Trong không gian với hệ tọa độ
, phương trình chính tắc của đường thẳng
đi qua điểm
có vectơ chỉ phương
là:
Phương trình đường thẳng đi qua điểm có vectơ chỉ phương
nên có phương trình:
.
Trong không gian với hệ tọa độ
, phương trình chính tắc của đường thẳng
đi qua điểm
có vectơ chỉ phương
là:
Phương trình đường thẳng đi qua điểm có vectơ chỉ phương
nên có phương trình:
.
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Trong không gian với hệ trục tọa độ
, khoảng cách từ
đến mặt phẳng
là
Khoảng cách từ điểm đến mặt phẳng
là:
Trong không gian với hệ tọa độ
, mặt cầu
và mặt phẳng
cắt nhau theo một đường tròn có chu vi là:
Hình vẽ minh họa
Mặt cầu (S) có tâm và bán kính
.
Ta có
Vì nên (α) cắt (S) theo giao tuyến là đường tròn (C).
Gọi H là hình chiếu vuông góc của I trên (α) ⇒ H là tâm của (C).
Lấy
Tam giác IHM vuông tại M
Suy ra chu vi của đường tròn (C) bằng .
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức
. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.
Ta có
Từ giả thiết
Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm và mặt cầu tâm
Dễ thấy
Cho
và
. Điểm
sao cho
và đoạn
bằng 3 lần khoảng cách từ
đến
. Khẳng định nào sau đây đúng?
Ta có:
.
Tính góc của hai đường thẳng
và
.
Theo đề bài, ta có (d’) và (d) có vec-tơ chỉ phương lần lượt là:
Áp dụng công thức cosin của góc giữa 2 đường thẳng, ta có:
Trong không gian
, một vectơ pháp tuyến của mặt phẳng
là:
Mặt phẳng trên đi qua các điểm
Do đó vectơ pháp tuyến của mặt phẳng cùng phương với .
Ta có
Vậy chọn một vectơ pháp tuyến của mặt phẳng đó là .
Cho mặt cầu S(O;R) , A là một điểm ở trên mặt cầu (S) và (P) là mặt phẳng qua A sao cho góc giữa OA và (P) bằng
. Diện tích của đường tròn giao tuyến bằng:

Gọi H là hình chiếu vuông góc của (O) trên (P) thì
● H là tâm của đường tròn giao tuyến của (P) và (S).
●
Bán kính của đường tròn giao tuyến: .
Suy ra diện tích đường tròn giao tuyến: .
Trong không gian
, cho mặt cầu
và các điểm
. Điểm
thuộc mặt cầu
. Thể tích lớn nhất của tứ diện
bằng:
Mặt cầu có tâm là
và bán kính
.
Khi lớn nhất thì
Ta có: suy ra:
.
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
và
. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?
Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì
Do đó (R) có dạng .
Gọi .
Khi đó trung điểm M của đoạn AB nằm trên (R), tức .
Suy ra .
Vậy hay
.
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA = a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD. Tan của góc tạo bởi hai mặt phẳng (AMC) và (SBC) bằng:
Hình vẽ minh họa
Chọn hệ trục tọa độ sao cho , như hình vẽ:
Khi đó ta có:
và
Gọi là góc tạo bởi hai mặt phẳng
và
.
Ta có
Mà .
Suy ra .
Trong không gian với hệ toạ độ
, phương trình nào sau đây là phương trình mặt cầu
Phương trình mặt cầu tâm bán kính
có dạng:
Vậy đáp án cần tìm là: .
Trong không gian
, cho mặt phẳng
. Tính góc tạo bởi
với trục
?
Mặt phẳng có một vectơ pháp tuyến là
Trục có một vectơ chỉ phương là
Gọi α là góc giữa và mặt phẳng
:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Viết phương trình mặt phẳng
đi qua điểm
và vuông góc với
.
Phương trình mặt phẳng (P):
Viết phương trình tham số của đường thẳng ![]()
Theo đề bài, đường thẳng d là giao của 2 mặt phẳng, ta gọi 2 mặt phẳng (P) và (Q) tương ứng lần lượt là:
Mp (P) và (Q) có 2 vecto pháp tuyến tương ứng là:
Từ đây ta suy ra vecto chỉ phương của đường thẳng (d) là tích có hướng của 2 VTPT:
Cho y = 0, ta có:
Đường thẳng (d) đi qua A( 1, 0, 2) và nhận vecto (1,2,4) làm 1 VTCP có PTTS là:
Cho mặt cầu
và mặt phẳng
. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).
Theo đề bài, mặt cầu (S) có tâm và vecto pháp tuyến của
Trong không gian với hệ tọa độ
, cho đường thẳng
. Gọi ∆’ là đường thẳng đối xứng với đường thẳng ∆ qua (Oxy). Tìm một vectơ chỉ phương của đường thẳng ∆’.
Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm A(4; 11; 0).
Ta thấy B(1; 2; 3) ∈ ∆ và B’(1; 2; −3) là điểm đối xứng của điểm B qua mặt phẳng (Oxy).
Đường thẳng ∆’ đi qua các điểm A, B’.
Ta có , từ đó suy ra
là một vectơ chỉ phương của đường thẳng ∆’.
Cho hình chóp
có đáy là hình thang vuông tại
và
,
,
vuông góc với mặt đáy
,
. Gọi
lần lượt là trung điểm của
và
. Tính cosin của góc giữa
và
.
Hình vẽ minh họa
Chọn hệ trục như hình vẽ, với
. Khi đó ta có:
.
Khi đó:
Ta có: . Gọi
là véc tơ pháp tuyến của mặt phẳng (SAC) ta có
Lại có
Gọi α là góc giữa MN và (SAC) ta có:
.