Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của 0,47 là:
Ta có suy ra sai số tuyệt đối của 0,47 là 0,001.
Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của 0,47 là:
Ta có suy ra sai số tuyệt đối của 0,47 là 0,001.
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?
Ta có: : "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.
Theo quy tắc nhân xác suất: .
Vậy: .
Chọn phát biểu đúng trong các phát biểu sau:
Phát biểu đúng là: "Độ chính xác của số quy tròn bằng một đơn vị của hàng quy tròn."
Một chiếc hộp chứa 20 quả cầu gồm 8 quả màu xanh, 7 quả màu đỏ và 5 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu từ chiếc hộp. Tính xác suất để 6 quả cầu lấy được ít nhất một quả màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố trong 6 quả cầu lấy được ít nhất một quả đỏ.
Gọi B là biến cố trong 6 quả cầu lấy được không có quả đỏ.
Số phần tử của biến cố B là:
Xác suất của biến cố B là:
Vậy xác suất của biến cố A cần tìm là:
Cho
và
là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?
Mệnh đề đúng là:
Cho mẫu số liệu:
. Tìm phương sai của mẫu số liệu?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là:
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng
, hỏi tổ có bao nhiêu học sinh nữ?
Gọi số học sinh nữ là
Chọn bất kỳ 2 học sinh ta có cách.
Do đó số phần tử của không gian mẫu là
Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.
Để chọn 2 học sinh được 2 học sinh nữ có:
(cách)
Do đó số kết quả thuận lợi cho biến cố A là:
Xác suất để chọn được 2 học sinh nữ là:
Mà
Vậy có 5 học sinh nữ trong tổ.
Cho số
. Số quy tròn của số gần đúng
bằng:
Hàng lớn nhất có độ chính xác là hàng trăm nên ta quy tròn số a đến hàng nghìn.
Vậy số quy tròn của a là: .
Cho mẫu số liệu:
. Số trung bình của mẫu số liệu là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 8.
Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.
Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.
Hai giá trị chính giữa là 96 105. Do đó .
Tứ phân vị của mẫu số liệu: 72 77 84 96 là
.
Tứ phân vị của mẫu số liệu 105 105 117 124 là:
.
Khoảng tứ phân vị .
Tìm độ lệch chuẩn của dãy số liệu: 18 14 15 8.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Độ lệch chuẩn: .
Từ một hộp chứa
quả cầu màu đỏ và
quả cầu màu xanh, lấy ngẫu nhiên đồng thời
quả cầu. Tính xác suất để 3 quả cầu lấy được đều màu xanh.
Gọi là biến cố: “lấy được
quả cầu màu xanh”.
Ta có .
Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)
Số trung bình của mẫu số liệu trên là: .
Cho ba nhóm học sinh:
Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.
Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.
Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.
Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?
Tổng khối lượng của mỗi nhóm lần lượt là:
Khối lượng trung bình của cả ba nhóm là:
Vậy khối lượng trung bình của cả ba nhóm học sinh là .
Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau:
. Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu đã cho ta thấy:
Giá trị lớn nhất là 9
Giá trị nhỏ nhất là 3
Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

Không tính toán, hãy chọn kết luận đúng.
Quan sát hai mẫu số liệu, ta thấy mẫu A có độ phân tán lớn hơn mẫu B. Suy ra mẫu A có phương sai lớn hơn. (Các số liệu ở mẫu B tập trung ở trung tâm)
Một bình chứa
viên bi màu, trong đó có
bi xanh,
bi đỏ,
bi trắng. Lấy ngẫu nhiên
viên bi từ bình đó. Tính xác suất để lấy được
viên bi khác màu.
Lấy viên bi bất kì trong
viên bi trong bình thì có
(cách).
Lấy viên bi cùng màu thì có
(cách) nên có
(cách) lấy được
viên bi khác màu.
Xác suất để lấy được viên bi khác màu trong tổng số
viên bi là
.
Một cửa hàng bán ra một loại áo với các cỡ được thống kê trong bảng sau:

Tìm mốt của mẫu số liệu này.
Vì cỡ áo 40 bán được 81 cái (nhiều nhất) nên mốt của mẫu số liệu là 40.
Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm
. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng bao nhiêu?
Xét phép thử: “Chọn ngẫu nhiên 4 đỉnh của đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm ”
.
Gọi A là biến cố:” 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật”
Đa giác có 20 đỉnh sẽ có 10 đường chéo đi qua tâm mà cứ 2 đường chéo qua tâm sẽ có 1 hình chữ nhật nên số HCN là:
.