Trong hệ tọa độ
cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có ngược hướng.
Trong hệ tọa độ
cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có ngược hướng.
Cho hình vuông
, tính
.

Vẽ .
Ta có: .
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Trong mặt phẳng Oxy, cho hai điểm A(1; 2) và B(–2; 3). Gọi B’ là điểm đối xứng của B qua A. Tọa độ điểm B’ là:
Vì B' đối xứng với B qua A => A là trung điểm của BB'
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Cho hình bình hành
có
là giao điểm của hai đường chéo. Gọi
lần lượt là trung điểm của
. Đẳng thức nào sau đây sai?
Ta có lần lượt là đường trung bình của tam giác
và
.
là hình bình hành.
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho hình bình hành
. Lấy hai điểm
sao cho
, lấy tiếp hai điểm
sao cho
. Để
là trọng tâm tam giác
thì
thỏa mãn điều kiện nào sau đây:
Hình vẽ minh họa

Để J là trọng tâm tam giác AMN thì
Mặt khác do không cùng phương nên ta suy ra:
Vậy với thì điểm J là trọng tâm tam giác AMN.
Trong mặt phẳng tọa độ
cho vectơ
. Vectơ nào sau đây không vuông góc với vectơ
?
Vì nên đáp án
đúng.
Vì nên đáp án
đúng.
Vì nên đáp án
sai.
Vì nên đáp án
đúng.
Tính giá trị
biết rằng
?
Ta có:
Trong mặt phẳng tọa độ
, khoảng cách giữa hai điểm
và
bằng:
Khoảng cách giữa hai điểm M, N là
Trong hệ trục tọa độ
, cho hai điểm
. Tọa độ của véctơ
bằng
Cho hình chữ nhật
Khẳng định nào sau đây đúng?
Ta có
Mà
Vectơ có điểm đầu là
, điểm cuối là
được kí hiệu là
Vectơ có điểm đầu là , điểm cuối là
được kí hiệu là
Cho tam giác
có
là trung điểm của
Tính
theo
và ![]()
Ta có
Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Ta có:
sai do
.
sai do
.
sai do
.
đúng do
.
Cho hình thang
có đáy là
và
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Dựa vào đáp án, ta có nhận xét sau:
đúng, vì
đúng, vì
đúng, vì
và
Suy ra
sai, vì theo phân tích ở đáp án trên. Chọn đáp án này.
Cho lục giác đều
tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Cho tam giác
đều có cạnh là 6. Tính
.
Hình vẽ minh họa
Gọi là trung điểm của
. Vì tam giác
đều có cạnh là 6, nên ta có
.
Xét tam giác vuông tại
, có
.
Suy ra
Mặt khác ta có:
.
Cho
Tìm
biết
.
Ta có
Để