Cho tam giác ABC, có thể xác định được bao nhiêu vectơ khác
có điểm đầu và điểm cuối là các đỉnh A, B, C?
Ta có các vectơ khác có điểm đầu và điểm cuối là các đỉnh tam giác ABC là:
Cho tam giác ABC, có thể xác định được bao nhiêu vectơ khác
có điểm đầu và điểm cuối là các đỉnh A, B, C?
Ta có các vectơ khác có điểm đầu và điểm cuối là các đỉnh tam giác ABC là:
Trong mặt phẳng tọa độ
, cho tọa độ các điểm
. Xác định tọa độ điểm Q sao cho tứ giác
là hình bình hành?
Gọi tọa độ điểm
Ta có:
Vì MNPQ là hình bình hành nên
Vậy tọa độ điểm Q cần tìm là .
Cho tam giác
,
. Tính tọa độ điểm
là chân đường phân giác góc
. Biết
.
Theo tính chất đường phân giác: . Suy ra
.
Gọi . Suy ra
.
Ta có:
Vậy tọa độ điểm .
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ của vectơ ![]()
Ta có
Cách khác:
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Ta có: (Sai).
Cho tam giác ABC và điểm M thỏa mãn
Xác định vị trí điểm M.
Giả sử G là trọng tâm tam giác ABC, khi đó ta có:
=> M là trọng tâm của tam giác ABC.
Cho tam giác
. Lấy các điểm
sao cho
và
. Xác định
để ba điểm
thẳng hàng.
Ta có:
Để ba điểm thẳng hàng thì
hay
Cho tam giác ABC có trọng tâm G. Gọi các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA và AB. Trong các khẳng định sau, khẳng định nào đúng?

Ta có: .
Mệnh đề nào sau đây sai?
Với ba điểm phân biệt nằm trên một đường thẳng, đẳng thức
xảy ra khi
nằm giữa
và
.
Chọn đáp án sai là: Nếu ba điểm phân biệt nằm tùy ý trên một đường thẳng thì
Trong hệ tọa độ
cho tọa độ hai điểm
. Tìm tọa độ trung điểm
của đoạn thẳng
?
Tọa độ trung điểm của AB là:
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Tính số đo góc
của tam giác đã cho.
Ta có: và
.
.
Tính tổng
.
Ta có .
Biết
và
. Câu nào sau đây đúng?
Ta có:
=> và
ngược hướng.
Cho tọa độ hai điểm
và
. Khẳng định nào sau đây đúng?
Ta có:
Gọi
là giao điểm của hai đường chéo của hình bình hành
. Đẳng thức nào sau đây sai?
Đẳng thức sai là
Trên đường thẳng MN lấy điểm P sao cho
. Điểm P được xác định đúng trong hình vẽ nào sau đây:

Vì nên
nằm giữa
và
, đồng thời
.
Cho hai điểm cố định
; gọi
là trung điểm
. Tập hợp các điểm
thoả:
là:
Ta có
Vậy tập hợp các điểm là đường tròn đường kính
.
Gọi
là tâm hình vuông
. Tính
.
Ta có .