Trong hệ tọa độ
cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Trong hệ tọa độ
cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Cho hai điểm
. Tọa độ trung điểm của đoạn AB là:
Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:
Gọi
là tâm hình vuông
. Tính
.
Ta có .
Gọi
là trọng tâm tam giác vuông
với cạnh huyền
Tính độ dài của vectơ
.
Gọi là trung điểm của
Ta có
Trong mặt phẳng tọa độ
cho
. Xác định tọa độ trọng tâm
của tam giác
?
Vì H là trọng tâm tam giác OPQ nên ta có:
Vậy trọng tâm tam giác cần tìm là .
Cho hình bình hành
. Lấy hai điểm
sao cho
, lấy tiếp hai điểm
sao cho
. Để
là trọng tâm tam giác
thì
thỏa mãn điều kiện nào sau đây:
Hình vẽ minh họa

Để J là trọng tâm tam giác AMN thì
Mặt khác do không cùng phương nên ta suy ra:
Vậy với thì điểm J là trọng tâm tam giác AMN.
Gọi
là giao điểm hai đường chéo
và
của hình bình hành
. Đẳng thức nào sau đây là đẳng thức sai?
Từ hình vẽ ta thấy đẳng thức sai là .
Cho M là trung điểm AB, tìm đẳng thức sai
![]()
Ta có: .
Đáp án sai là .
Cho tam giác
, gọi
là trung điểm của
và
là trọng tâm của tam giác
. Câu nào sau đây đúng?
Do là trung điểm của
nên ta có:
.
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.
Trong mặt phẳng tọa độ
cho
. Cho biết
. Khi đó
Ta có: .
Cho tọa độ ba điểm
. Tính
?
Ta có:
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng
là:
Ta có:
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: ABCD là hình bình hành tâm O
=>
Gọi
là các trung tuyến của tam giác
. Đẳng thức nào sau đây đúng?
Ta có
Suy ra
Do đó .
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Cho hình vuông
. Khẳng định nào sau đây đúng?
là hình vuông
.
Cho tam giác ABC và điểm M thỏa mãn
. Xác định vị trí điểm M.
Điểm là trọng tâm tam giác
khi và chỉ khi
.
Cho
và
là hai vectơ cùng hướng và đều khác vectơ
.Trong các kết quả sau đây,hãy chọn kết quả đúng.
Ta thấy vế trái của 4 phương án giống nhau.
Bài toán cho và
là hai vectơ cùng hướng và đều khác vectơ
suy ra
Do đó nên
Vectơ có điểm đầu là
, điểm cuối là
được kí hiệu là
Vectơ có điểm đầu là , điểm cuối là
được kí hiệu là