Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x + 2y + 4z - 1 = 0;(\beta):2x + 3y - 2z+ 5 = 0. Chọn khẳng định đúng.

    Hai mặt phẳng (\alpha);(\beta) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{(\alpha)}} =
(1;2;4),\overrightarrow{n_{(\beta)}} = (2;3; - 2)

    Ta có \overrightarrow{n_{(\alpha)}}.\overrightarrow{n_{(\beta)}}
= 1.2 + 2.3 + 4.( - 2) = 0

    (\alpha)\bot(\beta).

  • Câu 2: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A( - 1;0;0),B(0;0;2),C(0; - 3;0). Bán kính mặt cầu ngoại tiếp tứ diện OABC là:

    Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0

    O;A;B;C \in (S) nên ta có: \left\{ \begin{matrix}
d = 0 \\
1 + 2a + d = 0 \\
4 - 4c + d = 0 \\
9 + 6b + d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
a = - \frac{1}{2} \\
b = - \frac{3}{2} \\
c = 1 \\
\end{matrix} ight.

    Vậy bán kính mặt cầu (S) là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{\frac{1}{4} + \frac{9}{4} + 1} = \frac{\sqrt{14}}{2}

  • Câu 3: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' cạnh a.

    a) Khoảng cách giữa hai đường thẳng A'B'BC bằng a. Đúng||Sai

    b) Góc giữa hai đường thẳng ABB^{'}D^{'} bằng \ 45{^\circ}. Đúng||Sai

    c) Góc giữa đường thẳng CD' và mặt phẳng (A'B'C'D') bằng 60{^\circ}. Sai||Đúng

    d) Góc nhị diện \left\lbrack
(BCC'B'),BB',(BDD'B') ightbrack có số đo bằng 45{^\circ}. Đúng||Sai

    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' cạnh a.

    a) Khoảng cách giữa hai đường thẳng A'B'BC bằng a. Đúng||Sai

    b) Góc giữa hai đường thẳng ABB^{'}D^{'} bằng \ 45{^\circ}. Đúng||Sai

    c) Góc giữa đường thẳng CD' và mặt phẳng (A'B'C'D') bằng 60{^\circ}. Sai||Đúng

    d) Góc nhị diện \left\lbrack
(BCC'B'),BB',(BDD'B') ightbrack có số đo bằng 45{^\circ}. Đúng||Sai

    a) Vì A'B'\bot BB', BC\bot BB' nên d(A'B',BC) = BB' = a. Mệnh đề đúng.

    b) Do AB//A'B' nên (AB,B'D') = (A'B',B'D') =
45{^\circ}. Mệnh đề đúng.

    c) Vì CC'\bot(A'B'C'D') nên \left( CD',(A'B'C'D')
ight) = (CD',C'D') = 45{^\circ}. Mệnh đề sai.

    d) Ta có B'C'\bot
BB', B'D'\bot
BB' nên góc nhị diện \left\lbrack
(BCC'B'),BB',(BDD'B') ightbrack có số đo bằng \widehat{D'B'C'} =
45{^\circ}. Mệnh đề đúng

  • Câu 4: Nhận biết

    Trong không gian Oxyz, mặt cầu (S):(x + 1)^{2} + (y - 2)^{2} + z^{2} =
9 có bán kính bằng:

    Bán kính của mặt cầu (S)R = \sqrt{9} = 3.

  • Câu 5: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 6: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 1;2;1) và mặt phẳng (P):2x - y + z - 3 = 0. Gọi (Q) là mặt phẳng đi qua A và song song với mặt phẳng (P). Điểm nào sau đây không nằm trên mặt phẳng (Q)?

    Phương trình mặt phẳng (Q)đi qua A và song song với mặt phẳng (P) có dạng

    (Q):2x - y + z + 3 = 0

    Thay tọa độ các đáp án vào phương trình mặt phẳng (Q) ta có 3 điểm K;I;M thoả mãn, còn điểm N không thoả mãn.

  • Câu 7: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 8: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) là:

    Phương trình đường thẳng đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) nên có phương trình: \frac{x - 2}{2} = \frac{y}{-
3} = \frac{z + 1}{1}.

  • Câu 9: Nhận biết

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):4x + 3y - z + 1 =
0 và đường thẳng d:\frac{x - 1}{4}
= \frac{y - 6}{3} = \frac{z + 4}{1}, sin của góc giữa đường thẳng d và mặt phẳng (P) bằng:

    Mặt phẳng (P):4x + 3y - z + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (4;3; - 1)

    Đường thẳng d:\frac{x - 1}{4} = \frac{y -
6}{3} = \frac{z + 4}{1} có một vectơ chỉ phương là \overrightarrow{u} = (4;3;1)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{12}{13}

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;5;3) và hai mặt phẳng (P):2x + y + 2z - 8 = 0,(Q):x - 4y + z - 4 =
0. Viết phương trình đường thẳng d đi qua A và song song với hai mặt phẳng (P),(Q)?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2;1;2) \\
\overrightarrow{n_{(Q)}} = (1; - 4;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack = (9;0;
- 9)

    Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là \overrightarrow{u} =
(1;0; - 1).

    Vậy phương trình đường thẳng d là \left\{
\begin{matrix}
x = 3 + t \\
y = 5 \\
z = 3 - t \\
\end{matrix} ight.

  • Câu 11: Nhận biết

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 12: Thông hiểu

    Giá trị (\alpha) phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {3 - {{\cos }^2}\alpha } ight)x + 4\left( {{{\sin }^2}\alpha  - 1} ight) + 2z + \cos 4\alpha  + 8 = 0? (k\in \mathbb{Z})

     Ta có: a = 2{\cos ^2}\alpha  - 3 = \cos 2\alpha  - 2;\,b = 2\left( {1 - {{\sin }^2}\alpha } ight) = \cos 2\alpha  + 1;c =  - 1;

    d = \cos 4\alpha  + 8 = 2{\cos ^2}2\alpha  + 7.\,\,\left( S ight) là mặt cầu \Leftrightarrow {a^2} + {b^2} + {c^2} - d > 0

    \Leftrightarrow  - 1 + \cos 2\alpha  <  - \frac{1}{2}

    \Leftrightarrow \frac{{2\pi }}{3} + k2\pi  < 2\alpha  < \frac{{4\pi }}{3} + k2\pi

    \Leftrightarrow \frac{\pi }{3} + k\pi  < \alpha  < \frac{{2\pi }}{3} + k\pi ,\,\,k \in \mathbb{Z}.

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),B( - 2;0;3),M(0;0;1)N(0;3;1). Mặt phẳng (P) đi qua các điểm M;N sao cho khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Hỏi có bao nhiêu mặt phẳng (P) thỏa mãn đề bài?

    Gọi \overrightarrow{n} = (a;b;c) là vectơ pháp tuyến của (P). Khi đó (P): ax + by + cz + d = 0.

    M(0; 0; 1) ∈ (P) ⇔ c + d = 0 ⇔ c = −d.

    N(0; 3; 1) ∈ (P) ⇔ 3b + c + d = 0 ⇔ 3b = 0 ⇔ b = 0.

    Do đó (P): ax − dz + d = 0

    Khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P)

    \frac{| - 2a - 3d + d|}{\sqrt{a^{2} +
d^{2}}} = 2.\frac{|a + d|}{\sqrt{a^{2} + d^{2}}}

    \Leftrightarrow \frac{\left| - 2(a + d)
ight|}{\sqrt{a^{2} + d^{2}}} = 2.\frac{|a + d|}{\sqrt{a^{2} +
d^{2}}} (luôn đúng)

    Vậy có vô số mặt phẳng (P).

  • Câu 14: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (\alpha):x - y + 2z = 1. Trong các đường thẳng sau, đường thẳng nào vuông góc với (\alpha).

    Mặt phẳng (\alpha):x - y + 2z =
1 có một vectơ pháp tuyến là \overrightarrow{n_{(\alpha)}} = (1; -
1;2).

    Đường thẳng d_{1} có một vectơ chỉ phương là \overrightarrow{u_{d_{1}}} =
(1; - 1;2) = \overrightarrow{n_{(\alpha)}}

    Suy ra d_{1}\bot(\alpha).

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA = a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD. Tan của góc tạo bởi hai mặt phẳng (AMC) và (SBC) bằng:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ sao cho A \equiv
O, như hình vẽ:

    Khi đó ta có:

    \overrightarrow{n_{1}} =\lbrack\overrightarrow{SB},\overrightarrow{SC}brack = \left(2a^{2};0;4a^{2} ight)\overrightarrow{n_{2}} =\lbrack\overrightarrow{MA},\overrightarrow{MC}brack = \left( a^{2}; -a^{2};2a^{2} ight)

    \overrightarrow{SB} = (2a;0; -a),\overrightarrow{SC} = (2a;2a; - a),\overrightarrow{MA} = \left( 0; -a; - \frac{a}{2} ight),\overrightarrow{MC} = \left( 2a;a; -\frac{a}{2} ight)

    A(0;0;0),B(2a;0;0),D(0;2a;0),C(2a;2a;0),S(0;0;a),M\left(0;a;\frac{a}{2} ight)

    Gọi \alpha\left( 0^{\circ} \leq \alpha
\leq 90^{\circ} ight) là góc tạo bởi hai mặt phẳng (AMC)(SBC).

    Ta có \cos\alpha = \left| \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) ight| =
\frac{\left| \overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight| \cdot \left|
\overrightarrow{n_{2}} ight|}

    = \frac{\left| 2a^{2} \cdot a^{2} +
4a^{2} \cdot 2a^{2} ight|}{\sqrt{\left( 2a^{2} ight)^{2} + \left(
4a^{2} ight)^{2}} \cdot \sqrt{\left( a^{2} ight)^{2} + \left( -
a^{2} ight)^{2} + \left( 2a^{2} ight)^{2}}}

    = \frac{10a^{4}}{\sqrt{20 \cdot 6 \cdot
\left( a^{4} ight)^{2}}} = \frac{5}{\sqrt{30}}

    \tan^{2}\alpha =
\frac{1}{\cos^{2}\alpha} - 1 = \left( \frac{\sqrt{30}}{5} ight)^{2} -
1 = \frac{5}{25}.

    Suy ra \tan\alpha =\frac{\sqrt{5}}{5}.

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa đường thẳng \Delta và mặt phẳng (\alpha) bằng

    Ta có:

    ∆ có vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    (α) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    \sin\widehat{\left( \Delta;(\alpha)
ight)} = \frac{\left| \overrightarrow{u}.\overrightarrow{n}
ight|}{\left| \overrightarrow{u} ight|.\left| \overrightarrow{n}
ight|} = \frac{\left| 1.1 + 2.( - 1) + ( - 1).2 ight|}{\sqrt{1^{2} +
2^{2} + ( - 1)^{2}}.\sqrt{1^{2} + ( - 1)^{2} + 2^{2}}} =
\frac{1}{2}

    \Rightarrow \widehat{\left(
\Delta;(\alpha) ight)} = 30^{0}.

  • Câu 17: Vận dụng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{2} = \frac{y}{1} =
\frac{z - 2}{- 1} và hai điểm A( -
1;3;1),B(0;2; - 1). Gọi C(m;n;p) là điểm thuộc đường thẳng d sao cho diện tích tam giác ABC bằng 2\sqrt{2}. Giá trị của tổng m + n + p bằng:

    Phương trình tham số của đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
x = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Vì C thuộc d nên tọa độ của C có dạng C(
- 1 + 2t;t;2 - t)

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1; - 2) \\
\overrightarrow{AC} = (2t;t - 3;1 - t) \\
\end{matrix} ight.

    Suy ra \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3t - 7; - 3t -
1;3t - 3)

    Diện tích tam giác ABC là

    S_{\Delta ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\frac{1}{2}\sqrt{(3t - 7)^{2} + ( - 3t - 1)^{2} + (3t -
3)^{2}}

    Theo bài ra ta có

    S_{\Delta ABC} = 2\sqrt{2}
\Leftrightarrow \frac{1}{2}\sqrt{27t^{2} - 54t + 59} =
2\sqrt{2}

    \Leftrightarrow 27t^{2} - 54t + 59 = 32
\Leftrightarrow (t - 1)^{2} = 0 \Leftrightarrow t = 1

    Với t = 1 thì C (1; 1; 1) nên m = 1;n =
1;p = 1

    Vậy giá trị của tổng m + n + p =
3

  • Câu 18: Vận dụng cao

    Trong không gian cho ba điểm A(3;0;0), B(1;2;1)C(2;-1;2). Biết mặt

    phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện OABC có một vectơ pháp tuyến là (10;a;b). Tổng a+b là?

     Phương trình (OAB) là: -y+2z=0.

    Phương trình (OAC) là:2y+z=0.

    Phương trình (OBC) là: x-z=0.

    Phương trình (ABC) là: 5x+3y+4z-15=0 .

    Gọi I(a';b';c') là tâm mặt cầu nội tiếp tứ diện OABC.

    Do đó:

    I nằm cùng phía với A đối với (OBC) suy ra: (a'-c')>0.

    I nằm cùng phía với B đối với (OAC) suy ra: (2b'+c')>0.

    I nằm cùng phía với C đối với (OAB) suy ra: (-b'+2c')>0.

    I nằm cùng phía với O đối với (ABC) suy ra: (5a'+3b'+4c'-15)<0.

    Suy ra:

    \left\{\begin{matrix} d(I,(OAB))=d(I,(OAC)) \\ d(I,(OAB))=d(I,(OBC)) \\ d(I,(OAB))=d(I,(ABC)) \end{matrix}ight.\Leftrightarrow \left\{\begin{matrix} \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|2b'+c'|}{\sqrt 5} \\ \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|a'-c'|}{\sqrt 2} \\ \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|5a'+3b'+4c'-15|}{5\sqrt 2} \end{matrix}ight.

     

    \Leftrightarrow \left\{\begin{matrix} |-b'+2c'|= |2b'+c'| \\ \sqrt 2{|-b'+2c'|}= \sqrt 5|a'-c'|\\ \sqrt 10{|-b'+2c'|}= |5a'+3b'+4c'-15| \end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} -b'+2c'= 2b'+c' \\ \sqrt 2{(-b'+2c')}= \sqrt 5(a'-c')\\ \sqrt 10{(-b'+2c')}= -(5a'+3b'+4c'-15)\end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} a'=\dfrac{3}{ 2} \\ -b'=\dfrac{3 \sqrt 10 -9}{2} \\ c'=\dfrac{9 \sqrt 10 -27}{ 2} \end{matrix}ight.

    Suy ra:  I (\frac {3}{2} ;\frac {3\sqrt{10} -9}{2}; \frac {9\sqrt{10} -27}{2}), \Rightarrow \overrightarrow {BI}= (\frac {1}{2} ;\frac {3\sqrt{10} -13}{2}; \frac {9\sqrt{10} -29}{2}) ; \,\, \overrightarrow {BC}= (1;-3;1)

    \Rightarrow [\overrightarrow {BI}, \overrightarrow {BC}]= (-50+15 \sqrt{10} ; \frac {9\sqrt{10} -30}{2}; \frac {-3\sqrt{10} +10}{2})

    cùng phương với \vec n =(10;3;-1).

    Suy ra (BCI) có một VTPT là \vec n =(10;3;-1) =(10; a; b).

    Vậy: a+b=2.

  • Câu 19: Vận dụng cao

    Trong không gian Oxyz, cho tam giác ABC vuông tại A, \widehat{ABC} = 30^{0}, BC = 3\sqrt{2}, đường thẳng BC có phương trình \frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{-
4}, đường thẳng AB nằm trong mặt phẳng (\alpha):x + z - 3 =
0. Biết rằng đỉnh C có cao độ âm. Tìm hoành độ của đỉnh A.

    Hình vẽ minh họa:

    Tọa độ điểm B là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
\frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{- 4} \\
x + z - 3 = 0 \\
\end{matrix} ight.\  \Rightarrow B(2;3;1)

    Do C ∈ BC nên C(4 + c;5 + c; - 7 -
4c)

    Theo giả thiết BC = 3\sqrt{2} nên: 18(2 + c)^{2} = 18 \Leftrightarrow
\left\lbrack \begin{matrix}
c = - 1 \Rightarrow C(3;4; - 3) \\
c = - 3 \Rightarrow C(1;2;5) \\
\end{matrix} ight.

    Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).

    Gọi A(x;y;3 - x) \in (\alpha). Do \widehat{ABC} = 30^{0} nên:

    \left\{ \begin{matrix}
AB = \frac{3\sqrt{6}}{2} \\
AC = \frac{3\sqrt{2}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(x - 2)^{2} + (y - 3)^{2} + (2 - z)^{2} = \frac{27}{2} \\
(x - 3)^{2} + (y - 4)^{2} + (6 - z)^{2} = \frac{9}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
2x^{2} - 18x + y^{2} - 8y + \frac{113}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10x + 2y - 53 = 0 \\
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
2x^{2} - 8x + \left( \frac{53 - 10x}{2} ight)^{2} - 6.\left( \frac{53
- 10x}{2} ight) + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 4 \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Rightarrow A\left( \frac{9}{2};4; - \frac{3}{2}
ight)

    Vậy đáp án cần tìm là \frac{9}{2}.

  • Câu 20: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    Ta có:

    x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    \Leftrightarrow (x - 4)^{2} + (y +
1)^{2} + z^{2} = 16

    Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là: I(4; - 1;0),R = 4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo