Cho tam giác
với
lần lượt là trung điểm của. Khẳng định nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Chọn đáp án này.
Cho tam giác
với
lần lượt là trung điểm của. Khẳng định nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Chọn đáp án này.
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Ta có: (Đúng).
Trong mặt phẳng tọa độ
, cho hai điểm
. Xác định điểm
trên trục hoành sao cho ba điểm
thẳng hàng.
Gọi khi đó
Ba điểm thẳng hàng khi và chỉ khi
cùng phương với
.
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Cho tam giác ABC, có thể xác định được bao nhiêu vectơ khác
có điểm đầu và điểm cuối là các đỉnh A, B, C?
Ta có các vectơ khác có điểm đầu và điểm cuối là các đỉnh tam giác ABC là:
Tìm tọa độ vecto
biết
?
Ta có:
Cho hình bình hành
Tính
theo
và ![]()
Vì là hình bình hành nên
Ta có
Với
(khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Hãy chọn kết quả đúng khi phân tích vectơ
theo hai vectơ
và
của tam giác
với trung tuyến
.
Do là trung điểm của
nên ta có
.
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Cho hai điểm
. Tọa độ trung điểm của đoạn AB là:
Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:
Cho tam giác ABC đều cạnh
. Đường thẳng
qua
và song song với
, lấy điểm
. Tính giá trị nhỏ nhất của
khi
di động trên
.
Hình vẽ minh họa
Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có
Ta có:
Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng .
Cho hai vectơ
và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Cho
và
. Xác định
sao cho
và
cùng phương.
Ta có
Để và
cùng phương
Biết
và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Cho tam giác
Tập hợp tất cả các điểm
thỏa mãn đẳng thức
là
Ta có
Mà cố định
Tập hợp điểm
là đường tròn tâm
, bán kính
.
Cho hình vuông
. Khẳng định nào sau đây đúng?
là hình vuông
.
Gọi
lần lượt là trung điểm các cạnh
của tứ giác
. Đẳng thức nào sau đây sai?
Do M là trung điểm các cạnh AD nên
Do N lần lượt là trung điểm các cạnh BC nên . Nên
đúng.
Ta có
Vậy . Nên
đúng.
Mà . Nên
đúng.
Vậy sai.
Cho đoạn thẳng
và
là một điểm trên đoạn
sao cho
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa
Ta thấy và
cùng hướng nên
là sai.