Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong mặt phẳng tọa độ Oxy cho hai vecto \overrightarrow{u} = ( - 2; -
4),\overrightarrow{v} = (2x - y;y). Khi nào hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau?

    Ta có:

    \overrightarrow{u} = \overrightarrow{v}
\Leftrightarrow \left\{ \begin{matrix}
2x - y = - 2 \\
y = - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x + 4 = - 2 \\
y = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = - 4 \\
\end{matrix} ight.

    Vậy hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau khi x = - 3;y = - 4.

  • Câu 2: Vận dụng cao

    Cho tam giác đều ABC cạnh a, trọng tâm G. Tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + \overrightarrow{MC}
ight|

    Gọi I,\ \ J lần lượt là trung điểm của AB,\ \ AC. Khi đó \left\{ \begin{matrix}
\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI} \\
\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MJ} \\
\end{matrix} ight.\ .

    Theo bài ra, ta có \left|\overrightarrow{MA} + \overrightarrow{MB} ight| = \left|\overrightarrow{MA} + \overrightarrow{MC} ight|\Leftrightarrow \left|2\ \overrightarrow{MI} ight| = \left| 2\ \overrightarrow{MJ} ight|\Leftrightarrow MI = MJ.

    Vậy tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
\overrightarrow{MC} ight| là đường trung trực của đoạn thẳng IJ, cũng chính là đường trung trực của đoạn thẳng BCIJ là đường trung bình của tam giác ABC.

  • Câu 3: Nhận biết

    Trong hệ trục tọa độ Oxy, cho hai điểm A(2; - 1),B(4;3). Tọa độ của véctơ \overrightarrow{AB} bằng

    \overrightarrow{AB} = \left( x_{B} -
x_{A};y_{B} - y_{A} ight) \Rightarrow \overrightarrow{AB} = (2;4).

  • Câu 4: Nhận biết

    Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó \overrightarrow{GA}=

    Ta có: G là trọng tâm tam giác ABC => \left\{ {\begin{array}{*{20}{c}}  {AG = \dfrac{2}{3}AM} \\   {\overrightarrow {AG}  earrow  earrow \overrightarrow {AM} } \end{array}} ight. \Rightarrow \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AM}

     

    \Rightarrow \overrightarrow {GA}  =  - \frac{2}{3}\overrightarrow {AM}

  • Câu 5: Nhận biết

    Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?

    Theo bài ra ta có: 

    Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a

    => |\overrightarrow{AB}|=AB=2a

  • Câu 6: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính \left| \overrightarrow{AB} - \overrightarrow{DA}
ight|.

    Ta có \left| \overrightarrow{AB} -
\overrightarrow{DA} ight| = \left| \overrightarrow{AB} +
\overrightarrow{AD} ight| = \left| \overrightarrow{AC} ight| = AC =
a\sqrt{2}.

  • Câu 7: Vận dụng

    Cho hình bình hành ABCD. Tập hợp tất cả các điểm M thỏa mãn đẳng thức \overrightarrow{MA} + \overrightarrow{MB} -
\overrightarrow{MC} = \overrightarrow{MD}

    \overrightarrow{MA} + \overrightarrow{MB}
- \overrightarrow{MC} = \overrightarrow{MD} \Leftrightarrow
\overrightarrow{MB} - \overrightarrow{MC} = \overrightarrow{MD} -
\overrightarrow{MA} \Leftrightarrow \overrightarrow{CB} =
\overrightarrow{AD}: vô lí

    \Rightarrow Không có điểm Mthỏa mãn.

  • Câu 8: Vận dụng

    Cho 4 điểm A(1; -
2),B(0;3),C( - 3;4),D( - 1;8). Ba điểm nào trong 4 điểm đã cho là thẳng hàng?

    Ta có: \overrightarrow{AD}( - 2;10),\
\overrightarrow{AB}( - 1;5) \Rightarrow \overrightarrow{AD} =
2\overrightarrow{AB} \Rightarrow 3 điểm A,B,D thẳng hàng.

  • Câu 9: Thông hiểu

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA} = \overrightarrow{MB} +
\overrightarrow{MC}. Khẳng định nào sau đây đúng?

    Gọi I,\ \ G lần lượt là trung điểm BC và trọng tâm tam giác ABC.I là trung điểm BC nên \overrightarrow{MB} + \overrightarrow{MC} = 2\
\overrightarrow{MI}.

    Theo bài ra, ta có \overrightarrow{MA} =
\overrightarrow{MB} + \overrightarrow{MC} suy ra \overrightarrow{MA} = 2\overrightarrow{MI}
\Rightarrow A,\ \ M,\ \ I thẳng hàng

    Mặt khác G là trọng tâm của tam giác ABC\overset{}{ightarrow}\ G \in
AI. Do đó, ba điểm A,\ \ M,\ \
G thẳng hàng.

  • Câu 10: Thông hiểu

    Cho tam giác ABCA(1;2),B( -
1;1),C(5; - 1).Tính \cos A.

    Ta có \overrightarrow{AB} = ( - 2; -
1),\overrightarrow{AC} = (4; -
3) suy ra

    \cos A =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC}= \frac{( - 2).4 +( - 1).( - 3)}{\sqrt{( - 2)^{2} + ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}}= \frac{- 5}{\sqrt{5}\sqrt{25}}= - \frac{1}{\sqrt{5}}.

  • Câu 11: Thông hiểu

    Cho bốn điểm phân biệt A,\ B,\ C,\ Dvà không cùng nằm trên một đường thẳng. Điều kiện nào trong các đáp án A, B, C, D sau đây là điều kiện cần và đủ để \overrightarrow{AB} =
\overrightarrow{CD}?

    Ta có:

    \overrightarrow{AB} = \overrightarrow{CD}
\Rightarrow \left\{ \begin{matrix}
AB \parallel CD \\
AB = CD \\
\end{matrix} ight.\  \Rightarrow ABDC là hình bình hành.

    Mặt khác, ABDC là hình bình hành \Rightarrow \left\{ \begin{matrix}
AB \parallel CD \\
AB = CD \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AB} =
\overrightarrow{CD}.

    Do đó, điều kiện cần và đủ để \overrightarrow{AB} = \overrightarrow{CD}ABDC là hình bình hành.

  • Câu 12: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 13: Vận dụng

    Gọi M,\
N lần lượt là trung điểm các cạnh AD,\ BC của tứ giác ABCD. Đẳng thức nào sau đây sai?

    Do M là trung điểm các cạnh AD nên \overrightarrow{MD} + \overrightarrow{MA} =
\overrightarrow{0}

    Do N lần lượt là trung điểm các cạnh BC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MB}. Nên \overrightarrow{MB} + \overrightarrow{MC} =
2\overrightarrow{MN} đúng.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MB} = \overrightarrow{MD} +\overrightarrow{DC} + \overrightarrow{MA} + \overrightarrow{AB}=\overrightarrow{AB} + \overrightarrow{DC} + \left( \overrightarrow{MD} +\overrightarrow{MA} ight) = \overrightarrow{AB} +\overrightarrow{DC} .

    Vậy \overrightarrow{AB} +
\overrightarrow{DC} = 2\overrightarrow{MN}. Nên \overrightarrow{AB} + \overrightarrow{DC} =
2\overrightarrow{MN} đúng.

    \overrightarrow{AB} +\overrightarrow{DC} = \overrightarrow{AC} + \left( \overrightarrow{CB} +\overrightarrow{DC} ight)= \overrightarrow{AC} + \overrightarrow{DB}= 2\overrightarrow{MN}. Nên \overrightarrow{AC} + \overrightarrow{DB} =
2\overrightarrow{MN} đúng.

    Vậy \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} sai.

  • Câu 14: Nhận biết

    Cho M là trung điểm AB, tìm đẳng thức sai

     Ta có: \overrightarrow{MA}\times \overrightarrow{MB}=MA.MB.\cos180^{\circ} =-MA.MB

    Đáp án sai là \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB.

  • Câu 15: Thông hiểu

    Cho hình bình hành ABCD, điểm M thỏa mãn: 4\overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AC}. Khi đó điểm M là:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AD}
+ \overrightarrow{AC} = \overrightarrow{AC} + \overrightarrow{AC} =
2\overrightarrow{AC} = 4\overrightarrow{AM}

  • Câu 16: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi ba điểmA,\ \ B,\ \ C thẳng hàng và B nằm giữaA,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm. Chọn đáp án này.

  • Câu 17: Nhận biết

    Tìm tọa độ vecto \overrightarrow{AB} biết A(5;3),B(7;8)?

    Ta có:

    \overrightarrow{AB} = (7 - 5,8 - 3) =
(2;5)

  • Câu 18: Nhận biết

    Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?

    Hệ thức sai là: \overrightarrow{MP}\times \overrightarrow{MN}=-\overrightarrow{MN}\times \overrightarrow{MP}

    \overrightarrow {MP} .\overrightarrow {MN}  = \overrightarrow {MN} .\overrightarrow {MP} (tính chất giao hoán)

  • Câu 19: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm A(2; - 3),B(3;4). Tìm tọa độ điểm M \in Ox sao cho ba điểm A;B;M thẳng hàng?

    Theo bài ra ta có: M \in Ox \Rightarrow
M(x;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;3) \\
\overrightarrow{BM} = (x - 3; - 4) \\
\end{matrix} ight.

    Ba điểm A, M, B thẳng hàng khi và chỉ khi \overrightarrow{AM}\overrightarrow{BM} cùng phương hay

    \frac{x - 2}{x - 3} = \frac{3}{- 4}
\Leftrightarrow - 4(x - 2) = 3(x - 3)

    \Leftrightarrow 7x = 17 \Leftrightarrow
x = \frac{17}{7}(tm)

    Vậy tọa độ điểm M là M\left(
\frac{17}{7};0 ight).

  • Câu 20: Nhận biết

    Cho hai điểm AB phân biệt. Điều kiện để I là trung điểm AB là:

    Điều kiện để I là trung điểm AB là: \overrightarrow{IA} = -
\overrightarrow{IB}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo