Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian Oxyz, biết hình chiếu của O lên mặt phẳng (P)H(2; -
1; - 2). Số đo góc giữa mặt phẳng (P) với mặt phẳng (Q):x - y - 5 = 0

    Mặt phẳng (Q):x - y - 5 = 0 có một vectơ pháp tuyến là \overrightarrow{n} =
(1; - 1;0)

    Hình chiếu của O lên mặt phẳng (P) là H(2; - 1; - 2)⇒ (P) qua H và nhận \overrightarrow{OH} = (2; - 1; - 2) làm vectơ pháp tuyến.

    Gọi α là góc giữa đường thẳng \Delta và mặt phẳng (\alpha):

    \sin\alpha = \left| \cos\left(\overrightarrow{OH};\overrightarrow{n} ight) ight| = \frac{\left|\overrightarrow{OH}.\overrightarrow{n} ight|}{\left|\overrightarrow{OH} ight|.\left| \overrightarrow{n} ight|}=\frac{|2 + 1 + 0|}{\sqrt{4 + 1 + 4}.\sqrt{1 + 1 + 0}} =\frac{\sqrt{2}}{2} \Rightarrow \alpha = 45^{0}

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, mặt phẳng chứa trục Ox và đi qua điểm A(1;1; - 1) có phương trình là:

    Mặt phẳng chứa trục Ox có dạng By + Cz = 0;\left( B^{2} + C^{2} eq 0
ight)

    Mặt phẳng đi qua điểm A(1;1; -
1) nên B - C = 0 \Leftrightarrow B
= C

    Do đó chọn B = C = 1 suy ra phương trình mặt phẳng cần tìm là y + z =
0.

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - 1}{1} = \frac{y - 2}{3} = \frac{z
- 3}{- 1}. Gọi ∆’ là đường thẳng đối xứng với đường thẳng ∆ qua (Oxy). Tìm một vectơ chỉ phương của đường thẳng ∆’.

    Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm A(4; 11; 0).

    Ta thấy B(1; 2; 3) ∈ ∆ và B’(1; 2; −3) là điểm đối xứng của điểm B qua mặt phẳng (Oxy).

    Đường thẳng ∆’ đi qua các điểm A, B’.

    Ta có \overrightarrow{AB} = ( - 3; - 9; -
3), từ đó suy ra \overrightarrow{u}
= (1;3;1) là một vectơ chỉ phương của đường thẳng ∆’.

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:\bigtriangleup_{1}:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z - 3}{- 2}\bigtriangleup_{2}:\frac{x - 4}{- 1} = \frac{y -
5}{- 2} = \frac{z - 6}{2}

    a) Vectơ có tọa độ (1;2;3) là một vectơ chỉ phương của \bigtriangleup_{1}. Sai||Đúng

    b) Đường thẳng \bigtriangleup_{2} đi qua điểm A(0; - 3;14). Đúng||Sai

    c) Đường thẳng \bigtriangleup_{3} đi qua B(1;1; - 2) và vuông góc với \bigtriangleup_{1} có phương trình tham số là \bigtriangleup_{3}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = 1 - 2t \\
z = - 2 - 3t \\
\end{matrix} ight.. Đúng||Sai

    d) Góc giữa hai đường thẳng \bigtriangleup_{1}\bigtriangleup_{2} khoảng 132^{0}. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:\bigtriangleup_{1}:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z - 3}{- 2}\bigtriangleup_{2}:\frac{x - 4}{- 1} = \frac{y -
5}{- 2} = \frac{z - 6}{2}

    a) Vectơ có tọa độ (1;2;3) là một vectơ chỉ phương của \bigtriangleup_{1}. Sai||Đúng

    b) Đường thẳng \bigtriangleup_{2} đi qua điểm A(0; - 3;14). Đúng||Sai

    c) Đường thẳng \bigtriangleup_{3} đi qua B(1;1; - 2) và vuông góc với \bigtriangleup_{1} có phương trình tham số là \bigtriangleup_{3}:\left\{
\begin{matrix}
x = 1 - 2t \\
y = 1 - 2t \\
z = - 2 - 3t \\
\end{matrix} ight.. Đúng||Sai

    d) Góc giữa hai đường thẳng \bigtriangleup_{1}\bigtriangleup_{2} khoảng 132^{0}. Sai||Đúng

    a) Vectơ có tọa độ (2;1; - 2) là một vectơ chỉ phương của \bigtriangleup_{1} nên mệnh đề sai

    b) Mệnh đề đúng

    c) Gọi B = \bigtriangleup_{1} \cap
\bigtriangleup_{3} \Rightarrow B(1 + 2t;2 + t;3 - 2t)

    \begin{matrix}
\overrightarrow{AB} = ( - 2t; - 1 - t; - 5 + 2t\ ) \\
\overrightarrow{AB}\bot u_{\bigtriangleup_{1}} \Rightarrow t = 1 \\
\Rightarrow \overrightarrow{AB} = ( - 2; - 2; - 3\ ) \\
\end{matrix} nên mệnh đề đúng

    d) Góc giữa hai đường thẳng luôn là góc nhọn nên mệnh đề sai

  • Câu 5: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 6: Vận dụng

    Trong không gian Oxyz, cho hai đường thẳng d:\frac{x - 1}{2} = \frac{y +
1}{1} = \frac{z - 2}{2}d':\frac{x + 1}{1} = \frac{y}{2} = \frac{z -
1}{1}. Viết phương trình mặt phẳng chứa đường thẳng d tạo với đường thẳng d’ một góc lớn nhất.

    Đường thẳng d,d^{'} có véc-tơ chỉ phương lần lượt là {\overrightarrow{u}}_{1} =
(2;1;2),{\overrightarrow{u}}_{2} = (1;2;1).

    Lấy điểm A(1; - 1;2) \in d.

    Gọi (P) là mặt phẳng chứa đường thẳng d và cắt trục hoành tại điểm B(b;0;0).

    Khi đó (P) có cặp véc-tơ chỉ phương là {\overrightarrow{u}}_{1}\overrightarrow{AB} = (b - 1;1; -
2), suy ra (P) có véc-tơ pháp tuyến {\overrightarrow{n}}_{P} =
\left\lbrack {\overrightarrow{u}}_{1},\overrightarrow{AB} ightbrack
= ( - 4;2b + 2;3 - b)

    Gọi \varphi là góc giữa đường thẳng d^{'}(P), suy ra

    sin\varphi = \frac{\left|
{\overrightarrow{n}}_{P} \cdot {\overrightarrow{u}}_{2} ight|}{\left|
{\overrightarrow{n}}_{P} ight| \cdot \left| {\overrightarrow{u}}_{2}
ight|} = \frac{|3b + 3|}{\sqrt{5b^{2} + 2b + 29} \cdot
\sqrt{6}}

    Đặt y = \frac{b^{2} + 2b + 1}{5b^{2} + 2b
+ 29} \geq 0, suy ra sin\varphi =
\sqrt{y} \cdot \frac{3}{\sqrt{6}}.

    Nhận thấy, để góc \varphi lớn nhất thì sin\varphi lớn nhất, điều đó đồng nghĩa với y phải lớn nhất.

    Xét y = \frac{b^{2} + 2b + 1}{5b^{2} + 2b
+ 29} \Leftrightarrow (5y - 1)b^{2} + (2y - 2)b + (29y - 1) =
0.

    Trường hợp y = \frac{1}{5} \Rightarrow b
= 3.

    Trường hợp y eq
\frac{1}{5}.

    Phương trình (*) có nghiệm b khi và chỉ khi

    \Delta^{'} = (y - 1)^{2} - (5y -
1)(29y - 1) \geq 0 \Leftrightarrow - 144y^{2} + 32y \geq 0 \Rightarrow 0
\leq y \leq \frac{2}{9}

    Từ đó suy ra, để tồn tại b suy ra 0 \leq y \leq \frac{2}{9}.

    Vậy y_{\max} = \frac{2}{9} khi đó b = 7. Từ đó suy ra {\overrightarrow{n}}_{P} = ( - 4;16; - 4) = - 4(1;
- 4;1) và mặt phẳng (P) có phương trình

    1(x - 1) - 4(y + 1) + 1(z - 2) = 0
\Leftrightarrow x - 4y + z - 7 = 0

  • Câu 7: Nhận biết

    Trong không gian Oxyz, đường thẳng đi qua hai điểm A(1;2; - 3)B(2; - 3;1) có phương trình tham số là:

    Ta có: \overrightarrow{AB} = (1; -
5;4)

    Đường thẳng đi qua hai điểm A(1; 2; −3) và B(2; −3; 1) có phương trình tham số là \left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 5t \\
z = - 3 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Với t = −2, ta được M(3; −8; 5) thuộc đường thẳng AB. Khi đó, đường thẳng AB có phương trình tham số \left\{
\begin{matrix}
x = 3 - t \\
y = - 8 + 5t \\
z = 5 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 8: Nhận biết

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + (y - 2)^{2} + (z + 1)^{2} =
6. Đường kính của (S) bằng

    Ta có bán kính của (S)\sqrt{6} nên đường kính của (S) bằng 2\sqrt{6}.

  • Câu 9: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;1),\overrightarrow{b} =
(1;1;2),\overrightarrow{c} = (x;3x;x + 2). Nếu ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng thì:

    Ta có: \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack = (3; -
3;3)

    Ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng

    \Leftrightarrow \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack.\overrightarrow{c} =
0

    \Leftrightarrow 3x - 3(3x) + 3(x + 2) =
0

    \Leftrightarrow x = 2

  • Câu 10: Nhận biết

    Trong không gian Oxyz, tìm tất cả các giá trị của tham số m để x^{2} + y^{2} + z^{2} + 2(m + 2)x + 4my +
19m - 6 = 0 là phương trình mặt cầu

    Phương trình đã cho là phương trình mặt cầu khi và chỉ khi

    (m + 2)^{2} + 4m^{2} - 19m + 6 >
0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 1 \\
m > 2 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: \left\lbrack
\begin{matrix}
m < 1 \\
m > 2 \\
\end{matrix} ight.

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4y - 20 =
0 và mặt phẳng (\alpha):x + 2y - 2z
+ 7 = 0 cắt nhau theo một đường tròn có chu vi là:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; 2; 0) và bán kính R = 5.

    Ta có d\left( I,(\alpha) ight) = \
\frac{|1.1 + 2.2 - 2.0 + 7|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
4

    d(I,(α)) < R nên (α) cắt (S) theo giao tuyến là đường tròn (C).

    Gọi H là hình chiếu vuông góc của I trên (α) ⇒ H là tâm của (C).

    Lấy M ∈ (C) ⇒ M ∈ (S)

    Tam giác IHM vuông tại M \Rightarrow HM =
\sqrt{IM^{2} - IH^{2}} = \sqrt{5^{2} - 4^{2}} = 3

    Suy ra chu vi của đường tròn (C) bằng 2π . HM = 6π.

  • Câu 12: Vận dụng cao

    Cho lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác vuông tại B, AC = a\sqrt 3, góc \widehat {ACB} bằng 30^0. Góc giữa đường thẳng AB' và mặt phẳng (ABC) bằng 60^0. Bán kính mặt cầu ngoại tiếp tứ diện A'ABC bằng:

     Bán kính mặt cầu ngoại tiếp tứ diện

    Ta có {60^0} = \widehat {AB',\left( {ABC} ight)} = \widehat {AB',AB} = \widehat {B'AB}.

    Trong \Delta ABC, ta có

    AB = AC.\sin \widehat {ACB} = \frac{{a\sqrt 3 }}{2}.

    Trong \Delta B'BA, ta có

    BB' = AB.\tan \widehat {B'AB} = \frac{{3a}}{2}

    Gọi N là trung điểm AC , suy ra N là tâm đường tròn ngoại tiếp \Delta ABC.

    Gọi I  là trung điểm A'C, suy ra  IN\parallel AA' \Rightarrow IN \bot \left( {ABC} ight).

    Do đó IN là trục của \Delta ABC , suy ra IA = IB = IC.  (1)

    Hơn nữa, tam giác A'AC vuông tại A có I là trung điểm A'C nên IA'=IC=IA . (2)

    Từ (1) và (2), ta có IA'=IA=IB=IC hay I là tâm của mặt cầu ngoại tiếp hình chóp A'.ABC với bán kính R = IA' = \frac{{A'C}}{2} = \frac{{\sqrt {AA{'^2} + A{C^2}} }}{2} = \frac{{a\sqrt {21} }}{4}.

  • Câu 13: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;2; - 4),B(1; - 3;1),C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy)?

    Gọi tâm mặt cầu là I(x;y;0)

    Ta có:

    \left\{ \begin{matrix}
IA = IB \\
IA = IC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 1)^{2} + (y +
3)^{2} + 1^{2}} \\
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 2)^{2} + (y -
2)^{2} + 3^{2}} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(y - 2)^{2} + 4^{2} = (y + 3)^{2} + 1 \\
x^{2} - 2x + 1 + 16 = x^{2} - 4x + 4 + 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10y = 10 \\
2x = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 1 \\
x = - 2 \\
\end{matrix} ight.

    \Rightarrow l = 2R = 2\sqrt{( - 3)^{2} +
( - 1)^{2} + 4^{2}} = 2\sqrt{26}.

  • Câu 14: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P): - \sqrt{3}x + y + 1 = 0. Tính góc tạo bởi (P) với trục Ox?

    Mặt phẳng (P): - \sqrt{3}x + y + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = \left( - \sqrt{3};1;0
ight)

    Trục Ox có một vectơ chỉ phương là \overrightarrow{i} = (1;0;0)

    Gọi α là góc giữa Ox và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 15: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A(−3; 0; 1), B(1; −1; 3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng nào cách B một khoảng cách nhỏ nhất?

    Hình vẽ minh họa

    Gọi d là đường thẳng cần tìm.

    Gọi (Q) là mặt phẳng qua A(−3; 0; 1) và song song với (P): x − 2y + 2z − 5 = 0.

    ⇒ (Q): x − 2y + 2z + 1 = 0d ⊂ (Q).

    Gọi H, K lần lượt là hình chiếu của B lên d và (Q) thì BH > BK.

    Do đó d(B; d) nhỏ nhất khi và chỉ khi H ≡ K.

    Đường thẳng BK đi qua B(1; −1; 3) và vuông góc với (Q) \Rightarrow BK:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lại có: K = BK \cap (Q) \Rightarrow K =
\left( \frac{- 1}{9};\frac{11}{9};\frac{7}{9} ight)

    Đường thẳng d qua A và nhận \overrightarrow{AK} = \left(
\frac{26}{9};\frac{11}{9};\frac{- 2}{9} ight) làm vectơ chỉ phương nên đường thẳng cần tìm là: \frac{x +
3}{26} = \frac{y}{11} = \frac{z - 1}{- 2}.

  • Câu 16: Vận dụng

    Trong không gian với hệ tọa đô Oxyz, cho điểm M(1;2;4). Gọi (P) là mặt phẳng đi qua M và cắt các tia Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho thể tích tứ diện O.ABC nhỏ nhất. (P) đi qua điểm nào dưới đây?

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    M \in (P) \Rightarrow (P):\frac{1}{a}
+ \frac{2}{b} + \frac{4}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{2}{b} +
\frac{4}{c} \geq 3\sqrt[3]{\frac{1.2.4}{abc}} \Rightarrow abc \geq
8.27

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq 36

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{2}{b} = \frac{4}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = 12 \\
\end{matrix} ight.

    Phương trình mặt phẳng (P)\frac{x}{3} + \frac{y}{6} + \frac{z}{12} = 1
\Rightarrow 4x + 2y + z - 12 = 0

    Mặt phẳng (P) đi qua điểm (2;2;0).

  • Câu 17: Thông hiểu

    Trong không gian Oxyz, cho A(1;2;0),B(3; - 1;1),C(1;1;1). Tính diện tích tam giác ABC?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3;1) \\
\overrightarrow{AC} = (0; - 1;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 2; - 2; -
2)

    Lại có diện tích tam giác ABC là:

    S_{ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\sqrt{3}

  • Câu 18: Nhận biết

    Trong không gian Oxyz, tính khoảng cách từ điểm M(1;2; - 3) đến mặt phẳng (P):x + 2y - 2z - 2 =
0?

    Khoảng cách từ điểm M đến mặt phẳng (P):x + 2y - 2z - 2 = 0 là:

    d\left( M;(P) ight) = \frac{\left| 1 +
2.2 - 2( - 3) - 2 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
3

  • Câu 19: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + z - 3 = 0 và điểm A(1;2;0). Viết phương trình đường thẳng qua A và vuông góc với (P).

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; -
2;1) nên đường thẳng cần tìm có vectơ chỉ phương là \overrightarrow{n} = (1; - 2;1).

    Vậy phương trình đường thẳng đi qua A và vuông góc với (P) là: \frac{x - 1}{1} = \frac{y - 2}{- 2} =
\frac{z}{1}

  • Câu 20: Vận dụng cao

    Cho điểm {m{A(2, - 1,1)}} và đường thẳng (\Delta ):\left\{ \begin{array}{l}y + z - 4 = 0\\2x - y - z + 2 = 0\end{array} ight.. Gọi A'  là điểm đối xứng của A qua (\triangle) . Tọa độ điểm A'  là:

    Đưa phương trình (\triangle) về dạng tham số: \left\{ \begin{array}{l}x = 1\\y = 4 - t\\z = t\end{array} ight.

    Gọi (P) là mặt phẳng qua A và vuông góc với (\triangle).

    Phương trình mp (P) có dạng - y + z + D = 0 , qua A nên D =  -2

    Phương trình (P) là: y - z + 2 = 0

    Thế x, y, z từ phương trình (\triangle) vào phương trình (P) được t=1

    \Rightarrow (\triangle ) \cap (\alpha ) = (1,3,1).

    I là trung điểm của AA' nên: {x_{A'}} + 2 = 2;{y_{A'}} - 1 = 6;{z_{A'}} + 1 = 2

    \Rightarrow A'(0,7,1).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo