Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0  và vuông góc với mặt phẳng \left( S ight):x - 3y + z - 4 = 0

    Theo đề bài, (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0 nên (P) có dạng là 

    \begin{array}{l}\left( P ight):2x - y + z + 2 + m\left( {x + y - z - 3} ight) = 0,\,\,m \in \mathbb{R} \\ \Leftrightarrow \left( P ight):\left( {m + 2} ight)x + \left( {m - 1} ight)y + \left( {1 - m} ight)z + 2 - 3m = 0\end{array}

    Chọn \vec{n} làm vectơ pháp tuyến của (P), ta có: \left( P ight):\overrightarrow n  = \left( {m + 2,m - 1,1 - m} ight) \bot \overrightarrow {{n_s}}  = \left( {1, - 3,1} ight) 

    \begin{array}{l} \Rightarrow \left( {m + 2} ight)1 + \left( {m - 1} ight)\left( { - 3} ight) + \left( {1 - m} ight)1 = 0 \Leftrightarrow m = 2\\ \Rightarrow \left( P ight):4x + y - z - 4 = 0\end{array}

  • Câu 2: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + z - 3 = 0 và điểm A(1;2;0). Viết phương trình đường thẳng qua A và vuông góc với (P).

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; -
2;1) nên đường thẳng cần tìm có vectơ chỉ phương là \overrightarrow{n} = (1; - 2;1).

    Vậy phương trình đường thẳng đi qua A và vuông góc với (P) là: \frac{x - 1}{1} = \frac{y - 2}{- 2} =
\frac{z}{1}

  • Câu 3: Vận dụng

    Cho hình hộp chữ nhật ABCD.EFGHAB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz  sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với  Ox,Oy,Oz . Gọi  M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của giao tuyến (d) của mặt phẳng (MNP) và (xOy)

    Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:

    M\left( {a,\frac{b}{2},0} ight);\,\,\,N\left( {\frac{a}{2},0,c} ight);\,\,\,P\left( {0,b,\frac{c}{2}} ight)

    Như vậy ta tính được vecto \overrightarrow {MN}\overrightarrow {MP} theo a, b, c.

    \overrightarrow {MN}  =  - \frac{1}{2}\left( {a,b, - 2c} ight);\,\,\,\overrightarrow {MP}  =  - \frac{1}{2}\left( {2a, - b, - c} ight)

    (MNP) có vecto pháp tuyến là tích có hướng của 2 vecto  \overrightarrow {MN}\overrightarrow {MP}

    =  > \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } ight] =  - 3\left( {bc,ca,ab} ight) = \overrightarrow {{n_P}}

    (MNP) có đi qua M và nhận \overrightarrow {{n_P}} làm 1 VTCP có phương trình là:

    \begin{array}{l}\left( {MNP} ight):bc\left( {x - a} ight) + ca\left( {y - \frac{b}{2}} ight) + ab.z = 0\\ =  > \left( {MNP} ight):2bcx + 2cay + 2abz - 3abc = 0\\ =  > (d):2bcx + 2cay + 2abz - 3abc = 0;\,\,\,z = 0\end{array}

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =
25. Đường thẳng d cắt mặt cầu (S) tại hai điểm A, B. Biết tiếp diện của (S) tại A, B vuông góc. Tính độ dài AB.

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; 2; −1), bán kính R = 5. Xét mặt phẳng (P) chứa d cắt giao tuyến của hai tiếp diện tại O.

    Ta có tứ giác OIAB là hình vuông.

    Suy ra AB = IA.\sqrt{2} = R\sqrt{2} =
5\sqrt{2}.

  • Câu 5: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),B( - 2;0;3),M(0;0;1)N(0;3;1). Mặt phẳng (P) đi qua các điểm M;N sao cho khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P). Hỏi có bao nhiêu mặt phẳng (P) thỏa mãn đề bài?

    Gọi \overrightarrow{n} = (a;b;c) là vectơ pháp tuyến của (P). Khi đó (P): ax + by + cz + d = 0.

    M(0; 0; 1) ∈ (P) ⇔ c + d = 0 ⇔ c = −d.

    N(0; 3; 1) ∈ (P) ⇔ 3b + c + d = 0 ⇔ 3b = 0 ⇔ b = 0.

    Do đó (P): ax − dz + d = 0

    Khoảng cách từ điểm B đến (P) gấp hai lần khoảng cách từ điểm A đến (P)

    \frac{| - 2a - 3d + d|}{\sqrt{a^{2} +
d^{2}}} = 2.\frac{|a + d|}{\sqrt{a^{2} + d^{2}}}

    \Leftrightarrow \frac{\left| - 2(a + d)
ight|}{\sqrt{a^{2} + d^{2}}} = 2.\frac{|a + d|}{\sqrt{a^{2} +
d^{2}}} (luôn đúng)

    Vậy có vô số mặt phẳng (P).

  • Câu 6: Thông hiểu

    Trong không gian với hệ trục toạ độ Oxyz, tìm tất cả giá trị tham số m để đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
1}{1} song song với mặt phẳng (P):2x + y - m^{2}z + m = 0.

    Ta có:

    d qua điểm M(1; 0; 1) và có VTCP là \overrightarrow{u} = (1;2;1)

    (P) có VTPT là \overrightarrow{n} =
\left( 2;1; - m^{2} ight)

    Vì d // (P) nên \overrightarrow{u}\bot\overrightarrow{n}
\Rightarrow \overrightarrow{u}.\overrightarrow{n} = 0 \Leftrightarrow m
= \pm 2

    Với m = 2, (P): 2x + y − 4z + 2 = 0 ⇒ M ∈ (P) (loại).

    Với m = −2, (P): 2x + y − 4z − 2 = 0\Rightarrow M otin (P) (thỏa mãn).

  • Câu 7: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;2;1),B(3; - 1;5). Phương trình mặt phẳng (P) vuông góc với AB và hợp với các trục tọa độ một tứ diện có thể tích bằng \frac{3}{2}

    Ta có \overrightarrow{AB} = (2; - 3;4)
\Rightarrow (P):2x - 3y + 4z + m = 0

    Gọi M, N, P lần lượt là giao điểm của mặt phẳng (P) với trục Ox, Oy, Oz

    Suy ra M\left( - \frac{m}{2};0;0
ight),N\left( 0;\frac{m}{3};0 ight),P\left( 0;0;\frac{- m}{4}
ight)

    Ta có thể tích tứ diện V_{O.MNP} =
\frac{1}{6}.\left| \frac{m^{3}}{24} ight| = \frac{3}{2}
\Leftrightarrow m = \pm 6

    Vậy đáp án cần tìm là: 2x - 3y + 4z \pm 6
= 0

  • Câu 8: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1; - 4;0) có bán kính bằng 3. Phương trình của (S) là:

    Mặt cầu (S) có tâm I(1; - 4;0)và bán kính bằng 3có phương trình là:

    (x - 1)^{2} + (y + 4)^{2} + (z - 0)^{2}
= 3^{2}

    \Rightarrow (x - 1)^{2} + (y + 4)^{2} +
z^{2} = 9

  • Câu 9: Vận dụng cao

    Trong không gian Oxyz, , cho hai mặt cầu (S_1), (S_2) có phương trình lần lượt là (x − 2)^2 + (y − 1)^2 + (z − 1)^2 = 16(x − 2)^2 + (y − 1)^2 + (z − 5)^2 = 4. Gọi (P) là mặt phẳng thay đổi tiếp xúc với cả hai mặt cầu (S_1), (S_2). Tính khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P).

    Hình vẽ minh họa

    Mặt cầu (S1) có tâm I(2; 1; 1) và bán kính R_1 = 4.

    Mặt cầu (S2) có tâm J(2; 1; 5) và bán kính R_2 = 2.

    Gọi A, B lần lượt là hai tiếp điểm của (S1), (S2) với mặt phẳng (P).

    Gọi M là giao điểm của IJ với mặt phẳng (P). Ta có:

    \frac{MI}{MJ} = \frac{IA}{IB} =
2

    Suy ra J là trung điểm của IM, do đó M(2; 1; 9).

    Gọi véc-tơ pháp tuyến của mặt phẳng (P) là \overrightarrow{n} = (a;b;c),\left( a^{2} + b^{2}
+ c^{2} > 0 ight) khi đó phương trình của mặt phẳng (P) là

    a(x − 2) + b(y − 1) + c(z − 9) = 0

    Ta có:

    d\left( I;(P) ight) = 4
\Leftrightarrow \frac{|8c|}{\sqrt{a^{2} + b^{2} + c}} = 4

    \Leftrightarrow \frac{|c|}{\sqrt{a^{2} +
b^{2} + c}} = \frac{1}{2} \Leftrightarrow a^{2} + b^{2} =
3c^{2}

    \Leftrightarrow \left( \frac{a}{c}
ight)^{2} + \left( \frac{b}{c} ight)^{2} = 3\ \ \ (1)

    Mặt khác d\left( O;(P) ight) =
\frac{|2a + b + 9c|}{\sqrt{a^{2} + b^{2} + c^{2}}} = \frac{|2a + b +
9c|}{2c} = \frac{1}{2}\left| \frac{2a}{c} + \frac{b}{c} + 9 ight|\ \ \
(2)

    Áp dụng bất đẳng thức Bunhiacopxki ta có

    \left( \frac{2a}{c} + \frac{b}{c}
ight)^{2} \leq \left( 2^{2} + 1^{2} ight)\left\lbrack \left(
\frac{a}{c} ight)^{2} + \left( \frac{b}{c} ight)^{2} ightbrack\
\ \ (3)

    Từ (1) và (3) ta có: \left( \frac{2a}{c}
+ \frac{b}{c} ight)^{2} \leq 15 \Leftrightarrow - \sqrt{15} \leq
\frac{2a}{c} + \frac{b}{c} \leq \sqrt{15}\ \ (4)

    Từ (2) và (4) suy ra:

    \frac{9 - \sqrt{15}}{2} \leq d\left(
O;(P) ight) \leq \frac{9 + \sqrt{15}}{2}

    Vậy khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P) bằng \frac{9 + \sqrt{15}}{2}.

  • Câu 10: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 - t \\
y = 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào sau đây là phương trình chính tắc của d?

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = ( - 1;1;1) và đi qua điểm M(2;1;0). Do đó phương trình chính tắc của d là: \frac{x - 2}{- 1} = \frac{y - 1}{1} =
\frac{z}{1}

  • Câu 11: Thông hiểu

    Cho hai đường thẳng \left( {d'} ight)\left\{ \begin{array}{l}x = 3 - 2t\\y = 1 + t\\z =  - 2 - t\end{array} ight.\,\,;\,\,\,\,\,\left( {d''} ight)\left\{ \begin{array}{l}x = m - 3\\y = 2 + 2m\\z = 1 - 4m\end{array} ight.\,\,;t,\,\,m \in \mathbb{R}

    Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).

     Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP

    VTCP\left( P ight):\overrightarrow a  = \left( { - 2,1, - 1} ight)

    Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :

    VTCP\left( P ight):\overrightarrow b  = \left( {1,2, - 4} ight)

    Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :

    VTPT\left( P ight):\left[ {\overrightarrow a ,\overrightarrow b } ight] = \left( {2,9,5} ight)

    Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):

    \begin{array}{l}A\left( {3,1, - 2} ight) \in \left( P ight) \Rightarrow \left( {x - 3} ight)2 + \left( {y - 1} ight)9 + \left( {z + 2} ight)5 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \left( P ight):2x + 9y + 5z - 5 = 0\end{array}

  • Câu 12: Nhận biết

    Trong không gian Oxyz, hãy tính pq lần lượt là khoảng cách từ điểm M(5; - 2;0) đến mặt phẳng (Oxz) và mặt phẳng (P):3x - 4z + 5 = 0?

    Do mặt phẳng (Oxz) có phương trình y = 0 nên

    p = d\left( M;(Oxz) ight) = \frac{| -
2|}{\sqrt{0^{2} + 1^{2} + 0^{2}}} = 2

    Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên

    q = d\left( M;(P) ight) = \frac{|3.5 -
4.0 + 5|}{\sqrt{3^{2} + 0^{2} + ( - 4)^{2}}} = 4

  • Câu 13: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 14: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} + (z - 3)^{2} =
4. Tâm mặt cầu (S) có tọa độ là:

    Mặt cầu (S):(x - a)^{2} + (y - b)^{2} +
(z - c)^{2} = R^{2} có tâm là I(a;b;c)

    Mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} +
(z - 3)^{2} = 4 có tâm I(2; -
1;3).

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0. Mệnh đề nào dưới đây đúng?

    Ta có điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0 nên:

    2a - b + 1 - 3 = 0 \Leftrightarrow 2a -
b = 2

  • Câu 16: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 17: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0),B(0;2;0),C(0;0;m). Để mặt phẳng (ABC) hợp với mặt phẳng (Oxy) một góc 60^{0} thì giá trị của m là

    Mặt phẳng Oxy có vectơ pháp tuyến là \overrightarrow{k} = (0;0;1)

    Ta có \overrightarrow{AB} = ( -
1;2;0);\overrightarrow{AC} = ( - 1;0;m), suy ra vectơ pháp tuyến của mặt phẳng (ABC)\overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(2m;m;2)

    Theo bài ra ta có:

    cos60^{0} = \frac{\left|
\overrightarrow{k}.\overrightarrow{n} ight|}{\left| \overrightarrow{k}
ight|.\left| \overrightarrow{n} ight|} \Leftrightarrow \sqrt{5m^{2}
+ 4} = 4

    \Leftrightarrow m^{2} = \frac{12}{5}
\Leftrightarrow m = \pm \sqrt{\frac{12}{5}}

  • Câu 18: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA⊥ (ABCD) và SA = a. Gọi E và F lần lượt là trung điểm của SB, SD. Côsin của góc hợp bới hai mặt phẳng (AEF) và (ABCD) là

    Chọn hệ trục tọa độ Oxyz sao cho A≡ O, B∈Ox, D∈Oy, S∈Oz.

    \Rightarrow
B(a;0;0),D(0;a;0),S(0;0;a)

    \Rightarrow E\left(
\frac{a}{2};0;\frac{a}{2} ight),F\left( 0;\frac{a}{2};\frac{a}{2}
ight)

    \Rightarrow \overrightarrow{AE} = \left(
\frac{a}{2};0;\frac{a}{2} ight);\overrightarrow{AF} = \left(
0;\frac{a}{2};\frac{a}{2} ight)

    Vectơ pháp tuyến của mp(AEF) là \overrightarrow{n_{1}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AF} ightbrack = \left( \frac{-
a}{4};\frac{- a}{4};\frac{a}{4} ight)

    \Rightarrow \overrightarrow{n_{1}} =
(1;1; - 1)

    Vectơ pháp tuyến của mp(ABCD) là: \overrightarrow{n_{2}} = \overrightarrow{AS} =
(0;0;a)

    \Rightarrow \overrightarrow{n_{2}} =
(0;0;1)

    Vậy côsin góc giữa 2 mặt phẳng (AEF) và (ABCD) là:

    \cos\left( (AEF);(ABCD) ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{1}{\sqrt{3}} =
\frac{\sqrt{3}}{3}

  • Câu 19: Vận dụng cao

    Trong không gian Oxyz, cho tam giác ABC vuông tại A, \widehat{ABC} = 30^{0}, BC = 3\sqrt{2}, đường thẳng BC có phương trình \frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{-
4}, đường thẳng AB nằm trong mặt phẳng (\alpha):x + z - 3 =
0. Biết rằng đỉnh C có cao độ âm. Tìm hoành độ của đỉnh A.

    Hình vẽ minh họa:

    Tọa độ điểm B là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
\frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{- 4} \\
x + z - 3 = 0 \\
\end{matrix} ight.\  \Rightarrow B(2;3;1)

    Do C ∈ BC nên C(4 + c;5 + c; - 7 -
4c)

    Theo giả thiết BC = 3\sqrt{2} nên: 18(2 + c)^{2} = 18 \Leftrightarrow
\left\lbrack \begin{matrix}
c = - 1 \Rightarrow C(3;4; - 3) \\
c = - 3 \Rightarrow C(1;2;5) \\
\end{matrix} ight.

    Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).

    Gọi A(x;y;3 - x) \in (\alpha). Do \widehat{ABC} = 30^{0} nên:

    \left\{ \begin{matrix}
AB = \frac{3\sqrt{6}}{2} \\
AC = \frac{3\sqrt{2}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(x - 2)^{2} + (y - 3)^{2} + (2 - z)^{2} = \frac{27}{2} \\
(x - 3)^{2} + (y - 4)^{2} + (6 - z)^{2} = \frac{9}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
2x^{2} - 18x + y^{2} - 8y + \frac{113}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10x + 2y - 53 = 0 \\
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
2x^{2} - 8x + \left( \frac{53 - 10x}{2} ight)^{2} - 6.\left( \frac{53
- 10x}{2} ight) + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 4 \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Rightarrow A\left( \frac{9}{2};4; - \frac{3}{2}
ight)

    Vậy đáp án cần tìm là \frac{9}{2}.

  • Câu 20: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) có phương trình dạng x^{2} + y^{2} + z^{2} - 4x + 2y - 2az + 10a =
0. Tập hợp các giá trị thực của tham số a để (S) có chu vi 8\pi?

    Đường tròn lớn có chu vi là 8\pi nên bán kính của (S)\frac{8\pi}{2\pi} = 4

    Từ phương trình của (S) suy ra bán kính của (S)R = \sqrt{2^{2} + 1^{2} + a^{2} -
10a}

    Do đó \sqrt{2^{2} + 1^{2} + a^{2} - 10a}
= 4 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = 11 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: a \in \left\{ -
1;11 ight\}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo