Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 2: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AB} +\overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} =\overrightarrow{CB}. Vậy \overrightarrow{AB} + \overrightarrow{CA} =\overrightarrow{CB} đúng.

  • Câu 3: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;5),B(2;6). Tìm tọa độ điểm D \in Ox sao cho điểm D cách đều hai điểm A;B?

    Ta có: D \in Ox \Rightarrow
D(x;0)

    Từ DA = DB

    \Leftrightarrow \sqrt{(1 - x)^{2} +
5^{2}} = \sqrt{( - 2 - x)^{2} + 6^{2}}

    \Leftrightarrow x = -
\frac{7}{3}

    \Rightarrow D\left( - \frac{7}{3};0
ight)

    Vậy tọa độ điểm D cần tìm là: D\left( -
\frac{7}{3};0 ight).

  • Câu 4: Vận dụng

    Cho hình bình hành ABCD. Tập hợp tất cả các điểm M thỏa mãn đẳng thức \overrightarrow{MA} + \overrightarrow{MB} -
\overrightarrow{MC} = \overrightarrow{MD}

    \overrightarrow{MA} + \overrightarrow{MB}
- \overrightarrow{MC} = \overrightarrow{MD} \Leftrightarrow
\overrightarrow{MB} - \overrightarrow{MC} = \overrightarrow{MD} -
\overrightarrow{MA} \Leftrightarrow \overrightarrow{CB} =
\overrightarrow{AD}: vô lí

    \Rightarrow Không có điểm Mthỏa mãn.

  • Câu 5: Thông hiểu

    Cho tam giác ABC có tọa độ ba đỉnh A(6;3),B( - 3;6),C(1; - 2). Xác định tọa độ điểm D \in BC thỏa mãn BD = 2CD?

    Giả sử tọa độ điểm D là: D(x;y)

    Ta có: D \in BC thỏa mãn BD = 2CD

    \Leftrightarrow \overrightarrow{BD} =
2\overrightarrow{DC}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BD} = (x + 3;y - 6) \\
\overrightarrow{DC} = (1 - x; - 2 - y) \\
\end{matrix} ight.

    \overrightarrow{BD} =
2\overrightarrow{DC} \Leftrightarrow \left\{ \begin{matrix}
x + 3 = 2 - 2x \\
y - 6 = - 4 - 2y \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{1}{3} \\y = \dfrac{2}{3} \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{1}{3};\dfrac{2}{3}ight)

  • Câu 6: Thông hiểu

    Cho tứ giác ABCD. Có bao nhiêu vectơ khác vectơ - không có điểm đầu và cuối là các đỉnh của tứ giác?

    Xét các vectơ có điểm A là điểm đầu thì có các vectơ thỏa mãn bài toán là \overrightarrow{AB},\ \overrightarrow{AC},\
\overrightarrow{AD}\overset{}{ightarrow} có 3 vectơ.

    Tương tự cho các điểm còn lại B,\ C,\
D.

    Vậy chọn đáp án 12.

  • Câu 7: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 8: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.|\overrightarrow{b}|.

    Ta có \overrightarrow{a}.\overrightarrow{b} = \left|\overrightarrow{a} ight|.\left| \overrightarrow{b}ight|.\cos(\overrightarrow{a},\overrightarrow{b}).

    Mà theo giả thiết \overrightarrow{a}.\overrightarrow{b} = - \left|\overrightarrow{a} ight|.|\overrightarrow{b}|

    Suy ra \cos(\overrightarrow{a},\overrightarrow{b}) = - 1\longrightarrow (\overrightarrow{a},\overrightarrow{b}) =180^{\circ}

  • Câu 9: Thông hiểu

    Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?

     Ta có:\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FA}+\overrightarrow{BC}+\overrightarrow{EF}+\overrightarrow{DE}=\overrightarrow{0}\Leftrightarrow\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DE}  + \overrightarrow {EF}  + \overrightarrow {FA}  = \overrightarrow 0.

  • Câu 10: Vận dụng

    Cho hai điểm cố định A,B; gọi I là trung điểm AB. Tập hợp các điểm M thoả: \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} - \overrightarrow{MB}
ight| là:

    Ta có \left| \overrightarrow{MA} +\overrightarrow{MB} ight| = \left| \overrightarrow{MA} -\overrightarrow{MB} ight|\Leftrightarrow \left| 2\overrightarrow{MI}ight| = \left| \overrightarrow{BA} ight| \Leftrightarrow 2MI = BA\Leftrightarrow MI = \frac{BA}{2}

    Vậy tập hợp các điểm M là đường tròn đường kính AB.

  • Câu 11: Thông hiểu

    Cho tam giác OAB có M, N là trung điểm của OA, OB. Chọn mệnh đề đúng.

    \overrightarrow{MB} = \overrightarrow{MA} +\overrightarrow{AB} = \frac{1}{2}\overrightarrow{OA} +\overrightarrow{OB} - \overrightarrow{OA}= -\frac{1}{2}\overrightarrow{OA} + \overrightarrow{OB} .

  • Câu 12: Nhận biết

    Trong các vecto dưới đây, vecto nào cùng phương với vecto \overrightarrow{u} = (3; -
2)?

    Nhận thấy \frac{3}{- 9} = \frac{-
2}{6} nên \overrightarrow{d} = ( -
9;6) cùng phương với \overrightarrow{u} = (3; - 2).

  • Câu 13: Vận dụng cao

    Cho tam giác ABCM là trung điểm của BC. Điểm E xác định 2\overrightarrow{EA} + \overrightarrow{EC} =
\overrightarrow{0}. Đường thẳng d đi qua E song song với AB cắt AM,BC lần lượt tại D;F. Điểm G nằm trên cạnh AB sao cho diện tích các tam giác BFGADE bằng nhau. Biết \overrightarrow{AG} =
\alpha\overrightarrow{AB}. Tính giá trị của \alpha?

    Hình vẽ minh họa:

    Theo định lí Ta – lét ta có:

    \frac{FB}{FC} = \frac{EA}{EC} =
\frac{1}{2} \Rightarrow FC = \frac{2}{3}BC

    \Rightarrow FM = \frac{2}{3}BC - MC =
\frac{2}{3}BC - \frac{1}{2}BC = \frac{1}{6}BC

    \Rightarrow \overrightarrow{FM} =
\frac{1}{4}\overrightarrow{FC}

    Mặt khác \overrightarrow{EC} = -
2\overrightarrow{EA};\overrightarrow{DA} = -
\frac{DA}{DM}.\overrightarrow{DM} mà ba điểm D;E;F thẳng hàng nên theo định lí Menelaus ta được:

    \left( - \frac{DA}{DM}
ight).\frac{1}{4}.( - 2) = 1

    \Rightarrow \frac{DA}{DM} =
2

    Ta có:

    \overrightarrow{AD} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3}.\frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC}

    Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó \overrightarrow{BG} =
\overrightarrow{DE}

    Ta có:

    \overrightarrow{AE} =
\overrightarrow{AD} + \overrightarrow{DE} =
\frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} +
\overrightarrow{BG}

    \overrightarrow{AE} =
\frac{1}{3}\overrightarrow{AC} \Rightarrow \overrightarrow{BG} =
\frac{1}{3}\overrightarrow{BA}

    Hay \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AB}

    Vậy \alpha = \frac{2}{3}

  • Câu 14: Nhận biết

    Cho tam giác ABC. Gọi MN lần lượt là trung điểm của ABAC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AB,\ \ AC. Suy ra MN là đường trung bình của tam giác

    ABC\overset{}{ightarrow}MN =
\frac{1}{2}BC.\overrightarrow{BC},\ \ \
\overrightarrow{MN} là hai vectơ cùng hướng nên \overrightarrow{BC} = 2\
\overrightarrow{MN}.

  • Câu 15: Nhận biết

    Cho \overrightarrow{a} = (3; - 4),\ \overrightarrow{b}
= ( - 1;2). Tìm tọa độ của vectơ \overrightarrow{a} +
\overrightarrow{b}.

    Ta có \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1); - 4 + 2 ight) = (2; -
2).

  • Câu 16: Vận dụng

    Cho A(1;2),\ B( -
2;6). Điểm M trên trục Oy sao cho ba điểm A,B,M thẳng hàng thì tọa độ điểm M là:

    Ta có: M trên trục Oy \Rightarrow M(0;y).

    Ba điểm A,B,M thẳng hàng khi \overrightarrow{AB} cùng phương với \overrightarrow{AM}.

    Ta có \overrightarrow{AB} = ( - 3;4),\ \
\overrightarrow{AM} = ( - 1;y - 2). Do đó, \overrightarrow{AB} cùng phương với \overrightarrow{AM} \Leftrightarrow \frac{- 1}{-
3} = \frac{y - 2}{4} \Rightarrow y = \frac{10}{3}. Vậy M\left( 0;\frac{10}{3} ight).Đáp án là M\left( 0;\frac{10}{3} ight)

  • Câu 17: Thông hiểu

    Cho tam giác ABCM thỏa mãn điều kiện \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Xác định vị trí điểm M.

    Gọi G là trọng tâm tam giác ABC.

    Ta có \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}
\Rightarrow M \equiv G.

  • Câu 18: Nhận biết

    Tích vô hướng của hai vecto \overrightarrow{a} = (2; - 5)\overrightarrow{b} = ( - 5;2) là:

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
2.( - 5) + ( - 5).2 = - 20

  • Câu 19: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 20: Nhận biết

    Với \overrightarrow{DE} (khác vectơ - không) thì độ dài đoạn ED được gọi là

    Với \overrightarrow{DE} (khác vectơ - không) thì độ dài đoạn ED được gọi là: Độ dài của \overrightarrow{ED}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo