Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (P):ax + by + cz - 27 = 0 đi qua hai điểm A(3;2;1),B( - 3;5;2) và vuông góc với mặt phẳng (Q):3x + y + z + 4 =
0. Tính tổng S = a + b +
c.

    Từ giả thiết ta có hệ phương trình:

    \left\{ \begin{matrix}
3a + 2b + c - 27 = 0 \\
- 3a + 5b + 2c - 27 = 0 \\
3a + b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 6 \\
b = 27 \\
c = - 45 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = -
12

  • Câu 2: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 3: Thông hiểu

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu: 

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {2 - \ln t} ight)x + 4\ln t.y + 2\left( {\ln t + 1} ight)z + 5{\ln ^2}t + 8 = 0.

    Theo đề bài, ta có:

    a = \ln t - 2;\,\,b =  - 2\ln t;\,\,c =  - \ln t - 1;\,\,d = 5{\ln ^2}t + 8

    (S) là mặt cầu \Leftrightarrow {\left( {\ln t - 2} ight)^2} + 4{\ln ^2}t + {\left( {\ln t + 1} ight)^2} - 5{\ln ^2}t - 8 > 0

    \Leftrightarrow {\ln ^2}t - 2\ln t - 3 > 0

    \Leftrightarrow \ln t <  - 1 \vee \ln t > 3

    \Leftrightarrow 0 < t < \frac{1}{e} \vee t > {e^3}

  • Câu 4: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y + z - 6 = 0. Điểm nào dưới đây không thuộc mặt phẳng (\alpha)?

    Điểm M(1; - 1;1) không thuộc mặt phẳng (\alpha):x + y + z - 6 =
0.

  • Câu 5: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:\frac{x}{2} = \frac{y}{- 1} = \frac{z +
1}{1} và mặt phẳng (P):x - 2y - 2z
+ 5 = 0. Điểm A nào dưới đây thuộc d và thỏa mãn khoảng cách từ A đến mặt phẳng (P) bằng 3?

    Vì A ∈ (d) nên ta có tọa độ điểm A(2a; −a; a − 1).

    Khoảng cách từ A đến (P) là

    \frac{\left| 2a + 2a - 2(a - 1) + 5
ight|}{\sqrt{9}} = 3

    \Leftrightarrow |2a + 9| = 9\Leftrightarrow \left\lbrack \begin{matrix}a = 0 \\a = - \dfrac{9}{2} \\\end{matrix} ight.

    Với a = 0 \Rightarrow A(0;\ 0; -
1)

  • Câu 6: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;1;1), mặt phẳng (P):x - z - 1 = 0 và đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 \\
z = - 2 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi d_{1};d_{2} là các đường thẳng đi qua A, nằm trong (P) và đều có khoảng cách đến đường thẳng d bằng \sqrt{6}. Côsin của góc giữa d_{1}d_{2} bằng bao nhiêu?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (1;0; - 1) \\
\overrightarrow{u_{d}} = ( - 1;0;1) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
d\bot P \\
d \cap P = M(0;2; - 1) \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{MA} = (2; -
1;2) \Rightarrow MA = 3

    Gọi H K; lần lượt là hình chiếu vuông góc của M lên d_{1}d_{2}, ta có:

    \left\{ \begin{matrix}
d\left( d_{1};d ight) = d\left( M;d_{1} ight) = MH \\
d\left( d_{2};d ight) = d\left( M;d_{2} ight) = MK \\
\end{matrix} ight.

    \Rightarrow MK = MH = \sqrt{6}
\Rightarrow \sin\widehat{MAK} = \sin\widehat{MAH} = \frac{HM}{AM} =
\frac{\sqrt{6}}{3}

    \Rightarrow \cos\left( d_{1};d_{2}
ight) = \left| \cos\left( 2.\widehat{MAH} ight) ight|

    = \left| 1 - 2\sin^{2}\left(\widehat{MAH} ight) ight| = \left| 1 - \frac{4}{3} ight| =\frac{1}{3}

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} + 2x - 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Ta có:

    x^{2} + y^{2} + z^{2} + 2x - 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.( - 1)x - 2.0.y - 2.1z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 0 \\
c = 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I( - 1;0;1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{( - 1)^{2} + 0^{2} + 1^{2} - 7} = 3

  • Câu 8: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng a\sqrt{2} và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa hai mặt phẳng (SBD) và (ABCD). Nếu \tan\alpha = \sqrt{2} thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng:

    Hình vẽ minh họa

    Gọi I = AC \cap BD.

    Hình vuông ABCD có độ dài đường chéo bằng a\sqrt{2} suy ra hình vuông đó có cạnh bằng a.

    Ta có \left\{ \begin{matrix}
(SBD) \cap (ABCD) = BD \\
SI\bot BD \\
AI\bot BD \\
\end{matrix} \Rightarrow ((SBD);(ABCD)) = (SI;AI) = SIA ight..

    Ta có tan\alpha = tanSIA = \frac{SA}{AI}
\Leftrightarrow SA = a.

    Chọn hệ trục tọa độ Oxyz như hình vẽ. Ta có A(0;0;0),B(a;0;0),C(a;a;0),S(0;0;a).

    Khi đó \overrightarrow{SA} = (0;0; -
a);\overrightarrow{SC} = (a;a; - a);\overrightarrow{SB} = (a;0; -
a).

    Mặt phẳng (SAC) có vectơ pháp tuyến {\overrightarrow{n}}_{1} = ( -
1;1;0).

    Mặt phẳng (SBC) có vectơ pháp tuyến {\overrightarrow{n}}_{2} =
(1;0;1).

    Suy ra cos((SAC);(SBC)) = \frac{\left|{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2} ight|}{\left|{\overrightarrow{n}}_{1} ight| \cdot \left| {\overrightarrow{n}}_{2}ight|}= \frac{1}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2}\Rightarrow((SAC);(SBC)) = 60^{\circ}.

  • Câu 9: Nhận biết

    Trong không gian Oxyz, tính khoảng cách từ điểm M(1;2; - 3) đến mặt phẳng (P):x + 2y - 2z - 2 =
0?

    Khoảng cách từ điểm M đến mặt phẳng (P):x + 2y - 2z - 2 = 0 là:

    d\left( M;(P) ight) = \frac{\left| 1 +
2.2 - 2( - 3) - 2 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
3

  • Câu 10: Vận dụng

    Trong không gian Oxyz, cho mặt phẳng (P): x − 4y + z + 1 = 0 và hai điểm A(1; 0; 2), B(2; 5; 3). Đường thẳng d đi qua điểm A và song song với mặt phẳng (P) sao cho khoảng cách từ điểm B đến đường thẳng d nhỏ nhất có phương trình là

    Giả sử đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (1;b;c)

    Phương trình đường thẳng d có dạng \left\{ \begin{matrix}
x = 1 + t \\
y = bt \\
z = 2 + ct \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đường thẳng d k (P) nên 1 - 4b + c = 0
\Rightarrow c = 4b - 1.

    Khoảng cách từ B đến đường thẳng d là:

    d(B;d) = \frac{\left| \overrightarrow{u}
\land \overrightarrow{AB} ight|}{\left| \overrightarrow{u} ight|} =
\frac{\sqrt{378b^{2} - 216b + 54}}{\sqrt{17b^{2} - 8b + 2}}

    Xét hàm số f(b) = \frac{378b^{2} - 216b +
54}{17b^{2} - 8b + 2}

    f'(b) = \frac{648b^{2} -
324b}{\left( 17b^{2} - 8b + 2 ight)^{2}} \Rightarrow f'(b) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
b = 0 \\
b = \frac{1}{2} \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta được khoảng cách từ B đến d nhỏ nhất tại b = \frac{1}{2}

    Khi đó \overrightarrow{u} = \left(
1;\frac{1}{2};1 ight), chọn \overrightarrow{u} = (2;1;2).

    Phương trình đường thẳng d:\frac{x -
3}{2} = \frac{y - 1}{1} = \frac{z - 2}{2} hay \frac{x - 3}{2} = \frac{1 - y}{- 1} = \frac{z -
4}{2}.

  • Câu 11: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, trục Ox có phương trình tham số là

    Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương \overrightarrow{i} = (1;0;0) nên có phương trình tham số là \left\{
\begin{matrix}
x = 0 + 1t \\
y = 0 + 0t \\
z = 0 + 0t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 12: Vận dụng

    Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0  và vuông góc với mặt phẳng \left( S ight):x - 3y + z - 4 = 0

    Theo đề bài, (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0 nên (P) có dạng là 

    \begin{array}{l}\left( P ight):2x - y + z + 2 + m\left( {x + y - z - 3} ight) = 0,\,\,m \in \mathbb{R} \\ \Leftrightarrow \left( P ight):\left( {m + 2} ight)x + \left( {m - 1} ight)y + \left( {1 - m} ight)z + 2 - 3m = 0\end{array}

    Chọn \vec{n} làm vectơ pháp tuyến của (P), ta có: \left( P ight):\overrightarrow n  = \left( {m + 2,m - 1,1 - m} ight) \bot \overrightarrow {{n_s}}  = \left( {1, - 3,1} ight) 

    \begin{array}{l} \Rightarrow \left( {m + 2} ight)1 + \left( {m - 1} ight)\left( { - 3} ight) + \left( {1 - m} ight)1 = 0 \Leftrightarrow m = 2\\ \Rightarrow \left( P ight):4x + y - z - 4 = 0\end{array}

  • Câu 13: Vận dụng cao

    Trong không gian Oxyz, cho mặt cầu (S): x^2 +y^2 +z^2 −2x+ 2z −2 = 0 và các điểm A(0; 1; 1), B(−1; −2; −3), C(1; 0; −3). Điểm D thuộc mặt cầu (S). Thể tích lớn nhất của tứ diện ABCD bằng:

    Mặt cầu (S) có tâm là I(1; 0; −1) và bán kính R = 2.

    Khi V_{DABC} lớn nhất thì \frac{V_{DABC}}{V_{IABC}} = \frac{d\left( D;(ABC)
ight)}{d\left( I;(ABC) ight)} = \frac{R + d\left( I;(ABC)
ight)}{d\left( I;(ABC) ight)}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1; - 3; - 4) \\
\overrightarrow{AC} = (1; - 1; - 4) \\
\overrightarrow{AI} = (1; - 1; - 2) \\
\end{matrix} ight. suy ra:

    V_{IABC} = \frac{1}{6}\left|
\left\lbrack \left\lbrack \overrightarrow{AB};\overrightarrow{AC}
ightbrack.\overrightarrow{AI} ightbrack ight| =
\frac{4}{3}

    \Rightarrow d\left( I;(ABC) ight) =
\frac{6.V_{IABC}}{\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight|} =
\frac{2}{3}

    \Rightarrow V_{DABC} =\dfrac{4}{3}.\dfrac{2 + \dfrac{2}{3}}{\dfrac{2}{3}} =\dfrac{16}{3}.

  • Câu 14: Thông hiểu

    Phương trình tổng quát của mặt phẳng (\alpha) chứa giao tuyến của hai mặt phẳng 2x - y + 3z + 4 = 0x + 3y - 2z + 7 = 0, chứa điểm M\left( { - 1,2,4} ight) là:

    Vì mặt phẳng (\alpha) chứa giao tuyến của hai mặt phẳng 2x - y + 3z + 4 = 0x + 3y - 2z + 7 = 0 nên thuộc chùm mặt phẳng 2x - y + 3z + 4 + m\left( {x + 3y - 2z + 7} ight) = 0

    \Leftrightarrow \left( {m + 2} ight)x + \left( {3m - 1} ight)y - \left( {2m - 3} ight)z + 7m + 4 = 0\left( * ight)

    Mặt khác, ta có M \in (\alpha)

    \begin{array}{l} \Rightarrow (*) \Leftrightarrow \left( {m + 2} ight).\left( { - 1} ight) + \left( {3m - 1} ight).2 - \left( {2m - 3} ight).4 + 7m + 4 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow 4m + 12 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow m =  - 3\end{array}

    Thế vào (*):\,\,\,\,\,x + 10y - 9z + 17 = 0.

  • Câu 15: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng tiếp xúc với mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} +
(z - 3)^{2} = 81 tại điểm P( - 5; -
4;6) là:

    Mặt cầu (S) có tâm I(1; 2; 3).

    Gọi (α) là mặt phẳng cần tìm.

    Do (α) tiếp xúc với (S) tại P nên mặt phẳng (α) đi qua P và có vectơ pháp tuyến \overrightarrow{n} =
\overrightarrow{IP} = ( - 6; - 6;3)

    Phương trình mặt phẳng (α) là

    - 6(x + 5) - 6(y + 4) + 3(z - 6) =
0

    \Leftrightarrow 2x + 2y - z + 24 =
0

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{1} = \frac{y}{- 1} =
\frac{z - 1}{- 3} và mặt phẳng (P):3x - 3y + 2z + 1 = 0. Mệnh đề nào sau đây là đúng?

    Viết lại đường thẳng d ở dạng tham số \left\{ \begin{matrix}
x = - 1 + t \\
y = - t \\
z = 1 - 3t \\
\end{matrix} ight.

    Xét phương trình 3.( - 1 + t) - 3.( - t)
+ 2.(1 - 3t) + 1 = 0 \Leftrightarrow 0 = 0

    Kết luận phương trình có vô số nghiệm \Rightarrow d \subset (P)

  • Câu 17: Nhận biết

    Trong không gian Oxyz đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} = 1 và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa mặt phẳng (\alpha) và đường thẳng \Delta bằng:

    Mặt phẳng (\alpha):x - y + 2z =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    Đường thẳng \Delta:\frac{x}{1} =
\frac{y}{2} = \frac{z}{- 1} = 1 có một vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    Gọi α là góc giữa đường thẳng \Delta và mặt phẳng (\alpha):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 18: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 - t \\
y = 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào sau đây là phương trình chính tắc của d?

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = ( - 1;1;1) và đi qua điểm M(2;1;0). Do đó phương trình chính tắc của d là: \frac{x - 2}{- 1} = \frac{y - 1}{1} =
\frac{z}{1}

  • Câu 19: Thông hiểu

    Cho hình lập phương OABC.DEFG có cạnh bằng 1 có \overrightarrow {OA} ,\,\,\overrightarrow {OC} ,\,\,\overrightarrow {OG} trùng với ba trục \overrightarrow {Ox} ,{m{ }}\overrightarrow {Oy} ,{m{ }}\overrightarrow {Oz}. Viết phương trình mặt cầu \left( {{S_3}} ight) tiếp xúc với tất cả các cạnh của hình lập phương.

     \left( {{S_2}} ight) tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.

    Tâm I\left( {\frac{1}{2},\frac{1}{2},\frac{1}{2}} ight) là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng \sqrt 2

    Bán kính {R_3} = \frac{{\sqrt 2 }}{2}

    \begin{array}{l} \Rightarrow \left( {{S_2}} ight):{\left( {x - \dfrac{1}{2}} ight)^2} + {\left( {y - \dfrac{1}{2}} ight)^2} + {\left( {z - \dfrac{1}{2}} ight)^2} = \dfrac{1}{2}\\ \Rightarrow \left( {{S_3}} ight):{x^2} + {y^2} + {z^2} - x - y - z + \dfrac{1}{4} = 0\end{array}

  • Câu 20: Vận dụng cao

    Cho hai đường thẳng (d1 ): \left\{ \begin{array}{l}x - y + z - 5 = 0\\x - 3y + 6 = 0\end{array} ight.({d_2})\left\{ \begin{array}{l}2y + z - 5 = 0\\4x - 2y + 5z - 4 = 0\end{array} ight.

    Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?

    Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :

    ({d_1}):\left\{ \begin{array}{l}x =  - 6 + 3t\\y = t\\z = 11 - 2t\end{array} ight. \Rightarrow ({d_1}) có vectơ chỉ phương \overrightarrow a  = (3,1, - 2) và qua A( - 6,0,11) .

    ({d_2}):\left\{ \begin{array}{l}x = \frac{{15}}{4} - 3t'\\y = 3 - t'\\z =  - 1 + 2t'\end{array} ight. \Rightarrow \left( {{d_2}} ight) có vectơ chỉ phương \overrightarrow b  = (\frac{{15}}{4},3, - 1)

    \overrightarrow a  earrow  \swarrow \overrightarrow bvà hệ phương trình \left\{ \begin{array}{l} - 6 + 3t = \frac{{15}}{4} - 3t'\\t = 3 - t'\\11 - 2t =  - 1 + 2t'\end{array} ight. vô nghiệm.

    \Rightarrow ({d_1})//(d_{2} ).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo