Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong hệ tọa độ Oxy, cho bốn điểm A(3; - 2),\ B(7;1),\ C(0;1),\ D( - 8; -
5). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (4;3) \\
\overrightarrow{CD} = ( - 8; - 6) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{CD} = -
2\overrightarrow{AB}\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{CD} ngược hướng.

  • Câu 2: Nhận biết

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} được xác định bằng công thức nào dưới đây?

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} là một số, kí hiệu là \overrightarrow{a}.\overrightarrow{b}, được xác định bởi công thức sau:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|\cos\left( \overrightarrow{a},\overrightarrow{b}
ight).

  • Câu 3: Vận dụng

    Cho tứ giác ABCD. Trên cạnh AB,\ \ CD lấy lần lượt các điểm M,\ \ N sao cho 3\ \overrightarrow{AM} = 2\
\overrightarrow{AB}3\
\overrightarrow{DN} = 2\ \overrightarrow{DC}. Tính vectơ \overrightarrow{MN} theo hai vectơ \overrightarrow{AD},\ \
\overrightarrow{BC}.

    Ta có \overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN}\overrightarrow{MN} = \overrightarrow{MB}
+ \overrightarrow{BC} + \overrightarrow{CN}.

    Suy ra 3\ \overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +
2\left( \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN}
ight)

    = \left( \overrightarrow{MA} +
2\overrightarrow{MB} ight) + \overrightarrow{AD} +
2\overrightarrow{BC} + \left( \overrightarrow{DN} + 2\overrightarrow{CN}
ight).

    Theo bài ra, ta có \overrightarrow{MA} +
2\ \overrightarrow{MB} = \overrightarrow{0}\overrightarrow{DN} + 2\ \overrightarrow{CN} =
\overrightarrow{0}.

    Vậy 3\ \overrightarrow{MN} =
\overrightarrow{AD} + 2\ \overrightarrow{BC} \Leftrightarrow
\overrightarrow{MN} = \frac{1}{3}\overrightarrow{AD} +
\frac{2}{3}\overrightarrow{BC}.

  • Câu 4: Thông hiểu

    Cho ba vectơ \overrightarrow{a} = (2;1),\ \overrightarrow{b} =
(3;4),\ \overrightarrow{c} = (7;2). Giá trị của k,\ h để \overrightarrow{c} = k.\overrightarrow{a} +
h.\overrightarrow{b}

    Ta có \left. \ \begin{matrix}k.\overrightarrow{a} = (2k;k) \\h.\overrightarrow{b} = (3h;4h) \\\end{matrix} ight\}\overset{}{ightarrow}k.\overrightarrow{a} +h.\overrightarrow{b} = (2k + 3h;k + 4h).

    Theo đề bài: \overrightarrow{c} =k.\overrightarrow{a} + h.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2k + 3h \\2 = k + 4h \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}k = 4,4 \\h = - 0,6 \\\end{matrix} ight.\ .

  • Câu 5: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos(\overrightarrow{a},\overrightarrow{b}) = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight| nên cos(\overrightarrow{a},\overrightarrow{b}) = - 1
\Rightarrow (\overrightarrow{a},\overrightarrow{b}) =
180^{o}.

  • Câu 6: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi ba điểmA,\ \ B,\ \ C thẳng hàng và B nằm giữaA,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm. Chọn đáp án này.

  • Câu 7: Thông hiểu

    Cho lục giác đều ABCDEF tâm O. Số các vectơ bằng \overrightarrow{OC} có điểm đầu và điểm cuối là các đỉnh của lục giác là:

    Đó là các vectơ: \overrightarrow{AB},\ \
\overrightarrow{ED}.

  • Câu 8: Vận dụng cao

    Cho tam giác ABCM là trung điểm của BC. Điểm E xác định 2\overrightarrow{EA} + \overrightarrow{EC} =
\overrightarrow{0}. Đường thẳng d đi qua E song song với AB cắt AM,BC lần lượt tại D;F. Điểm G nằm trên cạnh AB sao cho diện tích các tam giác BFGADE bằng nhau. Biết \overrightarrow{AG} =
\alpha\overrightarrow{AB}. Tính giá trị của \alpha?

    Hình vẽ minh họa:

    Theo định lí Ta – lét ta có:

    \frac{FB}{FC} = \frac{EA}{EC} =
\frac{1}{2} \Rightarrow FC = \frac{2}{3}BC

    \Rightarrow FM = \frac{2}{3}BC - MC =
\frac{2}{3}BC - \frac{1}{2}BC = \frac{1}{6}BC

    \Rightarrow \overrightarrow{FM} =
\frac{1}{4}\overrightarrow{FC}

    Mặt khác \overrightarrow{EC} = -
2\overrightarrow{EA};\overrightarrow{DA} = -
\frac{DA}{DM}.\overrightarrow{DM} mà ba điểm D;E;F thẳng hàng nên theo định lí Menelaus ta được:

    \left( - \frac{DA}{DM}
ight).\frac{1}{4}.( - 2) = 1

    \Rightarrow \frac{DA}{DM} =
2

    Ta có:

    \overrightarrow{AD} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3}.\frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC}

    Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó \overrightarrow{BG} =
\overrightarrow{DE}

    Ta có:

    \overrightarrow{AE} =
\overrightarrow{AD} + \overrightarrow{DE} =
\frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} +
\overrightarrow{BG}

    \overrightarrow{AE} =
\frac{1}{3}\overrightarrow{AC} \Rightarrow \overrightarrow{BG} =
\frac{1}{3}\overrightarrow{BA}

    Hay \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AB}

    Vậy \alpha = \frac{2}{3}

  • Câu 9: Vận dụng

    Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính \left| \overrightarrow{CA} - \overrightarrow{HC}
ight|.

    Gọi D là điểm thỏa mãn tứ giác ACHD là hình bình hành

    \Rightarrow AHBD là hình chữ nhật.

    \left| \overrightarrow{CA} -
\overrightarrow{HC} ight| = \left| \overrightarrow{CA} +
\overrightarrow{CH} ight| = \left| \overrightarrow{CD} ight| =
CD.

    Ta có CD = \sqrt{BD^{2} + BC^{2}} =
\sqrt{AH^{2} + BC^{2}} = \sqrt{\frac{3a^{2}}{4} + a^{2}} =
\frac{a\sqrt{7}}{2}.

  • Câu 10: Nhận biết

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    \overrightarrow{AB}.\overrightarrow{AC}.
= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}
ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight) =
a.a.cos60^{{^\circ}} = \frac{a^{2}}{2}.

  • Câu 11: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm M( - 3;1),N(1;4),P(5;3). Xác định tọa độ điểm Q sao cho tứ giác MNPQ là hình bình hành?

    Gọi tọa độ điểm Q(x;y)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MQ} = (x + 3;y - 1) \\
\overrightarrow{NP} = (4; - 1) \\
\end{matrix} ight.

    Vì MNPQ là hình bình hành nên

    \overrightarrow{MQ} =
\overrightarrow{NP} \Leftrightarrow \left\{ \begin{matrix}
x + 3 = 4 \\
y - 1 = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 0 \\
\end{matrix} ight.

    Vậy tọa độ điểm Q cần tìm là Q(1;0).

  • Câu 12: Thông hiểu

    Cho tam giác ABC. Gọi I là trung điểm AB. Tìm điểm M thỏa mãn hệ thức: \overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}

    Ta có:

    I là trung điểm của AB => \overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI}

    Khi đó:

    \begin{matrix}  \overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \vec 0 \hfill \\   \Leftrightarrow 2\overrightarrow {MI}  + 2\overrightarrow {MC}  = \vec 0 \hfill \\   \Leftrightarrow \overrightarrow {MI}  + \overrightarrow {MC}  = \vec 0 \hfill \\ \end{matrix}

    Vậy M là trung điểm của IC.

  • Câu 13: Nhận biết

    Cho tam giác ABC với M là trung điểm BC. Mệnh đề nào sau đây đúng?

    Xét đáp án \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0}. Ta có \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0} (theo quy tắc ba điểm).

    Chọn đáp án này.

  • Câu 14: Thông hiểu

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}. Xác định vị trí điểm M.

     Điểm M là trọng tâm tam giác ABC khi và chỉ khi \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}.

  • Câu 15: Nhận biết

    Cho tam giác ABC vuông tại A, M là trung điểm của BC. Khẳng định nào sau đây đúng?

    M là trung điểm của BC nên \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{MB} = - \
\overrightarrow{MC}.

  • Câu 16: Nhận biết

    Cho hai vectơ không cùng phương \overrightarrow{a}\overrightarrow{b}. Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ \overrightarrow{a}\overrightarrow{b}, đó là \overrightarrow{0}."

  • Câu 17: Nhận biết

    Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

     Nhận xét: \overrightarrow {AB}  =  - 3\overrightarrow {AI}  \Leftrightarrow \overrightarrow {AB}  + 3\overrightarrow {AI}  = \overrightarrow 0.

  • Câu 18: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho \overrightarrow{OA}=(2;10). Đâu là tọa độ của điểm A?

    Ta có: O(0; 0)

    \begin{matrix}  \overrightarrow {OA}  = \left( {{x_A} - {x_O};{y_A} - {y_B}} ight) \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 2} \\   {{y_A} = 10} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Cho tam giác ABC cân ở A, đường cao AH. Khẳng định nào sau đây sai?

    Tam giác ABC cân ở A, đường cao AH. Do đó, H là trung điểm BC.

    Ta có:

    AB = AC \Rightarrow \left|
\overrightarrow{AB} ight| = \left| \overrightarrow{AC}
ight|

    H là trung điểm BC \Rightarrow \left\{ \begin{matrix}
\overrightarrow{HC} = - \overrightarrow{HB} \\
\overrightarrow{BC} = 2\overrightarrow{HC} \\
\end{matrix} ight..

    Chọn đáp án sai là \overrightarrow{AB} =
\overrightarrow{AC}.

  • Câu 20: Nhận biết

    Trong mặt phẳng tọa độ Oxy, tọa độ vecto \overrightarrow{w} = 8\overrightarrow{j} -
3\overrightarrow{i} là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{w} =
8\overrightarrow{j} - 3\overrightarrow{i} = ( - 3;8).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo