Trong không gian
, cho mặt phẳng
và
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
Trong không gian
, cho mặt phẳng
và
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
Trong không gian với hệ tọa độ
, tìm tọa độ tâm
và bán kính
của mặt cầu ![]()
Tâm của có tọa độ là
Bán kính mặt cầu là:
.
Cho tam giác ABC với
.
Viết phương trình tổng quát của mặt phẳng
vuông góc với mặt phẳng
song song đường cao AH của tam giác ABC.
Theo đề bài, ta có: song song đường cao
Trong không gian với hệ tọa độ
cho ba điểm
và mặt phẳng
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất.
Trong không gian với hệ tọa độ cho ba điểm
và mặt phẳng
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất.
Trong không gian với hệ tọa độ
, cho phương trình đường thẳng
. Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng
?
Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:
.
Trong không gian
cho hai mặt phẳng
. Góc giữa hai mặt phẳng
bằng:
Ta có: có 1 vectơ pháp tuyến là
có 1 vectơ pháp tuyến là
Khi đó:
Trong không gian với hệ tọa độ
, cho mặt phẳng
và mặt cầu
. Khẳng định nào sau đây đúng?
Mặt cầu (S) có tâm , bán kính
Ta có:
Do đó (P) cắt mặt cầu (S).
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) chéo nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:
Suy ra (D) và (d) chéo nhau.
Trong không gian với hệ tọa độ
, cho đường thẳng
và mặt
cầu (S) tâm I(1;2;1), bán kính R. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với
(S) tạo với nhau góc
. Hãy viết phương trình mặt cầu (S)

Gọi M, N là tiếp điểm của mặt phẳng (P), (Q) và mặt cầu (S). Gọi H là hình chiếu của điểm I trên đường thẳng d.
TH1: Góc :
Theo bài ra ta có:
TH2: Góc :
Theo bài ra ta có:
.
Trong không gian với hệ tọa độ
, cho đường thẳng
. Mặt phẳng (P) chứa đường thẳng
và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là
. Tính tổng ![]()
Hình vẽ minh họa
Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương
Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.
Phương trình tham số của
Lấy điểm N(1; 2; 0) ∈ ∆.
Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.
Khi đó
Lại có:
Vậy lớn nhất khi và chỉ khi H trùng với K
Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).
Vectơ pháp tuyến của (Q) là
Vectơ pháp tuyến của (P) là
Phương trình mặt phẳng (P) là
Vậy
Trong không gian với hệ tọa độ
, cho mặt phẳng
có phương trình
. Gọi
lần lượt là giao điểm của mặt phẳng
với các trục tọa độ
. Tính thể tích
của khối chóp
.
Ta có:
cắt các trục tọa độ tại
Do đôi một vuông góc nên
Cho hình hộp chữ nhật ABCD.EFGH có AB = a; AD = b; AE = c trong hệ trục Oxyz sao cho A trùng với
lần lượt trùng với Ox, Oy, Oz . Gọi M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của đường thẳng MN.
Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:
(MN) là đường thẳng đi qua M và nhận vecto là 1 VTCP có PT là:
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và
. Khi hai mặt phẳng
,
tạo với nhau một góc nhỏ nhất thì mặt phẳng
đi qua điểm M nào sau đây?
Gọi là góc giữa
và
.
Ta có:
Do nên
nhỏ nhất khi
lớn nhất
.
.
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Giá trị
phải thỏa mãn điều kiện nào để mặt cong là mặt cầu:
? ![]()
Ta có:
là mặt cầu
.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng
và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa hai mặt phẳng (SBD) và (ABCD). Nếu
thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng:
Hình vẽ minh họa
Gọi .
Hình vuông có độ dài đường chéo bằng
suy ra hình vuông đó có cạnh bằng
.
Ta có .
Ta có .
Chọn hệ trục tọa độ như hình vẽ. Ta có
.
Khi đó .
Mặt phẳng có vectơ pháp tuyến
.
Mặt phẳng có vectơ pháp tuyến
.
Suy ra .
Trong không gian
, cho hai điểm
. Viết phương trình đường thẳng
đi qua tâm đường tròn ngoại tiếp tam giác
và vuông góc với mặt phẳng
.
Tam giác OAB vuông tại O nên tâm đường tròn ngoại tiếp là trung điểm AB có tọa độ I(0; 1; 1).
Mặt phẳng (OAB) có véc-tơ pháp tuyến .
Suy ra đường thẳng ∆ có và đi qua I(0; 1; 1).
Vậy phương trình đường thẳng ∆ là .
Trong không gian với hệ trục tọa độ
, cho mặt phẳng
và đường thẳng
. Tính góc giữa đường thẳng
và mặt phẳng
.
Ta có:
Do đó:
Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng .
Khi đặt hệ tọa độ
vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu
(tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu
có phương trình
. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.
Đáp án : 18km
Khi đặt hệ tọa độ vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu
(tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu
có phương trình
. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.
Đáp án : 18km
Ta có
.
Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là 18km.
Đáp số: 18km.
Trong không gian với hệ tọa độ
, tính khoảng cách giữa đường thẳng
và trục
.
Đường thẳng d có vectơ chỉ phương và đi qua điểm
Trục Ox có vectơ chỉ phương và đi qua điểm
Khoảng cách giữa đường thẳng d và trục Ox là: