Cho tam giác
và điểm
thỏa mãn điều kiện
. Mệnh đề nào sau đây sai?
Ta có
là hình bình hành
Do đó sai.
Cho tam giác
và điểm
thỏa mãn điều kiện
. Mệnh đề nào sau đây sai?
Ta có
là hình bình hành
Do đó sai.
Trong mặt phẳng Oxy, cho
. Tìm x để
và
cùng phương.
Để và
cùng phương thì
Cho tam giác
đều cạnh
nội tiếp đường tròn
,
là một điểm thay đổi trên
. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
. Tính tổng
.
Hình vẽ minh họa
Dựng hình bình hành DBCA. Ta có:
Gọi E là giao điểm khác C của DC với (O). Áp dụng bất đẳng thức tam giác ta có:
Dấu bằng xảy ra khi và chỉ khi M trùng E và M trùng C.
Vậy
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Cho tam giác
Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh ![]()
Đó là các vectơ:
Cho các vectơ
. Phân tích vectơ
theo hai vectơ
, ta được:
Giả sử . Vậy
.
Cho lục giác đều
tâm
Số các vectơ bằng
có điểm đầu và điểm cuối là các đỉnh của lục giác là:
Đó là các vectơ: .
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.
Trong hệ trục tọa độ
, tọa độ của vectơ
là
Ta có
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính ![]()
Ta có:
Tam giác ABC vuông tại A ta có:
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Cho hình bình hành
có
là trung điểm của
Khẳng định nào sau đây đúng?
Xét các đáp án ta thấy bài toán yêu cần phân tích vectơ theo hai vectơ
và
Vì là hình bình hành nên
Vì
là trung điểm
nên
suy ra
Gọi
là các trung tuyến của tam giác
. Đẳng thức nào sau đây đúng?
Ta có
Suy ra
Do đó .
Trên đường thẳng MN lấy điểm P sao cho
. Điểm P được xác định đúng trong hình vẽ nào sau đây:

Vì nên
nằm giữa
và
, đồng thời
.
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng
là:
Ta có:
Cho
và
là hai vectơ cùng hướng và đều khác vectơ
.Trong các kết quả sau đây,hãy chọn kết quả đúng.
Ta thấy vế trái của 4 phương án giống nhau.
Bài toán cho và
là hai vectơ cùng hướng và đều khác vectơ
suy ra
Do đó nên
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tính tích vô hướng ![]()
Ta có: và
Vậy
Cho hình chữ nhật
Khẳng định nào sau đây đúng?
Ta có
Mà
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .