Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 2: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; - 1),B(2;10),C( - 4;2). Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Ta có: \overrightarrow{AB} = ( -
1;11),\overrightarrow{AC} = ( -
7;3) \Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=40.

  • Câu 3: Nhận biết

    Điều kiện nào dưới đây là điều kiện cần và đủ để điểm O là trung điểm của đoạn AB.

    Điểm O là trung điểm của đoạn AB khi và chỉ khi OA = OB;\ \ \ \overrightarrow{OA} và ngược hướng.

    Vậy \overrightarrow{OA} +
\overrightarrow{OB} = \overrightarrow{0}.

  • Câu 4: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;5),B(2;6). Tìm tọa độ điểm C đối xứng với điểm B qua A?

    Gọi tọa độ điểm C là C(x;y)

    Vì điểm C đối xứng với điểm B qua A suy ra A là trung điểm của BC

    \Leftrightarrow \left\{ \begin{matrix}1 = \dfrac{- 2 + x}{2} \\5 = \dfrac{6 + y}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 4 \\\end{matrix} ight.\  \Leftrightarrow C(4;4)

    Vậy tọa độ điểm C cần tìm là C(4;4).

  • Câu 5: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 6: Thông hiểu

    Cho ba vectơ \overrightarrow{a} = (2;1),\ \overrightarrow{b} =
(3;4),\ \overrightarrow{c} = (7;2). Giá trị của k,\ h để \overrightarrow{c} = k.\overrightarrow{a} +
h.\overrightarrow{b}

    Ta có \left. \ \begin{matrix}k.\overrightarrow{a} = (2k;k) \\h.\overrightarrow{b} = (3h;4h) \\\end{matrix} ight\}\overset{}{ightarrow}k.\overrightarrow{a} +h.\overrightarrow{b} = (2k + 3h;k + 4h).

    Theo đề bài: \overrightarrow{c} =k.\overrightarrow{a} + h.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2k + 3h \\2 = k + 4h \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}k = 4,4 \\h = - 0,6 \\\end{matrix} ight.\ .

  • Câu 7: Vận dụng cao

    Cho tam giác ABCM là trung điểm của BC. Điểm E xác định 2\overrightarrow{EA} + \overrightarrow{EC} =
\overrightarrow{0}. Đường thẳng d đi qua E song song với AB cắt AM,BC lần lượt tại D;F. Điểm G nằm trên cạnh AB sao cho diện tích các tam giác BFGADE bằng nhau. Biết \overrightarrow{AG} =
\alpha\overrightarrow{AB}. Tính giá trị của \alpha?

    Hình vẽ minh họa:

    Theo định lí Ta – lét ta có:

    \frac{FB}{FC} = \frac{EA}{EC} =
\frac{1}{2} \Rightarrow FC = \frac{2}{3}BC

    \Rightarrow FM = \frac{2}{3}BC - MC =
\frac{2}{3}BC - \frac{1}{2}BC = \frac{1}{6}BC

    \Rightarrow \overrightarrow{FM} =
\frac{1}{4}\overrightarrow{FC}

    Mặt khác \overrightarrow{EC} = -
2\overrightarrow{EA};\overrightarrow{DA} = -
\frac{DA}{DM}.\overrightarrow{DM} mà ba điểm D;E;F thẳng hàng nên theo định lí Menelaus ta được:

    \left( - \frac{DA}{DM}
ight).\frac{1}{4}.( - 2) = 1

    \Rightarrow \frac{DA}{DM} =
2

    Ta có:

    \overrightarrow{AD} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3}.\frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC}

    Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó \overrightarrow{BG} =
\overrightarrow{DE}

    Ta có:

    \overrightarrow{AE} =
\overrightarrow{AD} + \overrightarrow{DE} =
\frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} +
\overrightarrow{BG}

    \overrightarrow{AE} =
\frac{1}{3}\overrightarrow{AC} \Rightarrow \overrightarrow{BG} =
\frac{1}{3}\overrightarrow{BA}

    Hay \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AB}

    Vậy \alpha = \frac{2}{3}

  • Câu 8: Thông hiểu

    Cho hình thang ABCD\ \ (AB//CD),\ \ CD = 2AB, M là trung điểm của AB. Có bao nhiêu vectơ khác vectơ – không cùng phương với \overrightarrow{AM}?

    Vì ABCD là hình thang nên ta có các vectơ thỏa mãn yêu cầu là\overrightarrow{MA},\ \ \overrightarrow{BM},\ \
\overrightarrow{MB},\ \ \overrightarrow{AB},\ \ \overrightarrow{BA},\ \
\overrightarrow{CD},\ \ \overrightarrow{DC}

  • Câu 9: Vận dụng

    Cho hình bình hành ABCDO là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}. Ta có \overrightarrow{OA} + \overrightarrow{OB} +
\overrightarrow{OC} + \overrightarrow{OD} = \left( \overrightarrow{OA} +
\overrightarrow{OC} ight) + \left( \overrightarrow{OB} +
\overrightarrow{OD} ight) = \overrightarrow{0}.

    Đáp án \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Ta có \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC} (quy tắc hình bình hành).

    Đáp án \left| \overrightarrow{BA} +
\overrightarrow{BC} ight| = \left| \overrightarrow{DA} +
\overrightarrow{DC} ight|. Ta có \left\{ \begin{matrix}
\left| \overrightarrow{BA} + \overrightarrow{BC} ight| = \left|
\overrightarrow{BD} ight| = BD \\
\left| \overrightarrow{DA} + \overrightarrow{DC} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\end{matrix} ight..

    Đáp án \overrightarrow{AB} +
\overrightarrow{CD} = \overrightarrow{AB} +
\overrightarrow{CB}. Do \overrightarrow{CD} eq \overrightarrow{CB}
\Rightarrow \left( \overrightarrow{AB} + \overrightarrow{CD} ight)
eq \left( \overrightarrow{AB} + \overrightarrow{CB} ight). Chọn đáp án này.

  • Câu 10: Nhận biết

    Cho đoạn thẳng ABM là một điểm trên đoạn AB sao cho MA
= \frac{1}{5}AB. Trong các khẳng định sau, khẳng định nào sai?

    Hình vẽ minh họa

    Ta thấy \overrightarrow{MB}\overrightarrow{AB} cùng hướng nên \overrightarrow{MB} = -
\frac{4}{5}\overrightarrow{AB} là sai.

  • Câu 11: Nhận biết

    Cho \overrightarrow{AB} và một điểm C. Có bao nhiêu điểm D thỏa mãn \overrightarrow{AB}=\overrightarrow{CD}

    Có một và chỉ một điểm D thỏa mãn \overrightarrow{AB}=\overrightarrow{CD}

  • Câu 12: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC,\ \ \ I là trung điểm của AM. Khẳng định nào sau đây đúng?

    M là trung điểm BC nên \overrightarrow{AB} + \overrightarrow{AC} = 2\
\overrightarrow{AM}. (1) Mặt khác I là trung điểm AM nên 2\
\overrightarrow{AI} = \overrightarrow{AM}. (2)

    Từ (1),\ \ (2) suy ra \overrightarrow{AB} + \overrightarrow{AC} = 4\
\overrightarrow{AI} \Leftrightarrow \overrightarrow{AI} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC}
ight).

  • Câu 13: Nhận biết

    Trong hệ trục tọa độ Oxy, cho hai điểm A(2; - 1),B(4;3). Tọa độ của véctơ \overrightarrow{AB} bằng

    \overrightarrow{AB} = \left( x_{B} -
x_{A};y_{B} - y_{A} ight) \Rightarrow \overrightarrow{AB} = (2;4).

  • Câu 14: Thông hiểu

    Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?

     Ta có:\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{FA}+\overrightarrow{BC}+\overrightarrow{EF}+\overrightarrow{DE}=\overrightarrow{0}\Leftrightarrow\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DE}  + \overrightarrow {EF}  + \overrightarrow {FA}  = \overrightarrow 0.

  • Câu 15: Vận dụng

    Trong hệ tọa độ Oxy, cho A( -
1;5),\ B(5;5),\ C( - 1;11). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (6;0) \\
\overrightarrow{AC} = (0;6) \\
\end{matrix} ight.\ \overset{}{ightarrow}6.6 eq
0.0\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{AC} không cùng phương.

  • Câu 16: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{i} + \overrightarrow{j}

    Ta có \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{i} +
\overrightarrow{j} = (1;1).

  • Câu 17: Thông hiểu

    Cho hình vuông ABCD. Khẳng định nào sau đây đúng?

    ABCD là hình vuông \Rightarrow \overrightarrow{AD} =
\overrightarrow{BC} = - \overrightarrow{CB} \Rightarrow \left|
\overrightarrow{AD} ight| = \left| \overrightarrow{CB}
ight|.

  • Câu 18: Nhận biết

    Tính tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}.

    Ta có \overrightarrow{MN} +\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +\overrightarrow{QR}= \overrightarrow{MN} + \overrightarrow{NP} +\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RN} =\overrightarrow{MN}.

  • Câu 19: Vận dụng

    Cho hình thang ABCD có đáy là ABCD. Gọi MN lần lượt là trung điểm của ADBC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AD,\ \ BC \Rightarrow \left\{
\begin{matrix}
\overrightarrow{MA} + \overrightarrow{MD} = \overrightarrow{0} \\
\overrightarrow{BN} + \overrightarrow{CN} = \overrightarrow{0} \\
\end{matrix} ight.\ . Dựa vào đáp án, ta có nhận xét sau:

    \bullet \overrightarrow{MN} = \overrightarrow{MD} +
\overrightarrow{CN} + \overrightarrow{DC} đúng, vì \overrightarrow{MD} + \overrightarrow{CN} +
\overrightarrow{DC} = \overrightarrow{MN} = \left( \overrightarrow{MD} +
\overrightarrow{DC} ight) + \overrightarrow{CN} = \overrightarrow{MC}
+ \overrightarrow{CN} = \overrightarrow{MN}

    \bullet \overrightarrow{MN} = \overrightarrow{AB} -
\overrightarrow{MD} + \overrightarrow{BN} đúng, vì \overrightarrow{AB} - \overrightarrow{MD} +
\overrightarrow{BN} = \left( \overrightarrow{AB} + \overrightarrow{BN}
ight) - \overrightarrow{MD} = \overrightarrow{AN} -
\overrightarrow{AM} = \overrightarrow{MN}

    \bullet \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{DC}
ight) đúng, vì \overrightarrow{MN} = \overrightarrow{MA} +
\overrightarrow{AB} + \overrightarrow{BN}\overrightarrow{MN} = \overrightarrow{MD} +
\overrightarrow{DC} + \overrightarrow{CN}.

    Suy ra 2\overrightarrow{MN} = \left(
\overrightarrow{MA} + \overrightarrow{MD} ight) + \overrightarrow{AB}
+ \overrightarrow{DC} + \left( \overrightarrow{BN} + \overrightarrow{CN}
ight) = \overrightarrow{0} + \overrightarrow{AB} + \overrightarrow{DC}
+ \overrightarrow{0} = \overrightarrow{AB} +
\overrightarrow{DC}\overset{}{ightarrow}\overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AD} + \overrightarrow{BC}
ight).

    \bullet \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AD} + \overrightarrow{BC}
ight) sai, vì theo phân tích ở đáp án trên. Chọn đáp án này.

  • Câu 20: Thông hiểu

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

    Ta có:

    \begin{matrix}  \overrightarrow {MA} .\overrightarrow {BC}  = 0 \Rightarrow \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {BC} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {BC}  \hfill \\   \Leftrightarrow MA \bot BC \hfill \\ \end{matrix}

    Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 22 lượt xem
Sắp xếp theo