Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 2: Vận dụng

    Cho hình thoi ABCDAC =
2aBD = a. Tính \left| \overrightarrow{AC} + \overrightarrow{BD}
ight|.

    Gọi O = AC \cap BDM là trung điểm của CD.

    Ta có \left| \overrightarrow{AC} +
\overrightarrow{BD} ight| = 2\left| \overrightarrow{OC} +
\overrightarrow{OD} ight| = 2\left| 2\overrightarrow{OM} ight| =
4OM

    = 4.\frac{1}{2}CD = 2\sqrt{OD^{2} +
OC^{2}} = 2\sqrt{\frac{a^{2}}{4} + a^{2}} = a\sqrt{5}.

  • Câu 3: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABCA(6;1),\ B( - 3;5) và trọng tâm G( - 1;1). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{6 + ( - 3) + x}{3} = - 1 \\
\frac{1 + 5 + y}{3} = 1 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 6 \\
y = - 3 \\
\end{matrix} ight.\ .

  • Câu 4: Thông hiểu

    Cho tam giác ABC có tọa độ ba đỉnh A(6;3),B( - 3;6),C(1; - 2). Xác định tọa độ điểm D \in BC thỏa mãn BD = 2CD?

    Giả sử tọa độ điểm D là: D(x;y)

    Ta có: D \in BC thỏa mãn BD = 2CD

    \Leftrightarrow \overrightarrow{BD} =
2\overrightarrow{DC}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BD} = (x + 3;y - 6) \\
\overrightarrow{DC} = (1 - x; - 2 - y) \\
\end{matrix} ight.

    \overrightarrow{BD} =
2\overrightarrow{DC} \Leftrightarrow \left\{ \begin{matrix}
x + 3 = 2 - 2x \\
y - 6 = - 4 - 2y \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{1}{3} \\y = \dfrac{2}{3} \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{1}{3};\dfrac{2}{3}ight)

  • Câu 5: Thông hiểu

    Cho tam giác ABC vuông cân tại AAB =
a. Tính \left| \overrightarrow{AB}
+ \overrightarrow{AC} ight|.

    Gọi M là trung điểm BC\overset{}{ightarrow}AM =
\frac{1}{2}BC.

    Ta có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AM} ight| = 2AM
= BC = a\sqrt{2}.

  • Câu 6: Nhận biết

    Cho hình thoi ABCDAC = 8, BD = 5. Tính \overrightarrow{AC}\times \overrightarrow{BD}.

     

    AC\perp BD nên \overrightarrow {AC} .\overrightarrow {BD}  = 0.

  • Câu 7: Thông hiểu

    Cho hình vuông ABCD cạnh a, tính độ dài vectơ \overrightarrow {AB}+\overrightarrow {AD}.

    Ta có: |\overrightarrow {AB}+\overrightarrow {AD}| =|\overrightarrow {AC} |=AC.

    Áp dụng định lí Pytago trong tam giác ABC: AC=\sqrt{AB^2+BC^2}=a\sqrt2.

     

  • Câu 8: Vận dụng cao

    Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O), M là một điểm thay đổi trên (O). Gọi x,y lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \left|
\overrightarrow{MA} + \overrightarrow{MB} - \overrightarrow{MC}
ight|. Tính tổng x;y.

    Hình vẽ minh họa

    Dựng hình bình hành DBCA. Ta có:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} - \overrightarrow{MC} ight|

    = \left| \overrightarrow{MD} +
\overrightarrow{DA} + \overrightarrow{MD} + \overrightarrow{DB} -
\overrightarrow{MD} - \overrightarrow{DC} ight|

    = \left| \overrightarrow{MD} ight| =
MD

    Gọi E là giao điểm khác C của DC với (O). Áp dụng bất đẳng thức tam giác ta có:

    \left\{ \begin{matrix}
MD \geq DO - OM = DO - OE = DE \\
MD \leq DO + OM = DO + OE = DC \\
\end{matrix} ight.

    Dấu bằng xảy ra khi và chỉ khi M trùng E và M trùng C.

    Vậy x + y = DE + DC

    = DC - CE + DC

    = 2DC - 2OC = 2.\frac{a\sqrt{3}}{2} -
2.\frac{a}{\sqrt{3}} = \frac{4a}{\sqrt{3}}

  • Câu 9: Vận dụng

    Trong hệ tọa độ Oxy, cho tam giác ABCM(2;3),\ N(0; - 4),\ P( - 1;6) lần lượt là trung điểm của các cạnh BC,\ CA,\
AB. Tìm tọa độ đỉnh A?

    Gọi A(x;y).

    Từ giả thiết, ta suy ra \overrightarrow{PA} =
\overrightarrow{MN}. (*)

    Ta có \overrightarrow{PA} = (x + 1;y -
6)\overrightarrow{MN} = ( - 2;
- 7).

    Khi đó (*) \Leftrightarrow \left\{\begin{matrix}x + 1 = - 2 \\y - 6 = - 7 \\\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}x = - 3 \\y = - 1 \\\end{matrix} ight.\ \overset{}{ightarrow}A( - 3; - 1).

  • Câu 10: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4). Khẳng định nào sau đây là sai?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = 2.( - 3) +
( - 1).4 = - 10 eq 0 nên đáp án Tích vô hướng của hai vectơ đã cho là - 10 đúng.

    Ta có: \left| \overrightarrow{a} ight|
= \sqrt{2^{2} + ( - 1)^{2}} = \sqrt{5} nên đáp án Độ lớn của vectơ \overrightarrow{a}\sqrt{5} đúng.

    Ta có: \left| \overrightarrow{b} ight|
= \sqrt{( - 3)^{2} + 4^{2}} = 5 nên đáp án Độ lớn của vectơ \overrightarrow{b}5 đúng.

    Đáp án sai là Góc giữa hai vectơ là 90^{o}.

  • Câu 11: Nhận biết

    Cho hình vuông ABCD cạnh bằng a. Tính độ dài véctơ \overrightarrow{BA} +
\overrightarrow{BC}.

    Hình vẽ minh họa:

    |\overrightarrow{BA} +
\overrightarrow{BC}| = |\overrightarrow{BD}| = a\sqrt{2}.

  • Câu 12: Nhận biết

    Tính độ dài đoạn thẳng AB biết tọa độ A(1;1),B(4;5)?

    Ta có: AB = \sqrt{(4 - 1)^{2} + (5 -
1)^{2}} = 5

  • Câu 13: Nhận biết

    Hãy chọn kết quả đúng khi phân tích vectơ \overrightarrow{AM} theo hai vectơ \overrightarrow{AB}\overrightarrow{AC} của tam giác ABC với trung tuyến AM.

    Do M là trung điểm của BC nên ta có \overrightarrow{AM} =
\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}).

  • Câu 14: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AC} - \overrightarrow{AD}
= \overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{AD} =
\overrightarrow{DC}.

    \overrightarrow{AC} - \overrightarrow{BD}
= 2\overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{BD} =2\overrightarrow{CD}\Leftrightarrow \left( \overrightarrow{AB} +\overrightarrow{AD} ight) - \left( \overrightarrow{AD} -\overrightarrow{AB} ight)\mathbf{=}2\overrightarrow{CD}\Leftrightarrow 2\overrightarrow{AB} =2\overrightarrow{CD}.

    \overrightarrow{AC} + \overrightarrow{BC}
= \overrightarrow{AB} sai do \overrightarrow{AC} + \overrightarrow{BC} =\overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} -\overrightarrow{AB} = - \overrightarrow{BC}\Leftrightarrow\overrightarrow{BC} = \overrightarrow{CB}.

    \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{BC} đúng do \overrightarrow{AC} + \overrightarrow{BD} =\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} +\overrightarrow{CD}\mathbf{=}2\overrightarrow{BC} + \left(\overrightarrow{AB} + \overrightarrow{CD} ight) = 2\overrightarrow{BC}+ \overrightarrow{0} = 2\overrightarrow{BC}.

  • Câu 15: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho P( -
3;1),Q(6; - 4). Xác định tọa độ trọng tâm H của tam giác OPQ?

    Vì H là trọng tâm tam giác OPQ nên ta có:

    \left\{ \begin{matrix}x_{H} = \dfrac{x_{O} + x_{P} + x_{Q}}{3} \\y_{H} = \dfrac{y_{O} + y_{P} + y_{Q}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{H} = \dfrac{0 - 3 + 6}{3} = 1 \\y_{H} = \dfrac{0 + 1 - 4}{3} = - 1 \\\end{matrix} ight.

    \Leftrightarrow H(1; - 1)

    Vậy trọng tâm tam giác cần tìm là H(1; - 1).

  • Câu 16: Vận dụng

    Cho tam giác ABC có điểm O thỏa mãn |\overrightarrow{OA}+\overrightarrow{OB}-2\overrightarrow{OC}|=|\overrightarrow{OA}-\overrightarrow{OB}|. Khẳng định nào sau đây là đúng?

     Ta có: |\overrightarrow{OA}+\overrightarrow{OB}-2\overrightarrow{OC}|=|\overrightarrow{OA}-\overrightarrow{OB}| \Leftrightarrow\left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {BA} } ight|.

    Vẽ hình bình hành ACBD, suy ra \left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {CD} } ight|. Mà \left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {BA} } ight|. Suy ra CD=BA. Do đó ACBD là hình chữ nhật. Do đó tam giác ACB vuông C.

  • Câu 17: Nhận biết

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

     Ta có:

    \begin{matrix}  \vec a.\vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

    => \overrightarrow{a}\overrightarrow{b} ngược hướng.

  • Câu 18: Nhận biết

    Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 19: Thông hiểu

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

     Ta có: \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}= 4\overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = 4\overrightarrow {MO}.

  • Câu 20: Thông hiểu

    Gọi O là giao điểm hai đường chéo ACBD của hình bình hành ABCD. Đẳng thức nào sau đây là đẳng thức sai?

    Từ hình vẽ ta thấy đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo