Trong không gian với hệ tọa độ
, trục
có phương trình tham số là
Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương nên có phương trình tham số là
.
Trong không gian với hệ tọa độ
, trục
có phương trình tham số là
Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương nên có phương trình tham số là
.
Phương trình tổng quát của mặt phẳng đi qua
và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Trong không gian
, cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Trong không gian với hệ tọa độ
, tính khoảng cách giữa đường thẳng
và trục
.
Đường thẳng d có vectơ chỉ phương và đi qua điểm
Trục Ox có vectơ chỉ phương và đi qua điểm
Khoảng cách giữa đường thẳng d và trục Ox là:
Trong không gian với hệ tọa độ
, cho mặt cầu
, mặt phẳng
. Gọi
là mặt phẳng vuông góc với mặt phẳng
,
song song với giá của vectơ
và
tiếp xúc với
. Lập phương trình mặt phẳng
.
Mặt cầu có tâm I(1; −3; 2) và bán kính
.
Từ giả thiết suy ra là một vectơ pháp tuyến của
.
Ta có , suy ra
có vectơ pháp tuyến
Vậy có phương trình dạng
Do tiếp xúc với mặt cầu
nên:
Vậy có hai mặt phẳng thỏa mãn yêu cầu bài toán là .
Trong không gian với hệ tọa độ
, cho
. Điểm
là điểm thuộc mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Khi đó,
có giá trị là:
Chọn sao cho
Ta tính được
Ta thấy
Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.
Vậy M là hình chiếu vuông góc của lên (Oxy)
Ta xác định được
Cho hình chóp tứ giác đều S.ABCD có
. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:
Gọi O = AC ∩ BD
Tam giác SAO vuông nên suy ra
Gắn tọa độ như hình vẽ:
Ta có:
Vì G là trọng tâm tam giác SCD nên
Ta có:
Góc giữa đường thẳng BG với đường thẳng SA bằng:
Vậy đáp án cần tìm là: .
Trong không gian với hệ toạ độ
, phương trình đường thẳng đi qua hai điểm
và
là
Vectơ chỉ phương của đường thẳng cần tìm là và đường thẳng đi qua điểm
.
Vậy phương trình đường thẳng cần tìm là: .
Trong không gian với hệ tọa độ
, mặt cầu
và mặt phẳng
cắt nhau theo một đường tròn có chu vi là:
Hình vẽ minh họa
Mặt cầu (S) có tâm và bán kính
.
Ta có
Vì nên (α) cắt (S) theo giao tuyến là đường tròn (C).
Gọi H là hình chiếu vuông góc của I trên (α) ⇒ H là tâm của (C).
Lấy
Tam giác IHM vuông tại M
Suy ra chu vi của đường tròn (C) bằng .
Cho mặt cầu
và một điểm A, biết
. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho
. Khi đó khoảng cách từ O đến BC bằng:
Gọi H là hình chiếu của O lên BC.
Ta có , suy ra H là trung điểm của BC nên
Suy ra
Trong không gian
, cho ba điểm
. Điểm
thuộc tia
sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện
bằng
có tọa độ là
Ta có D thuộc tia nên
với
.
Tính
Mặt phẳng : có vectơ pháp tuyến
và đi qua điểm
.
Ta có
Vậy .
Trong không gian với hệ tọa độ
, cho điểm
, điểm
và mặt cầu
. Gọi
là mặt phẳng qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến
là lớn nhất. Biết
là một vectơ pháp tuyến của
. Tính
.
Mặt cầu (S) có tâm I(5; −3; 7); bán kính .
Phương trình mặt phẳng
Vì (P) và (S) tiếp xúc nhau nên:
Ta có:
Ta có:
Áp dụng BĐT Bunhiacopxki ta có
Từ (*); (**); (***) ta có:
Dấu “=” xảy ra khi và chỉ khi:
.
Trong không gian
, cho đường thẳng
và hai điểm
. Gọi
là điểm thuộc đường thẳng
sao cho diện tích tam giác
bằng
. Giá trị của tổng
bằng:
Phương trình tham số của đường thẳng
Vì C thuộc d nên tọa độ của C có dạng
Ta có
Suy ra
Diện tích tam giác ABC là
Theo bài ra ta có
Với t = 1 thì C (1; 1; 1) nên
Vậy giá trị của tổng
Trong không gian với hệ tọa độ
, phương trình mặt cầu tâm
bán kính
là:
Phương trình mặt cầu tâm bán kính
là:
Tổng quát .
Trong không gian
, cho hai mặt phẳng
có các vectơ pháp tuyến là
. Góc
là góc giữa hai mặt phẳng đó
là biểu thức nào sau đây?
Theo công thức góc giữa hai mặt phẳng ta có:
Cho tứ diện
có
. Tính độ dài đường cao của tứ diện
kẻ từ đỉnh
?
Phương trình mặt phẳng là:
Khoảng cách từ đỉnh D đến mặt phẳng (ABC) là
.
Trong không gian với hệ tọa độ Oxyz cho đường thẳng
và mặt phẳng
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Đường thẳng d có vectơ chỉ phương là
Mặt phẳng (P) có vectơ pháp tuyến là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .
Khi đó ta có:
Trong không gian với hệ tọa độ
, mặt phẳng
đi qua
và chứa trục
có phương trình là:
Ta có: (P) có cặp véc-tơ chỉ phương
Khi đó véc-tơ pháp tuyến của (P) là , ta chọn
.
Mặt phẳng (P) đi qua và có véc-tơ pháp tuyến
nên có phương trình
hay
.
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và
. Giá trị của m để hai đường thẳng
và
cắt nhau là
Đường thẳng đi qua A(1; 0; −1), có vectơ chỉ phương
Đường thẳng đi qua B(1; 2; 3), có vectơ chỉ phương
Ta có và
Hai đường thẳng d và d 0 cắt nhau
Trong không gian với hệ tọa độ
, cho các điểm
. Để mặt phẳng
hợp với mặt phẳng
một góc
thì giá trị của m là
Mặt phẳng Oxy có vectơ pháp tuyến là
Ta có , suy ra vectơ pháp tuyến của mặt phẳng
là
Theo bài ra ta có: