Trong không gian
, mặt phẳng
và đường thẳng
là giao tuyến của hai mặt phẳng
. Góc giữa
và
bằng:
Ta có: có vectơ pháp tuyến lần lượt là
Vectơ chỉ phương của là
Gọi là góc giữa
và
, ta có:
Trong không gian
, mặt phẳng
và đường thẳng
là giao tuyến của hai mặt phẳng
. Góc giữa
và
bằng:
Ta có: có vectơ pháp tuyến lần lượt là
Vectơ chỉ phương của là
Gọi là góc giữa
và
, ta có:
Cho mặt cầu
và mặt phẳng
. Biết khoảng cách từ O đến
bằng
. Khi đó thiết diện tạo bởi mặt phẳng
với
là một đường tròn có đường kính bằng:

Gọi H là hình chiếu của O xuống .
Ta có nên
cắt
theo đường tròn
.
Bán kính đường tròn là
Suy ra đường kính bằng .
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Với giá trị nào của m thì mặt phẳng
tiếp xúc với mặt cầu
![]()
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I của cầu có tọa độ là .
tiếp xúc (S) khi:
(loại)
Trong không gian với hệ tọa độ
, cho tứ diện đều
có
với
. Tính
?
Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).
Ta có:
Đường thẳng đi qua G vuông góc với (ABC) có phương trình
Do đó
Mà
Vì
Trong không gian với hệ tọa độ
, cho mặt cầu
tâm I và mặt phẳng
. Gọi H là hình chiếu vuông góc của I trên (P). Điểm M thuộc (S) sao cho đoạn MH có độ dài lớn nhất. Tìm tọa độ điểm M.
Ta có tâm và bán kính
. Do
nên mặt phẳng (P) không cắt mặt cầu (S) . Do H là hình chiếu của I lên (P) và MH lớn nhất nên M là giao điểm của đường thẳng IH với mp (P) .
.
Phương trình đường thẳng IH là .
Giao điểm của IH với (S):
Suy ra:
.
Vậy điểm cần tìm là .
Trong không gian với hệ tọa độ Oxyz cho đường thẳng
và mặt phẳng
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Đường thẳng d có vectơ chỉ phương là
Mặt phẳng (P) có vectơ pháp tuyến là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .
Khi đó ta có:
Câu nào sau đây đúng? Trong không gian Oxyz:
A sai và có thể (P) và (Q) trùng nhau
B sai, vì mỗi mặt phẳng có vô số vecto pháp tuyến. Suy ra D sai.
C đúng vì 1 mặt phẳng được xác định nếu biết một điểm và một VTPT của nó.
Trong không gian với hệ tọa độ
, cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tỉ số
bằng
Ta có:
Trong không gian với hệ trục tọa độ
, cho hình hộp chữ nhật
có điểm
trùng với gốc tọa độ
,
. Gọi
là trung điểm của cạnh
. Giá trị của tỉ số
để hai mặt phẳng
và
vuông góc với nhau bằng bao nhiêu?
Trong không gian với hệ trục tọa độ , cho hình hộp chữ nhật
có điểm
trùng với gốc tọa độ
,
. Gọi
là trung điểm của cạnh
. Giá trị của tỉ số
để hai mặt phẳng
và
vuông góc với nhau bằng bao nhiêu?
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Viết phương trình đường thẳng
đi qua
và song song với hai mặt phẳng
?
Ta có:
Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là .
Vậy phương trình đường thẳng d là
Cho hình lập phương
có tâm
. Gọi
là tâm của hình vuông
và điểm
sao cho
(tham khảo hình vẽ).

Khi đó cosin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng
Không mất tính tổng quát ta đặt cạnh của khối lập phương là 1.
Chọn hệ trục tọa độ sao cho A′(0;0;0), B′(1;0;0), D′(0;1;0) và A(0;0;1) (như hình vẽ)
Khi đó ta có:
Khi đó
là VTPT của mặt phẳng (MAB)
Lại có:
là VTPT của mặt phẳng (MC’D’)
Cosin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng:
Cho hai mặt phẳng
và
. Tìm tham số
để hai mặt phẳng
và
vuông góc với nhau.
Đáp án: 4
Cho hai mặt phẳng và
. Tìm tham số
để hai mặt phẳng
và
vuông góc với nhau.
Đáp án: 4
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
.
Trong không gian với hệ tọa độ
, đường thẳng
đi qua điểm nào dưới đây?
Nếu một điểm nằm trên một đường thẳng thì khi thay tọa độ điểm đó vào phương trình đường thẳng thì sẽ thỏa mãn phương trình đường thẳng.
Lần lượt thay tọa độ M từ các phương án vào phương trình đường thẳng d ta được M(−3; 5; 3) thỏa mãn yêu cầu bài toán.
Trong không gian
, cho đường thẳng
. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng
?
Đường thẳng có 1 vectơ chỉ phương là
. Do đó vectơ
không là vectơ chỉ phương của
.
Trong không gian
, cho hai đường thẳng song song
và
. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.
Lấy .
Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.
Phương trình đường thẳng cần tìm là:
Trong không gian
, hãy viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với đường thẳng
.
Mặt phẳng (P) đi qua điểm và có một véc-tơ pháp tuyến là
nên có phương là:
.
Trong hệ tọa độ
, cho mặt cầu
có tâm
và có thể tích bằng
. Khi đó phương trình mặt cầu
là:
Thể tích mặt cầu là:
Vậy phương trình mặt cầu tâm có bán kính
là:
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Trong không gian
, cho mặt cầu
và mặt phẳng
. Với giá trị nào của tham số
thì mặt phẳng tiếp xúc với mặt cầu?
Mặt cầu (S) có tâm và bán kính
Mặt phẳng (α) tiếp xúc với (S) khi và chỉ khi
Vậy đáp án cần tìm là: .