Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian Oxyz, cho hai đường thẳng d:\frac{x - 1}{2} = \frac{y +
1}{1} = \frac{z - 2}{2}d':\frac{x + 1}{1} = \frac{y}{2} = \frac{z -
1}{1}. Viết phương trình mặt phẳng chứa đường thẳng d tạo với đường thẳng d’ một góc lớn nhất.

    Đường thẳng d,d^{'} có véc-tơ chỉ phương lần lượt là {\overrightarrow{u}}_{1} =
(2;1;2),{\overrightarrow{u}}_{2} = (1;2;1).

    Lấy điểm A(1; - 1;2) \in d.

    Gọi (P) là mặt phẳng chứa đường thẳng d và cắt trục hoành tại điểm B(b;0;0).

    Khi đó (P) có cặp véc-tơ chỉ phương là {\overrightarrow{u}}_{1}\overrightarrow{AB} = (b - 1;1; -
2), suy ra (P) có véc-tơ pháp tuyến {\overrightarrow{n}}_{P} =
\left\lbrack {\overrightarrow{u}}_{1},\overrightarrow{AB} ightbrack
= ( - 4;2b + 2;3 - b)

    Gọi \varphi là góc giữa đường thẳng d^{'}(P), suy ra

    sin\varphi = \frac{\left|
{\overrightarrow{n}}_{P} \cdot {\overrightarrow{u}}_{2} ight|}{\left|
{\overrightarrow{n}}_{P} ight| \cdot \left| {\overrightarrow{u}}_{2}
ight|} = \frac{|3b + 3|}{\sqrt{5b^{2} + 2b + 29} \cdot
\sqrt{6}}

    Đặt y = \frac{b^{2} + 2b + 1}{5b^{2} + 2b
+ 29} \geq 0, suy ra sin\varphi =
\sqrt{y} \cdot \frac{3}{\sqrt{6}}.

    Nhận thấy, để góc \varphi lớn nhất thì sin\varphi lớn nhất, điều đó đồng nghĩa với y phải lớn nhất.

    Xét y = \frac{b^{2} + 2b + 1}{5b^{2} + 2b
+ 29} \Leftrightarrow (5y - 1)b^{2} + (2y - 2)b + (29y - 1) =
0.

    Trường hợp y = \frac{1}{5} \Rightarrow b
= 3.

    Trường hợp y eq
\frac{1}{5}.

    Phương trình (*) có nghiệm b khi và chỉ khi

    \Delta^{'} = (y - 1)^{2} - (5y -
1)(29y - 1) \geq 0 \Leftrightarrow - 144y^{2} + 32y \geq 0 \Rightarrow 0
\leq y \leq \frac{2}{9}

    Từ đó suy ra, để tồn tại b suy ra 0 \leq y \leq \frac{2}{9}.

    Vậy y_{\max} = \frac{2}{9} khi đó b = 7. Từ đó suy ra {\overrightarrow{n}}_{P} = ( - 4;16; - 4) = - 4(1;
- 4;1) và mặt phẳng (P) có phương trình

    1(x - 1) - 4(y + 1) + 1(z - 2) = 0
\Leftrightarrow x - 4y + z - 7 = 0

  • Câu 2: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Ta có:

    x^{2} + y^{2} + z^{2} - 2y + 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.0.x - 2.1y - 2.( - 1)z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = - 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I(0;1; - 1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{0^{2} + 1^{2} + ( - 1)^{2} - 7} = 3

  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 4: Vận dụng cao

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Ta có: \overrightarrow{BC} =
(100;0;50)

    Đường thẳng (BC) đi qua điểm B có VTCP \overrightarrow{u} = (2;0;1)có dạng (BC):\left\{ \begin{matrix}
x = 50 + 2t \\
y = 100 \\
z = 50 + t \\
\end{matrix} ight.

    Điểm W \in (BC) \Rightarrow W(50 +
2t;100;50 + t) \overrightarrow{AW} = (2t - 50;50;t -
50)

    Ta có: \overrightarrow{AW}.\overrightarrow{BC} =
0

    \Rightarrow 2(2t - 50) + (t - 50) = 0
\Rightarrow t = 30

    Vậy H(110;100;80) \Rightarrow a + b - 2c
= 50.

  • Câu 5: Thông hiểu

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P):x + 2y - 2z + 3 = 0 và đường thẳng \Delta:\frac{x - 1}{2} = \frac{y + 3}{- 2} =
\frac{z + 1}{1}. Côsin của góc tạo bởi đường thẳng \Delta và mặt phẳng (P)

    Ta có: \overrightarrow{u} = (2; -
2;1),\overrightarrow{n_{(P)}} = (1;2; - 2)

    Khi đó \sin\widehat{\left( \Delta;(P)
ight)} = \frac{\left| \overrightarrow{u}.\overrightarrow{n_{(P)}}
ight|}{\left| \overrightarrow{u} ight|.\left|
\overrightarrow{n_{(P)}} ight|} = \frac{4}{9}

    \cos\widehat{\left( \Delta;(P)
ight)} > 0 nên \cos\widehat{\left( \Delta;(P) ight)} = \sqrt{1
- sin^{2}\widehat{\left( \Delta;(P) ight)}} =
\frac{\sqrt{65}}{9}

  • Câu 6: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2). Phương trình tham số của đường thẳng \Delta

    đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{u} = (2; - 3;1) nên có phương trình tham số \left\{
\begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M, nhận vectơ \overrightarrow{a} làm vectơ chỉ phương và đường thẳng d' đi qua điểm M', nhận vectơ \overrightarrow{a'} làm vectơ chỉ phương. Điều kiện để đường thẳng d song song với d' là:

    Điều kiện để d//d' là: \left\{ \begin{matrix}
\overrightarrow{a} = k.\overrightarrow{a'};(k eq 0) \\
M otin d' \\
\end{matrix} ight..

  • Câu 8: Vận dụng cao

    Trong không gian Oxyz, , cho hai mặt cầu (S_1), (S_2) có phương trình lần lượt là (x − 2)^2 + (y − 1)^2 + (z − 1)^2 = 16(x − 2)^2 + (y − 1)^2 + (z − 5)^2 = 4. Gọi (P) là mặt phẳng thay đổi tiếp xúc với cả hai mặt cầu (S_1), (S_2). Tính khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P).

    Hình vẽ minh họa

    Mặt cầu (S1) có tâm I(2; 1; 1) và bán kính R_1 = 4.

    Mặt cầu (S2) có tâm J(2; 1; 5) và bán kính R_2 = 2.

    Gọi A, B lần lượt là hai tiếp điểm của (S1), (S2) với mặt phẳng (P).

    Gọi M là giao điểm của IJ với mặt phẳng (P). Ta có:

    \frac{MI}{MJ} = \frac{IA}{IB} =
2

    Suy ra J là trung điểm của IM, do đó M(2; 1; 9).

    Gọi véc-tơ pháp tuyến của mặt phẳng (P) là \overrightarrow{n} = (a;b;c),\left( a^{2} + b^{2}
+ c^{2} > 0 ight) khi đó phương trình của mặt phẳng (P) là

    a(x − 2) + b(y − 1) + c(z − 9) = 0

    Ta có:

    d\left( I;(P) ight) = 4
\Leftrightarrow \frac{|8c|}{\sqrt{a^{2} + b^{2} + c}} = 4

    \Leftrightarrow \frac{|c|}{\sqrt{a^{2} +
b^{2} + c}} = \frac{1}{2} \Leftrightarrow a^{2} + b^{2} =
3c^{2}

    \Leftrightarrow \left( \frac{a}{c}
ight)^{2} + \left( \frac{b}{c} ight)^{2} = 3\ \ \ (1)

    Mặt khác d\left( O;(P) ight) =
\frac{|2a + b + 9c|}{\sqrt{a^{2} + b^{2} + c^{2}}} = \frac{|2a + b +
9c|}{2c} = \frac{1}{2}\left| \frac{2a}{c} + \frac{b}{c} + 9 ight|\ \ \
(2)

    Áp dụng bất đẳng thức Bunhiacopxki ta có

    \left( \frac{2a}{c} + \frac{b}{c}
ight)^{2} \leq \left( 2^{2} + 1^{2} ight)\left\lbrack \left(
\frac{a}{c} ight)^{2} + \left( \frac{b}{c} ight)^{2} ightbrack\
\ \ (3)

    Từ (1) và (3) ta có: \left( \frac{2a}{c}
+ \frac{b}{c} ight)^{2} \leq 15 \Leftrightarrow - \sqrt{15} \leq
\frac{2a}{c} + \frac{b}{c} \leq \sqrt{15}\ \ (4)

    Từ (2) và (4) suy ra:

    \frac{9 - \sqrt{15}}{2} \leq d\left(
O;(P) ight) \leq \frac{9 + \sqrt{15}}{2}

    Vậy khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P) bằng \frac{9 + \sqrt{15}}{2}.

  • Câu 9: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 1;2),B(3; - 4; - 2) và đường thẳng d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm I(a;b;c) thuộc d là điểm thỏa mãn IA + IB đạt giá trị nhỏ nhất. Khi đó T = a + b + c bằng?

    Hình vẽ minh họa

    Ta có: d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{u} = (4;
- 6; - 8)

    A = (1; - 1;2),B = (3; - 4; - 2)
\Rightarrow \overrightarrow{AB} = (2; - 3; - 4)

    Ta có \overrightarrow{AB} = (2; - 3; -
4) cùng phương với \overrightarrow{u} = (4; - 6; - 8)

    A(1; - 1;2) otin d \Rightarrow
\overrightarrow{AB}//d \Rightarrow A,B,d đồng phẳng.

    Xét mặt phẳng chứa ABd. Gọi A^{'} là điểm đối xứng của A qua d_{1}

    (\alpha) là mặt phẳng qua A, vuông góc với d.

    Khi đó, giao điểm H của d với (\alpha) là trung điểm của AA^{'}.

    (\alpha) có 1 vectơ pháp tuyến \overrightarrow{n} = (2; - 3; - 4) đi qua A(1; - 1;2) có phương trình:

    2(x - 1) - 3(y + 1) - 4(z - 2) =
0

    \Leftrightarrow 2x - 3y - 4z + 3 =
0

    H \in d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} \Rightarrow ight. Giả sử H(2 + 4t; - 6t; - 1 - 8t).

    H \in (\alpha) \Rightarrow 2(2 + 4t) -
3( - 6t) - 4( - 1 - 8t) + 3 = 0

    \Leftrightarrow 58t + 11 = 0
\Leftrightarrow t = - \frac{11}{58} \Rightarrow H\left(
\frac{36}{29};\frac{33}{29};\frac{15}{29} ight)

    Ta có IA + IB = IA^{'} + IB^{'}
\geq A^{'}B \Rightarrow min(IA + IB) = A^{'}B khi và chỉ khi I trùng với I_{0} là giao điểm của A^{'}Bd.

    \Rightarrow \overrightarrow{HI_{0}} =\frac{1}{2}\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}x_{I_{0}} - \dfrac{36}{29} = \dfrac{1}{2}.2 \\y_{I_{0}} - \dfrac{33}{29} = \dfrac{1}{2}.( - 3) \\z_{I_{0}} - \dfrac{15}{29} = \dfrac{1}{2}.( - 4) \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{I_{0}} = \dfrac{65}{29} \\y_{I_{0}} = - \dfrac{21}{58} \\z_{I_{0}} = - \dfrac{43}{29} \\\end{matrix} ight.\  ight.\\Rightarrow I_{0}\left( \dfrac{65}{29}; - \dfrac{21}{58}; - \frac{43}{29}ight)

    \Rightarrow a + b + c = \frac{65}{29} -
\frac{21}{58} - \frac{43}{29} = - \frac{21}{58}.

  • Câu 10: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):2x - y + z - 1 = 0. Vectơ nào là vectơ pháp tuyến của mặt phẳng (P)?

    Vectơ nào là vectơ pháp tuyến của mặt phẳng (P) có tọa độ là (2; - 1;1) hoặc ( - 2;1; - 1).

  • Câu 11: Thông hiểu

    Trong không gian Oxyz,cho hai đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = t \\
z = - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\left\{ \begin{matrix}
x = 2t' \\
y = - 1 + t' \\
z = t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Khoảng cách giữa hai đường thẳng dd' là:

    Đường thẳng d đi qua điểm A(1;0;0) và có vectơ chỉ phương \overrightarrow{u_{d}} = ( - 1;1; -
1)

    Đường thẳng d' đi qua điểm B(0; - 1;0) và có vectơ chỉ phương \overrightarrow{u_{d'}} =
(2;1;1);\overrightarrow{AB} = ( - 1; - 1;0)

    \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}} ightbrack =
\left( \left| \begin{matrix}
1 & - 1 \\
1 & 1 \\
\end{matrix} ight|;\left| \begin{matrix}
- 1 & - 1 \\
1 & 2 \\
\end{matrix} ight|;\left| \begin{matrix}
- 1 & 1 \\
2 & 1 \\
\end{matrix} ight| ight) = (2; - 1; - 3)

    Khoảng cách giữa hai đường thẳng dd' là:

    d(d;d') = \frac{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}}
ightbrack.\overrightarrow{AB} ight|}{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}} ightbrack
ight|} = \frac{1}{\sqrt{14}}

  • Câu 12: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 13: Nhận biết

    Cho mặt cầu S(O;R) , A là một điểm ở trên mặt cầu (S) và (P) là mặt phẳng qua A sao cho góc giữa OA và (P) bằng 60^0. Diện tích của đường tròn giao tuyến bằng:

    Diện tích của đường tròn giao tuyến

    Gọi H là hình chiếu vuông góc của (O) trên (P) thì

    ● H là tâm của đường tròn giao tuyến của (P) và (S).

    \widehat {OA,\left( P ight)} = \widehat {\left( {OA,AH} ight)} = {60^0}

    Bán kính của đường tròn giao tuyến: r = HA = OA.\cos {60^0} = \frac{R}{2}.

    Suy ra diện tích đường tròn giao tuyến: \pi {r^2} = \pi {\left( {\frac{R}{2}} ight)^2} = \frac{{\pi {R^2}}}{4}.

  • Câu 14: Vận dụng

    Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0  và vuông góc với mặt phẳng \left( S ight):x - 3y + z - 4 = 0

    Theo đề bài, (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0 nên (P) có dạng là 

    \begin{array}{l}\left( P ight):2x - y + z + 2 + m\left( {x + y - z - 3} ight) = 0,\,\,m \in \mathbb{R} \\ \Leftrightarrow \left( P ight):\left( {m + 2} ight)x + \left( {m - 1} ight)y + \left( {1 - m} ight)z + 2 - 3m = 0\end{array}

    Chọn \vec{n} làm vectơ pháp tuyến của (P), ta có: \left( P ight):\overrightarrow n  = \left( {m + 2,m - 1,1 - m} ight) \bot \overrightarrow {{n_s}}  = \left( {1, - 3,1} ight) 

    \begin{array}{l} \Rightarrow \left( {m + 2} ight)1 + \left( {m - 1} ight)\left( { - 3} ight) + \left( {1 - m} ight)1 = 0 \Leftrightarrow m = 2\\ \Rightarrow \left( P ight):4x + y - z - 4 = 0\end{array}

  • Câu 15: Thông hiểu

    Cho hình lập phương OABC.DEFG có cạnh bằng 1 có \overrightarrow {OA} ,\,\,\overrightarrow {OC} ,\,\,\overrightarrow {OG} trùng với ba trục \overrightarrow {Ox} ,{m{ }}\overrightarrow {Oy} ,{m{ }}\overrightarrow {Oz}. Viết phương trình mặt cầu \left( {{S_3}} ight) tiếp xúc với tất cả các cạnh của hình lập phương.

     \left( {{S_2}} ight) tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.

    Tâm I\left( {\frac{1}{2},\frac{1}{2},\frac{1}{2}} ight) là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng \sqrt 2

    Bán kính {R_3} = \frac{{\sqrt 2 }}{2}

    \begin{array}{l} \Rightarrow \left( {{S_2}} ight):{\left( {x - \dfrac{1}{2}} ight)^2} + {\left( {y - \dfrac{1}{2}} ight)^2} + {\left( {z - \dfrac{1}{2}} ight)^2} = \dfrac{1}{2}\\ \Rightarrow \left( {{S_3}} ight):{x^2} + {y^2} + {z^2} - x - y - z + \dfrac{1}{4} = 0\end{array}

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, cho hình bình hành ABCD với A(1;1;0),B(1;1;2),D(1;0;2). Diện tích hình bình hành ABCD bằng:

    Gọi S là diện tích hình bình hành ABCD khi đó S = \left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack
ight|

    \overrightarrow{AB} =
(0;0;2);\overrightarrow{AD} = (0; - 1;2)

    \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack =
(2;0;0)

    \Rightarrow \left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack ight| = 2
\Rightarrow S = 2

    Vậy diện tích hình bình hành ABCD bằng 2.

  • Câu 17: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(2,-1,3),  B (3, 1, 2) và song song với vectơ \overrightarrow a  = \left( {3, - 1, - 4} ight) là:

    Theo đề bài, ta có: \overrightarrow {AB}  = \left( {1,2, - 1} ight);\left[ {\overrightarrow {AB} \overrightarrow {,a} } ight] = \overrightarrow n  = \left( { - 9,1, - 7} ight)

    Chọn \overrightarrow n  = \left( {9, - 1,7} ight) làm 1 vectơ pháp tuyến.

    Phương trình mặt phẳng cần tìm có dạng : 9x - y + 7z + D = 0

    Mà mp lại qua A nên 9.2 - ( - 1) + 7.3 + D = 0 \Leftrightarrow D =  - 40

    Phương trình cần tìm là: 9x - y + 7z - 40 = 0.

  • Câu 18: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(2;0; - 1),B(1; - 2;3),C(0;1;2). Viết phương trình mặt phẳng đi qua ba điểm A;B;C.

    Ta có: \overrightarrow{AB} = ( - 1; -
2;4),\overrightarrow{AC} = ( - 2;1;3)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 1;4; -
5)

    Theo giả thiết mặt phẳng cần tìm qua A(2; 0; −1) và nhận \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = -
5(2;1;1) làm vectơ pháp tuyến.

    Vậy phương trình mặt phẳng qua A;B;C

    2(x - 2) + (y - 0) + (z + 1) =
0

    \Leftrightarrow 2x + y + z - 3 =
0

  • Câu 19: Thông hiểu

    Cho mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} + 4x - 2y + 6z - 2 = 0 và mặt phẳng \left( P ight):3x + 2y + 6z + 1 = 0. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).

     Theo đề bài, mặt cầu (S) có tâm I\left( { - 2,1, - 3} ight) và vecto pháp tuyến của (P):\,\,\overrightarrow n  = \left( {3,2,6} ight)

    \begin{array}{l}IH \bot \left( P ight) \Rightarrow IH:x =  - 2 + 3t;\,\,y = 1 + 2t;\,\,z =  - 3 + 6t\\H \in \left( P ight) \Rightarrow 3\left( { - 2 + 3t} ight) + 2\left( {1 + 2t} ight) + 6\left( { - 3 + 6t} ight) + 1 = 0 \Leftrightarrow t = \dfrac{3}{7}\\ \Rightarrow H\left( { - \dfrac{5}{7},\dfrac{{13}}{7}, - \dfrac{3}{7}} ight)\end{array}

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABC với A(1;1;1),B( - 1;1;0),C(1;3;2). Đường trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vectơ nào dưới đây làm một véc-tơ chỉ phương?

    Gọi M là trung điểm của BC, suy ra tọa độ điểm M(0;2;1).

    Đường trung tuyến xuất phát từ đỉnh A có vectơ chỉ phương là \overrightarrow{AM} = ( - 1;1;0).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo