Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -8).

    Xét tỉ số \frac{4}{- 4} eq\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại đáp án \overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-2}{6}\overset{}{ightarrow}\overrightarrow{u},\\overrightarrow{v} không cùng phương. Loại đáp án Hai vectơ \overrightarrow{u} = (2; - 1)\ và\\overrightarrow{v} = ( - 2; - 1) đối nhau.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

    Chọn đáp án \overrightarrow{\mathbf{u}}\mathbf{-}\overrightarrow{\mathbf{v}}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 2: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 3: Vận dụng

    Cho tứ giác ABCD. Trên cạnh AB,\ \ CD lấy lần lượt các điểm M,\ \ N sao cho 3\ \overrightarrow{AM} = 2\
\overrightarrow{AB}3\
\overrightarrow{DN} = 2\ \overrightarrow{DC}. Tính vectơ \overrightarrow{MN} theo hai vectơ \overrightarrow{AD},\ \
\overrightarrow{BC}.

    Ta có \overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN}\overrightarrow{MN} = \overrightarrow{MB}
+ \overrightarrow{BC} + \overrightarrow{CN}.

    Suy ra 3\ \overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +
2\left( \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN}
ight)

    = \left( \overrightarrow{MA} +
2\overrightarrow{MB} ight) + \overrightarrow{AD} +
2\overrightarrow{BC} + \left( \overrightarrow{DN} + 2\overrightarrow{CN}
ight).

    Theo bài ra, ta có \overrightarrow{MA} +
2\ \overrightarrow{MB} = \overrightarrow{0}\overrightarrow{DN} + 2\ \overrightarrow{CN} =
\overrightarrow{0}.

    Vậy 3\ \overrightarrow{MN} =
\overrightarrow{AD} + 2\ \overrightarrow{BC} \Leftrightarrow
\overrightarrow{MN} = \frac{1}{3}\overrightarrow{AD} +
\frac{2}{3}\overrightarrow{BC}.

  • Câu 4: Vận dụng

    Cho 4 điểm A(1; -
2),B(0;3),C( - 3;4),D( - 1;8). Ba điểm nào trong 4 điểm đã cho là thẳng hàng?

    Ta có: \overrightarrow{AD}( - 2;10),\
\overrightarrow{AB}( - 1;5) \Rightarrow \overrightarrow{AD} =
2\overrightarrow{AB} \Rightarrow 3 điểm A,B,D thẳng hàng.

  • Câu 5: Thông hiểu

    Cho tam giác ABC đều có cạnh là 6. Tính |\overrightarrow{AB} +
\overrightarrow{AC}|.

    Hình vẽ minh họa

    Gọi I là trung điểm của BC. Vì tam giác ABC đều có cạnh là 6, nên ta có AI\bot BC.

    Xét tam giác AIB vuông tại I, có

    AB^{2} = AI^{2} + IB^{2}

    \Rightarrow AI^{2} = AB^{2} - IB^{2} =
6^{2} - 3^{2} = 27.

    Suy ra AI = \sqrt{27} =
3\sqrt{3}

    Mặt khác ta có:

    \overrightarrow{AB} + \overrightarrow{AC}
= 2\overrightarrow{AI}

    \Rightarrow |\overrightarrow{AB} +
\overrightarrow{AC}| = |2\overrightarrow{AI}| = 2|\overrightarrow{AI}| =
2AI = 6\sqrt{3}.

  • Câu 6: Thông hiểu

    Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ 

     \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}

    Ta có:

    \begin{matrix}  \overrightarrow {PB}  + \overrightarrow {MC}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PN}  + \overrightarrow {NA}  \hfill \\   = \overrightarrow {AP}  + \overrightarrow {PA}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Cho \overrightarrow{a}, \overrightarrow{b}không cùng phương, \overrightarrow{\ x\ } = - 2\ \overrightarrow{\ a\
\ } + \overrightarrow{\ b\ }. Vectơ cùng hướng với \overrightarrow{\ x\ \ } là:

    Ta có- \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ } = \frac{1}{2}\left( - 2\
\overrightarrow{\ a\ \ } + \overrightarrow{\ b\ } ight) =
\frac{1}{2}\overrightarrow{\ x\ }. Chọn - \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ }.

  • Câu 8: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ \overrightarrow{MN}

    Ta có: 

    \overrightarrow {MN}  = \left( {{x_N} - {x_M};{y_M} - {y_N}} ight) = \left( { - 1;1} ight)

  • Câu 9: Vận dụng

    Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. Tính độ dài của vectơ \overrightarrow{v} =
\overrightarrow{GB} + \overrightarrow{GC}.

    Gọi M là trung điểm của BC.

    Ta có \left| \overrightarrow{GB} +
\overrightarrow{GC} ight| = \left| 2\overrightarrow{GM} ight| = 2GM
= 2.\frac{1}{3}AM = \frac{2}{3}AM = \frac{2}{3}\left( \frac{1}{2}BC
ight) = \frac{BC}{3} = 4.

  • Câu 10: Thông hiểu

    Cho tam giác đều ABC với đường cao AH. Đẳng thức nào sau đây đúng?

    Chọn \left| \overrightarrow{AC} ight| =
2\left| \overrightarrow{HC} ight|H là trung điểm AC\overrightarrow{AC},\ \overrightarrow{HC} cùng hướng.

  • Câu 11: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 12: Thông hiểu

    Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:

    Theo bài ra:

    G là trọng tâm tam giác ABC nên ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_B} + {x_C} = 3{x_G}} \\   {{y_A} + {y_B} + {y_C} = 3{y_G}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 1} \\   {{y_A} = 4} \end{array}} ight. \Rightarrow A\left( {1;4} ight)

  • Câu 13: Nhận biết

    Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:

     Ta có: \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{0} (2 vectơ đối nhau).

  • Câu 14: Nhận biết

    Cho tam giác ABC. Gọi MN lần lượt là trung điểm của ABAC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AB,\ \ AC. Suy ra MN là đường trung bình của tam giác

    ABC\overset{}{ightarrow}MN =
\frac{1}{2}BC.\overrightarrow{BC},\ \ \
\overrightarrow{MN} là hai vectơ cùng hướng nên \overrightarrow{BC} = 2\
\overrightarrow{MN}.

  • Câu 15: Vận dụng cao

    Cho tam giác ABC. Lấy các điểm M,N sao cho \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{0};2\overrightarrow{NA} + 3\overrightarrow{NC} =
\overrightarrow{0}\overrightarrow{BC} =
k\overrightarrow{BP}. Xác định k để ba điểm M,N,P thẳng hàng.

    Ta có:

    \overrightarrow{MN} =
\overrightarrow{AN} - \overrightarrow{AM} =
\frac{3}{5}\overrightarrow{AC} -
\frac{1}{2}\overrightarrow{AB}

    \overrightarrow{NP} =
\overrightarrow{NC} + \overrightarrow{CP}

    = \frac{2}{5}\overrightarrow{AC} -
\left( \overrightarrow{BP} - \overrightarrow{BC} ight)

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\overrightarrow{BC}

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\left( \overrightarrow{AC} -
\overrightarrow{AB} ight)

    = \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB}

    Để ba điểm M,N,Pthẳng hàng thì \exists m\mathbb{\in R}:\overrightarrow{NP}
= m\overrightarrow{MN} hay

    \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB} = \frac{3m}{5}\overrightarrow{AC} -
\frac{m}{2}\overrightarrow{AB}

    \left\{ \begin{matrix}\dfrac{1}{k} - \dfrac{2}{5} = \dfrac{3m}{5} \\\dfrac{1}{k} - 1 = - \dfrac{m}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 4 \\k = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 16: Nhận biết

    Cho hình vuông ABCD cạnh bằng a. Tính độ dài véctơ \overrightarrow{BA} +
\overrightarrow{BC}.

    Hình vẽ minh họa:

    |\overrightarrow{BA} +
\overrightarrow{BC}| = |\overrightarrow{BD}| = a\sqrt{2}.

  • Câu 17: Nhận biết

    Tích vô hướng của hai vecto \overrightarrow{a} = (2; - 5)\overrightarrow{b} = ( - 5;2) là:

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
2.( - 5) + ( - 5).2 = - 20

  • Câu 18: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ vecto \overrightarrow{i} + \overrightarrow{j} là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{i} +
\overrightarrow{j} = (1;1)

  • Câu 19: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4). Khẳng định nào sau đây là sai?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = 2.( - 3) +
( - 1).4 = - 10 eq 0 nên đáp án Tích vô hướng của hai vectơ đã cho là - 10 đúng.

    Ta có: \left| \overrightarrow{a} ight|
= \sqrt{2^{2} + ( - 1)^{2}} = \sqrt{5} nên đáp án Độ lớn của vectơ \overrightarrow{a}\sqrt{5} đúng.

    Ta có: \left| \overrightarrow{b} ight|
= \sqrt{( - 3)^{2} + 4^{2}} = 5 nên đáp án Độ lớn của vectơ \overrightarrow{b}5 đúng.

    Đáp án sai là Góc giữa hai vectơ là 90^{o}.

  • Câu 20: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo