Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.

  • Câu 2: Nhận biết

    Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{4} = 495

    Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”

    \Rightarrow n(A) = C_{5}^{4} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{495} = \frac{1}{99}

  • Câu 3: Nhận biết

    Khẳng định nào sau đây là đúng?

     Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.

  • Câu 5: Thông hiểu

    Dân số một tỉnh B năm 2024 là a = 561742 người, với độ chính xác d = 200. Số quy tròn của a là:

    Quy tròn số a = 561742 với độ chính xác d = 200 ta biết \overline{a} = 561742 \pm 200

    => Ta cần quy tròn đến hàng nghìn, số đã được quy tròn là a_{0} = 562000.

  • Câu 6: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu 1 6 4 7 8 20 15 10.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 4 6 7 8 10 15 20.

    Hai giá trị chính giữa là 7 và 8. Suy ra trung vị Q_{2} = \frac{7 + 8}{2} = 7,5.

    Trung vị Q_{1} của mẫu 1 4 6 7 là Q_{1} = \frac{4 + 6}{2} = 5.

    Trung vị Q_{3} của mẫu 8 20 15 10 là Q_{3} = \frac{10 + 15}{2} =
12,5.

    Vậy khoảng tứ phân vị \Delta_{Q} = Q_{3}
- Q_{1} = 12,5 - 5 = 7,5.

  • Câu 7: Thông hiểu

    Trong một chiếc hộp đựng 5 quả cầu xanh, 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Tính xác suất của biến cố “3 quả cầu có đủ ba màu”?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{3} = 220

    Gọi A là biến cố chọn được 3 quả có đủ ba màu.

    Số phần tử của biến cố A là: n(A) = 5.4.3
= 60

    Khi đó xác suất của biến cố A là: P(A) =
\frac{60}{220} = \frac{3}{11}

  • Câu 8: Nhận biết

    Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ S1;\ S2;\ S3;\ S4;\ S5;S6;N1;N2;N3;N4;N5;N6
ight\}.

  • Câu 9: Nhận biết

    Khoảng biến thiên tứ phân vị \Delta Q được xác định bởi:

    Khoảng biến thiên tứ phân vị \Delta
Q được xác định bởi Q_{3} -
Q_{1}.

  • Câu 10: Vận dụng

    Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng bao nhiêu?

    Xét phép thử: “Chọn ngẫu nhiên 4 đỉnh của đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O\Rightarrow n(\Omega) = C_{20}^{4} =
4845.

    Gọi A là biến cố:” 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật”

    Đa giác có 20 đỉnh sẽ có 10 đường chéo đi qua tâm mà cứ 2 đường chéo qua tâm sẽ có 1 hình chữ nhật nên số HCN là: n(A) = C_{10}^{2} = 45.

    P(A) = \frac{45}{4845} =
\frac{3}{323}.

  • Câu 11: Thông hiểu

    Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:

    C_{24}^4 = 10{\text{ }}626

    Số phần tử của không gian mẫu là 10 626.

    Lấy 4 viên bi trong 16 viên bi đỏ, trắng có C_{16}^4 cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là

    C_{16}^4 = 1820

    => Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    10{\text{ }}626-1{\text{ }}820 = 8{\text{ }}806

    Vậy có 8 806 kết quả thuận lợi cho biến cố B.

  • Câu 12: Vận dụng

    Tìm tứ phân vị dưới của bảng số liệu sau:

    Cỡ mẫu số liệu trên là: n = 10 + 8 + 4 +
2 + 1 = 25.

    Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra M_{e} = Q_{2} = 27.

    Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái M_{e}. Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.

    Suy ra Q_{1} = \frac{26 + 26}{2} =
26. Vậy tứ phân vị dưới là 26.

  • Câu 13: Thông hiểu

    Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.

    Số cách lấy 3 viên bi bất kì là C_{16}^{3} = 560.

    Số cách lấy được 3 viên bi trắng là C_{7}^{3}.C_{6}^{0}.C_{3}^{0} = 35.

    Số cách lấy được 2 viên bi trắng, 1 viên bi đen là C_{7}^{2}.C_{6}^{1}.C_{3}^{0} = 126.

    Số cách lấy được 1 viên bi trắng, 2 viên bi đen là C_{7}^{1}.C_{6}^{2}.C_{3}^{0} = 105.

    Số cách lấy được 3 viên bi đen là C_{7}^{0}.C_{6}^{3}.C_{3}^{0} = 20.

    Số cách lấy được cả 2 viên bi không đỏ là 35 + 126 + 105 + 20 = 286.

    Suy ra xác suất cần tìm là \frac{143}{280}.

  • Câu 14: Vận dụng

    Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

    Tính phương sai của mẫu số liệu.

    Số trung bình của mẫu là:

    \overline{x} =\frac{1.4 + 3.4,5 +
4.5 + 1.5,5 + 1.6}{1 + 3 + 4 + 1 + 1} = 4,9.

    Phương sai:

    s^{2} = \frac{(4 - 4,9)^{2} + 3.(4,5 - 4,9)^{2} + 4(5 -
4,9)^{2} + (5,5 - 4,9)^{2} + (6 - 4,9)^{2}}{10} = 0,29.

  • Câu 15: Nhận biết

    Tìm số gần đúng của a = 2851275 với độ chính xác d = 300.

    Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 2851000.

  • Câu 16: Nhận biết

    Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng \overline{x} của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là: \overline{x} = \frac{7 + 9 + 8 + 9}{4} =
8,25.

  • Câu 17: Thông hiểu

    Cho mẫu số liệu: 27;15;18;30;19;40;100;9;46;10;200. Tứ phân vị thứ ba của mẫu số liệu là:

    Sắp xếp lại mẫu số liệu theo thứ tự không giảm ta được:

    9;10;15;18;19;27;30;40;46;100;200

    Tứ phân vị thứ ba là trung vị của mẫu 30;40;46;100;200

    Do đó Q_{3} = 46.

  • Câu 18: Thông hiểu

    Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    2

    8

    7

    10

    8

    3

    2

    N = 40

    Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{2.4 + 5.8 + 6.7 +
7.10 + 8.8 + 9.3 + 10.2}{40} \approx 6,8

    Vậy số trung bình của mẫu số liệu bằng 6,8.

  • Câu 19: Thông hiểu

    Tìm phương sai của dãy số liệu: 8 15 14 18.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{8 + 15 + 14 + 18}{4} = 13.

    Ta có phương sai: s^{2} = \frac{(8 - 13)^{2} + (15 - 13)^{2} + (14 - 13)^{2}
+ (18 - 13)^{2}}{4} =
13,75.

  • Câu 20: Nhận biết

    Nguyên lí xác suất bé được phát biểu như sau: “Nếu có một biến cố có xác suất rất bé thì trong một phép thử biến cố đó sẽ …”. Cụm từ cần điền vào chỗ trống là:

    Nguyên lí xác suất bé được phát biểu như sau: “Nếu có một biến cố có xác suất rất bé thì trong một phép thử biến cố đó sẽ không xảy ra”.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo