Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y + 2}{- 1} = \frac{z}{-
2}. Mặt phẳng (P) chứa đường thẳng d và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là ax + by + cz + 9 = 0. Tính tổng a + b + c

    Hình vẽ minh họa

    Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1; - 2)

    Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.

    Phương trình tham số của \Delta:\left\{
\begin{matrix}
x = 1 \\
y = - 2 + t \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lấy điểm N(1; 2; 0) ∈ ∆.

    Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.

    Khi đó \left( (P),d ight) = \left(
(P),\Delta ight) = \widehat{NMH}

    Lại có: \cos\widehat{NMH} = \frac{MH}{NM}
\leq \frac{MK}{NM}

    Vậy \widehat{NMH}lớn nhất khi và chỉ khi H trùng với K

    Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).

    Vectơ pháp tuyến của (Q) là \overrightarrow{n_{Q}} = \left\lbrack
\overrightarrow{u},\overrightarrow{j} ightbrack =
(2;0;1)

    Vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{n_{Q}},\overrightarrow{u} ightbrack = (1;5; -
2)

    Phương trình mặt phẳng (P) là 1(x - 1) +
5(y + 2) - 2(z - 0) = 0

    \Leftrightarrow x + 5y - 2z + 9 =
0

    Vậy a + b + c = 4

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\frac{x + 1}{3} = \frac{y
- 1}{2} = \frac{z - 2}{- 1}, d_{2}:\frac{x - 1}{- 1} = \frac{y - 1}{2} =
\frac{z + 1}{- 1}. Đường thẳng \Delta đi qua điểm A(1;2;3) vuông góc với d_{1} và cắt đường thẳng d_{2} có phương trình là:

    Đường thẳng d_{2}:\frac{x - 1}{- 1} =
\frac{y - 1}{2} = \frac{z + 1}{- 1} có phương trình tham số là: \left\{ \begin{matrix}
x = 1 - t \\
y = 1 + 2t \\
z = - 1 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Gọi giao điểm của ∆ và d2B(1 - t;1 + 2t; - 1 - t)

    \Rightarrow \overrightarrow{AB} = ( -
t;2t - 1; - t - 4)

    Đường thẳng \Delta\bot d_{1} \Rightarrow
\overrightarrow{AB}.\overrightarrow{u_{d_{1}}} = 0

    \Rightarrow - t.3 + (2t - 1).2 + ( - t -
4)( - 1) = 0

    \Leftrightarrow 2t + 2 = 0
\Leftrightarrow t = - 1

    \Rightarrow \overrightarrow{AB} = (1; -
3; - 3) là 1 vectơ chỉ phương của đường thẳng ∆.

    Phương trình \Delta:\frac{x - 1}{1} =
\frac{y - 2}{- 3} = \frac{z - 3}{- 3}

  • Câu 3: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1; - 4;0) có bán kính bằng 3. Phương trình của (S) là:

    Mặt cầu (S) có tâm I(1; - 4;0)và bán kính bằng 3có phương trình là:

    (x - 1)^{2} + (y + 4)^{2} + (z - 0)^{2}
= 3^{2}

    \Rightarrow (x - 1)^{2} + (y + 4)^{2} +
z^{2} = 9

  • Câu 4: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P): - \sqrt{3}x + y + 1 = 0. Tính góc tạo bởi (P) với trục Ox?

    Mặt phẳng (P): - \sqrt{3}x + y + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = \left( - \sqrt{3};1;0
ight)

    Trục Ox có một vectơ chỉ phương là \overrightarrow{i} = (1;0;0)

    Gọi α là góc giữa Ox và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 5: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + y - z - 3 = 0,(\beta):2x - y + 5 =0. Viết phương trình của mặt phẳng (P) song song với trục Oz và chứa giao tuyến của (\alpha)(\beta)?

    Mặt phẳng (P) chứa giao tuyến của hai mặt phẳng (\alpha)(\beta) nên có dạng:

    m(2x + y - z - 3) + n(2x - y + 5) =
0

    \Leftrightarrow (2m + 2n)x + (m - n)y -
mz - 3m + 5n = 0

    Mặt phẳng (P) song song với trục Oz nên m = 0.

    Chọn n = 1 ta có (P):2x - y + 5 =
0

  • Câu 6: Thông hiểu

    Trong không gian Oxyz (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(1;3;7). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3\ km.

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 1)^{2} + (y + 3)^{2} + (z + 7)^{2} =
9. Sai||Đúng

    b) Điểm A(2;2;7) nằm ngoài mặt cầu (S). Sai||Đúng

    c) Nếu người dùng điện thoại ở vị trí có tọa độ (2;2;7) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    d) Nếu người dùng điện thoại ở vị trí có tọa độ (5;6;7) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(1;3;7). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3\ km.

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 1)^{2} + (y + 3)^{2} + (z + 7)^{2} =
9. Sai||Đúng

    b) Điểm A(2;2;7) nằm ngoài mặt cầu (S). Sai||Đúng

    c) Nếu người dùng điện thoại ở vị trí có tọa độ (2;2;7) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    d) Nếu người dùng điện thoại ở vị trí có tọa độ (5;6;7) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    Phương trình mặt cầu (S) tâm I(1;3;7) bán kính 3\ km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x - 1)^{2} +
(y - 3)^{2} + (z - 7)^{2} = 9.

    Ta có: IA = \sqrt{(2 - 1)^{2} + (2 -
3)^{2} + (7 - 7)^{2}} = \sqrt{2} < 3 nên điểm A nằm trong mặt cầu.

    Vì điểm A nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ (2;2;7) có thể sử dưng dịch vụ của trạm thu phát sóng đó.

    Ta có: IB = \sqrt{(5 - 1)^{2} + (6 -
3)^{2} + (7 - 7)^{2}} = 5' > 3 nên điểm B nằm ngoài mặt cầu.

    Vậy người dùng điện thoại ở vị trí có tọa độ (5;6;7) không thể sử dựng dịch vụ của trạm thu phát sóng đó

  • Câu 7: Vận dụng

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight) . Viết phương trình của mặt phẳng (P) qua A, B và chia tứ diện thành hai khối ABCE và ABDE có tỉ số thể tích bằng 3.

     PT mp cắt khối tứ diện

    Theo đề bài, ta có mp (P) cắt cạnh CD tại E, E chia đoạn CD theo tỷ số -3

    \Rightarrow E\left\{ \begin{array}{l}x = \dfrac{{{x_C} + 3{x_D}}}{4} = \dfrac{{1 + 3.0}}{4} = \dfrac{1}{4}\\y = \dfrac{{{y_C} + 3{y_D}}}{4} = \dfrac{{ - 1 + 3.0}}{4} = \dfrac{{ - 1}}{4}\\z = \dfrac{{{z_C} + 3{z_D}}}{4} = \dfrac{{0 + 3.1}}{4} = \dfrac{3}{4}\end{array} ight.

    Từ đó, ta suy ra: \overrightarrow {AB}  = \left( {1,0,3} ight);\,\,\overrightarrow {AE}  = \left( {\frac{1}{4}; - \frac{5}{4};\frac{7}{4}} ight) = \frac{1}{4}\left( {1, - 5,7} ight)

    Như vậy, VTPT mp (P) là: \left( P ight):\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AE} } ight] = \left( {15, - 4, - 5} ight)

    \Rightarrow \left( P ight):\left( {x - 0} ight)15 + \left( {y - 1} ight)\left( { - 4} ight) + \left( {z + 1} ight)\left( { - 5} ight) = 0

    \Leftrightarrow 15x - 4y - 5z - 1 = 0

  • Câu 8: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm là điểm A(2; 2; 2), mặt phẳng (P) : 2x + 2y + z + 8 = 0 cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính r = 8. Diện tích của mặt cầu (S) là:

    Ta có:

    d\left( A;(P) ight) = \frac{|4 + 4 + 2
+ 8|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} = 6

    R^{2} = d^{2}\left( A;(P) ight) +
r^{2} = 100

    Vậy diện tích mặt cầu là: S = 4\pi R^{2}
= 400\pi.

  • Câu 9: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + 3y - z - 1 = 0(\beta):4x + 6y - mz - 2 = 0. Tìm m để hai mặt phẳng (\alpha)(\beta) song song với nhau.

    Mặt phẳng (\alpha) có vectơ pháp tuyến \overrightarrow{n_{1}} = (2;3; -
1)

    Mặt phẳng (\beta) có vectơ pháp tuyến \overrightarrow{n_{2}} = (4;6; -
m)

    Để (\alpha)//(\beta) thì \frac{2}{4} = \frac{3}{6} = \frac{- 1}{- m} eq
\frac{- 1}{- 2}

    Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 10: Nhận biết

    Trong không gian Oxyz, cho ba mặt phẳng (P),(Q),(R) lần lượt có phương trình là x - 4z + 8 = 0,2x - 8z = 0,y
= 0. Mệnh đề nào dưới đây đúng?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{p} = (1;0; - 4) và mặt phẳng (R) có một vectơ pháp tuyến là \overrightarrow{r} = (0;1;0)

    Do \overrightarrow{p} eq
k.\overrightarrow{r};\forall k\mathbb{\in R} nên vectơ \overrightarrow{p} không cùng phương với vectơ \overrightarrow{r}.

    Vậy mặt phẳng (R) cắt mặt phẳng (P).

  • Câu 11: Vận dụng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 12: Nhận biết

    Mặt cầu (S) có tâm A(1; -2; 2) và bán kính R = 8. Tìm phương trình mặt cầu (S).

    Phương trình mặt cầu tâm I(a;b;c) bán kính R có dạng: (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:\left\{ \begin{matrix}
x = 3 - t \\
y = - 1 + 2t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)?

    Đường thẳng (d) đi qua điểm M(3; - 1;0) và nhận \overrightarrow{u} = ( - 1;2; - 3) làm vectơ chỉ phương.

    Phương trình chính tắc của (d):\frac{x -
3}{- 1} = \frac{y + 1}{2} = \frac{z}{- 3}

  • Câu 14: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có AB =
a;SA = a\sqrt{2}. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:

    Gọi O = AC ∩ BD

    Tam giác SAO vuông nên suy ra SO =
\sqrt{SA^{2} - AO^{2}} = \frac{a\sqrt{6}}{2}

    Gắn tọa độ như hình vẽ:

    Ta có: \left\{ \begin{matrix}A(0;0;0),B(a;0;0),C(a;a;0) \\D(0;a;0),O\left( \dfrac{a}{2};\dfrac{a}{2};0 ight),S\left(\dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2} ight) \\\end{matrix} ight.

    Vì G là trọng tâm tam giác SCD nên G\left(
\frac{a}{2};\frac{5a}{6};\frac{a\sqrt{6}}{6} ight)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AS} = \left( \dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2}ight) = \dfrac{a}{2}\left( 1;1;\sqrt{6} ight) \\\overrightarrow{BG} = \left( -\dfrac{a}{2};\dfrac{5a}{6};\dfrac{a\sqrt{6}}{6} ight) = \dfrac{a}{6}\left(- 3;5;\sqrt{6} ight) \\\end{matrix} ight.

    Góc giữa đường thẳng BG với đường thẳng SA bằng:

    \cos(BG;SA) = \frac{\left|
\overrightarrow{AS}.\overrightarrow{BG} ight|}{BG.AS} = \frac{| - 3 +
5 + 6|}{\sqrt{40}.\sqrt{8}} = \frac{\sqrt{5}}{5}

    Vậy đáp án cần tìm là: \arccos\frac{\sqrt{5}}{5}.

  • Câu 15: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(0;0;1),B( - 3;2;0),C(2; - 2;3). Đường cao kẻ từ B của tam giác ABC đi qua điểm nào trong các điểm sau?

    Ta có: \overrightarrow{AB} = ( -
3;2;1),\overrightarrow{AC} = (2; - 2;2)

    \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(2;4;2)

    Một vectơ chỉ phương của đường cao kẻ từ B của tam giác ABC\overrightarrow{u} = \frac{1}{12}.\left\lbrack
\overrightarrow{n};\overrightarrow{AC} ightbrack = (1;0; -
1)

    Phương trình đường cao kẻ từ B là: \left\{ \begin{matrix}
x = - 3 + t \\
y = 2 \\
z = - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Ta thấy điểm P( - 1;2; - 2) thuộc đường thẳng trên.

  • Câu 16: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 17: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1;2; - 3),B\left( \frac{3}{2};\frac{3}{2}; -\frac{1}{2} ight),C(1;1;4),D(5;3;0). Gọi \left( S_{1} ight) là mặt cầu tâm A bán kính bằng 3,\left( S_{2} ight) là mặt cầu tâm B bán kính bằng \frac{3}{2}. Có bao nhiêu mặt phẳng tiếp xúc với hai mặt cầu \left( S_{1}ight),\left( S_{2} ight) đồng thời song song với đường thẳng đi qua 2 điểm C, D ?

    Hình vẽ minh họa:

    Ta có \overrightarrow{AB} = \left(\frac{1}{2}; - \frac{1}{2};\frac{5}{2} ight) \Rightarrow AB =\frac{3\sqrt{3}}{2} < 3 nên B nằm bên trong mặt cầu \left( S_{1} ight).

    Một mặt phẳng qua AB cắt hai mặt cầu theo hai đường tròn giao tuyến như hình bên.

    Kẻ tiếp tuyến chung của hai đường tròn, tiếp tuyến này sẽ cắt đường thẳng AB tại M.

    Gọi N,E lần lượt là tiếp điểm với hai đường tròn như hình vẽ.

    Tam giác ANM đồng dạng tam giác BEM nên \frac{AM}{BM} = \frac{AN}{BE} = 2.

    Suy ra \overrightarrow{AM} =2\overrightarrow{AB} \Rightarrow M(2;1;2).

    Gọi (P) là mặt phẳng tiếp xúc với cả hai mặt cầu \left( S_{1}ight)\left( S_{2}ight).

    Khi đó (P) sẽ luôn đi qua M.

    Gọi \overrightarrow{n} = (m;n;p) với m^{2} + n^{2} + p^{2} eq 0 là một vectơ pháp tuyến của mặt phẳng (P).

    Phương trình (P):m(x - 2) + n(y - 1) +p(z - 2) = 0.

    Ta có:

    \overrightarrow{CD} = (4;2; -4)

    CD // (P) \Rightarrow\overrightarrow{n} \cdot \overrightarrow{CD} = 0

    \Rightarrow 4m + 2n - 4p = 0 \Rightarrown = 2p - 2m

    d\left( A,(P) ight) = 3\Leftrightarrow \frac{| - m + n - 5p|}{\sqrt{m^{2} + n^{2} + p^{2}}} =3

    \Leftrightarrow | - 3m - 3p| =3\sqrt{m^{2} + (2p - 2m)^{2} + p^{2}}

    \Leftrightarrow 4m^{2} - 10mp + 4p^{2} =0 \Leftrightarrow \left\lbrack \begin{matrix}\dfrac{m}{p} = \dfrac{1}{2} \\\dfrac{m}{p} = 2 \\\end{matrix} ight.

    Trường hợp \frac{m}{p} =\frac{1}{2} : chọn m = 1,p = 2\Rightarrow n = 2.

    Khi đó (P):x + 2y + 2z - 8 = 0 (nhận).

    Trường hợp \frac{m}{p} = 2 : chọn m = 2,p = 1 \Rightarrow n = -2.

    Khi đó (P):2x - 2y + z - 4 = 0 (loại vì chứa C,D).

  • Câu 18: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, gọi d là đường thẳng đi qua O, thuộc mặt phẳng (Oyz) và cách điểm M(1; - 2;1) một khoảng nhỏ nhất. Côsin của góc giữa d và trục tung bằng

    Hình vẽ minh họa

    Gọi H; K lần lượt là hình chiếu của M trên mặt phẳng (Oyz) và trên đường thẳng d.

    Ta có: \left\{ \begin{matrix}
d(M;d) = MK \geq MH = 1 \\
H(0; - 2;1) \\
\end{matrix} ight.

    Suy ra d(M;d) nhỏ nhất khi H \equiv K. Khi đó d có một vecto chỉ phương là \overrightarrow{OH} = (0; -
2;1)

    Khi đó: \cos(d;Oy) = \frac{\left|
\overrightarrow{OH}.\overrightarrow{j} ight|}{\left|
\overrightarrow{OH} ight|.\left| \overrightarrow{j} ight|} =
\frac{2}{\sqrt{5}}

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2). Phương trình tham số của đường thẳng \Delta là:

    Do (2; - 2;1) cũng là vectơ chỉ phương nên phương trình tham số là: \left\{
\begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 20: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):3x + 4y + 2z + 4 = 0 và điểm M(1; - 2;3). Tính khoảng cách d từ M đến (P).

    Khoảng cách từ M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{|3.1 - 4.2
+ 2.3 + 4|}{\sqrt{3^{2} + 4^{2} + 2^{2}}} =
\frac{5}{\sqrt{29}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo