Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tính cosin của góc giữa hai vectơ
và ![]()
Ta có: .
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tính cosin của góc giữa hai vectơ
và ![]()
Ta có: .
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Cho tam giác
có
là trung điểm của
. Điểm
xác định
. Đường thẳng
đi qua
song song với
cắt
lần lượt tại
. Điểm
nằm trên cạnh
sao cho diện tích các tam giác
và
bằng nhau. Biết
. Tính giá trị của
?
Hình vẽ minh họa:
Theo định lí Ta – lét ta có:
Mặt khác mà ba điểm
thẳng hàng nên theo định lí Menelaus ta được:
Ta có:
Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó
Ta có:
Mà
Hay
Vậy
Cho tam giác
đều cạnh
là trung điểm của
. Tính ![]()
Gọi là điểm thỏa mãn tứ giác
là hình bình hành
là hình chữ nhật.
Ta có
Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Ta có:
sai do
.
sai do
.
sai do
.
đúng do
.
Cho bốn điểm phân biệt
và không cùng nằm trên một đường thẳng. Điều kiện nào trong các đáp án A, B, C, D sau đây là điều kiện cần và đủ để
?
Ta có:
là hình bình hành.
Mặt khác, là hình bình hành
.
Do đó, điều kiện cần và đủ để là
là hình bình hành.
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi
.
Ta có .
Mà theo giả thiết
Suy ra
Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ
là
Ta có:
Trong hệ tọa độ
, cho các điểm
. Xác định tọa độ điểm
thỏa mãn biểu thức
?
Theo bài ra ta có:
Cho ba điểm
phân biệt. Khẳng định nào sau đây đúng?
Xét đáp án Ta có
. Vậy đáp án này đúng.
Cho
. Điểm
sao cho
là trung điểm
. Tìm tọa độ của điểm
.
Ta có: nên
.
là trung điểm
nên
Vậy .
Cho hình vuông ABCD cạnh a. Tính ![]()
Hình vẽ minh họa

Ta có:
Tam giác ACD vuông cân tại D ta có:
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>
Trong mặt phẳng tọa độ
cho
. Xác định tọa độ vecto
?
Ta có:
Cho tam giác
có
là trung điểm của
là trọng tâm của tam giác
Khẳng định nào sau đây đúng?
Vì là trọng tâm của tam giác
nên
Vì
là trung điểm của
nên
Do đó
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho hình vuông
cạnh
Tính ![]()
Ta có
Cho tam giác
, tập hợp các điểm
sao cho
là:
Gọi là trọng tâm của tam giác
, ta có
.
Thay vào ta được : , hay tập hợp các điểm
là đường tròn có tâm là trọng tâm của tam giác
và bán kính bằng
.
Cặp vectơ nào sau đây vuông góc?
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
đúng.
Vì suy ra đáp án
và
sai.
Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác
biết rằng
?
Gọi M, N lần lượt là trung điểm của AB và BC.
I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi: