Cho hai điểm
cố định trong không gian có độ dài
. Biết rằng tập hợp các điểm
trong không gian sao cho
là một mặt cầu. Bán kính mặt cầu đó bằng bao nhiêu?
Ta có:
(*)
Gọi thỏa mãn
nên
Từ (*) suy ra .
Cho hai điểm
cố định trong không gian có độ dài
. Biết rằng tập hợp các điểm
trong không gian sao cho
là một mặt cầu. Bán kính mặt cầu đó bằng bao nhiêu?
Ta có:
(*)
Gọi thỏa mãn
nên
Từ (*) suy ra .
Trong không gian tọa độ
, cho mặt phẳng
và đường thẳng
, sin của góc giữa đường thẳng
và mặt phẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P):
Trong không gian
, cho điểm
và đường thẳng
. Tính khoảng cách từ A đến đường thẳng d.
Gọi
Ta có .
Trong không gian với hệ tọa độ
, mặt phẳng
cắt mặt cầu
theo giao tuyến là đường tròn có diện tích là:
Mặt cầu có tâm
và bán kính
Khoảng cách từ đến (P):
Bán kính đường tròn giao tuyến
Diện tích đường tròn giao tuyến .
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
thuộc
là điểm thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
bằng?
Hình vẽ minh họa
Ta có: có một vectơ chỉ phương là
Ta có cùng phương với
Mà đồng phẳng.
Xét mặt phẳng chứa và
. Gọi
là điểm đối xứng của
qua
là mặt phẳng qua
, vuông góc với
.
Khi đó, giao điểm của
với
là trung điểm của
.
có 1 vectơ pháp tuyến
đi qua
có phương trình:
Giả sử
.
Ta có khi và chỉ khi
trùng với
là giao điểm của
và
.
.
Trong không gian
, cho hai mặt phẳng
(với
là tham số thực). Khi hai mặt phẳng
và
tạo với nhau một góc nhỏ nhất thì điểm
nào dưới đây nằm trong
?
Ta có: có 1 VTPT
có 1 VTPT
.
Gọi là góc giữa
và
.
Ta có:
.
Do nên
nhỏ nhất khi
lớn nhất
nhỏ nhất
.
.
Trong không gian
, cho ba điểm
, trong đó
và
. Biết mặt phẳng
tiếp xúc với mặt cầu
. Thể tích của khối tứ diện
là:
Mặt phẳng (ABC) có phương trình là
Mặt cầu (S) có tâm là I(1; 2; 3) và bán kính . Khi đó:
Áp dụng bất đẳng thức Cauchy - Schwarz, ta có:
Dấu đẳng thức xảy ra khi a = 2b = 3c. Thay vào giả thiết ta có:
Vì OABC là tứ diện vuông tại O nên
Trong không gian Oxyz, cho điểm
và vectơ
. Viết phương trình mặt phẳng
qua A và nhận vectơ
làm vectơ pháp tuyến.
Phương trình mặt phẳng có dạng:
.
Trong không gian với hệ tọa độ
, cho mặt cầu
. Tính bán kính của mặt cầu
?
Phương trình mặt cầu:
với
có tâm
và bán kính
Ta có:
Khi đó
Hai đường thẳng
và
với cắt nhau tại M có tọa độ là :
Để (d’) cắt (d) tại
Trong không gian với hệ tọa độ
, phương trình mặt phẳng
đi qua điểm
và cắt các tia
lần lượt tại các điểm
sao cho
đạt giá trị nhỏ nhất là:
Giả sử với
là các số thực dương do
khác 0.
Khi đó phương trình mặt phẳng qua
có phương trình là
Mà nên
, do đó theo bất đẳng thức Bunhiacopski ta có:
T đạt giá trị nhỏ nhất nên ta có dấu bằng xảy ra, tức là:
Vậy phương trình mặt phẳng (P) là .
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm
và
?
Ta có là vectơ chỉ phương của đường thẳng
. Phương trình chính tắc của đường thẳng
là:
.
Trong hệ tọa độ
, cho hai đường thẳng chéo nhau
và
. Phương trình mặt phẳng
chứa
và song song với
là
Phương trình tham số
đi qua điểm
và có vectơ chỉ phương
Phương trình tham số
đi qua điểm
và có vectơ chỉ phương
Vì mặt phẳng chứa
và song song với
, ta có:
Mặt phẳng đi qua
và vectơ pháp tuyến
nên phương trình mặt phẳng
hay
.
Trong không gian
, cho hai đường thẳng
và
. Viết phương trình mặt phẳng chứa đường thẳng d tạo với đường thẳng d’ một góc lớn nhất.
Đường thẳng có véc-tơ chỉ phương lần lượt là
.
Lấy điểm .
Gọi là mặt phẳng chứa đường thẳng
và cắt trục hoành tại điểm
.
Khi đó có cặp véc-tơ chỉ phương là
và
, suy ra
có véc-tơ pháp tuyến
Gọi là góc giữa đường thẳng
và
, suy ra
Đặt , suy ra
.
Nhận thấy, để góc lớn nhất thì
lớn nhất, điều đó đồng nghĩa với
phải lớn nhất.
Xét .
Trường hợp .
Trường hợp .
Phương trình có nghiệm
khi và chỉ khi
Từ đó suy ra, để tồn tại suy ra
.
Vậy khi đó
. Từ đó suy ra
và mặt phẳng
có phương trình
Viết phương trình tham số của đường thẳng ![]()
Theo đề bài, đường thẳng d là giao của 2 mặt phẳng, ta gọi 2 mặt phẳng (P) và (Q) tương ứng lần lượt là:
Mp (P) và (Q) có 2 vecto pháp tuyến tương ứng là:
Từ đây ta suy ra vecto chỉ phương của đường thẳng (d) là tích có hướng của 2 VTPT:
Cho y = 0, ta có:
Đường thẳng (d) đi qua A( 1, 0, 2) và nhận vecto (1,2,4) làm 1 VTCP có PTTS là:
Trong không gian
, viết phương trình mặt phẳng
chứa
và đi qua điểm
?
Mặt phẳng có cặp véc-tơ chỉ phương là
Suy ra mặt phẳng có một véc-tơ pháp tuyến là
.
Mặt phẳng đi qua
có vectơ pháp tuyến (4; 3; 0).
Vậy mặt phẳng có phương trình tổng quát là
.
Trong không gian
, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính
?
Phương trình mặt cầu có bán kính
Xét phương trình mặt cầu ta có:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Mặt phẳng (P) chứa đường thẳng
và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là
. Tính tổng ![]()
Hình vẽ minh họa
Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương
Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.
Phương trình tham số của
Lấy điểm N(1; 2; 0) ∈ ∆.
Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.
Khi đó
Lại có:
Vậy lớn nhất khi và chỉ khi H trùng với K
Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).
Vectơ pháp tuyến của (Q) là
Vectơ pháp tuyến của (P) là
Phương trình mặt phẳng (P) là
Vậy
Trong không gian
cho
. Viết phương trình mặt phẳng
?
Phương trình mặt phẳng là
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
và đường thẳng
. Tính góc giữa đường thẳng
và mặt phẳng
.
Ta có:
Do đó:
Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng .