Cho tam giác
vuông tại
và có
. Tính
.
Ta có .
Cho tam giác
vuông tại
và có
. Tính
.
Ta có .
Cho hình bình hành
, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ
là:
Ta có là hình bình hành nên
do đó
.
Cho hình vuông
cạnh
Tính ![]()
Ta có
Cho tam giác
có
thuộc cạnh
sao cho
. Đẳng thức nào sau đây đúng?
Ta có
.
Cho tam giác đều
cạnh
trọng tâm
Tập hợp các điểm
thỏa mãn
là
Gọi lần lượt là trung điểm của
Khi đó
Theo bài ra, ta có
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
cũng chính là đường trung trực của đoạn thẳng
vì
là đường trung bình của tam giác
Cho hình bình hành
có
là giao điểm của hai đường chéo. Gọi
lần lượt là trung điểm của
. Đẳng thức nào sau đây sai?
Ta có lần lượt là đường trung bình của tam giác
và
.
là hình bình hành.
Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

Nhận xét: .
Cho M là trung điểm AB, tìm biểu thức sai:
Ta có: M là trung điểm của AB
Vậy biểu thức sai là:
Trong mặt phẳng tọa độ
cho hai vecto
. Khi nào hai vecto
và
bằng nhau?
Ta có:
Vậy hai vecto và
bằng nhau khi
.
Trong hệ tọa độ
cho hình bình hành
, điểm
thuộc trục hoành. Khẳng định nào sau đây đúng?
Từ giả thiết suy ra cạnh thuộc trục hoành
cạnh
song song với trục hoành nên
. Do đó loại đáp án
có tung độ khác
và đáp án hai điểm
có tung độ khác nhau.
Nếu có hoành độ bằng
: mâu thuẩn với giả thiết
là hình bình hành. Loại đáp án
có hoành độ bằng
Dùng phương pháp loại trừ, ta chọn
Cách 2. Gọi là tâm của hình bình hành
. Suy ra
là trung điểm
là trung điểm
Từ đó suy ra
Cho hai vectơ
và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Cho ba điểm phân biệt
Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.
Trong mặt phẳng
cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Cho bốn điểm phân biệt
thỏa mãn
. Khẳng định nào sau đây sai?
Phải suy ra là hình bình hành (nếu
không thẳng hàng) hoặc bốn điểm
thẳng hàng.
Đáp án sai là là hình bình hành.
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Tìm tọa độ điểm
sao cho điểm
cách đều hai điểm
?
Ta có:
Từ
Vậy tọa độ điểm D cần tìm là: .
Cho tam giác
có
là trung điểm của
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm
nên
Mặt khác
là trung điểm
nên
Từ suy ra
Trong mặt phẳng tọa độ Oxy, cho
. Đâu là tọa độ của điểm A?
Ta có: O(0; 0)
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .
Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó ![]()
Ta có: G là trọng tâm tam giác ABC =>