Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \left| \left\lbrack
\overrightarrow{u};\overrightarrow{v} ightbrack ight| = \left|
\overrightarrow{u} ight|.\left| \overrightarrow{v} ight|.sin\left(
\overrightarrow{u};\overrightarrow{v} ight)

    Vậy khẳng định sai là: \left|\left\lbrack \overrightarrow{u};\overrightarrow{v} ightbrack ight|= \left| \overrightarrow{u} ight|.\left| \overrightarrow{v}ight|.\cos\left( \overrightarrow{u};\overrightarrow{v}ight).

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho tứ diện đều ABCDA(0;1;2) và hình chiếu vuông góc của A trên mặt phẳng (BCD)H(4;
- 3; - 2). Tìm tọa độ tâm I của mặt cầu ngoại tiếp tứ diện ABCD?

    Gọi I(a;b;c) \Rightarrow \left\{
\begin{matrix}
\overrightarrow{IA} = ( - a;1 - b;2 - c) \\
\overrightarrow{IH} = (4 - a; - 3 - b; - 2 - c) \\
\end{matrix} ight.

    ABCD là tứ diện đều nên tâm I của mặt cầu ngoại tiếp trùng với trọng tâm tứ diện

    \Rightarrow \overrightarrow{IA} = -
3\overrightarrow{IH} \Leftrightarrow \left\{ \begin{matrix}
- a = - 3(4 - a) \\
1 - b = - 3(3 - b) \\
2 - c = - 3( - 2 - c) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow I(3; - 2; - 1)

  • Câu 3: Nhận biết

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):4x + 3y - z + 1 =
0 và đường thẳng d:\frac{x - 1}{4}
= \frac{y - 6}{3} = \frac{z + 4}{1}, sin của góc giữa đường thẳng d và mặt phẳng (P) bằng:

    Mặt phẳng (P):4x + 3y - z + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (4;3; - 1)

    Đường thẳng d:\frac{x - 1}{4} = \frac{y -
6}{3} = \frac{z + 4}{1} có một vectơ chỉ phương là \overrightarrow{u} = (4;3;1)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{12}{13}

  • Câu 4: Nhận biết

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2;1)

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;0)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .

    Khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|} = \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha = 60^{0}

  • Câu 5: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (Q):x + 2y - z - 5 = 0 và đường thẳng d:\frac{x + 1}{2} = \frac{y + 1}{1} =
\frac{z - 3}{1}. Phương trình mặt phẳng (P) chứa đường thẳng d và tạo với mặt phẳng (Q) một góc nhỏ nhất là

    Vì (P) chứa d nên phương trình của (P) có dạng (P):a(x + 1) + b(y + 1) + c(z - 3) = 0 với \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} > 0 \\
2a + b + c = 0 \\
\end{matrix} ight..

    Gọi α là góc giữa (P) và (Q), ta có:

    \cos\alpha = \frac{\left|
\overrightarrow{n_{P}}.\overrightarrow{n_{Q}} ight|}{\left|
\overrightarrow{n_{P}} ight|.\left| \overrightarrow{n_{Q}} ight|} =
\frac{|a + 2b - c|}{\sqrt{a^{2} + b^{2} + c^{2}}.\sqrt{6}} =
\frac{\left| 3(a + b) ight|}{\sqrt{5a^{2} + 4ab +
2b^{2}}.\sqrt{6}}

    Nếu a = 0 thì \cos\alpha = \frac{\sqrt{3}}{2} \Rightarrow \alpha
= 30^{0}

    Nếu a eq 0 thì \cos\alpha = \frac{\left| 3(1 + t)
ight|}{\sqrt{6}.\sqrt{5 + 4t + 2t^{2}}};\left( t = \frac{b}{a}
ight).

    Khi đó 0 \leq \cos\alpha <
\frac{\sqrt{3}}{2}

    Ta có α nhỏ nhất khi và chỉ khi cosα lớn nhất.

    Do đó \alpha = 30^{0}\cos\alpha = \frac{\sqrt{3}}{2}.

    Khi đó a = 0, chọn b = 1,\ c = - 1.

    Vậy phương trình mặt phẳng (P) cần tìm là: (P):y - z + 4 = 0.

  • Câu 6: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 5z - 3 = 0 và hai điểm A(3;1;1),B(4;2;3). Gọi (Q) là mặt phẳng qua AB và vuông góc với (P). Phương trình nào là phương trình của mặt phẳng (Q)?

    (Q) là mặt phẳng đi qua A, B và vuông góc với (P) nên mặt phẳng (Q) nhận \overrightarrow{AB} =
(1;1;2);\overrightarrow{n_{(P)}} = (1;2; - 5) làm hai vectơ chỉ phương.

    Vectơ pháp tuyến của mặt phẳng (Q)\overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{n_{(P)}} ightbrack = ( -
9;7;1)

    Phương trình mặt phẳng

    (Q): - 9(x - 3) + 7(y - 1) + 1(z - 1) =
0

    \Leftrightarrow 9x - 7y - z - 19 =
0

  • Câu 7: Thông hiểu

    Cho hai mặt phẳng (\alpha)(\beta) . Với  (\alpha) cho biết A\left( { - 1,2,1} ight) \in \left( \alpha  ight) và cặp vectơ chỉ phương \overrightarrow a  = \left( {2, - 1,3} ight);\overrightarrow b  = \left( { - 3,1, - 2} ight). Với (\beta) cho PTTQ \left( \beta  ight):2x + y - z + 1 = 0. Phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của (\alpha)(\beta) , qua điểm M\left( {3, - 2,1} ight) là:

     Trước tiên, ta cần đưa phương trình (\alpha) về dạng tổng quát.

    Theo đề bài, ta có A\left( { - 1,2,1} ight) \in \left( \alpha  ight) và cặp vectơ chỉ phương \overrightarrow a  = \left( {2, - 1,3} ight);\overrightarrow b  = \left( { - 3,1, - 2} ight) nên vecto pháp tuyến của mp (\alpha) là tích có hướng của 2 vecto chỉ phương.

    Ta có \left[ {\overrightarrow a ,\overrightarrow b } ight] = \left( { - 1, - 5, - 1} ight).

    Chọn \overrightarrow n  = \left( {1,5,1} ight) làm vectơ pháp tuyến cho (\alpha) thì phương trình tổng quát của (\alpha) có dạng x + 5y + z + D = 0

    A \in \left( \alpha  ight) \Leftrightarrow  - 1 + 5.2 + 1 + D = 0 \Leftrightarrow D =  - 10.

    Vậy phương trình (\alpha): x + 5y + z - 10 = 0

    Để tìm phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của (\alpha)(\beta) ta xét chùm mặt phẳng :

    \begin{array}{l}m\left( {x + 5y + z - 10} ight) + \left( {2x + y - z + 1} ight) = 0\\ \Leftrightarrow \left( {m + 2} ight)x + \left( {5m + 1} ight)y + \left( {m - 1} ight)z - 10m + 1 = 0\left( * ight)\end{array}

    Mặt khác, ta có  M \in \left( P ight)

    \Leftrightarrow \left( {m + 2} ight).3 + \left( {5m + 1} ight).\left( { - 2} ight) + m - 1 - 10m + 1 = 0

    \Leftrightarrow m = \frac{1}{4}

    Thế vào (*) ta được: 

    \begin{array}{l}\left( * ight):\left( {\frac{1}{4} + 2} ight)x + \left( {\frac{5}{4} + 1} ight)y + \left( {\frac{1}{4} - 1} ight)z - \frac{{10}}{4} + 1 = 0\\ \Leftrightarrow 9x + 9y - 3z - 6 = 0\\ \Leftrightarrow 3x + 3y - z - 2 = 0\end{array}

  • Câu 8: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho tứ diện đều ABCDA(4;
- 1;2),B(1;2;2),C(1; - 1;5),D\left( x_{D};\ y_{D};z_{D} ight) với y_{D} > 0. Tính p = 2x_{D} + \ y_{D} - z_{D}?

    Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 3;3;0) \\
\overrightarrow{AC} = ( - 3;0;3) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;\ 1;\ 1)

    AB = 3\sqrt{2}

    Đường thẳng đi qua G vuông góc với (ABC) có phương trình \left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đó D(2 + t;t;3 + t)

    AD = AB \Rightarrow (t - 2)^{2} + 2(t
+ 1)^{2} = 18 \Rightarrow \left\lbrack \begin{matrix}
t = 2 \\
t = - 2 \\
\end{matrix} ight.

    y_{D} > 0 \Rightarrow y = 2
\Rightarrow P = 5

  • Câu 9: Vận dụng cao

    Cho hai đường thẳng (d1 ): \left\{ \begin{array}{l}x - y + z - 5 = 0\\x - 3y + 6 = 0\end{array} ight.({d_2})\left\{ \begin{array}{l}2y + z - 5 = 0\\4x - 2y + 5z - 4 = 0\end{array} ight.

    Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?

    Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :

    ({d_1}):\left\{ \begin{array}{l}x =  - 6 + 3t\\y = t\\z = 11 - 2t\end{array} ight. \Rightarrow ({d_1}) có vectơ chỉ phương \overrightarrow a  = (3,1, - 2) và qua A( - 6,0,11) .

    ({d_2}):\left\{ \begin{array}{l}x = \frac{{15}}{4} - 3t'\\y = 3 - t'\\z =  - 1 + 2t'\end{array} ight. \Rightarrow \left( {{d_2}} ight) có vectơ chỉ phương \overrightarrow b  = (\frac{{15}}{4},3, - 1)

    \overrightarrow a  earrow  \swarrow \overrightarrow bvà hệ phương trình \left\{ \begin{array}{l} - 6 + 3t = \frac{{15}}{4} - 3t'\\t = 3 - t'\\11 - 2t =  - 1 + 2t'\end{array} ight. vô nghiệm.

    \Rightarrow ({d_1})//(d_{2} ).

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{- 2}
= \frac{z + 2}{1}. Mặt phẳng nào trong các mặt phẳng sau đây vuông góc với đường thẳng d.

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = (1; -
2;1)

    Mặt phẳng vuông góc với d nhận vectơ \overrightarrow{u} làm vectơ pháp tuyến.

    Do đó (P):x - 2y + z + 1 = 0 là mặt phẳng thỏa mãn.

  • Câu 11: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} = \frac{y - 7}{1} = \frac{z
- 3}{4}d_{2} là giao tuyến của hai mặt phẳng 2x + 3y - 9 = 0,y +
2z + 5 = 0. Vị trí tương đối của hai đường thẳng là:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + 3y - 9 = 0 \\
y + 2z + 5 = 0 \\
\end{matrix} ight.

    Cho y = 1 \Rightarrow \left\{
\begin{matrix}
x = 3 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A(3;1; - 3) \in d_{2\ }

    Cho y = 3 \Rightarrow \left\{
\begin{matrix}
x = 0 \\
z = - 4 \\
\end{matrix} ight.\  \Rightarrow B(0;3; - 4) \in d_{2}

    Đường thẳng d1 đi qua M (1; 7; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(2;1;4)

    Đường thẳng d2 đi qua A (3; 1; −3) và có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 3;2; - 1) =
\overrightarrow{AB};\overrightarrow{AM} = (2; - 6; - 6)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 9; -
10;7)

    \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack\overrightarrow{AM} = - 2.9 + 6.10 - 6.7 = 0

    Do đó vị trí tương đối của hai đường thẳng là cắt nhau.

  • Câu 12: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(0; 8; 2), điểm B(9; −7; 23) và mặt cầu (S) : (x − 5)^2 + (y + 3)^2 + (z − 7)^2 = 72. Gọi (P) là mặt phẳng qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Biết \vec{n} = (1; m; n) là một vectơ pháp tuyến của (P). Tính mn.

    Mặt cầu (S) có tâm I(5; −3; 7); bán kính R = 6\sqrt{2}.

    Phương trình mặt phẳng (P) : 1(x − 0) + m(y − 8) + n(z − 2) = 0.

    Vì (P) và (S) tiếp xúc nhau nên:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|5 - 11m + 5n|}{\sqrt{1 + m^{2} + n^{2}}} =
6\sqrt{2}

    \Leftrightarrow |5 - 11m + 5n| =
6\sqrt{2}\sqrt{1 + m^{2} + n^{2}}(*)

    Ta có: d\left( B;(P) ight) = \frac{|9 -
15m + 21n|}{\sqrt{1 + m^{2} + n^{2}}}

    Ta có:

    |9 - 15m + 21n| = |5 - 11m + 5n + 4 - 4m
+ 16n|

    \leq |5 - 11m + 5n| + |4 - 4m +
16n|(**)

    Áp dụng BĐT Bunhiacopxki ta có

    (4 - 4m + 16n)^{2} \leq \left( 4^{2} +
4^{2} + 16^{2} ight)\left( 1 + m^{2} + n^{2} ight) = 288\left( 1 +
m^{2} + n^{2} ight)

    \Rightarrow |4 - 4m + 16n| \leq
12\sqrt{2}.\sqrt{1 + m^{2} + n^{2}}(***)

    Từ (*); (**); (***) ta có:

    |9 - 15m + 21n| \leq 18\sqrt{2}\sqrt{1 +
m^{2} + n^{2}}

    Dấu “=” xảy ra khi và chỉ khi: \left\{\begin{matrix}|5 - 11m + 5n| = 6\sqrt{2}\sqrt{1 + m^{2} + n^{2}} \\(5 - 11m + 5n)(4 - 4m + 16n) \geq 0 \\\dfrac{1}{4} = \dfrac{m}{- 4} = \dfrac{n}{16} \\\end{matrix} ight.

    \Rightarrow m = - 1;n = 4 \Rightarrow mn
= - 4.

  • Câu 13: Nhận biết

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 14: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:

     \overrightarrow {AB}  = \left( { - 1,2, - 2} ight): vectơ chỉ phương của trục Ox: \overrightarrow i  = \left( {1,0,0} ight) .

    \left[ {\overrightarrow {AB} ,\overrightarrow i } ight] = \left( {0, - 2, - 2} ight): Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng y + z + D = 0, qua A nên:- 1 + 1 + D = 0 \Leftrightarrow D = 0

    Vậy ta có phương trình mp cần tìm là:  y+z=0

  • Câu 15: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x + 3y - 5z + 6 = 0(\beta):x - y + 3z - 6 = 0. Phương trình tham số của d là:

    Nhận thấy A(1;1;2),B(2; - 1;1) đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng d.

    Ta có \overrightarrow{AB} = (1; - 2; -
1) là một vectơ chỉ phương của d.

    Khi đó phương trình tham số của d là: \left\{
\begin{matrix}
x = 1 + t \\
y = 1 - 2t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, mặt cầu có tâm I(1;1;1) và có diện tích bằng 4\pi có phương trình là:

    Ta có: S = 4\pi R^{2} = 4\pi \Rightarrow
R = 1

    Vậy mặt cầu tâm I(1;1;1) có bán kính R = 1 có phương trình:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1.

  • Câu 17: Thông hiểu

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).

     Theo đề bài, mặt cầu (S) có tâm I\left( { - 2,1, - 3} ight) và vecto pháp tuyến của (P):\,\,\overrightarrow n  = \left( {3,2,6} ight)

    \begin{array}{l}IH \bot \left( P ight) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t\\H \in \left( P ight) \Rightarrow 3\left( { - 2 + 3t} ight) + 2\left( {1 + 2t} ight) + 6\left( { - 3 + 6t} ight) + 1 = 0 \Leftrightarrow t = \dfrac{3}{7}\\ \Rightarrow H\left( { - \dfrac{5}{7},\dfrac{{13}}{7}, - \dfrac{3}{7}} ight)\end{array}

  • Câu 18: Vận dụng

    Trong không gian Oxyz. Cho A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0. Biết mặt phẳng (ABC) qua điểm I(1;3;3) và thể tích tứ diện O.ABC đạt giá trị nhỏ nhất. Khi đó phương trình (ABC):

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    I(1;3;3) \in (ABC) \Rightarrow
(ABC):\frac{1}{a} + \frac{3}{b} + \frac{3}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{3}{b} +
\frac{3}{c} \geq \sqrt[3]{\frac{3^{2}}{abc}} \Rightarrow abc \geq
9

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq \frac{3}{2}

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{3}{b} = \frac{3}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = c = 9 \\
\end{matrix} ight.

    Phương trình mặt phẳng (ABC)\frac{x}{3} + \frac{y}{9} + \frac{z}{9} = 1
\Rightarrow 3x + y + z - 9 = 0

  • Câu 19: Thông hiểu

    Tìm tọa độ giao điểm của hai đường thẳng:

     Theo đề bài, ta biến đổi được (b) có dạng:

    \begin{array}{l}\left( b ight):\frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{2}\\ \Rightarrow \frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{2} = t\\ \Rightarrow \left\{ \begin{array}{l}x - 2 = 2t\\y + 3 = t\\z - 1 = 2t\end{array} ight.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2 + 2t\\y =  - 3 + t\\z = 1 + 2t\end{array} ight.\end{array}

    Thay x, y, z vào phương trình x+2y+z =9 , ta có:

    => Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)

  • Câu 20: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x + 2y - 2z + 1 = 0(Q):x + my + (m - 1)z + 2019 = 0. Khi hai mặt phẳng (P), (Q) tạo với nhau một góc nhỏ nhất thì mặt phẳng (Q) đi qua điểm M nào sau đây?

    Gọi \alpha là góc giữa (P)(Q).

    Ta có:

    \cos\alpha = \dfrac{\left|{\overrightarrow{n}}_{P} \cdot {\overrightarrow{n}}_{Q} ight|}{\left|{\overrightarrow{n}}_{P} ight| \cdot \left| {\overrightarrow{n}}_{Q}ight|}= \dfrac{1}{3\sqrt{2m^{2} - 2m + 2}} = \dfrac{1}{3\sqrt{2\left( m- \dfrac{1}{2} ight)^{2} + \dfrac{3}{2}}}

    \leq \dfrac{1}{3\sqrt{2\left( m -\dfrac{1}{2} ight)^{2} + \dfrac{3}{2}}} \leq\dfrac{1}{3\sqrt{\dfrac{3}{2}}}

    Do 0 \leq \alpha \leq 90^{\circ} nên \alpha nhỏ nhất khi \cos\alpha lớn nhất \Leftrightarrow m =
\frac{1}{2}.

    \Rightarrow (Q):2x + y - z + 4038 = 0
\Rightarrow M( - 2019;1;1) \in (Q).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo