Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?

    Ta có: n(\Omega) = C_{15}^{3} =
455

    Gọi A là biến cố “lấy được 3 quả cầu màu xanh”

    \Rightarrow n(A) = C_{6}^{3} =
20

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{20}{455} = \frac{4}{91}.

  • Câu 2: Vận dụng

    Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

    Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.

    Sắp xếp các giá trị theo thứ tự không giảm:

    3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7

    Từ mẫu số liệu ta tính được: Q_{2} =
6,7Q_{1} = 4,5, Q_{3} = 7,8.

    Suy ra \Delta_{Q} = Q_{3} - Q_{1} = 7,8 -
4,5 = 3,3.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 4,5 -
1,5.3,3 = - 0,45.

    Ta có: Q_{3} + 1,5\Delta_{Q} = 7,8 +
1,5.3,3 = 12,75.

    Ta thấy không có số liệu nào nhỏ hơn -
0,45 và lớn hơn 12,75 nên mẫu không có giá trị bất thường.

  • Câu 3: Thông hiểu

    Cho dãy số liệu 9;10;15;18;19;27;30;40;46;100;200. Tứ phân vị thứ nhất của mẫu số liệu là:

    Vì cỡ mẫu của mẫu số liệu bằng 11 là số lẻ

    => Số trung vị của mẫu số liệu trên là 27 \Rightarrow Q_{2} = 27

    Nửa dữ liệu bên trái Q_{2} là: 9;10;15;18;19

    Do đó Q_{1} = 15

    Suy ra tứ phân vị thứ nhất của mẫu số liệu là Q_{1} = 15.

  • Câu 4: Nhận biết

    Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Số học sinh

    2

    3

    9

    5

    1

    Mốt của bảng số liệu trên là:

    Quan sát bảng số liệu ta thấy:

    Số học sinh đạt kết quả 8,5 giây là lớn nhất bằng 9 học sinh.

    => Mốt của bảng số liệu là 8,5.

  • Câu 5: Nhận biết

    Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.

     Số 23 xuất hiện nhiều nhất nên nó là mốt.

  • Câu 6: Nhận biết

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 7: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}Q_{1} = 5 \\Q_{3} = 7 \\\end{matrix} ight.\  \Rightarrow \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 2 \\Q_{3} + \dfrac{1}{2}\Delta Q = 10 \\\end{matrix} ight.

    Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.

    Vậy không có giá trị nào bất thường trong mẫu số liệu.

  • Câu 8: Thông hiểu

    Số gần đúng của a
= 2,57656 có ba chữ số đáng tin viết dưới dạng chuẩn là:

    Vì số gần đúng của số a có ba chữ số đáng tin nên ba chữ số đó là 2,5,7.

    Nên cách viết dưới dạng chuẩn là 2,57.

  • Câu 9: Vận dụng

    Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Xác suất sau 3 bước quân vua trở về ô xuất phát là bao nhiêu?

    Tại mọi ô đang đứng, ông vua có 8 khả năng lựa chọn để bước sang ô bên cạnh.

    Do đó không gian mẫu n(\Omega) =
8^{3}.

    Gọi A là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá

    Chia hai trường hợp:

    + Từ ô ban đầu đi đến ô đen, đến đây có 4 cách để đi bước hai rồi về lại vị trí ban đầu.

    + Từ ô ban đầu đi đến ô trắng, đến đây có 2 cách để đi bước hai rồi về lại vị trí ban đầu.

    Do số phần tử của biến cố A là n(A) = 4.4
+ 2.4 = 24.

    Vậy xác suất P(A) = \frac{24}{8^{3}} =
\frac{3}{64}.

  • Câu 10: Thông hiểu

    Lấy ngẫu nhiên 3 quả cầu từ hộp gồm 6 quả cầu trắng và 3 quả cầu đen. Tính xác suất để lấy được ba quả cùng màu?

    Số phần tử của không gian mẫu n(\Omega) =
C_{9}^{3} = 84

    Gọi A là biến cố lấy được 3 quả cùng màu

    TH1: Lấy được 3 quả màu trắng có: C_{6}^{3} = 20 cách

    TH2: Lấy được 3 quả màu đen có: C_{3}^{3}
= 1 cách

    \Rightarrow n(A) = 20 + 1 =
21

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{21}{84} =
\frac{1}{4}

  • Câu 11: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được: \sqrt{8}= 2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

     Quy tròn \sqrt8 đến hàng phần trăm, ta được: 2,83.

  • Câu 12: Thông hiểu

    Số điểm của một vận động viên trong 5 hiệp được ghi lại như sau: 9 8 15 8 20. Tính tứ phân vị của mẫu số liệu trên.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 8 9 15 20.

    Số liệu chính giữa là 9 nên trung vị của mẫu số liệu trên là 9.

    Trung vị của mẫu số liệu 8 8 là \frac{8 +
8}{2} = 8.

    Trung vị của mẫu số liệu 15 20 là \frac{15 + 20}{2} = 17,5.

    Vậy Q_{1} = 8;\ Q_{2} = 9;\ Q_{3} =
17,5.

  • Câu 13: Thông hiểu

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:

    Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.

    Vậy số phần tử của A là 4 phần tử.

  • Câu 14: Nhận biết

    Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.

    Khoảng biến thiên điểm số là:

    Khoảng biến thiên là R = 93 - 50 =
43.

  • Câu 15: Thông hiểu

    Đội sao đỏ của trường gồm 15 học sinh trong đó có 9 bạn nam và 6 bạn nữ. Chọn ngẫu nhiên 3 bạn đi làm nhiệm vụ. Tính xác suất để chọn được 3 bạn nam?

    Số cách chọn 3 học sinh từ 15 học sinh là: C_{15}^{3}

    Số cách chọn 3 học sinh nam từ 9 học sinh nam là: C_{9}^{3}

    Vậy xác suất để chọn được 3 học sinh nam là: \frac{C_{9}^{3}}{C_{15}^{3}} =
\frac{12}{65}

  • Câu 16: Thông hiểu

    Tìm phương sai của mẫu số liệu: 8;\ 6;\ 7;\ 5;\ 9?

    Ta có: N = 5

    Số trung bình là:

    \overline{x} = \frac{8 + 6 + 7 + 5 +
9}{5} = 7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(8 - 7)^{2} + (6 - 7)^{2}
+ (7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Vậy đáp án là 2.

  • Câu 17: Nhận biết

    Cho số gần đúng của \pi3,142. Sai số tuyệt đối của số gần đúng này là:

    Sai số tuyệt đối là: |\pi - 3,142| =
0,0004

  • Câu 18: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất lấy được toàn màu đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 19: Thông hiểu

    Trên bàn có 3 quả táo và 4 quả cam. Xác định số phần tử không gian mẫu của phép thử lấy 2 quả ở trên bàn sau đó bỏ ra ngoài rồi lấy tiếp 1 quả nữa.

    Lấy 2 quả trong 7 quả ở trên bàn và không tính thứ tự nên số cách là: C_7^2 = 21 (cách).

    Sau khi bỏ 2 quả ra ngoài còn lại 5 quả. Lấy 1 quả trong 5 quả trên bàn có 5 cách.

    Vậy số phần tử không gian mẫu là: 21. 5 = 105

  • Câu 20: Vận dụng

    Bảng dưới đây thống kê điểm Văn của lớp 10H.

    Biết n\mathbb{\in N}. Tìm mốt của bảng số liệu.

    Vì tổng số học sinh bằng 40 nên ta có: 5n
+ 15 = 40 \Leftrightarrow n = 5.

    Thống kê lại bảng:

    Vậy mốt là giá trị 6 (xuất hiện 14 lần, nhiều nhất).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo