Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và (SAB) vuông góc với (ABCD). Tính cosϕ với ϕ là góc tạo bởi (SAC)(SCD)

    Hình vẽ minh họa

    Gọi O M, lần lượt là trung điểm của AB; CD.

    Vì SAB là tam giác đều và (SAB) vuông góc với (ABCD) nên SO ⊥ (ABCD).

    Xét hệ trục OxyzO(0;0;0),M(1;0;0),A\left( 0;\frac{1}{2};0
ight),S\left( 0;0;\frac{\sqrt{3}}{2} ight)

    Suy ra C\left( 1; - \frac{1}{2};0
ight),D\left( 1;\frac{1}{2};0 ight)

    Suy ra \left\{ \begin{matrix}\overrightarrow{SA} = \left( 0;\dfrac{1}{2};\dfrac{- \sqrt{3}}{2}ight);\overrightarrow{AC} = (1; - 1;0) \\\overrightarrow{SC} = \left( 1;\dfrac{- 1}{2};\dfrac{- \sqrt{3}}{2}ight);\overrightarrow{CD} = (0;1;0) \\\end{matrix} ight.

    Mặt phẳng (SAC) có vectơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{SA};\overrightarrow{AC} ightbrack = \left( -
\frac{\sqrt{3}}{2}; - \frac{\sqrt{3}}{2}; - \frac{1}{2}
ight)

    Mặt phẳng (SAD) có vectơ pháp tuyến \overrightarrow{n_{1}} = \left\lbrack
\overrightarrow{SC};\overrightarrow{CD} ightbrack = \left(
\frac{\sqrt{3}}{2};0;1 ight)

    \cos\varphi = \frac{\left|
\overrightarrow{n}.\overrightarrow{n_{1}} ight|}{\left|
\overrightarrow{n} ight|\left| \overrightarrow{n_{1}} ight|} =
\frac{5}{7}

  • Câu 2: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P):2x - y + 2z - 3 = 0(Q):x + my + z - 1 = 0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2; - 1;2) \\
\overrightarrow{n_{(Q)}} = (1;m;1) \\
\end{matrix} ight.

    Để hai mặt phẳng (P)(Q) vuông góc với nhau thì

    \overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}}
= 0 \Leftrightarrow 2 - m + 2 = 0 \Leftrightarrow m = 4

  • Câu 3: Thông hiểu

    Trong không gian với tọa độ Oxyz cho A(2; - 3;0) và mặt phẳng (\alpha):x + 2y - z + 3 = 0. Tìm phương trình mặt phẳng (P) đi qua A sao cho (P) vuông góc với (α) và (P) song song với trục Oz?

    (P)\bot(\alpha) nên \overrightarrow{n_{(P)}}\bot\overrightarrow{n_{(\alpha)}}(P)//Oz nên \overrightarrow{n_{(P)}}\bot\overrightarrow{k}

    Chọn \overrightarrow{n_{(P)}} =
\left\lbrack \overrightarrow{n_{(\alpha)}};\overrightarrow{k}
ightbrack = (2; - 1;0)

    Phương trình mặt phẳng (P)2x - y - 7 = 0.

  • Câu 4: Thông hiểu

    Với giá trị nào của m thì mặt phẳng \left( P ight):2x - y + z - 5 = 0 tiếp xúc với mặt cầu 

    \left( S ight):{x^2} + {y^2} + {z^2} - 2mx + 2\left( {2 - m} ight)y - 4mz + 5{m^2} + 1 = 0?

    Theo đề bài, ta xác định các hệ số của (S): a = m;b = m - 2;c = 2m;d = 5{m^2} + 1

    Suy ra tâm I của cầu có tọa độ là I\left( {m,m - 2,2m} ight).

    \Rightarrow {R^2} = {m^2} + {\left( {m - 2} ight)^2} + 4{m^2} - 5{m^2} - 1 = {m^2} - 4m + 3 > 0

    \Rightarrow m < 1 \vee m > 3.\left( P ight) tiếp xúc (S) khi: 

    d\left( {I,P} ight) = \frac{{\left| {3m - 3} ight|}}{{\sqrt 6 }} = R = \sqrt {{m^2} - 4m+3}

    \Leftrightarrow {m^2} + 2m - 3 = 0 \Leftrightarrow m =  - 3 \vee m = 1   (loại)

    \Rightarrow m =  - 3

  • Câu 5: Nhận biết

    Trong không gian Oxyz cho mặt phẳng (P):x + y - 2z + 4 = 0. Một vectơ pháp tuyến của mặt phẳng (P) là:

    Một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n} = (1;1; - 2).

  • Câu 6: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y - z - 1 = 0 và mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4y + 6z + 5 =
0. Khẳng định nào sau đây đúng?

    Mặt cầu (S) có tâm I(1; 2; −3), bán kính R = \sqrt{1 + 4 + 9 - 5} = 3

    Ta có:

    d\left( I;(P) ight) = \frac{\left| 2.1
+ 2.2 - ( - 3) - 1 ight|}{\sqrt{4 + 4 + 1}} = \frac{8}{3} <
R

    Do đó (P) cắt mặt cầu (S).

  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{2} = \frac{y - 3}{- 1} = \frac{z -
1}{1} cắt mặt phẳng (P):2x - 3y + z
- 2 = 0 tại điểm I(a;b;c). Khi đó a + b + c bằng:

    Ta có \left\{ I ight\} = d \cap
(P) suy ra \left\{ \begin{matrix}
I \in d \\
I \in (P) \\
\end{matrix} ight.

    I \in d nên tọa độ của I có dạng (1 + 2t;3 - t;1 + t),t\mathbb{\in
R}.

    I \in (P) nên ta có phương trình:

    2(1 + 2t) - 3(3 - t) + 1 + t - 2 = 0
\Leftrightarrow t = 1

    Vậy I(3;2;2) suy ra a + b + c = 3 + 2 + 2 = 7.

  • Câu 8: Nhận biết

    Trong không gian Oxyz, hai điểm A(7; - 2;2)B(1;2;4). Phương trình nào sau đây là phương trình mặt cầu đường kính AB?

    Mặt cầu nhận AB làm đường kính, do đó mặt cầu nhận trung điểm I(4;0;3) của AB làm tâm và có bán kính R = \frac{AB}{2} = \sqrt{56}

    Suy ra phương trình mặt cầu cần tìm là (x
- 4)^{2} + y^{2} + (z - 3)^{2} = 56.

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + (z + 3)^{2} =
25 theo thiết diện là đường tròn bán kính r bằng bao nhiêu?

    Mặt cầu (S) có tâm I(1;1; - 3) và bán kính R = 5.

    Khoảng cách từ tâm I đến (Oxy) bằng 3.

    \Rightarrow r = \sqrt{5^{2} - 3^{2}} =
4

  • Câu 10: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA⊥ (ABCD) và SA = a. Gọi E và F lần lượt là trung điểm của SB, SD. Côsin của góc hợp bới hai mặt phẳng (AEF) và (ABCD) là

    Chọn hệ trục tọa độ Oxyz sao cho A≡ O, B∈Ox, D∈Oy, S∈Oz.

    \Rightarrow
B(a;0;0),D(0;a;0),S(0;0;a)

    \Rightarrow E\left(
\frac{a}{2};0;\frac{a}{2} ight),F\left( 0;\frac{a}{2};\frac{a}{2}
ight)

    \Rightarrow \overrightarrow{AE} = \left(
\frac{a}{2};0;\frac{a}{2} ight);\overrightarrow{AF} = \left(
0;\frac{a}{2};\frac{a}{2} ight)

    Vectơ pháp tuyến của mp(AEF) là \overrightarrow{n_{1}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AF} ightbrack = \left( \frac{-
a}{4};\frac{- a}{4};\frac{a}{4} ight)

    \Rightarrow \overrightarrow{n_{1}} =
(1;1; - 1)

    Vectơ pháp tuyến của mp(ABCD) là: \overrightarrow{n_{2}} = \overrightarrow{AS} =
(0;0;a)

    \Rightarrow \overrightarrow{n_{2}} =
(0;0;1)

    Vậy côsin góc giữa 2 mặt phẳng (AEF) và (ABCD) là:

    \cos\left( (AEF);(ABCD) ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{1}{\sqrt{3}} =
\frac{\sqrt{3}}{3}

  • Câu 11: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A(−3; 0; 1), B(1; −1; 3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng nào cách B một khoảng cách nhỏ nhất?

    Hình vẽ minh họa

    Gọi d là đường thẳng cần tìm.

    Gọi (Q) là mặt phẳng qua A(−3; 0; 1) và song song với (P): x − 2y + 2z − 5 = 0.

    ⇒ (Q): x − 2y + 2z + 1 = 0d ⊂ (Q).

    Gọi H, K lần lượt là hình chiếu của B lên d và (Q) thì BH > BK.

    Do đó d(B; d) nhỏ nhất khi và chỉ khi H ≡ K.

    Đường thẳng BK đi qua B(1; −1; 3) và vuông góc với (Q) \Rightarrow BK:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lại có: K = BK \cap (Q) \Rightarrow K =
\left( \frac{- 1}{9};\frac{11}{9};\frac{7}{9} ight)

    Đường thẳng d qua A và nhận \overrightarrow{AK} = \left(
\frac{26}{9};\frac{11}{9};\frac{- 2}{9} ight) làm vectơ chỉ phương nên đường thẳng cần tìm là: \frac{x +
3}{26} = \frac{y}{11} = \frac{z - 1}{- 2}.

  • Câu 12: Nhận biết

    Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(1;1;2)B(2; - 1;0) là:

    Ta có \overrightarrow{AB} = (1, - 2, -
2)

    Phương trình đường thẳng AB đi qua B(2; -
1;0) nhận vectơ \overrightarrow{AB} làm vectơ chỉ phương nên có phương trình là: \frac{x - 2}{- 1} =
\frac{y + 1}{2} = \frac{z}{2}.

  • Câu 13: Vận dụng cao

    Trong hệ tọa độ Oxyz, cho mặt cầu (S): (x − 1)^2 + (y + 2)^2 + (z − 3)^2 = 12 và mặt phẳng (P): 2x + 2y − z − 3 = 0. Gọi (Q) là mặt phẳng song song với (P) và cắt (S) theo thiết diện là đường tròn (C) sao cho khối nón có đỉnh là tâm của mặt cầu và đáy là hình tròn giới hạn bởi (C) có thể tích lớn nhất. Phương trình của mặt phẳng (Q)

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; −2; 3) và bán kính R = 2\sqrt{3}

    Gọi r là bán kính đường tròn (C) và H là hình chiếu của I lên (Q).

    Đặt IH = x ta có:

    r = \sqrt{R^{2} - x^{2}} = \sqrt{12 -
x^{2}}

    Vậy thể tích khối nón tạo được là:

    V = \frac{1}{3}IH.S_{\left( (C) ight)}
= \frac{1}{3}.x.\pi\left( \sqrt{12 - x^{2}} ight)^{2} =
\frac{1}{3}.\pi\left( 12x - x^{3} ight)

    Gọi f'(x) = 12x - 3x^{2} ta có: f'(x) = 0 \Leftrightarrow x = \pm
2 chỉ có x = 2 \in \left(
0;2\sqrt{3} ight)

    Ta có bảng biến thiên như sau:

    Vậy V_{\max} =
\frac{1}{3}.\pi.16 khi x = IH =
2

    Mặt phẳng (Q) // (P) nên (Q): 2x + 2y − z + a = 0 (a eq - 3)

    Vậy d\left( I;(Q) ight) = IH
\Leftrightarrow \frac{\left| 2 + 2( - 2) - 3 + a ight|}{\sqrt{2^{2} +
2^{2} + ( - 1)^{2}}} = 2

    \Leftrightarrow |a - 5| = 6
\Leftrightarrow \left\lbrack \begin{matrix}
a = 11 \\
a = - 1 \\
\end{matrix} ight.

    Vậy mặt phẳng (Q) có phương trình 2x + 2y − z − 1 = 0 hoặc 2x + 2y − z + 11 =0

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(1;0;1),B(0;2;3),C(2;1;0). Độ dài đường cao của tam giác ABC kẻ từ C là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2;2) \Rightarrow \left| \overrightarrow{AB}
ight| = 3 \\
\overrightarrow{AC} = (1;1; - 1) \\
\end{matrix} ight.

    \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( -
4;1;3)

    S_{ABC} = \frac{1}{2}\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight| =
\frac{\sqrt{26}}{2}

    S_{ABC} =
\frac{1}{2}d(C;AB).AB

    \Rightarrow d(C;AB) =
\frac{2S_{ABC}}{AB} = \frac{\sqrt{26}}{3}

  • Câu 15: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 16: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x + y - z - 3 = 0(Q):x + y + z - 1 = 0. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P),(Q) là:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + y - z - 3 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 2z - 2 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2z + 2 \\
y = - 3z - 1 \\
\end{matrix} ight.. Đặt z =
t ta suy ra x = 2t + 2,y = - 3t -
1.

    Từ đó ta thu được phương trình đường thẳng: d:\frac{x - 2}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}

    Xét điểm A(2; - 1;0) \in d, ta thấy A chỉ thuộc đường thẳng: \frac{x}{2} = \frac{y - 2}{3} = \frac{z +
1}{1}

  • Câu 17: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 18: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta vuông góc với mặt phẳng (\alpha):x + 2z + 3 = 0. Một vectơ chỉ phương của \Delta là:

    Mặt phẳng (α) có một vectơ pháp tuyến là \overrightarrow{n} = (1;0;2).

    Đường thẳng \Delta vuông góc với mặt phẳng (α) nên có vectơ chỉ phương là \overrightarrow{a} = \overrightarrow{n} =
(1;0;2).

  • Câu 19: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 20: Vận dụng

    Với giá trị nào của thì hai mặt phẳng sau song song:

    \left( P ight):(m - 2)x - 3my + 6z - 6 = 0;\,\,\,\,\,\left( Q ight):(m - 1)x + 2y + (3 - m)z + 5 = 0

    Áp dụng điều kiện để 2 mp song song, ta xét:

    {A_1}{B_2} - {A_2}{B_1} = \left( {m - 2} ight)2 + \left( {m - 1} ight)3m = 3{m^2} - m - 4 = 0

    \Leftrightarrow m =  - 1,m = \frac{4}{3}

    {B_1}{C_2} - {B_2}{C_1} =  - 3m\left( {3 - m} ight) - 2.6 = 3{m^2} - 9m - 12 = 0

    \Leftrightarrow m =  - 1,m = 4

    {C_1}{A_2} - {C_1}{A_1} = 6\left( {m - 1} ight) - \left( {3 - m} ight)\left( {m - 2} ight) = {m^2} + m = 0

    \Leftrightarrow m =  - 1,m = 0

    Với m=-1 thoả mãn cả 3 điều kiện trên \Rightarrow \left( P ight)//\left( Q ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo