Cho tam giác
, biết rằng tồn tại duy nhất điểm I thỏa mãn:
. Tìm quỹ tích điểm M thỏa mãn:
.
Với điểm I thỏa mãn giả thiết, ta có:
và
nên
Vậy quỹ tích của M là đường tròn tâm I bán kính .
Cho tam giác
, biết rằng tồn tại duy nhất điểm I thỏa mãn:
. Tìm quỹ tích điểm M thỏa mãn:
.
Với điểm I thỏa mãn giả thiết, ta có:
và
nên
Vậy quỹ tích của M là đường tròn tâm I bán kính .
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Trong hệ trục tọa độ
, tọa độ vecto
là:
Ta có:
Cho
và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn
và
. Tìm
.
Ta có:
Trong hệ tọa độ
cho tam giác
có
,
và
thuộc trục
, trọng tâm
của tam giác thuộc trục
. Tìm tọa độ điểm ![]()
Vì thuộc trục
có hoành độ bằng
. Loại
.
Trọng tâm thuộc trục
có tung độ bằng
Xét các đáp án còn lại chỉ có đáp án
thỏa mãn
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Gọi O là giao điểm của AC và BD
=> OA OC, OB = OD
Ta có:
Cho lục giác đều
tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Cho hai điểm
. Tọa độ trung điểm của đoạn AB là:
Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:
Cho hình bình hành
có
là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án Ta có
Đáp án Ta có
(quy tắc hình bình hành).
Đáp án Ta có
.
Đáp án Do
Chọn đáp án này.
Cho tam giác
với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác
biết rằng
?
Gọi M, N lần lượt là trung điểm của AB và BC.
I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:
Trong mp
cho
,
,
. Khẳng định nào sau đây sai?
Ta có suy ra
nên chọn đáp án sai
.
Hãy chọn kết quả đúng khi phân tích vectơ
theo hai vectơ
và
của tam giác
với trung tuyến
.
Do là trung điểm của
nên ta có
.
Cho
không cùng phương,
. Vectơ cùng hướng với
là:
Ta có. Chọn
.
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?
Ta có:
=> Khẳng định sai
=> Khẳng định sai
=> Khẳng định đúng
=> Khẳng định sa
Cho tứ giác
Trên cạnh
lấy lần lượt các điểm
sao cho
và
Tính vectơ
theo hai vectơ ![]()
Ta có và
Suy ra
Theo bài ra, ta có và
Vậy
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>