Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Trong không gian
, mặt phẳng
và đường thẳng
là giao tuyến của hai mặt phẳng
. Góc giữa
và
bằng:
Ta có: có vectơ pháp tuyến lần lượt là
Vectơ chỉ phương của là
Gọi là góc giữa
và
, ta có:
Với giá trị nào của m thì mặt phẳng
tiếp xúc với mặt cầu
![]()
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I của cầu có tọa độ là .
tiếp xúc (S) khi:
(loại)
Cho hai điểm
. Mặt phẳng chứa đường thẳng
và song song với
có phương trình :
Theo đề bài ta có
cùng phương với vectơ
Mặt khác, trục có vectơ chỉ phương
cùng phương với vectơ
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa
và song song với trục
. Phương trình mặt phẳng này có dạng :
Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có:
Vậy phương trình mặt phẳng cần tìm :
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
và đường thẳng
. Tính góc giữa đường thẳng
và mặt phẳng
.
Ta có:
Do đó:
Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng .
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Dường thẳng đi qua
và song song với hai mặt phẳng
có phương trình là
Gọi là đường thẳng cần tìm.
Mặt phẳng có một véc-tơ pháp tuyến là
và
có một vectơ pháp tuyến là
. Ta có
.
Khi đó, đi qua điểm
và nhận véc-tơ
làm vec-tơ chỉ phương. Phương trình đường thẳng
là
Với thì điểm
thuộc
. Viết lại phương trình đường thẳng
Trong không gian
, cho điểm
và hai đường thẳng
và
. Gọi
là đường thẳng đi qua điểm
, cắt đường thẳng
và vuông góc với đường thẳng
. Đường thẳng
đi qua điểm nào trong các điểm dưới đây?
Gọi
có một vectơ chỉ phương
.
Do nên
Ta có:
Suy ra đường thẳng đi qua
.
Trong không gian
, hai điểm
và
. Phương trình nào sau đây là phương trình mặt cầu đường kính
?
Mặt cầu nhận làm đường kính, do đó mặt cầu nhận trung điểm
của
làm tâm và có bán kính
Suy ra phương trình mặt cầu cần tìm là .
Trong không gian với hệ tọa độ
, cho 2 điểm
, đường thẳng
và mặt phẳng
. Đường thẳng
đi qua B, cắt đường thẳng ∆ và mặt phẳng
lần lượt tại C và D sao cho thể tích của 2 tứ diện
và
bằng nhau, biết
có một vectơ chỉ phương là
. Tính
.
Hình vẽ minh họa
Ta có
Nên . Vì
C là trung điểm của BD nên .
Điểm nên
là vectơ chỉ phương của đường thẳng d.
Vậy
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
thuộc
là điểm thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
bằng?
Hình vẽ minh họa
Ta có: có một vectơ chỉ phương là
Ta có cùng phương với
Mà đồng phẳng.
Xét mặt phẳng chứa và
. Gọi
là điểm đối xứng của
qua
là mặt phẳng qua
, vuông góc với
.
Khi đó, giao điểm của
với
là trung điểm của
.
có 1 vectơ pháp tuyến
đi qua
có phương trình:
Giả sử
.
Ta có khi và chỉ khi
trùng với
là giao điểm của
và
.
.
Trong không gian tọa độ
, cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Trong không gian với hệ tọa độ
, đường thẳng đi qua điểm
và song song với trục
có phương trình tham số là:
Gọi là đường thẳng cần tìm.
Ta có nên
có vectơ chỉ phương là
.
Do đó .
Trong không gian
, cho các điểm
. Tập hợp các điểm
thỏa mãn
là mặt cầu có bán kính là:
Giả sử
Ta có:
Theo bài ra ta có:
Vậy tập hợp điểm thỏa mãn
là mặt cầu có bán kính là
.
Trong hệ tọa độ
, cho mặt cầu
và mặt phẳng
. Gọi
là mặt phẳng song song với
và cắt
theo thiết diện là đường tròn
sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi
có thể tích lớn nhất. Phương trình của mặt phẳng
là
Hình vẽ minh họa
Mặt cầu (S) có tâm I(1; −2; 3) và bán kính
Gọi r là bán kính đường tròn (C) và H là hình chiếu của I lên (Q).
Đặt IH = x ta có:
Vậy thể tích khối nón tạo được là:
Gọi ta có:
chỉ có
Ta có bảng biến thiên như sau:
Vậy khi
Mặt phẳng (Q) // (P) nên
Vậy
Vậy mặt phẳng (Q) có phương trình hoặc
Trong không gian với hệ tọa độ
cho ba điểm
và
là trực tâm tam giác
. Tính
?
Ta có:
Lại có:
Mặt cầu (S) có tâm A(1; -2; 2) và bán kính R = 8. Tìm phương trình mặt cầu (S).
Phương trình mặt cầu tâm bán kính R có dạng:
Cho hình chóp tứ giác đều S.ABCD có
. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:
Gọi O = AC ∩ BD
Tam giác SAO vuông nên suy ra
Gắn tọa độ như hình vẽ:
Ta có:
Vì G là trọng tâm tam giác SCD nên
Ta có:
Góc giữa đường thẳng BG với đường thẳng SA bằng:
Vậy đáp án cần tìm là: .
Trong không gian với hệ tọa độ
; cho điểm
. Viết phương trình mặt phẳng
?
Ta có:
Vậy
Trong không gian
, cho mặt phẳng
và
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
Trong không gian
, cho đường thẳng
. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng
?
Đường thẳng có 1 vectơ chỉ phương là
. Do đó vectơ
không là vectơ chỉ phương của
.