Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Nhiệt độ của thành phố Hà Nội ghi nhận trong 10 ngày lần lượt là: 24;\ 21;\ 30;\ 34;\
28;\ 35;\ 33;\ 36;\ 25;\ 27. Khoảng tứ phân vị của mẫu số liệu là:

    Sắp xếp dãy dữ liệu theo thứ tự không giảm là:

    21;24;25;27;28;30;33;34;35;36

    Suy ra Q_{2} = 29;Q_{1} = 25;Q_{3} =
34

    Khoảng tứ phân vị của mẫu số liệu là:

    \Delta Q = Q_{3} - Q_{1} =
9

  • Câu 2: Thông hiểu

    Bạn Xuân là một trong nhóm 15 người. chọn 3 người để lập một ban đại diện. Xác suất đúng đến phần mười nghìn để Xuân là một trong 3 người được chọn là bao nhiêu?

    Số phần tử của không gian mẫu là |\Omega|
= C_{15}^{3} = 455.

    Gọi A là biến cố Xuân là một trong ba người được chọn.

    1 cách chọn Xuân trong nhóm 15 người.

    C_{14}^{2} cách chọn 2 người trong 14 người còn lại.

    Suy ra \left| \Omega_{A} ight| =
1.C_{14}^{2} = 91.

    Xác suất cần tìm là P(A) = \frac{91}{455}
= 0,2.

  • Câu 3: Vận dụng

    Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp. Xác suất để 2 viên bi được lấy vừa khác màu vừa khác số là bao nhiêu?

    Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{12}^{2} = 66.

    Gọi A là biến cố ''2 viên bi được lấy vừa khác màu vừa khác số''.

    ● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi đỏ là 4.4 = 16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

    ● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi vàng là 3.4 = 12 cách.

    ● Số cách lấy 2 viên bi gồm 1 bi đỏ và 1 bi vàng là 3.3 = 9 cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 16 + 12 + 9 =
37.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{37}{66}.

  • Câu 4: Nhận biết

    Khi sử dụng máy tính bỏ túi ta được \sqrt{5} = 2,236067977. Giá trị gần đúng của \sqrt{5} quy tròn đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 3 ở hàng phần trăm là số 6 > 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,24.

  • Câu 6: Nhận biết

    Cho B\overline{B} là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?

    Mệnh đề đúng là: P(A) = 1 - P\left(
\overline{A} ight)

  • Câu 7: Thông hiểu

    Hãy chọn kết quả lần lượt là số trung bình và phương sai của mẫu số liệu 3;5;5;6;7;7;8;9;10?

    Ta có:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{3 + 5 + 5 + 6 + 7 +
7 + 8 + 9 + 10}{9} \approx 6,7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{9}.\lbrack(3 - 6,7)^{2}
+ 2.(5 - 6,7)^{2} + (6 - 6,7)^{2} + 2.(7 - 6,7)^{2}

    + (8 - 6,7)^{2} + (9 - 6,7)^{2} + (10 -
6,7)^{2}brack \approx 4,2

    Vậy số trung bình và phương sai của mẫu số liệu lần lượt là: 6,7;\ 4,2.

  • Câu 8: Vận dụng

    Cho ba nhóm học sinh:

    Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.

    Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.

    Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.

    Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?

    Tổng khối lượng của mỗi nhóm lần lượt là: \left\{ \begin{matrix}
N_{1} = 6.45kg \\
N_{2} = 11.50kg \\
N_{3} = 8.42kg \\
\end{matrix} ight.

    Khối lượng trung bình của cả ba nhóm là:

    \overline{x} = \frac{N_{1} + N_{2} +
N_{3}}{6 + 8 + 11}

    \Rightarrow \overline{x} = \frac{6.45 +
11.50 + 8.42}{25} = 46,24kg

    Vậy khối lượng trung bình của cả ba nhóm học sinh là \overline{x} = 46,24kg.

  • Câu 9: Thông hiểu

    Cửa hàng thống kê cỡ giày trong một đơn hàng ngẫu nhiên của một vị khách như sau: 35;37;39;41;38;40;40;37;40. Xác định trung vị của mẫu số liệu?

    Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:

    35;37;37;38;39;40;40;40;41

    Trung vị của mẫu số liệu là 39.

  • Câu 10: Nhận biết

    Trong các thí nghiệm hằng số C được xác định là 5,73675 với cận trên sai số tuyệt đối là d = 0,00421. Viết chuẩn giá trị gần đúng của C là:

     Vì độ chính xác d = 0,00421 (hàng phần trăm nghìn) nên ta quy tròn số gần đúng đến hàng phần chục nghìn. Ta được: 5,7368.

  • Câu 11: Nhận biết

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 12: Thông hiểu

    Viết số quy tròn của số gần đúng 123,4167 có độ chính xác d = 0,005.

    d = 0,005 nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là: 123,42.

  • Câu 13: Nhận biết

    Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.

    Dãy trên có giá trị chính giữa bằng 5.

    Vậy trung vị của mẫu số liệu bằng 5.

  • Câu 14: Nhận biết

    Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.

     Số 23 xuất hiện nhiều nhất nên nó là mốt.

  • Câu 15: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{15}^{3} = 455

    Gọi A là biến cố lấy được 3 quả màu xanh

    Số phần tử của biến cố A là: n(A) =
C_{5}^{3} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{455} = \frac{2}{91}

  • Câu 16: Thông hiểu

    Cho 40 tấm thẻ được đánh số theo thứ tự từ 1 đến 40. Chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để ba tấm thẻ được chọn có tổng các số ghi trên ba tấm thẻ đó là một số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{40}^{3} = 9880

    Gọi A là biến cố chọn được 3 tấm thẻ có các số ghi trên ba tấm thẻ đó là một số chẵn.

    TH1: 2 số ghi số lẻ, 1 số ghi số chẵn ta có: C_{20}^{2}.C_{20}^{1} = 3800

    TH2: 3 số ghi số chẵn ta có: C_{20}^{3} =
1140

    Vậy xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn là: \frac{3800 + 1140}{9880}
= \frac{1}{2}

  • Câu 17: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

  • Câu 18: Vận dụng

    Cho dãy số liệu:

    5;6;19;21;22;23;24;25;

    26;27;28;31;35;38;47.

    Tìm giá trị bất thường của mẫu số liệu trên?

    Các giá trị của mẫu số liệu được sắp xếp theo thứ tự không giảm như sau:

    5;6;19;21;22;23;24;25;

    26;27;28;31;35;38;47

    Ta tìm được các tứ phân vị Q_{1} =
21;Q_{3} = 31

    Suy ra khoảng biến thiên tứ phân vị là \Delta Q = Q_{3} - Q_{1} = 31 - 21 =
10

    \Rightarrow \left\{ \begin{matrix}
Q_{3} + 1,5\Delta Q = 46 \\
Q_{1} - 1,5\Delta Q = 6 \\
\end{matrix} ight.

    Suy ra các giá trị bất thường nằm ngoài đoạn \lbrack 6;46brack

    Vậy các giá trị bất thường là 5;47.

  • Câu 19: Thông hiểu

    Kết quả điều tra về điện năng tiêu thụ (đơn vị: kw/h) của một số hộ dân trong khu vực được thống kê như sau: 45;100;50;85;70;65;80;70;65;100;45. Tính trung vị của dãy số liệu đã cho?

    Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:

    45;45;50;65;65;70;70;80;85;100;100

    Vì cỡ mẫu N = 11 (số lẻ) nên số trung vị của dãy số liệu trên là số liệu thứ 6.

    Suy ra M_{e} = 70.

  • Câu 20: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố “Số chấm xuất hiện trong lần gieo không bé hơn 3”.

    Số phần tử của không gian mẫu là: n(\Omega) = 6

    Số kết quả thuận lợi cho biến cố A: “Số chấm xuất hiện trong lần gieo không bé hơn 3” là: A = \left\{ 3;4;5;6ight\}

    \Rightarrow n(A) = 4

    Xác suất của biến cố A là: P(A) =\frac{n(A)}{n(\Omega)} = \frac{4}{6} = \frac{2}{3}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo