Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng

    Phương trình tổng quát của mặt phẳng là : 2x + y = 0.

  • Câu 2: Vận dụng

    Tính góc của hai đường thẳng \left( {d'} ight):\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z + 2}}{4}\left( d ight):x = 3 + 2t;\,\,y = 2t - 4;\,\,z = 2\,\,\,\left( {t \in R} ight).

    Theo đề bài, ta có (d’) và (d) có vec-tơ chỉ phương lần lượt là:\overrightarrow a  = \left( {2,4,4} ight);\overrightarrow b  = \left( {2,2,0} ight)

    Áp dụng công thức cosin của góc giữa 2 đường thẳng, ta có:

    \Rightarrow \cos \alpha  = \frac{{\left| {2.2 + 4.2 + 4.0} ight|}}{{6.2\sqrt 2 }} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = {45^0}

  • Câu 3: Nhận biết

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) chéo nhau khi và chỉ khi:

     Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ;\,\overrightarrow b } ight].\,\overrightarrow {AB} \, e \,\,0

    Suy ra (D) và (d) chéo nhau.

  • Câu 4: Vận dụng

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = - t \\
z = 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d':\frac{x - 1}{- 3} = \frac{y - 2}{1} =
\frac{z - 3}{2}. Vị trí tương đối của dd'

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u_{d}} = (3; - 1; - 2) và đi qua điểm M(−1; 0; 1).

    Đường thẳng d’ có vectơ chỉ phương \overrightarrow{u_{d'}} = ( -
3;1;2).

    Hai vectơ \overrightarrow{u_{d}}\overrightarrow{u_{d'}} cùng phương và điểm M không thuộc đường thẳng d’.

    Do đó hai đường thẳng d và d’ song song với nhau.

  • Câu 6: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1;1;4),B(2;7;9)C(0;9;13).

    Ta có: \overrightarrow{AB} =
(1;6;5),\overrightarrow{AC} = ( - 1;8;9)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (14; - 14;14) =
14(1; - 1;1)

    Mặt phẳng (ABC) đi qua điểm A(1;1;4) và nhận \overrightarrow{n} = (1; - 1;1) làm vectơ pháp tuyến có phương trình là:

    x - 1 - (y - 1) + z - 4 = 0

    \Leftrightarrow x - y + z - 4 =
0

  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, gọi d là đường thẳng đi qua O, thuộc mặt phẳng (Oyz) và cách điểm M(1; - 2;1) một khoảng nhỏ nhất. Côsin của góc giữa d và trục tung bằng

    Hình vẽ minh họa

    Gọi H; K lần lượt là hình chiếu của M trên mặt phẳng (Oyz) và trên đường thẳng d.

    Ta có: \left\{ \begin{matrix}
d(M;d) = MK \geq MH = 1 \\
H(0; - 2;1) \\
\end{matrix} ight.

    Suy ra d(M;d) nhỏ nhất khi H \equiv K. Khi đó d có một vecto chỉ phương là \overrightarrow{OH} = (0; -
2;1)

    Khi đó: \cos(d;Oy) = \frac{\left|
\overrightarrow{OH}.\overrightarrow{j} ight|}{\left|
\overrightarrow{OH} ight|.\left| \overrightarrow{j} ight|} =
\frac{2}{\sqrt{5}}

  • Câu 8: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 9: Nhận biết

    Cho mặt cầu (S) tâm O, bán kính R và mặt phẳng (P) có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc (S). Đường thẳng OM cắt (P) tại N. Hình chiếu của O trên (P) là I. Mệnh đề nào sau đây đúng?

     Mệnh đề đúng

    Vì I là hình chiếu của O trên (P) nên  d\left[ {O,\left( P ight)} ight] = OId\left[ {O,\left( P ight)} ight] = R nên I là tiếp điểm của (P)(S).

    Đường thẳng OM cắt (P) tại N nên IN vuông góc với OI tại I.

    Suy ra IN tiếp xúc với (S).

    Tam giác OIN vuông tại I nên ON = R\sqrt 2  \Leftrightarrow IN = R.

  • Câu 10: Vận dụng cao

    Trong không gian Oxyz, cho tam giác ABC vuông tại A, \widehat{ABC} = 30^{0}, BC = 3\sqrt{2}, đường thẳng BC có phương trình \frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{-
4}, đường thẳng AB nằm trong mặt phẳng (\alpha):x + z - 3 =
0. Biết rằng đỉnh C có cao độ âm. Tìm hoành độ của đỉnh A.

    Hình vẽ minh họa:

    Tọa độ điểm B là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
\frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{- 4} \\
x + z - 3 = 0 \\
\end{matrix} ight.\  \Rightarrow B(2;3;1)

    Do C ∈ BC nên C(4 + c;5 + c; - 7 -
4c)

    Theo giả thiết BC = 3\sqrt{2} nên: 18(2 + c)^{2} = 18 \Leftrightarrow
\left\lbrack \begin{matrix}
c = - 1 \Rightarrow C(3;4; - 3) \\
c = - 3 \Rightarrow C(1;2;5) \\
\end{matrix} ight.

    Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).

    Gọi A(x;y;3 - x) \in (\alpha). Do \widehat{ABC} = 30^{0} nên:

    \left\{ \begin{matrix}
AB = \frac{3\sqrt{6}}{2} \\
AC = \frac{3\sqrt{2}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(x - 2)^{2} + (y - 3)^{2} + (2 - z)^{2} = \frac{27}{2} \\
(x - 3)^{2} + (y - 4)^{2} + (6 - z)^{2} = \frac{9}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
2x^{2} - 18x + y^{2} - 8y + \frac{113}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10x + 2y - 53 = 0 \\
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
2x^{2} - 8x + \left( \frac{53 - 10x}{2} ight)^{2} - 6.\left( \frac{53
- 10x}{2} ight) + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 4 \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Rightarrow A\left( \frac{9}{2};4; - \frac{3}{2}
ight)

    Vậy đáp án cần tìm là \frac{9}{2}.

  • Câu 11: Thông hiểu

    Cho tứ diện ABCDA(2;0;0),B(0;4;0),C(0;0; - 2),D(2;1;3). Tính độ dài đường cao của tứ diện ABCD kẻ từ đỉnh D?

    Phương trình mặt phẳng (ABC) là:

    \frac{x}{2} + \frac{y}{4} + \frac{x}{-
2} = 1 \Leftrightarrow 2x + y - 2z - 4 = 0

    Khoảng cách từ đỉnh D đến mặt phẳng (ABC) là

    d = \frac{|2.2 + 1 - 2.3 -
4|}{\sqrt{2^{2} + 1^{2} + 2^{2}}} = \frac{5}{3}.

  • Câu 12: Nhận biết

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 13: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(1;0;1),B( - 1;2;1). Viết phương trình đường thẳng \Delta đi qua tâm đường tròn ngoại tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).

    Tam giác OAB vuông tại O nên tâm đường tròn ngoại tiếp là trung điểm AB có tọa độ I(0; 1; 1).

    Mặt phẳng (OAB) có véc-tơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = ( - 2; -
2;2).

    Suy ra đường thẳng ∆ có \overrightarrow{u} = (1;1; - 1) và đi qua I(0; 1; 1).

    Vậy phương trình đường thẳng ∆ là \Delta:\left\{ \begin{matrix}
x = t \\
y = 1 + t \\
z = 1 - t \\
\end{matrix} ight..

  • Câu 14: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz; cho điểm A(1;1;3),B(1;3;2),C( - 1;2;3). Viết phương trình mặt phẳng (ABC)?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (0;2; - 1) \\
\overrightarrow{AC} = ( - 2;1;0) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(1;2;4)

    Vậy (ABC):x - 1 + 2(y - 1) + 4(z - 3) =
0

    \Leftrightarrow x + 2y + 4z - 15 =
0

  • Câu 15: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và điểm M \in OI sao cho MO = 2MI (tham khảo hình vẽ).

    Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng

    Gắn hệ tọa độ như hình vẽ:

    Cạnh hình lập phương là 1, ta được tọa độ các điểm như sau:

    \left\{ \begin{matrix}M\left( \dfrac{1}{2};\dfrac{1}{2};\dfrac{1}{6}ight),C'(0;1;0),D'(1;1;0) \\A(1;0;1),B(0;0;1) \\\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}\overrightarrow{n_{(MC'D')}} = (0;1;3) \\\overrightarrow{n_{(MAB)}} = (0;5;3) \\\end{matrix} ight.\Rightarrow \cos\left( (MC'D');(MAB)ight)= \frac{|5.1 + 3.3|}{\sqrt{5^{2} + 3^{2}}.\sqrt{1^{2} + 3^{2}}}= \frac{7\sqrt{85}}{85}

    Suy ra \sin\left( (MC'D');(MAB)
ight) = \sqrt{1 - \left( \frac{7\sqrt{85}}{85} ight)^{2}} =
\frac{6\sqrt{85}}{85}

  • Câu 16: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 17: Thông hiểu

    Với giá trị nào của m thì mặt phẳng \left( Q ight):x + y + z + 3 = 0 cắt mặt cầu

    \left( S ight):{x^2} + {y^2} + {z^2} - 2\left( {m + 1} ight)x + 2my - 2mz + 2{m^2} + 9 = 0?

    Theo đề bài, ta xác định các hệ số của (S):

    a = m + 1;b =  - m;c = m;d = 2{m^2} + 9.

    Suy ra tâm I có tọa độ là I\left( {m + 1, - m,m} ight)

    \Rightarrow {R^2} = {\left( {m + 1} ight)^2} + {m^2} + {m^2} - 2{m^2} - 9 = {m^2} + 2m - 8 > 0

    \Rightarrow m <  - 4 \vee m > 2

    (P) cắt (S) khi:

    d\left( {I,P} ight) < R \Leftrightarrow \frac{{\left| {m + 4} ight|}}{{\sqrt 3 }} < \sqrt {{m^2} + 2m - 8}  \Leftrightarrow m <  - 4 \vee m > 5

  • Câu 18: Vận dụng cao

    Cho mặt cầu tâm O, bán kính R. Xét mặt phẳng (P) thay đổi cắt mặt cầu theo giao tuyến là đường tròn (C). Hình nón (N) có đỉnh S nằm trên mặt cầu, có đáy là đường tròn (C) và có chiều cao là h(h > R). Hình trụ (T) có đáy là đường tròn (C) và có cùng chiều cao với hình nón (N). Tính thể tích V khối trụ được tạo nên bởi (T) theo R, biết V có giá trị lớn nhất.

    Hình vẽ minh họa

    Gọi khoảng cách từ O dến mặt phẳng (P)d với (0 \leqd \leq R), đường tròn (C) có bán kính là r.

    V = h \cdot \pi \cdot r^{2} = \pi(R +d)\left( R^{2} - d^{2} ight) = \pi\left( - d^{3} - Rd^{2} + R^{2}d +R^{3} ight)

    V^{'}(d) = \pi\left( - 3d^{2} - 2Rd+ R^{2} ight) = 0 \Rightarrow \left\lbrack \begin{matrix}d = - 1 \\d = \frac{R}{3} \\\end{matrix} \Rightarrow d = \frac{R}{3} ight.

    Ta có V(0) = \pi R^{3},V(R) = 0V\left( \frac{R}{3} ight) =\frac{32}{27}\pi R^{3}.

    Vậy V = \frac{32}{27}\piR^{3}

  • Câu 19: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình mặt cầu tâm I bán kính IM?

    Hình chiếu vuông góc của M trên Ox là: I(1;0;0)

    \Rightarrow IM = \sqrt{13}

    Suy ra phương trình mặt cầu tâm I bán kính IM là: (x -
1)^{2} + y^{2} + z^{2} = 13.

  • Câu 20: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, gọi (\alpha) là mặt phẳng chứa đường thẳng (\beta):\frac{x - 2}{1} = \frac{y - 3}{1} =
\frac{z}{2} và vuông góc với mặt phẳng (\beta):x + y - 2z + 1 = 0. Hỏi giao tuyến của (\alpha)(\beta) đi qua điểm nào dưới đây?

    Ta có: (\alpha):\left\{ \begin{matrix}
d \subset (\alpha)\  \\
(\beta)\bot(\alpha) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
A(2;3;0) \in d \Rightarrow A \in (\alpha)\  \\
\overrightarrow{n_{\alpha}}\bot\overrightarrow{u_{d}} = (1;1;2)\  \\
\overrightarrow{n_{\alpha}}\bot\overrightarrow{n_{\beta}} = (1;1; - 2)
\\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
A(2;3;0) \in (\alpha)\  \\
\overrightarrow{n_{\alpha}} = \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{\beta}} ightbrack = ( -
4;4;0) \\
\end{matrix} ight.

    Suy ra (\alpha):x - y + 1 =
0

    Khi đó giao tuyến thỏa hệ \left\{
\begin{matrix}
x - y + 1 = 0 \\
x + y - 2z + 1 = 0 \\
\end{matrix} ight.

    Thay các phương án vào hệ, ta nhận phương án (2;3;3).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo