Trong hệ tọa độ
cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có ngược hướng.
Trong hệ tọa độ
cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có ngược hướng.
Cho hai vectơ
và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Cho tứ giác
Trên cạnh
lấy lần lượt các điểm
sao cho
và
Tính vectơ
theo hai vectơ ![]()
Ta có và
Suy ra
Theo bài ra, ta có và
Vậy
Cho ba vectơ
Giá trị của
để
là
Ta có
Theo đề bài:
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi ![]()
nên
.
Cho ba điểm phân biệt
Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.
Cho lục giác đều
tâm
Số các vectơ bằng
có điểm đầu và điểm cuối là các đỉnh của lục giác là:
Đó là các vectơ: .
Cho tam giác
có
là trung điểm của
. Điểm
xác định
. Đường thẳng
đi qua
song song với
cắt
lần lượt tại
. Điểm
nằm trên cạnh
sao cho diện tích các tam giác
và
bằng nhau. Biết
. Tính giá trị của
?
Hình vẽ minh họa:
Theo định lí Ta – lét ta có:
Mặt khác mà ba điểm
thẳng hàng nên theo định lí Menelaus ta được:
Ta có:
Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó
Ta có:
Mà
Hay
Vậy
Cho tam giác
đều cạnh
là trung điểm của
. Tính ![]()
Gọi là điểm thỏa mãn tứ giác
là hình bình hành
là hình chữ nhật.
Ta có
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Trong mặt phẳng tọa độ
, cho tọa độ các điểm
. Xác định tọa độ điểm Q sao cho tứ giác
là hình bình hành?
Gọi tọa độ điểm
Ta có:
Vì MNPQ là hình bình hành nên
Vậy tọa độ điểm Q cần tìm là .
Cho tam giác ABC. Gọi I là trung điểm AB. Tìm điểm M thỏa mãn hệ thức: ![]()
Ta có:
I là trung điểm của AB =>
Khi đó:
Vậy M là trung điểm của IC.
Cho tam giác
với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Cho tam giác ABC và điểm M thỏa mãn
. Xác định vị trí điểm M.
Điểm là trọng tâm tam giác
khi và chỉ khi
.
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho hai vectơ không cùng phương
và
. Mệnh đề nào sau đây đúng?
Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ và
, đó là
."
Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

Nhận xét: .
Trong mặt phẳng tọa độ Oxy, cho
. Đâu là tọa độ của điểm A?
Ta có: O(0; 0)
Cho tam giác
cân ở
, đường cao
. Khẳng định nào sau đây sai?
Tam giác cân ở
, đường cao
. Do đó,
là trung điểm
.
Ta có:
là trung điểm
.
Chọn đáp án sai là
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .