Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - 1}{- 2} =
\frac{y + 1}{2} = \frac{z - 2}{- 1} và mặt phẳng (P):2x - y - 2z + 1 = 0. Gọi \alpha là góc giữa đường thẳng \Delta và mặt phẳng (P). Khẳng định nào sau đây đúng?

    Ta có: \Delta có một vectơ chỉ phương là \overrightarrow{u} = ( - 2;2; -
1), (P) có một vectơ pháp tuyến là \overrightarrow{n} = (2; - 1; -
2).

    Từ đó: \sin\alpha = \left| \cos\left(
\overrightarrow{n};\overrightarrow{u} ight) ight| = \left|
\frac{\overrightarrow{n}.\overrightarrow{u}}{\left| \overrightarrow{n}
ight|.\left| \overrightarrow{u} ight|} ight| =
\frac{4}{9}

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(1;0;1),B( - 1;2;1). Viết phương trình đường thẳng \Delta đi qua tâm đường tròn ngoại tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).

    Tam giác OAB vuông tại O nên tâm đường tròn ngoại tiếp là trung điểm AB có tọa độ I(0; 1; 1).

    Mặt phẳng (OAB) có véc-tơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = ( - 2; -
2;2).

    Suy ra đường thẳng ∆ có \overrightarrow{u} = (1;1; - 1) và đi qua I(0; 1; 1).

    Vậy phương trình đường thẳng ∆ là \Delta:\left\{ \begin{matrix}
x = t \\
y = 1 + t \\
z = 1 - t \\
\end{matrix} ight..

  • Câu 3: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E,M lần lượt là trung điểm của các cạnh BCSA, \alpha là góc tạo bởi đường thẳng EM và mặt phẳng (SBD). Tính \tan\alpha?

    Hình vẽ minh họa

    Không mất tính tổng quát, giả sử các cạnh của hình chóp bằng 2\sqrt{2}.

    Chọn hệ trục tọa độ như hình vẽ.

    Khi đó: E(1;1;0),M(0; -
1;1),\overrightarrow{ME} = (1;2; - 1)\overrightarrow{OC} = (0;2;0) là vectơ pháp tuyến của (SBD).

    Do đó:

    \sin\alpha = \sin\left( EM,(SBD) ight)
= \left| \cos\left( \overrightarrow{EM};\overrightarrow{OC} ight)
ight| = \frac{\left| \overrightarrow{EM}.\overrightarrow{OC}
ight|}{\left| \overrightarrow{EM} ight|.\left| \overrightarrow{OC}
ight|} = \frac{2}{\sqrt{6}}

    Vậy \tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{\sin\alpha}{\sqrt{1 - \left(
\sin\alpha ight)^{2}}} = \sqrt{2}

  • Câu 4: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x - my - z + 7 = 0,(Q):6x + 5y - 2z - 4 =
0. Xác định m để hai mặt phẳng (P)(Q) song song với nhau?

    Hai mặt phẳng đã cho song song với nhau khi và chỉ khi

    Tập xác định \frac{3}{6} = \frac{- m}{5}
= \frac{- 1}{- 2} eq \frac{7}{- 4}

    Vậy m = - \frac{5}{2} thì hai mặt phẳng (P);(Q) song song với nhau.

  • Câu 5: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (\alpha):x - y + 2z = 1. Trong các đường thẳng sau, đường thẳng nào vuông góc với (\alpha).

    Mặt phẳng (\alpha):x - y + 2z =
1 có một vectơ pháp tuyến là \overrightarrow{n_{(\alpha)}} = (1; -
1;2).

    Đường thẳng d_{1} có một vectơ chỉ phương là \overrightarrow{u_{d_{1}}} =
(1; - 1;2) = \overrightarrow{n_{(\alpha)}}

    Suy ra d_{1}\bot(\alpha).

  • Câu 6: Thông hiểu

    Trong không gian Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng cách lớn nhất, khi đó mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính thể tích V của khối chóp O.ABC.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(1;2;3). Gọi (P) là mặt phẳng đi qua điểm M và cách gốc tọa độ O một khoảng cách lớn nhất, khi đó mặt phẳng (P) cắt các trục tọa độ tại các điểm A,B,C. Tính thể tích V của khối chóp O.ABC.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Nhận biết

    Trong không gian Oxyz đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} = 1 và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa mặt phẳng (\alpha) và đường thẳng \Delta bằng:

    Mặt phẳng (\alpha):x - y + 2z =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    Đường thẳng \Delta:\frac{x}{1} =
\frac{y}{2} = \frac{z}{- 1} = 1 có một vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    Gọi α là góc giữa đường thẳng \Delta và mặt phẳng (\alpha):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 8: Vận dụng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1; 2; −2). Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với (P).

    Hình vẽ minh họa

    Vì H là trực tâm tam giác ABC nên AH ⊥ BC, CH ⊥ AB

    \Rightarrow \left\{ \begin{matrix}
AB\bot(OHC) \\
BC\bot(AHO) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
(ABC)\bot(OHC) \\
(ABC)\bot(AHO) \\
\end{matrix} ight.\  \Rightarrow OH\bot(ABC)

    Do vậy mặt cầu tâm O tiếp xúc với (P) nhận OH làm bán kính

    ⇒ Phương trình mặt cầu là x^{2} + y^{2} + z^{2} =
9.

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho mặt cầu (S):(x + 3)^{2} + (y + 1)^{2} + (z -
1)^{2} = 2 có tọa độ tâm I là:

    Tâm của (S) có tọa độ là I( - 3; - 1;1).

  • Câu 11: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x-1)^2+(y-2)^2+(z-3)^2=9  tâm I và mặt phẳng (P):2x+2y-z+24=0. Gọi H là hình chiếu vuông góc của I trên (P). Điểm M thuộc (S) sao cho đoạn MH có độ dài lớn nhất. Tìm tọa độ điểm M.

     Ta có tâm I(1;2;3)  và bán kính R=3. Do d(I;(P))=9>R  nên mặt phẳng (P) không cắt mặt cầu (S) . Do H là hình chiếu của I lên (P) và MH lớn nhất nên M là giao điểm của đường thẳng IH với mp (P) .

    \overrightarrow {IH} =\vec n_{(P)}=(2;2;-1).

    Phương trình đường thẳng IH là \left\{\begin{matrix} x=1+2t \\ y=2+2t \\ z=3-t \end{matrix}ight..

    Giao điểm của IH với (S): 9t^2=9 \Leftrightarrow t=\pm 1 \Rightarrow M_1 (3;4;2) \mbox{  và } M_2 (-1;0;4)

    Suy ra:

    M_1H=d(M_1;(P))=12;

    M_2H=d(M_2;(P))=6.

    Vậy điểm cần tìm là M(3;4;2).

  • Câu 12: Vận dụng

    Cho tam giác ABC với A\left( {\,1,\,\, - 2,\,\,6\,} ight);\,\,B\left( {\,2,\,\,5,\,\,1} ight);\,\,C\left( {\, - 1,\,\,8,\,\,4} ight) . Viết phương trình tổng quát của mặt phẳng (R) vuông góc với mặt phẳng (ABC) song song phân giác ngoài AF của góc A?

     Một vecto chỉ phương của (R)\overrightarrow n  = 12\left( {3,1,2} ight)

    Ta có :

    \begin{array}{l}A{B^2} = 75 \Rightarrow AB = 5\sqrt 3 ;A{C^2} = 108 \Rightarrow AC = 6\sqrt 3 \\6\overrightarrow {FB}  = 5\overrightarrow {FC}  \Leftrightarrow \left\{ \begin{array}{l}6\left( {2 - x} ight) = 5\left( { - 1 - x} ight)\\6\left( {5 - y} ight) = 5\left( {8 - y} ight)\\6\left( {1 - z} ight) = 5\left( {4 - z} ight)\end{array} ight. \Rightarrow F\left\{ \begin{array}{l}x = 17\\y =  - 10\\z =  - 14\end{array} ight.\end{array}

    Vecto chỉ phương thứ hai \overrightarrow {AF}  = 4\left( {4, - 2, - 5} ight)

    Suy ra vecto pháp tuyến của (R)\overrightarrow N  = \left[ {\overrightarrow n ,\overrightarrow {AF} } ight] = \left( { - 1,23, - 10} ight)

    Mp (R) đi qua A (1, -2, 6) và nhận vecto (-1, 23, -10) làm 1 VTPT có phương trình là:

    \Rightarrow \left( R ight):\left( {x - 1} ight)\left( { - 1} ight) + \left( {y + 2} ight)23 + \left( {z - 6} ight)\left( { - 10} ight) = 0

    \Leftrightarrow x - 23y + 10z - 108 = 0

  • Câu 13: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (P):ax + by + cz - 27 = 0 đi qua hai điểm A(3;2;1),B( - 3;5;2) và vuông góc với mặt phẳng (Q):3x + y + z + 4 =
0. Tính tổng S = a + b +
c.

    Từ giả thiết ta có hệ phương trình:

    \left\{ \begin{matrix}
3a + 2b + c - 27 = 0 \\
- 3a + 5b + 2c - 27 = 0 \\
3a + b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 6 \\
b = 27 \\
c = - 45 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = -
12

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, giá trị dương của tham số m sao cho mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1 là:

    Ta có: (Oxy) có phương trình z = 0

    Mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2}
= m^{2} + 1 có tâm I(3;0;2) và bán kính R = \sqrt{m^{2} + 1}

    Để mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} =
m^{2} + 1 thì

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2|}{\sqrt{1}} = \sqrt{m^{2} + 1}

    \Leftrightarrow m^{2} + 1 = 4
\Leftrightarrow m = \pm \sqrt{3}. Vì m nhận giá trị dương nên m = \sqrt{3}.

    Vậy m = \sqrt{3} thỏa yêu cầu đề bài.

  • Câu 15: Nhận biết

    Trong không gian Oxyz, viết phương trình mặt cầu (S) đường kính AB biết A(2; - 1; - 3),B(0;3; - 1)?

    Gọi I là trung điểm của AB khi đó I(1;1; - 2) là tâm mặt cầu (S).

    Bán kính R = \frac{1}{2}AB =
\frac{1}{2}\sqrt{4 + 16 + 4} = \frac{\sqrt{24}}{2}

    Vậy phương trình mặt cầu cần tìm là: (S):(x + 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
6.

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x + 3}{1} = \frac{y - 2}{- 1} = \frac{z -
1}{2}. Viết phương trình mặt phẳng (P) đi qua điểm M(2;0; - 1) và vuông góc với d.

    Phương trình mặt phẳng (P):

    1(x - 2) - 1(y - 0) + 2(z + 1) =
0

    \Leftrightarrow x - y + 2z =
0

  • Câu 17: Thông hiểu

    Trong không gian tọa độ Oxyz, cho đường thẳng d:\frac{x + 1}{1} = \frac{y
+ 3}{2} = \frac{z + 2}{2} và điểm A(3;2;0). Điểm đối xứng với điểm A qua đường thẳng d có tọa độ là:

    Gọi M( - 1 + t; - 3 + 2t; - 2 + 2t) \in
d

    \Rightarrow AH = (t - 4;2t - 5;2t -
2)

    Vectơ chỉ phương của d là \overrightarrow{u} = (1;2;2)

    \overrightarrow{u}\bot\overrightarrow{AH}
\Rightarrow \overrightarrow{u}.\overrightarrow{AH} = 0

    \Leftrightarrow 1(t - 4) + 2(2t - 5) +
2(2t - 2) = 0 \Leftrightarrow t = 2

    Suy ra M(1; 1; 2), gọi A’(x; y; z) là điểm đối xứng của A qua d thì: \left\{ \begin{matrix}
x = 2.1 - 3 = - 1 \\
y = 2.1 - 2 = 0 \\
z = 2.2 - 0 = 4 \\
\end{matrix} ight.

    Điểm đối xứng với điểm A qua đường thẳng d có tọa độ là: ( - 1;0;4).

  • Câu 18: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, điểm nào sau đây không thuộc mặt phẳng (P):x + y + z - 1 = 0?

    Dễ thấy điểm O(0;0;0) không thuộc mặt phẳng (P).

  • Câu 19: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(−2; 1; 3), B(3; −2; 4), đường thẳng d:\frac{x - 1}{2} = \frac{y
- 6}{11} = \frac{z + 1}{- 4}và mặt phẳng (P): 41x − 6y + 54z + 49 = 0. Đường thẳng (d) đi qua B, cắt đường thẳng ∆ và mặt phẳng (P) lần lượt tại C và D sao cho thể tích của 2 tứ diện ABCOOACD bằng nhau, biết (d) có một vectơ chỉ phương là \overrightarrow{u} = (4;b;c). Tính b + c.

    Hình vẽ minh họa

    Ta có 1 = \frac{V_{OABC}}{V_{OACD}} =\dfrac{\dfrac{1}{3}d\left( O;(ABC) ight).S_{ABC}}{\dfrac{1}{3}d\left(O;(ACD) ight).S_{ACD}} = \dfrac{S_{ABC}}{S_{ACD}} =\frac{BC}{CD}

    Nên BC = CD. Vì C ∈ ∆ \Rightarrow C(2t +
1;11t + 6; - 4t - 1)

    C là trung điểm của BD nên D(4t - 1;22t +
14; - 8t - 6).

    Điểm D ∈ (P) nên 41(4t − 1) − 6(22t + 14) + 54(−8t − 6) + 49 = 0 ⇔ t = −1

    ⇒ C(−1; −5; 3).

    \overrightarrow{CB} = (4;3;1) =
\overrightarrow{u} là vectơ chỉ phương của đường thẳng d.

    Vậy b = 3, c = 1 ⇒ b + c = 4

  • Câu 20: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có cạnh a. Góc giữa hai mặt phẳng (A'B'CD)(ACC'A') bằng:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz sao cho gốc tọa độ

    O \equiv A';Ox \equiv
A'D';Oy \equiv A'B';Oz \equiv AA'

    Khi đó: A(0;0;a),D(a;0;a),B(0;a;a),C(a;a;a)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{A'B'} = (0;a;0);\overrightarrow{A'D} =
(a;0;a) \\
\overrightarrow{A'A} = (0;0;a);\overrightarrow{A'C'} =
(a;a;0) \\
\end{matrix} ight.

    \Rightarrow \left\lbrack
\overrightarrow{A'B'};\overrightarrow{A'D} ightbrack =
\left( a^{2};0; - a^{2} ight)

    Chọn \overrightarrow{n_{1}} = (1;0; -
1) là vectơ pháp tuyến của mặt phẳng (AB'CD)

    \Rightarrow \left\lbrack
\overrightarrow{A'A};\overrightarrow{A'C'} ightbrack =
\left( - a^{2};a^{2};0 ight)

    Chọn \overrightarrow{n_{2}} = ( -
1;1;0) là vectơ pháp tuyến của mặt phẳng (ACC'A')

    Góc giữa hai mặt phẳng (A'B'CD)(ACC'A') bằng:

    \cos\alpha = \left| \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight) ight| = \frac{|
- 1|}{\sqrt{2}.\sqrt{2}} = \frac{1}{2} \Rightarrow \alpha =
60^{0}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo