Cho
Tìm
biết
.
Ta có
Để
Cho
Tìm
biết
.
Ta có
Để
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>
Tính tổng
.
Ta có .
Cho hình bình hành
có
là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án Ta có
Đáp án Ta có
(quy tắc hình bình hành).
Đáp án Ta có
.
Đáp án Do
Chọn đáp án này.
Cho hình chữ nhật
Khẳng định nào sau đây đúng?
Ta có
Mà
Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:
Theo bài ra:
G là trọng tâm tam giác ABC nên ta có:
Cho tứ giác
Trên cạnh
lấy lần lượt các điểm
sao cho
và
Tính vectơ
theo hai vectơ ![]()
Ta có và
Suy ra
Theo bài ra, ta có và
Vậy
Trong hệ trục tọa độ
, cho hai điểm
. Tọa độ của véctơ
bằng
Cho tam giác ABC đều cạnh
. Đường thẳng
qua
và song song với
, lấy điểm
. Tính giá trị nhỏ nhất của
khi
di động trên
.
Hình vẽ minh họa
Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có
Ta có:
Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng .
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.
Gọi
lần lượt là trung điểm của các cạnh
và
của tứ giác
. Mệnh đề nào sau đây đúng?
Do M là trung điểm các cạnh AB nên .
Do N lần lượt là trung điểm các cạnh DC nên .
Ta có
Mặt khác
Do đó .
Tổng
bằng vectơ nào sau đây?
Ta có
.
Cho tam giác ABC có BC = a, CA = b, AB = c. Tính ![]()
Ta có:
Tính giá trị
biết rằng
?
Ta có:
Trong mặt phẳng
cho
. Tích vô hướng của 2 vectơ
là:
Ta có , suy ra
.
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ
là
Ta có:
Mệnh đề nào sau đây sai?
Chọn
Vì có thể xảy ra trường hợp
Trong hệ tọa độ
cho tam giác
có
, trọng tâm
và trung điểm cạnh
là
Tổng hoành độ của điểm
và
là
Vì là trung điểm
nên
Vì là trọng tâm tam giác
nên
Suy ra