Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong hệ tọa độ Oxyz, cho hai điểm A(2; - 3; - 1),B(4; - 1;2). Phương trình mặt phẳng trung trực của đoạn thẳng AB

    Gọi (\alpha) là mặt phẳng trung trực của AB.

    Tọa độ trung điểm của ABI\left( 3; - 2;\frac{1}{2}
ight)

    Vectơ pháp tuyến của (\alpha)\overrightarrow{n} = \overrightarrow{AB} =
(2;2;3)

    Phương trình mặt phẳng

    \begin{matrix}(\alpha):2(x - 3) + 2(y + 2) + 3\left( z - \dfrac{1}{2} ight) = 0 \hfill \\\Leftrightarrow 4x + 4y + 6z - 7 = 0 \hfill\\\end{matrix}

  • Câu 2: Nhận biết

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2;1)

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;0)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .

    Khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|} = \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha = 60^{0}

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz ,cho đường thẳng d:\frac{x - 5}{2} = \frac{y + 7}{2} = \frac{z -
12}{- 1} và mặt phẳng (\alpha):x +
2y - 3z - 3 = 0. Gọi M là giao điểm của d(\alpha), A thuộc d sao cho AM
= \sqrt{14}. Tính khoảng cách từ A đến mặt phẳng (\alpha).

    Hình vẽ minh họa

    Đường thẳng d:\frac{x - 5}{2} = \frac{y +
7}{2} = \frac{z - 12}{- 1} có một vectơ chỉ phương là: \overrightarrow{u} = (2;2; - 1)

    Mặt phẳng (\alpha):x + 2y - 3z - 3 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1;2; - 3)

    Ta có: \sin\left( d;(\alpha) ight) =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{3\sqrt{14}}{14}

    Gọi H là hình chiếu vuông góc của A lên mặt phẳng (α).

    Khi đó tam giác ∆MAH vuông tại H nên \sin\left( d;(\alpha) ight) = \sin\widehat{AMH}
= \frac{AH}{AM}

    AH = \sin\left( d;(\alpha) ight).AM =
3

    Vậy khoảng cách từ A đến mặt phẳng (α) bằng 3.

  • Câu 4: Vận dụng

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} =
\frac{y}{1} = \frac{z}{3},d_{2}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 + t \\
z = m \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi S là tập hợp tất cả các số m sao cho d_{1},d_{2} chéo nhau và khoảng cách giữa chúng bằng \frac{5}{\sqrt{19}}. Tính tổng tất cả các phần tử của S.

    Vectơ chỉ phương của d_{1},d_{2}\overrightarrow{u_{1}} =
(2;1;3),\overrightarrow{u_{2}} = (1;1;0)

    Khi đó: \overrightarrow{n} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack = ( -
3;3;1).

    Gọi (P) là mặt phẳng chứa d_{1} song song với d_{2}.

    Tức là, (P) qua A(1;0;0) và nhận \overrightarrow{n} làm vectơ pháp tuyến.

    Ta có phương trình (P):3x - 3y - z - 3 =
0

    Xét điểm B(1;2;m) \in d_{2}. Do d_{1},d_{2} chéo nhau nên B otin (P) \Leftrightarrow m eq -
6.

    Lại có:

    d\left( d_{1};d_{2} ight) =
\frac{5}{\sqrt{19}} \Leftrightarrow d\left( B;(P) ight) =
\frac{5}{\sqrt{19}}

    \Leftrightarrow \frac{|3 - 6 - m -
3|}{\sqrt{19}} = \frac{5}{\sqrt{19}} \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = - 11 \\
\end{matrix} ight.

    Vậy tổng các phần tử của S là - 1 - 11 =
- 12.

  • Câu 5: Nhận biết

    Mặt cầu (S) có tâm A(1; -2; 2) và bán kính R = 8. Tìm phương trình mặt cầu (S).

    Phương trình mặt cầu tâm I(a;b;c) bán kính R có dạng: (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}

  • Câu 6: Nhận biết

    Trong không gian Oxyz, cho mặt cầu (S):(x - 5)^{2} + (y - 1)^{2} + (z +
2)^{2} = 9. Tính bán kính R của (S)?

    Bán kính mặt cầu là: R = \sqrt{9} =
3

  • Câu 7: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng (d):\frac{x - 2}{3} = \frac{y + 1}{- 2} = \frac{z
- 4}{4} có phương trình tham số là

    Gọi \overrightarrow{u} vectơ chỉ phương của đường thẳng d, ta chọn \overrightarrow{u}( - 3;2; - 4)

    Giả sử M_{0} \in d, chọn M_{0}(2, - 1;4) suy ra phương trình tham số d là:

    \left\{ \begin{matrix}
x = 2 - 3m \\
y = - 1 + 2m \\
z = 4 - 4m \\
\end{matrix} ight.\ ;\left( m\mathbb{\in R} ight).

  • Câu 8: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, điểm nào sau đây không thuộc mặt phẳng (P):x + y + z - 1 = 0?

    Dễ thấy điểm O(0;0;0) không thuộc mặt phẳng (P).

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P):2x + 2y + z - 2 = 0 và mặt cầu (S) tâm I(2;1; - 1) bán kính R = 2. Bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S) là:

    Hình vẽ minh họa

    Gọi bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S)r

    Ta có:

    h = d\left( I;(P) ight) = \frac{\left|
2.2 + 2.( - 1) - 1 - 2 ight|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} =
1

    Suy ra r = \sqrt{2^{2} - 1^{2}} =
\sqrt{3}

  • Câu 10: Thông hiểu

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 11: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(1;2;3) và có véc-tơ chỉ phương là \overrightarrow{u} = (2;4;6). Phương trình nào sau đây không phải là của đường thẳng \Delta?

    Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình \left\{ \begin{matrix}
x = 3 + 2t \\
y = 6 + 4t \\
z = 12 + 6t \\
\end{matrix} ight..

  • Câu 12: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(0; 8; 2), điểm B(9; −7; 23) và mặt cầu (S) : (x − 5)^2 + (y + 3)^2 + (z − 7)^2 = 72. Gọi (P) là mặt phẳng qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Biết \vec{n} = (1; m; n) là một vectơ pháp tuyến của (P). Tính mn.

    Mặt cầu (S) có tâm I(5; −3; 7); bán kính R = 6\sqrt{2}.

    Phương trình mặt phẳng (P) : 1(x − 0) + m(y − 8) + n(z − 2) = 0.

    Vì (P) và (S) tiếp xúc nhau nên:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|5 - 11m + 5n|}{\sqrt{1 + m^{2} + n^{2}}} =
6\sqrt{2}

    \Leftrightarrow |5 - 11m + 5n| =
6\sqrt{2}\sqrt{1 + m^{2} + n^{2}}(*)

    Ta có: d\left( B;(P) ight) = \frac{|9 -
15m + 21n|}{\sqrt{1 + m^{2} + n^{2}}}

    Ta có:

    |9 - 15m + 21n| = |5 - 11m + 5n + 4 - 4m
+ 16n|

    \leq |5 - 11m + 5n| + |4 - 4m +
16n|(**)

    Áp dụng BĐT Bunhiacopxki ta có

    (4 - 4m + 16n)^{2} \leq \left( 4^{2} +
4^{2} + 16^{2} ight)\left( 1 + m^{2} + n^{2} ight) = 288\left( 1 +
m^{2} + n^{2} ight)

    \Rightarrow |4 - 4m + 16n| \leq
12\sqrt{2}.\sqrt{1 + m^{2} + n^{2}}(***)

    Từ (*); (**); (***) ta có:

    |9 - 15m + 21n| \leq 18\sqrt{2}\sqrt{1 +
m^{2} + n^{2}}

    Dấu “=” xảy ra khi và chỉ khi: \left\{\begin{matrix}|5 - 11m + 5n| = 6\sqrt{2}\sqrt{1 + m^{2} + n^{2}} \\(5 - 11m + 5n)(4 - 4m + 16n) \geq 0 \\\dfrac{1}{4} = \dfrac{m}{- 4} = \dfrac{n}{16} \\\end{matrix} ight.

    \Rightarrow m = - 1;n = 4 \Rightarrow mn
= - 4.

  • Câu 13: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} = \frac{y - 7}{1} = \frac{z
- 3}{4}d_{2} là giao tuyến của hai mặt phẳng 2x + 3y - 9 = 0,y +
2z + 5 = 0. Vị trí tương đối của hai đường thẳng là:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + 3y - 9 = 0 \\
y + 2z + 5 = 0 \\
\end{matrix} ight.

    Cho y = 1 \Rightarrow \left\{
\begin{matrix}
x = 3 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A(3;1; - 3) \in d_{2\ }

    Cho y = 3 \Rightarrow \left\{
\begin{matrix}
x = 0 \\
z = - 4 \\
\end{matrix} ight.\  \Rightarrow B(0;3; - 4) \in d_{2}

    Đường thẳng d1 đi qua M (1; 7; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(2;1;4)

    Đường thẳng d2 đi qua A (3; 1; −3) và có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 3;2; - 1) =
\overrightarrow{AB};\overrightarrow{AM} = (2; - 6; - 6)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 9; -
10;7)

    \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack\overrightarrow{AM} = - 2.9 + 6.10 - 6.7 = 0

    Do đó vị trí tương đối của hai đường thẳng là cắt nhau.

  • Câu 14: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng a\sqrt{2} và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa hai mặt phẳng (SBD) và (ABCD). Nếu \tan\alpha = \sqrt{2} thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng:

    Hình vẽ minh họa

    Gọi I = AC \cap BD.

    Hình vuông ABCD có độ dài đường chéo bằng a\sqrt{2} suy ra hình vuông đó có cạnh bằng a.

    Ta có \left\{ \begin{matrix}
(SBD) \cap (ABCD) = BD \\
SI\bot BD \\
AI\bot BD \\
\end{matrix} \Rightarrow ((SBD);(ABCD)) = (SI;AI) = SIA ight..

    Ta có tan\alpha = tanSIA = \frac{SA}{AI}
\Leftrightarrow SA = a.

    Chọn hệ trục tọa độ Oxyz như hình vẽ. Ta có A(0;0;0),B(a;0;0),C(a;a;0),S(0;0;a).

    Khi đó \overrightarrow{SA} = (0;0; -
a);\overrightarrow{SC} = (a;a; - a);\overrightarrow{SB} = (a;0; -
a).

    Mặt phẳng (SAC) có vectơ pháp tuyến {\overrightarrow{n}}_{1} = ( -
1;1;0).

    Mặt phẳng (SBC) có vectơ pháp tuyến {\overrightarrow{n}}_{2} =
(1;0;1).

    Suy ra cos((SAC);(SBC)) = \frac{\left|{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2} ight|}{\left|{\overrightarrow{n}}_{1} ight| \cdot \left| {\overrightarrow{n}}_{2}ight|}= \frac{1}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2}\Rightarrow((SAC);(SBC)) = 60^{\circ}.

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 16: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;5;3) và hai mặt phẳng (P):2x + y + 2z - 8 = 0,(Q):x - 4y + z - 4 =
0. Viết phương trình đường thẳng d đi qua A và song song với hai mặt phẳng (P),(Q)?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2;1;2) \\
\overrightarrow{n_{(Q)}} = (1; - 4;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack = (9;0;
- 9)

    Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là \overrightarrow{u} =
(1;0; - 1).

    Vậy phương trình đường thẳng d là \left\{
\begin{matrix}
x = 3 + t \\
y = 5 \\
z = 3 - t \\
\end{matrix} ight.

  • Câu 17: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) và mặt phẳng (P):2x - y + 3z + 1 = 0. Đường thẳng đi qua điểm M và vuông góc với mặt phẳng (P) có phương trình là:

    Do đường thẳng \Delta cần tìm vuông góc với mặt phẳng (P) nên vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = (2; - 1;3) cũng là vectơ chỉ phương của \Delta.

    Mặt khác \Delta đi qua điểm M(1;1;2) nên phương trình chính tắc của \Delta là: \frac{x - 1}{2} = \frac{y - 1}{- 1} = \frac{z -
2}{3}

  • Câu 18: Vận dụng cao

    Cho hai đường thẳng (d1 ): \left\{ \begin{array}{l}x - y + z - 5 = 0\\x - 3y + 6 = 0\end{array} ight.({d_2})\left\{ \begin{array}{l}2y + z - 5 = 0\\4x - 2y + 5z - 4 = 0\end{array} ight.

    Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?

    Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :

    ({d_1}):\left\{ \begin{array}{l}x =  - 6 + 3t\\y = t\\z = 11 - 2t\end{array} ight. \Rightarrow ({d_1}) có vectơ chỉ phương \overrightarrow a  = (3,1, - 2) và qua A( - 6,0,11) .

    ({d_2}):\left\{ \begin{array}{l}x = \frac{{15}}{4} - 3t'\\y = 3 - t'\\z =  - 1 + 2t'\end{array} ight. \Rightarrow \left( {{d_2}} ight) có vectơ chỉ phương \overrightarrow b  = (\frac{{15}}{4},3, - 1)

    \overrightarrow a  earrow  \swarrow \overrightarrow bvà hệ phương trình \left\{ \begin{array}{l} - 6 + 3t = \frac{{15}}{4} - 3t'\\t = 3 - t'\\11 - 2t =  - 1 + 2t'\end{array} ight. vô nghiệm.

    \Rightarrow ({d_1})//(d_{2} ).

  • Câu 19: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A( - 1;0;0),B(0;0;2),C(0; - 3;0). Bán kính mặt cầu ngoại tiếp tứ diện OABC là:

    Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0

    O;A;B;C \in (S) nên ta có: \left\{ \begin{matrix}
d = 0 \\
1 + 2a + d = 0 \\
4 - 4c + d = 0 \\
9 + 6b + d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
a = - \frac{1}{2} \\
b = - \frac{3}{2} \\
c = 1 \\
\end{matrix} ight.

    Vậy bán kính mặt cầu (S) là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{\frac{1}{4} + \frac{9}{4} + 1} = \frac{\sqrt{14}}{2}

  • Câu 20: Vận dụng

    Cho hai điểm A\left( {2, - 3,4} ight);\,\,\,\,B\left( { - 1,4,3} ight). Viết phương trình tổng quát của mặt phẳng (P) vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp O.MNE  bằng \frac{3}{14} đvtt.

     Vecto pháp tuyến của \left( P ight):\overrightarrow {AB}  = \left( { - 3,7, - 1} ight)

    Phương trình \left( P ight):3x - 7y + z + D = 0

    (P) cắt 3 trục tọa độ tại M\left( { - \frac{D}{3},0,0} ight);\,\,N\left( {0,\frac{D}{7},0} ight);\,\,E\left( {0,0, - D} ight)

    Thể tích hình chóp O.MNE là:

    V_{O.MNE} = \frac{1}{6}OM.ON.OE = \frac{1}{6}\left| {\frac{D}{3}.\frac{D}{7}.D} ight|

    \begin{array}{l} \Leftrightarrow \dfrac{{{{\left| D ight|}^3}}}{{126}} = \dfrac{3}{{14}} \Leftrightarrow {\left| D ight|^3} = 27 \Leftrightarrow D =  \pm 3\\ \Rightarrow \left( P ight):3x - 7y + z \pm 3 = 0\end{array}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo