Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian Oxyz, mặt phẳng (P):3x + 4y + 5z + 8 = 0 và đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x - 2y + 1 = 0,(\beta):x - 2z
- 3 = 0. Góc giữa d(P) bằng:

    Ta có: (P),(\alpha),(\beta) có vectơ pháp tuyến lần lượt là\left\{
\begin{matrix}
\overrightarrow{n_{(P)}} = (3;4;5) \\
\overrightarrow{n_{\alpha}} = (1; - 2;0) \\
\overrightarrow{n_{\beta}} = (1;0; - 2) \\
\end{matrix} ight.

    Vectơ chỉ phương của d\overrightarrow{u} = \left\lbrack
\overrightarrow{n_{\alpha}};\overrightarrow{n_{\beta}} ightbrack =
(4;2;2)

    Gọi\varphi là góc giữa d(P), ta có:

    \sin\varphi = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{u} ight|}{\left|
\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{u} ight|} =
\frac{\sqrt{3}}{2} \Rightarrow \varphi = 60^{0}

  • Câu 2: Nhận biết

    Cho mặt cầu S\left( {O;R} ight) và mặt phẳng (\alpha). Biết khoảng cách từ O đến (\alpha) bằng \frac{R}{2}. Khi đó thiết diện tạo bởi mặt phẳng (\alpha) với S\left( {O;R} ight) là một đường tròn có đường kính bằng:

     Tìm đường kính

    Gọi H là hình chiếu của O xuống (\alpha) .

    Ta có d\left[ {O,\left( \alpha  ight)} ight] = OH = \frac{R}{2} < R nên (\alpha) cắt S\left( {O;R} ight) theo đường tròn C\left( {H;r} ight).

    Bán kính đường tròn C\left( {H;r} ight)r = \sqrt {{R^2} - O{H^2}}  = \frac{{R\sqrt 3 }}{2}.

    Suy ra đường kính bằng R\sqrt 3.

  • Câu 3: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 4: Thông hiểu

    Với giá trị nào của m thì mặt phẳng \left( P ight):2x - y + z - 5 = 0 tiếp xúc với mặt cầu 

    \left( S ight):{x^2} + {y^2} + {z^2} - 2mx + 2\left( {2 - m} ight)y - 4mz + 5{m^2} + 1 = 0?

    Theo đề bài, ta xác định các hệ số của (S): a = m;b = m - 2;c = 2m;d = 5{m^2} + 1

    Suy ra tâm I của cầu có tọa độ là I\left( {m,m - 2,2m} ight).

    \Rightarrow {R^2} = {m^2} + {\left( {m - 2} ight)^2} + 4{m^2} - 5{m^2} - 1 = {m^2} - 4m + 3 > 0

    \Rightarrow m < 1 \vee m > 3.\left( P ight) tiếp xúc (S) khi: 

    d\left( {I,P} ight) = \frac{{\left| {3m - 3} ight|}}{{\sqrt 6 }} = R = \sqrt {{m^2} - 4m+3}

    \Leftrightarrow {m^2} + 2m - 3 = 0 \Leftrightarrow m =  - 3 \vee m = 1   (loại)

    \Rightarrow m =  - 3

  • Câu 5: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho tứ diện đều ABCDA(4;
- 1;2),B(1;2;2),C(1; - 1;5),D\left( x_{D};\ y_{D};z_{D} ight) với y_{D} > 0. Tính p = 2x_{D} + \ y_{D} - z_{D}?

    Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 3;3;0) \\
\overrightarrow{AC} = ( - 3;0;3) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;\ 1;\ 1)

    AB = 3\sqrt{2}

    Đường thẳng đi qua G vuông góc với (ABC) có phương trình \left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đó D(2 + t;t;3 + t)

    AD = AB \Rightarrow (t - 2)^{2} + 2(t
+ 1)^{2} = 18 \Rightarrow \left\lbrack \begin{matrix}
t = 2 \\
t = - 2 \\
\end{matrix} ight.

    y_{D} > 0 \Rightarrow y = 2
\Rightarrow P = 5

  • Câu 6: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x-1)^2+(y-2)^2+(z-3)^2=9  tâm I và mặt phẳng (P):2x+2y-z+24=0. Gọi H là hình chiếu vuông góc của I trên (P). Điểm M thuộc (S) sao cho đoạn MH có độ dài lớn nhất. Tìm tọa độ điểm M.

     Ta có tâm I(1;2;3)  và bán kính R=3. Do d(I;(P))=9>R  nên mặt phẳng (P) không cắt mặt cầu (S) . Do H là hình chiếu của I lên (P) và MH lớn nhất nên M là giao điểm của đường thẳng IH với mp (P) .

    \overrightarrow {IH} =\vec n_{(P)}=(2;2;-1).

    Phương trình đường thẳng IH là \left\{\begin{matrix} x=1+2t \\ y=2+2t \\ z=3-t \end{matrix}ight..

    Giao điểm của IH với (S): 9t^2=9 \Leftrightarrow t=\pm 1 \Rightarrow M_1 (3;4;2) \mbox{  và } M_2 (-1;0;4)

    Suy ra:

    M_1H=d(M_1;(P))=12;

    M_2H=d(M_2;(P))=6.

    Vậy điểm cần tìm là M(3;4;2).

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2;1)

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;0)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .

    Khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|} = \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha = 60^{0}

  • Câu 8: Nhận biết

    Câu nào sau đây đúng? Trong không gian Oxyz:

     A sai và có thể (P) và (Q) trùng nhau

    B sai, vì mỗi mặt phẳng có vô số vecto pháp tuyến. Suy ra D sai.

    C đúng vì 1 mặt phẳng được xác định nếu biết một điểm và một VTPT của nó.

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;2; - 2),B(3; - 1;0). Đường thẳng AB cắt mặt phẳng (P):x + y - z + 2 = 0 tại điểm I. Tỉ số \frac{IA}{IB} bằng

    Ta có: \frac{IA}{IB} = \frac{d\left(
A;(P) ight)}{d\left( B;(P) ight)} =
\frac{8}{\sqrt{3}}:\frac{4}{\sqrt{3}} = 2

  • Câu 10: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có điểm A trùng với gốc tọa độ O, B(a;0;0),D(0;a;0), A'(0;0;b),(a > 0,b > 0). Gọi M là trung điểm của cạnh CC'. Giá trị của tỉ số \frac{a}{b} để hai mặt phẳng (A’BD)(MBD) vuông góc với nhau bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có điểm A trùng với gốc tọa độ O, B(a;0;0),D(0;a;0), A'(0;0;b),(a > 0,b > 0). Gọi M là trung điểm của cạnh CC'. Giá trị của tỉ số \frac{a}{b} để hai mặt phẳng (A’BD)(MBD) vuông góc với nhau bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;5;3) và hai mặt phẳng (P):2x + y + 2z - 8 = 0,(Q):x - 4y + z - 4 =
0. Viết phương trình đường thẳng d đi qua A và song song với hai mặt phẳng (P),(Q)?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2;1;2) \\
\overrightarrow{n_{(Q)}} = (1; - 4;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack = (9;0;
- 9)

    Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là \overrightarrow{u} =
(1;0; - 1).

    Vậy phương trình đường thẳng d là \left\{
\begin{matrix}
x = 3 + t \\
y = 5 \\
z = 3 - t \\
\end{matrix} ight.

  • Câu 12: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và điểm M \in OI sao cho MO = \frac{1}{2}MI (tham khảo hình vẽ).

    Khi đó cosin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng

    Không mất tính tổng quát ta đặt cạnh của khối lập phương là 1.

    Chọn hệ trục tọa độ sao cho A′(0;0;0), B′(1;0;0), D′(0;1;0) và A(0;0;1) (như hình vẽ)

    Khi đó ta có: M\left(
\frac{1}{2};\frac{1}{2};\frac{1}{3} ight)

    Khi đó \left\{ \begin{matrix}\overrightarrow{AB} = (1;0;0) \\\overrightarrow{MA} = \left( \dfrac{1}{2};\dfrac{1}{2}; - \dfrac{2}{3}ight) \\\end{matrix} ight.\  \Rightarrow \left\lbrack\overrightarrow{AB};\overrightarrow{MA} ightbrack = \left( 0; -\dfrac{2}{3};\dfrac{1}{2} ight)

    \Rightarrow \overrightarrow{n_{1}} = (0;
- 4;3) là VTPT của mặt phẳng (MAB)

    Lại có: \left\{ \begin{matrix}\overrightarrow{D'C'} = (1;0;0) \\\overrightarrow{MD'} = \left( \dfrac{1}{2}; - \dfrac{1}{2};\dfrac{1}{3}ight) \\\end{matrix} ight.\Rightarrow \left\lbrack\overrightarrow{D'C'};\overrightarrow{MD'} ightbrack =\left( 0;\frac{1}{3}; - \frac{1}{2} ight)

    \Rightarrow \overrightarrow{n_{2}} =
(0;2; - 3) là VTPT của mặt phẳng (MC’D’)

    Cosin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng:

    \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight) = \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}}
ight|}

    = \frac{\left| 0.0 - 4.2 + 3.( - 3)
ight|}{\sqrt{0^{2} + ( - 4)^{2} + 3^{2}}.\sqrt{0^{2} + 2^{2} + ( -
3)^{2}}} = \frac{17\sqrt{13}}{65}

  • Câu 13: Thông hiểu

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Đáp án là:

    Cho hai mặt phẳng (P):2x - y + 2z - 3 =
0(Q):x + my + z - 1 =
0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau.

    Đáp án: 4

    Ta có: \overrightarrow{n_{P}} = (2; -1;2);\overrightarrow{n_{Q}} = (1;m;1)

    Để hai mặt phẳng (P)(Q)vuông góc với nhau thì \overrightarrow{n_{P}}\bot\overrightarrow{n_{Q}}.

    \Leftrightarrow 2.1 - 1.m + 2.1 = 0
\Leftrightarrow m = 4.

  • Câu 14: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
z = 1 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) đi qua điểm nào dưới đây?

    Nếu một điểm nằm trên một đường thẳng thì khi thay tọa độ điểm đó vào phương trình đường thẳng thì sẽ thỏa mãn phương trình đường thẳng.

    Lần lượt thay tọa độ M từ các phương án vào phương trình đường thẳng d ta được M(−3; 5; 3) thỏa mãn yêu cầu bài toán.

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 2}{1} = \frac{y + 3}{- 2}
= \frac{z + 1}{1}. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng d?

    Đường thẳng d có 1 vectơ chỉ phương là \overrightarrow{u_{2}} = (1; -
2;1). Do đó vectơ \overrightarrow{u_{4}} = (1;2;1) không là vectơ chỉ phương của d.

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, cho hai đường thẳng song song d:\left\{
\begin{matrix}
x = 2 - t \\
y = 1 + 2t \\
z = 4 - 2t \\
\end{matrix} ight.d':\frac{x - 4}{1} = \frac{y + 1}{- 2} =
\frac{z}{2}. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.

    Lấy M(2;1;4) \in d,N(4; - 1;0) \in
d'.

    Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.

    Phương trình đường thẳng cần tìm là: \frac{x - 3}{1} = \frac{y}{- 2} = \frac{z -
2}{2}

  • Câu 17: Nhận biết

    Trong không gian Oxyz, hãy viết phương trình của mặt phẳng (P) đi qua điểm M(0; - 1;0) và vuông góc với đường thẳng OM.

    Mặt phẳng (P) đi qua điểm M(0; -
1;0) và có một véc-tơ pháp tuyến là \overrightarrow{OM} = (0; - 1;0) nên có phương là:

    0(y - 0) + ( - 1)(y + 1) + 0(z - 0) = 0
\Leftrightarrow y + 1 = 0.

  • Câu 18: Nhận biết

    Trong hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I( - 1;4;2) và có thể tích bằng \frac{256\pi}{3}. Khi đó phương trình mặt cầu (S) là:

    Thể tích mặt cầu là: V = \frac{4\pi
R^{3}}{3} = \frac{256\pi}{3} \Rightarrow R = 4

    Vậy phương trình mặt cầu tâm I có bán kính R = 4 là: (x + 1)^{2} + (y - 4)^{2} + (z - 2)^{2} =
16

  • Câu 19: Vận dụng cao

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Ta có: \overrightarrow{BC} =
(100;0;50)

    Đường thẳng (BC) đi qua điểm B có VTCP \overrightarrow{u} = (2;0;1)có dạng (BC):\left\{ \begin{matrix}
x = 50 + 2t \\
y = 100 \\
z = 50 + t \\
\end{matrix} ight.

    Điểm W \in (BC) \Rightarrow W(50 +
2t;100;50 + t) \overrightarrow{AW} = (2t - 50;50;t -
50)

    Ta có: \overrightarrow{AW}.\overrightarrow{BC} =
0

    \Rightarrow 2(2t - 50) + (t - 50) = 0
\Rightarrow t = 30

    Vậy H(110;100;80) \Rightarrow a + b - 2c
= 50.

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, cho mặt cầu (S):(x + 3)^{2} + (y - 1)^{2} + (z +
1)^{2} = 3 và mặt phẳng (\alpha):(m
- 4)x + 3y - 3mz + 2m - 8 = 0. Với giá trị nào của tham số m thì mặt phẳng tiếp xúc với mặt cầu?

    Mặt cầu (S) có tâm I(−3; 1; −1) và bán kính R = \sqrt{3}

    Mặt phẳng (α) tiếp xúc với (S) khi và chỉ khi

    d\left( I;(P) ight) = R

    \Leftrightarrow \frac{\left| (m - 4).( -
3) + 3.1 - 3m.( - 1) + 2m - 8 ight|}{\sqrt{(m - 4)^{2} + 3^{2} + ( -
3m)^{2}}} = \sqrt{3}

    \Leftrightarrow \frac{|2m +
7|}{\sqrt{10m^{2} - 8m + 25}} = \sqrt{3}

    \Leftrightarrow 26m^{2} - 52m + 26 = 0
\Leftrightarrow m = 1

    Vậy đáp án cần tìm là: m =
1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo