Cho hình bình hành
có
là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án Ta có
Đáp án Ta có
(quy tắc hình bình hành).
Đáp án Ta có
.
Đáp án Do
Chọn đáp án này.
Cho hình bình hành
có
là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án Ta có
Đáp án Ta có
(quy tắc hình bình hành).
Đáp án Ta có
.
Đáp án Do
Chọn đáp án này.
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Cho tọa độ ba điểm
. Tính
?
Ta có:
Trong hệ tọa độ
cho hình bình hành
, điểm
thuộc trục hoành. Khẳng định nào sau đây đúng?
Từ giả thiết suy ra cạnh thuộc trục hoành
cạnh
song song với trục hoành nên
. Do đó loại đáp án
có tung độ khác
và đáp án hai điểm
có tung độ khác nhau.
Nếu có hoành độ bằng
: mâu thuẩn với giả thiết
là hình bình hành. Loại đáp án
có hoành độ bằng
Dùng phương pháp loại trừ, ta chọn
Cách 2. Gọi là tâm của hình bình hành
. Suy ra
là trung điểm
là trung điểm
Từ đó suy ra
Cho tọa độ hai điểm
và
. Khẳng định nào sau đây đúng?
Ta có:
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn
. Chọn mệnh đề đúng.
.
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Cho
và một điểm C. Có bao nhiêu điểm D thỏa mãn ![]()
Có một và chỉ một điểm D thỏa mãn
Cho lục giác đều
tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Cho tam giác
, biết rằng tồn tại duy nhất điểm I thỏa mãn:
. Tìm quỹ tích điểm M thỏa mãn:
.
Với điểm I thỏa mãn giả thiết, ta có:
và
nên
Vậy quỹ tích của M là đường tròn tâm I bán kính .
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng
là:
Ta có:
Cho hình bình hành
tâm
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Ta có: .
Suy ra đúng.
Ta có: . Suy ra
đúng.
Ta có: . Suy ra
sai.
Ta có: đúng.
Cho tam giác
vuông cân tại
cạnh
Khẳng định nào sau đây sai?
Dựa vào các đáp án, ta có nhận xét sau:
• đúng, gọi
nằm trên tia đối của tia
sao cho
Và
nằm trên tia đối của tia
sao cho
Dựng hình chữ nhật
suy ra
(quy tắc hình bình hành).
Ta có
• đúng, vì
• sai, xử lý tương tự như ở trên. Chọn đáp án này.
• đúng, vì
Cho ba vectơ
Giá trị của
để
là
Ta có
Theo đề bài:
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.