Cho tam giác
Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh ![]()
Đó là các vectơ:
Cho tam giác
Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh ![]()
Đó là các vectơ:
Trong hệ trục tọa độ
, tọa độ của vectơ
là
Ta có
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Gọi
là các trung tuyến của tam giác
. Đẳng thức nào sau đây đúng?
Ta có
Suy ra
Do đó .
Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ
là
Ta có:
Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Tính độ dài ![]()
Dựng hình bình hành tâm O như sau:

Ta có:
Vì tam giác AOB vuông tại A ta có:
Gọi
là tâm hình bình hành
. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
. Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này sai.
Đáp án . Ta có
Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này đúng.
Cho hình vuông
cạnh
, tính độ dài vectơ
.
Ta có: .
Áp dụng định lí Pytago trong tam giác :
.
Cho lục giác đều
tâm
. Các vectơ đối của vectơ
là:
Các vectơ đối của vectơ là:
.
Trong hệ tọa độ
cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Cho ba điểm phân biệt
Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.
Cho tam giác
và đặt
Cặp vectơ nào sau đây cùng phương?
Dễ thấy hai vectơ
cùng phương.
Cho tam giác đều
cạnh
Biết rằng tập hợp các điểm
thỏa mãn đẳng thức
là đường tròn cố định có bán kính
Tính bán kính
theo ![]()
Gọi là trọng tâm của tam giác
Ta có
Chọn điểm sao cho
Vì là trọng tâm của tam giác
nên
Khi đó
Do đó
Vì là điểm cố định thỏa mãn
nên tập hợp các điểm
cần tìm là đường tròn tâm
bán kính
Cho hình thoi
có
. Tính
.

Vì nên
.
Cho tam giác đều ABC có cạnh a. Tính tích vô hướng ![]()
Ta có: Tam giác ABC đều =>
Cho tam giác
Tập hợp tất cả các điểm
thỏa mãn đẳng thức
là
Ta có
Mà cố định
Tập hợp điểm
là đường tròn tâm
, bán kính
.
Trong hệ tọa độ
cho tam giác
có
, trọng tâm
và trung điểm cạnh
là
Tổng hoành độ của điểm
và
là
Vì là trung điểm
nên
Vì là trọng tâm tam giác
nên
Suy ra
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành