Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a}=3\overrightarrow{i}+6\overrightarrow{j}\overrightarrow{b}=8\overrightarrow{i}-4\overrightarrow{j}. Kết luận nào sau đây sai?

    Ta có:

    \begin{matrix}  \vec a = 3\vec i + 6\vec j \Rightarrow \vec a = \left( {3;6} ight) \hfill \\  \vec b = 8\vec i - 4\vec j \Rightarrow \vec b = \left( {8; - 4} ight) \hfill \\   \Rightarrow \vec a.\vec b = 3.8 + \left( { - 4} ight).6 = 0 \hfill \\   \Rightarrow \left| {\vec a.\vec b} ight| = 0 \hfill \\   \Rightarrow \vec a \bot \vec b \hfill \\ \end{matrix}

    Vậy kết luận sai là: |\overrightarrow{a}|\times |\overrightarrow{b}|=0

  • Câu 2: Vận dụng

    Cho A(1;2),\ B( -
2;6). Điểm M trên trục Oy sao cho ba điểm A,B,M thẳng hàng thì tọa độ điểm M là:

    Ta có: M trên trục Oy \Rightarrow M(0;y).

    Ba điểm A,B,M thẳng hàng khi \overrightarrow{AB} cùng phương với \overrightarrow{AM}.

    Ta có \overrightarrow{AB} = ( - 3;4),\ \
\overrightarrow{AM} = ( - 1;y - 2). Do đó, \overrightarrow{AB} cùng phương với \overrightarrow{AM} \Leftrightarrow \frac{- 1}{-
3} = \frac{y - 2}{4} \Rightarrow y = \frac{10}{3}. Vậy M\left( 0;\frac{10}{3} ight).Đáp án là M\left( 0;\frac{10}{3} ight)

  • Câu 3: Nhận biết

    Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

     Nhận xét: \overrightarrow {AB}  =  - 3\overrightarrow {AI}  \Leftrightarrow \overrightarrow {AB}  + 3\overrightarrow {AI}  = \overrightarrow 0.

  • Câu 4: Thông hiểu

    Cho tam giác đều ABC cạnh a. Tính độ dài \overrightarrow{AB}+\overrightarrow{AC}.

     

    Gọi M là trung điểm BC. Suy ra \left|\overrightarrow {AB}+\overrightarrow {AC}ight|=\left|2\overrightarrow {AM}ight|=2AM.

    Áp dụng định lí Pytago trong tam giác vuông AMB. Suy ra AM=\frac{a\sqrt3}2 \Rightarrow 2AM=a\sqrt3.

  • Câu 5: Nhận biết

    Cho hai vecto \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}. Xác định góc giữa hai vecto \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|

    Ta có: 

    \begin{matrix}  \vec a \times \vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Hình bình hành ABCD tâm O. Khẳng định sai là:

    Ta có: \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BO} =
\overrightarrow{BA}.

    Chọn đáp án sai \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{BC}.

  • Câu 7: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABCA(6;1),\ B( - 3;5) và trọng tâm G( - 1;1). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{6 + ( - 3) + x}{3} = - 1 \\
\frac{1 + 5 + y}{3} = 1 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 6 \\
y = - 3 \\
\end{matrix} ight.\ .

  • Câu 8: Nhận biết

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 9: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 10: Vận dụng

    Gọi AN,\
CM là các trung tuyến của tam giác ABC. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CM} =
\overrightarrow{CA} + \overrightarrow{AM} \Rightarrow
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    Suy ra \overrightarrow{AN} +\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{AB} +\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CA} +\frac{1}{2}\overrightarrow{AM}= \frac{1}{2}\overrightarrow{AB} +\frac{1}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AC} +\frac{1}{2} \cdot \frac{1}{2}\overrightarrow{AB} =\frac{3}{4}\overrightarrow{AB}

    Do đó \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}.

  • Câu 11: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 12: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ \overrightarrow{MN}

    Ta có: 

    \overrightarrow {MN}  = \left( {{x_N} - {x_M};{y_M} - {y_N}} ight) = \left( { - 1;1} ight)

  • Câu 13: Thông hiểu

    Cho tam giác ABCAB =
2\ \ cm,BC = 3\ \ cm,CA = 5\ \ cm. Tính \overrightarrow{CA}.\overrightarrow{CB}.

    Ta có \cos C = \frac{BC^{2} + AC^{2} -AB^{2}}{2.BC.AC}= \frac{3^{2} + 5^{2} - 2^{2}}{2.3.5} = 1

    \overrightarrow{CA}.\overrightarrow{CB}
= \left| \overrightarrow{CA} ight|.\left| \overrightarrow{CB}
ight|.cosC = 15

  • Câu 14: Vận dụng cao

    Cho tam giác đều ABC cạnh a, trọng tâm G. Tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + \overrightarrow{MC}
ight|

    Gọi I,\ \ J lần lượt là trung điểm của AB,\ \ AC. Khi đó \left\{ \begin{matrix}
\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI} \\
\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MJ} \\
\end{matrix} ight.\ .

    Theo bài ra, ta có \left|\overrightarrow{MA} + \overrightarrow{MB} ight| = \left|\overrightarrow{MA} + \overrightarrow{MC} ight|\Leftrightarrow \left|2\ \overrightarrow{MI} ight| = \left| 2\ \overrightarrow{MJ} ight|\Leftrightarrow MI = MJ.

    Vậy tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
\overrightarrow{MC} ight| là đường trung trực của đoạn thẳng IJ, cũng chính là đường trung trực của đoạn thẳng BCIJ là đường trung bình của tam giác ABC.

  • Câu 15: Thông hiểu

    Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?

     Ta có:\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FA}+\overrightarrow{BC}+\overrightarrow{EF}+\overrightarrow{DE}=\overrightarrow{0}\Leftrightarrow\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DE}  + \overrightarrow {EF}  + \overrightarrow {FA}  = \overrightarrow 0.

  • Câu 16: Thông hiểu

    Gọi O là tâm hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}.. Ta có \overrightarrow{OA} - \overrightarrow{OB} =
\overrightarrow{BA} = \overrightarrow{CD}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} = -
\overrightarrow{AD} \\
\overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{AD} \\
\end{matrix} ight.. Vậy đáp án này sai.

    Đáp án \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DB}.. Ta có \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{DC} -
\overrightarrow{DA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{DC} - \overrightarrow{DA} = \overrightarrow{AC} \\
\end{matrix} ight.. Vậy đáp án này đúng.

  • Câu 17: Nhận biết

    Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{a} =
\frac{5}{4}\overrightarrow{b}\overset{}{ightarrow}\overrightarrow{a},\
\overrightarrow{b} cùng hướng.

  • Câu 18: Vận dụng

    Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. Tính độ dài của vectơ \overrightarrow{v} =
\overrightarrow{GB} + \overrightarrow{GC}.

    Gọi M là trung điểm của BC.

    Ta có \left| \overrightarrow{GB} +
\overrightarrow{GC} ight| = \left| 2\overrightarrow{GM} ight| = 2GM
= 2.\frac{1}{3}AM = \frac{2}{3}AM = \frac{2}{3}\left( \frac{1}{2}BC
ight) = \frac{BC}{3} = 4.

  • Câu 19: Thông hiểu

    Cho lục giác đều ABCDEF tâm O. Các vectơ đối của vectơ \overrightarrow{OD} là:

    Các vectơ đối của vectơ \overrightarrow{OD} là: \overrightarrow{OA},\overrightarrow{DO},\overrightarrow{EF},\overrightarrow{CB},\overrightarrow{DA}.

  • Câu 20: Nhận biết

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo