Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Do là hình bình hành nên
Suy ra
Cho hình bình hành
. Đẳng thức nào sau đây đúng?
Do là hình bình hành nên
Suy ra
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Cho đoạn thẳng
và
là một điểm trên đoạn
sao cho
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa
Ta thấy và
cùng hướng nên
là sai.
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Cho tam giác
vuông cân tại
cạnh
Tính ![]()
Gọi là điểm đối xứng của
qua
Tam giác
vuông tại
có
Ta có suy ra
Trong hệ tọa độ
cho tam giác
có
Tìm tọa độ trọng tâm
của tam giác ![]()
Ta có
Trong hệ tọa độ
cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Cho các vectơ
. Phân tích vectơ
theo hai vectơ
, ta được:
Giả sử . Vậy
.
Cho tam giác
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Cho tam giác đều
với đường cao
. Đẳng thức nào sau đây đúng?
Chọn vì
là trung điểm
và
cùng hướng.
Khẳng định nào sau đây đúng?
Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:
+) Cùng hướng
+) Cùng độ dài.
Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Tìm tọa độ điểm
sao cho điểm
cách đều hai điểm
?
Ta có:
Từ
Vậy tọa độ điểm D cần tìm là: .
Cho tam giác đều
cạnh
Biết rằng tập hợp các điểm
thỏa mãn đẳng thức
là đường tròn cố định có bán kính
Tính bán kính
theo ![]()
Gọi là trọng tâm của tam giác
Ta có
Chọn điểm sao cho
Vì là trọng tâm của tam giác
nên
Khi đó
Do đó
Vì là điểm cố định thỏa mãn
nên tập hợp các điểm
cần tìm là đường tròn tâm
bán kính
Cho tam giác ABC có BC = a, CA = b, AB = c. Tính ![]()
Ta có:
Cho
không cùng phương,
. Vectơ cùng hướng với
là:
Ta có. Chọn
.
Cho hình bình hành
, điểm
thỏa mãn:
. Khi đó điểm
là:
Hình vẽ minh họa
Ta có:
=
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Gọi
là trọng tâm tam giác vuông
với cạnh huyền
Tính độ dài của vectơ
.
Gọi là trung điểm của
Ta có
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Trong hệ tọa độ
cho tọa độ hai điểm
. Tìm tọa độ trung điểm
của đoạn thẳng
?
Tọa độ trung điểm của AB là: