Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    \overrightarrow{AB}.\overrightarrow{AC}.
= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}
ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight) =
a.a.cos60^{{^\circ}} = \frac{a^{2}}{2}.

  • Câu 2: Nhận biết

    Cho hai điểm A(4; - 1),B( - 2;5). Tọa độ trung điểm của đoạn AB là:

    Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{4 + ( - 2)}{2} = 1 \\y_{M} = \dfrac{- 1 + 5}{2} = 2 \\\end{matrix} ight.\  \Rightarrow M(1;2)

  • Câu 3: Nhận biết

    Điều kiện nào dưới đây là điều kiện cần và đủ để điểm O là trung điểm của đoạn AB.

    Điểm O là trung điểm của đoạn AB khi và chỉ khi OA = OB;\ \ \ \overrightarrow{OA} và ngược hướng.

    Vậy \overrightarrow{OA} +
\overrightarrow{OB} = \overrightarrow{0}.

  • Câu 4: Nhận biết

    Cho tam giác ABC với M là trung điểm BC. Mệnh đề nào sau đây đúng?

    Xét đáp án \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0}. Ta có \overrightarrow{AM} +
\overrightarrow{MB} + \overrightarrow{BA} = \overrightarrow{0} (theo quy tắc ba điểm).

    Chọn đáp án này.

  • Câu 5: Thông hiểu

    Cho lục giác đều ABCDEF tâm O. Các vectơ đối của vectơ \overrightarrow{OD} là:

    Các vectơ đối của vectơ \overrightarrow{OD} là: \overrightarrow{OA},\overrightarrow{DO},\overrightarrow{EF},\overrightarrow{CB},\overrightarrow{DA}.

  • Câu 6: Vận dụng

    Cho tam giác OAB vuông cân tại O, cạnh OA =
a. Tính \left| 2\overrightarrow{OA}
- \overrightarrow{OB} ight|.

    Gọi C là điểm đối xứng của O qua A
\Rightarrow OC = 2a. Tam giác OBC vuông tại O,BC =
\sqrt{OB^{2} + OC^{2}} = a\sqrt{5}.

    Ta có 2\overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{OC} - \overrightarrow{OB} =
\overrightarrow{BC}, suy ra \left|
2\overrightarrow{OA} - \overrightarrow{OB} ight| = \left|
\overrightarrow{BC} ight| = a\sqrt{5}.

  • Câu 7: Nhận biết

    Cho \overrightarrow{AB} và một điểm C. Có bao nhiêu điểm D thỏa mãn \overrightarrow{AB}=\overrightarrow{CD}

    Có một và chỉ một điểm D thỏa mãn \overrightarrow{AB}=\overrightarrow{CD}

  • Câu 8: Thông hiểu

    Trong mặt phẳng tọa độ Oxy cho hai vecto \overrightarrow{u} = ( - 2; -
4),\overrightarrow{v} = (2x - y;y). Khi nào hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau?

    Ta có:

    \overrightarrow{u} = \overrightarrow{v}
\Leftrightarrow \left\{ \begin{matrix}
2x - y = - 2 \\
y = - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x + 4 = - 2 \\
y = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = - 4 \\
\end{matrix} ight.

    Vậy hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau khi x = - 3;y = - 4.

  • Câu 9: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 10: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{a} = (5;m - 7)\overrightarrow{b} = (m + 1;3) với m\mathbb{\in R}. Tìm giá trị của tham số m để \overrightarrow{a}\bot\overrightarrow{b}?

    Ta có:

    \overrightarrow{a}\bot\overrightarrow{b}
\Leftrightarrow \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{0}

    \Leftrightarrow 5(m - 1) + 3.(m - 7) = 0
\Leftrightarrow m = 2

    Vậy m = 2 thì hai vecto đã cho vuông góc với nhau.

  • Câu 11: Vận dụng cao

    Cho tam giác ABCM là trung điểm của BC. Điểm E xác định 2\overrightarrow{EA} + \overrightarrow{EC} =
\overrightarrow{0}. Đường thẳng d đi qua E song song với AB cắt AM,BC lần lượt tại D;F. Điểm G nằm trên cạnh AB sao cho diện tích các tam giác BFGADE bằng nhau. Biết \overrightarrow{AG} =
\alpha\overrightarrow{AB}. Tính giá trị của \alpha?

    Hình vẽ minh họa:

    Theo định lí Ta – lét ta có:

    \frac{FB}{FC} = \frac{EA}{EC} =
\frac{1}{2} \Rightarrow FC = \frac{2}{3}BC

    \Rightarrow FM = \frac{2}{3}BC - MC =
\frac{2}{3}BC - \frac{1}{2}BC = \frac{1}{6}BC

    \Rightarrow \overrightarrow{FM} =
\frac{1}{4}\overrightarrow{FC}

    Mặt khác \overrightarrow{EC} = -
2\overrightarrow{EA};\overrightarrow{DA} = -
\frac{DA}{DM}.\overrightarrow{DM} mà ba điểm D;E;F thẳng hàng nên theo định lí Menelaus ta được:

    \left( - \frac{DA}{DM}
ight).\frac{1}{4}.( - 2) = 1

    \Rightarrow \frac{DA}{DM} =
2

    Ta có:

    \overrightarrow{AD} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3}.\frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC}

    Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó \overrightarrow{BG} =
\overrightarrow{DE}

    Ta có:

    \overrightarrow{AE} =
\overrightarrow{AD} + \overrightarrow{DE} =
\frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} +
\overrightarrow{BG}

    \overrightarrow{AE} =
\frac{1}{3}\overrightarrow{AC} \Rightarrow \overrightarrow{BG} =
\frac{1}{3}\overrightarrow{BA}

    Hay \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AB}

    Vậy \alpha = \frac{2}{3}

  • Câu 12: Nhận biết

    Trong mặt phẳng tọa độ Oxy, tọa độ trung điểm M của đoạn thẳng AB với A(3; -
4),B(7;2) là:

    Tọa độ trung điểm M của AB là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} \\y_{M} = \dfrac{y_{A} + y_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{3 + 7}{2} = 5 \\y_{M} = \dfrac{- 4 + 2}{2} = - 1 \\\end{matrix} ight.

    \Rightarrow M(5; - 1)

    Vậy tọa độ trung điểm M của AB là M(5; -
1).

  • Câu 13: Nhận biết

    Cho tam giác ABC và đặt \overrightarrow{a} = \overrightarrow{BC},\ \
\overrightarrow{b} = \overrightarrow{AC}. Cặp vectơ nào sau đây cùng phương?

    Dễ thấy - 10\ \overrightarrow{a} -
2\overrightarrow{b} = - \ 2\ \left( 5\overrightarrow{a} +
\overrightarrow{b} ight)\overset{}{ightarrow} hai vectơ 5\overrightarrow{a} + \overrightarrow{b},\
\  - 10\overrightarrow{a} - 2\overrightarrow{b} cùng phương.

  • Câu 14: Thông hiểu

    Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?

     Ta có:

    \overrightarrow{CA}-\overrightarrow{BA}=\overrightarrow{CB}e  \overrightarrow{BC} => Khẳng định sai

    \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} e\overrightarrow{BC} => Khẳng định sai

     \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} => Khẳng định đúng

    \overrightarrow{AB}-\overrightarrow{BC}e\overrightarrow{CA}=> Khẳng định sa

  • Câu 15: Thông hiểu

    Cho tam giác ABC đều có cạnh là 6. Tính |\overrightarrow{AB} +
\overrightarrow{AC}|.

    Hình vẽ minh họa

    Gọi I là trung điểm của BC. Vì tam giác ABC đều có cạnh là 6, nên ta có AI\bot BC.

    Xét tam giác AIB vuông tại I, có

    AB^{2} = AI^{2} + IB^{2}

    \Rightarrow AI^{2} = AB^{2} - IB^{2} =
6^{2} - 3^{2} = 27.

    Suy ra AI = \sqrt{27} =
3\sqrt{3}

    Mặt khác ta có:

    \overrightarrow{AB} + \overrightarrow{AC}
= 2\overrightarrow{AI}

    \Rightarrow |\overrightarrow{AB} +
\overrightarrow{AC}| = |2\overrightarrow{AI}| = 2|\overrightarrow{AI}| =
2AI = 6\sqrt{3}.

  • Câu 16: Thông hiểu

    Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn \overrightarrow{MA} +
\overrightarrow{MB} + 3\overrightarrow{MC} =
\overrightarrow{0}. Chọn mệnh đề đúng.

    \overrightarrow{MA} + \overrightarrow{MB}+ 3\overrightarrow{MC} = \overrightarrow{0}\Leftrightarrow2\overrightarrow{MI} = - 3\overrightarrow{MC}\Leftrightarrow2\overrightarrow{MI} = 3\overrightarrow{IM} - 3\overrightarrow{IC}\Leftrightarrow 5\overrightarrow{MI} =3\overrightarrow{CI}.

  • Câu 17: Vận dụng

    Cho tam giác ABC. Tập hợp tất cả các điểm M thỏa mãn đẳng thức \left| \overrightarrow{MB} - \overrightarrow{MC}
ight| = \left| \overrightarrow{BM} - \overrightarrow{BA}
ight|

    Ta có \left| \overrightarrow{MB} -
\overrightarrow{MC} ight| = \left| \overrightarrow{BM} -
\overrightarrow{BA} ight| \Leftrightarrow \left| \overrightarrow{CB}
ight| = \left| \overrightarrow{AM} ight| \Rightarrow AM =
BC

    A,\ \ B,\ \ C cố định \Rightarrow Tập hợp điểm M là đường tròn tâm A, bán kính BC.

  • Câu 18: Nhận biết

    Tính tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}.

    Ta có \overrightarrow{MN} +\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +\overrightarrow{QR}= \overrightarrow{MN} + \overrightarrow{NP} +\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RN} =\overrightarrow{MN}.

  • Câu 19: Vận dụng

    Cho A(1;2),\ B( -
2;6). Điểm M trên trục Oy sao cho ba điểm A,B,M thẳng hàng thì tọa độ điểm M là:

    Ta có: M trên trục Oy \Rightarrow M(0;y).

    Ba điểm A,B,M thẳng hàng khi \overrightarrow{AB} cùng phương với \overrightarrow{AM}.

    Ta có \overrightarrow{AB} = ( - 3;4),\ \
\overrightarrow{AM} = ( - 1;y - 2). Do đó, \overrightarrow{AB} cùng phương với \overrightarrow{AM} \Leftrightarrow \frac{- 1}{-
3} = \frac{y - 2}{4} \Rightarrow y = \frac{10}{3}. Vậy M\left( 0;\frac{10}{3} ight).Đáp án là M\left( 0;\frac{10}{3} ight)

  • Câu 20: Thông hiểu

    Cho các vectơ \overrightarrow{a} = (1; - 3),\ \
\overrightarrow{b} = (2;5). Tính tích vô hướng của \overrightarrow{a}\left( \overrightarrow{a} +
2\overrightarrow{b} ight).

    Ta có \overrightarrow{a}.\overrightarrow{a} =
10, \overrightarrow{a}.\overrightarrow{b} = -
13 suy ra \overrightarrow{a}\left(
\overrightarrow{a} + 2\overrightarrow{b} ight) = - 16.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo