Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho tam giác ABC, tập hợp các điểm M sao cho \left| \ \overrightarrow{MA} + \overrightarrow{MB}
+ \overrightarrow{MC}\  ight| = 6 là:

    Gọi G là trọng tâm của tam giác ABC , ta có \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = 3\overrightarrow{MG}.

    Thay vào ta được : \left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} ight|= 6\Leftrightarrow \left| 3\overrightarrow{MG} ight| = 6\Leftrightarrow MG = 2, hay tập hợp các điểm M là đường tròn có tâm là trọng tâm của tam giác ABC và bán kính bằng 2.

  • Câu 2: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABCA( -
2;2),\ B(3;5) và trọng tâm là gốc tọa độ O(0;0). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    O là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{- 2 + 3 + x}{3} = 0 \\
\frac{2 + 5 + y}{3} = 0 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 1 \\
y = - 7 \\
\end{matrix} ight.\ .

  • Câu 3: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 4: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 5: Nhận biết

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 6: Thông hiểu

    Cho hình vuông ABCD. Khẳng định nào sau đây đúng?

    ABCD là hình vuông \Rightarrow \overrightarrow{AD} =
\overrightarrow{BC} = - \overrightarrow{CB} \Rightarrow \left|
\overrightarrow{AD} ight| = \left| \overrightarrow{CB}
ight|.

  • Câu 7: Nhận biết

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 8: Thông hiểu

    Cho tam giác đều ABC với đường cao AH. Đẳng thức nào sau đây đúng?

    Chọn \left| \overrightarrow{AC} ight| =
2\left| \overrightarrow{HC} ight|H là trung điểm AC\overrightarrow{AC},\ \overrightarrow{HC} cùng hướng.

  • Câu 9: Vận dụng

    Cho đường tròn O và hai tiếp tuyến MT,\ \ MT' (TT' là hai tiếp điểm). Khẳng định nào sau đây đúng?

    Do MT,\ \ MT' là hai tiếp tuyến (TT' là hai tiếp điểm) nên MT = MT'.

  • Câu 10: Vận dụng

    Trong hệ tọa độ Oxy, cho tam giác ABCC( -
2; - 4), trọng tâm G(0;4) và trung điểm cạnh BCM(2;0). Tổng hoành độ của điểm AB

    M là trung điểm BC nên \left\{ \begin{matrix}x_{B} = 2x_{M} - x_{C} = 2.2 - ( - 2) = 6 \\y_{B} = 2y_{M} - y_{C} = 2.0 - ( - 4) = 4 \\\end{matrix} ight.\  \Rightarrow B(6;4).

    G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}x_{A} = 3x_{G} - x_{B} - x_{C} = - 4 \\y_{A} = 3y_{G} - y_{B} - y_{C} = 12 \\\end{matrix} ight.\  ightarrow A( - 4;12).

    Suy ra x_{A} + x_{B} = 2.

  • Câu 11: Nhận biết

    Trong mặt phẳng tọa độ Oxy, khoảng cách giữa hai điểm M(1;4)N(3;2) bằng:

    Khoảng cách giữa hai điểm M, N là

    MN = \sqrt{\left( x_{N} - x_{M}
ight)^{2} + \left( y_{N} - y_{M} ight)^{2}}

    = \sqrt{(3 - 1)^{2} + (2 - 4)^{2}} =
2\sqrt{2}

  • Câu 12: Thông hiểu

    Cho tam giác ABC vuông tại A\widehat{B} = 60^{\circ},AB = a. Tính \overrightarrow{AC} \cdot
\overrightarrow{CB}

    Ta có:

    \overrightarrow{AC} \cdot
\overrightarrow{CB} = AC \cdot BC \cdot \cos 150^{\circ}

    = a\sqrt{3} \cdot 2a \cdot \left( -
\frac{\sqrt{3}}{2} ight) = - 3a^{2}

  • Câu 13: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 14: Vận dụng cao

    Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O), M là một điểm thay đổi trên (O). Gọi x,y lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \left|
\overrightarrow{MA} + \overrightarrow{MB} - \overrightarrow{MC}
ight|. Tính tổng x;y.

    Hình vẽ minh họa

    Dựng hình bình hành DBCA. Ta có:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} - \overrightarrow{MC} ight|

    = \left| \overrightarrow{MD} +
\overrightarrow{DA} + \overrightarrow{MD} + \overrightarrow{DB} -
\overrightarrow{MD} - \overrightarrow{DC} ight|

    = \left| \overrightarrow{MD} ight| =
MD

    Gọi E là giao điểm khác C của DC với (O). Áp dụng bất đẳng thức tam giác ta có:

    \left\{ \begin{matrix}
MD \geq DO - OM = DO - OE = DE \\
MD \leq DO + OM = DO + OE = DC \\
\end{matrix} ight.

    Dấu bằng xảy ra khi và chỉ khi M trùng E và M trùng C.

    Vậy x + y = DE + DC

    = DC - CE + DC

    = 2DC - 2OC = 2.\frac{a\sqrt{3}}{2} -
2.\frac{a}{\sqrt{3}} = \frac{4a}{\sqrt{3}}

  • Câu 15: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(0; - 3),\ B(2;1),\ D(5;5) Tìm tọa độ điểm C để tứ giác ABCD là hình bình hành.

    Gọi C(x;y). Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2;4) \\
\overrightarrow{DC} = (x - 5;y - 5) \\
\end{matrix} ight.\ .

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \overset{}{ightarrow}\left\{\begin{matrix}2 = x - 5 \\4 = y - 5 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 7 \\y = 9 \\\end{matrix} ight.\ \overset{}{ightarrow}C(7;9).

  • Câu 16: Thông hiểu

    Cho hình vuông ABCD, tâm O, cạnh 4 cm. Điểm E, H lần lượt thuộc các cạnh BC, CD sao cho \overrightarrow{BE}=\frac{1}{4}\overrightarrow{BC}\overrightarrow{CH}=\frac{3}{4}\overrightarrow{CD}. Độ dài vecto |\overrightarrow{OE}+\overrightarrow{OH}| là:

    Ta có:

    \begin{matrix}  \overrightarrow {OE}  + \overrightarrow {OH}  \hfill \\   = \overrightarrow {OB}  + \overrightarrow {BE}  + \overrightarrow {OC}  + \overrightarrow {CH}  \hfill \\   = \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {BE}  + \overrightarrow {CH}  \hfill \\   = \overrightarrow {AB}  + \dfrac{1}{4}\overrightarrow {BC}  + \dfrac{3}{4}\overrightarrow {BA}  \hfill \\   = \dfrac{1}{4}\overrightarrow {AB}  + \dfrac{1}{4}\overrightarrow {BC}  \hfill \\   = \dfrac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) \hfill \\   = \dfrac{1}{4}\overrightarrow {AC}  \hfill \\ \end{matrix}

    \Rightarrow \left| {\overrightarrow {OE}  + \overrightarrow {OH} } ight| = \frac{1}{4}\left| {\overrightarrow {AC} } ight| = \frac{1}{4}AC = \frac{1}{4}.4\sqrt 2  = \sqrt 2

  • Câu 17: Thông hiểu

    Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính |\overrightarrow{AB}+\overrightarrow{BC}|

    Ta có: \left| {\overrightarrow {AB}  + \overrightarrow {BC} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ABC vuông tại A ta có:

    \begin{matrix}  A{B^2} + A{C^2} = B{C^2} \hfill \\   \Rightarrow A{C^2} = B{C^2} - A{B^2} = {5^2} - {3^2} = 16 \hfill \\   \Rightarrow AC = 4 \hfill \\   \Rightarrow \left| {\overrightarrow {AC} } ight| = AC = 4 \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Khẳng định nào sau đây đúng?

    Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:

    +) Cùng hướng

    +) Cùng độ dài.

    Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

  • Câu 19: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho tọa độ hai điểm A( - 1;3),B(2; - 1). Tính tọa độ vecto \overrightarrow{AB}?

    Ta có: A( - 1;3),B(2; - 1)

    \Rightarrow \overrightarrow{AB} = \left(
- 2 - ( - 1); - 1 - 3 ight) = (3; - 4)

    Vậy \overrightarrow{AB} = (3; -
4).

  • Câu 20: Nhận biết

    Cho M là trung điểm AB, tìm đẳng thức sai

     Ta có: \overrightarrow{MA}\times \overrightarrow{MB}=MA.MB.\cos180^{\circ} =-MA.MB

    Đáp án sai là \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo