Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho mặt cầu tâm I bán kính R = 2,6{m{cm}} . Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng 2,4 cm . Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:

     Theo đề bài, mặt phẳng cắt mặt cầu S(I;2,6 cm) theo một đường tròn (H;r) .

    Vậy r = \sqrt {{R^2} - I{H^2}}  = \sqrt {{{\left( {2,6} ight)}^2} - {{\left( {2,4} ight)}^2}}  = 1{m{cm}}.

  • Câu 2: Vận dụng cao

    Trong không gian với hệ toạ độ Oxyz, cho điểm S(0;0;1), Hai điểm M(m;0;0),N(0;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Mặt phẳng (SMN) luôn tiếp xúc với một mặt cầu cố định đi qua P(1;1;1) có bán kính là

    Phương trình (SMN):\frac{x}{m} +\frac{y}{n} + z = 1. Gọi I(a;b;c)R là tâm và bán kính mặt cầu cố định trong đề bài, phương trình mặt cầu là (x -a)^{2} + (y - b)^{2} + (z - c)^{2} = R^{2}.

    Ta có khoảng cách từ I đên (SMN)d = \dfrac{\left| \dfrac{a}{m} +\dfrac{b}{n} + c - 1 ight|}{\sqrt{\dfrac{1}{m^{2}} + \dfrac{1}{n^{2}} +1}} = R

    \ m + n = 1 \Rightarrow\frac{1}{m^{2}} + \frac{1}{n^{2}} + 1

    = \frac{m^{2} + n^{2} +m^{2}n^{2}}{m^{2}n^{2}} = \frac{1 - 2mn +m^{2}n^{2}}{m^{2}n^{2}}

    \Rightarrow d = \frac{|an + bm + cmn -mn|}{1 - mn} = R

    Nếu an + bm + cmn - mn = R(1 -mn)

    \Leftrightarrow a(1 - m) + bm + cm(1 -m) - m(1 - m) = R - Rm(1 - m)

    \Leftrightarrow m^{2}(R + c - 1) + m(a -b - c - R + 1) - a + R = 0

    Đẳng thức đúng với mọi m \in(0;1) nên R + c - 1 = a - b - c - R+ 1 = - a + R hay a = b = R,c = 1 -R, thay vào phương trình mặt cầu ta có R = 1.

    Nếu an + bm + cmn − mn = −R(1 − mn)

    \Leftrightarrow m^{2}( - R + c - 1) +m(a - b - c + R + 1) - a - R = 0

    Đẳng thức đúng với mọi m ∈ (0; 1) nên R+c−1 = a−b−c−R+1 = −a+R hay a = b = −R, c = 1+R thay vào phương trình mặt cầu ta có R = −1 không thỏa mãn.

    Vậy R = 1.

  • Câu 3: Vận dụng

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight) . Viết phương trình của mặt phẳng (P) qua A, B và chia tứ diện thành hai khối ABCE và ABDE có tỉ số thể tích bằng 3.

     PT mp cắt khối tứ diện

    Theo đề bài, ta có mp (P) cắt cạnh CD tại E, E chia đoạn CD theo tỷ số -3

    \Rightarrow E\left\{ \begin{array}{l}x = \dfrac{{{x_C} + 3{x_D}}}{4} = \dfrac{{1 + 3.0}}{4} = \dfrac{1}{4}\\y = \dfrac{{{y_C} + 3{y_D}}}{4} = \dfrac{{ - 1 + 3.0}}{4} = \dfrac{{ - 1}}{4}\\z = \dfrac{{{z_C} + 3{z_D}}}{4} = \dfrac{{0 + 3.1}}{4} = \dfrac{3}{4}\end{array} ight.

    Từ đó, ta suy ra: \overrightarrow {AB}  = \left( {1,0,3} ight);\,\,\overrightarrow {AE}  = \left( {\frac{1}{4}; - \frac{5}{4};\frac{7}{4}} ight) = \frac{1}{4}\left( {1, - 5,7} ight)

    Như vậy, VTPT mp (P) là: \left( P ight):\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AE} } ight] = \left( {15, - 4, - 5} ight)

    \Rightarrow \left( P ight):\left( {x - 0} ight)15 + \left( {y - 1} ight)\left( { - 4} ight) + \left( {z + 1} ight)\left( { - 5} ight) = 0

    \Leftrightarrow 15x - 4y - 5z - 1 = 0

  • Câu 4: Nhận biết

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = - 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào sau đây không thuộc đường thẳng d?

    Thay M(1;2; - 1) vào d ta được: \left\{ \begin{matrix}
1 = 1 - t \\
2 = 2 + 2t \\
- 1 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 \Rightarrow M \in
d

    Thay N(6; - 8;9) vào d ta được: \left\{ \begin{matrix}
6 = 1 - t \\
- 8 = 2 + 2t \\
9 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = - 5 \Rightarrow N \in
d

    Thay P( - 6;16; - 14) vào d ta được: \left\{ \begin{matrix}
- 6 = 1 - t \\
16 = 2 + 2t \\
- 14 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 7 \\
t = 7 \\
t = \frac{13}{2} \\
\end{matrix} ight. hệ vô nghiệm nên P otin d.

    Thay Q( - 19;42; - 41) vào d ta được: \left\{ \begin{matrix}
19 = 1 - t \\
42 = 2 + 2t \\
- 41 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 20 \Rightarrow Q \in
d

  • Câu 5: Vận dụng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 6: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:\frac{x}{2} = \frac{y}{- 1} = \frac{z +
1}{1} và mặt phẳng (P):x - 2y - 2z
+ 5 = 0. Điểm A nào dưới đây thuộc d và thỏa mãn khoảng cách từ A đến mặt phẳng (P) bằng 3?

    Vì A ∈ (d) nên ta có tọa độ điểm A(2a; −a; a − 1).

    Khoảng cách từ A đến (P) là

    \frac{\left| 2a + 2a - 2(a - 1) + 5
ight|}{\sqrt{9}} = 3

    \Leftrightarrow |2a + 9| = 9\Leftrightarrow \left\lbrack \begin{matrix}a = 0 \\a = - \dfrac{9}{2} \\\end{matrix} ight.

    Với a = 0 \Rightarrow A(0;\ 0; -
1)

  • Câu 7: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 8: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng (d):\frac{x - 2}{3} = \frac{y + 1}{- 2} = \frac{z
- 4}{4} có phương trình tham số là

    Gọi \overrightarrow{u} vectơ chỉ phương của đường thẳng d, ta chọn \overrightarrow{u}( - 3;2; - 4)

    Giả sử M_{0} \in d, chọn M_{0}(2, - 1;4) suy ra phương trình tham số d là:

    \left\{ \begin{matrix}
x = 2 - 3m \\
y = - 1 + 2m \\
z = 4 - 4m \\
\end{matrix} ight.\ ;\left( m\mathbb{\in R} ight).

  • Câu 9: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 10: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho phương trìnhx^{2} + y^{2} + z^{2} - 2x - 4y - 6z - 11 =
0. Viết phương trình mặt phẳng (\alpha), biết (\alpha) song song với mặt phẳng (P):2x + y - 2z + 11 = 0 và cắt mặt cầu theo thiết diện là một đường tròn có chu vi 8\pi?

    (α) // (P) nên phương trình mặt phẳng (α) có dạng 2x + y - 2z + c = 0

    Mặt cầu (S) có tâm I(1; 2; 3) và bán kính R = 5.

    Đường tròn lớn có chu vi là 8\pi nên bán kính của (S)\frac{8\pi}{2\pi} = 4

    Khoảng cách từ tâm I đến mặt phẳng P bằng 3

    Từ đó ta có:

    d\left( I;(P) ight) = \frac{|2.1 + 2 -
2.3 + c|}{\sqrt{2^{2} + 1^{2} + ( - 2)^{2}}} = 3

    \Leftrightarrow | - 2 + c| = 9
\Leftrightarrow \left\lbrack \begin{matrix}
c = 11 \\
c = - 7 \\
\end{matrix} ight.

    (α) // (P) nên phương trình mặt phẳng (α) là 2x + y - 2z - 7 = 0

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA⊥ (ABCD) và SA = a. Gọi E và F lần lượt là trung điểm của SB, SD. Côsin của góc hợp bới hai mặt phẳng (AEF) và (ABCD) là

    Chọn hệ trục tọa độ Oxyz sao cho A≡ O, B∈Ox, D∈Oy, S∈Oz.

    \Rightarrow
B(a;0;0),D(0;a;0),S(0;0;a)

    \Rightarrow E\left(
\frac{a}{2};0;\frac{a}{2} ight),F\left( 0;\frac{a}{2};\frac{a}{2}
ight)

    \Rightarrow \overrightarrow{AE} = \left(
\frac{a}{2};0;\frac{a}{2} ight);\overrightarrow{AF} = \left(
0;\frac{a}{2};\frac{a}{2} ight)

    Vectơ pháp tuyến của mp(AEF) là \overrightarrow{n_{1}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AF} ightbrack = \left( \frac{-
a}{4};\frac{- a}{4};\frac{a}{4} ight)

    \Rightarrow \overrightarrow{n_{1}} =
(1;1; - 1)

    Vectơ pháp tuyến của mp(ABCD) là: \overrightarrow{n_{2}} = \overrightarrow{AS} =
(0;0;a)

    \Rightarrow \overrightarrow{n_{2}} =
(0;0;1)

    Vậy côsin góc giữa 2 mặt phẳng (AEF) và (ABCD) là:

    \cos\left( (AEF);(ABCD) ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{1}{\sqrt{3}} =
\frac{\sqrt{3}}{3}

  • Câu 12: Thông hiểu

    Viết phương trình tổng quát của mặt phẳng (P) qua hai điểm A(\,\, - 2,\,\,3,\,\,5);\,\,\,B\left( {\, - 4,\,\, - 2,\,\,3\,} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,2,\,\, - 3,\,\,4\,} ight) .

    Theo đề bài ta có: \overrightarrow {AB}  = \left( { - 2, - 5, - 2} ight)

    Như vậy, VTPT của (P) là tích có hướng của 2 vecto chỉ phương \Rightarrow \overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow {AB} } ight] = 2\left( {13, - 2, - 8} ight)

    Mp (P) đi qua A (-2,3,5) và nhận vecto \vec{n_P}(13, -2, -8) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x + 2} ight)13 + \left( {y - 3} ight)\left( { - 2} ight) + \left( {z - 5} ight)\left( { - 8} ight) = 0

    \Leftrightarrow 13x - 2y - 8z + 72 = 0

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(3;0;1),B(6; - 2;1). Phương trình mặt phẳng (P) đi qua A;B và tạo với mặt phẳng (Oyz) một góc \alpha thỏa mãn \cos\alpha = \frac{2}{7}

    Giả sử (P) có vectơ pháp tuyến \overrightarrow{n_{1}} =
(a;b;c)

    (P) có vectơ chỉ phương \overrightarrow{AB} = (3; - 2;0) \Rightarrow
\overrightarrow{n_{1}}\bot\overrightarrow{AB} \Rightarrow
\overrightarrow{n_{1}}.\overrightarrow{AB} = 0

    \Rightarrow 3a + b( - 2) + 0.c = 0
\Rightarrow a = \frac{3}{2}b\ \ \ (1)

    (Oyz) có phương trình x = 0 nên có vectơ pháp tuyến \overrightarrow{n_{2}} = (1;0;0)

    \cos\alpha = \frac{2}{7}
\Leftrightarrow \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{2}{7}

    \Leftrightarrow \frac{|a.1 + b.0 +
c.0|}{\sqrt{a^{2} + b^{2} + c^{2}}.\sqrt{1^{2} + 0^{2} + 0^{2}}} =
\frac{2}{7}

    \Leftrightarrow \frac{|a|}{\sqrt{a^{2} +
b^{2} + c^{2}}} = \frac{2}{7} \Leftrightarrow 7|a| = 2\sqrt{a^{2} +
b^{2} + c^{2}}

    \Leftrightarrow 79a^{2} = 4\left( a^{2}
+ b^{2} + c^{2} ight) \Leftrightarrow 45a^{2} - 4b^{2} - 4c^{2} = 0\ \
\ (2)

    Thay (1) vào (2) ta được 4b^{2} - c^{2} =
0

    Chọn c = 2 ta có 4b^{2} - 2^{2} = 0\Rightarrow \left\lbrack \begin{matrix}b = 1 \Rightarrow a = \dfrac{2}{3} \Rightarrow \overrightarrow{n} =\left( \dfrac{2}{3};1;2 ight) \\b = - 1 \Rightarrow a = \dfrac{- 2}{3} \Rightarrow \overrightarrow{n} =\left( - \dfrac{2}{3}; - 1;2 ight) \\\end{matrix} ight.

    Hay \left\lbrack \begin{matrix}
\overrightarrow{n} = (2;3;6) \\
\overrightarrow{n} = (2;3; - 6) \\
\end{matrix} ight., Vậy \left\lbrack \begin{matrix}
(P):2x + 3y + 6z - 12 = 0 \\
(P):2x + 3y - 6z = 0 \\
\end{matrix} ight..

  • Câu 14: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng tiếp xúc với mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} +
(z - 3)^{2} = 81 tại điểm P( - 5; -
4;6) là:

    Mặt cầu (S) có tâm I(1; 2; 3).

    Gọi (α) là mặt phẳng cần tìm.

    Do (α) tiếp xúc với (S) tại P nên mặt phẳng (α) đi qua P và có vectơ pháp tuyến \overrightarrow{n} =
\overrightarrow{IP} = ( - 6; - 6;3)

    Phương trình mặt phẳng (α) là

    - 6(x + 5) - 6(y + 4) + 3(z - 6) =
0

    \Leftrightarrow 2x + 2y - z + 24 =
0

  • Câu 15: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm là điểm A(2; 2; 2), mặt phẳng (P) : 2x + 2y + z + 8 = 0 cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính r = 8. Diện tích của mặt cầu (S) là:

    Ta có:

    d\left( A;(P) ight) = \frac{|4 + 4 + 2
+ 8|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} = 6

    R^{2} = d^{2}\left( A;(P) ight) +
r^{2} = 100

    Vậy diện tích mặt cầu là: S = 4\pi R^{2}
= 400\pi.

  • Câu 16: Thông hiểu

    Cho 3 mặt phẳng \left( \alpha  ight):x - 2z = 0,\left( \beta  ight):3x - 2y + z - 3 = 0,\left( \gamma  ight):x - 2y + z + 5 = 0 . Mặt phẳng (P) chứa giao tuyến của (\alpha), (\beta) ,vuông góc với (\gamma) có phương trình tổng quát:

    Mặt phẳng (P) thuộc chùm mặt phẳng (\alpha), (\beta) nên phương trình có dạng:

    \left( {m + 3} ight)x - 2y + \left( {1 - 2m} ight)z - 3 = 0

    (P) vuông góc với (\gamma) nên ta được:

    \left( {m + 3} ight).1 - 2.\left( { - 2} ight) + 1 - 2m = 0 \Leftrightarrow m = 8

    Vậy ta có phương trình (P) là : 11x - 2y - 15z - 3 = 0

  • Câu 17: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = - 3 + 2t \\
z = 1 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi d' là hình chiếu vuông góc của d trên mặt phẳng tọa độ (Oxz). Viết phương trình đường thẳng d'.

    Ta có: d đi qua M(2; −3; 1) và có vectơ chỉ phương \overrightarrow{u} = (1;2;3)

    Mặt phẳng (Oxz) có vectơ pháp tuyến \overrightarrow{n} = (0;1;0) và có phương trình y = 0.

    Suy ra \left\lbrack
\overrightarrow{n};\overrightarrow{u} ightbrack = ( -
3;0;1)

    Gọi H là hình chiếu vuông góc của M trên Oxz ⇒ H(2; 0; 1).

    Suy ra d' là đường thẳng qua H(2; 0; 1) và nhận vectơ \overrightarrow{u'} = \left\lbrack
\overrightarrow{n}.\left\lbrack \overrightarrow{n};\overrightarrow{u}
ightbrack ightbrack = (1;0;3) làm vectơ chỉ phương.

    Vậy phương trình đường thẳng cần tìm là d':\left\{ \begin{matrix}
x = 2 + t \\
y = 3 - 2t \\
z = 1 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 18: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng

    Phương trình tổng quát của mặt phẳng là : 2x + y = 0.

  • Câu 19: Nhận biết

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):4x + 3y - z + 1 =
0 và đường thẳng d:\frac{x - 1}{4}
= \frac{y - 6}{3} = \frac{z + 4}{1}, sin của góc giữa đường thẳng d và mặt phẳng (P) bằng:

    Mặt phẳng (P):4x + 3y - z + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (4;3; - 1)

    Đường thẳng d:\frac{x - 1}{4} = \frac{y -
6}{3} = \frac{z + 4}{1} có một vectơ chỉ phương là \overrightarrow{u} = (4;3;1)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{12}{13}

  • Câu 20: Nhận biết

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo