Cho tam giác ABC với
.
Viết phương trình tổng quát của mặt phẳng
vuông góc với mặt phẳng
song song đường cao AH của tam giác ABC.
Theo đề bài, ta có: song song đường cao
Cho tam giác ABC với
.
Viết phương trình tổng quát của mặt phẳng
vuông góc với mặt phẳng
song song đường cao AH của tam giác ABC.
Theo đề bài, ta có: song song đường cao
Trong không gian
, cho hai mặt phẳng
có các vectơ pháp tuyến là
. Góc
là góc giữa hai mặt phẳng đó
là biểu thức nào sau đây?
Theo công thức góc giữa hai mặt phẳng ta có:
Trong không gian với hệ toạ độ
, cho điểm
, đường thẳng
và mặt phẳng
. Viết phương trình đường thẳng
qua
vuông góc với d và song song với
.
Đường thẳng có vec tơ chỉ phương
.
Mặt phẳng có vec tơ pháp tuyến
.
Đường thẳng ∆ vuông góc với nên vectơ chỉ phương
Đường thẳng ∆ song song với (P) nên
Ta có
Suy ra vec tơ chỉ phương của đường thẳng ∆ là
Vậy phương trình đường thẳng ∆ là .
Trong không gian với hệ tọa độ
, đường thẳng
đi qua điểm nào sau đây?
Thay tọa độ điểm vào phương trình đường thẳng
ta được
, do đó điểm này thuộc đường thẳng
.
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Trong không gian với hệ tọa độ
, hình chiếu vuông góc của điểm
trên mặt phẳng
là điểm nào dưới đây?
Gọi ∆ là đường thẳng đi qua M và vuông góc mặt phẳng (P).
Khi đó phương trình tham số của ∆ là
Gọi M’ là hình chiếu vuông góc của M trên mặt phẳng (M).
Tọa độ điểm M’ là nghiệm của hệ phương trình:
Vậy
Trong không gian cho ba điểm
và
. Biết mặt
phẳng qua
và tâm mặt cầu nội tiếp tứ diện
có một vectơ pháp tuyến là
. Tổng
là?
Phương trình là:
Phương trình là:
.
Phương trình là:
Phương trình là:
.
Gọi là tâm mặt cầu nội tiếp tứ diện
.
Do đó:
nằm cùng phía với A đối với
suy ra:
.
nằm cùng phía với B đối với
suy ra:
.
nằm cùng phía với C đối với
suy ra:
.
nằm cùng phía với O đối với
suy ra:
.
Suy ra:
Suy ra: ,
cùng phương với .
Suy ra có một VTPT là
.
Vậy: .
Trong không gian với hệ tọa độ
, phương trình đường thẳng tiếp xúc với mặt cầu
tại điểm
là:
Mặt cầu có tâm
.
Gọi (α) là mặt phẳng cần tìm.
Do (α) tiếp xúc với (S) tại P nên mặt phẳng (α) đi qua P và có vectơ pháp tuyến
Phương trình mặt phẳng (α) là
Trong không gian
, cho hai đường thẳng
. Gọi
là tập hợp tất cả các số
sao cho
chéo nhau và khoảng cách giữa chúng bằng
. Tính tổng tất cả các phần tử của
.
Vectơ chỉ phương của là
Khi đó: .
Gọi là mặt phẳng chứa
song song với
.
Tức là, qua
và nhận
làm vectơ pháp tuyến.
Ta có phương trình
Xét điểm . Do
chéo nhau nên
.
Lại có:
Vậy tổng các phần tử của S là .
Trong không gian
, mặt phẳng
có phương trình là
Mặt phẳng đi qua điểm
và nhận
là một véc-tơ pháp tuyến nên phương trình của mặt phẳng
là
.
Với giá trị nào của thì hai mặt phẳng sau song song:
![]()
Áp dụng điều kiện để 2 mp song song, ta xét:
Với thoả mãn cả 3 điều kiện trên
Trong không gian
, cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Trong không gian
, phương trình đường thẳng
đi qua hai điểm
là:
Ta có là một vectơ chỉ phương của đường thẳng
.
đi qua điểm
, nên có phương trình là:
.
Trong không gian
, cho ba điểm
. Đường thẳng
qua trực tâm
của tam giác
và nằm trong mặt phẳng
cùng tạo với các đường thẳng
một góc
có một véc-tơ chỉ phương là
với
là số nguyên tố và
là số nguyên. Giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo đề bài, ta suy ra:
Vì ∆ ⊂ (ABC) nên
Trường hợp 1: Xét hệ phương trình:
Chọn c = 11, ta có (kiểm tra lại điều kiện
ta thấy
đang xét thỏa mãn).
Trường hợp 2: Xét hệ phương trình
Chọn c = 2, ta có (kiểm tra lại điều kiện
ta thấy
đang xét không thỏa mãn).
Vậy
Trong không gian với hệ tọa độ
, cho mặt cầu
, mặt phẳng
. Gọi
là mặt phẳng vuông góc với mặt phẳng
,
song song với giá của vectơ
và
tiếp xúc với
. Lập phương trình mặt phẳng
.
Mặt cầu có tâm I(1; −3; 2) và bán kính
.
Từ giả thiết suy ra là một vectơ pháp tuyến của
.
Ta có , suy ra
có vectơ pháp tuyến
Vậy có phương trình dạng
Do tiếp xúc với mặt cầu
nên:
Vậy có hai mặt phẳng thỏa mãn yêu cầu bài toán là .
Trong không gian tọa độ
, cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Cho hai điểm
. Mặt phẳng chứa đường thẳng
và song song với
có phương trình :
Theo đề bài ta có
cùng phương với vectơ
Mặt khác, trục có vectơ chỉ phương
cùng phương với vectơ
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa
và song song với trục
. Phương trình mặt phẳng này có dạng :
Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có:
Vậy phương trình mặt phẳng cần tìm :
Trong không gian với hệ trục
, cho mặt phẳng
và đường thẳng
. Côsin của góc tạo bởi đường thẳng
và mặt phẳng
là
Ta có:
Khi đó
Vì nên
Trong không gian
, cho mặt cầu
và mặt phẳng
, với
là tham số. Gọi
là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng
cắt mặt cầu
theo một đường tròn có chu vi
. Tổng giá trị của tất cả các phần tử thuộc
bằng:
Mặt cầu có tâm I(2; 1; −1) và bán kính R = 5.
Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.
Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:
Vậy tổng giá trị của các phần tử thuộc T bằng −16.
Cho mặt cầu
và một điểm A, biết
. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho
. Khi đó khoảng cách từ O đến BC bằng:
Gọi H là hình chiếu của O lên BC.
Ta có , suy ra H là trung điểm của BC nên
Suy ra