Rightarrow \left\{
\begin{matrix}
b = 2 \\
c = - 2 \\
\end{matrix} ight.\  \Rightarrow bc = - 4

  • Câu 13: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 14: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) là:

    Phương trình đường thẳng đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) nên có phương trình: \frac{x - 2}{2} = \frac{y}{-
3} = \frac{z + 1}{1}.

  • Câu 15: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    Ta có:

    x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    \Leftrightarrow (x - 4)^{2} + (y +
1)^{2} + z^{2} = 16

    Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là: I(4; - 1;0),R = 4

  • Câu 16: Thông hiểu

    Trong không gian tọa độ Oxyz, cho đường thẳng d:\frac{x + 1}{1} = \frac{y
+ 3}{2} = \frac{z + 2}{2} và điểm A(3;2;0). Điểm đối xứng với điểm A qua đường thẳng d có tọa độ là:

    Gọi M( - 1 + t; - 3 + 2t; - 2 + 2t) \in
d

    \Rightarrow AH = (t - 4;2t - 5;2t -
2)

    Vectơ chỉ phương của d là \overrightarrow{u} = (1;2;2)

    \overrightarrow{u}\bot\overrightarrow{AH}
\Rightarrow \overrightarrow{u}.\overrightarrow{AH} = 0

    \Leftrightarrow 1(t - 4) + 2(2t - 5) +
2(2t - 2) = 0 \Leftrightarrow t = 2

    Suy ra M(1; 1; 2), gọi A’(x; y; z) là điểm đối xứng của A qua d thì: \left\{ \begin{matrix}
x = 2.1 - 3 = - 1 \\
y = 2.1 - 2 = 0 \\
z = 2.2 - 0 = 4 \\
\end{matrix} ight.

    Điểm đối xứng với điểm A qua đường thẳng d có tọa độ là: ( - 1;0;4).

  • Câu 17: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA⊥ (ABCD) và SA = a. Gọi E và F lần lượt là trung điểm của SB, SD. Côsin của góc hợp bới hai mặt phẳng (AEF) và (ABCD) là

    Chọn hệ trục tọa độ Oxyz sao cho A≡ O, B∈Ox, D∈Oy, S∈Oz.

    \Rightarrow
B(a;0;0),D(0;a;0),S(0;0;a)

    \Rightarrow E\left(
\frac{a}{2};0;\frac{a}{2} ight),F\left( 0;\frac{a}{2};\frac{a}{2}
ight)

    \Rightarrow \overrightarrow{AE} = \left(
\frac{a}{2};0;\frac{a}{2} ight);\overrightarrow{AF} = \left(
0;\frac{a}{2};\frac{a}{2} ight)

    Vectơ pháp tuyến của mp(AEF) là \overrightarrow{n_{1}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AF} ightbrack = \left( \frac{-
a}{4};\frac{- a}{4};\frac{a}{4} ight)

    \Rightarrow \overrightarrow{n_{1}} =
(1;1; - 1)

    Vectơ pháp tuyến của mp(ABCD) là: \overrightarrow{n_{2}} = \overrightarrow{AS} =
(0;0;a)

    \Rightarrow \overrightarrow{n_{2}} =
(0;0;1)

    Vậy côsin góc giữa 2 mặt phẳng (AEF) và (ABCD) là:

    \cos\left( (AEF);(ABCD) ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{1}{\sqrt{3}} =
\frac{\sqrt{3}}{3}

  • Câu 18: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân

    giác trong góc A là \frac{x}{1}=\frac{y-6}{-4}=\frac{z-6}{-3}.  Biết rằng điểm M(0; 5; 3) thuộc đường thẳng AB và điểm N(1;1;0)thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?

    Giả sử , A(t; 6-4t; 6-3t), ta có:

    \vec{u_d}=(1; -4; -3),

    \vec{AM}=(-t;4t-1;-3+3t)

    \vec{AN}=(1-t;-5+4t;3t-6)

    Theo bài ra: Vì d là đường phân giác của góc A nên:

    \left | \cos(\vec{u_d}, \vec{AM}) ight |= \left | \cos(\vec{u_d}, \vec{AN}) ight |

    \Leftrightarrow \dfrac{\left | 26t-13 ight |}{\sqrt{26t^2 -26t+10} } =\dfrac{\left | 26t-39 ight |}{\sqrt{26t^2 -78t+62} }

    \Leftrightarrow \dfrac{\left | 2t-1 ight |}{\sqrt{13t^2 -13t+5} } =\dfrac{\left | 2t-3 ight |}{\sqrt{13t^2 -39t+31} }

    Từ đây ta bình phương 2 vế được:

    (4t^2-4t+1)(13t^2-39t+31)=(4t^2-12t+9)(13t^2-13t+5)

    \Leftrightarrow 14t=14

    \Leftrightarrow t=1

    \Rightarrow A(1;2;3)\Rightarrow \vec{AN}=(0; -1; -3)

    Vậy một véc tơ chỉ phương của AC  là  \vec{u}(0;1;3).

  • Câu 20: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho hình vuông ABCD biết A(1; 0; 1), B(−3; 0; 1) và điểm D có cao độ âm. Mặt phẳng (ABCD) đi qua gốc tọa độ O. Khi đó đường thẳng d là trục của đường tròn ngoại tiếp hình vuông ABCD có phương trình là:

    Ta có:

    \left\lbrack
\overrightarrow{AB};\overrightarrow{AO} ightbrack = (0; -
4;0) Mặt phẳng (ABCD) đi qua điểm A và nhận \overrightarrow{n} = (0;1;0) làm vectơ pháp tuyến nên có phương trình y = 0.

    Giả sử D\left( x_{D},\ y_{D},\ z_{D}
ight). Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AD}.\overrightarrow{AB} = 0 \\
\left| \overrightarrow{AD} ight| = \left| \overrightarrow{AB} ight|
\\
D \in (ABCD) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{D} = 0 \\
\left( x_{D} - 1 ight)^{2} + {y_{D}}^{2} + \left( z_{D} - 1
ight)^{2} = 16 \\
y_{D} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{D} = 0 \\
\left( z_{D} - 1 ight)^{2} = 16 \\
y_{D} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{D} = 0 \\
\left\lbrack \begin{matrix}
z_{D} = 5 \\
z_{D} = - 3 \\
\end{matrix} ight.\  \\
y_{D} = 0 \\
\end{matrix} ight.

    Vì D có cao độ âm nên D(1; 0; −3). Khi đó, tâm I của hình vuông ABCD có tọa độ I(−1; 0; −1).

    Trục của đường tròn ngoại tiếp hình vuông ABCD đi qua I(−1; 0; −1) và nhận \overrightarrow{n} = (0;1;0) làm vectơ chỉ phương nên có phương trình \left\{ \begin{matrix}
x = - 1 \\
y = t \\
z = - 1 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo