Cho
và tọa độ hai điểm
. Biết
, tọa độ vecto
là:
Tọa độ vecto .
Cho
và tọa độ hai điểm
. Biết
, tọa độ vecto
là:
Tọa độ vecto .
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn
là:
Ta có:
Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.
Cho tam giác
và điểm
thỏa mãn điều kiện
. Mệnh đề nào sau đây sai?
Ta có
là hình bình hành
Do đó sai.
Mệnh đề nào sau đây sai?
Giả sử trường hợp
=> Điểm A và điểm B trùng nhau.
=> Có thể xảy ra trường hợp này.
=> Mệnh đề sai là
Cho tam giác
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Cho hình bình hành
, điểm
thỏa mãn:
. Khi đó điểm
là:
Hình vẽ minh họa
Ta có:
=
Trong các vecto dưới đây, vecto nào cùng phương với vecto
?
Nhận thấy nên
cùng phương với
.
Trong mặt phẳng Oxy, cho
và
. Kết luận nào sau đây sai?
Ta có:
Vậy kết luận sai là:
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: .
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Tam giác
vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .
Cho tam giác đều
có cạnh
. Tính tích vô hướng
.
Ta có: .
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.
Cho hình vuông ABCD cạnh a. Tính ![]()
Hình vẽ minh họa

Ta có:
Tam giác ACD vuông cân tại D ta có:
Trong mặt phẳng tọa độ
cho
. Cho biết
. Khi đó
Ta có: .
Cho hai điểm
phân biệt và cố định, với
là trung điểm của
Tập hợp các điểm
thỏa mãn đẳng thức
là
Chọn điểm thuộc đoạn
sao cho
Chọn điểm thuộc đoạn
sao cho
Ta có
Vì là hai điểm cố định nên từ đẳng thức
suy ra tập hợp các điểm
là trung trực của đoạn thẳng
Gọi
là trung điểm của
suy ra
cũng là trung điểm của
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:
Ta có: I là tâm hình chữ nhật ABCD
=> I là trung điểm của AC và I là trung điểm của BD
Khi đó ta tìm tọa độ điểm B và điểm C
=> Gọi M là trung điểm của BC có tọa độ là: