Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + y - 2z + 5 = 0(Q): - x - y + 2z + 9 = 0. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?

    Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì (P)//(Q)//(R)

    Do đó (R) có dạng x + y − 2z + m = 0.

    Gọi A(1; 0; 3) ∈ (P) , B(1; 0; −4) ∈ (Q).

    Khi đó trung điểm M của đoạn AB nằm trên (R), tức M\left( 1;0; - \frac{1}{2} ight) \in
(R).

    Suy ra 1 + 0 - 2.\left( - \frac{1}{2}
ight) + m = 0 \Leftrightarrow m = - 2.

    Vậy (R): x + y − 2z − 2 = 0 hay (R): −x − y + 2z + 2 = 0.

  • Câu 2: Vận dụng

    Hai đường thẳng \left( {d'} ight):x = 8t - 1;\,\,y =  - 1 - 14t;\,\,z =  - 12t và  \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight)

    Ta có đường thẳng (d’) qua E (-1, -1, 0) có vecto chỉ phương \overrightarrow a  = \left( {8, - 14, - 12} ight)

    Hai pháp vecto của hai đường thẳng \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight) lần lượt là \overrightarrow {{n_1}}  = \left( {1, - 2,3} ight);\overrightarrow {{n_2}}  = \left( {2,2, - 1} ight)

    Vecto chỉ phương của \left( d ight):\overrightarrow b  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 4,7,6} ight)

    Ta có: \frac{8}{{ - 4}} = \frac{{ - 14}}{7} = \frac{{ - 12}}{6} =  - 2 và tọa độ E\left( { - 1, - 1,0} ight) thỏa mãn phương trình của \left( d ight) \Rightarrow \left( D ight) \equiv \left( d ight)

  • Câu 3: Nhận biết

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):4x + 3y - z + 1 =
0 và đường thẳng d:\frac{x - 1}{4}
= \frac{y - 6}{3} = \frac{z + 4}{1}, sin của góc giữa đường thẳng d và mặt phẳng (P) bằng:

    Mặt phẳng (P):4x + 3y - z + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (4;3; - 1)

    Đường thẳng d:\frac{x - 1}{4} = \frac{y -
6}{3} = \frac{z + 4}{1} có một vectơ chỉ phương là \overrightarrow{u} = (4;3;1)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{12}{13}

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + mt \\
y = t \\
z = - 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\left\{ \begin{matrix}
x = 1 - t' \\
y = 2 + 2t' \\
z = 3 - t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Giá trị của m để hai đường thẳng d_{1}d_{2} cắt nhau là

    Đường thẳng d_{1} đi qua A(1; 0; −1), có vectơ chỉ phương \overrightarrow{u_{1}} = (m;1;2)

    Đường thẳng d_{2} đi qua B(1; 2; 3), có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 1;2; -
1)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 5;m -
2;2m + 1)\overrightarrow{AB} =
(0;2;4)

    Hai đường thẳng d và d 0 cắt nhau \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{AB} = 0 \Leftrightarrow m = 0

  • Câu 5: Nhận biết

    Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?

     Mệnh đề đúng

    Vì I là hình chiếu của O trên (P) nên  d\left[ {O,\left( P ight)} ight] = OId\left[ {O,\left( P ight)} ight] = R nên I là tiếp điểm của (P)(S).

    Đường thẳng OM cắt (P) tại N nên IN vuông góc với OI tại I.

    Suy ra IN tiếp xúc với (S).

    Tam giác OIN vuông tại I nên ON = R\sqrt 2  \Leftrightarrow IN = R.

  • Câu 6: Nhận biết

    Trong hệ tọa độ Oxyz, điểm nào dưới đây thuộc đường thẳng d:\frac{x - 1}{2}
= \frac{y + 1}{- 1} = \frac{z - 2}{3}?

    Dựa vào phương trình đường thẳng ta thấy đường thẳng đã cho đi qua điểm N(1; - 1;2).

  • Câu 7: Nhận biết

    Phương trình nào sau đây là phương trình mặt cầu (S) tâm A(2;1;0) và đi qua điểm B(0;1;2)?

    Vì mặt cầu (S) tâm A(2;1;0) và đi qua điểm B(0;1;2) nên mặt cầu (S) nhận độ dài đoạn thẳng AB làm bán kính.

    Ta có: \overrightarrow{AB} = ( - 2;0;2)
\Rightarrow AB = 2\sqrt{2}

    \Rightarrow R = 2\sqrt{2}

    Vậy phương trình mặt cầu cần tìm là: (x -
2)^{2} + (y - 1)^{2} + z^{2} = 8.

  • Câu 8: Vận dụng cao

    Hai quả bóng hình cầu có kích thước khác nhau, được đặt ở hai góc của một căn nhà hình hộp chữ nhật sao cho mỗi quả bóng đều tiếp xúc với hai bức tường và nền của căn nhà đó. Biết rằng trên bề mặt của mỗi quả bóng đều tồn tại một điểm có khoảng cách đến hai bức tường và nền nhà nó tiếp xúc lần lượt bằng 1, 2, 3. Tính tổng các bình phương của hai bán kính của hai quả bóng đó.

    Hình vẽ minh họa

    Xét quả bóng tiếp xúc với hai bức tường, nền của căn nhà và chọn hệ trục tọa độ Oxyz như hình vẽ (tương tự với góc tường còn lại).

    Gọi I(a; a; a) là tâm của mặt cầu có bán kính R = a.

    Phương trình mặt cầu là: (S):(x - a)^{2}+ (y - a)^{2} + (z - a)^{2} = a^{2}\ \ \ (1)

    Xét điểm M(x; y; z) nằm trên mặt cầu sao cho

    d(M,(Oxz)) = 2, d(M,(Oyz)) = 1, d(M,(Oxy)) = 3.

    Suy ra M(2; 1; 3).

    Vì M thuộc mặt cầu (S) nên từ (1) ta có:

    (2 - a)^{2} + (1 - a)^{2} + (3 - a)^{2}= a^{2}

    \Leftrightarrow a^{2} - 6a + 7 = 0\Leftrightarrow \left\lbrack \begin{matrix}a_{1} = 3 + \sqrt{2} = R_{1} \\a_{2} = 3 - \sqrt{2} = R_{2} \\\end{matrix} ight.

    \Rightarrow {R_{1}}^{2} + {R_{2}}^{2} =22

  • Câu 9: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:

     \overrightarrow {AB}  = \left( { - 1,2, - 2} ight): vectơ chỉ phương của trục Ox: \overrightarrow i  = \left( {1,0,0} ight) .

    \left[ {\overrightarrow {AB} ,\overrightarrow i } ight] = \left( {0, - 2, - 2} ight): Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng y + z + D = 0, qua A nên:- 1 + 1 + D = 0 \Leftrightarrow D = 0

    Vậy ta có phương trình mp cần tìm là:  y+z=0

  • Câu 10: Thông hiểu

    Trong không gian Oxyz,cho hai đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = t \\
z = - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\left\{ \begin{matrix}
x = 2t' \\
y = - 1 + t' \\
z = t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Khoảng cách giữa hai đường thẳng dd' là:

    Đường thẳng d đi qua điểm A(1;0;0) và có vectơ chỉ phương \overrightarrow{u_{d}} = ( - 1;1; -
1)

    Đường thẳng d' đi qua điểm B(0; - 1;0) và có vectơ chỉ phương \overrightarrow{u_{d'}} =
(2;1;1);\overrightarrow{AB} = ( - 1; - 1;0)

    \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}} ightbrack =
\left( \left| \begin{matrix}
1 & - 1 \\
1 & 1 \\
\end{matrix} ight|;\left| \begin{matrix}
- 1 & - 1 \\
1 & 2 \\
\end{matrix} ight|;\left| \begin{matrix}
- 1 & 1 \\
2 & 1 \\
\end{matrix} ight| ight) = (2; - 1; - 3)

    Khoảng cách giữa hai đường thẳng dd' là:

    d(d;d') = \frac{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}}
ightbrack.\overrightarrow{AB} ight|}{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{d'}} ightbrack
ight|} = \frac{1}{\sqrt{14}}

  • Câu 11: Nhận biết

    Trong không gian Oxyz, đường thẳng đi qua điểm A( - 2;4;3) và vuông góc với mặt phẳng 2x - 3y + 6z + 19 =
0 có phương trình là:

    Ta có một vectơ pháp tuyến của mặt phẳng 2x - 3y + 6z + 19 = 0\overrightarrow{n} = (2; - 3;6)

    Đường thẳng đi qua điểm A( -
2;4;3) và vuông góc với mặt phẳng 2x - 3y + 6z + 19 = 0 có một vectơ chỉ phương là \overrightarrow{u} =
\overrightarrow{n} = (2; - 3;6) nên có phương trình là \frac{x + 2}{2} = \frac{y - 4}{- 3} = \frac{z -
3}{6}.

  • Câu 12: Nhận biết

    Trong không gian Oxyz đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} = 1 và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa mặt phẳng (\alpha) và đường thẳng \Delta bằng:

    Mặt phẳng (\alpha):x - y + 2z =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    Đường thẳng \Delta:\frac{x}{1} =
\frac{y}{2} = \frac{z}{- 1} = 1 có một vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    Gọi α là góc giữa đường thẳng \Delta và mặt phẳng (\alpha):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 13: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, mặt cầu (S) đi qua điểm O và cắt các tia Ox;Oy;Oz lần lượt tại các điểm A;B;C khác O thỏa mãn tam giác ABC có trọng tâm là điểm G( - 6; - 12;18). Tọa độ tâm của mặt cầu (S) là:

    Gọi tọa độ các điểm trên ba tia Ox;Oy;Oz lần lượt là A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0

    Vì G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{a}{3} = - 6 \\
\frac{b}{3} = - 12 \\
\frac{c}{3} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 18 \\
b = - 36 \\
c = 54 \\
\end{matrix} ight.

    Gọi phương trình mặt cầu cần tìm là:

    (S):x^{2} + y^{2} + z^{2} - 2mx - 2ny -
2pz + q = 0

    (S) qua các điểm OABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}
q = 0 \\
36m + q = - 18^{2} \\
72n + q = - 36^{2} \\
- 108p + q = - 54^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
q = 0 \\
m = - 9 \\
n = - 18 \\
p = 27 \\
\end{matrix} ight.

    Vậy tọa độ tâm của mặt cầu (S) là: ( - 9; - 18;27).

  • Câu 14: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các tia Ox,Oy,Oz lần lượt tại các điểm A;B;C sao cho T = \frac{1}{OA^{2}} + \frac{1}{OB^{2}} +
\frac{1}{OC^{2}} đạt giá trị nhỏ nhất là:

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c là các số thực dương do OA, OB, OC khác 0.

    Khi đó phương trình mặt phẳng (P) qua A, B, C có phương trình là \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    M ∈ (P) nên \frac{1}{a} + \frac{2}{b}
+ \frac{3}{c} = 1, do đó theo bất đẳng thức Bunhiacopski ta có:

    T = \frac{1}{a^{2}} + \frac{1}{b^{2}} +
\frac{1}{c^{2}} = \frac{1}{14}\left( 1^{2} + 2^{2} + 3^{2} ight)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} ight)

    \geq \frac{1}{14}\left( \frac{1}{a} +
\frac{2}{b} + \frac{3}{c} ight)^{2} = \frac{1}{14}

    T đạt giá trị nhỏ nhất nên ta có dấu bằng xảy ra, tức là: \left\{ \begin{matrix}a = 2b = 3c \\\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 14 \\b = \dfrac{14}{2} \\c = \dfrac{14}{3} \\\end{matrix} ight.

    Vậy phương trình mặt phẳng (P) là x + 2y
+ 3z - 14 = 0.

  • Câu 15: Thông hiểu

    Tìm tập hợp các tâm I của mặt cầu sau nằm trên?

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {1 - m} ight)x + 2\left( {3 - 2m} ight)y + 2\left( {m - 2} ight)z + 5{m^2} - 9m + 6 = 0

    Theo đề bài, ta xác định các hệ số của (S)

    a = m - 1;\,\,b = 2m - 3;\,\,c = 2 - m;\,\,d = 5{m^2} - 9m + 6

    Suy ra ta gọi được tâm I của mặt cầu có tọa độ là I\left( {x = m - 1;y = 2m - 3;z = 2 - m} ight)

    \Rightarrow x + 1 = \frac{{y + 3}}{2} = 2 - z

    Xét (S) là mặt cầu \Leftrightarrow {\left( {m - 1} ight)^2} + {\left( {2m - 3} ight)^2} + {\left( {2 - m} ight)^2} - 5{m^2} + 9m - 6 > 0

    \begin{array}{l} \Leftrightarrow {m^2} - 9m + 8 > 0 \Leftrightarrow m < 1 \vee m > 8\\ \Leftrightarrow m - 1 < 0 \vee m - 1 > 7 \Leftrightarrow x < 0 \vee x > 7\end{array}

    Vậy tập hợp các điểm I là phân đường thẳng  x + 1 = \frac{{y + 3}}{2} = 2 - z

    tương ứng với x < 0\,\,\, \vee \,\,\,x > 7.

  • Câu 16: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua M(
- 1;2;4) và chứa trục Oy có phương trình là:

    Ta có: (P) có cặp véc-tơ chỉ phương \overrightarrow{v_{Oy}} =
(0;1;0),\overrightarrow{OM} = ( - 1;2;4)

    Khi đó véc-tơ pháp tuyến của (P) là \overrightarrow{n_{P}} = ( - 4;0; - 1), ta chọn \overrightarrow{n_{P}} =
(4;0;1).

    Mặt phẳng (P) đi qua M( - 1;2;4) và có véc-tơ pháp tuyến \overrightarrow{n_{P}} = (4;0;1) nên có phương trình 4(x + 1) + (z - 4) = 0 hay 4x + z = 0.

  • Câu 17: Vận dụng cao

    Cho đường thẳng d:\left\{\begin{matrix} x=-t \\ y=2t-1 \\ z=t+2\end{matrix}ight. và mặt phẳng (\alpha): 2x-y-2z-2=0. Mặt phẳng (P) qua d  và tạo với (\alpha ) một góc nhỏ nhất. Một véc tơ pháp tuyến của (P)  là:

    Tìm vecto pháp tuyến

    Gọi \triangle = (\alpha)\cap (P), A =d \cap(\alpha), B \in d(Beq A);

    H là hình chiếu vuông góc của B lên (\alpha ); K là hình chiếu của H lên \triangle.

    Suy ra: (\widehat{(d),(\alpha)})=\widehat{BAH} cố định; (\widehat{(\alpha),(P)})=\widehat{BKH}.

    \widehat{BKH} \geqslant \widehat{BAH} (vì HK \leq HA)  \Rightarrow (\widehat{d, (\alpha)}) \leq (\widehat{(P),(\alpha)} )

    Suy ra (\widehat{(P),(\alpha)}) nhỏ nhất bằng (\widehat{d, (\alpha)}) khi K\equiv A .

    Khi đó \triangle \perp dvà có một VTCP \vec{u_\triangle} = [\vec{u_d}, \vec{u_\alpha}]=-3(1;0;1) .

    Vậy (P) có một VTPT là \vec{n_p} = [\vec{u_\triangle}, \vec{u_d}]=2(-1;1;1).

  • Câu 18: Vận dụng

    Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):x + y - 2z - 5 = 0 và đường thẳng\Delta:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z}{3}. Gọi A là giao điểm của \Delta(P)M là điểm thuộc đường thẳng \Delta sao cho AM = \sqrt{84}. Tính khoảng cách từ M đến mặt phẳng (P).

    Gọi \alpha = \left( \Delta,(P)
ight)

    Khi đó ta có: \cos\alpha = \frac{|1.2 +
1.1 - 2.3|}{\sqrt{1^{2} + 1^{2} + ( - 2)^{2}}.\sqrt{2^{2} + 1^{2} +
3^{2}}} = \frac{\sqrt{21}}{14}

    Gọi H là hình chiếu của M lên mặt phẳng (P), khi đó:

    HM = MA.cos\alpha = \sqrt{84}.\frac{\sqrt{21}}{14}
= 3

  • Câu 19: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y + z - 6 = 0. Điểm nào dưới đây không thuộc mặt phẳng (\alpha)?

    Điểm M(1; - 1;1) không thuộc mặt phẳng (\alpha):x + y + z - 6 =
0.

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P) có phương trình x - 2y + 2z - 5 = 0. Xét mặt phẳng (Q):x + (2m - 1)z + 7 = 0, với m là tham số thực. Tìm tất cả giá trị của m để (P) tạo với (Q) góc \frac{\pi}{4}.

    Ta có: (P)(Q) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{(P)}} = (1; -
2;2),\overrightarrow{n_{(Q)}} = (1;0;2m - 1)

    (P) tạo với (Q) góc \frac{\pi}{4}.

    \cos\frac{\pi}{4} = \cos\left(
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ight)

    \Leftrightarrow \frac{1}{\sqrt{2}} =
\frac{\left| 1 + 2(2m - 1) ight|}{3\sqrt{1 + (2m -
1)^{2}}}

    \Leftrightarrow 2(4m - 1)^{2} = 9\left(
4m^{2} - 4m + 2 ight)

    \Leftrightarrow 4m^{2} - 20m + 16 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 4 \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo