Trong không gian với hệ trục toạ độ
, cho điểm
. Viết phương trình mặt cầu tâm
cắt trục
tại hai điểm
sao cho
?
Hình vẽ minh họa
Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên
Phương trình mặt cầu là: .
Trong không gian với hệ trục toạ độ
, cho điểm
. Viết phương trình mặt cầu tâm
cắt trục
tại hai điểm
sao cho
?
Hình vẽ minh họa
Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên
Phương trình mặt cầu là: .
Trong không gian với hệ trục tọa độ
, cho hai đường thẳng
và
. Vị trí tương đối của
và
là
Đường thẳng d có vectơ chỉ phương và đi qua điểm M(−1; 0; 1).
Đường thẳng d’ có vectơ chỉ phương .
Hai vectơ và
cùng phương và điểm M không thuộc đường thẳng d’.
Do đó hai đường thẳng d và d’ song song với nhau.
Trong không gian với hệ trục tọa độ
, cho điểm
và
. Phương trình mặt cầu tâm
và đi qua
có phương trình là:
Bán kính mặt cầu là
Phương trình mặt cầu tâm và
là:
Cho tứ giác ABCD có
. Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng
.
Tỷ số thể tích hai khối AMNE và ABCD:
M chia cạnh BA theo tỷ số -2
Vecto pháp tuyến của
Trong không gian
, cho tam giác
vuông tại
,
,
, đường thẳng
có phương trình
, đường thẳng
nằm trong mặt phẳng
. Biết rằng đỉnh
có cao độ âm. Tìm hoành độ của đỉnh
.
Hình vẽ minh họa:
Tọa độ điểm B là nghiệm của hệ phương trình
Do C ∈ BC nên
Theo giả thiết nên:
Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).
Gọi . Do
nên:
Vậy đáp án cần tìm là .
Trong không gian với hệ tọa độ
, cho đường thẳng
và mặt
cầu (S) tâm I(1;2;1), bán kính R. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với
(S) tạo với nhau góc
. Hãy viết phương trình mặt cầu (S)

Gọi M, N là tiếp điểm của mặt phẳng (P), (Q) và mặt cầu (S). Gọi H là hình chiếu của điểm I trên đường thẳng d.
TH1: Góc :
Theo bài ra ta có:
TH2: Góc :
Theo bài ra ta có:
.
Trong không gian
, cho tam giác
có
, đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình
. Biết
, khi đó
bằng
Hình vẽ minh họa
Giả sử đường cao là ta có vectơ chỉ phương của CH là
.
B thuộc đường trung tuyến nên
.
Suy ra
Vì nên
.
Vậy .
Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với ![]()
Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là:
Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận làm 1 VTPT. Ta có VTPT của
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
và đường thẳng
. Phương trình mặt phẳng
chứa đường thẳng
và tạo với mặt phẳng
một góc nhỏ nhất là
Vì (P) chứa d nên phương trình của (P) có dạng với
.
Gọi α là góc giữa (P) và (Q), ta có:
Nếu thì
Nếu thì
.
Khi đó
Ta có α nhỏ nhất khi và chỉ khi cosα lớn nhất.
Do đó và
.
Khi đó , chọn
.
Vậy phương trình mặt phẳng (P) cần tìm là: .
Cho hình chóp
có đáy
là hình vuông cạnh
, SAB là tam giác đều và
vuông góc với
. Tính cosϕ với ϕ là góc tạo bởi
và ![]()
Hình vẽ minh họa
Gọi O M, lần lượt là trung điểm của AB; CD.
Vì SAB là tam giác đều và (SAB) vuông góc với (ABCD) nên SO ⊥ (ABCD).
Xét hệ trục có
Suy ra
Suy ra
Mặt phẳng (SAC) có vectơ pháp tuyến
Mặt phẳng (SAD) có vectơ pháp tuyến
Trong không gian với hệ tọa độ
, cho ba điểm
. Mặt phẳng
đi qua ba điểm
có phương trình tổng quát
. Biết
, tìm giá trị của
?
Do nên mặt phẳng
có phương trình
Do đi qua các điểm
nên ta có hệ:
Vậy .
Trong không gian
, cho đường thẳng
. Mặt phẳng nào trong các mặt phẳng sau đây vuông góc với đường thẳng
.
Đường thẳng có vectơ chỉ phương
Mặt phẳng vuông góc với nhận vectơ
làm vectơ pháp tuyến.
Do đó là mặt phẳng thỏa mãn.
Trong không gian
, mặt phẳng
đi qua điểm
, đồng thời vuông góc với giá của vectơ
có phương trình là:
Mặt phẳng nhận vectơ
làm vectơ pháp tuyến và đi qua điểm
nên có phương trình là
.
Trong không gian với hệ tọa độ
, cho mặt cầu
, mặt phẳng
. Gọi
là mặt phẳng vuông góc với mặt phẳng
,
song song với giá của vectơ
và
tiếp xúc với
. Lập phương trình mặt phẳng
.
Mặt cầu có tâm I(1; −3; 2) và bán kính
.
Từ giả thiết suy ra là một vectơ pháp tuyến của
.
Ta có , suy ra
có vectơ pháp tuyến
Vậy có phương trình dạng
Do tiếp xúc với mặt cầu
nên:
Vậy có hai mặt phẳng thỏa mãn yêu cầu bài toán là .
Tìm tọa độ giao điểm của đường thẳng
và mặt phẳng
?
Gọi I là giao điểm của d và (P).
Ta có
Suy ra
Trong không gian với hệ tọa độ
, cho mặt cầu
. Đường kính
bằng:
Đường kính của mặt cầu bằng:
.
Trong không gian
đường thẳng
và mặt phẳng
. Góc giữa mặt phẳng
và đường thẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng và mặt phẳng
:
Trong không gian với hệ toạ độ
, cho điểm
, đường thẳng
và mặt phẳng
. Viết phương trình đường thẳng
qua
vuông góc với d và song song với
.
Đường thẳng có vec tơ chỉ phương
.
Mặt phẳng có vec tơ pháp tuyến
.
Đường thẳng ∆ vuông góc với nên vectơ chỉ phương
Đường thẳng ∆ song song với (P) nên
Ta có
Suy ra vec tơ chỉ phương của đường thẳng ∆ là
Vậy phương trình đường thẳng ∆ là .
Trong không gian
, cho mặt phẳng
. Tính góc tạo bởi
với trục
?
Mặt phẳng có một vectơ pháp tuyến là
Trục có một vectơ chỉ phương là
Gọi α là góc giữa và mặt phẳng
:
Trong không gian với hệ tọa độ
, cho điểm
và vectơ
. Viết phương trình mặt phẳng
đi qua điểm
và có vectơ pháp tuyến
.
Phương trình tổng quát của mặt phẳng (P) có dạng: