Trong mặt phẳng
cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Trong mặt phẳng
cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Cho các vectơ
. Phân tích vectơ
theo hai vectơ
, ta được:
Giả sử . Vậy
.
Cho tam giác
vuông cân tại
có
. Tính ![]()
Gọi là trung điểm
Ta có
Cho hai vecto
và
biết
và
. Tính
.
Ta có:
Cho hình bình hành
, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ
là:
Ta có là hình bình hành nên
do đó
.
Cho tam giác
điểm
thuộc cạnh
sao cho
và
là trung điểm của
Tính
theo
và ![]()
Vì là trung điểm
nên
Suy ra
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Cho tam giác
, điểm I thoả mãn:
. Nếu
thì cặp số
bằng:
Ta có:
.
Cho tam giác ABC, có thể xác định được bao nhiêu vectơ khác
có điểm đầu và điểm cuối là các đỉnh A, B, C?
Ta có các vectơ khác có điểm đầu và điểm cuối là các đỉnh tam giác ABC là:
Khẳng định nào sau đây là đúng?
Ta có cùng hướng.
Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ
là
Ta có:
Cho tam giác
có
Tính ![]()
Ta có
Tổng
bằng vectơ nào sau đây?
Ta có
.
Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

Nhận xét: .
Cho tam giác
vuông cân đỉnh
, đường cao
. Khẳng định nào sau đây sai?
Do cân tại
,
là đường cao nên
là trung điểm
.
Xét các đáp án:
Đáp án Ta có
Đáp án . Ta có
Do đó đáp án này sai.
Đáp án . Ta có
Đáp án . Ta có
(do
vuông cân tại
).
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tính cosin của góc giữa hai vectơ
và ![]()
Ta có: .
Cho hai điểm
phân biệt và cố định, với
là trung điểm của
Tập hợp các điểm
thỏa mãn đẳng thức
là
Chọn điểm thuộc đoạn
sao cho
Chọn điểm thuộc đoạn
sao cho
Ta có
Vì là hai điểm cố định nên từ đẳng thức
suy ra tập hợp các điểm
là trung trực của đoạn thẳng
Gọi
là trung điểm của
suy ra
cũng là trung điểm của
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
Cho tam giác
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.