Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm
và đi qua điểm
. Phương trình mặt cầu
là:
Phương trình mặt cầu có tâm
và bán kính
là:
Ta có:
Vậy phương trình cần tìm là: .
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm
và đi qua điểm
. Phương trình mặt cầu
là:
Phương trình mặt cầu có tâm
và bán kính
là:
Ta có:
Vậy phương trình cần tìm là: .
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Trong không gian với hệ trục tọa độ
, cho đường thẳng
và mặt phẳng
. Điểm
nào dưới đây thuộc
và thỏa mãn khoảng cách từ
đến mặt phẳng
bằng
?
Vì A ∈ (d) nên ta có tọa độ điểm A(2a; −a; a − 1).
Khoảng cách từ A đến (P) là
Với
Cho hai điểm
cố định trong không gian có độ dài
. Biết rằng tập hợp các điểm
trong không gian sao cho
là một mặt cầu. Bán kính mặt cầu đó bằng bao nhiêu?
Ta có:
(*)
Gọi thỏa mãn
nên
Từ (*) suy ra .
Cho tứ giác ABCD có
. Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng
.
Tỷ số thể tích hai khối AMNE và ABCD:
M chia cạnh BA theo tỷ số -2
Vecto pháp tuyến của
Trong không gian
, cho tứ diện đều
có
và hình chiếu vuông góc của
trên mặt phẳng
là
. Tìm tọa độ tâm
của mặt cầu ngoại tiếp tứ diện
?
Gọi
là tứ diện đều nên tâm
của mặt cầu ngoại tiếp trùng với trọng tâm tứ diện
Trong không gian với hệ toạ độ
, phương trình nào sau đây là phương trình mặt cầu
Phương trình mặt cầu tâm bán kính
có dạng:
Vậy đáp án cần tìm là: .
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
. Trong các đường thẳng sau, đường thẳng nào vuông góc với
.
Mặt phẳng có một vectơ pháp tuyến là
.
Đường thẳng có một vectơ chỉ phương là
Suy ra .
Cho hình chóp
có đáy
là hình vuông cạnh
, SAB là tam giác đều và
vuông góc với
. Tính cosϕ với ϕ là góc tạo bởi
và ![]()
Hình vẽ minh họa
Gọi O M, lần lượt là trung điểm của AB; CD.
Vì SAB là tam giác đều và (SAB) vuông góc với (ABCD) nên SO ⊥ (ABCD).
Xét hệ trục có
Suy ra
Suy ra
Mặt phẳng (SAC) có vectơ pháp tuyến
Mặt phẳng (SAD) có vectơ pháp tuyến
Trong không gian với hệ tọa độ
cho điểm
và hai mặt phẳng
. Viết phương trình mặt phẳng
chứa
, vuông góc với cả hai mặt phẳng
?
Gọi lần lượt là vectơ pháp tuyến của mặt phẳng
và
.
Khi đó mặt phẳng nhận vectơ
làm một vectơ pháp tuyến.
Do đó có phương trình
.
Trong không gian với hệ tọa độ
, cho đường thẳng
là giao tuyến của hai mặt phẳng
. Tìm tọa độ giao điểm
của đường thẳng
và
, biết đường thẳng d' có phương trình 
Tọa độ giao điểm I của d và d’ thỏa mãn hệ phương trình:
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Cho hình hộp chữ nhật ABCD.EFGH có AB = a; AD = b; AE = c trong hệ trục Oxyz sao cho A trùng với
lần lượt trùng với Ox, Oy, Oz . Gọi M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của đường thẳng MN.
Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:
(MN) là đường thẳng đi qua M và nhận vecto là 1 VTCP có PT là:
Trong không gian
, viết phương trình mặt phẳng
biết
đi qua hai điểm
và vuông góc với mặt phẳng
.
Ta có và
có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Do đó, có phương trình là
.
Trong không gian với hệ tọa độ
, viết phương trình mặt phẳng đi qua ba điểm
và
.
Ta có:
Mặt phẳng đi qua điểm
và nhận
làm vectơ pháp tuyến có phương trình là:
Trong không gian
, cho ba điểm
. Đường thẳng
qua trực tâm
của tam giác
và nằm trong mặt phẳng
cùng tạo với các đường thẳng
một góc
có một véc-tơ chỉ phương là
với
là số nguyên tố và
là số nguyên. Giá trị biểu thức
bằng bao nhiêu?
Ta có:
Theo đề bài, ta suy ra:
Vì ∆ ⊂ (ABC) nên
Trường hợp 1: Xét hệ phương trình:
Chọn c = 11, ta có (kiểm tra lại điều kiện
ta thấy
đang xét thỏa mãn).
Trường hợp 2: Xét hệ phương trình
Chọn c = 2, ta có (kiểm tra lại điều kiện
ta thấy
đang xét không thỏa mãn).
Vậy
Trong không gian với hệ tọa độ
, cho mặt cầu
hai hai điểm
. Gọi E là điểm thuộc mặt cầu (S) sao cho
đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E?
Hình vẽ minh họa
Gọi I(1; 2; 2) là tâm của (S), P(5; −2; 4) là trung điểm MN.
Theo bất đẳng thức Bu-nhi-a-copx-ki và công thức độ dài trung tuyến ta được:
nên T = EM + EN đạt giá trị lớn nhất khi EM = EN và EP đạt giá trị lớn nhất.
Khi đó E là giao điểm của đường thẳng IP với mặt cầu (S) (I nằm giữa E và P). Đường thẳng IP có phương trình:
Tọa độ E thỏa hệ phương trình:
Tìm được E(3; 0; 3) hoặc E(−1; 4; 1), thử lại để EP lớn nhất ta được E(−1; 4; 1).
Khi đó phương trình tiếp diện với (S) tại E là .
Trong không gian với hệ tọa độ
, cho mặt phẳng
. Điểm nào dưới đây không thuộc mặt phẳng
?
Điểm không thuộc mặt phẳng
.
Hai đường thẳng
và
cắt nhau tại điểm A. Tọa độ của A là:
Để tìm được A là giao điểm của 2 đường thẳng, ta sẽ xét và giải hệ PT giữa chúng.
Từ phương trình của ,tính x,y theo z được
Thế vào phương trình của , được z = - 4 .
Từ đó suy ra x = 1, y = - 2
Trong không gian với hệ tọa độ
, cho 2 điểm
, đường thẳng
và mặt phẳng
. Đường thẳng
đi qua B, cắt đường thẳng ∆ và mặt phẳng
lần lượt tại C và D sao cho thể tích của 2 tứ diện
và
bằng nhau, biết
có một vectơ chỉ phương là
. Tính
.
Hình vẽ minh họa
Ta có
Nên . Vì
C là trung điểm của BD nên .
Điểm nên
là vectơ chỉ phương của đường thẳng d.
Vậy