Cho đường tròn
và hai tiếp tuyến
(
và
là hai tiếp điểm). Khẳng định nào sau đây đúng?
Do là hai tiếp tuyến (
và
là hai tiếp điểm) nên
.
Cho đường tròn
và hai tiếp tuyến
(
và
là hai tiếp điểm). Khẳng định nào sau đây đúng?
Do là hai tiếp tuyến (
và
là hai tiếp điểm) nên
.
Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ
là
Ta có:
Cho tam giác
có
thuộc cạnh
sao cho
. Đẳng thức nào sau đây đúng?
Ta có
.
Khẳng định nào sau đây là đúng?
Ta có cùng hướng.
Trong hệ tọa độ
cho hình bình hành
, điểm
thuộc trục hoành. Khẳng định nào sau đây đúng?
Từ giả thiết suy ra cạnh thuộc trục hoành
cạnh
song song với trục hoành nên
. Do đó loại đáp án
có tung độ khác
và đáp án hai điểm
có tung độ khác nhau.
Nếu có hoành độ bằng
: mâu thuẩn với giả thiết
là hình bình hành. Loại đáp án
có hoành độ bằng
Dùng phương pháp loại trừ, ta chọn
Cách 2. Gọi là tâm của hình bình hành
. Suy ra
là trung điểm
là trung điểm
Từ đó suy ra
Cho hai vectơ
và
không cùng phương. Hai vectơ nào sau đây là cùng phương?
Ta có .
Hai vectơ và
là cùng phương.
Chọn đáp án và
.
Cho tam giác đều
có đường cao
. Tính
.
Lấy sao cho
.
Ta có: .
Trong hệ tọa độ
cho tam giác
có
và trọng tâm là gốc tọa độ
Tìm tọa độ đỉnh
?
Gọi .
Vì là trọng tâm tam giác
nên
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Cho M là trung điểm AB, tìm đẳng thức sai
![]()
Ta có: .
Đáp án sai là .
Cho hình bình hành
. Lấy hai điểm
sao cho
, lấy tiếp hai điểm
sao cho
. Để
là trọng tâm tam giác
thì
thỏa mãn điều kiện nào sau đây:
Hình vẽ minh họa

Để J là trọng tâm tam giác AMN thì
Mặt khác do không cùng phương nên ta suy ra:
Vậy với thì điểm J là trọng tâm tam giác AMN.
Cho lục giác đều
tâm
Số các vectơ khác vectơ - không, cùng phương với
có điểm đầu và điểm cuối là các đỉnh của lục giác là
Đó là các vectơ: . Chọn 6.
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Tính số đo góc
của tam giác đã cho.
Ta có: và
.
.
Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?
Ta có:.
Gọi
là giao điểm của hai đường chéo của hình bình hành
. Đẳng thức nào sau đây sai?
Đẳng thức sai là
Cho tam giác
đều có cạnh là 6. Tính
.
Hình vẽ minh họa
Gọi là trung điểm của
. Vì tam giác
đều có cạnh là 6, nên ta có
.
Xét tam giác vuông tại
, có
.
Suy ra
Mặt khác ta có:
.
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:
Theo bài ra:
G là trọng tâm tam giác ABC nên ta có:
Cho tam giác
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Cho tam giác
với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.