Số nghiệm của phương trình: là
Điều kiện xác định của phương trình x ≥ 4.
Phương trình tương đương với
.
Kết hợp điều kiện suy ra .
Vậy phương trình có hai nghiệm.
Số nghiệm của phương trình: là
Điều kiện xác định của phương trình x ≥ 4.
Phương trình tương đương với
.
Kết hợp điều kiện suy ra .
Vậy phương trình có hai nghiệm.
Cho tam thức bậc hai . Tìm tất cả các giá trị thực của tham số m để bất phương trình
vô nghiệm?
Bất phương trình: vô nghiệm khi và chỉ khi
Xét
Với thì (*)
loại giá trị
.
Với thì bất phương trình (*)
bất phương trình vô nghiệm, nhận giá trị
.
Xét
Vậy thì bất phương trình (*) vô nghiệm.
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?
Nhận xét:
Bảng biến thiên có bề lõm hướng lên. Loại đáp án y = − x2 + 4x − 9 và y = − x2 + 4x.
Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.
Số nghiệm của phương trình là:
ĐKXĐ:
Đặt
Phương trình trở thành
(đối chiếu ĐKXĐ loại
)
Với t = 1 ta có
Với ta có
Vậy phương trình có hai nghiệm và
.
Đồ thị bên là đồ thị của hàm số nào?
Đồ thị nhận trục Oy là trục đối xứng nên hàm số tương ứng là hàm chẵn nên loại phương án y = |2x+1| và y = |x+1|
Đồ thị hàm số đi qua điểm (1;3). Thay vào y = 2|x| + 1 thấy thỏa mãn nên chọn đáp án này.
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Tập xác định của hàm số là
Ta có 9 − x2 ≥ 0 ⇔ (3−x)(3+x) ≥ 0 ⇔ − 3 ≤ x ≤ 3.
Hàm số xác định khi và chỉ khi
. Vậy x ∈ [ − 3; 3] ∖ {2}.
Trong các hàm số sau, hàm số nào là nghịch biến:
Ta có:
Hàm số có a = -2 < 0
=> Hàm số nghịch biến.
Cho tam thức bậc hai . Kết luận nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là .
Tìm tập xác định của hàm số ?
Điều kiện xác định:
.
Vậy tập xác định của hàm số là .
Tập nghiệm của phương trình là:
Điều kiện .
Ta có: .
Loại . Do đó
.
Tìm m để phương trình có hai nghiệm phân biệt là:
Phương trình .
Phương trình đã cho có hai nghiệm ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng đồ thị hàm số y = 3x2 + (4−m)x − 1 trên
cắt trục hoành tại hai điểm phân biệt.
Xét hàm số y = 3x2 + (4−m)x − 1 trên . Ta có
+ TH1: Nếu thì hàm số đồng biến trên
nên m ≤ 1 không thỏa mãn yêu cầu bài toán.
+ TH2: Nếu :
Ta có bảng biến thiên
Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên cắt trục hoành tại hai điểm phân biệt
Vì − m2 + 8m − 28 = − (m−4)2 − 12 < 0, ∀m nên
(thỏa mãn m > 1).
Vậy là giá trị cần tìm.
Xác định điểm không thuộc đồ thị của hàm số ?
Ta thấy các điểm nằm trên đồ thị của hàm số là: ;
;
.
Vậy điểm không thuộc đồ thị hàm số đã cho là: .
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Cho hàm số: . Tập xác định của hàm số là tập hợp nào sau đây?
Với x ≤ 0 ta có: xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.
Với x > 0 ta có: xác định với mọi x ≥ − 2 nên xác định với mọi x > 0.
Vậy tập xác định của hàm số là D = ℝ.
Số nghiệm của phương trình là bao nhiêu?
Điều kiện: .
.
Đặt ,
.
.
Vậy phương trình đã cho có hai nghiệm.
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT
Vậy , ymax = 21.
Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?
Ta có bảng biến thiên:
Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng(2;+∞).
Với giá trị nào của m thì bất phương trình x2 − x + m ≤ 0 vô nghiệm?
Bất phương trình x2 − x + m ≤ 0 vô nghiệm khi và chỉ khi bất phương trình .
Tổng các nghiệm của phương trình bằng:
.
Vậy, tổng các nghiệm của phương trình là .