Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Cho hai vecto
và
biết
và
. Tính
.
Ta có:
Cho tam giác
, gọi
là trung điểm
và
là một điểm trên cạnh
sao cho
. Gọi
là trung điểm của
. Khi đó
Ta có .
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Ta có: (Sai).
Trong hệ tọa độ
cho tam giác
có
và trọng tâm là gốc tọa độ
Tìm tọa độ đỉnh
?
Gọi .
Vì là trọng tâm tam giác
nên
Cho 4 điểm
. Ba điểm nào trong 4 điểm đã cho là thẳng hàng?
Ta có: 3 điểm
thẳng hàng.
Cho hình bình hành
tâm
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Ta có: .
Suy ra đúng.
Ta có: . Suy ra
đúng.
Ta có: . Suy ra
sai.
Ta có: đúng.
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Cho hình bình hành
có
là giao điểm của hai đường chéo. Gọi
lần lượt là trung điểm của
. Đẳng thức nào sau đây sai?
Ta có lần lượt là đường trung bình của tam giác
và
.
là hình bình hành.
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Cho hai vectơ
và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính ![]()
Ta có:
Tam giác ABC vuông tại A ta có:
Cho
và tọa độ hai điểm
. Biết
, tọa độ vecto
là:
Tọa độ vecto .
Cho tam giác ABC đều cạnh
. Đường thẳng
qua
và song song với
, lấy điểm
. Tính giá trị nhỏ nhất của
khi
di động trên
.
Hình vẽ minh họa
Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có
Ta có:
Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng .
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi
.
Ta có .
Mà theo giả thiết
Suy ra
Cho tam giác đều
với đường cao
. Đẳng thức nào sau đây đúng?
Chọn vì
là trung điểm
và
cùng hướng.
Cho hình bình hành
, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ
là:
Ta có là hình bình hành nên
do đó
.
Cho tam giác
và đặt
Cặp vectơ nào sau đây cùng phương?
Dễ thấy hai vectơ
cùng phương.
Tam giác
vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .