Trong không gian
, cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Trong không gian
, cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Trong không gian với hệ tọa độ
, xét mặt cầu
có phương trình dạng
. Tập hợp các giá trị thực của tham số
để
có chu vi
?
Đường tròn lớn có chu vi là nên bán kính của
là
Từ phương trình của suy ra bán kính của
là
Do đó
Vậy đáp án cần tìm là:
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Trong không gian với hệ tọa độ
, cho hai điểm
. Viết phương trình đường thẳng
?
Vectơ chỉ phương của đường thẳng là
. Suy ra phương trình đường thẳng
là:
Trong không gian với hệ tọa độ
, cho mặt cầu
tâm I và mặt phẳng
. Gọi H là hình chiếu vuông góc của I trên (P). Điểm M thuộc (S) sao cho đoạn MH có độ dài lớn nhất. Tìm tọa độ điểm M.
Ta có tâm và bán kính
. Do
nên mặt phẳng (P) không cắt mặt cầu (S) . Do H là hình chiếu của I lên (P) và MH lớn nhất nên M là giao điểm của đường thẳng IH với mp (P) .
.
Phương trình đường thẳng IH là .
Giao điểm của IH với (S):
Suy ra:
.
Vậy điểm cần tìm là .
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
và
. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?
Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì
Do đó (R) có dạng .
Gọi .
Khi đó trung điểm M của đoạn AB nằm trên (R), tức .
Suy ra .
Vậy hay
.
Trong không gian
, cho hai mặt phẳng
có các vectơ pháp tuyến là
. Góc
là góc giữa hai mặt phẳng đó
là biểu thức nào sau đây?
Theo công thức góc giữa hai mặt phẳng ta có:
Cho điểm P(-3 , 1, -1) và đường thẳng (d): ![]()
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Trong không gian
, mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Trong không gian với hệ tọa độ
, gọi
là mặt phẳng chứa đường thẳng
và vuông góc với mặt phẳng
. Hỏi giao tuyến của
và
đi qua điểm nào dưới đây?
Ta có:
Suy ra
Khi đó giao tuyến thỏa hệ
Thay các phương án vào hệ, ta nhận phương án .
Trong không gian với hệ tọa độ
, cho ba điểm
và mặt phẳng
. Điểm
nằm trên mặt phẳng
thỏa mãn
. Tính
?
Ta có
Với , ta có
Với , ta có
Từ (1); (2); (3) ta có hệ phương trình:
Trong không gian
, cho đường thẳng
. Mặt phẳng nào trong các mặt phẳng sau đây vuông góc với đường thẳng
.
Đường thẳng có vectơ chỉ phương
Mặt phẳng vuông góc với nhận vectơ
làm vectơ pháp tuyến.
Do đó là mặt phẳng thỏa mãn.
Trong không gian
, hai điểm
và
. Phương trình nào sau đây là phương trình mặt cầu đường kính
?
Mặt cầu nhận làm đường kính, do đó mặt cầu nhận trung điểm
của
làm tâm và có bán kính
Suy ra phương trình mặt cầu cần tìm là .
Cho hai điểm
và mặt phẳng
Mặt phẳng
chứa hai điểm A,B và vuông góc với mặt phẳng
có phương trình:
Theo đề bài, ta có: ;
Suy ra ;
có vectơ pháp tuyến
Ta có cùng phương với vectơ
Chọn làm 1 vectơ pháp tuyến cho mặt phẳng
.
Phương trình mặt phẳng có dạng:
Mặt phẳng :
Trong không gian với hệ tọa độ
, gọi
là đường thẳng đi qua
, thuộc mặt phẳng
và cách điểm
một khoảng nhỏ nhất. Côsin của góc giữa
và trục tung bằng
Hình vẽ minh họa
Gọi H; K lần lượt là hình chiếu của M trên mặt phẳng (Oyz) và trên đường thẳng d.
Ta có:
Suy ra nhỏ nhất khi
. Khi đó d có một vecto chỉ phương là
Khi đó:
Trong không gian với hệ tọa độ
, cho mặt cầu
. Tâm mặt cầu
có tọa độ là:
Mặt cầu có tâm là
Mặt cầu có tâm
.
Cho hai đường thẳng 
Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).
Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP
Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :
Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :
Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):
Cho hình hộp chữ nhật ABCD.EFGH có AB = a; AD = b; AE = c trong hệ trục Oxyz sao cho A trùng với
lần lượt trùng với Ox, Oy, Oz . Gọi M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của đường thẳng MN.
Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:
(MN) là đường thẳng đi qua M và nhận vecto là 1 VTCP có PT là:
Trong không gian với hệ tọa độ
, cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
. Viết phương trình mặt cầu tâm O và tiếp xúc với
.
Hình vẽ minh họa
Vì H là trực tâm tam giác ABC nên
Do vậy mặt cầu tâm O tiếp xúc với (P) nhận OH làm bán kính
⇒ Phương trình mặt cầu là .
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA⊥ (ABCD) và SA = a. Gọi E và F lần lượt là trung điểm của SB, SD. Côsin của góc hợp bới hai mặt phẳng (AEF) và (ABCD) là
Chọn hệ trục tọa độ Oxyz sao cho
Vectơ pháp tuyến của mp(AEF) là
Vectơ pháp tuyến của mp(ABCD) là:
Vậy côsin góc giữa 2 mặt phẳng (AEF) và (ABCD) là: