Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi
lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
):
Theo đề bài, ta có:
Gọi
Ta có:
Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi
lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
):
Theo đề bài, ta có:
Gọi
Ta có:
Cho hình lập phương
có cạnh bằng 1 có
trùng với ba trục
. Viết phương trình mặt cầu
tiếp xúc với tất cả các cạnh của hình lập phương.
tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.
Tâm là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng
Bán kính
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Cho hình hộp chữ nhật
có
trong hệ trục Oxyz sao cho A trùng với
lần lượt trùng với
. Gọi M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của giao tuyến (d) của mặt phẳng (MNP) và (xOy)
Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:
Như vậy ta tính được vecto và
theo a, b, c.
(MNP) có vecto pháp tuyến là tích có hướng của 2 vecto và
(MNP) có đi qua M và nhận làm 1 VTCP có phương trình là:
Hai đường thẳng
và
cắt nhau tại điểm A. Tọa độ của A là:
Để tìm được A là giao điểm của 2 đường thẳng, ta sẽ xét và giải hệ PT giữa chúng.
Từ phương trình của ,tính x,y theo z được
Thế vào phương trình của , được z = - 4 .
Từ đó suy ra x = 1, y = - 2
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
. Trong các đường thẳng sau, đường thẳng nào vuông góc với
.
Mặt phẳng có một vectơ pháp tuyến là
.
Đường thẳng có một vectơ chỉ phương là
Suy ra .
Trong không gian với hệ tọa độ
, cho mặt phẳng
và
với
là tham số thực. Tổng các giá trị của m để
và
vuông góc nhau bằng bao nhiêu?
Ta có:
có vectơ pháp tuyến
có véc-tơ pháp tuyến
(P) và (Q) vuông góc với nhau khi và chỉ khi
Điều này tương đương với
.
Trong không gian với hệ tọa độ
, phương trình mặt cầu tâm
bán kính
là:
Phương trình mặt cầu tâm bán kính
là:
Tổng quát .
Trong không gian với hệ tọa độ
, cho mặt cầu
. Một mặt cầu
có tâm
và tiếp xúc ngoài với mặt cầu
. Kết luận nào sau đây đúng về phương trình mặt cầu
?
Ta có tâm và bán kính mặt cầu lần lượt là
.
Suy ra
Gọi là bán kính mặt cầu
. Theo giả thiết ta có:
Khi đó phương trình mặt cầu cần tìm là: .
Cho hai điểm
và vectơ
. Mặt phẳng chứa hai điểm A, B và song song với vectơ
có phương trình:
Theo đề bài, ta có:
Như vậy, và
sẽ là cặp vectơ chỉ phương của
Chọn làm vectơ pháp tuyến của
Phương trình mặt phẳng có dạng
Mặt khác, vì điểm nên thay tọa độ điểm A vào phương trình mặt phẳng
được:
Vậy có phương trình là:
Phương trình tổng quát của mặt phẳng đi qua
và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Trong không gian
cho mặt cầu
Đường kính của
bằng
Ta có bán kính của là
nên đường kính của
bằng
.
Trong không gian tọa độ
, cho mặt phẳng
và đường thẳng
, sin của góc giữa đường thẳng
và mặt phẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P):
Trong không gian
, cho điểm
thuộc mặt phẳng
. Mệnh đề nào dưới đây đúng?
Ta có điểm thuộc mặt phẳng
nên:
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và đường thẳng
. Viết phương trình đường thẳng
đi qua
, đồng thời vuông góc với cả hai đường thẳng
và
.
Đường thẳng và
có vectơ chỉ phương lần lượt là
Gọi là vectơ chỉ phương của đường thẳng ∆.
Do
Mà ∆ đi qua do đó ∆ có phương trình là
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua hai điểm
tạo với mặt phẳng
một góc
. Khi đó
thuộc khoảng nào dưới đây?
Mặt phẳng (P) đi qua hai điểm A, B nên
Vì tạo với mặt phẳng
một góc
nên
Thay a = b = 1 vào phương trình (*) được:
Cho hình chóp tứ giác đều S.ABCD có
. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:
Gọi O = AC ∩ BD
Tam giác SAO vuông nên suy ra
Gắn tọa độ như hình vẽ:
Ta có:
Vì G là trọng tâm tam giác SCD nên
Ta có:
Góc giữa đường thẳng BG với đường thẳng SA bằng:
Vậy đáp án cần tìm là: .
Cho 2 đường thẳng
và 
Mặt phẳng (P) chứa (d) và song song với
có phương trình tổng quát :
Phương trình (d) cho và vectơ chỉ phương của (d) là:
Phương trình cho vectơ chỉ phương của
là :
Gọi là điểm bất kỳ thuộc mặt phẳng (P) thì :
Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.
Trong không gian với hệ tọa độ
, cho hai điểm
và
. Hai điểm
thay đổi sao cho
và
. Biết rằng luôn tồn tại một mặt cầu cố định đi qua
và tiếp xúc với mặt phẳng
. Bán kính của mặt cầu đó là:
Phương trình mặt phẳng là
.
Gọi và
là tâm và bán kính của mặt cầu cố định.
Ta có
Mà không đổi nên
, hay
.
Mặt khác ta có .
Vậy .
Trong không gian với hệ trục tọa độ
, cho đường thẳng
và mặt phẳng
. Điểm
nào dưới đây thuộc
và thỏa mãn khoảng cách từ
đến mặt phẳng
bằng
?
Vì A ∈ (d) nên ta có tọa độ điểm A(2a; −a; a − 1).
Khoảng cách từ A đến (P) là
Với