Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:

     \overrightarrow {AB}  = \left( { - 1,2, - 2} ight): vectơ chỉ phương của trục Ox: \overrightarrow i  = \left( {1,0,0} ight) .

    \left[ {\overrightarrow {AB} ,\overrightarrow i } ight] = \left( {0, - 2, - 2} ight): Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng y + z + D = 0, qua A nên:- 1 + 1 + D = 0 \Leftrightarrow D = 0

    Vậy ta có phương trình mp cần tìm là:  y+z=0

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P) có phương trình x - 2y + 2z - 5 = 0. Xét mặt phẳng (Q):x + (2m - 1)z + 7 = 0, với m là tham số thực. Tìm tất cả giá trị của m để (P) tạo với (Q) góc \frac{\pi}{4}.

    Ta có: (P)(Q) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{(P)}} = (1; -
2;2),\overrightarrow{n_{(Q)}} = (1;0;2m - 1)

    (P) tạo với (Q) góc \frac{\pi}{4}.

    \cos\frac{\pi}{4} = \cos\left(
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ight)

    \Leftrightarrow \frac{1}{\sqrt{2}} =
\frac{\left| 1 + 2(2m - 1) ight|}{3\sqrt{1 + (2m -
1)^{2}}}

    \Leftrightarrow 2(4m - 1)^{2} = 9\left(
4m^{2} - 4m + 2 ight)

    \Leftrightarrow 4m^{2} - 20m + 16 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 4 \\
\end{matrix} ight..

  • Câu 3: Vận dụng cao

    Cho hai đường thẳng (d1 ): \left\{ \begin{array}{l}x - y + z - 5 = 0\\x - 3y + 6 = 0\end{array} ight.({d_2})\left\{ \begin{array}{l}2y + z - 5 = 0\\4x - 2y + 5z - 4 = 0\end{array} ight.

    Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?

    Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :

    ({d_1}):\left\{ \begin{array}{l}x =  - 6 + 3t\\y = t\\z = 11 - 2t\end{array} ight. \Rightarrow ({d_1}) có vectơ chỉ phương \overrightarrow a  = (3,1, - 2) và qua A( - 6,0,11) .

    ({d_2}):\left\{ \begin{array}{l}x = \frac{{15}}{4} - 3t'\\y = 3 - t'\\z =  - 1 + 2t'\end{array} ight. \Rightarrow \left( {{d_2}} ight) có vectơ chỉ phương \overrightarrow b  = (\frac{{15}}{4},3, - 1)

    \overrightarrow a  earrow  \swarrow \overrightarrow bvà hệ phương trình \left\{ \begin{array}{l} - 6 + 3t = \frac{{15}}{4} - 3t'\\t = 3 - t'\\11 - 2t =  - 1 + 2t'\end{array} ight. vô nghiệm.

    \Rightarrow ({d_1})//(d_{2} ).

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y - 2z + 1 = 0 đi qua điểm M(1; - 2;0) và cắt đường thẳng d:\left\{ \begin{matrix}
x = 11 + 2t \\
y = 2t \\
z = - 4t \\
\end{matrix}\ (t \in \mathbb{R}) ight. tại N. Tính độ dài đoạn MN.

    Điểm N \in (d) \Rightarrow N(11 + 2t;2t;
- 4t). Mặt khác N \in
(\alpha) nên

    11 + 2t + 2t - 2( - 4t) + 1 = 0
\Leftrightarrow t = - 1

    Điểm N(9; - 2;4) \Rightarrow
\overrightarrow{MN} = (8;0;4) \Rightarrow MN = 4\sqrt{5}.

  • Câu 5: Nhận biết

    Trong không gian Oxyz, đường thẳng (d) qua M\left( {\,{x_0},\,\,{y_0},\,\,{z_0}} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight) với  {a_1},\,\,{a_2},\,\,{a_3} e 0  có phương trình chính tắc là:

    Trong không gian Oxyz, đường thẳng (d) qua M\left( {\,{x_0},\,\,{y_0},\,\,{z_0}} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight) với {a_1},\,\,{a_2},\,\,{a_3} e 0 có phương trình chính tắc là:

    \frac{{x\, - \,{x_0}}}{{{a_1}}} = \frac{{y\, - \,{y_0}}}{{{a_2}}} = \frac{{z\, - \,{z_0}}}{{{a_3}}}

  • Câu 6: Nhận biết

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) chéo nhau khi và chỉ khi:

     Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ;\,\overrightarrow b } ight].\,\overrightarrow {AB} \, e \,\,0

    Suy ra (D) và (d) chéo nhau.

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Nhận biết

    Cho mặt cầu S\left( {O;R} ight) và mặt phẳng (\alpha). Biết khoảng cách từ O đến (\alpha) bằng \frac{R}{2}. Khi đó thiết diện tạo bởi mặt phẳng (\alpha) với S\left( {O;R} ight) là một đường tròn có đường kính bằng:

     Tìm đường kính

    Gọi H là hình chiếu của O xuống (\alpha) .

    Ta có d\left[ {O,\left( \alpha  ight)} ight] = OH = \frac{R}{2} < R nên (\alpha) cắt S\left( {O;R} ight) theo đường tròn C\left( {H;r} ight).

    Bán kính đường tròn C\left( {H;r} ight)r = \sqrt {{R^2} - O{H^2}}  = \frac{{R\sqrt 3 }}{2}.

    Suy ra đường kính bằng R\sqrt 3.

  • Câu 9: Nhận biết

    Trong không gian Oxyz đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} = 1 và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa mặt phẳng (\alpha) và đường thẳng \Delta bằng:

    Mặt phẳng (\alpha):x - y + 2z =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    Đường thẳng \Delta:\frac{x}{1} =
\frac{y}{2} = \frac{z}{- 1} = 1 có một vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    Gọi α là góc giữa đường thẳng \Delta và mặt phẳng (\alpha):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 10: Nhận biết

    Trong không gian Oxyz, tìm tất cả các giá trị của tham số m để x^{2} + y^{2} + z^{2} + 2(m + 2)x + 4my +
19m - 6 = 0 là phương trình mặt cầu

    Phương trình đã cho là phương trình mặt cầu khi và chỉ khi

    (m + 2)^{2} + 4m^{2} - 19m + 6 >
0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 1 \\
m > 2 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: \left\lbrack
\begin{matrix}
m < 1 \\
m > 2 \\
\end{matrix} ight.

  • Câu 11: Thông hiểu

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).

     Theo đề bài, mặt cầu (S) có tâm I\left( { - 2,1, - 3} ight) và vecto pháp tuyến của (P):\,\,\overrightarrow n  = \left( {3,2,6} ight)

    \begin{array}{l}IH \bot \left( P ight) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t\\H \in \left( P ight) \Rightarrow 3\left( { - 2 + 3t} ight) + 2\left( {1 + 2t} ight) + 6\left( { - 3 + 6t} ight) + 1 = 0 \Leftrightarrow t = \dfrac{3}{7}\\ \Rightarrow H\left( { - \dfrac{5}{7},\dfrac{{13}}{7}, - \dfrac{3}{7}} ight)\end{array}

  • Câu 12: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;1; - 1). Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là:

    Mặt phẳng (P) có VTPT \overrightarrow{n}(0;1;1) và đi qua điểm A(1;1; - 1).

    Suy ra phương trình (P):y + z =
0.

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABC với A(1;1;1),B( - 1;1;0),C(1;3;2). Đường trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vectơ nào dưới đây làm một véc-tơ chỉ phương?

    Gọi M là trung điểm của BC, suy ra tọa độ điểm M(0;2;1).

    Đường trung tuyến xuất phát từ đỉnh A có vectơ chỉ phương là \overrightarrow{AM} = ( - 1;1;0).

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa điểm M(1;3; - 2), cắt các tia Ox,Oy,Oz lần lượt tại A;B;C (khác O) sao cho \frac{OA}{1} = \frac{OB}{2} =
\frac{OZ}{4}?

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0.

    Phương trình mặt phẳng (P) là \frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1. Theo giả thiết ta có:

    \left\{ \begin{matrix}\dfrac{a}{1} = \dfrac{b}{2} = \dfrac{c}{3} \\\frac{1}{a} + \dfrac{3}{b} - \dfrac{2}{c} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 4 \\c = 8 \\\end{matrix} ight.

    Vậy phương trình mặt phẳng (P)4x + 2y + z - 8 = 0.

  • Câu 15: Vận dụng

    Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):x + y - 2z - 5 = 0 và đường thẳng\Delta:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z}{3}. Gọi A là giao điểm của \Delta(P)M là điểm thuộc đường thẳng \Delta sao cho AM = \sqrt{84}. Tính khoảng cách từ M đến mặt phẳng (P).

    Gọi \alpha = \left( \Delta,(P)
ight)

    Khi đó ta có: \cos\alpha = \frac{|1.2 +
1.1 - 2.3|}{\sqrt{1^{2} + 1^{2} + ( - 2)^{2}}.\sqrt{2^{2} + 1^{2} +
3^{2}}} = \frac{\sqrt{21}}{14}

    Gọi H là hình chiếu của M lên mặt phẳng (P), khi đó:

    HM = MA.cos\alpha = \sqrt{84}.\frac{\sqrt{21}}{14}
= 3

  • Câu 16: Vận dụng

    Cho hình vuông ABCD có cạnh a. Trên hai tia Bt,Ds vuông góc và nằm cùng phía với mặt phẳng (ABCD) lần lượt lấy hai điểm E;F sao cho BE = \frac{a}{2};DF = a. Tính góc \varphi giữa hai mặt phẳng (AEF);(CEF).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình vuông ABCD có cạnh a. Trên hai tia Bt,Ds vuông góc và nằm cùng phía với mặt phẳng (ABCD) lần lượt lấy hai điểm E;F sao cho BE = \frac{a}{2};DF = a. Tính góc \varphi giữa hai mặt phẳng (AEF);(CEF).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Vận dụng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{2} = \frac{y}{1} =
\frac{z - 2}{- 1} và hai điểm A( -
1;3;1),B(0;2; - 1). Gọi C(m;n;p) là điểm thuộc đường thẳng d sao cho diện tích tam giác ABC bằng 2\sqrt{2}. Giá trị của tổng m + n + p bằng:

    Phương trình tham số của đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
x = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Vì C thuộc d nên tọa độ của C có dạng C(
- 1 + 2t;t;2 - t)

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1; - 2) \\
\overrightarrow{AC} = (2t;t - 3;1 - t) \\
\end{matrix} ight.

    Suy ra \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3t - 7; - 3t -
1;3t - 3)

    Diện tích tam giác ABC là

    S_{\Delta ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\frac{1}{2}\sqrt{(3t - 7)^{2} + ( - 3t - 1)^{2} + (3t -
3)^{2}}

    Theo bài ra ta có

    S_{\Delta ABC} = 2\sqrt{2}
\Leftrightarrow \frac{1}{2}\sqrt{27t^{2} - 54t + 59} =
2\sqrt{2}

    \Leftrightarrow 27t^{2} - 54t + 59 = 32
\Leftrightarrow (t - 1)^{2} = 0 \Leftrightarrow t = 1

    Với t = 1 thì C (1; 1; 1) nên m = 1;n =
1;p = 1

    Vậy giá trị của tổng m + n + p =
3

  • Câu 18: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 19: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm là điểm A(2; 2; 2), mặt phẳng (P) : 2x + 2y + z + 8 = 0 cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính r = 8. Diện tích của mặt cầu (S) là:

    Ta có:

    d\left( A;(P) ight) = \frac{|4 + 4 + 2
+ 8|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} = 6

    R^{2} = d^{2}\left( A;(P) ight) +
r^{2} = 100

    Vậy diện tích mặt cầu là: S = 4\pi R^{2}
= 400\pi.

  • Câu 20: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c>0. Biết rằng mặt phẳng (ABC) đi qua điểm M(\frac 1 7; \frac 2 7 ; \frac 3 7) và tiếp xúc với mặt cầu (S):(x-1)^2+(y-2)^2+(z-3)^2=\frac{72}{7}. Tính T=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}.

    Mặt phẳng (ABC) đi qua ba điểm A(a;0;0), B(0;b;0), C(0;0;c) nên có phương trình là:

    \frac{x}{a} +\frac{y}{b}+\frac{z}{c}=1

    Ta có M(\frac 1 7; \frac 2 7 ; \frac 3 7) \in (ABC) nên \frac{1}{a} +\frac{2}{b}+\frac{3}{c}=7.

    Mặt cầu (S) có tâm I(1;2;3) và bán kính R=\sqrt \frac{72}{7}.

    (ABC) tiếp xúc với  (S)

    \Leftrightarrow d(I, (ABC))=R\Leftrightarrow \dfrac { | \dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}-1 |}{\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}}=\sqrt{\frac{72}{7} }

    \Leftrightarrow \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}= \dfrac{7}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo