Với giá trị nào của m thì mặt phẳng
cắt mặt cầu
?
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là
(P) cắt (S) khi:
Với giá trị nào của m thì mặt phẳng
cắt mặt cầu
?
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là
(P) cắt (S) khi:
Trong không gian tọa độ
, cho mặt phẳng
và đường thẳng
, sin của góc giữa đường thẳng
và mặt phẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P):
Viết phương trình tổng quát của mặt phẳng (P) qua
và song song với mặt phẳng (Q): ![]()
Vì mp nên ta có PTTQ mp
sẽ có dạng là:
Mặt khác, (P) qua
Trong không gian tọa độ
, cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Trong không gian
, cho đường thẳng
đi qua điểm
và có vectơ chỉ phương
. Phương trình tham số của đường thẳng
là:
Do cũng là vectơ chỉ phương nên phương trình tham số là:
.
Gọi
là hình chiếu của
lên đường thẳng
. Đẳng thức nào dưới đây đúng?
Vì
(d) có vtcp
Suy ra . Vậy
Tìm tọa độ giao điểm của hai đường thẳng:
Theo đề bài, ta biến đổi được (b) có dạng:
Thay x, y, z vào phương trình x+2y+z =9 , ta có:
=> Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)
Trong không gian
, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?
Phương trình không có
=> Loại
Phương trình có số hạng
=> Loại
Phương trình loại vì
Phương trình thỏa mãn vì
.
Trong không gian tọa độ
, mặt cầu tâm
bán kính
có phương trình là
Mặt cầu tâm và bán kính
có phương trình là:
Gọi
là mặt cầu đi qua bốn điểm
. Tính bán kính
của
?
Gọi là tâm mặt cầu đi qua bốn điểm
Khi đó ta có phương trình:
Vậy bán kính cần tìm là:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Gọi
là mặt phẳng chứa đường thẳng
và tạo với mặt phẳng
một góc
. Điểm nào sau đây thuộc mặt phẳng
?
Ta viết phương trình đường thẳng
Mặt phẳng (P) chứa đường thẳng d nên có dạng:
⇒ có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Ta có:
Chọn
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Cho hình lập phương
có cạnh
. Góc giữa hai mặt phẳng
và
bằng:
Hình vẽ minh họa
Chọn hệ trục tọa độ Oxyz sao cho gốc tọa độ
Khi đó:
Chọn là vectơ pháp tuyến của mặt phẳng
Chọn là vectơ pháp tuyến của mặt phẳng
Góc giữa hai mặt phẳng và
bằng:
Trong không gian
, cho ba điểm
. Điểm
thuộc tia
sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện
bằng
có tọa độ là
Ta có D thuộc tia nên
với
.
Tính
Mặt phẳng : có vectơ pháp tuyến
và đi qua điểm
.
Ta có
Vậy .
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
. Trong các đường thẳng sau, đường thẳng nào vuông góc với
.
Mặt phẳng có một vectơ pháp tuyến là
.
Đường thẳng có một vectơ chỉ phương là
Suy ra .
Khoảng cánh giữa hai đường thẳng :
và
là:
Chuyển d1 về dạng tham số :
Qua đó, ta có và 1 vectơ chỉ phương của (d1):
.
Chuyển (d2) về dạng tham số :
Qua đó, ta có và 1 vectơ chỉ phương của
Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:
.
Trong không gian với hệ tọa độ
, cho mặt cầu
hai hai điểm
. Gọi E là điểm thuộc mặt cầu (S) sao cho
đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E?
Hình vẽ minh họa
Gọi I(1; 2; 2) là tâm của (S), P(5; −2; 4) là trung điểm MN.
Theo bất đẳng thức Bu-nhi-a-copx-ki và công thức độ dài trung tuyến ta được:
nên T = EM + EN đạt giá trị lớn nhất khi EM = EN và EP đạt giá trị lớn nhất.
Khi đó E là giao điểm của đường thẳng IP với mặt cầu (S) (I nằm giữa E và P). Đường thẳng IP có phương trình:
Tọa độ E thỏa hệ phương trình:
Tìm được E(3; 0; 3) hoặc E(−1; 4; 1), thử lại để EP lớn nhất ta được E(−1; 4; 1).
Khi đó phương trình tiếp diện với (S) tại E là .
Cho hai điểm
. Mặt phẳng chứa đường thẳng
và song song với
có phương trình :
Theo đề bài ta có
cùng phương với vectơ
Mặt khác, trục có vectơ chỉ phương
cùng phương với vectơ
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa
và song song với trục
. Phương trình mặt phẳng này có dạng :
Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có:
Vậy phương trình mặt phẳng cần tìm :
Cho điểm
và đường thẳng
. Gọi A' là điểm đối xứng của A qua
. Tọa độ điểm A' là:
Đưa phương trình về dạng tham số:
Gọi (P) là mặt phẳng qua A và vuông góc với .
Phương trình mp (P) có dạng , qua A nên D = -2
Phương trình (P) là:
Thế x, y, z từ phương trình vào phương trình (P) được t=1
I là trung điểm của AA' nên:
.