Trong không gian với hệ tọa độ
, cho đường thẳng
. Vectơ nào dưới đây là vectơ chỉ phương của
?
Ta có: suy ra vectơ chỉ phương của đường thẳng d là
Trong không gian với hệ tọa độ
, cho đường thẳng
. Vectơ nào dưới đây là vectơ chỉ phương của
?
Ta có: suy ra vectơ chỉ phương của đường thẳng d là
Trong không gian
, cho hai điểm
và
. Viết phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
.
Mặt phẳng có một véctơ pháp tuyến
Phương trình mặt phẳng là:
hay
.
Trong không gian
, cho
. Nếu ba vectơ
đồng phẳng thì:
Ta có:
Ba vectơ đồng phẳng
Trong không gian
đường thẳng
và mặt phẳng
. Góc giữa mặt phẳng
và đường thẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng và mặt phẳng
:
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
và đường thẳng
. Tính góc giữa đường thẳng
và mặt phẳng
.
Ta có:
Do đó:
Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng .
Trong không gian tọa độ
, cho đường thẳng
và điểm
. Điểm đối xứng với điểm
qua đường thẳng
có tọa độ là:
Gọi
Vectơ chỉ phương của d là
Vì
Suy ra M(1; 1; 2), gọi A’(x; y; z) là điểm đối xứng của A qua d thì:
Điểm đối xứng với điểm qua đường thẳng
có tọa độ là:
.
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) chéo nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:
Suy ra (D) và (d) chéo nhau.
Cho hình lập phương
có tâm
. Gọi
là tâm của hình vuông
và điểm
sao cho
(tham khảo hình vẽ).

Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng
Gắn hệ tọa độ như hình vẽ:
Cạnh hình lập phương là 1, ta được tọa độ các điểm như sau:
Khi đó
Suy ra
Trong không gian với hệ tọa độ
, cho ba điểm
và mặt phẳng
. Điểm
nằm trên mặt phẳng
thỏa mãn
. Tính
?
Ta có
Với , ta có
Với , ta có
Từ (1); (2); (3) ta có hệ phương trình:
Trong không gian với hệ trục toạ độ
, cho mặt phẳng
. Hỏi có bao nhiêu điểm
thuộc mặt phẳng
với
là các số nguyên không âm.
Ta có nên mặt phẳng
đi qua các điểm
Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.
Tam giác ABC đều có các cạnh bằng , chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.
Mà số điểm có toạ độ nguyên của tam giác OAB bằng
Trong không gian với hệ tọa độ
, gọi
là đường thẳng đi qua
, thuộc mặt phẳng
và cách điểm
một khoảng nhỏ nhất. Côsin của góc giữa
và trục tung bằng
Hình vẽ minh họa
Gọi H; K lần lượt là hình chiếu của M trên mặt phẳng (Oyz) và trên đường thẳng d.
Ta có:
Suy ra nhỏ nhất khi
. Khi đó d có một vecto chỉ phương là
Khi đó:
Cho tam giác ABC có
. Viết phương trình tổng quát của đường trung trực (d) của cạnh BC của tam giác ABC.
Theo đề bài, ta tính được
Từ đó, suy ra VTPT của mặt phẳng (ABC) là:
Phương trình (ABC) là:
Mặt khác, ta có M là trung điểm của BC nên M có tọa độ là M (-2, 8, -5)
Phương trình mặt phẳng trung trực (P) của cạnh BC là:
Phương trình tổng quát của đường trung trực (d) của cạnh BC:
Trong không gian với hệ tọa độ
, cho 2 điểm
, đường thẳng
và mặt phẳng
. Đường thẳng
đi qua B, cắt đường thẳng ∆ và mặt phẳng
lần lượt tại C và D sao cho thể tích của 2 tứ diện
và
bằng nhau, biết
có một vectơ chỉ phương là
. Tính
.
Hình vẽ minh họa
Ta có
Nên . Vì
C là trung điểm của BD nên .
Điểm nên
là vectơ chỉ phương của đường thẳng d.
Vậy
Trong không gian với hệ toạ độ
, phương trình nào sau đây là phương trình mặt cầu
Phương trình mặt cầu tâm bán kính
có dạng:
Vậy đáp án cần tìm là: .
Trong không gian
, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?
Phương trình không có
=> Loại
Phương trình có số hạng
=> Loại
Phương trình loại vì
Phương trình thỏa mãn vì
.
Viết phương trình tổng quát của mặt phẳng (P) qua
và song song với mặt phẳng (Q): ![]()
Vì mp nên ta có PTTQ mp
sẽ có dạng là:
Mặt khác, (P) qua
Trong không gian
, cho các điểm
. Tập hợp các điểm
thỏa mãn
là mặt cầu có bán kính là:
Giả sử
Ta có:
Theo bài ra ta có:
Vậy tập hợp điểm thỏa mãn
là mặt cầu có bán kính là
.
Trong không gian với hệ tọa độ
, cho mặt cầu
tâm I và mặt phẳng
. Gọi H là hình chiếu vuông góc của I trên (P). Điểm M thuộc (S) sao cho đoạn MH có độ dài lớn nhất. Tìm tọa độ điểm M.
Ta có tâm và bán kính
. Do
nên mặt phẳng (P) không cắt mặt cầu (S) . Do H là hình chiếu của I lên (P) và MH lớn nhất nên M là giao điểm của đường thẳng IH với mp (P) .
.
Phương trình đường thẳng IH là .
Giao điểm của IH với (S):
Suy ra:
.
Vậy điểm cần tìm là .
Gọi
là hình chiếu của
lên đường thẳng
. Đẳng thức nào dưới đây đúng?
Vì
(d) có vtcp
Suy ra . Vậy
Trong không gian với hệ tọa độ
, cho mặt cầu
. Một mặt cầu
có tâm
và tiếp xúc ngoài với mặt cầu
. Kết luận nào sau đây đúng về phương trình mặt cầu
?
Ta có tâm và bán kính mặt cầu lần lượt là
.
Suy ra
Gọi là bán kính mặt cầu
. Theo giả thiết ta có:
Khi đó phương trình mặt cầu cần tìm là: .