Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm
. Khi đó khoảng biến thiên
của mẫu số liệu bằng:
Khoảng biến thiên của mẫu số liệu bằng:
Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm
. Khi đó khoảng biến thiên
của mẫu số liệu bằng:
Khoảng biến thiên của mẫu số liệu bằng:
Cho 40 tấm thẻ được đánh số theo thứ tự từ 1 đến 40. Chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để ba tấm thẻ được chọn có tổng các số ghi trên ba tấm thẻ đó là một số chẵn?
Số phần tử không gian mẫu là:
Gọi A là biến cố chọn được 3 tấm thẻ có các số ghi trên ba tấm thẻ đó là một số chẵn.
TH1: 2 số ghi số lẻ, 1 số ghi số chẵn ta có:
TH2: 3 số ghi số chẵn ta có:
Vậy xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn là:
Gọi
là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp
. Xác suất để hai số được ó chữ số hàng đơn vị giống nhau là bao nhiêu?
Số phần tử của tập là
.
Không gian mẫu là chọn ngẫu nhiên số từ tập
.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Số được ó chữ số hàng đơn vị giống nhau
. Ta mô tả không gian của biến cố
nhưu sau
● Có cách hữ số hàng đơn vị (chọn từ các chữ số
).
● Có cách chọn hai chữ số hàng chục (chọn từ các chữ số
).
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Khẳng định nào sau đây là đúng?
Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.
Một hộp chứa 10 tấm thẻ được đánh số lần lượt từ 1 đến 10. Rút ngẫu nhiên một tấm thẻ trong hộp. Tính xác suất của biến cố: “Tấm thẻ được rút ra ghi số chẵn”?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Tấm thẻ được rút ra ghi số chẵn”
Vậy xác suất của biến cố A là:
Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?
Mô tả không gian mẫu ta có: .
Cho mẫu số liệu:
. Giá trị phương sai và độ lệch chuẩn của mẫu số liệu lần lượt là:
Trung bình cộng của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu là:
.
Kết quả điều tra về điện năng tiêu thụ (đơn vị: kw/h) của một số hộ dân trong khu vực được thống kê như sau:
. Tính trung vị của dãy số liệu đã cho?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Vì cỡ mẫu (số lẻ) nên số trung vị của dãy số liệu trên là số liệu thứ 6.
Suy ra .
Cho số đúng
và số gần đúng của
của
. Xác định sai số tuyệt đối
.
Ta có:
Suy ra sai số tuyệt đối là:
Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây:
= 28658 ± 100.
Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết ≈ 29000).
Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:
Ta có:
Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”
Vậy
Điểm kiểm tra môn Lịch Sử của một học sinh qua 8 lần thi được ghi lại như sau:
![]()
Biết số trung vị của mẫu số liệu trên bằng
. Kết quả nào dưới đây đúng?
Vì là số chẵn nên trung vị của mẫu số liệu là trung bình cộng của số liện ở vị trí thứ 4 và thứ 5.
Suy ra
Vậy .
Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để bốn bạn được chọn có ba nam và một nữ bằng:
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố: “Bốn bạn được chọn có ba nam và một nữ” bằng:
Vậy xác suất của biến cố “Bốn bạn được chọn có ba nam và một nữ” bằng:
Kết quả kiểm tra Toán của một số học sinh như sau:
. Khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 10
Giá trị nhỏ nhất là 7
Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3
Tìm chỉ số IQ trung bình của nhóm học sinh. Biết kết quả đo IQ là
.
Chỉ số IQ trung bình cần tìm là:
Vậy chỉ số IQ trung bình của nhóm học sinh là 72,6.
Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Cộng |
Số học sinh | 2 | 3 | 7 | 18 | 3 | 2 | 4 | 1 | 40 |
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
.
Cho dãy số liệu:
. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?
Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là
Tứ phân vị thứ nhất là trung vị của dãy số liệu: . Khi đó
.
Tứ phân vị thứ ba là trung vị của dãy số liệu: . Khi đó
Vậy khoảng tứ phân vị của mẫu số liệu là
Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:
Số sách | 1 | 2 | 3 | 4 | 5 | 6 | |
Số học sinh đọc | 10 | m | 8 | 6 | n | 3 | n = 40 |
Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.
Số trung bình là:
Phương sai là:
Theo bài ra ta có:
Kiểm tra được: m = 8 và n = 5 thỏa mãn.
Gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất liên tiếp hai lần. Tính xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm.
Không gian mẫu
Số phần tử của không gian mẫu
Gọi A là biến cố: “Lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm”.
Xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm là: .