Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(3; -1; 0)  và đường thẳng d: \frac{x-2}{-1} = \frac{y+1}{2}=\frac{z-1}{1}  . Mặt phẳng (\alpha) chứa d sao cho khoảng cách từ A đến  lớn nhất có phương trình là:

    Mã của khoảng cách

    Gọi H là hình chiếu vuông góc của A lên (\alpha) , K là hình chiếu vuông góc của A lên d.

    Ta có: d(A, d)=AKcố định và  d(A, (\alpha))=AH\leq AK

    Suy ra  d(A, (\alpha)) lớn nhất bằng AK khi H\equiv K .

    Ta có (d): \frac{x-2}{-1} = \frac{y+1}{2}=\frac{z-1}{1} qua M(2; -1; 1) , có VTCP \vec{u_d} = (-1; 2; 1) .

    Gọi (P)  là mặt phẳng qua A và chứa có VTPT \vec{n_p}=[\vec{u_d}, \vec{AM}]=(2; 0; 2) .

    Mặt phẳng (\alpha) có một VTPT là \vec{n_\alpha}=[\vec{n_p}, \vec{u_d}]=(-4; -4; 4)=-4(1;1;-1)(\alpha)  qua  M (2; -1; 1) có phương trình: 1.(x-2)+1.(y+1)-1.(z-1)=0\Leftrightarrow x+y-z=0

  • Câu 2: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + z - 6 = 0 cắt ba trục tọa độ Ox,Oy,Oz lần lượt tại ba điểm A,B,C. Lúc đó thể tích V của khối tứ diện OABC là:

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) lần lượt là giao của mặt phẳng (P) với ba trục tọa độ Ox,Oy,Oz.

    Khi đó A(3;0;0),B(0; -
2;0),C(0;0;6) và tứ diện OABCOA,OB,OC đôi một vuông góc tại O.

    Do đó V_{OABC} = \frac{1}{6}OA.OB.OC =
\frac{1}{6}.3.2.6 = 6

  • Câu 3: Nhận biết

    Trong không gian Oxyz, một đường thẳng (d) có:

     Trong không gian Oxyz, một đường thẳng (d) có vô số vecto chỉ phương.

  • Câu 4: Thông hiểu

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tổng quát của cạnh AC.

    (AC) là đường thẳng đi qua 2 điểm A và C nên nhận \overrightarrow {AC}  = 2\left( {1, - 2,4} ight) làm 1 VTCP.

    (AC) đi qua C (3,-2,5) và có 1 VTCP là (1,-2,4) có phương trình chính tắc:

    \begin{array}{l}x - 3 = \frac{{y + 2}}{{ - 2}} = \frac{{z - 5}}{4}\\ \Rightarrow PTTQ\,\,\,(AC):\left\{ \begin{array}{l}2x + y - 4 = 0\\4x - z - 7 = 0\end{array} ight. \vee \left\{ \begin{array}{l}2x + y - 4 = 0\\2y + z - 1 = 0\end{array} ight.\end{array}

     

  • Câu 5: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu (S_1): (x+3)^2+(y−2)^2+(z−4)^2 = 1, (S_2): x ^2 + (y − 2)^2 + (z − 4)^2 = 4, (S_3): x ^2 + y ^2 + z ^2 + 4x − 4y − 1 = 0. Có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu (S_1), (S_2), (S_3)?

    Ta có \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight) có tâm lần lượt là I_{1}( - 3;2;4),I_{2}(0;2;4),I_{3}( -2;2;0) và bán kính lần lượt là R_{1} = 1,R_{2} = 2,R_{3} = 3.

    Gọi (P):ax + by + cz + d = 0\left( a^{2} +b^{2} + c^{2} eq 0 ight) là mặt phẳng tiếp xúc với cả ba mặt cầu nói trên. Khi đó:

    \left\{ \begin{matrix}d\left( I_{1};(P) ight) = R_{1} \\d\left( I_{2};(P) ight) = R_{2} \\d\left( I_{3};(P) ight) = R_{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}| - 3a + 2b + 4c + d| = \sqrt{a^{2} + b^{2} + c^{2}} \\|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\| - 2a + 2b + d| = 3\sqrt{a^{2} + b^{2} + c^{2}} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\2| - 3a + 2b + 4c + d| = |2b + 4c + d| \\3|2b + 4c + d| = 2| - 2a + 2b + d| \\\end{matrix} ight.

    Xét phương trình

    3|2b + 4c + d| = 2| - 2a + 2b +d|

    \Leftrightarrow \left\lbrack\begin{matrix}3(2b + 4c + d) = 2( - 2a + 2b + d) \\3(2b + 4c + d) = - 2( - 2a + 2b + d) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}d = - 4a - 2b - 12c \\5d = 4a - 10b - 12c \\\end{matrix} ight.

    (1) Với d = - 4a - 2b - 12c. Thay vào 2| - 3a + 2b + 4c + d| = |2b + 4c +d|, ta được

    2| - 7a - 8c| = | - 4a -8c|

    \Leftrightarrow \left\lbrack\begin{matrix}7a + 8c = 2a + 4c \\7a + 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = - \dfrac{6c}{5} \\a = - \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = - \frac{6c}{5} \Rightarrow d = -\frac{36c}{5} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{18c}{5} + 2b + 4c -\frac{36c}{5} - 2b ight| = \sqrt{\left( - \frac{6c}{5} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{2c}{5}ight| = \frac{1}{5} \cdot \sqrt{25b^{2} + 61c^{2}} \Leftrightarrow4c^{2} = 25b^{2} + 61c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    Với a = - \frac{4c}{3} \Rightarrow d = -\frac{20c}{3} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{12c}{5} + 2b + 4c -\frac{20c}{5} - 2b ight| = \sqrt{\left( - \frac{4c}{3} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{4c}{3}ight| = \frac{1}{3} \cdot \sqrt{9b^{2} + 25c^{2}}

    \Leftrightarrow 16c^{2} = 9b^{2} +25c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    (2) Với 5d = 4a - 10b - 12c.

    Thay vào 2| - 3a + 2b + 4c + d| = |2b +4c + d|, ta được

    2| - 11a + 8c| = |4a + 8c

    \Leftrightarrow \left\lbrack\begin{matrix}11a - 8c = 2a + 4c \\11a - 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{4c}{13} \\a = \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = \frac{4c}{13} \Rightarrow 5d = -\frac{140c}{13} - 10b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được

    \left| \frac{60c}{13} ight| =\frac{5}{13} \cdot \sqrt{169b^{2} + 185c^{2}}

    \Leftrightarrow 11c^{2} = 169b^{2}\Leftrightarrow c = \pm \frac{13b}{\sqrt{11}}

    Với c = \frac{13b}{\sqrt{11}} : chọn b = \sqrt{11} \Rightarrow c = 13\Rightarrow Tồn tại một mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight).

    Với a = \frac{4c}{3} \Rightarrow 5d = -\frac{20c}{3} - 10b

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}} ta được:

    \left| \frac{20c}{3} ight| =\frac{5}{3}.\sqrt{9b^{2} + 25c^{2}} \Leftrightarrow 9b^{2} + 9c^{2} = 0\Leftrightarrow b = c = 0

    Với b = c = 0 ⇒ a = 0, d = 0 (vô lí).

    Vậy tồn tại 2 mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2} ight),\left(S_{3} ight).

  • Câu 6: Vận dụng

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight). Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng \frac{1}{27} .

    Tỷ số thể tích hai khối AMNE và ABCD: {\left( {\frac{{AM}}{{AB}}} ight)^3} = \frac{1}{{27}}

    \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow M chia cạnh BA theo tỷ số -2

    \Rightarrow E\left\{ \begin{array}{l}x=\dfrac{{1 + 2.0}}{3} = \dfrac{1}{3}\\y = \dfrac{{1 + 2.1}}{3} = 1\\z = \dfrac{{2 + 2\left( { - 1} ight)}}{3} = 0\end{array} ight.;\,\,

    \overrightarrow {BC}  =  - 2\left( {0,1,1} ight);\,\,\overrightarrow {BD}  =  - \left( {1,1,1} ight)

    Vecto pháp tuyến của \left( Q ight):\overrightarrow n  = \left( {0,1, - 1} ight)

    \begin{array}{l} \Rightarrow M \in \left( Q ight) \Rightarrow \left( Q ight):\left( {x - \frac{1}{3}} ight)0 + \left( {y - 1} ight)1 + \left( {z - 0} ight)\left( { - 1} ight) = 0\\ \Rightarrow \left( P ight):y - z - 1 = 0\end{array}

  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho A(1;2;3),B( - 2;4;4),C(4;0;5). Gọi G là trọng tâm của tam giác ABC. Gọi M là điểm nằm trên mặt phẳng (Oxy) sao cho độ dài đoạn thẳng GM ngắn nhất. Tính độ dài đoạn thẳng GM.

    Ta có: G là trọng tâm tam giác ABC nên G = (1;2;4)

    Mặt phẳng (Oxy) có phương trình z = 0.

    GM ngắn nhất khi và chỉ khi M là hình chiếu vuông góc của G lên mặt phẳng (Oxy). Khi đó, ta có:

    GM = d\left( G,(Oxy) ight) =
\frac{4}{\sqrt{1}} = 4.

  • Câu 8: Nhận biết

    Trong không gian toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?

    PTTQ của mặt phẳng có dạng Ax + By + Cz +
D = 0, với A^{2} + B^{2} + C^{2}
eq 0 nên ta chọn 2x + 3y + z - 12
= 0.

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + (z + 3)^{2} =
25 theo thiết diện là đường tròn bán kính r bằng bao nhiêu?

    Mặt cầu (S) có tâm I(1;1; - 3) và bán kính R = 5.

    Khoảng cách từ tâm I đến (Oxy) bằng 3.

    \Rightarrow r = \sqrt{5^{2} - 3^{2}} =
4

  • Câu 10: Nhận biết

    Trong không gian Oxyz, viết phương trình của mặt phẳng (P) đi qua điểm M( - 3; - 2;3) và vuông góc với trục Ox.

    Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ \overrightarrow{i} =
(1;0;0).

    Phương trình tổng quát của mặt phẳng (P) là

    1\left( x - ( - 3) ight) + 0\left( y -
( - 2) ight) + 0(z - 3) = 0

    \Leftrightarrow x + 3 = 0.

  • Câu 11: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2;0;1),C( -
2;2;3). Đường thẳng \Delta qua trực tâm H của tam giác ABC và nằm trong mặt phẳng (ABC) cùng tạo với các đường thẳng AB;AC một góc \alpha < 45^{0} có một véc-tơ chỉ phương là \overrightarrow{u} =
(a;b;c) với c là số nguyên tố và a;b là số nguyên. Giá trị biểu thức ab + bc + ca bằng bao nhiêu?

    Ta có:

    \overrightarrow{AB} = (1; -
2;2);\overrightarrow{AC} = ( - 3;0;4)

    \overrightarrow{n_{(ABC)}} =
\left\lbrack \overrightarrow{AB};\overrightarrow{AC} ightbrack = ( -
8; - 10; - 6)

    \cos(AB;\Delta) = \frac{|a - 2b +
2c|}{3\sqrt{a^{2} + b^{2} + c^{2}}}

    \cos(AC;\Delta) = \frac{| - 3a +
4c|}{5\sqrt{a^{2} + b^{2} + c^{2}}}

    Theo đề bài, ta suy ra:

    \cos(AB;\Delta) =
\cos(AC;\Delta)

    \Leftrightarrow 5|a - 2b + 2c| = 3| - 3a
+ 4c|

    \Leftrightarrow \left\lbrack
\begin{matrix}
7a - 5b - c = 0\ \ \ (1) \\
2a + 5b - 11c = 0\ \ \ (2) \\
\end{matrix} ight.

    Vì ∆ ⊂ (ABC) nên \overrightarrow{u}.\overrightarrow{n_{(ABC)}} = 0
\Leftrightarrow 4a + 5b + 3c = 0\ \ (3)

    Trường hợp 1: Xét hệ phương trình:

    \left\{ \begin{matrix}7a - 5b - c = 0 \\4a + 5b + 3c = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{- 2c}{11} \\b = \dfrac{- 5c}{11} \\\end{matrix} ight.\  \Leftrightarrow \overrightarrow{u} = \left(\dfrac{- 2c}{11};\dfrac{- 5c}{11};c ight)

    Chọn c = 11, ta có \overrightarrow{u} = (
- 2; - 5;11) (kiểm tra lại điều kiện \alpha < 45^{0} ta thấy \overrightarrow{u} đang xét thỏa mãn).

    Trường hợp 2: Xét hệ phương trình

    \left\{ \begin{matrix}
2a + 5b - 11c = 0 \\
4a + 5b + 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 7c \\
b = 5c \\
\end{matrix} ight.\  \Leftrightarrow \overrightarrow{u} = ( -
7c;5c;c)

    Chọn c = 2, ta có \overrightarrow{u} = (
- 14;10;2) (kiểm tra lại điều kiện \alpha < 45^{0} ta thấy \overrightarrow{u} đang xét không thỏa mãn).

    Vậy ab + bc + ca = −67

  • Câu 12: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;2),B(2; - 1;3). Viết phương trình đường thẳng AB?

    Vectơ chỉ phương của đường thẳng AB\overrightarrow{AB} = (1; - 2;1). Suy ra phương trình đường thẳng AB là:

    AB:\frac{x - 1}{1} = \frac{y - 1}{- 2} =
\frac{z - 2}{1}

  • Câu 13: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x - 2z - 6 = 0 và đường thẳng d:\left\{ \begin{matrix}
x = 1 + t \\
y = 3 + t \\
z = - 1 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Viết phương trình đường thẳng \Delta nằm trong mặt phẳng (\alpha) cắt đồng thời vuông góc với d?

    Giao điểm I của d và (α) là nghiệm của hệ phương trình: \left\{ \begin{matrix}
x - 2z - 6 = 0 \\
x = 1 + t \\
y = 3 + t \\
z = - 1 - t \\
\end{matrix} ight.\  \Rightarrow I(2;4; - 2)

    Mặt phẳng (α) có một vectơ pháp tuyến \overrightarrow{n} = (1;0; - 2), đường thẳng d có một vectơ chỉ phương \overrightarrow{u} = (1;1; - 1)

    Khi đó đường thẳng ∆ có một vectơ chỉ phương là \left\lbrack \overrightarrow{n};\overrightarrow{u}
ightbrack = (2; - 1;1)

    Đường thẳng ∆ qua điểm I (2; 4; −2) và có một vectơ chỉ phương \left\lbrack \overrightarrow{n};\overrightarrow{u}
ightbrack = (2; - 1;1) nên có phương trình chính tắc: \frac{x - 2}{2} = \frac{y - 4}{- 1} = \frac{z +
2}{1}

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A( - 1;0;0),B(0;0;2),C(0; - 3;0). Bán kính mặt cầu ngoại tiếp tứ diện OABC là:

    Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0

    O;A;B;C \in (S) nên ta có: \left\{ \begin{matrix}
d = 0 \\
1 + 2a + d = 0 \\
4 - 4c + d = 0 \\
9 + 6b + d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
a = - \frac{1}{2} \\
b = - \frac{3}{2} \\
c = 1 \\
\end{matrix} ight.

    Vậy bán kính mặt cầu (S) là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{\frac{1}{4} + \frac{9}{4} + 1} = \frac{\sqrt{14}}{2}

  • Câu 15: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, mặt cầu (S):(x - 1)^{2} + y^{2} + (z + 3)^{2} =
16 có tâm là

    Mặt cầu (S):(x - 1)^{2} + y^{2} + (z +
3)^{2} = 16 có tâm là: I(1;0; -
3) .

  • Câu 16: Nhận biết

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):4x + 3y - z + 1 =
0 và đường thẳng d:\frac{x - 1}{4}
= \frac{y - 6}{3} = \frac{z + 4}{1}, sin của góc giữa đường thẳng d và mặt phẳng (P) bằng:

    Mặt phẳng (P):4x + 3y - z + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (4;3; - 1)

    Đường thẳng d:\frac{x - 1}{4} = \frac{y -
6}{3} = \frac{z + 4}{1} có một vectơ chỉ phương là \overrightarrow{u} = (4;3;1)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{12}{13}

  • Câu 17: Vận dụng

    Cho hình hộp chữ nhật ABCD.EFGHAB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz  sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với  Ox,Oy,Oz . Gọi  M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của giao tuyến (d) của mặt phẳng (MNP) và (xOy)

    Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:

    M\left( {a,\frac{b}{2},0} ight);\,\,\,N\left( {\frac{a}{2},0,c} ight);\,\,\,P\left( {0,b,\frac{c}{2}} ight)

    Như vậy ta tính được vecto \overrightarrow {MN}\overrightarrow {MP} theo a, b, c.

    \overrightarrow {MN}  =  - \frac{1}{2}\left( {a,b, - 2c} ight);\,\,\,\overrightarrow {MP}  =  - \frac{1}{2}\left( {2a, - b, - c} ight)

    (MNP) có vecto pháp tuyến là tích có hướng của 2 vecto  \overrightarrow {MN}\overrightarrow {MP}

    =  > \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } ight] =  - 3\left( {bc,ca,ab} ight) = \overrightarrow {{n_P}}

    (MNP) có đi qua M và nhận \overrightarrow {{n_P}} làm 1 VTCP có phương trình là:

    \begin{array}{l}\left( {MNP} ight):bc\left( {x - a} ight) + ca\left( {y - \frac{b}{2}} ight) + ab.z = 0\\ =  > \left( {MNP} ight):2bcx + 2cay + 2abz - 3abc = 0\\ =  > (d):2bcx + 2cay + 2abz - 3abc = 0;\,\,\,z = 0\end{array}

  • Câu 18: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} = \frac{y - 2}{- 2} =
\frac{z + 1}{- 1}d_{2}:\left\{
\begin{matrix}
x = t \\
y = 0 \\
z = - t \\
\end{matrix} ight.. Mặt phẳng (P) qua d_{1} tạo với d_{2} một góc 45^{0} và nhận vectơ \overrightarrow{n} = (1;b;c) làm một vectơ pháp tuyến. Xác định tích b.c?

    Hai đường phẳng d_{1};d_{2} có vectơ chỉ phương lần lượt là \overrightarrow{u_{1}} = (2; - 2; -
1),\overrightarrow{u_{2}} = (1;0 - 1)

    Mặt phẳng (P) đi qua d_{1} \Rightarrow
\overrightarrow{n}.\overrightarrow{u_{1}} = 0 \Leftrightarrow 2 - 2b - c
= 0\ \ (1)

    \Rightarrow \sin\left( d_{2};(P) ight)= \frac{\left| \overrightarrow{n}.\overrightarrow{u_{2}} ight|}{\left|\overrightarrow{n} ight|.\left| \overrightarrow{u_{2}} ight|} =\sin45^{0}

    \Leftrightarrow \frac{|1 -
c|}{\sqrt{b^{2} + c^{2} + 1}.\sqrt{2}} = \frac{\sqrt{2}}{2}

    \Leftrightarrow |1 - c| = \sqrt{b^{2} +
c^{2} + 1} \Leftrightarrow b^{2} + 2c = 0(2)

    Từ (1) và (2) suy ra \Rightarrow \left\{
\begin{matrix}
b = 2 \\
c = - 2 \\
\end{matrix} ight.\  \Rightarrow bc = - 4

  • Câu 19: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 20: Nhận biết

    Cho mặt cầu S(O; R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC = R\sqrt 3. Khi đó khoảng cách từ O đến BC bằng:

     Gọi H là hình chiếu của O lên BC.

    Ta có OB=OC=R , suy ra H là trung điểm của BC nên HC = \frac{{CD}}{2} = \frac{{R\sqrt 3 }}{2}

    Suy ra OH = \sqrt {O{C^2} - H{C^2}}  = \frac{R}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo