Trong không gian
, cho đường thẳng
. Mặt phẳng nào trong các mặt phẳng sau đây vuông góc với đường thẳng
.
Đường thẳng có vectơ chỉ phương
Mặt phẳng vuông góc với nhận vectơ
làm vectơ pháp tuyến.
Do đó là mặt phẳng thỏa mãn.
Trong không gian
, cho đường thẳng
. Mặt phẳng nào trong các mặt phẳng sau đây vuông góc với đường thẳng
.
Đường thẳng có vectơ chỉ phương
Mặt phẳng vuông góc với nhận vectơ
làm vectơ pháp tuyến.
Do đó là mặt phẳng thỏa mãn.
Trong không gian với hệ tọa độ
, phương trình chính tắc của đường thẳng
đi qua điểm
có vectơ chỉ phương
là:
Phương trình đường thẳng đi qua điểm có vectơ chỉ phương
nên có phương trình:
.
Cho hình chóp
có đáy
là tam giác vuông tại C và
. Mặt phẳng
vuông góc với đáy,
,
. Bán kính mặt cầu ngoại tiếp hình chóp
là:

Gọi M là trung điểm AB , suy ra và
.
Do đó SM là trục của tam giác ABC.
Trong mặt phẳng , kẻ đường trung trực d của đoạn SB cắt SM tại I . Khi đó I là tâm mặt cầu ngoại tiếp hình chóp
, bán kính
Ta có
Trong tam giác vuông SMB, ta có .
Ta có , suy ra
Trong không gian với hệ tọa độ
, cho các điểm
. Bán kính mặt cầu ngoại tiếp tứ diện
là:
Gọi là mặt cầu ngoại tiếp tứ diện
Phương trình mặt cầu có dạng
Vì nên ta có:
Vậy bán kính mặt cầu là:
Trong không gian tọa độ
, cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Trong không gian
, cho tam giác
vuông tại
,
,
, đường thẳng
có phương trình
, đường thẳng
nằm trong mặt phẳng
. Biết rằng đỉnh
có cao độ âm. Tìm hoành độ của đỉnh
.
Hình vẽ minh họa:
Tọa độ điểm B là nghiệm của hệ phương trình
Do C ∈ BC nên
Theo giả thiết nên:
Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).
Gọi . Do
nên:
Vậy đáp án cần tìm là .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
. Xác định
để hai mặt phẳng
và
song song với nhau?
Hai mặt phẳng đã cho song song với nhau khi và chỉ khi
Tập xác định
Vậy thì hai mặt phẳng
song song với nhau.
Cho
và
. Điểm
sao cho
và đoạn
bằng 3 lần khoảng cách từ
đến
. Khẳng định nào sau đây đúng?
Ta có:
.
Cho hình lập phương
có cạnh
. Góc giữa hai mặt phẳng
và
bằng:
Hình vẽ minh họa
Chọn hệ trục tọa độ Oxyz sao cho gốc tọa độ
Khi đó:
Chọn là vectơ pháp tuyến của mặt phẳng
Chọn là vectơ pháp tuyến của mặt phẳng
Góc giữa hai mặt phẳng và
bằng:
Trong không gian với hệ tọa độ
, cho đường thẳng
và mặt phẳng
. Hãy xác định góc giữa đường thẳng
và mặt phẳng
?
Đường thẳng có vectơ chỉ phương
Mặt phẳng có vectơ pháp tuyến
Gọi là góc giữa đường thẳng và mặt phẳng, khi đó ta có:
Trong không gian với hệ tọa độ
, cho mặt cầu ![]()
Ta có:
Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là:
Cho đường tròn (C) đường kính AB và đường thẳng
. Để hình tròn xoay sinh bởi (C) khi quay quanh
là một mặt cầu thì cần có thêm điều kiện nào sau đây:
Điều kiện để hình tròn xoay sinh bởi (C) khi quay quanh là một mặt cầu là trục quay
phải cố định và hai điểm A, B cũng cố định trên
.
Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu:
.
Theo đề bài, ta có:
là mặt cầu
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
mà tổng
có giá trị nhỏ nhất có tọa độ là:
Vì nên ta có tọa độ điểm
.
Ta có:
Vậy giá trị nhỏ nhất của là
khi
.
Trong không gian
cho hai điểm
và
là mặt phẳng trung trực của đoạn thẳng
. Vectơ nào sau đây là một vectơ pháp tuyến của
?
Do là mặt phẳng trung trực của đoạn thẳng
nên
nhận
làm vectơ pháp tuyến.
Suy ra cũng là vectơ pháp tuyến của (α).
Trong không gian với hệ tọa độ Oxyz cho đường thẳng
và mặt phẳng
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Đường thẳng d có vectơ chỉ phương là
Mặt phẳng (P) có vectơ pháp tuyến là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .
Khi đó ta có:
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
và
. Tìm
để hai mặt phẳng
và
song song với nhau.
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến
Để thì
Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Trong không gian
, cho đường thẳng
và mặt phẳng
. Góc giữa đường thẳng
và mặt phẳng
bằng
Ta có:
∆ có vectơ chỉ phương là
(α) có vectơ pháp tuyến là
.
Trong không gian với hệ trục tọa độ
, cho hình vuông
biết
và điểm D có cao độ âm. Mặt phẳng
đi qua gốc tọa độ O. Khi đó đường thẳng d là trục của đường tròn ngoại tiếp hình vuông
có phương trình là:
Ta có:
Mặt phẳng (ABCD) đi qua điểm A và nhận
làm vectơ pháp tuyến nên có phương trình y = 0.
Giả sử . Ta có:
Vì D có cao độ âm nên D(1; 0; −3). Khi đó, tâm I của hình vuông ABCD có tọa độ I(−1; 0; −1).
Trục của đường tròn ngoại tiếp hình vuông ABCD đi qua I(−1; 0; −1) và nhận làm vectơ chỉ phương nên có phương trình
.
Trong không gian
, cho mặt phẳng
đi qua điểm
và chắn trên các trục tọa độ
theo ba đoạn có độ dài đại số lần lượt là
. Phương trình tổng quát của mặt phẳng
khi
theo thứ tự tạo thành một cấp số nhân có công bội bằng
là:
Do giả thiết suy ra .
Giả sử khi đó phương trình mặt phẳng
.
Do M thuộc (P) nên
Suy ra do đó phương trình mặt phẳng
.