Cho 5 điểm M, N, P, Q, R. Tính tổng ![]()
Ta có:
Cho 5 điểm M, N, P, Q, R. Tính tổng ![]()
Ta có:
Trên đường thẳng
lấy điểm
sao cho
. Điểm
được xác định đúng trong hình vẽ nào sau đây:

Ta có nên
và
và
ngược hướng.
Mệnh đề nào sau đây sai?
Với ba điểm phân biệt nằm trên một đường thẳng, đẳng thức
xảy ra khi
nằm giữa
và
.
Chọn đáp án sai là: Nếu ba điểm phân biệt nằm tùy ý trên một đường thẳng thì
Cho
Khẳng định nào sau đây là đúng?
Ta có và
Xét tỉ số và
không cùng phương. Loại đáp án
và
ngược hướng.
Xét tỉ số không cùng phương. Loại đáp án Hai vectơ
đối nhau.
Xét tỉ số và
cùng hướng.
Chọn đáp án và
cùng hướng.
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Trong hệ tọa độ
, cho hai điểm
Tìm tọa độ điểm
thuộc trục hoành sao cho
thẳng hàng.
Điểm Ta có
và
Để thẳng hàng
cùng phương với
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
![]()
Ta có:
Cho lục giác đều
tâm
Số các vectơ bằng
có điểm đầu và điểm cuối là các đỉnh của lục giác là:
Đó là các vectơ: .
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho tọa độ ba điểm
. Tính
?
Ta có:
Cho tam giác
vuông cân tại
cạnh
Tính ![]()
Gọi là điểm đối xứng của
qua
Tam giác
vuông tại
có
Ta có suy ra
Cho tam giác
, biết rằng tồn tại duy nhất điểm I thỏa mãn:
. Tìm quỹ tích điểm M thỏa mãn:
.
Với điểm I thỏa mãn giả thiết, ta có:
và
nên
Vậy quỹ tích của M là đường tròn tâm I bán kính .
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Cho tam giác
cân tại
,
và
. Tính
.
Ta có .
Trong mặt phẳng tọa độ
, khoảng cách giữa hai điểm
và
bằng:
Khoảng cách giữa hai điểm M, N là
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.
Cho tam giác
có
là trung điểm của
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm
nên
Mặt khác
là trung điểm
nên
Từ suy ra
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Cho tam giác đều
có đường cao
. Tính
.
Lấy sao cho
.
Ta có: .
Cho ba vectơ
Giá trị của
để
là
Ta có
Theo đề bài: