Đề kiểm tra 15 phút Chương 6 Hàm số đồ thị và ứng dụng

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Hàm số đồ thị và ứng dụng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Nghiệm của phương trình \sqrt{5x^{2}-6x-4}=2(x-1)

    Điều kiện: 5{x^2} - 6x - 4 \geqslant 0

    Phương trình tương đương

    \begin{matrix}  \sqrt {5{x^2} - 6x - 4}  = 2\left( {x - 1} ight) \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2\left( {x - 1} ight) \geqslant 0} \\   {5{x^2} - 6x - 4 = 4{{\left( {x - 1} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được x=2 thỏa mãn

    Vậy nghiệm của phương trình là: x=2

  • Câu 2: Nhận biết

    Hàm số nào dưới đây đồng biến trên (3;4)?

    + Hàm số y = \frac{1}{2}x^{2} - 2x +
1 đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.

    + Hàm số y = x2 − 7x + 2 đồng biến trên \left( \frac{7}{2}; + \infty
ight). Loại.

    + Hàm số y =  − 3x + 1 nghịc biến trên . Loại.

    + Hàm số y = - \frac{1}{2}x^{2} + x -
1 đồng biến trên (−∞;1). Loại.

  • Câu 3: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .

  • Câu 4: Thông hiểu

    Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) =  − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên là:

    Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.

  • Câu 5: Thông hiểu

    Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hường lên.

    Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.

  • Câu 6: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 7: Nhận biết

    Tập xác định của hàm số y = \sqrt{8 - 2x} - x là:

    Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].

  • Câu 8: Vận dụng cao

    Phương trình \sqrt{x^{2} + 3} + \sqrt{10 - x^{2}} = 5 có mấy nghiệm ?

    Đặt u = \sqrt{x^{2} + 3}\ \ ;\ \ v =
\sqrt{10 - x^{2}}\ \ \ \ (u\ ,\ v \geq 0). Ta có hệ phương trình:

    \left\{ \begin{matrix}
u + v = 5 \\
u^{2} + v^{2} = 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u + v = 5 \\
u.v = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
u = 2 \\
v = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
u = 3 \\
v = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
u = 2 \\
v = 3 \\
\end{matrix} ight.\  \Rightarrow x = \pm 1.

    Với \left\{ \begin{matrix}
u = 3 \\
v = 2 \\
\end{matrix} ight.\  \Rightarrow x = \pm \sqrt{6}.

    Vậy phương trình có 4 nghiệm.

  • Câu 9: Vận dụng cao

    Cho parabol (P) : y = ax2 + bx + c(a≠0) có đồ thị như hình bên. Tìm các giá trị m để phương trình |ax2+bx+c| = m có bốn nghiệm phân biệt.

    Quan sát đồ thị ta có đỉnh của parabol là I(2;3) nên \left\{ \begin{matrix}
- \frac{b}{2a} = 2 \\
3 = 4a + 2b + c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = - 4a \\
4a + 2b + c = 3 \\
\end{matrix} ight..

    Mặt khác (P) cắt trục tung tại (0;−1) nên c =  − 1. Suy ra \left\{ \begin{matrix}
b = - 4a \\
4a + 2b = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 4 \\
\end{matrix} ight..

    (P) : y =  − x2 + 4x − 1 suy ra hàm số y = |−x2+4x−1| có đồ thị là là phần đồ thị phía trên trục hoành của (P) và phần có được do lấy đối xứng phần phía dưới trục hoành của (P), như hình vẽ sau:

    Phương trình |ax2+bx+c| = m hay |−x2+4x−1| = m có bốn nghiệm phân biệt khi đường thẳng y = m cắt đồ thị hàm số hàm số y = |−x2+4x−1| tại bốn điểm phân biệt.

    Suy ra 0 < m < 3.

  • Câu 10: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−1;+∞)?

    Xét đáp án y = - \sqrt{2}(x +
1)^{2}, ta có y = - \sqrt{2}(x +
1)^{2} = - \sqrt{2}x^{2} - 2\sqrt{2}x - \sqrt{2} nên - \frac{b}{2a} = - 1 và có a < 0 nên hàm số đồng biến trên khoảng (−∞;−1) và nghịch biến trên khoảng (−1;+∞).

  • Câu 11: Thông hiểu

    Phương trình \sqrt{-x^{2}+6x-5}=8-2x có nghiệm là:

    Điều kiện: - {x^2} + 6x - 5 \geqslant 0 \Leftrightarrow x \in \left[ { - 5,1} ight]

    Phương trình tương đương

    \begin{matrix}  \sqrt { - {x^2} + 6x - 5}  = 8 - 2x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {8 - 2x \geqslant 0} \\   { - {x^2} + 6x - 5 = {{\left( {8 - 2x} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   { - {x^2} + 6x - 5 = 64 - 32x + 4{x^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {5{x^2} - 38x + 69 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 3} \\   {x = \dfrac{{23}}{5}\left( {ltm} ight)} \end{array}} ight.} \end{array}} ight. \Leftrightarrow x = 3 \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta có: x=3 thỏa mãn 

    Vậy phương trình có nghiệm là x=3.

  • Câu 12: Nhận biết

    Giải bất phương trình −2x^{2}+3x−7≥0.

     Ta có: −2x^{2}+3x−7≥0 \Leftrightarrow x \in \varnothing.

  • Câu 13: Thông hiểu

    Cho tam thức f(x) = ax^{2} + bx + c (a ≠ 0), có ∆ = b^{2}  – 4ac. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:

    Biểu thức f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a < 0} \\   {\Delta ' \leqslant 0} \end{array}} ight.

  • Câu 14: Vận dụng

    Trong các hàm số sau, hàm số nào tăng trên khoảng (-1;0)?

    Lấy hai điểm x_1,x_2\in (-1;0) sao cho - 1 < {x_1} < {x_2} < 0 khi đó {x_2} - {x_1} > 0

    Xét đáp án y = x ta có: 

    \begin{matrix}  \dfrac{{f\left( {{x_2}} ight) - f\left( {{x_1}} ight)}}{{{x_2} - {x_1}}} = \dfrac{{{x_2} - {x_1}}}{{{x_2} - {x_1}}} = 1 > 0 \hfill \\  \forall {x_1},{x_2} \in \left( { - 1;0} ight) \hfill \\ \end{matrix}

    Vậy hàm số tăng trên (-1,0).

    Xét đáp án y=\frac{1}{x} ta có: 

    \begin{matrix}  \dfrac{{f\left( {{x_2}} ight) - f\left( {{x_1}} ight)}}{{{x_2} - {x_1}}} = \dfrac{{\dfrac{1}{{{x_2}}} - \dfrac{1}{{{x_1}}}}}{{{x_2} - {x_1}}} =  - \dfrac{1}{{{x_2}.{x_1}}} < 0 \hfill \\  \forall {x_1},{x_2} \in \left( { - 1;0} ight) \hfill \\ \end{matrix}

    Vậy hàm số không tăng trên (-1,0).

    Xét đáp án y = |x| ta có: 

    \begin{matrix}  \dfrac{{f\left( {{x_2}} ight) - f\left( {{x_1}} ight)}}{{{x_2} - {x_1}}} = \dfrac{{\left| {{x_2}} ight| - \left| {{x_1}} ight|}}{{{x_2} - {x_1}}} = \dfrac{{ - {x_2} + {x_1}}}{{{x_2} - {x_1}}} =  -  < 0 \hfill \\  \forall {x_1},{x_2} \in \left( { - 1;0} ight) \hfill \\ \end{matrix}

    Vậy hàm số không tăng trên (-1,0).

    Xét đáp án y=x^{2} ta có: 

    \begin{matrix}  \dfrac{{f\left( {{x_2}} ight) - f\left( {{x_1}} ight)}}{{{x_2} - {x_1}}} = \dfrac{{{{\left( {{x_2}} ight)}^2} - {{\left( {{x_1}} ight)}^2}}}{{{x_2} - {x_1}}} = \left( {{x_2} - {x_1}} ight) < 0 \hfill \\  \forall {x_1},{x_2} \in \left( { - 1;0} ight) \hfill \\ \end{matrix}

    Vậy hàm số không tăng trên (-1,0).

  • Câu 15: Vận dụng

    Tìm tất cả các giá trị thực của tham số m để bất phương trình (m2−4)x2 + (m−2)x + 1 < 0 vô nghiệm.

    • Xét m2 − 4 = 0 ⇔ m =  ± 2

    Với m =  − 2, bất phương trình trở thành x > \frac{1}{4}: không thỏa mãn.

    Với m = 2, bất phương trình trở thành 1 < 0: vô nghiệm. Do đó m = 2 thỏa mãn.

    • Xét m ≠  ± 2. Yêu cầu bài toán

     ⇔ (m2−4)x2 + (m−2)x + 1 ≥ 0,  ∀x ∈ ℝ

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 4 > 0 \\
\Delta = (m - 2)^{2} - 4\left( m^{2} - 4 ight) \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq - \frac{10}{3} \\
m > 2 \\
\end{matrix} ight.

    Kết hợp hai trường hợp, ta được m \leq -
\frac{10}{3} hoặc m ≥ 2.

  • Câu 16: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng ( - 1;1)?

    Hàm số y = x là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số y =
x đồng biến trên tập số thực.

    Vậy hàm số y = x đồng biến trên khoảng ( - 1;1).

  • Câu 17: Thông hiểu

    Dưới đây là bảng giá cước của hãng taxi A

    Giá khởi điểm

    Giá km tiếp theo

    11 000 đồng/ 0,7km

    16 000 /1km

    Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.

    Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?

    Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là y = 11000.

    Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:

    y = 11000 + (x - 0,7).16000

    \Rightarrow y = 16000x - 200 (đồng)

    Vậy mối liên hệ giữa y và x là: y =
\left\{ \begin{matrix}
11000\ \ \ \ \ \ \ \ \ \ \ khi\ x \leq 0,7 \\
16000x - 200\ \ khi\ x > 0,7 \\
\end{matrix} ight..

  • Câu 18: Vận dụng

    Cho phương trình (m - 1)x^{4} + 2(m -
3)x^{2} + m + 3 = 0 (m là tham số). Tìm m để phương trình vô nghiệm.

    Đặt t = x^{2},(t \geq 0). Khi đó ta có phương trình: (m - 1)t^{2} + 2(m - 3)t
+ m + 3 = 0. (1)

    Với m = 1 thì (1) \Leftrightarrow - 4t + 4 = 0 \Leftrightarrow t
= 1 \Leftrightarrow x = \pm 1 (Loại)

    Với m eq 1 để phương trình ban đầu vô nghiệm thì:

    TH1: (1) vô nghiệm \Leftrightarrow
\Delta^{'} < 0 \Leftrightarrow - 8m + 12 < 0 \Leftrightarrow m
> \frac{3}{2}.

    TH2: (1) có 2 nghiệm âm

    \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  {\Delta ' \geqslant 0} \\ 
  {{t_1}.{t_2} > 0} \\ 
  {{t_1} + {t_2} < 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  { - 8m + 12 \geqslant 0} \\ 
  {\dfrac{{m + 3}}{{m - 1}} > 0} \\ 
  { - \dfrac{{2(m - 3)}}{{m + 1}} < 0} 
\end{array}} ight.} ight.

    \Leftrightarrow \left\{ \begin{matrix}m \leq \dfrac{3}{2} \\m \in ( - \infty; - 3) \cup (1; + \infty) \\m \in ( - \infty;1) \cup (3; + \infty) \\\end{matrix} \Leftrightarrow m ight.\  \in ( - \infty; -3)

    Kết hợp 2 trường hợp, ta được m \in ( -
\infty; - 3) \cup \left( \frac{3}{2}; + \infty ight).

  • Câu 19: Nhận biết

    Điểm nào sau đây thuộc đồ thị của hàm số y = \frac{x - 2}{x(x - 1)}?

    Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.

  • Câu 20: Nhận biết

    Số nghiệm của phương trình \sqrt{8-x^{2}}=\sqrt{x+2}

    Điều kiện: \left\{ {\begin{array}{*{20}{c}}  {8 - {x^2} \geqslant 0} \\   {x + 2 \geqslant 0} \end{array}} ight.

    Phương trình tương đương:

    \begin{gathered}  \sqrt {8 - {x^2}}  = \sqrt {x + 2}  \hfill \\   \Leftrightarrow 8 - {x^2} = x + 2 \hfill \\   \Leftrightarrow  - {x^2} - x + 6 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2} \\   {x =  - 3} \end{array}} ight. \hfill \\ \end{gathered}

    Kết hợp điều kiện ta được: x=2 thỏa mãn điều kiện

    Vậy phương trình đã cho có một nghiệm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Hàm số đồ thị và ứng dụng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo