Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho P( -
3;1),Q(6; - 4). Xác định tọa độ trọng tâm H của tam giác OPQ?

    Vì H là trọng tâm tam giác OPQ nên ta có:

    \left\{ \begin{matrix}x_{H} = \dfrac{x_{O} + x_{P} + x_{Q}}{3} \\y_{H} = \dfrac{y_{O} + y_{P} + y_{Q}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{H} = \dfrac{0 - 3 + 6}{3} = 1 \\y_{H} = \dfrac{0 + 1 - 4}{3} = - 1 \\\end{matrix} ight.

    \Leftrightarrow H(1; - 1)

    Vậy trọng tâm tam giác cần tìm là H(1; - 1).

  • Câu 2: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(6;0),B(3;1)C( - 1; - 1). Tính số đo góc B của tam giác đã cho.

    Ta có: \overrightarrow{AB} = ( -
3;1)\overrightarrow{CB} =
(4;2).

    \cos B =
\frac{\overrightarrow{AB}.\overrightarrow{CB}}{AB.CB} = \frac{-
10}{\sqrt{10}.\sqrt{20}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CB} ight) = 135^{o}.

  • Câu 3: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho\overrightarrow{a} = (2;1),\overrightarrow{\ b} =
(3;4),\ \overrightarrow{c} = (7;2). Cho biết \overrightarrow{c} = m.\overrightarrow{a} +
n.\overrightarrow{b}. Khi đó

    Ta có: \overrightarrow{c} =m.\overrightarrow{a} + n.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2m + 3n \\2 = m + 4n \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \frac{22}{5} \ = - \frac{3}{5} \\\end{matrix} ight..

  • Câu 4: Thông hiểu

    Cho \overrightarrow{u} = 2\overrightarrow{i} -
\overrightarrow{j}\overrightarrow{v} = \overrightarrow{i} +
x\overrightarrow{j}. Xác định x sao cho \overrightarrow{u}\overrightarrow{v} cùng phương.

    Ta có \left\{ \begin{matrix}
\overrightarrow{u} = 2\overrightarrow{i} -
\overrightarrow{j}\overset{}{ightarrow}\overrightarrow{u} = (2;\ \  -
1) \\
\overrightarrow{v} = \overrightarrow{i} +
x\overrightarrow{j}\overset{}{ightarrow}\overrightarrow{v} = (1;\ \ x)
\\
\end{matrix} ight.\ .

    Để \overrightarrow{u}\overrightarrow{v} cùng phương \Leftrightarrow \frac{1}{2} = \frac{x}{- 1}
\Leftrightarrow x = - \frac{1}{2}.

  • Câu 5: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.

  • Câu 6: Vận dụng cao

    Cho tam giác ABC. Lấy các điểm M,N sao cho \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{0};2\overrightarrow{NA} + 3\overrightarrow{NC} =
\overrightarrow{0}\overrightarrow{BC} =
k\overrightarrow{BP}. Xác định k để ba điểm M,N,P thẳng hàng.

    Ta có:

    \overrightarrow{MN} =
\overrightarrow{AN} - \overrightarrow{AM} =
\frac{3}{5}\overrightarrow{AC} -
\frac{1}{2}\overrightarrow{AB}

    \overrightarrow{NP} =
\overrightarrow{NC} + \overrightarrow{CP}

    = \frac{2}{5}\overrightarrow{AC} -
\left( \overrightarrow{BP} - \overrightarrow{BC} ight)

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\overrightarrow{BC}

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\left( \overrightarrow{AC} -
\overrightarrow{AB} ight)

    = \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB}

    Để ba điểm M,N,Pthẳng hàng thì \exists m\mathbb{\in R}:\overrightarrow{NP}
= m\overrightarrow{MN} hay

    \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB} = \frac{3m}{5}\overrightarrow{AC} -
\frac{m}{2}\overrightarrow{AB}

    \left\{ \begin{matrix}\dfrac{1}{k} - \dfrac{2}{5} = \dfrac{3m}{5} \\\dfrac{1}{k} - 1 = - \dfrac{m}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 4 \\k = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 7: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 8: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN} = -
3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

    Ta có \overrightarrow{MN} = -
3\overrightarrow{MP} nên MN =
3MP\overrightarrow{MN}\overrightarrow{MP} ngược hướng.

  • Câu 9: Vận dụng

    Cho tam giác OAB vuông cân tại O, cạnh OA =
a. Khẳng định nào sau đây sai?

    Dựa vào các đáp án, ta có nhận xét sau:

    \left| 3\ \overrightarrow{OA} + 4\
\overrightarrow{OB} ight| = 5a đúng, gọi C nằm trên tia đối của tia AO sao cho OC
= 3\ OA \Rightarrow 3\ \overrightarrow{OA} =
\overrightarrow{OC}.D nằm trên tia đối của tia BO sao cho OD = 4\ OB \Rightarrow 4\
\overrightarrow{OB} = \overrightarrow{OD}.Dựng hình chữ nhật OCED suy ra \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{OE} (quy tắc hình bình hành).

    Ta có \left| 3\overrightarrow{OA} +
4\overrightarrow{OB} ight| = \left| \overrightarrow{OC} +
\overrightarrow{OD} ight| = \left| \overrightarrow{OE} ight| = OE =
CD = \sqrt{OC^{2} + OD^{2}} = 5a.

    \left| 2\ \overrightarrow{OA} ight| +
\left| 3\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 2\ \overrightarrow{OA} ight| + \left| 3\
\overrightarrow{OB} ight| = 2\left| \overrightarrow{OA} ight| +
3\left| \overrightarrow{OB} ight| = 2a + 3a = 5a.

    \left| 7\ \overrightarrow{OA} - 2\
\overrightarrow{OB} ight| = 5a sai, xử lý tương tự như ở trên. Chọn đáp án này.

    \left| 11\ \overrightarrow{OA} ight| -
\left| 6\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 11\ \overrightarrow{OA} ight| - \left| 6\
\overrightarrow{OB} ight| = 11\left| \overrightarrow{OA} ight| -
6\left| \overrightarrow{OB} ight| = 11a - 6a = 5a.

  • Câu 10: Nhận biết

    Cho \overrightarrow{a} e\overrightarrow{0} và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn \overrightarrow{OM}=3\overrightarrow{a}\overrightarrow{ON}=-4\overrightarrow{a}. Tìm \overrightarrow{MN}.

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  = \overrightarrow {MO}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - \overrightarrow {OM}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  + \left( { - 4\overrightarrow a } ight) \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  - 4\overrightarrow a  = 7\overrightarrow a  \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Cho hai vecto \overrightarrow{a}\overrightarrow{b} biết |\overrightarrow{a}| = 4,|\overrightarrow{b}| =
5(\overrightarrow{a},\overrightarrow{b}) =
120^{\circ}. Tính |\overrightarrow{a} +
\overrightarrow{b}|.

    Ta có:

    \left|\overrightarrow{a} + \overrightarrow{b} ight| =\sqrt{(\overrightarrow{a} + \overrightarrow{b})^{2}} =\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +2\overrightarrow{a}.\overrightarrow{b}}

    = \sqrt{|\overrightarrow{a}|^{2} +
|\overrightarrow{b}|^{2} +
2|\overrightarrow{a}||\overrightarrow{b}|cos(\overrightarrow{a},\overrightarrow{b})}
= \sqrt{21}.

  • Câu 12: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho \overrightarrow{OA}=(2;10). Đâu là tọa độ của điểm A?

    Ta có: O(0; 0)

    \begin{matrix}  \overrightarrow {OA}  = \left( {{x_A} - {x_O};{y_A} - {y_B}} ight) \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 2} \\   {{y_A} = 10} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0}.Trong các kết quả sau đây,hãy chọn kết quả đúng.

    Ta thấy vế trái của 4 phương án giống nhau.

    Bài toán cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0} suy ra \left( \overrightarrow{a},\overrightarrow{b}
ight) = 0^{0}

    Do đó \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos0^{o} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight| nên

  • Câu 14: Nhận biết

    Cho hai vecto \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}. Xác định góc giữa hai vecto \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|

    Ta có: 

    \begin{matrix}  \vec a \times \vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?

     Ta có:\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FA}+\overrightarrow{BC}+\overrightarrow{EF}+\overrightarrow{DE}=\overrightarrow{0}\Leftrightarrow\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DE}  + \overrightarrow {EF}  + \overrightarrow {FA}  = \overrightarrow 0.

  • Câu 16: Nhận biết

    Cho hai điểm AB phân biệt. Điều kiện để I là trung điểm AB là:

    Điều kiện để I là trung điểm AB là: \overrightarrow{IA} = -
\overrightarrow{IB}.

  • Câu 17: Thông hiểu

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OB} =
\overrightarrow{OE}.

  • Câu 18: Vận dụng

    Cho tam giác ABC vuông cân đỉnh A, đường cao AH. Khẳng định nào sau đây sai?

    Do \Delta ABC cân tại A, AH là đường cao nên H là trung điểm BC.

    Xét các đáp án:

    Đáp án \left| \overrightarrow{AH} +
\overrightarrow{HB} ight| = \left| \overrightarrow{AH} +
\overrightarrow{HC} ight|. Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AH} + \overrightarrow{HB} ight| = \left|
\overrightarrow{AB} ight| = a \\
\left| \overrightarrow{AH} + \overrightarrow{HC} ight| = \left|
\overrightarrow{AC} ight| = a \\
\end{matrix} ight.

    \Rightarrow \left| \overrightarrow{AH} +
\overrightarrow{HB} ight| = \left| \overrightarrow{AH} +
\overrightarrow{HC} ight|.

    Đáp án \overrightarrow{AH} -
\overrightarrow{AB} = \overrightarrow{AH} -
\overrightarrow{AC}.. Ta có \left\{
\begin{matrix}
\overrightarrow{AH} - \overrightarrow{AB} = \overrightarrow{BH} \\
\overrightarrow{AH} - \overrightarrow{AC} = \overrightarrow{CH} = -
\overrightarrow{BH} \\
\end{matrix} ight.\ . Do đó đáp án này sai.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{HC} -
\overrightarrow{HA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{HC} - \overrightarrow{HA} = \overrightarrow{AC} \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{HC} -
\overrightarrow{HA}.

    Đáp án \left| \overrightarrow{AH} ight|
= \left| \overrightarrow{AB} - \overrightarrow{AH} ight|.. Ta có \left| \overrightarrow{AB} -
\overrightarrow{AH} ight| = \left| \overrightarrow{HB} ight| =
\left| \overrightarrow{AH} ight| (do \Delta ABC vuông cân tại A).

  • Câu 19: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính |\overrightarrow{AB}-\overrightarrow{DA}|

     Hình vẽ minh họa

    Tính độ lớn vectơ

    Ta có:\left| {\overrightarrow {AB}  - \overrightarrow {DA} } ight| = \left| {\overrightarrow {AB}  + \overrightarrow {AD} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ACD vuông cân tại D ta có:

    \begin{matrix}  A{C^2} = A{D^2} + D{C^2} = {a^2} + {a^2} = 2{a^2} \hfill \\   \Rightarrow AC = a\sqrt 2  \hfill \\   \Rightarrow AC = \left| {\overrightarrow {AC} } ight| = a\sqrt 2  \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Cho tam giác ABC có trọng tâm G. Biểu diễn \overrightarrow{AG} theo hai vecto \overrightarrow{AB},\overrightarrow{AC}

    Cách 1: Giả sử I là trung điểm của BC

    \begin{matrix}   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AI}  \hfill \\   \Leftrightarrow \dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AI}  \hfill \\ \end{matrix}

    Theo tính chất đường trung tuyến trong tam giác ABC ta có:

    \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AI} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AI} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AI}

    \begin{matrix}   \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}.\dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow \overrightarrow {AG}  = \dfrac{1}{3}\overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AC}  \hfill \\ \end{matrix}

    Cách 2: Ta có:

    \begin{matrix}  \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AA}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow 0  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG}  \hfill \\   \Rightarrow \dfrac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) = \overrightarrow {AG}  \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo