Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):4x + 3y - z + 1 =
0 và đường thẳng d:\frac{x - 1}{4}
= \frac{y - 6}{3} = \frac{z + 4}{1}, sin của góc giữa đường thẳng d và mặt phẳng (P) bằng:

    Mặt phẳng (P):4x + 3y - z + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (4;3; - 1)

    Đường thẳng d:\frac{x - 1}{4} = \frac{y -
6}{3} = \frac{z + 4}{1} có một vectơ chỉ phương là \overrightarrow{u} = (4;3;1)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{12}{13}

  • Câu 2: Vận dụng

    Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;5;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y}{1} = \frac{z -
2}{2}. Gọi (P) là mặt phẳng chứa d sao cho khoảng cách từ điểm A đến (P) là lớn nhất. Khoảng cách từ gốc tọa độ O đến (P) bằng:

    Gọi K là hình chiếu vuông góc của A trên d và H là hình chiếu vuông góc của A trên (P) thì d(A,(P)) = AH ≤ AK không đổi.

    Vậy d(A,(P)) lớn nhất khi và chỉ khi H ≡ K, khi đó (P) là mặt phẳng chứa d và vuông góc với AK.

    Ta tìm được (P):x - 4y + z - 3 = 0
\Rightarrow d\left( O;(P) ight) = \frac{3}{\sqrt{18}} =
\frac{1}{\sqrt{2}}.

  • Câu 3: Thông hiểu

    Hai đường thẳng \left( {d'} ight):\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 3m - t\\z = 2t - 1\end{array} ight.\left( d ight):\left\{ \begin{array}{l}x = 4 - 2m\\y = m + 2\\z =  - m\end{array} ight.với cắt nhau tại M có tọa độ là :

     

    Để (d’) cắt (d) tại M \Leftrightarrow \left\{ \begin{array}{l}2 + 4t = 4 - 2m\\ - 3 - t = m + 2\\2t - 1 =  - m\end{array} ight. \\\Leftrightarrow \left\{ \begin{array}{l}2t + m = 1\\t + m =  - 5\end{array} ight. \\\Leftrightarrow t = 6;m =  - 11

    \Rightarrow M\left( {26, - 9,11} ight)

     

  • Câu 4: Thông hiểu

    Cho hình lập phương OABC.DEFG có cạnh bằng 1 có \overrightarrow {OA} ,\,\,\overrightarrow {OC} ,\,\,\overrightarrow {OG} trùng với ba trục \overrightarrow {Ox} ,{m{ }}\overrightarrow {Oy} ,{m{ }}\overrightarrow {Oz}. Viết phương trình mặt cầu \left( {{S_3}} ight) tiếp xúc với tất cả các cạnh của hình lập phương.

     \left( {{S_2}} ight) tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.

    Tâm I\left( {\frac{1}{2},\frac{1}{2},\frac{1}{2}} ight) là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng \sqrt 2

    Bán kính {R_3} = \frac{{\sqrt 2 }}{2}

    \begin{array}{l} \Rightarrow \left( {{S_2}} ight):{\left( {x - \dfrac{1}{2}} ight)^2} + {\left( {y - \dfrac{1}{2}} ight)^2} + {\left( {z - \dfrac{1}{2}} ight)^2} = \dfrac{1}{2}\\ \Rightarrow \left( {{S_3}} ight):{x^2} + {y^2} + {z^2} - x - y - z + \dfrac{1}{4} = 0\end{array}

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x + 2y - 2z + 1 = 0(Q):x + my + (m - 1)z + 2019 = 0. Khi hai mặt phẳng (P), (Q) tạo với nhau một góc nhỏ nhất thì mặt phẳng (Q) đi qua điểm M nào sau đây?

    Gọi \alpha là góc giữa (P)(Q).

    Ta có:

    \cos\alpha = \dfrac{\left|{\overrightarrow{n}}_{P} \cdot {\overrightarrow{n}}_{Q} ight|}{\left|{\overrightarrow{n}}_{P} ight| \cdot \left| {\overrightarrow{n}}_{Q}ight|}= \dfrac{1}{3\sqrt{2m^{2} - 2m + 2}} = \dfrac{1}{3\sqrt{2\left( m- \dfrac{1}{2} ight)^{2} + \dfrac{3}{2}}}

    \leq \dfrac{1}{3\sqrt{2\left( m -\dfrac{1}{2} ight)^{2} + \dfrac{3}{2}}} \leq\dfrac{1}{3\sqrt{\dfrac{3}{2}}}

    Do 0 \leq \alpha \leq 90^{\circ} nên \alpha nhỏ nhất khi \cos\alpha lớn nhất \Leftrightarrow m =
\frac{1}{2}.

    \Rightarrow (Q):2x + y - z + 4038 = 0
\Rightarrow M( - 2019;1;1) \in (Q).

  • Câu 6: Nhận biết

    Trong không gian Oxyz, đường thẳng \Delta:\frac{x - 1}{2} = \frac{y +
2}{1} = \frac{z}{- 1} không đi qua điểm nào dưới đây?

    Ta có \frac{- 1 - 1}{2} eq \frac{2 +
2}{1} eq \frac{0}{- 1} nên điểm (
- 1;2;0) không thuộc đường thẳng \Delta.

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(1;0;1),B( - 1;2;1). Viết phương trình đường thẳng \Delta đi qua tâm đường tròn ngoại tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).

    Tam giác OAB vuông tại O nên tâm đường tròn ngoại tiếp là trung điểm AB có tọa độ I(0; 1; 1).

    Mặt phẳng (OAB) có véc-tơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = ( - 2; -
2;2).

    Suy ra đường thẳng ∆ có \overrightarrow{u} = (1;1; - 1) và đi qua I(0; 1; 1).

    Vậy phương trình đường thẳng ∆ là \Delta:\left\{ \begin{matrix}
x = t \\
y = 1 + t \\
z = 1 - t \\
\end{matrix} ight..

  • Câu 8: Nhận biết

    Trong không gian tọa độ Oxyz, cho tọa độ hai điểm A(1;2;3),B(5;4; -
1). Phương trình mặt cầu đường kính AB là:

    Gọi I là trung điểm của AB suy ra I(3;3;1)

    \overrightarrow{AB} = (4;2; - 4)
\Rightarrow AB = \sqrt{16 + 4 + 16} = 6

    Mặt cầu đường kính AB có tâm I(3;3;1) và bán kính R = \frac{AB}{2} = 3 có phương trình là: (x - 3)^{2} + (y - 3)^{2} + (z - 1)^{2} =
9

  • Câu 9: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, mặt cầu có tâm I(1;1;1) và có diện tích bằng 4\pi có phương trình là:

    Ta có: S = 4\pi R^{2} = 4\pi \Rightarrow
R = 1

    Vậy mặt cầu tâm I(1;1;1) có bán kính R = 1 có phương trình:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1.

  • Câu 10: Vận dụng

    Cho tứ diện ABCD có A\left( {5,1,3} ight),B\left( {1,6,2} ight),C\left( {5,0,4} ight),D\left( {4,0,6} ight). Mặt phẳng chứa BC và song song với AD có phương trình :

    Theo đề bài, từ các điểm A\left( {5,1,3} ight),B\left( {1,6,2} ight),C\left( {5,0,4} ight),D\left( {4,0,6} ight), ta tính được các vecto tương ứng là: \overrightarrow {BC}  = \left( {4, - 6,2} ight);\overrightarrow {AD}  = \left( { - 1, - 1,3} ight)

    \Rightarrow \left[ {\overrightarrow {BC} ,\overrightarrow {AD} } ight] = \left( { - 16, - 14, - 10} ight)cùng phương với \overrightarrow n  = \left( {8,7,5} ight)

    Chọn \vec{n} làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.

    Phương trình (P) có dạng: 8x + 7y + 5z + D = 0

    Mặt khác, điểm B \in \left( P ight) \Leftrightarrow 8 + 42 + 10 + D = 0 \Leftrightarrow D =  - 60

    Vậy phương trình (P): 8x + 7y + 5z - 60 = 0.

  • Câu 11: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và điểm M \in OI sao cho MO = 2MI (tham khảo hình vẽ).

    Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng

    Gắn hệ tọa độ như hình vẽ:

    Cạnh hình lập phương là 1, ta được tọa độ các điểm như sau:

    \left\{ \begin{matrix}M\left( \dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{6}ight),C'(0;1;0),D'(1;1;0) \\A(1;0;1),B(0;0;1) \\\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}\overrightarrow{n_{(MC'D')}} = (0;1;3) \\\overrightarrow{n_{(MAB)}} = (0;5;3) \\\end{matrix} ight.\Rightarrow \cos\left( (MC'D');(MAB)ight)= \frac{|5.1 + 3.3|}{\sqrt{5^{2} + 3^{2}}.\sqrt{1^{2} + 3^{2}}}= \frac{7\sqrt{85}}{85}

    Suy ra \sin\left( (MC'D');(MAB)
ight) = \sqrt{1 - \left( \frac{7\sqrt{85}}{85} ight)^{2}} =
\frac{6\sqrt{85}}{85}

  • Câu 12: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) qua bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). Phương trình mặt cầu (S) là:

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình

    \left\{ \begin{matrix}18 - 6a - 6b + d = 0 \\18 - 6a - 6c + d = 0 \\18 - 6b - 6c + d = 0 \\27 - 6a - 6b - 6c + d = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = \dfrac{3}{2} \\c = \dfrac{3}{2} \\d = 0 \\\end{matrix} ight.. Suy ra tâm mặt cầu I\left( \frac{3}{2};\frac{3}{2};\frac{3}{2}
ight) và bán kính R = \sqrt{a^{2}
+ b^{2} + c^{2} - d} = \frac{3\sqrt{3}}{2}

    Vậy phương trình mặt cầu cần tìm là: \left( x - \frac{3}{2} ight)^{2} + \left( y -
\frac{3}{2} ight)^{2} + \left( z - \frac{3}{2} ight)^{2} =
\frac{27}{4}

  • Câu 13: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x − 1)^2 + (y − 2)^2 + (z − 2)^2 = 9 hai hai điểm M(4; −4; 2),N(6; 0; 6). Gọi E là điểm thuộc mặt cầu (S) sao cho EM + EN đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E?

    Hình vẽ minh họa

    Gọi I(1; 2; 2) là tâm của (S), P(5; −2; 4) là trung điểm MN.

    Theo bất đẳng thức Bu-nhi-a-copx-ki và công thức độ dài trung tuyến ta được:

    (EM + EN)^{2} \leq 2\left( EM^{2} +
EN^{2} ight) = 2\left( 2EP^{2} + \frac{MN^{2}}{2} ight)

    nên T = EM + EN đạt giá trị lớn nhất khi EM = EN và EP đạt giá trị lớn nhất.

    Khi đó E là giao điểm của đường thẳng IP với mặt cầu (S) (I nằm giữa E và P). Đường thẳng IP có phương trình:

    \frac{x - 1}{2} = \frac{y - 2}{- 2} =
\frac{z - 2}{1}

    Tọa độ E thỏa hệ phương trình:

    \left\{ \begin{matrix}(x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2} = 9 \\\dfrac{x - 1}{2} = \dfrac{y - 2}{- 2} = \dfrac{z - 2}{1} \\\end{matrix} ight.

    Tìm được E(3; 0; 3) hoặc E(−1; 4; 1), thử lại để EP lớn nhất ta được E(−1; 4; 1).

    Khi đó phương trình tiếp diện với (S) tại E là 2x−2y+z+9 = 0.

  • Câu 14: Nhận biết

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 15: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 16: Vận dụng cao

    Cho điểm P(-3 , 1, -1)  và đường thẳng (d): \left\{ \begin{array}{l}4x - 3y - 13 = 0\\y - 2z + 5 = 0\end{array} ight.

    Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:

    Chuyển (d) về dạng tham số : \left\{ \begin{array}{l}x =  - \frac{1}{2} + 3t\\y =  - 5 + 4t\\z = 2t\end{array} ight.

    Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: 3x + 4y + 2z + D = 0, cho qua P tính được D=7 .

    Ta có (Q): 3x + 4y + 2z + 7 = 0 .

    Thế x, y, z  theo t từ phương trình của (d) vào phương trình (Q) được t = \frac{1}{2}

    Giao điểm I của (d) và (Q)  là I (1, -3, 1) .

    Vì I là trung điểm của PP’ nên \Rightarrow P'\left( {5, - 7,3} ight).

  • Câu 17: Nhận biết

    Trong không gian Oxyz, đường thẳng đi qua A(2; - 1;3) và nhận \overrightarrow{a} = (1;1; - 1) làm vectơ chỉ phương có phương trình là:

    Đường thẳng đi qua A(2; - 1;3) và nhận \overrightarrow{a} = (1;1; -
1) làm vectơ chỉ phương có phương trình là \left\{ \begin{matrix}
x = 2 + t \\
y = - 1 + t \\
z = 3 - t \\
\end{matrix} ight..

  • Câu 18: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;6;0),B(0;0; - 2);C( - 3;0;0). Phương trình mặt phẳng (P) đi qua ba điểm A;B;C là:

    Phương trình mặt phẳng theo đoạn chắn \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Ta có \frac{x}{3} + \frac{y}{- 6} +
\frac{z}{2} = 1

    \Leftrightarrow - 2x + y - 3z =
6

    \Leftrightarrow 2x - y + 3z + 6 =
0

  • Câu 19: Nhận biết

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt phẳng?

    Phương trình tổng quát của mặt phẳng là: 2x - 3y + 4z - 2024 = 0.

  • Câu 20: Thông hiểu

    Phương trình tổng quát của mặt phẳng (\alpha) chứa giao tuyến của hai mặt phẳng 2x - y + 3z + 4 = 0x + 3y - 2z + 7 = 0, chứa điểm M\left( { - 1,2,4} ight) là:

    Vì mặt phẳng (\alpha) chứa giao tuyến của hai mặt phẳng 2x - y + 3z + 4 = 0x + 3y - 2z + 7 = 0 nên thuộc chùm mặt phẳng 2x - y + 3z + 4 + m\left( {x + 3y - 2z + 7} ight) = 0

    \Leftrightarrow \left( {m + 2} ight)x + \left( {3m - 1} ight)y - \left( {2m - 3} ight)z + 7m + 4 = 0\left( * ight)

    Mặt khác, ta có M \in (\alpha)

    \begin{array}{l} \Rightarrow (*) \Leftrightarrow \left( {m + 2} ight).\left( { - 1} ight) + \left( {3m - 1} ight).2 - \left( {2m - 3} ight).4 + 7m + 4 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow 4m + 12 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow m =  - 3\end{array}

    Thế vào (*):\,\,\,\,\,x + 10y - 9z + 17 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo