Trong không gian
, phương trình nào sau đây là phương trình của mặt cầu có tâm
và bán kính
?
Mặt cầu tâm , bán kính
có phương trình lá:
.
Trong không gian
, phương trình nào sau đây là phương trình của mặt cầu có tâm
và bán kính
?
Mặt cầu tâm , bán kính
có phương trình lá:
.
Trong không gian với hệ tọa độ
, xét mặt cầu
có phương trình dạng
. Tập hợp các giá trị thực của tham số
để
có chu vi
?
Đường tròn lớn có chu vi là nên bán kính của
là
Từ phương trình của suy ra bán kính của
là
Do đó
Vậy đáp án cần tìm là:
Cho mặt cầu tâm I bán kính
. Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng
. Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:
Theo đề bài, mặt phẳng cắt mặt cầu theo một đường tròn
.
Vậy .
Trong không gian với hệ tọa độ
cho ba điểm
và
là trực tâm tam giác
. Tính
?
Ta có:
Lại có:
Trong không gian tọa độ
, cho mặt phẳng
và đường thẳng
. Khoảng cách giữa đưởng thẳng
và mặt phẳng
bằng:
Đường thẳng đi qua
và có vectơ chỉ phương
Mặt phẳng có vectơ pháp tuyến
.
Ta có: , nên đường thằng
song song với mặt phẳng
.
Vậy khoảng cách giữa đường thẳng và mặt phẳng
bằng khoảng cách từ
đến mặt phẳng
:
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua
đồng thời song song với
và mặt phẳng
có phương trình là:
Ta có: . Gọi
là đường thẳng đi qua
đồng thời song song với (P) và mặt phẳng (Oxy).
Khi đó:
Vậy .
Trong không gian với hệ tọa độ
, cho ba điểm
và mặt phẳng
. Điểm
nằm trên mặt phẳng
thỏa mãn
. Tính
?
Ta có
Với , ta có
Với , ta có
Từ (1); (2); (3) ta có hệ phương trình:
Trong không gian với hệ trục tọa độ
, khoảng cách từ
đến mặt phẳng
là
Khoảng cách từ điểm đến mặt phẳng
là:
Trong không gian với hệ tọa độ
, cho mặt cầu
và mặt phẳng
. Mặt phẳng
song song với
và tiếp xúc với
là
Ta có:
(S) có tâm , bán kính
. (P) song song với (α)
⇒, với
Do mặt phẳng (P) tiếp xúc với (S) nên , so với điều kiện ta nhận
.
Vậy .
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và
. Mặt phẳng
qua
tạo với
một góc
và nhận vectơ
làm một vectơ pháp tuyến. Xác định tích
?
Hai đường phẳng có vectơ chỉ phương lần lượt là
Mặt phẳng (P) đi qua
Từ (1) và (2) suy ra
Trong không gian với hệ tọa độ
, phương trình nào dưới đây là phương trình đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
?
Đường thẳng vuông góc với mặt phẳng
nên
có một vectơ chỉ phương là
.
Phương trình là
Kiểm tra được điểm thỏa mãn hệ (*).
Vậy phương trình: cũng là phương trình của
.
Trong không gian với hệ tọa độ
, cho 2 điểm
, đường thẳng
và mặt phẳng
. Đường thẳng
đi qua B, cắt đường thẳng ∆ và mặt phẳng
lần lượt tại C và D sao cho thể tích của 2 tứ diện
và
bằng nhau, biết
có một vectơ chỉ phương là
. Tính
.
Hình vẽ minh họa
Ta có
Nên . Vì
C là trung điểm của BD nên .
Điểm nên
là vectơ chỉ phương của đường thẳng d.
Vậy
Cho hai mặt phẳng
.
Gọi
là góc nhọn tạo bởi
và
thì giá trị đúng của
là:
Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:
có vectơ pháp tuyến
có vectơ pháp tuyến
Áp dụng công thức tính cosin giữa 2 vecto, ta có:
Trong không gian tọa độ
, cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) chéo nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:
Suy ra (D) và (d) chéo nhau.
Trong không gian với hệ tọa độ
, cho hai điểm
và
. Hai điểm
thay đổi sao cho
và
. Biết rằng luôn tồn tại một mặt cầu cố định đi qua
và tiếp xúc với mặt phẳng
. Bán kính của mặt cầu đó là:
Phương trình mặt phẳng là
.
Gọi và
là tâm và bán kính của mặt cầu cố định.
Ta có
Mà không đổi nên
, hay
.
Mặt khác ta có .
Vậy .
Trong không gian với hệ tọa độ
, cho hai điểm
và mặt phẳng
. Biết rằng tồn tại điểm
thuộc
sao cho
đạt giá trị lớn nhất. Tính
.
Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).
Khi đó ta có và đẳng thức xảy ra khi
Phương trình tham số của đường thẳng MN là
Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình
Vậy
Cho hai mặt phẳng
và
. Với
cho biết
và cặp vectơ chỉ phương
. Với
cho PTTQ
. Phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của
và
, qua điểm
là:
Trước tiên, ta cần đưa phương trình về dạng tổng quát.
Theo đề bài, ta có và cặp vectơ chỉ phương
nên vecto pháp tuyến của mp
là tích có hướng của 2 vecto chỉ phương.
Ta có .
Chọn làm vectơ pháp tuyến cho
thì phương trình tổng quát của
có dạng
.
Vậy phương trình
Để tìm phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của và
ta xét chùm mặt phẳng :
Mặt khác, ta có
Thế vào (*) ta được:
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Cho hình chóp tứ giác đều S.ABCD có
. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:
Gọi O = AC ∩ BD
Tam giác SAO vuông nên suy ra
Gắn tọa độ như hình vẽ:
Ta có:
Vì G là trọng tâm tam giác SCD nên
Ta có:
Góc giữa đường thẳng BG với đường thẳng SA bằng:
Vậy đáp án cần tìm là: .