Cho ba điểm phân biệt
Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Cho ba điểm phân biệt
Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Cho hình vuông
cạnh
, tâm
Tính
.
Gọi là trung điểm của
.
Ta có
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Trong hệ tọa độ
cho tam giác
có
Tìm tọa độ trọng tâm
của tam giác ![]()
Ta có
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Mệnh đề nào sau đây sai?
Giả sử trường hợp
=> Điểm A và điểm B trùng nhau.
=> Có thể xảy ra trường hợp này.
=> Mệnh đề sai là
Trong mặt phẳng tọa độ
, cho hai vecto
và
. Tính
?
Theo bài ra ta có:
và
Khi đó:
Tích vô hướng của hai vecto
và
là:
Ta có:
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ của vectơ ![]()
Ta có
Cách khác:
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi ![]()
nên
.
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
![]()
Ta có:
Cho tam giác đều
cạnh
trọng tâm
Tập hợp các điểm
thỏa mãn
là
Gọi lần lượt là trung điểm của
Khi đó
Theo bài ra, ta có
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
cũng chính là đường trung trực của đoạn thẳng
vì
là đường trung bình của tam giác
Trong mặt phẳng tọa độ
, cho tọa độ các điểm
. Tìm tọa độ điểm
sao cho ba điểm
thẳng hàng?
Theo bài ra ta có:
Lại có:
Ba điểm thẳng hàng khi và chỉ khi
và
cùng phương hay
Vậy tọa độ điểm M là .
Trên đường thẳng MN lấy điểm P sao cho
. Điểm P được xác định đúng trong hình vẽ nào sau đây:

Vì nên
nằm giữa
và
, đồng thời
.
Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn
. Chọn mệnh đề đúng.
.
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính ![]()
Ta có:
Tam giác ABC vuông tại A ta có:
Trong hệ tọa độ
cho
Khẳng định nào sau đây đúng?
Ta có không cùng phương.
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Cho tam giác
và đặt
Cặp vectơ nào sau đây cùng phương?
Dễ thấy hai vectơ
cùng phương.
Cho tam giác
vuông cân tại
cạnh
Tính ![]()
Gọi là điểm đối xứng của
qua
Tam giác
vuông tại
có
Ta có suy ra