Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} được xác định bằng công thức nào dưới đây?

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} là một số, kí hiệu là \overrightarrow{a}.\overrightarrow{b}, được xác định bởi công thức sau:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|\cos\left( \overrightarrow{a},\overrightarrow{b}
ight).

  • Câu 2: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi ba điểmA,\ \ B,\ \ C thẳng hàng và B nằm giữaA,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm. Chọn đáp án này.

  • Câu 4: Nhận biết

    Cho \overrightarrow{a} e\overrightarrow{0} và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn \overrightarrow{OM}=3\overrightarrow{a}\overrightarrow{ON}=-4\overrightarrow{a}. Tìm \overrightarrow{MN}.

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  = \overrightarrow {MO}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - \overrightarrow {OM}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  + \left( { - 4\overrightarrow a } ight) \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  - 4\overrightarrow a  = 7\overrightarrow a  \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Cho hai vectơ không cùng phương \overrightarrow{a}\overrightarrow{b}. Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ \overrightarrow{a}\overrightarrow{b}, đó là \overrightarrow{0}."

  • Câu 6: Thông hiểu

    Cho hình vuông ABCD. Khẳng định nào sau đậy đúng?

    Ta có tứ giác ABCD là hình vuông nên AD = CB hay \left| \overrightarrow{AD} ight| = \left|
\overrightarrow{CB} ight| nên phương án \left| \overrightarrow{AD} ight| = \left|
\overrightarrow{CB} ight|đúng.

  • Câu 7: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho P( -
3;1),Q(6; - 4). Xác định tọa độ trọng tâm H của tam giác OPQ?

    Vì H là trọng tâm tam giác OPQ nên ta có:

    \left\{ \begin{matrix}x_{H} = \dfrac{x_{O} + x_{P} + x_{Q}}{3} \\y_{H} = \dfrac{y_{O} + y_{P} + y_{Q}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{H} = \dfrac{0 - 3 + 6}{3} = 1 \\y_{H} = \dfrac{0 + 1 - 4}{3} = - 1 \\\end{matrix} ight.

    \Leftrightarrow H(1; - 1)

    Vậy trọng tâm tam giác cần tìm là H(1; - 1).

  • Câu 8: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho tọa độ hai điểm A( - 1;3),B(2; - 1). Tính tọa độ vecto \overrightarrow{AB}?

    Ta có: A( - 1;3),B(2; - 1)

    \Rightarrow \overrightarrow{AB} = \left(
- 2 - ( - 1); - 1 - 3 ight) = (3; - 4)

    Vậy \overrightarrow{AB} = (3; -
4).

  • Câu 9: Thông hiểu

    Cho M là trung điểm AB, tìm biểu thức sai:

    Ta có: M là trung điểm của AB

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {MA = BM} \\   {\overrightarrow {MA}  earrow  \swarrow \overrightarrow {MB} } \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {MA}  = \overrightarrow {BM} } \\   {\left( {\overrightarrow {MA} ,\overrightarrow {MB} } ight) = {{180}^0}} \end{array}} ight. \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MB}  = \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {MB} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {MB} } ight) \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MB}  = \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {MB} } ight|\cos \left( {{{180}^0}} ight) \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MB}  =  - MA.MB \hfill \\ \end{matrix}

    Vậy biểu thức sai là: \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB

  • Câu 10: Vận dụng cao

    Cho tam giác ABC, biết rằng tồn tại duy nhất điểm I thỏa mãn: 2\overrightarrow{IA} +
3\overrightarrow{IB} + 4\overrightarrow{IC} =
\overrightarrow{0}. Tìm quỹ tích điểm M thỏa mãn:\left| 2\overrightarrow{MA} + 3\overrightarrow{MB}
+ 4\overrightarrow{MC} ight| = \left| \overrightarrow{MB} -
\overrightarrow{MA} ight|.

    Với điểm I thỏa mãn giả thiết, ta có:

    2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC}= 9\overrightarrow{MI} +(2\overrightarrow{IA} + 3\overrightarrow{IB} + 4\overrightarrow{IC}) =9\overrightarrow{MI}\overrightarrow{MB} - \overrightarrow{MA} =
\overrightarrow{AB} nên

    |2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC}| = |\overrightarrow{MB} -\overrightarrow{MA}|\Leftrightarrow |9\overrightarrow{MI}| =|\overrightarrow{AB}| \Leftrightarrow MI = \frac{AB}{9}

    Vậy quỹ tích của M là đường tròn tâm I bán kính \frac{AB}{9}.

  • Câu 11: Thông hiểu

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}
= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +
\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -
8).

    Xét tỉ số \frac{4}{- 4} eq
\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại \overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-
2}{6}\overset{}{ightarrow}\overrightarrow{u},\
\overrightarrow{v} không cùng phương. Loại \overrightarrow{u},\ \overrightarrow{v} cùng phương.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}
= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng. Chọn \overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 12: Thông hiểu

    Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?

     Ta có:

    \overrightarrow{CA}-\overrightarrow{BA}=\overrightarrow{CB}e  \overrightarrow{BC} => Khẳng định sai

    \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} e\overrightarrow{BC} => Khẳng định sai

     \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} => Khẳng định đúng

    \overrightarrow{AB}-\overrightarrow{BC}e\overrightarrow{CA}=> Khẳng định sa

  • Câu 13: Thông hiểu

    Gọi M,N lần lượt là trung điểm của các cạnh ABCD của tứ giác ABCD. Mệnh đề nào sau đây đúng?

    Do M là trung điểm các cạnh AB nên \overrightarrow{MB} + \overrightarrow{MA} =
\overrightarrow{0}.

    Do N lần lượt là trung điểm các cạnh DC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MD}.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MD}= \overrightarrow{MB} +\overrightarrow{BC} + \overrightarrow{MA} + \overrightarrow{AD}=\overrightarrow{AD} + \overrightarrow{BC} + \left( \overrightarrow{MA} +\overrightarrow{MB} ight) = \overrightarrow{AD} +\overrightarrow{BC}

    Mặt khác \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BC} +
\overrightarrow{CD} = \overrightarrow{BC} + \left( \overrightarrow{AC} +
\overrightarrow{CD} ight) = \overrightarrow{BC} +
\overrightarrow{AD}

    Do đó \overrightarrow{AC} +
\overrightarrow{BD} + \overrightarrow{BC} + \overrightarrow{AD} =
4\overrightarrow{MN}.

  • Câu 14: Vận dụng

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Ta có

    \bullet \overrightarrow{OA} + \overrightarrow{OC} +
\overrightarrow{OE} = \left( \overrightarrow{OA} + \overrightarrow{OC}
ight) + \overrightarrow{OE} = \overrightarrow{OB} +
\overrightarrow{OE} = \overrightarrow{0}. Do đo \overrightarrow{OA} + \overrightarrow{OC} +
\overrightarrow{OE} = \overrightarrow{0}. đúng.

    \bullet \overrightarrow{OA} + \overrightarrow{OC} +
\overrightarrow{OB} = \left( \overrightarrow{OA} + \overrightarrow{OC}
ight) + \overrightarrow{OB}

    = \overrightarrow{OB} +
\overrightarrow{OB} = 2\overrightarrow{OB} =
\overrightarrow{EB}. Do đo \overrightarrow{OA} + \overrightarrow{OC} +
\overrightarrow{OB} = \overrightarrow{EB} đúng.

    \bullet \overrightarrow{AB} + \overrightarrow{CD} +
\overrightarrow{EF} = \left( \overrightarrow{AB} + \overrightarrow{CD}
ight) + \overrightarrow{EF} = \left( \overrightarrow{AB} +
\overrightarrow{BO} ight) + \overrightarrow{EF}

    = \overrightarrow{AO} +
\overrightarrow{EF} = \overrightarrow{AO} + \overrightarrow{OA} =
\overrightarrow{AA} = \overrightarrow{0}. Do đó \overrightarrow{AB} + \overrightarrow{CD} +
\overrightarrow{EF} = \overrightarrow{0} đúng.

    Dùng phương pháp loại trừ, suy ra \overrightarrow{BC} + \overrightarrow{EF} =
\overrightarrow{AD} sai.

  • Câu 15: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 16: Thông hiểu

    Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:

    Theo bài ra:

    G là trọng tâm tam giác ABC nên ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_B} + {x_C} = 3{x_G}} \\   {{y_A} + {y_B} + {y_C} = 3{y_G}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_A} = 1} \\   {{y_A} = 4} \end{array}} ight. \Rightarrow A\left( {1;4} ight)

  • Câu 17: Thông hiểu

    Cho hình vuông ABCD cạnh a, tính độ dài vectơ \overrightarrow {AB}+\overrightarrow {AD}.

    Ta có: |\overrightarrow {AB}+\overrightarrow {AD}| =|\overrightarrow {AC} |=AC.

    Áp dụng định lí Pytago trong tam giác ABC: AC=\sqrt{AB^2+BC^2}=a\sqrt2.

     

  • Câu 18: Vận dụng

    Cho 4 điểm A(1; -
2),B(0;3),C( - 3;4),D( - 1;8). Ba điểm nào trong 4 điểm đã cho là thẳng hàng?

    Ta có: \overrightarrow{AD}( - 2;10),\
\overrightarrow{AB}( - 1;5) \Rightarrow \overrightarrow{AD} =
2\overrightarrow{AB} \Rightarrow 3 điểm A,B,D thẳng hàng.

  • Câu 19: Vận dụng

    Cho tam giác ABCN thuộc cạnh BC sao cho BN
= 2NC. Đẳng thức nào sau đây đúng?

    Ta có

    \overrightarrow{AN} = \overrightarrow{AB}+ \overrightarrow{BN}= \overrightarrow{AB} +\frac{2}{3}\overrightarrow{BC} = \overrightarrow{AB} + \frac{2}{3}\left(\overrightarrow{BA} + \overrightarrow{AC} ight)= \overrightarrow{AB}- \frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC} =\frac{1}{3}\overrightarrow{AB} +\frac{2}{3}\overrightarrow{AC}.

  • Câu 20: Nhận biết

    Cho hình thoi ABCDAC = 8, BD = 5. Tính \overrightarrow{AC}\times \overrightarrow{BD}.

     

    AC\perp BD nên \overrightarrow {AC} .\overrightarrow {BD}  = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo