Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Vectơ gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 2: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AC} - \overrightarrow{AD}
= \overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{AD} =
\overrightarrow{DC}.

    \overrightarrow{AC} - \overrightarrow{BD}
= 2\overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{BD} =2\overrightarrow{CD}\Leftrightarrow \left( \overrightarrow{AB} +\overrightarrow{AD} ight) - \left( \overrightarrow{AD} -\overrightarrow{AB} ight)\mathbf{=}2\overrightarrow{CD}\Leftrightarrow 2\overrightarrow{AB} =2\overrightarrow{CD}.

    \overrightarrow{AC} + \overrightarrow{BC}
= \overrightarrow{AB} sai do \overrightarrow{AC} + \overrightarrow{BC} =\overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} -\overrightarrow{AB} = - \overrightarrow{BC}\Leftrightarrow\overrightarrow{BC} = \overrightarrow{CB}.

    \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{BC} đúng do \overrightarrow{AC} + \overrightarrow{BD} =\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} +\overrightarrow{CD}\mathbf{=}2\overrightarrow{BC} + \left(\overrightarrow{AB} + \overrightarrow{CD} ight) = 2\overrightarrow{BC}+ \overrightarrow{0} = 2\overrightarrow{BC}.

  • Câu 3: Thông hiểu

    Cho tam giác ABC, gọi M là trung điểm ABN là một điểm trên cạnh AC sao cho NC
= 2NA. Gọi K là trung điểm của MN. Khi đó

    Ta có \overrightarrow{AK} =
\frac{1}{2}\left( \overrightarrow{AM} + \overrightarrow{AN} ight) =
\frac{1}{2}\left( \frac{1}{2}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC} ight) = \frac{1}{4}\overrightarrow{AB}
+ \frac{1}{6}\overrightarrow{AC}.

  • Câu 4: Thông hiểu

    Trong mặt phẳng Oxy cho A(1;2),\ \ B(4;1),\ \ C(5;4). Tính \widehat{BAC} ?

    Ta có \overrightarrow{AB} = (3; -
1), \overrightarrow{AC} =
(4;2) suy ra \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} =
\frac{10}{\sqrt{10}.\sqrt{20}} = \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = 45^{o}.

  • Câu 5: Vận dụng cao

    Cho hình bình hành ABCD. Lấy hai điểm M,N sao cho \overrightarrow{CM} =
\frac{1}{2}\overrightarrow{CB};\overrightarrow{CN} =
\frac{1}{3}\overrightarrow{CD}, lấy tiếp hai điểm I,J sao cho \overrightarrow{CI} =
x\overrightarrow{CD};\overrightarrow{BJ} =
y\overrightarrow{BI}. Để J là trọng tâm tam giác AMN thì x,y thỏa mãn điều kiện nào sau đây:

    Hình vẽ minh họa

    Tìm điều kiện của x và y

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} = \overrightarrow{BA} -
\overrightarrow{BJ} + \overrightarrow{JB} + \overrightarrow{BM} +
\overrightarrow{JI} + \overrightarrow{IN}

    = \overrightarrow{BA} -
2\overrightarrow{BJ} + \frac{\overrightarrow{BC}}{2} +
\overrightarrow{BI} - \overrightarrow{BJ} + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\overrightarrow{BI} +
\overrightarrow{CN} - \overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\left( \overrightarrow{BC} +
\overrightarrow{CI} ight) + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \overrightarrow{CN} - 3y.\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \frac{1}{3}\overrightarrow{CD} -
3xy.\overrightarrow{CD}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \left( \frac{1}{3} - 3xy
ight).\overrightarrow{BA}

    = \left( - \frac{17}{6} + 3y + 3xy
ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC}

    Để J là trọng tâm tam giác AMN thì

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left( - \frac{17}{6} +
3y + 3xy ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC} = \overrightarrow{0}

    Mặt khác do \overrightarrow{AB};\overrightarrow{AC} không cùng phương nên ta suy ra:

    \left\{ \begin{matrix}- \dfrac{17}{6} + 3y + 3xy = 0 \\\dfrac{3}{2} - 3y = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{8}{9} \\y = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy với x = \frac{8}{9};y =
\frac{1}{2} thì điểm J là trọng tâm tam giác AMN.

  • Câu 6: Vận dụng

    Trong hệ tọa độ Oxy, cho hình bình hành OABC, điểm C thuộc trục hoành. Khẳng định nào sau đây đúng?

    Từ giả thiết suy ra cạnh OC thuộc trục hoành \overset{}{ightarrow} cạnh AB song song với trục hoành nên y_{A} =
y_{B}\overset{}{ightarrow}\overrightarrow{AB} = \left( x_{A} - x_{B};0
ight). Do đó loại đáp án \overrightarrow{AB} có tung độ khác 0 và đáp án hai điểm A,\ B có tung độ khác nhau.

    Nếu C có hoành độ bằng 0\overset{}{ightarrow}C(0;0) \equiv O: mâu thuẩn với giả thiết OABC là hình bình hành. Loại đáp án C có hoành độ bằng 0.

    Dùng phương pháp loại trừ, ta chọn x_{A}
+ x_{C} - x_{B} = 0.

    Cách 2. Gọi I là tâm của hình bình hành OABC. Suy ra

    \bullet I là trung điểm AC\overset{}{ightarrow}I\left( \frac{x_{A} +
x_{C}}{2};\frac{y_{A} + 0}{2} ight).

    \bullet I là trung điểm OB\overset{}{ightarrow}I\left( \frac{0 +
x_{B}}{2};\frac{0 + y_{B}}{2} ight).

    Từ đó suy ra \frac{x_{A} + x_{C}}{2} =\frac{0 + x_{B}}{2}\overset{}{ightarrow}x_{A} + x_{C} - x_{B} =0.

  • Câu 7: Vận dụng

    Cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính \left| \overrightarrow{CA} - \overrightarrow{HC}
ight|.

    Gọi D là điểm thỏa mãn tứ giác ACHD là hình bình hành

    \Rightarrow AHBD là hình chữ nhật.

    \left| \overrightarrow{CA} -
\overrightarrow{HC} ight| = \left| \overrightarrow{CA} +
\overrightarrow{CH} ight| = \left| \overrightarrow{CD} ight| =
CD.

    Ta có CD = \sqrt{BD^{2} + BC^{2}} =
\sqrt{AH^{2} + BC^{2}} = \sqrt{\frac{3a^{2}}{4} + a^{2}} =
\frac{a\sqrt{7}}{2}.

  • Câu 8: Nhận biết

    Trong hệ tọa độ Oxy, cho tam giác ABCA(3;5),\ B(1;2),\ C(5;2). Tìm tọa độ trọng tâm G của tam giác ABC?

    Ta có \left\{ \begin{matrix}
x_{G} = \frac{3 + 1 + 5}{3} = 3 \\
y_{G} = \frac{5 + 2 + 2}{3} = 3 \\
\end{matrix} ight.\ \overset{}{ightarrow}G(3;3).

  • Câu 9: Vận dụng

    Cho tam giác ABC, điểm I thoả mãn: 5\overrightarrow{MA} =
2\overrightarrow{MB}. Nếu \overrightarrow{IA} = m\overrightarrow{IM} +
n\overrightarrow{IB} thì cặp số (m;n) bằng:

    Ta có:

    5\overrightarrow{MA} =2\overrightarrow{MB} \Leftrightarrow 5\left( \overrightarrow{MI} +\overrightarrow{IA} ight) = 2\left( \overrightarrow{MI} +\overrightarrow{IB} ight)\Leftrightarrow 5\overrightarrow{IA} =3\overrightarrow{IM} + 2\overrightarrow{IB} \Leftrightarrow\overrightarrow{IA} = \frac{3}{5}\overrightarrow{IM} +\frac{2}{5}\overrightarrow{IB}.

  • Câu 10: Nhận biết

    Cho hai vecto \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}. Xác định góc giữa hai vecto \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|

    Ta có: 

    \begin{matrix}  \vec a \times \vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Cho tam giác ABC có trọng tâm G và trung tuyến AM. Khẳng định nào sau đây là sai.

    Ta có AM = 3MG

    Mặt khác \overrightarrow{AM}\overrightarrow{MG} ngược hướng \mathbf{\Rightarrow}\overrightarrow{AM} = -
3\overrightarrow{MG}.

  • Câu 12: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a}=3\overrightarrow{i}+6\overrightarrow{j}\overrightarrow{b}=8\overrightarrow{i}-4\overrightarrow{j}. Kết luận nào sau đây sai?

    Ta có:

    \begin{matrix}  \vec a = 3\vec i + 6\vec j \Rightarrow \vec a = \left( {3;6} ight) \hfill \\  \vec b = 8\vec i - 4\vec j \Rightarrow \vec b = \left( {8; - 4} ight) \hfill \\   \Rightarrow \vec a.\vec b = 3.8 + \left( { - 4} ight).6 = 0 \hfill \\   \Rightarrow \left| {\vec a.\vec b} ight| = 0 \hfill \\   \Rightarrow \vec a \bot \vec b \hfill \\ \end{matrix}

    Vậy kết luận sai là: |\overrightarrow{a}|\times |\overrightarrow{b}|=0

  • Câu 13: Nhận biết

    Tìm tọa độ vecto \overrightarrow{AB} biết A(5;3),B(7;8)?

    Ta có:

    \overrightarrow{AB} = (7 - 5,8 - 3) =
(2;5)

  • Câu 14: Thông hiểu

    Cho tứ giác ABCD. Gọi M,\
N,\ P,\ Q lần lượt là trung điểm của AB, BC, CD, DA. Khẳng định nào sau đây sai?

    Ta có \left\{ \begin{matrix}
MN \parallel PQ \\
MN = PQ \\
\end{matrix} ight. (do cùng song song và bằng \frac{1}{2}AC).

    Do đó MNPQ là hình bình hành.

    Do đó \left| \overrightarrow{MN} ight|
= \left| \overrightarrow{AC} ight| sai.

  • Câu 15: Nhận biết

    Cho tam giác đều ABC có đường cao AH. Tính (\overrightarrow{AH},\overrightarrow{BA}).

     Lấy D sao cho \overrightarrow {BD}=\overrightarrow {AH}.

    Ta có: (\overrightarrow{AH},\overrightarrow{BA}) =(\overrightarrow{BD},\overrightarrow{BA})=90^{\circ} +60^{\circ}= 150^{\circ}.

  • Câu 16: Thông hiểu

    Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?

     Ta có:

    \overrightarrow{CA}-\overrightarrow{BA}=\overrightarrow{CB}e  \overrightarrow{BC} => Khẳng định sai

    \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} e\overrightarrow{BC} => Khẳng định sai

     \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} => Khẳng định đúng

    \overrightarrow{AB}-\overrightarrow{BC}e\overrightarrow{CA}=> Khẳng định sa

  • Câu 17: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi ba điểmA,\ \ B,\ \ C thẳng hàng và B nằm giữaA,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm. Chọn đáp án này.

  • Câu 18: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;5),B(2;6). Tìm tọa độ điểm D \in Ox sao cho điểm D cách đều hai điểm A;B?

    Ta có: D \in Ox \Rightarrow
D(x;0)

    Từ DA = DB

    \Leftrightarrow \sqrt{(1 - x)^{2} +
5^{2}} = \sqrt{( - 2 - x)^{2} + 6^{2}}

    \Leftrightarrow x = -
\frac{7}{3}

    \Rightarrow D\left( - \frac{7}{3};0
ight)

    Vậy tọa độ điểm D cần tìm là: D\left( -
\frac{7}{3};0 ight).

  • Câu 19: Nhận biết

    Cho hai vectơ không cùng phương \overrightarrow{a}\overrightarrow{b}. Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ \overrightarrow{a}\overrightarrow{b}, đó là \overrightarrow{0}."

  • Câu 20: Thông hiểu

    Cho tam giác ABC đều cạnh a. Tính \left| \overrightarrow{AB} + \overrightarrow{AC}
ight|.

    Gọi H là trung điểm của BC \Rightarrow AH\bot BC.

    Suy ra AH = \frac{BC\sqrt{3}}{2} =
\frac{a\sqrt{3}}{2}.

    Ta lại có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AH} ight| =
2.\frac{a\sqrt{3}}{2} = a\sqrt{3}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 5 Vectơ sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 22 lượt xem
Sắp xếp theo