Trong không gian với hệ tọa độ
, cho hai điểm
. Mặt cầu đường kính
có phương trình là:
Gọi là trung điểm của
khi đó
là tâm mặt cầu
.
Bán kính
Vậy phương trình mặt cầu cần tìm là: .
Trong không gian với hệ tọa độ
, cho hai điểm
. Mặt cầu đường kính
có phương trình là:
Gọi là trung điểm của
khi đó
là tâm mặt cầu
.
Bán kính
Vậy phương trình mặt cầu cần tìm là: .
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi
lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
):
Theo đề bài, ta có:
Gọi
Ta có:
Trong không gian với hệ tọa độ
, cho mặt cầu
và mặt phẳng
. Mặt phẳng
song song với
và tiếp xúc với
là
Ta có:
(S) có tâm , bán kính
. (P) song song với (α)
⇒, với
Do mặt phẳng (P) tiếp xúc với (S) nên , so với điều kiện ta nhận
.
Vậy .
Trong không gian với hệ tọa độ Oxyz cho đường thẳng
và mặt phẳng
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Đường thẳng d có vectơ chỉ phương là
Mặt phẳng (P) có vectơ pháp tuyến là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .
Khi đó ta có:
Trong không gian với hệ tọa độ
, cho hai điểm
và
. Hai điểm
thay đổi sao cho
và
. Biết rằng luôn tồn tại một mặt cầu cố định đi qua
và tiếp xúc với mặt phẳng
. Bán kính của mặt cầu đó là:
Phương trình mặt phẳng là
.
Gọi và
là tâm và bán kính của mặt cầu cố định.
Ta có
Mà không đổi nên
, hay
.
Mặt khác ta có .
Vậy .
Trong không gian
, tìm tất cả các giá trị của
để phương trình
là phương trình của một mặt cầu?
Phương trình là một mặt cầu
.
Trong không gian với hệ toạ độ
, cho bốn đường thẳng ![]()
![]()
![]()
. Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
Kiểm tra vị trí tương đối giữa hai đường thẳng ta thấy (d1) // (d2); (d4) cắt (d2), (d3).
Gọi (P) là mặt phẳng chứa (d1) và (d2); (Q) là mặt phẳng chứa (d3) và (d4).
Gọi (∆) là đường thẳng cắt cả 4 đường thẳng trên.
Ta thấy, (∆) cắt cả (d1), (d2) suy ra (∆) ⊂ (P).
(∆) cắt cả (d3),(d4) suy ra (∆) ⊂ (Q).
Mà (d2), (d4) có điểm chung nên (∆) là giao tuyến của (P) và (Q), do đó có duy nhất một đường thẳng thỏa mãn.
Trong không gian với hệ tọa độ
, cho ba điểm
. Phương trình mặt phẳng
đi qua ba điểm
là:
Phương trình mặt phẳng theo đoạn chắn .
Ta có
Phương trình tổng quát của mặt phẳng
qua điểm
và có cặp vectơ chỉ phương
là:
Vectơ pháp tuyến của là tích có hướng của 2 vecto chỉ phương
có thể thay thế bởi
Phương trình có dạng
Vậy
Trong không gian
, cho đường thẳng
. Điểm nào sau đây không thuộc đường thẳng
?
Thay vào
ta được:
Thay vào
ta được:
Thay vào
ta được:
hệ vô nghiệm nên
.
Thay vào
ta được:
Cho hai đường thẳng chéo nhau
và ![]()
Mặt phẳng song song và cách đều và có phương trình tổng quát:
Phương trình (d) cho biết và (d) có vectơ chỉ phương
Chuyển về dạng tham số
để có
và vectơ chỉ phương
.
Gọi I là trung điểm AB thì I (2, 2, 0), M(x, y, z) bất kỳ .
là phương trình của mặt phẳng (P).
Viết phương trình tham số của đường thẳng (d) qua I (-1, 5, 2) và song song với trục x'Ox:
Theo đề bài, ta có (d) // x’Ox nên (d) có vecto chỉ phương là
Như vậy, (d) qua I (-1, 5, 2) và nhận làm 1 VTCP có PTTS là:
(d):
Trong không gian với hệ tọa độ
, cho mặt cầu
, mặt phẳng
. Gọi
là mặt phẳng vuông góc với mặt phẳng
,
song song với giá của vectơ
và
tiếp xúc với
. Lập phương trình mặt phẳng
.
Mặt cầu có tâm I(1; −3; 2) và bán kính
.
Từ giả thiết suy ra là một vectơ pháp tuyến của
.
Ta có , suy ra
có vectơ pháp tuyến
Vậy có phương trình dạng
Do tiếp xúc với mặt cầu
nên:
Vậy có hai mặt phẳng thỏa mãn yêu cầu bài toán là .
Trong không gian
đường thẳng
và mặt phẳng
. Góc giữa mặt phẳng
và đường thẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng và mặt phẳng
:
Cho hình chóp
có ba cạnh
đôi một vuông góc và
. Gọi M là trung điểm cạnh AB. Góc tạo bởi hai vectơ
và
bằng:
Hình vẽ minh họa
Chọn hệ trục tọa độ Oxyz như hình vẽ
Ta có:
Khi đó ta có:
Trong không gian với hệ tọa độ
cho mặt phẳng
và đường thẳng
. Gọi
là giao điểm của
và
và
là điểm thuộc đường thẳng
sao cho
. Tính khoảng cách từ
đến mặt phẳng
.
Gọi
Khi đó ta có:
Gọi là hình chiếu của
lên mặt phẳng
, khi đó:
Trong không gian với hệ trục tọa độ
, cho
và mặt phẳng
. Hình chiếu vuông góc của
lên mặt phẳng
là
Đường thẳng đi qua
và vuông góc với mặt phẳng
có phương trình
.
Gọi
Trong không gian với hệ tọa độ
, hình chiếu vuông góc của điểm
trên mặt phẳng
là điểm nào dưới đây?
Gọi ∆ là đường thẳng đi qua M và vuông góc mặt phẳng (P).
Khi đó phương trình tham số của ∆ là
Gọi M’ là hình chiếu vuông góc của M trên mặt phẳng (M).
Tọa độ điểm M’ là nghiệm của hệ phương trình:
Vậy
Viết phương trình tham số của đường thẳng d qua hai điểm: ![]()
Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là hay ta có: