Cho tam giác đều với đường cao
. Đẳng thức nào sau đây đúng?
Chọn vì
là trung điểm
và
cùng hướng.
Cho tam giác đều với đường cao
. Đẳng thức nào sau đây đúng?
Chọn vì
là trung điểm
và
cùng hướng.
Trong mặt phẳng tọa độ , cho tam giác
biết
. Tính độ dài đường trung tuyến kẻ từ đỉnh
của tam giác
?
Gọi M là trung điểm của BC
Khi đó tọa độ của M là:
Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:
Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là .
Cho tam giác có
,
,
.Tính
.
Ta có ,
suy ra
.
Cho hình vuông cạnh
, tính độ dài vectơ
.
Ta có: .
Áp dụng định lí Pytago trong tam giác :
.
Cho ngũ giác . Từ các đỉnh của ngũ giác đã cho có thể lập được bao nhiêu vectơ có điểm cuối là điểm
?
Các vectơ có điểm cuối là điểm là
;
;
;
.
Cho tam giác với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Trong hệ tọa độ cho hai điểm
Tìm tọa độ trung điểm
của đoạn thẳng
Ta có
Cho Tìm
để hai vectơ
cùng phương.
Hai vectơ cùng phương
Cho tam giác vuông tại
có
. Tính độ dài
.
Đặt .
Ta có: .
Áp dụng định lý Pytago trong tam giác :
.
Cho . Điểm
trên trục
sao cho ba điểm
thẳng hàng thì tọa độ điểm
là:
Ta có: trên trục
.
Ba điểm thẳng hàng khi
cùng phương với
.
Ta có . Do đó,
cùng phương với
. Vậy
.Đáp án là
Trong hệ trục tọa độ , tọa độ vecto
là:
Ta có:
Gọi là các trung tuyến của tam giác
. Đẳng thức nào sau đây đúng?
Ta có
Suy ra
Do đó .
Cho và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn
và
. Tìm
.
Ta có:
Cho hình bình hành , điểm
thỏa mãn:
. Khi đó điểm
là:
Hình vẽ minh họa
Ta có:
=
Cho hình bình hành . Đẳng thức nào sau đây đúng?
Ta có:
sai do
.
sai do
.
sai do
.
đúng do
.
Cho tam giác có
là trung điểm của
. Điểm
xác định
. Đường thẳng
đi qua
song song với
cắt
lần lượt tại
. Điểm
nằm trên cạnh
sao cho diện tích các tam giác
và
bằng nhau. Biết
. Tính giá trị của
?
Hình vẽ minh họa:
Theo định lí Ta – lét ta có:
Mặt khác mà ba điểm
thẳng hàng nên theo định lí Menelaus ta được:
Ta có:
Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó
Ta có:
Mà
Hay
Vậy
Cho . Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Tính giá trị biết rằng
?
Ta có:
Cho hai vecto . Xác định góc giữa hai vecto
và
khi
Ta có:
Gọi là tâm của hình vuông
. Vectơ nào trong các vectơ dưới đây bằng
Xét các đáp án:
Đáp án Ta có
Đáp án Ta có
Đáp án Ta có
Chọn đáp án này.
Đáp án Ta có