Trong không gian tọa độ
, cho mặt phẳng
và đường thẳng
, sin của góc giữa đường thẳng
và mặt phẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P):
Trong không gian tọa độ
, cho mặt phẳng
và đường thẳng
, sin của góc giữa đường thẳng
và mặt phẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P):
Trong không gian với hệ toạ độ
, cho điểm
và đường thẳng
. Gọi
là mặt phẳng chứa
sao cho khoảng cách từ điểm
đến
là lớn nhất. Khoảng cách từ gốc tọa độ
đến
bằng:
Gọi K là hình chiếu vuông góc của A trên d và H là hình chiếu vuông góc của A trên (P) thì d(A,(P)) = AH ≤ AK không đổi.
Vậy d(A,(P)) lớn nhất khi và chỉ khi H ≡ K, khi đó (P) là mặt phẳng chứa d và vuông góc với AK.
Ta tìm được .
Hai đường thẳng
và
với cắt nhau tại M có tọa độ là :
Để (d’) cắt (d) tại
Cho hình lập phương
có cạnh bằng 1 có
trùng với ba trục
. Viết phương trình mặt cầu
tiếp xúc với tất cả các cạnh của hình lập phương.
tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.
Tâm là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng
Bán kính
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và
. Khi hai mặt phẳng
,
tạo với nhau một góc nhỏ nhất thì mặt phẳng
đi qua điểm M nào sau đây?
Gọi là góc giữa
và
.
Ta có:
Do nên
nhỏ nhất khi
lớn nhất
.
.
Trong không gian
, đường thẳng
không đi qua điểm nào dưới đây?
Ta có nên điểm
không thuộc đường thẳng
.
Trong không gian
, cho hai điểm
. Viết phương trình đường thẳng
đi qua tâm đường tròn ngoại tiếp tam giác
và vuông góc với mặt phẳng
.
Tam giác OAB vuông tại O nên tâm đường tròn ngoại tiếp là trung điểm AB có tọa độ I(0; 1; 1).
Mặt phẳng (OAB) có véc-tơ pháp tuyến .
Suy ra đường thẳng ∆ có và đi qua I(0; 1; 1).
Vậy phương trình đường thẳng ∆ là .
Trong không gian tọa độ
, cho tọa độ hai điểm
. Phương trình mặt cầu đường kính
là:
Gọi I là trung điểm của AB suy ra
Mặt cầu đường kính có tâm
và bán kính
có phương trình là:
Trong không gian với hệ tọa độ
, mặt cầu có tâm
và có diện tích bằng
có phương trình là:
Ta có:
Vậy mặt cầu tâm có bán kính
có phương trình:
.
Cho tứ diện ABCD có
. Mặt phẳng chứa BC và song song với AD có phương trình :
Theo đề bài, từ các điểm , ta tính được các vecto tương ứng là:
cùng phương với
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.
Phương trình (P) có dạng:
Mặt khác, điểm
Vậy phương trình .
Cho hình lập phương
có tâm
. Gọi
là tâm của hình vuông
và điểm
sao cho
(tham khảo hình vẽ).

Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng
Gắn hệ tọa độ như hình vẽ:
Cạnh hình lập phương là 1, ta được tọa độ các điểm như sau:
Khi đó
Suy ra
Trong không gian với hệ tọa độ
, mặt cầu
qua bốn điểm ![]()
. Phương trình mặt cầu
là:
Gọi phương trình mặt cầu có
Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình
. Suy ra tâm mặt cầu
và bán kính
Vậy phương trình mặt cầu cần tìm là:
Trong không gian với hệ tọa độ
, cho mặt cầu
hai hai điểm
. Gọi E là điểm thuộc mặt cầu (S) sao cho
đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E?
Hình vẽ minh họa
Gọi I(1; 2; 2) là tâm của (S), P(5; −2; 4) là trung điểm MN.
Theo bất đẳng thức Bu-nhi-a-copx-ki và công thức độ dài trung tuyến ta được:
nên T = EM + EN đạt giá trị lớn nhất khi EM = EN và EP đạt giá trị lớn nhất.
Khi đó E là giao điểm của đường thẳng IP với mặt cầu (S) (I nằm giữa E và P). Đường thẳng IP có phương trình:
Tọa độ E thỏa hệ phương trình:
Tìm được E(3; 0; 3) hoặc E(−1; 4; 1), thử lại để EP lớn nhất ta được E(−1; 4; 1).
Khi đó phương trình tiếp diện với (S) tại E là .
Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:
Theo đề bài, ta có được các vecto sau:
Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của và
.
Chọn làm một vectơ pháp tuyến.
Phương trình mp có dạng
là mp qua A
Vậy phương trình .
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Cho điểm P(-3 , 1, -1) và đường thẳng (d): ![]()
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Trong không gian
, đường thẳng đi qua
và nhận
làm vectơ chỉ phương có phương trình là:
Đường thẳng đi qua và nhận
làm vectơ chỉ phương có phương trình là
.
Trong không gian với hệ tọa độ
, cho ba điểm
. Phương trình mặt phẳng
đi qua ba điểm
là:
Phương trình mặt phẳng theo đoạn chắn .
Ta có
Trong không gian
, phương trình nào sau đây là phương trình của mặt phẳng?
Phương trình tổng quát của mặt phẳng là: .
Phương trình tổng quát của mặt phẳng
chứa giao tuyến của hai mặt phẳng
và
, chứa điểm
là:
Vì mặt phẳng chứa giao tuyến của hai mặt phẳng
và
nên thuộc chùm mặt phẳng
Mặt khác, ta có
Thế vào .