Cho tam giác
vuông cân tại
có
. Tính ![]()
Gọi là trung điểm
Ta có
Cho tam giác
vuông cân tại
có
. Tính ![]()
Gọi là trung điểm
Ta có
Điều kiện nào là điều kiện cần và đủ để
là trung điểm của đoạn thẳng
?
Điều kiện cần và đủ để là trung điểm của đoạn thẳng
là
.
Cho tam giác
, tập hợp các điểm
sao cho
là:
Gọi là trọng tâm của tam giác
, ta có
.
Thay vào ta được : , hay tập hợp các điểm
là đường tròn có tâm là trọng tâm của tam giác
và bán kính bằng
.
Cho hình thoi
có
. Tính
.

Vì nên
.
Cho hình vuông
cạnh
, tính độ dài vectơ
.
Ta có: .
Áp dụng định lí Pytago trong tam giác :
.
Trong hệ tọa độ
cho tam giác
có
, trọng tâm
và trung điểm cạnh
là
Tổng hoành độ của điểm
và
là
Vì là trung điểm
nên
Vì là trọng tâm tam giác
nên
Suy ra
Trong hệ trục tọa độ
, tọa độ vecto
là:
Ta có:
Cho tam giác ABC có AK, BM là trung tuyến. Cho
. Tính
.
.
Cho lục giác đều
tâm
. Các vectơ đối của vectơ
là:
Các vectơ đối của vectơ là:
.
Tính tổng
.
Ta có .
Cho đường tròn
và hai tiếp tuyến
(
và
là hai tiếp điểm). Khẳng định nào sau đây đúng?
Do là hai tiếp tuyến (
và
là hai tiếp điểm) nên
.
Cho hai điểm
. Tọa độ trung điểm của đoạn AB là:
Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: ABCD là hình bình hành tâm O
=>
Cho
Khẳng định nào sau đây là đúng?
Ta có và
Xét tỉ số và
không cùng phương. Loại
và
ngược hướng.
Xét tỉ số không cùng phương. Loại
cùng phương.
Xét tỉ số và
cùng hướng. Chọn
và
cùng hướng.
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Mệnh đề nào sau đây đúng?
Ta có: và
đối nhau.
Cho hình bình hành
. Lấy hai điểm
sao cho
, lấy tiếp hai điểm
sao cho
. Để
là trọng tâm tam giác
thì
thỏa mãn điều kiện nào sau đây:
Hình vẽ minh họa

Để J là trọng tâm tam giác AMN thì
Mặt khác do không cùng phương nên ta suy ra:
Vậy với thì điểm J là trọng tâm tam giác AMN.
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>
Cho các vectơ
. Tính tích vô hướng của
.
Ta có ,
suy ra
.
Trên đường thẳng MN lấy điểm P sao cho
. Điểm P được xác định đúng trong hình vẽ nào sau đây:

Vì nên
nằm giữa
và
, đồng thời
.