Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Bài kiểm tra 15 phút Phương trình mặt phẳng, đường thẳng, mặt cầu của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(2,-1,3),  B (3, 1, 2) và song song với vectơ \overrightarrow a  = \left( {3, - 1, - 4} ight) là:

    Theo đề bài, ta có: \overrightarrow {AB}  = \left( {1,2, - 1} ight);\left[ {\overrightarrow {AB} \overrightarrow {,a} } ight] = \overrightarrow n  = \left( { - 9,1, - 7} ight)

    Chọn \overrightarrow n  = \left( {9, - 1,7} ight) làm 1 vectơ pháp tuyến.

    Phương trình mặt phẳng cần tìm có dạng : 9x - y + 7z + D = 0

    Mà mp lại qua A nên 9.2 - ( - 1) + 7.3 + D = 0 \Leftrightarrow D =  - 40

    Phương trình cần tìm là: 9x - y + 7z - 40 = 0.

  • Câu 2: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3; - 1),B(1;2;4). Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng AB?

    Ta có \overrightarrow{BA} = (1;1; -
5)

    Vì điểm A(2;3; - 1) otin \frac{x +
2}{1} = \frac{y + 3}{1} = \frac{z - 1}{- 5} nên \frac{x + 2}{1} = \frac{y + 3}{1} = \frac{z - 1}{-
5} không phải là phương trình đường thẳng AB.

    Các đường thẳng còn lại đều có vectơ chỉ phương là (1; 1; −5) và đi qua điểm A(2; 3; −1) hoặc đi qua điểm B(1; 2; 4).

  • Câu 3: Vận dụng

    Trong không gian Oxyz, cho điểm M( - 1;0;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại A,B,C sao cho 3OA = 2OB = OC eq 0?

    Từ giả thiết, ta có thể coi A(2a;0;0),B(0;3b;0),C(0;0;6c) (với |a| = |b| = |c| eq 0).

    Khi đó, phương trình mặt phẳng (P) là \frac{x}{2a} + \frac{y}{3b} + \frac{z}{6c} =1.

    Do (P) đi qua M(−1; 0; 3) nên -\frac{1}{2a} + \frac{1}{2c} = 1.

    Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.

    Cũng theo trên, b = ±a, nên có 2 giá trị của b.

    Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.

  • Câu 4: Vận dụng cao

    Cho đường thẳng d:\left\{\begin{matrix} x=-t \\ y=2t-1 \\ z=t+2\end{matrix}ight. và mặt phẳng (\alpha): 2x-y-2z-2=0. Mặt phẳng (P) qua d  và tạo với (\alpha ) một góc nhỏ nhất. Một véc tơ pháp tuyến của (P)  là:

    Tìm vecto pháp tuyến

    Gọi \triangle = (\alpha)\cap (P), A =d \cap(\alpha), B \in d(Beq A);

    H là hình chiếu vuông góc của B lên (\alpha ); K là hình chiếu của H lên \triangle.

    Suy ra: (\widehat{(d),(\alpha)})=\widehat{BAH} cố định; (\widehat{(\alpha),(P)})=\widehat{BKH}.

    \widehat{BKH} \geqslant \widehat{BAH} (vì HK \leq HA)  \Rightarrow (\widehat{d, (\alpha)}) \leq (\widehat{(P),(\alpha)} )

    Suy ra (\widehat{(P),(\alpha)}) nhỏ nhất bằng (\widehat{d, (\alpha)}) khi K\equiv A .

    Khi đó \triangle \perp dvà có một VTCP \vec{u_\triangle} = [\vec{u_d}, \vec{u_\alpha}]=-3(1;0;1) .

    Vậy (P) có một VTPT là \vec{n_p} = [\vec{u_\triangle}, \vec{u_d}]=2(-1;1;1).

  • Câu 5: Thông hiểu

    Cho hình lập phương OABC.DEFG có cạnh bằng 1 có \overrightarrow {OA} ,\,\,\overrightarrow {OC} ,\,\,\overrightarrow {OG} trùng với ba trục \overrightarrow {Ox} ,{m{ }}\overrightarrow {Oy} ,{m{ }}\overrightarrow {Oz}. Viết phương trình mặt cầu \left( {{S_3}} ight) tiếp xúc với tất cả các cạnh của hình lập phương.

     \left( {{S_2}} ight) tiếp xúc với 12 cạnh của hình lập phương tại trung điểm của mỗi cạnh.

    Tâm I\left( {\frac{1}{2},\frac{1}{2},\frac{1}{2}} ight) là trung điểm chng của 6 đoạn nối trung điểm của các cặp cạnh đối diện đôi một có độ dài bằng \sqrt 2

    Bán kính {R_3} = \frac{{\sqrt 2 }}{2}

    \begin{array}{l} \Rightarrow \left( {{S_2}} ight):{\left( {x - \dfrac{1}{2}} ight)^2} + {\left( {y - \dfrac{1}{2}} ight)^2} + {\left( {z - \dfrac{1}{2}} ight)^2} = \dfrac{1}{2}\\ \Rightarrow \left( {{S_3}} ight):{x^2} + {y^2} + {z^2} - x - y - z + \dfrac{1}{4} = 0\end{array}

  • Câu 6: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2;0;1),C( -
2;2;3). Đường thẳng \Delta qua trực tâm H của tam giác ABC và nằm trong mặt phẳng (ABC) cùng tạo với các đường thẳng AB;AC một góc \alpha < 45^{0} có một véc-tơ chỉ phương là \overrightarrow{u} =
(a;b;c) với c là số nguyên tố và a;b là số nguyên. Giá trị biểu thức ab + bc + ca bằng bao nhiêu?

    Ta có:

    \overrightarrow{AB} = (1; -
2;2);\overrightarrow{AC} = ( - 3;0;4)

    \overrightarrow{n_{(ABC)}} =
\left\lbrack \overrightarrow{AB};\overrightarrow{AC} ightbrack = ( -
8; - 10; - 6)

    \cos(AB;\Delta) = \frac{|a - 2b +
2c|}{3\sqrt{a^{2} + b^{2} + c^{2}}}

    \cos(AC;\Delta) = \frac{| - 3a +
4c|}{5\sqrt{a^{2} + b^{2} + c^{2}}}

    Theo đề bài, ta suy ra:

    \cos(AB;\Delta) =
\cos(AC;\Delta)

    \Leftrightarrow 5|a - 2b + 2c| = 3| - 3a
+ 4c|

    \Leftrightarrow \left\lbrack
\begin{matrix}
7a - 5b - c = 0\ \ \ (1) \\
2a + 5b - 11c = 0\ \ \ (2) \\
\end{matrix} ight.

    Vì ∆ ⊂ (ABC) nên \overrightarrow{u}.\overrightarrow{n_{(ABC)}} = 0
\Leftrightarrow 4a + 5b + 3c = 0\ \ (3)

    Trường hợp 1: Xét hệ phương trình:

    \left\{ \begin{matrix}7a - 5b - c = 0 \\4a + 5b + 3c = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{- 2c}{11} \\b = \dfrac{- 5c}{11} \\\end{matrix} ight.\  \Leftrightarrow \overrightarrow{u} = \left(\dfrac{- 2c}{11};\dfrac{- 5c}{11};c ight)

    Chọn c = 11, ta có \overrightarrow{u} = (
- 2; - 5;11) (kiểm tra lại điều kiện \alpha < 45^{0} ta thấy \overrightarrow{u} đang xét thỏa mãn).

    Trường hợp 2: Xét hệ phương trình

    \left\{ \begin{matrix}
2a + 5b - 11c = 0 \\
4a + 5b + 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 7c \\
b = 5c \\
\end{matrix} ight.\  \Leftrightarrow \overrightarrow{u} = ( -
7c;5c;c)

    Chọn c = 2, ta có \overrightarrow{u} = (
- 14;10;2) (kiểm tra lại điều kiện \alpha < 45^{0} ta thấy \overrightarrow{u} đang xét không thỏa mãn).

    Vậy ab + bc + ca = −67

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\frac{x - 1}{3} = \frac{y + 2}{- 4} = \frac{z -
3}{- 5} đi qua điểm nào sau đây?

    Thay tọa độ điểm (1; - 2;3) vào phương trình đường thẳng d ta được \frac{0}{3} = \frac{0}{- 4} = \frac{0}{-
5}, do đó điểm này thuộc đường thẳng d.

  • Câu 8: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x - 3y + 2z - 1 = 0,(Q):x - z + 2 =0. Mặt phẳng (\alpha) vuông góc với cả (P)(Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của mặt phẳng (\alpha) là:

    Ta có: (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (1; - 3;2), (Q) có vectơ pháp tuyến \overrightarrow{n_{Q}} =
(1;0; - 1).

    Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n_{P}};\overrightarrow{n_{Q}} ightbrack = (3;3;3) =
3(1;1;1)

    Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).

    Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến \overrightarrow{n_{(\alpha)}} = (1;1;1) nên (α) có phương trình x + y + z - 3 =
0.

  • Câu 9: Vận dụng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 10: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 11: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 10y - 6z + 49 =
0. Tính bán kính của mặt cầu (S)?

    Phương trình mặt cầu:

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0 có tâm I(a;b;c) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Ta có: a = 4;b = - 5;c = 3;d =
49

    Khi đó R = \sqrt{a^{2} + b^{2} + c^{2} -
d} = 1

  • Câu 12: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c>0. Biết rằng mặt phẳng (ABC) đi qua điểm M(\frac 1 7; \frac 2 7 ; \frac 3 7) và tiếp xúc với mặt cầu (S):(x-1)^2+(y-2)^2+(z-3)^2=\frac{72}{7}. Tính T=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}.

    Mặt phẳng (ABC) đi qua ba điểm A(a;0;0), B(0;b;0), C(0;0;c) nên có phương trình là:

    \frac{x}{a} +\frac{y}{b}+\frac{z}{c}=1

    Ta có M(\frac 1 7; \frac 2 7 ; \frac 3 7) \in (ABC) nên \frac{1}{a} +\frac{2}{b}+\frac{3}{c}=7.

    Mặt cầu (S) có tâm I(1;2;3) và bán kính R=\sqrt \frac{72}{7}.

    (ABC) tiếp xúc với  (S)

    \Leftrightarrow d(I, (ABC))=R\Leftrightarrow \dfrac { | \dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}-1 |}{\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}}=\sqrt{\frac{72}{7} }

    \Leftrightarrow \dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}= \dfrac{7}{2}

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; - 1;1) và vectơ \overrightarrow{n} = (1;3;4). Viết phương trình mặt phẳng (P) đi qua điểm M(2; - 1;1) và có vectơ pháp tuyến \overrightarrow{n}.

    Phương trình tổng quát của mặt phẳng (P) có dạng:

    (x - 2) + 3(y - 1) + 4(z - 1) =
0

    \Leftrightarrow x + 3y + 4z - 3 =
0

  • Câu 14: Thông hiểu

    Đường thẳng (d): \frac{{x - 2}}{3} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 4}}{4}có phương trình tham số là:

    Ta có đường thẳng (d) qua A ( 2, -1, 4) và có vectơ chỉ phương là \overrightarrow a  = \left( {3, - 2,4} ight) =  - \left( { - 3,2, - 4} ight) có phương trình tham số là:

    => (d) \left\{ \begin{array}{l}x = 2 - 3m\\y =  - 1 + 2m\\z = 4 - 4m\end{array} ight.\,\,;m \in \mathbb{R}  

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, cho hai mặt phẳng (P):x + 2y - 2z + 2018 = 0,(Q):x +
my + (m - 1)z + 2017 = 0 (với m là tham số thực). Khi hai mặt phẳng (P)(Q) tạo với nhau một góc nhỏ nhất thì điểm M nào dưới đây nằm trong (Q) ?

    Ta có: (P) có 1 VTPT {\overrightarrow{n}}_{P} = (1;2; - 2),(Q) có 1 VTPT {\overrightarrow{n}}_{Q} = (1;m;m
- 1).

    Gọi \alpha là góc giữa (P)(Q).

    Ta có:

    cos\alpha = \frac{\left|
{\overrightarrow{n}}_{P} \cdot {\overrightarrow{n}}_{Q} ight|}{\left|
{\overrightarrow{n}}_{P} ight| \cdot \left| {\overrightarrow{n}}_{Q}
ight|} = \frac{|1 + 2m - 2m + 2|}{3\sqrt{1 + m^{2} + (m - 1)^{2}}} =
\frac{1}{\sqrt{2m^{2} - 2m + 2}} = \frac{1}{\sqrt{2\left( m -
\frac{1}{2} ight)^{2} + \frac{3}{2}}}.

    Do 0 \leq \alpha \leq 90^{\circ} nên \alpha nhỏ nhất khi cos\alpha lớn nhất \Leftrightarrow \sqrt{2\left( m - \frac{1}{2}
ight)^{2} + \frac{3}{2}} nhỏ nhất

    \Leftrightarrow m =
\frac{1}{2}.

    \Rightarrow (Q):2x + y - z + 4034 = 0
\Rightarrow M( - 2017;1;1) \in (Q).

  • Câu 17: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (P):ax + by + cz - 27 = 0 đi qua hai điểm A(3;2;1),B( - 3;5;2) và vuông góc với mặt phẳng (Q):3x + y + z + 4 =
0. Tính tổng S = a + b +
c.

    Từ giả thiết ta có hệ phương trình:

    \left\{ \begin{matrix}
3a + 2b + c - 27 = 0 \\
- 3a + 5b + 2c - 27 = 0 \\
3a + b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 6 \\
b = 27 \\
c = - 45 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = -
12

  • Câu 18: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình mặt cầu tâm I bán kính IM?

    Hình chiếu vuông góc của M trên Ox là: I(1;0;0)

    \Rightarrow IM = \sqrt{13}

    Suy ra phương trình mặt cầu tâm I bán kính IM là: (x -
1)^{2} + y^{2} + z^{2} = 13.

  • Câu 19: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;5;3) và hai mặt phẳng (P):2x + y + 2z - 8 = 0,(Q):x - 4y + z - 4 =
0. Viết phương trình đường thẳng d đi qua A và song song với hai mặt phẳng (P),(Q)?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2;1;2) \\
\overrightarrow{n_{(Q)}} = (1; - 4;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack = (9;0;
- 9)

    Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là \overrightarrow{u} =
(1;0; - 1).

    Vậy phương trình đường thẳng d là \left\{
\begin{matrix}
x = 3 + t \\
y = 5 \\
z = 3 - t \\
\end{matrix} ight.

  • Câu 20: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    Ta có:

    x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    \Leftrightarrow (x - 4)^{2} + (y +
1)^{2} + z^{2} = 16

    Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là: I(4; - 1;0),R = 4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo