Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Với giá trị nào của m thì mặt phẳng \left( P ight):2x - y + z - 5 = 0 tiếp xúc với mặt cầu 

    \left( S ight):{x^2} + {y^2} + {z^2} - 2mx + 2\left( {2 - m} ight)y - 4mz + 5{m^2} + 1 = 0?

    Theo đề bài, ta xác định các hệ số của (S): a = m;b = m - 2;c = 2m;d = 5{m^2} + 1

    Suy ra tâm I của cầu có tọa độ là I\left( {m,m - 2,2m} ight).

    \Rightarrow {R^2} = {m^2} + {\left( {m - 2} ight)^2} + 4{m^2} - 5{m^2} - 1 = {m^2} - 4m + 3 > 0

    \Rightarrow m < 1 \vee m > 3.\left( P ight) tiếp xúc (S) khi: 

    d\left( {I,P} ight) = \frac{{\left| {3m - 3} ight|}}{{\sqrt 6 }} = R = \sqrt {{m^2} - 4m+3}

    \Leftrightarrow {m^2} + 2m - 3 = 0 \Leftrightarrow m =  - 3 \vee m = 1   (loại)

    \Rightarrow m =  - 3

  • Câu 2: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân

    giác trong góc A là \frac{x}{1}=\frac{y-6}{-4}=\frac{z-6}{-3}.  Biết rằng điểm M(0; 5; 3) thuộc đường thẳng AB và điểm N(1;1;0)thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?

    Giả sử , A(t; 6-4t; 6-3t), ta có:

    \vec{u_d}=(1; -4; -3),

    \vec{AM}=(-t;4t-1;-3+3t)

    \vec{AN}=(1-t;-5+4t;3t-6)

    Theo bài ra: Vì d là đường phân giác của góc A nên:

    \left | \cos(\vec{u_d}, \vec{AM}) ight |= \left | \cos(\vec{u_d}, \vec{AN}) ight |

    \Leftrightarrow \dfrac{\left | 26t-13 ight |}{\sqrt{26t^2 -26t+10} } =\dfrac{\left | 26t-39 ight |}{\sqrt{26t^2 -78t+62} }

    \Leftrightarrow \dfrac{\left | 2t-1 ight |}{\sqrt{13t^2 -13t+5} } =\dfrac{\left | 2t-3 ight |}{\sqrt{13t^2 -39t+31} }

    Từ đây ta bình phương 2 vế được:

    (4t^2-4t+1)(13t^2-39t+31)=(4t^2-12t+9)(13t^2-13t+5)

    \Leftrightarrow 14t=14

    \Leftrightarrow t=1

    \Rightarrow A(1;2;3)\Rightarrow \vec{AN}=(0; -1; -3)

    Vậy một véc tơ chỉ phương của AC  là  \vec{u}(0;1;3).

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y - 2z + 1 = 0 đi qua điểm M(1; - 2;0) và cắt đường thẳng d:\left\{ \begin{matrix}
x = 11 + 2t \\
y = 2t \\
z = - 4t \\
\end{matrix}\ (t \in \mathbb{R}) ight. tại N. Tính độ dài đoạn MN.

    Điểm N \in (d) \Rightarrow N(11 + 2t;2t;
- 4t). Mặt khác N \in
(\alpha) nên

    11 + 2t + 2t - 2( - 4t) + 1 = 0
\Leftrightarrow t = - 1

    Điểm N(9; - 2;4) \Rightarrow
\overrightarrow{MN} = (8;0;4) \Rightarrow MN = 4\sqrt{5}.

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và (SAB) vuông góc với (ABCD). Tính cosϕ với ϕ là góc tạo bởi (SAC)(SCD)

    Hình vẽ minh họa

    Gọi O M, lần lượt là trung điểm của AB; CD.

    Vì SAB là tam giác đều và (SAB) vuông góc với (ABCD) nên SO ⊥ (ABCD).

    Xét hệ trục OxyzO(0;0;0),M(1;0;0),A\left( 0;\frac{1}{2};0
ight),S\left( 0;0;\frac{\sqrt{3}}{2} ight)

    Suy ra C\left( 1; - \frac{1}{2};0
ight),D\left( 1;\frac{1}{2};0 ight)

    Suy ra \left\{ \begin{matrix}\overrightarrow{SA} = \left( 0;\dfrac{1}{2};\dfrac{- \sqrt{3}}{2}ight);\overrightarrow{AC} = (1; - 1;0) \\\overrightarrow{SC} = \left( 1;\dfrac{- 1}{2};\dfrac{- \sqrt{3}}{2}ight);\overrightarrow{CD} = (0;1;0) \\\end{matrix} ight.

    Mặt phẳng (SAC) có vectơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{SA};\overrightarrow{AC} ightbrack = \left( -
\frac{\sqrt{3}}{2}; - \frac{\sqrt{3}}{2}; - \frac{1}{2}
ight)

    Mặt phẳng (SAD) có vectơ pháp tuyến \overrightarrow{n_{1}} = \left\lbrack
\overrightarrow{SC};\overrightarrow{CD} ightbrack = \left(
\frac{\sqrt{3}}{2};0;1 ight)

    \cos\varphi = \frac{\left|
\overrightarrow{n}.\overrightarrow{n_{1}} ight|}{\left|
\overrightarrow{n} ight|\left| \overrightarrow{n_{1}} ight|} =
\frac{5}{7}

  • Câu 5: Vận dụng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 6: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P):2x - y + 2z - 3 = 0(Q):x + my + z - 1 = 0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2; - 1;2) \\
\overrightarrow{n_{(Q)}} = (1;m;1) \\
\end{matrix} ight.

    Để hai mặt phẳng (P)(Q) vuông góc với nhau thì

    \overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}}
= 0 \Leftrightarrow 2 - m + 2 = 0 \Leftrightarrow m = 4

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x - 2y - 2z + 4 = 0(\beta): - x + 2y + 2z - 7 = 0. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?

    Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).

    \Rightarrow d\left\lbrack
(\alpha);(\beta) ightbrack = d\left( A;(\beta) ight) = \frac{|4 -
7|}{\sqrt{1 + 4 + 4}} = 1.

  • Câu 8: Nhận biết

    Trong không gian Oxyz, hai điểm A(7; - 2;2)B(1;2;4). Phương trình nào sau đây là phương trình mặt cầu đường kính AB?

    Mặt cầu nhận AB làm đường kính, do đó mặt cầu nhận trung điểm I(4;0;3) của AB làm tâm và có bán kính R = \frac{AB}{2} = \sqrt{56}

    Suy ra phương trình mặt cầu cần tìm là (x
- 4)^{2} + y^{2} + (z - 3)^{2} = 56.

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, gọi (P) là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Ta có: (Q) có một vectơ pháp tuyến là \overrightarrow{n}(1;1;1).

    Từ giả thiết, ta suy ra (P) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n};\overrightarrow{i} ightbrack = (0;1; -
1).

    Do (P) đi qua gốc tọa độ O nên phương trình của (P) là y - z = 0.

  • Câu 10: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) và mặt phẳng (P):2x - y + 3z + 1 = 0. Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình là:

    Do đường thẳng \Delta cần tìm vuông góc với mặt phẳng (P) nên vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = (2; - 1;3) cũng là vectơ chỉ phương của \Delta.

    Mặt khác \Delta đi qua điểm M(1;1;2) nên phương trình chính tắc của \Delta là: \frac{x - 1}{2} = \frac{y - 1}{- 1} = \frac{z -
2}{3}

  • Câu 11: Vận dụng

    Trong không gian Oxyz, cho điểm M(3;2;1). Viết phương trình mặt phẳng đi qua M và cắt các trục x'Ox,\ y'Oy,\ z'Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC?

    Xét tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc với nhau.

    Ta có: \left\{
\begin{matrix}
AB\bot CM \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot(COM) \Rightarrow AB\bot
OM

    Chứng minh tương tự, ta được AC ⊥ OM.

    Từ đó OM ⊥ (ABC).

    Suy ra phương trình mặt phẳng (ABC) đi qua M(3; 2; 1) và nhận \overrightarrow{OM} = (3;2;1) làm vectơ pháp tuyến là:

    3(x - 3) + 2(y - 2) + z - 1 =
0

    \Leftrightarrow 3x + 2y + z - 14 = \
0

  • Câu 12: Thông hiểu

    Trong không gian Oxyz, cho hình chóp S.ABCD có đáy là hình vuông và SA vuông góc với đáy. Biết B(2;3;7),D(4;1;3), lập phương trình mặt phẳng (SAC).

    Dễ dàng chứng minh được (SAC) là mặt phẳng trung trực của BD.

    Chọn vectơ pháp tuyến của mặt phẳng (SAC)\overrightarrow{BD} = (2; - 2; - 4).

    Mặt phẳng (SAC) đi qua trung điểm I(3;2;5) của BD và có vtcp \overrightarrow{BD} nên có phương trình: x - y - 2z + 9 = 0.

  • Câu 13: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;5;3) và hai mặt phẳng (P):2x + y + 2z - 8 = 0,(Q):x - 4y + z - 4 =
0. Viết phương trình đường thẳng d đi qua A và song song với hai mặt phẳng (P),(Q)?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2;1;2) \\
\overrightarrow{n_{(Q)}} = (1; - 4;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack = (9;0;
- 9)

    Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là \overrightarrow{u} =
(1;0; - 1).

    Vậy phương trình đường thẳng d là \left\{
\begin{matrix}
x = 3 + t \\
y = 5 \\
z = 3 - t \\
\end{matrix} ight.

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm là điểm A(2; 2; 2), mặt phẳng (P) : 2x + 2y + z + 8 = 0 cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính r = 8. Diện tích của mặt cầu (S) là:

    Ta có:

    d\left( A;(P) ight) = \frac{|4 + 4 + 2
+ 8|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} = 6

    R^{2} = d^{2}\left( A;(P) ight) +
r^{2} = 100

    Vậy diện tích mặt cầu là: S = 4\pi R^{2}
= 400\pi.

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Đường thẳng \Delta đi qua C và song song với AB có phương trình là:

    Một vectơ chỉ phương của đường thẳng ∆ là \overrightarrow{BA} = (1;2;1)

    Vậy phương trình tham số của đường thẳng ∆ là \left\{ \begin{matrix}
x = 2 + t \\
y = 1 + 2t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 17: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P): - \sqrt{3}x + y + 1 = 0. Tính góc tạo bởi (P) với trục Ox?

    Mặt phẳng (P): - \sqrt{3}x + y + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = \left( - \sqrt{3};1;0
ight)

    Trục Ox có một vectơ chỉ phương là \overrightarrow{i} = (1;0;0)

    Gọi α là góc giữa Ox và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 18: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và điểm M \in OI sao cho MO = 2MI (tham khảo hình vẽ).

    Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng

    Gắn hệ tọa độ như hình vẽ:

    Cạnh hình lập phương là 1, ta được tọa độ các điểm như sau:

    \left\{ \begin{matrix}M\left( \dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{6}ight),C'(0;1;0),D'(1;1;0) \\A(1;0;1),B(0;0;1) \\\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}\overrightarrow{n_{(MC'D')}} = (0;1;3) \\\overrightarrow{n_{(MAB)}} = (0;5;3) \\\end{matrix} ight.\Rightarrow \cos\left( (MC'D');(MAB)ight)= \frac{|5.1 + 3.3|}{\sqrt{5^{2} + 3^{2}}.\sqrt{1^{2} + 3^{2}}}= \frac{7\sqrt{85}}{85}

    Suy ra \sin\left( (MC'D');(MAB)
ight) = \sqrt{1 - \left( \frac{7\sqrt{85}}{85} ight)^{2}} =
\frac{6\sqrt{85}}{85}

  • Câu 19: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu (S_1): (x+3)^2+(y−2)^2+(z−4)^2 = 1, (S_2): x ^2 + (y − 2)^2 + (z − 4)^2 = 4, (S_3): x ^2 + y ^2 + z ^2 + 4x − 4y − 1 = 0. Có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu (S_1), (S_2), (S_3)?

    Ta có \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight) có tâm lần lượt là I_{1}( - 3;2;4),I_{2}(0;2;4),I_{3}( -2;2;0) và bán kính lần lượt là R_{1} = 1,R_{2} = 2,R_{3} = 3.

    Gọi (P):ax + by + cz + d = 0\left( a^{2} +b^{2} + c^{2} eq 0 ight) là mặt phẳng tiếp xúc với cả ba mặt cầu nói trên. Khi đó:

    \left\{ \begin{matrix}d\left( I_{1};(P) ight) = R_{1} \\d\left( I_{2};(P) ight) = R_{2} \\d\left( I_{3};(P) ight) = R_{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}| - 3a + 2b + 4c + d| = \sqrt{a^{2} + b^{2} + c^{2}} \\|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\| - 2a + 2b + d| = 3\sqrt{a^{2} + b^{2} + c^{2}} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\2| - 3a + 2b + 4c + d| = |2b + 4c + d| \\3|2b + 4c + d| = 2| - 2a + 2b + d| \\\end{matrix} ight.

    Xét phương trình

    3|2b + 4c + d| = 2| - 2a + 2b +d|

    \Leftrightarrow \left\lbrack\begin{matrix}3(2b + 4c + d) = 2( - 2a + 2b + d) \\3(2b + 4c + d) = - 2( - 2a + 2b + d) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}d = - 4a - 2b - 12c \\5d = 4a - 10b - 12c \\\end{matrix} ight.

    (1) Với d = - 4a - 2b - 12c. Thay vào 2| - 3a + 2b + 4c + d| = |2b + 4c +d|, ta được

    2| - 7a - 8c| = | - 4a -8c|

    \Leftrightarrow \left\lbrack\begin{matrix}7a + 8c = 2a + 4c \\7a + 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = - \dfrac{6c}{5} \\a = - \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = - \frac{6c}{5} \Rightarrow d = -\frac{36c}{5} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{18c}{5} + 2b + 4c -\frac{36c}{5} - 2b ight| = \sqrt{\left( - \frac{6c}{5} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{2c}{5}ight| = \frac{1}{5} \cdot \sqrt{25b^{2} + 61c^{2}} \Leftrightarrow4c^{2} = 25b^{2} + 61c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    Với a = - \frac{4c}{3} \Rightarrow d = -\frac{20c}{3} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{12c}{5} + 2b + 4c -\frac{20c}{5} - 2b ight| = \sqrt{\left( - \frac{4c}{3} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{4c}{3}ight| = \frac{1}{3} \cdot \sqrt{9b^{2} + 25c^{2}}

    \Leftrightarrow 16c^{2} = 9b^{2} +25c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    (2) Với 5d = 4a - 10b - 12c.

    Thay vào 2| - 3a + 2b + 4c + d| = |2b +4c + d|, ta được

    2| - 11a + 8c| = |4a + 8c

    \Leftrightarrow \left\lbrack\begin{matrix}11a - 8c = 2a + 4c \\11a - 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{4c}{13} \\a = \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = \frac{4c}{13} \Rightarrow 5d = -\frac{140c}{13} - 10b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được

    \left| \frac{60c}{13} ight| =\frac{5}{13} \cdot \sqrt{169b^{2} + 185c^{2}}

    \Leftrightarrow 11c^{2} = 169b^{2}\Leftrightarrow c = \pm \frac{13b}{\sqrt{11}}

    Với c = \frac{13b}{\sqrt{11}} : chọn b = \sqrt{11} \Rightarrow c = 13\Rightarrow Tồn tại một mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight).

    Với a = \frac{4c}{3} \Rightarrow 5d = -\frac{20c}{3} - 10b

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}} ta được:

    \left| \frac{20c}{3} ight| =\frac{5}{3}.\sqrt{9b^{2} + 25c^{2}} \Leftrightarrow 9b^{2} + 9c^{2} = 0\Leftrightarrow b = c = 0

    Với b = c = 0 ⇒ a = 0, d = 0 (vô lí).

    Vậy tồn tại 2 mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2} ight),\left(S_{3} ight).

  • Câu 20: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu tâm I(2;1; - 2) bán kính R = 2 là:

    Phương trình mặt cầu tâm I(2;1; -
2) bán kính R = 2 là:

    (x - 2)^{2} + (y - 1)^{2} + (z + 2)^{2}
= 2^{2}

    Tổng quát x^{2} + y^{2} + z^{2} - 4x - 2y
+ 4z + 5 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo