Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian Oxyz, phương trình đường thẳng d đi qua hai điểm A(0;1;2),B(1;3;4) là:

    Ta có \overrightarrow{AB} =
(1;2;2) là một vectơ chỉ phương của đường thẳng d.

    d đi qua điểm B(1;3;4), nên có phương trình là: \left\{ \begin{matrix}
x = 1 + t \\
y = 3 + 2t \\
z = 4 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 2: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; - 1) và mặt phẳng (P):x + y - 2z - 3 =
0. Tìm điểm M \in (P) sao cho |\overrightarrow{MA} +
\overrightarrow{MB} + 2\overrightarrow{MC}| dạt giá trị nhỏ nhất.

    Gọi I là điểm sao cho \overrightarrow{IA} + \overrightarrow{IB} +
2\overrightarrow{IC} = 0 \Rightarrow I(0;0;0).

    Từ đó:

    |\overrightarrow{MA} +
\overrightarrow{MB} + 2\overrightarrow{MC}| = |4\overrightarrow{MI} +
(\overrightarrow{IA} + \overrightarrow{IB} + 2\overrightarrow{IC})| =
4IM \geq 4IH

    với H là hình chiếu của I trên mặt phẳng (P).

    Từ đó suy ra |\overrightarrow{MA} +
\overrightarrow{MB} + 2\overrightarrow{MC}| dạt giá trị nhỏ nhất khi và chỉ khi M \equiv H.

    Phương trình đường thẳng đi qua I và vuông góc với mặt phẳng (P) là: \left\{ \begin{matrix}
x = t \\
y = t \\
z = - 2t \\
\end{matrix} ight..

    Tọa độ diểm H là nghiệm (x;y;z) của hệ

    \left\{ \begin{matrix}x = t \\y = t \\z = - 2t \\x + y - 2z - 3 = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{1}{2} \\y = \dfrac{1}{2} \\z = - 1 \\t = \dfrac{1}{2} \\\end{matrix} ight.\  ight.

    Suy ra H = \left(
\frac{1}{2};\frac{1}{2}; - 1 ight).

    Vậy, tọa độ điểm M cần tìm là M = \left( \frac{1}{2};\frac{1}{2}; - 1
ight).

  • Câu 3: Nhận biết

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 4: Thông hiểu

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).

     Theo đề bài, mặt cầu (S) có tâm I\left( { - 2,1, - 3} ight) và vecto pháp tuyến của (P):\,\,\overrightarrow n  = \left( {3,2,6} ight)

    \begin{array}{l}IH \bot \left( P ight) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t\\H \in \left( P ight) \Rightarrow 3\left( { - 2 + 3t} ight) + 2\left( {1 + 2t} ight) + 6\left( { - 3 + 6t} ight) + 1 = 0 \Leftrightarrow t = \dfrac{3}{7}\\ \Rightarrow H\left( { - \dfrac{5}{7},\dfrac{{13}}{7}, - \dfrac{3}{7}} ight)\end{array}

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x - 2z - 6 = 0 và đường thẳng d:\left\{ \begin{matrix}
x = 1 + t \\
y = 3 + t \\
z = - 1 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Viết phương trình đường thẳng \Delta nằm trong mặt phẳng (\alpha) cắt đồng thời vuông góc với d?

    Giao điểm I của d và (α) là nghiệm của hệ phương trình: \left\{ \begin{matrix}
x - 2z - 6 = 0 \\
x = 1 + t \\
y = 3 + t \\
z = - 1 - t \\
\end{matrix} ight.\  \Rightarrow I(2;4; - 2)

    Mặt phẳng (α) có một vectơ pháp tuyến \overrightarrow{n} = (1;0; - 2), đường thẳng d có một vectơ chỉ phương \overrightarrow{u} = (1;1; - 1)

    Khi đó đường thẳng ∆ có một vectơ chỉ phương là \left\lbrack \overrightarrow{n};\overrightarrow{u}
ightbrack = (2; - 1;1)

    Đường thẳng ∆ qua điểm I (2; 4; −2) và có một vectơ chỉ phương \left\lbrack \overrightarrow{n};\overrightarrow{u}
ightbrack = (2; - 1;1) nên có phương trình chính tắc: \frac{x - 2}{2} = \frac{y - 4}{- 1} = \frac{z +
2}{1}

  • Câu 6: Vận dụng cao

    Trong không gian Oxyz, cho mặt cầu (S): x^2 +y^2 +z^2 −2x+ 2z −2 = 0 và các điểm A(0; 1; 1), B(−1; −2; −3), C(1; 0; −3). Điểm D thuộc mặt cầu (S). Thể tích lớn nhất của tứ diện ABCD bằng:

    Mặt cầu (S) có tâm là I(1; 0; −1) và bán kính R = 2.

    Khi V_{DABC} lớn nhất thì \frac{V_{DABC}}{V_{IABC}} = \frac{d\left( D;(ABC)
ight)}{d\left( I;(ABC) ight)} = \frac{R + d\left( I;(ABC)
ight)}{d\left( I;(ABC) ight)}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1; - 3; - 4) \\
\overrightarrow{AC} = (1; - 1; - 4) \\
\overrightarrow{AI} = (1; - 1; - 2) \\
\end{matrix} ight. suy ra:

    V_{IABC} = \frac{1}{6}\left|
\left\lbrack \left\lbrack \overrightarrow{AB};\overrightarrow{AC}
ightbrack.\overrightarrow{AI} ightbrack ight| =
\frac{4}{3}

    \Rightarrow d\left( I;(ABC) ight) =
\frac{6.V_{IABC}}{\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight|} =
\frac{2}{3}

    \Rightarrow V_{DABC} =\dfrac{4}{3}.\dfrac{2 + \dfrac{2}{3}}{\dfrac{2}{3}} =\dfrac{16}{3}.

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 - t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{2} = \frac{y - m}{1} = \frac{z
+ 2}{- 1}, (với m là tham số). Tìm m để hai đường thẳng d_{1}d_{2} cắt nhau

    Ta có:

    d_{1} đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(1; - 1;2)

    d_{2} đi qua điểm M2(1; m; −2) và có vectơ chỉ phương \overrightarrow{u_{2}} = (2;1; - 1)

    Ta có: \left\{ \begin{matrix}
\left\lbrack \overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack
= ( - 1;5;3) \\
\overrightarrow{M_{1}M_{2}} = (0;m - 2; - 5) \\
\end{matrix} ight.

    d_{1}d_{2} cắt nhau \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{M_{1}M_{2}} = 0

    \Leftrightarrow - 1\ .0 + 5(m - 2) - 15
= 0 \Leftrightarrow m = 5

  • Câu 8: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P) đi qua điểm M(3; - 1;4), đồng thời vuông góc với giá của vectơ \overrightarrow{a} =
(1;1;2) có phương trình là:

    Mặt phẳng (P) nhận vectơ \overrightarrow{a} = (1;1;2) làm vectơ pháp tuyến và đi qua điểm M(3; -
1;4) nên có phương trình là1(x - 3)
- 1(y + 1) + 2(z - 4) = 0

    \Leftrightarrow x - y + 2z - 12 =
0.

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2),B(2; - 2;0),C( - 2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3; - 2) \\
\overrightarrow{AC} = ( - 2; - 1; - 1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;6; -
8)

    Phương trình mặt phẳng (ABC) là: x + 6y -
8z + 10 = 0.

    Phương trình mặt phẳng qua B và vuông góc với AC là: 2x + y + z - 2 = 0.

    Phương trình mặt phẳng qua C và vuông góc với AB là: 2x - 3y - 2z + 6 = 0.

    Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên H\left( \frac{-
22}{101};\frac{70}{101};\frac{176}{101} ight).

    Mặt phẳng (P) đi qua A, H nên \overrightarrow{n_{P}}\bot\overrightarrow{AH} =
\left( \frac{- 22}{101}; - \frac{31}{101}; - \frac{26}{101} ight) = -
\frac{1}{101}(22;31;26)

    Mặt phẳng (P) ⊥ (ABC) nên \overrightarrow{n_{P}}\bot\overrightarrow{n_{(ABC)}}
= (1;6; - 8).

    Vậy \left\lbrack
\overrightarrow{n_{(ABC)}};\overrightarrow{u_{AH}} ightbrack = (404;
- 202; - 101) là một vectơ pháp tuyến của (P).

    Chọn \overrightarrow{n_{P}} = (4; - 2; -
1) nên phương trình mặt phẳng (P) là 4x - 2y - z + 4 = 0.

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = - 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào sau đây không thuộc đường thẳng d?

    Thay M(1;2; - 1) vào d ta được: \left\{ \begin{matrix}
1 = 1 - t \\
2 = 2 + 2t \\
- 1 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 \Rightarrow M \in
d

    Thay N(6; - 8;9) vào d ta được: \left\{ \begin{matrix}
6 = 1 - t \\
- 8 = 2 + 2t \\
9 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = - 5 \Rightarrow N \in
d

    Thay P( - 6;16; - 14) vào d ta được: \left\{ \begin{matrix}
- 6 = 1 - t \\
16 = 2 + 2t \\
- 14 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 7 \\
t = 7 \\
t = \frac{13}{2} \\
\end{matrix} ight. hệ vô nghiệm nên P otin d.

    Thay Q( - 19;42; - 41) vào d ta được: \left\{ \begin{matrix}
19 = 1 - t \\
42 = 2 + 2t \\
- 41 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 20 \Rightarrow Q \in
d

  • Câu 11: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 12: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):8x - 4y - 8z - 11 =0,(Q):\sqrt{2}x - \sqrt{2}y + 7 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):8x - 4y - 8z - 11 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (8; - 4; -
8)

    (Q):\sqrt{2}x - \sqrt{2}y + 7 =
0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = \left( \sqrt{2}; -
\sqrt{2};0 ight)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 8.\sqrt{2} + 4.\sqrt{2} -
8.0 ight|}{\sqrt{8^{2} + ( - 4)^{2} + ( - 8)^{2}}.\sqrt{\left(
\sqrt{2} ight)^{2} + \left( - \sqrt{2} ight)^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 13: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a, gọi α là góc giữa đường thẳng AB' và mặt phẳng (BB'D'D). Tính sinα.

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz với A \equiv
O(0;0;0),B(a;0;0),C(a;a;0),D(0;a;0),A^{'}(0;0;a),

    B^{'}(a;0;a),C^{'}(a;a;a),D^{'}(0;a;a)

    Ta thấy OC\bot\left( BB^{'}D^{'}D
ight)\overrightarrow{OC} =
(a;a;0) nên suy ra mặt phẳng \left(
BB^{'}D^{'}D ight) có một vec tơ pháp tuyến là \overrightarrow{n} = (1;1;0.).

    Đường thẳng A^{'}B có vectơ chỉ phương là \overrightarrow{A^{'}B} =
(a;0; - a) ta chọn \overrightarrow{u} = (1;0; - 1).

    Ta có \sin\alpha =\frac{|\overrightarrow{n} \cdot\overrightarrow{u}|}{|\overrightarrow{n}| \cdot |\overrightarrow{u}|}=\frac{|1 \cdot 1 + 1 \cdot 0 + 0 \cdot ( - 1)|}{\sqrt{1^{2} + 1^{2} +0^{2}} \cdot \sqrt{1^{2} + 0^{2} + ( - 1)^{2}}} =\frac{1}{2}.

  • Câu 14: Nhận biết

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt cầu có tâm I(7;6; - 5) và bán kính 9?

    Mặt cầu tâm I(7;6; - 5), bán kính R = 9 có phương trình lá:

    (x - 7)^{2} + (y - 6)^{2} + (z - 5)^{2} =
81.

  • Câu 15: Nhận biết

    Trong không gian Oxyz, tính khoảng cách từ điểm M(1;2; - 3) đến mặt phẳng (P):x + 2y - 2z - 2 =
0?

    Khoảng cách từ điểm M đến mặt phẳng (P):x + 2y - 2z - 2 = 0 là:

    d\left( M;(P) ight) = \frac{\left| 1 +
2.2 - 2( - 3) - 2 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
3

  • Câu 16: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có AB =
a;SA = a\sqrt{2}. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:

    Gọi O = AC ∩ BD

    Tam giác SAO vuông nên suy ra SO =
\sqrt{SA^{2} - AO^{2}} = \frac{a\sqrt{6}}{2}

    Gắn tọa độ như hình vẽ:

    Ta có: \left\{ \begin{matrix}A(0;0;0),B(a;0;0),C(a;a;0) \\D(0;a;0),O\left( \dfrac{a}{2};\dfrac{a}{2};0 ight),S\left(\dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2} ight) \\\end{matrix} ight.

    Vì G là trọng tâm tam giác SCD nên G\left(
\frac{a}{2};\frac{5a}{6};\frac{a\sqrt{6}}{6} ight)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AS} = \left( \dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2}ight) = \dfrac{a}{2}\left( 1;1;\sqrt{6} ight) \\\overrightarrow{BG} = \left( -\dfrac{a}{2};\dfrac{5a}{6};\dfrac{a\sqrt{6}}{6} ight) = \dfrac{a}{6}\left(- 3;5;\sqrt{6} ight) \\\end{matrix} ight.

    Góc giữa đường thẳng BG với đường thẳng SA bằng:

    \cos(BG;SA) = \frac{\left|
\overrightarrow{AS}.\overrightarrow{BG} ight|}{BG.AS} = \frac{| - 3 +
5 + 6|}{\sqrt{40}.\sqrt{8}} = \frac{\sqrt{5}}{5}

    Vậy đáp án cần tìm là: \arccos\frac{\sqrt{5}}{5}.

  • Câu 17: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + y - z - 3 = 0,(\beta):2x - y + 5 =0. Viết phương trình của mặt phẳng (P) song song với trục Oz và chứa giao tuyến của (\alpha)(\beta)?

    Mặt phẳng (P) chứa giao tuyến của hai mặt phẳng (\alpha)(\beta) nên có dạng:

    m(2x + y - z - 3) + n(2x - y + 5) =
0

    \Leftrightarrow (2m + 2n)x + (m - n)y -
mz - 3m + 5n = 0

    Mặt phẳng (P) song song với trục Oz nên m = 0.

    Chọn n = 1 ta có (P):2x - y + 5 =
0

  • Câu 18: Vận dụng

    Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0  và vuông góc với mặt phẳng \left( S ight):x - 3y + z - 4 = 0

    Theo đề bài, (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0 nên (P) có dạng là 

    \begin{array}{l}\left( P ight):2x - y + z + 2 + m\left( {x + y - z - 3} ight) = 0,\,\,m \in \mathbb{R} \\ \Leftrightarrow \left( P ight):\left( {m + 2} ight)x + \left( {m - 1} ight)y + \left( {1 - m} ight)z + 2 - 3m = 0\end{array}

    Chọn \vec{n} làm vectơ pháp tuyến của (P), ta có: \left( P ight):\overrightarrow n  = \left( {m + 2,m - 1,1 - m} ight) \bot \overrightarrow {{n_s}}  = \left( {1, - 3,1} ight) 

    \begin{array}{l} \Rightarrow \left( {m + 2} ight)1 + \left( {m - 1} ight)\left( { - 3} ight) + \left( {1 - m} ight)1 = 0 \Leftrightarrow m = 2\\ \Rightarrow \left( P ight):4x + y - z - 4 = 0\end{array}

  • Câu 19: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),C(0;0;3),B(0;2;0). Tập hợp các điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là:

    Giả sử M(x;y;z)

    Ta có:\left\{ \begin{matrix}
MA^{2} = (x - 1)^{2} + y^{2} + z^{2} \\
MB^{2} = x^{2} + (y - 2)^{2} + z^{2} \\
MC^{2} = x^{2} + y^{2} + (z - 3)^{2} \\
\end{matrix} ight.

    Theo bài ra ta có:

    MA^{2} = MB^{2} + MC^{2}

    \Leftrightarrow (x - 1)^{2} + y^{2} +
z^{2} = x^{2} + (y - 2)^{2} + z^{2} + x^{2} + y^{2} + (z -
3)^{2}

    \Leftrightarrow - 2x + 1 = (y - 2)^{2} +
x^{2} + (z - 3)^{2}

    \Leftrightarrow (x + 1)^{2} + (y -
2)^{2} + (z - 3)^{2} = 2

    Vậy tập hợp điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là R = \sqrt{2}.

  • Câu 20: Vận dụng cao

    Cho hai đường thẳng: ({d_1}):\frac{{x - 3}}{{ - 7}} = \frac{{y - 1}}{2} = \frac{{z - 1}}{3},({d_2}):\frac{{x - 7}}{1} = \frac{{y - 3}}{2} = \frac{{z - 9}}{{ - 1}}

    và mặt phẳng (\alpha ):x + y + z + 3 = 0 .

    Hình chiếu của ({d_2}) theo phương của ({d_1})  lên mặt phẳng (\alpha ) có phương trình tổng quát:

    Vectơ chỉ phương của ({d_1}):\overrightarrow a  = ( - 7,2,3). Vectơ chỉ phương của ({d_2}):\overrightarrow b  = (1,2, - 1).

    Phương trình của mặt phẳng chứa ({d_2}) và có phương của ({d_1})có dạng: 

    2x + y + 4z + D = 0

    Điểm A (7, 3, 9) thuộc mặt phẳng này 

    => D = -53

    Giao tuyến của mặt phẳng này với mặt phẳng (\alpha ) là hình chiếu của ({d_2}) theo phương của ({d_1}) lên (\alpha ): \left\{ \begin{array}{l}2x + y + 4z - 53 = 0\\x + y + z + 3 = 0\end{array} ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo