Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Gọi AN,\
CM là các trung tuyến của tam giác ABC. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CM} =
\overrightarrow{CA} + \overrightarrow{AM} \Rightarrow
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    Suy ra \overrightarrow{AN} +\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{AB} +\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CA} +\frac{1}{2}\overrightarrow{AM}= \frac{1}{2}\overrightarrow{AB} +\frac{1}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AC} +\frac{1}{2} \cdot \frac{1}{2}\overrightarrow{AB} =\frac{3}{4}\overrightarrow{AB}

    Do đó \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}.

  • Câu 2: Nhận biết

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    \overrightarrow{AB}.\overrightarrow{AC}.
= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}
ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight) =
a.a.cos60^{{^\circ}} = \frac{a^{2}}{2}.

  • Câu 3: Nhận biết

    Điều kiện nào là điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB?

    Điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB\overrightarrow{IA} = - \overrightarrow{IB}
\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

  • Câu 4: Vận dụng cao

    Cho tam giác ABC đều cạnh a. Đường thẳng \Delta qua A và song song với BC, lấy điểm M \in \Delta. Tính giá trị nhỏ nhất của \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| khi M di động trên \Delta.

    Hình vẽ minh họa

    Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có

    Ta có:

    \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| = \left| \overrightarrow{CA} + 2\left(
\overrightarrow{IB} - \overrightarrow{IM} ight) ight|

    = \left| \overrightarrow{CA} +
2\overrightarrow{IB} - 2\overrightarrow{IM} ight| = \left|
\overrightarrow{CA} + \overrightarrow{DB} - 2\overrightarrow{IM}
ight|

    = \left| \overrightarrow{CA} -
\overrightarrow{CA} - 2\overrightarrow{IM} ight|

    = 2\left| \overrightarrow{IM} ight|
\geq 2IH = 2.\frac{1}{2}.\frac{a\sqrt{3}}{2} =
\frac{a\sqrt{3}}{2}

    Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng \Delta.

  • Câu 5: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm A(2; - 3),B(3;4). Tìm tọa độ điểm M \in Ox sao cho ba điểm A;B;M thẳng hàng?

    Theo bài ra ta có: M \in Ox \Rightarrow
M(x;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;3) \\
\overrightarrow{BM} = (x - 3; - 4) \\
\end{matrix} ight.

    Ba điểm A, M, B thẳng hàng khi và chỉ khi \overrightarrow{AM}\overrightarrow{BM} cùng phương hay

    \frac{x - 2}{x - 3} = \frac{3}{- 4}
\Leftrightarrow - 4(x - 2) = 3(x - 3)

    \Leftrightarrow 7x = 17 \Leftrightarrow
x = \frac{17}{7}(tm)

    Vậy tọa độ điểm M là M\left(
\frac{17}{7};0 ight).

  • Câu 6: Nhận biết

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} được xác định bằng công thức nào dưới đây?

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} là một số, kí hiệu là \overrightarrow{a}.\overrightarrow{b}, được xác định bởi công thức sau:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|\cos\left( \overrightarrow{a},\overrightarrow{b}
ight).

  • Câu 7: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 8: Vận dụng

    Cho hai lực \overrightarrow{F_1}\overrightarrow{F_2} cùng tác động vào một vật đứng tại điểm O, biết hai lực \overrightarrow{F_1}\overrightarrow{F_2} đều có cường độ là 50 (N) và chúng hợp với nhau một góc 60°. Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu?

     

    Đặt \overrightarrow {AB},\overrightarrow {AC},\overrightarrow {AD} tương ứng với các vectơ\overrightarrow {F} như hình vẽ.

    Ta có: \left| {\overrightarrow {AB}  + \overrightarrow {AC} } ight| = \left| {\overrightarrow {AB}  + \overrightarrow {BD} } ight| = \left| {\overrightarrow {AD} } ight| = AD.

    Theo đề bài, góc \widehat{B AC} bằng 60 độ. Suy ra \hat B=120^{\circ}.

    A{D^2} = A{B^2} + B{D^2} - 2.AB.BD.\cos 60^\circ  = 7500. Suy ra AD=50\sqrt3N.

     

     

  • Câu 9: Vận dụng

    Trong hệ tọa độ Oxy, cho hai điểm A(2; - 3),\ B(3;4). Tìm tọa độ điểm M thuộc trục hoành sao cho A,\ B,\ M thẳng hàng.

    Điểm M \in
Ox\overset{}{ightarrow}M(m;0). Ta có \overrightarrow{AB} = (1;7)\overrightarrow{AM} = (m - 2;3).

    ĐểA,B,M thẳng hàng \Leftrightarrow \overrightarrow{AB} cùng phương với \overrightarrow{AM}
\Leftrightarrow \frac{m - 2}{1} = \frac{3}{7} \Leftrightarrow m =
\frac{17}{7}.

  • Câu 10: Nhận biết

    Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?

    Theo bài ra ta có: 

    Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a

    => |\overrightarrow{AB}|=AB=2a

  • Câu 11: Thông hiểu

    Trong các điều kiện dưới đây, chọn điều kiện cần và đủ để một điểm M nằm giữa hai điểm phân biệt A và B?

    Điều kiện cần và đủ để một điểm M nằm giữa hai điểm phân biệt A và B là \overrightarrow{MA}\overrightarrow{MB} ngược hướng.

  • Câu 12: Thông hiểu

    Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?

     Ta có:\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FA}+\overrightarrow{BC}+\overrightarrow{EF}+\overrightarrow{DE}=\overrightarrow{0}\Leftrightarrow\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DE}  + \overrightarrow {EF}  + \overrightarrow {FA}  = \overrightarrow 0.

  • Câu 13: Nhận biết

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

  • Câu 14: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4). Khẳng định nào sau đây là sai?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = 2.( - 3) +
( - 1).4 = - 10 eq 0 nên đáp án Tích vô hướng của hai vectơ đã cho là - 10 đúng.

    Ta có: \left| \overrightarrow{a} ight|
= \sqrt{2^{2} + ( - 1)^{2}} = \sqrt{5} nên đáp án Độ lớn của vectơ \overrightarrow{a}\sqrt{5} đúng.

    Ta có: \left| \overrightarrow{b} ight|
= \sqrt{( - 3)^{2} + 4^{2}} = 5 nên đáp án Độ lớn của vectơ \overrightarrow{b}5 đúng.

    Đáp án sai là Góc giữa hai vectơ là 90^{o}.

  • Câu 15: Thông hiểu

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Do ABCD là hình bình hành nên \overrightarrow{BC} =
\overrightarrow{AD}.

    Suy ra \overrightarrow{AB} -
\overrightarrow{BC} = \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}.

  • Câu 16: Thông hiểu

    Cho \overrightarrow{a}, \overrightarrow{b}không cùng phương, \overrightarrow{\ x\ } = - 2\ \overrightarrow{\ a\
\ } + \overrightarrow{\ b\ }. Vectơ cùng hướng với \overrightarrow{\ x\ \ } là:

    Ta có- \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ } = \frac{1}{2}\left( - 2\
\overrightarrow{\ a\ \ } + \overrightarrow{\ b\ } ight) =
\frac{1}{2}\overrightarrow{\ x\ }. Chọn - \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ }.

  • Câu 17: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho \overrightarrow{OA}=(2;10). Đâu là tọa độ của điểm A?

    Ta có: O(0; 0)

    \begin{matrix}  \overrightarrow {OA}  = \left( {{x_A} - {x_O};{y_A} - {y_B}} ight) \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 2} \\   {{y_A} = 10} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm M( - 3;1),N(1;4),P(5;3). Xác định tọa độ điểm Q sao cho tứ giác MNPQ là hình bình hành?

    Gọi tọa độ điểm Q(x;y)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MQ} = (x + 3;y - 1) \\
\overrightarrow{NP} = (4; - 1) \\
\end{matrix} ight.

    Vì MNPQ là hình bình hành nên

    \overrightarrow{MQ} =
\overrightarrow{NP} \Leftrightarrow \left\{ \begin{matrix}
x + 3 = 4 \\
y - 1 = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 0 \\
\end{matrix} ight.

    Vậy tọa độ điểm Q cần tìm là Q(1;0).

  • Câu 19: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Cho tọa độ hai điểm P(1;2)Q(3; - 4). Khẳng định nào sau đây đúng?

    Ta có: \overrightarrow{PQ} = (3 - 1; - 4
- 2) = (2; - 6)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo