Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Ta có: (Sai).
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Ta có: (Sai).
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Tổng
bằng vectơ nào sau đây?
Ta có
.
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Cho tam giác
có
là trung điểm của
Tính
theo
và ![]()
Ta có
Cho M là trung điểm AB, tìm biểu thức sai:
Ta có: M là trung điểm của AB
Vậy biểu thức sai là:
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Trong mặt phẳng tọa độ
, cho tọa độ các điểm
. Tìm tọa độ điểm
sao cho ba điểm
thẳng hàng?
Theo bài ra ta có:
Lại có:
Ba điểm thẳng hàng khi và chỉ khi
và
cùng phương hay
Vậy tọa độ điểm M là .
Cho các vectơ
. Phân tích vectơ
theo hai vectơ
, ta được:
Giả sử . Vậy
.
Cho tam giác
, biết rằng tồn tại duy nhất điểm I thỏa mãn:
. Tìm quỹ tích điểm M thỏa mãn:
.
Với điểm I thỏa mãn giả thiết, ta có:
và
nên
Vậy quỹ tích của M là đường tròn tâm I bán kính .
Cho
và một điểm C. Có bao nhiêu điểm D thỏa mãn ![]()
Có một và chỉ một điểm D thỏa mãn
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .
Cho hình vuông
, tính
.

Vẽ .
Ta có: .
Cho lục giác đều
có tâm
Đẳng thức nào sau đây sai?
Đẳng thức sai là
Cho tam giác
, điểm I thoả mãn:
. Nếu
thì cặp số
bằng:
Ta có:
.
Cho
. Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Cho tam giác
và điểm
thỏa mãn điều kiện
. Mệnh đề nào sau đây sai?
Ta có
là hình bình hành
Do đó sai.
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:
Theo bài ra:
G là trọng tâm tam giác ABC nên ta có:
Trong mặt phẳng tọa độ
, tọa độ trung điểm
của đoạn thẳng
với
là:
Tọa độ trung điểm M của AB là:
Vậy tọa độ trung điểm M của AB là .