Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình vuông ABCD cạnh a, tính độ dài vectơ \overrightarrow {AB}+\overrightarrow {AD}.

    Ta có: |\overrightarrow {AB}+\overrightarrow {AD}| =|\overrightarrow {AC} |=AC.

    Áp dụng định lí Pytago trong tam giác ABC: AC=\sqrt{AB^2+BC^2}=a\sqrt2.

     

  • Câu 2: Vận dụng

    Cho hình bình hành ABCDO là giao điểm của hai đường chéo. Gọi E,\ \ F lần lượt là trung điểm của AB,\ \ BC. Đẳng thức nào sau đây sai?

    Ta có OF,\ \ OE lần lượt là đường trung bình của tam giác \Delta
BCD\Delta ABC.

    \Rightarrow BEOF là hình bình hành.

    \overrightarrow{BE} +
\overrightarrow{BF} = \overrightarrow{BO} \Rightarrow
\overrightarrow{BE} + \overrightarrow{BF} - \overrightarrow{DO} =
\overrightarrow{BO} - \overrightarrow{DO} = \overrightarrow{OD} -
\overrightarrow{OB} = \overrightarrow{BD}.

  • Câu 3: Nhận biết

    Trong hệ tọa độ Oxy, cho hai điểm A(2; - 3),\ B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB.

    Ta có \left\{ \begin{matrix}
x_{I} = \frac{2 + 4}{2} = 3 \\
y_{I} = \frac{- 3 + 7}{2} = 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}I(3;2).

  • Câu 4: Thông hiểu

    Cho M là trung điểm AB, tìm biểu thức sai:

    Ta có: M là trung điểm của AB

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {MA = BM} \\   {\overrightarrow {MA}  earrow  \swarrow \overrightarrow {MB} } \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {MA}  = \overrightarrow {BM} } \\   {\left( {\overrightarrow {MA} ,\overrightarrow {MB} } ight) = {{180}^0}} \end{array}} ight. \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MB}  = \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {MB} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {MB} } ight) \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MB}  = \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {MB} } ight|\cos \left( {{{180}^0}} ight) \hfill \\   \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MB}  =  - MA.MB \hfill \\ \end{matrix}

    Vậy biểu thức sai là: \overrightarrow{MA}\times \overrightarrow{MB}=AM\times MB

  • Câu 5: Thông hiểu

    Cho lục giác đều ABCDEF có tâm O. Số các vectơ bằng vectơ \overrightarrow {OC} có điểm đầu và điểm cuối là đỉnh của lục giác bằng :

    Các vectơ bằng vectơ \overrightarrow {OC} có điểm đầu và điểm cuối là đỉnh của lục giác là \overrightarrow{AB}\overrightarrow{ED}.

  • Câu 6: Nhận biết

    Cho tam giác ABCcân tại A, \widehat{A} = 120^{o} AB = a. Tính \overrightarrow{BA}.\overrightarrow{CA}.

    Ta có \overrightarrow{BA}.\overrightarrow{CA} =
BA.CA.cos120^{o} = - \frac{1}{2}a^{2}.

  • Câu 7: Thông hiểu

    Cho hình bình hành ABCD, điểm M thỏa mãn 4\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}. Xác định vị trí điểm M.

    Ta có: ABCD là hình bình hành

    => \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC}

    Xét biểu thức:

    \begin{matrix}  \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AC}  = 4\overrightarrow {AM}  \hfill \\   \Leftrightarrow \overrightarrow {AC}  + \overrightarrow {AC}  = 4\overrightarrow {AM}  \hfill \\   \Leftrightarrow 2\overrightarrow {AC}  = 4\overrightarrow {AM}  \hfill \\   \Leftrightarrow \overrightarrow {AC}  = 2\overrightarrow {AM}  \hfill \\ \end{matrix}

    Vậy M là trung điểm của AC.

  • Câu 8: Nhận biết

    Cho tam giác ABC. Gọi MN lần lượt là trung điểm của ABAC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AB,\ \ AC. Suy ra MN là đường trung bình của tam giác

    ABC\overset{}{ightarrow}MN =
\frac{1}{2}BC.\overrightarrow{BC},\ \ \
\overrightarrow{MN} là hai vectơ cùng hướng nên \overrightarrow{BC} = 2\
\overrightarrow{MN}.

  • Câu 9: Nhận biết

    Tính tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}.

    Ta có \overrightarrow{MN} +\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +\overrightarrow{QR}= \overrightarrow{MN} + \overrightarrow{NP} +\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RN} =\overrightarrow{MN}.

  • Câu 10: Nhận biết

    Cho hình vuông ABCD cạnh bằng a. Tính độ dài véctơ \overrightarrow{BA} +
\overrightarrow{BC}.

    Hình vẽ minh họa:

    |\overrightarrow{BA} +
\overrightarrow{BC}| = |\overrightarrow{BD}| = a\sqrt{2}.

  • Câu 11: Vận dụng

    Cho hình thang ABCD có đáy là ABCD. Gọi MN lần lượt là trung điểm của ADBC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AD,\ \ BC \Rightarrow \left\{
\begin{matrix}
\overrightarrow{MA} + \overrightarrow{MD} = \overrightarrow{0} \\
\overrightarrow{BN} + \overrightarrow{CN} = \overrightarrow{0} \\
\end{matrix} ight.\ . Dựa vào đáp án, ta có nhận xét sau:

    \bullet \overrightarrow{MN} = \overrightarrow{MD} +
\overrightarrow{CN} + \overrightarrow{DC} đúng, vì \overrightarrow{MD} + \overrightarrow{CN} +
\overrightarrow{DC} = \overrightarrow{MN} = \left( \overrightarrow{MD} +
\overrightarrow{DC} ight) + \overrightarrow{CN} = \overrightarrow{MC}
+ \overrightarrow{CN} = \overrightarrow{MN}

    \bullet \overrightarrow{MN} = \overrightarrow{AB} -
\overrightarrow{MD} + \overrightarrow{BN} đúng, vì \overrightarrow{AB} - \overrightarrow{MD} +
\overrightarrow{BN} = \left( \overrightarrow{AB} + \overrightarrow{BN}
ight) - \overrightarrow{MD} = \overrightarrow{AN} -
\overrightarrow{AM} = \overrightarrow{MN}

    \bullet \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{DC}
ight) đúng, vì \overrightarrow{MN} = \overrightarrow{MA} +
\overrightarrow{AB} + \overrightarrow{BN}\overrightarrow{MN} = \overrightarrow{MD} +
\overrightarrow{DC} + \overrightarrow{CN}.

    Suy ra 2\overrightarrow{MN} = \left(
\overrightarrow{MA} + \overrightarrow{MD} ight) + \overrightarrow{AB}
+ \overrightarrow{DC} + \left( \overrightarrow{BN} + \overrightarrow{CN}
ight) = \overrightarrow{0} + \overrightarrow{AB} + \overrightarrow{DC}
+ \overrightarrow{0} = \overrightarrow{AB} +
\overrightarrow{DC}\overset{}{ightarrow}\overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AD} + \overrightarrow{BC}
ight).

    \bullet \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AD} + \overrightarrow{BC}
ight) sai, vì theo phân tích ở đáp án trên. Chọn đáp án này.

  • Câu 12: Nhận biết

    Cho tam giác ABC có trọng tâm G và trung tuyến AM. Khẳng định nào sau đây là sai.

    Ta có AM = 3MG

    Mặt khác \overrightarrow{AM}\overrightarrow{MG} ngược hướng \mathbf{\Rightarrow}\overrightarrow{AM} = -
3\overrightarrow{MG}.

  • Câu 13: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(2;5),B(0;2),C(2;1). Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC?

    Gọi M là trung điểm của BC

    Khi đó tọa độ của M là: \left\{\begin{matrix}x_{M} = \dfrac{2 + 0}{2} = 1 \\y_{M} = \dfrac{1 + 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow M\left( 1;\dfrac{3}{2}ight)

    Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:

    AM = \sqrt{(1 - 2)^{2} + \left(
\frac{3}{2} - 5 ight)^{2}} = \frac{\sqrt{53}}{2}

    Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là \frac{\sqrt{53}}{2}.

  • Câu 14: Nhận biết

    Trong hệ trục tọa độ Oxy, cho hai điểm A(2; - 1),B(4;3). Tọa độ của véctơ \overrightarrow{AB} bằng

    \overrightarrow{AB} = \left( x_{B} -
x_{A};y_{B} - y_{A} ight) \Rightarrow \overrightarrow{AB} = (2;4).

  • Câu 15: Thông hiểu

    Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC biết rằng A(6;3),B( - 3;6),C(1; - 2)?

    Gọi M, N lần lượt là trung điểm của AB và BC.

    I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:

    \left\{ \begin{matrix}
\overrightarrow{MI}.\overrightarrow{AB} = 0 \\
\overrightarrow{MI}.\overrightarrow{BC} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3x + y = 0 \\
x - 2y + 5 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 3 \\
\end{matrix} ight.\  \Leftrightarrow I(1;3)

  • Câu 16: Vận dụng cao

    Cho hai điểm A,\
\ B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + 2\overrightarrow{MB}
ight|

    Chọn điểm E thuộc đoạn AB sao cho EB
= 2EA \Rightarrow 2\overrightarrow{EA} + \overrightarrow{EB} =
\overrightarrow{0}.

    Chọn điểm F thuộc đoạn AB sao cho FA
= 2FB \Rightarrow 2\overrightarrow{FB} + \overrightarrow{FA} =
\overrightarrow{0}.

    Ta có \left| 2\overrightarrow{MA} +\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +2\overrightarrow{MB} ight|

    \Leftrightarrow \left| 2\overrightarrow{ME}+ 2\overrightarrow{EA} + \overrightarrow{ME} + \overrightarrow{EB}ight|= \left| 2\overrightarrow{MF} + 2\overrightarrow{FB} +\overrightarrow{MF} + \overrightarrow{FA} ight|

    \Leftrightarrow \left| 3\
\overrightarrow{ME} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{EA} + \overrightarrow{EB}}{︸}} ight| = \left| 3\
\overrightarrow{MF} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{FA} + \overrightarrow{FB}}{︸}} ight| \Leftrightarrow
\left| 3\ \overrightarrow{ME} ight| = \left| 3\ \overrightarrow{MF}
ight| \Leftrightarrow ME = MF. \
(*)

    E,\ \ F là hai điểm cố định nên từ đẳng thức (*) suy ra tập hợp các điểm M là trung trực của đoạn thẳng EF. Gọi I là trung điểm của AB suy ra I cũng là trung điểm của EF.

    Vậy tập hợp các điểm M thỏa mãn \left| 2\overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| là đường trung trực của đoạn thẳng AB.

  • Câu 17: Thông hiểu

    Cho 5 điểm M, N, P, Q, R. Tính tổng \overrightarrow{MN}+\overrightarrow{PQ}+\overrightarrow{RN}+\overrightarrow{NP}+\overrightarrow{QR}

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  + \overrightarrow {PQ}  + \overrightarrow {RN}  + \overrightarrow {NP}  + \overrightarrow {QR}  \hfill \\   = \left( {\overrightarrow {MN}  + \overrightarrow {NP} } ight) + \left( {\overrightarrow {PQ}  + \overrightarrow {QR} } ight) + \overrightarrow {RN}  \hfill \\   = \overrightarrow {MP}  + \overrightarrow {PR}  + \overrightarrow {RN}  \hfill \\   = \left( {\overrightarrow {MP}  + \overrightarrow {PR} } ight) + \overrightarrow {RN}  \hfill \\   = \overrightarrow {MR}  + \overrightarrow {RN}  = \overrightarrow {MN}  \hfill \\ \end{matrix}

  • Câu 18: Vận dụng

    Cho tam giác ABC, AB =
5,AC = 1. Tính tọa độ điểm D là chân đường phân giác góc A. Biết B(7;
- 2);C(1;4).

    Theo tính chất đường phân giác: \frac{DB}{DC} = \frac{AB}{AC}. Suy ra \overrightarrow{DB} = -
5\overrightarrow{DC}.

    Gọi D(x;y). Suy ra \overrightarrow{DB}(7 - x; - 2 -
y);\overrightarrow{DC}(1 - x;4 - y).

    Ta có: \left\{ \begin{matrix}
7 - x = - 5(1 - x) \\
- 2 - y = - 5(4 - y) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
\end{matrix} ight.

    Vậy tọa độ điểm D(2;3).

  • Câu 19: Nhận biết

    Cho hai vecto \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}. Xác định góc giữa hai vecto \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|

    Ta có: 

    \begin{matrix}  \vec a \times \vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Hình bình hành ABCD tâm O. Khẳng định sai là:

    Ta có: \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BO} =
\overrightarrow{BA}.

    Chọn đáp án sai \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{BC}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo