Cho đường thẳng
có một vec-tơ chỉ phương là:
Ta có vectơ pháp tuyến của hai mặt phẳng
và
lần lượt là
Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:
Cho đường thẳng
có một vec-tơ chỉ phương là:
Ta có vectơ pháp tuyến của hai mặt phẳng
và
lần lượt là
Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:
Trong không gian
cho hai mặt phẳng ![]()
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Trong không gian tọa độ
, cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Cho điểm
và đường thẳng
. Gọi A' là điểm đối xứng của A qua
. Tọa độ điểm A' là:
Đưa phương trình về dạng tham số:
Gọi (P) là mặt phẳng qua A và vuông góc với .
Phương trình mp (P) có dạng , qua A nên D = -2
Phương trình (P) là:
Thế x, y, z từ phương trình vào phương trình (P) được t=1
I là trung điểm của AA' nên:
.
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA⊥ (ABCD) và SA = a. Gọi E và F lần lượt là trung điểm của SB, SD. Côsin của góc hợp bới hai mặt phẳng (AEF) và (ABCD) là
Chọn hệ trục tọa độ Oxyz sao cho
Vectơ pháp tuyến của mp(AEF) là
Vectơ pháp tuyến của mp(ABCD) là:
Vậy côsin góc giữa 2 mặt phẳng (AEF) và (ABCD) là:
Trong không gian
, tìm phương trình mặt phẳng
cắt ba trục
lần lượt tại ba điểm
?
Phương trình mặt phẳng :
Trong không gian với hệ tọa độ
có bao nhiêu mặt phẳng song song với mặt phẳng
, cách điểm
một khoảng bằng
biết rằng tồn tại một điểm
trên mặt phẳng đó thỏa mãn
?
Mặt phẳng song song với (Q) có dạng mà
Với m = −15 thì với mọi ta có
Do đó không có mặt phẳng nào thỏa mãn đề bài
Trong không gian với hệ tọa độ
, cho hai đường thẳng ![]()
?
Gọi lần lượt là vectơ chỉ phương của d1 và d2 ta chọn
Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn suy ra
Khi đó và
. Do đó (d1) và (d2) chéo nhau.
Cho
và hai mặt phẳng
. Khi đó:
Thay tọa độ điểm A vào phương trình mặt phẳng (Q) thỏa mãn, do đó A ∈ (Q).
Vì nên
.
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương và đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương. Điều kiện để đường thẳng
song song với
là:
Điều kiện để là:
.
Cho lăng trụ đứng
có đáy ABC là tam giác vuông tại B,
, góc
bằng
. Góc giữa đường thẳng
và mặt phẳng
bằng
. Bán kính mặt cầu ngoại tiếp tứ diện
bằng:

Ta có .
Trong , ta có
Trong , ta có
Gọi N là trung điểm AC , suy ra N là tâm đường tròn ngoại tiếp .
Gọi là trung điểm A'C, suy ra
.
Do đó IN là trục của , suy ra
(1)
Hơn nữa, tam giác vuông tại A có
là trung điểm A'C nên
. (2)
Từ (1) và (2), ta có hay
là tâm của mặt cầu ngoại tiếp hình chóp
với bán kính
.
Trong không gian với hệ tọa độ
, cho các điểm
. Mặt phẳng
đi qua
, trực tâm
của tam giác
và vuông góc với mặt phẳng
có phương trình là:
Ta có
Phương trình mặt phẳng (ABC) là: .
Phương trình mặt phẳng qua B và vuông góc với AC là: .
Phương trình mặt phẳng qua C và vuông góc với AB là: .
Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên .
Mặt phẳng (P) đi qua A, H nên
Mặt phẳng (P) ⊥ (ABC) nên .
Vậy là một vectơ pháp tuyến của (P).
Chọn nên phương trình mặt phẳng (P) là
.
Tìm tập hợp các tâm I của mặt cầu sau nằm trên?
![]()
Theo đề bài, ta xác định các hệ số của :
Suy ra ta gọi được tâm I của mặt cầu có tọa độ là
Xét là mặt cầu
Vậy tập hợp các điểm I là phân đường thẳng
tương ứng với .
Gọi
là mặt cầu đi qua bốn điểm
. Tính bán kính
của
?
Gọi là tâm mặt cầu đi qua bốn điểm
Khi đó ta có phương trình:
Vậy bán kính cần tìm là:
Trong không gian với hệ tọa độ
, cho mặt phẳng
và mặt cầu
. Khẳng định nào sau đây đúng?
Mặt cầu (S) có tâm , bán kính
Ta có:
Do đó (P) cắt mặt cầu (S).
Trong không gian
, mặt phẳng
và đường thẳng
là giao tuyến của hai mặt phẳng
. Góc giữa
và
bằng:
Ta có: có vectơ pháp tuyến lần lượt là
Vectơ chỉ phương của là
Gọi là góc giữa
và
, ta có:
Trong không gian với hệ toạ độ
, cho hai điểm
. Phương trình mặt phẳng
vuông góc với
và hợp với các trục tọa độ một tứ diện có thể tích bằng
là
Ta có
Gọi M, N, P lần lượt là giao điểm của mặt phẳng (P) với trục Ox, Oy, Oz
Suy ra
Ta có thể tích tứ diện
Vậy đáp án cần tìm là:
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Dường thẳng đi qua
và song song với hai mặt phẳng
có phương trình là
Gọi là đường thẳng cần tìm.
Mặt phẳng có một véc-tơ pháp tuyến là
và
có một vectơ pháp tuyến là
. Ta có
.
Khi đó, đi qua điểm
và nhận véc-tơ
làm vec-tơ chỉ phương. Phương trình đường thẳng
là
Với thì điểm
thuộc
. Viết lại phương trình đường thẳng
Trong không gian với hệ tọa độ
, cho mặt phẳng
và hai điểm
. Trong các đường thẳng đi qua A và song song với (P), đường thẳng nào cách B một khoảng cách nhỏ nhất?
Hình vẽ minh họa
Gọi d là đường thẳng cần tìm.
Gọi (Q) là mặt phẳng qua A(−3; 0; 1) và song song với .
và
.
Gọi H, K lần lượt là hình chiếu của B lên d và (Q) thì .
Do đó nhỏ nhất khi và chỉ khi
.
Đường thẳng BK đi qua B(1; −1; 3) và vuông góc với (Q)
Lại có:
Đường thẳng d qua A và nhận làm vectơ chỉ phương nên đường thẳng cần tìm là:
.
Trong không gian
, hai điểm
và
. Phương trình nào sau đây là phương trình mặt cầu đường kính
?
Mặt cầu nhận làm đường kính, do đó mặt cầu nhận trung điểm
của
làm tâm và có bán kính
Suy ra phương trình mặt cầu cần tìm là .