Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz ,cho đường thẳng d:\frac{x - 5}{2} = \frac{y + 7}{2} = \frac{z -
12}{- 1} và mặt phẳng (\alpha):x +
2y - 3z - 3 = 0. Gọi M là giao điểm của d(\alpha), A thuộc d sao cho AM
= \sqrt{14}. Tính khoảng cách từ A đến mặt phẳng (\alpha).

    Hình vẽ minh họa

    Đường thẳng d:\frac{x - 5}{2} = \frac{y +
7}{2} = \frac{z - 12}{- 1} có một vectơ chỉ phương là: \overrightarrow{u} = (2;2; - 1)

    Mặt phẳng (\alpha):x + 2y - 3z - 3 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1;2; - 3)

    Ta có: \sin\left( d;(\alpha) ight) =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{3\sqrt{14}}{14}

    Gọi H là hình chiếu vuông góc của A lên mặt phẳng (α).

    Khi đó tam giác ∆MAH vuông tại H nên \sin\left( d;(\alpha) ight) = \sin\widehat{AMH}
= \frac{AH}{AM}

    AH = \sin\left( d;(\alpha) ight).AM =
3

    Vậy khoảng cách từ A đến mặt phẳng (α) bằng 3.

  • Câu 2: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD với A( -
3;1; - 1),B(1;2;m), C(0;2; -
1),D(4;3;0). Tìm tất cả các giá trị thực của m để thể tích khối tứ diện ABCD bằng 10.

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (3;1;0) \\
\overrightarrow{AD} = (7;2;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = (1; - 3; -
1)

    Lại có: \overrightarrow{AB} = (4;1;m + 1)
\Rightarrow \overrightarrow{AB}.\left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = - m

    Khi đó ta có:

    V_{ABCD} = \frac{1}{6}\left|
\overrightarrow{AB}.\left\lbrack \overrightarrow{AC};\overrightarrow{AD}
ightbrack ight| = \frac{|m|}{6}

    Theo đề ta có: V_{ABCD} = 10
\Leftrightarrow \frac{|m|}{6} = 10 \Leftrightarrow m = \pm
60

  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P): - \sqrt{3}x + y + 1 = 0. Tính góc tạo bởi (P) với trục Ox?

    Mặt phẳng (P): - \sqrt{3}x + y + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = \left( - \sqrt{3};1;0
ight)

    Trục Ox có một vectơ chỉ phương là \overrightarrow{i} = (1;0;0)

    Gọi α là góc giữa Ox và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 4: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(0; −1; 2), B(2; −3; 0), C(−2; 1; 1), D(0; −1; 3). Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức \overrightarrow{MA}.\overrightarrow{MB} =
\overrightarrow{MC}.\overrightarrow{MD} = 1. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?

    Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.

    Ta có \left\{ \begin{matrix}
\overrightarrow{AM} = (x;y + 1;z - 2) \\
\overrightarrow{BM} = (x - 2;y + 3;z) \\
\overrightarrow{CM} = (x + 2;y - 1;z - 1) \\
\overrightarrow{DM} = (x;y + 1;z - 3) \\
\end{matrix} ight.

    Từ giả thiết \overrightarrow{MA}.\overrightarrow{MB} =
\overrightarrow{MC}.\overrightarrow{MD} = 1 \Leftrightarrow \left\{
\begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = 1 \\
\overrightarrow{MC}.\overrightarrow{MD} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x(x - 2) + (y + 1)(y + 3) + z(z - 2) = 1 \\
x(x + 2) + (y + 1)(y - 1) + (z - 1)(z - 3) = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x + 4y - 2z + 2 = 0 \\
x^{2} + y^{2} + z^{2} + 2x - 4z + 1 = 0 \\
\end{matrix} ight.

    Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm I_1(1; −2; 1), R_1 = 2 và mặt cầu tâm I_2(−1; 0; 2), R_2 = 2

    I_{1}I_{2} = \sqrt{5}

    Dễ thấy r = \sqrt{{R_{1}}^{2} - \left(
\frac{I_{1}I_{2}}{2} ight)^{2}} = \frac{\sqrt{11}}{2}

  • Câu 5: Vận dụng

    Trong không gian Oxyz, xét mặt phẳng (P) đi qua điểm A(2;1;3) đồng thời cắt các tia Ox,Oy,Oz lần lượt tại M,N,P sao cho tứ diện OMNP có thể tích nhỏ nhất. Giao điểm của đường thẳng \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 4 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) với (P) có toạ độ là:

    Gọi M(a;0;0),N(0;b;0),P(0;0;c)

    Theo giả thiết, ta có a;b;c là các số dương.

    Phương trình mặt phẳng (P) là \frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    (P) đi qua điểm A (2; 1; 3) nên \frac{2}{a} + \frac{1}{b} + \frac{3}{c} =
1

    Ta có: \frac{2}{a} + \frac{1}{b} +
\frac{3}{c} \geq 3\sqrt[3]{\frac{2}{a}.\frac{1}{b}.\frac{3}{c}} =
\frac{3\sqrt[3]{6}}{\sqrt[3]{abc}}

    \Leftrightarrow 1 \geq
\frac{3\sqrt[3]{6}}{\sqrt[3]{abc}} \Leftrightarrow \sqrt[3]{abc} \geq
3\sqrt[3]{6} \Leftrightarrow abc \geq 112

    V_{OMNP} = \frac{abc}{6} \geq
27. Dấu bằng xảy ra khi và chỉ khi \left\{ \begin{matrix}
\frac{2}{a} = \frac{1}{b} = \frac{3}{c} \\
\frac{2}{a} + \frac{1}{b} + \frac{3}{c} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 6 \\
b = 3 \\
c = 9 \\
\end{matrix} ight.

    Vậy (P):\frac{x}{6} + \frac{y}{3} +
\frac{z}{9} = 1

    Tọa độ giao điểm của d và (P) là nghiệm của hệ: \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 4 + t \\
\frac{x}{6} + \frac{y}{3} + \frac{z}{9} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 1 \\
z = 6 \\
t = 2 \\
\end{matrix} ight..

    Vậy đáp án cần tìm là: (4; -
1;6).

  • Câu 6: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình mặt cầu

    Phương trình mặt cầu tâm I bán kính R có dạng: (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}

    Vậy đáp án cần tìm là: (x - 13)^{2} + (y
- 24)^{2} + (z - 36)^{2} = 7^{2} .

  • Câu 7: Nhận biết

    Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?

     Mệnh đề đúng

    Vì I là hình chiếu của O trên (P) nên  d\left[ {O,\left( P ight)} ight] = OId\left[ {O,\left( P ight)} ight] = R nên I là tiếp điểm của (P)(S).

    Đường thẳng OM cắt (P) tại N nên IN vuông góc với OI tại I.

    Suy ra IN tiếp xúc với (S).

    Tam giác OIN vuông tại I nên ON = R\sqrt 2  \Leftrightarrow IN = R.

  • Câu 8: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y - 6z + 5 =
0 và mặt phẳng (\alpha):2x + y + 2z
- 15 = 0. Mặt phẳng (P) song song với (\alpha) và tiếp xúc với (S)

    Ta có:

    (S) có tâm I (1; −2; 3), bán kính R = 3. (P) song song với (α)

    (P):2x + y + 2z + m = 0, với m eq - 15

    Do mặt phẳng (P) tiếp xúc với (S) nên d\left( I;(P) ight) = R \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 15 \\
m = 3 \\
\end{matrix} ight., so với điều kiện ta nhận m = 3.

    Vậy (P):2x + y + 2z + 3 = 0.

  • Câu 9: Thông hiểu

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu: 

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {2 - \ln t} ight)x + 4\ln t.y + 2\left( {\ln t + 1} ight)z + 5{\ln ^2}t + 8 = 0.

    Theo đề bài, ta có:

    a = \ln t - 2;\,\,b =  - 2\ln t;\,\,c =  - \ln t - 1;\,\,d = 5{\ln ^2}t + 8

    (S) là mặt cầu \Leftrightarrow {\left( {\ln t - 2} ight)^2} + 4{\ln ^2}t + {\left( {\ln t + 1} ight)^2} - 5{\ln ^2}t - 8 > 0

    \Leftrightarrow {\ln ^2}t - 2\ln t - 3 > 0

    \Leftrightarrow \ln t <  - 1 \vee \ln t > 3

    \Leftrightarrow 0 < t < \frac{1}{e} \vee t > {e^3}

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = - 3 + 2t \\
z = 1 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi d' là hình chiếu vuông góc của d trên mặt phẳng tọa độ (Oxz). Viết phương trình đường thẳng d'.

    Ta có: d đi qua M(2; −3; 1) và có vectơ chỉ phương \overrightarrow{u} = (1;2;3)

    Mặt phẳng (Oxz) có vectơ pháp tuyến \overrightarrow{n} = (0;1;0) và có phương trình y = 0.

    Suy ra \left\lbrack
\overrightarrow{n};\overrightarrow{u} ightbrack = ( -
3;0;1)

    Gọi H là hình chiếu vuông góc của M trên Oxz ⇒ H(2; 0; 1).

    Suy ra d' là đường thẳng qua H(2; 0; 1) và nhận vectơ \overrightarrow{u'} = \left\lbrack
\overrightarrow{n}.\left\lbrack \overrightarrow{n};\overrightarrow{u}
ightbrack ightbrack = (1;0;3) làm vectơ chỉ phương.

    Vậy phương trình đường thẳng cần tìm là d':\left\{ \begin{matrix}
x = 2 + t \\
y = 3 - 2t \\
z = 1 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 11: Vận dụng

    Cho tứ diện ABCD có A\left( {5,1,3} ight),B\left( {1,6,2} ight),C\left( {5,0,4} ight),D\left( {4,0,6} ight). Mặt phẳng chứa BC và song song với AD có phương trình :

    Theo đề bài, từ các điểm A\left( {5,1,3} ight),B\left( {1,6,2} ight),C\left( {5,0,4} ight),D\left( {4,0,6} ight), ta tính được các vecto tương ứng là: \overrightarrow {BC}  = \left( {4, - 6,2} ight);\overrightarrow {AD}  = \left( { - 1, - 1,3} ight)

    \Rightarrow \left[ {\overrightarrow {BC} ,\overrightarrow {AD} } ight] = \left( { - 16, - 14, - 10} ight)cùng phương với \overrightarrow n  = \left( {8,7,5} ight)

    Chọn \vec{n} làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.

    Phương trình (P) có dạng: 8x + 7y + 5z + D = 0

    Mặt khác, điểm B \in \left( P ight) \Leftrightarrow 8 + 42 + 10 + D = 0 \Leftrightarrow D =  - 60

    Vậy phương trình (P): 8x + 7y + 5z - 60 = 0.

  • Câu 12: Nhận biết

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):4x + 3y - z + 1 =
0 và đường thẳng d:\frac{x - 1}{4}
= \frac{y - 6}{3} = \frac{z + 4}{1}, sin của góc giữa đường thẳng d và mặt phẳng (P) bằng:

    Mặt phẳng (P):4x + 3y - z + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (4;3; - 1)

    Đường thẳng d:\frac{x - 1}{4} = \frac{y -
6}{3} = \frac{z + 4}{1} có một vectơ chỉ phương là \overrightarrow{u} = (4;3;1)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{12}{13}

  • Câu 13: Nhận biết

    Trong không gian Oxyz, cho điểm A(2;1;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{2} = \frac{z -
3}{- 2}. Tính khoảng cách từ A đến đường thẳng d.

    Gọi M(1;\ 2;\ 3) \in d

    \Rightarrow AM = ( - 1;1;2) \Rightarrow
\left\lbrack \overrightarrow{AM};\overrightarrow{u} ightbrack = ( -
6;0; - 3)

    Ta có d(A;d) = \frac{\left| \left\lbrack
\overrightarrow{AM};\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{3\sqrt{5}}{3} =
\sqrt{5}.

  • Câu 14: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(2;0;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
2}{2}. Tìm tọa độ hình chiếu vuông góc của M lên đường thẳng d.

    Gọi (P) là mặt phẳng đi qua M(2;0;1) và vuông góc với đường thẳng d.

    Suy ra (P) nhận \overrightarrow{u_{d}} =
(1;2;1) làm vectơ pháp tuyến.

    Phương trình mặt phẳng

    (P):(x - 2) + 2y + z - 1 =
0

    \Leftrightarrow x + 2y + z - 3 =
0.

    Gọi H là hình chiếu vuông góc của M lên đường thẳng d, suy ra H = d \cap (P).

    Tọa độ điểm H là nghiệm của hệ

    \left\{ \begin{matrix}\dfrac{x - 1}{1} = \dfrac{y}{2} = \dfrac{z - 2}{2} \\x + 2y + z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2x - y = 2 \\y - 2z = - 4 \\x + 2y + z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 1 \\y = 0 \\z = 2 \\\end{matrix} ight.

  • Câu 15: Vận dụng cao

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên mặt phẳng(ABC) là trung điểm H của cạnh BC. Góc giữa đường thẳng SA và mặt phẳng (ABC) bằng 60^0. Gọi G là trọng tâm tam giác SAC, R là bán kính mặt cầu có tâm G và tiếp xúc với mặt phẳng (SAB). Đẳng thức nào sau đây sai?

    Chọn câu sai 

    Ta có {60^0} = \widehat {SA,\left( {ABC} ight)} = \widehat {SA,HA} = \widehat {SAH}.

    Tam giác ABC đều cạnh a nên AH = \frac{{a\sqrt 3 }}{2} .

    Trong tam giác vuông SHA, ta có SH = AH.\tan \widehat {SAH} = \frac{{3a}}{2}.

    Vì mặt cầu có tâm G và tiếp xúc với (SAB) nên bán kính mặt cầu R = d\left[ {G,\left( {SAB} ight)} ight].

    Ta có d\left[ {G,\left( {SAB} ight)} ight] = \frac{1}{3}d\left[ {C,\left( {SAB} ight)} ight] = \frac{2}{3}d\left[ {H,\left( {SAB} ight)} ight].

    Gọi M, E lần lượt là trung điểm của AB và MB.

    Suy ra \left\{ \begin{array}{l}CM \bot AB\\CM = \dfrac{{a\sqrt 3 }}{2}\end{array} ight. và  \left\{ \begin{array}{l}HE \bot AB\\HE = \dfrac{1}{2}CM = \dfrac{{a\sqrt 3 }}{4}\end{array} ight..

    Gọi K là hình chiếu vuông góc của H trên SE , suy ra HK \bot SE    (1).

    Ta có \left\{ \begin{array}{l}HE \bot AB\\AB \bot SH\end{array} ight. \Rightarrow AB \bot \left( {SHE} ight) \Rightarrow AB \bot HK.   (2)

    Từ (1) và (2) , suy ra HK \bot \left( {SAB} ight)  nên  d\left[ {H,\left( {SAB} ight)} ight] = HK.

    Trong tam giác vuông SHE, ta có HK = \frac{{SH.HE}}{{\sqrt {S{H^2} + H{E^2}} }} = \frac{{3a}}{{2\sqrt {13} }}.

    Vậy R = \frac{2}{3}HK = \frac{a}{{\sqrt {13} }}.

  • Câu 16: Vận dụng

    Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):x + y - 2z - 5 = 0 và đường thẳng\Delta:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z}{3}. Gọi A là giao điểm của \Delta(P)M là điểm thuộc đường thẳng \Delta sao cho AM = \sqrt{84}. Tính khoảng cách từ M đến mặt phẳng (P).

    Gọi \alpha = \left( \Delta,(P)
ight)

    Khi đó ta có: \cos\alpha = \frac{|1.2 +
1.1 - 2.3|}{\sqrt{1^{2} + 1^{2} + ( - 2)^{2}}.\sqrt{2^{2} + 1^{2} +
3^{2}}} = \frac{\sqrt{21}}{14}

    Gọi H là hình chiếu của M lên mặt phẳng (P), khi đó:

    HM = MA.cos\alpha = \sqrt{84}.\frac{\sqrt{21}}{14}
= 3

  • Câu 17: Nhận biết

    Cho A( - 1;2;1) và hai mặt phẳng (P):2x + 4y - 6z - 5 = 0;(Q):x + 2y - 3z =
0. Khi đó:

    Thay tọa độ điểm A vào phương trình mặt phẳng (Q) thỏa mãn, do đó A ∈ (Q).

    {\overrightarrow{n}}_{(P)} = (2;4; -
6) = 2(1;2; - 3) = {\overrightarrow{n}}_{(Q)} nên (Q)//(P).

  • Câu 18: Nhận biết

    Cho đường thẳng \left( D ight):\left\{ \begin{array}{l}2x - y + 4z - 1 = 0\\2x + 4y - z + 5 = 0\end{array} ight. có một vec-tơ chỉ phương là:

     Ta có vectơ pháp tuyến của hai mặt phẳng

    \left( P ight):2x - y + 4z - 1 = 0\left( Q ight):2x + 4y - z + 5 = 0 lần lượt là  \overrightarrow {{n_1}}  = \left( {2, - 1,4} ight);\overrightarrow {{n_2}}  = \left( {2,4, - 1} ight).

    Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:

    \overrightarrow {{a_D}}  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] =  - 5\left( {3, - 2, - 2} ight) = 5\left( { - 3,2,2} ight)

    \Rightarrow \overrightarrow a  = \left( {3, - 2, - 2} ight) \vee \overrightarrow a  = \left( { - 3,2,2} ight)

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0. Mệnh đề nào dưới đây đúng?

    Ta có điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0 nên:

    2a - b + 1 - 3 = 0 \Leftrightarrow 2a -
b = 2

  • Câu 20: Thông hiểu

    Cho tam giác ABC với A\left( {\,1,\,\, - 2,\,\,6\,} ight);\,\,B\left( {\,2,\,\,5,\,\,1} ight);\,\,C\left( {\, - 1,\,\,8,\,\,4} ight) .

    Viết phương trình tổng quát của mặt phẳng (P) vuông góc với mặt phẳng (ABC) song song đường cao AH của tam giác ABC.

     Theo đề bài, ta có: \left( P ight) \bot \left( {ABC} ight) song song đường cao AH \Rightarrow \left( P ight) \bot \overrightarrow {BC}  = \left( { - 3,3,3} ight)

    \Rightarrow \left( P ight):\left( {x - 1} ight)\left( { - 3} ight) + \left( {y + 2} ight)3 + \left( {z - 6} ight)3 = 0

    \Leftrightarrow x - y - z + 3 = 0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo