Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

     Khoảng biến thiên R = 5,1 - 0,4 = 4,7.

  • Câu 2: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Không tính toán, hãy chọn kết luận đúng.

    Quan sát hai mẫu số liệu, ta thấy mẫu A có độ phân tán lớn hơn mẫu B. Suy ra mẫu A có phương sai lớn hơn. (Các số liệu ở mẫu B tập trung ở trung tâm)

  • Câu 4: Thông hiểu

    Thời gian chạy 50 m của 20 học sinh được ghi lại trong bảng sau đây:

    Thời gian

    (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Tần số

    2

    3

    9

    5

    1

    Hãy tìm khoảng biến thiên của mẫu số liệu đã cho.

     Khoảng biến thiên: R=8,8-8,3=0,5.

  • Câu 5: Thông hiểu

    Lớp 12 có 9 học sinh giỏi, lớp 11 có 10 học sinh giỏi, lớp 10 có 3 học sinh giỏi. Chọn ngẫu nhiên hai trong số học sinh đó. Tính xác suất để cả hai học sinh đó cùng một lớp.

    Số phần tử của không gian mẫu là |\Omega|
= C_{22}^{2} = 231.

    Gọi A là biến cố cả hai học sinh được chọn từ cùng một lớp.

    Chọn 2 học sinh của lớp 12, có C_{9}^{2}
= 36(cách).

    Chọn 2 học sinh của lớp 11, có C_{10}^{2}
= 45(cách).

    Chọn 2 học sinh của lớp 10, có C_{3}^{2}
= 3(cách).

    Suy ra \left| \Omega_{A} ight| = 36 +
45 + 3 = 84.

    Xác suất cần tìm là P(A) = \frac{84}{231}
= \frac{4}{11}.

  • Câu 6: Thông hiểu

    Người ta thống kê cân nặng của 10 học sinh theo thứ tự tăng dần. Số trung vị của mẫu số liệu trên là:

    Ta có: n=10 là một số chẵn

    => Số trung vị là: {M_e} = \frac{{{x_5} + {x_6}}}{2}

    Hay số trung vị của mẫu số liệu trên bằng trung bình cộng của khối lượng của học sinh thứ 5 và thứ 6.

  • Câu 7: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 8: Nhận biết

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tìm số phần tử của biến cố A.

    Liệt kê ta có: A = \left\{
(1;2;3);(1;2;4);(1;2;5);(1;3;4) ight\}. (4 phần tử)

  • Câu 9: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?

    Ta có: n(\Omega) = C_{15}^{3} =
455

    Gọi A là biến cố “lấy được 3 quả cầu màu xanh”

    \Rightarrow n(A) = C_{6}^{3} =
20

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{20}{455} = \frac{4}{91}.

  • Câu 10: Thông hiểu

    Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.

    Trung vị của mẫu số liệu trên là: \frac{35 + 43}{2} = 39.

    Trung vị của dãy 8 17 21 35 là: \frac{17
+ 21}{2} = 19.

    Trung vị của dãy 43 59 72 119 là: \frac{59 + 72}{2} = 65,5.

    Vậy Q_{1} = 19;\ Q_{2} = 39;\ Q_{3} =
65,5.

  • Câu 11: Vận dụng

    Hai hộp chứa các thẻ được đánh số. Hộp thứ nhất chứa 10 thẻ được đánh số từ 1 đến 10; hộp thứ hai chứa 9 thẻ được đánh số từ 1 đến 9. Chọn ngẫu nhiên mỗi hộp một thẻ và nhân các số trên hai thẻ lại với nhau. Tính xác suất để tích thu được là một số chẵn?

    Hộp thứ nhất chứa 10 thẻ được đánh số thứ tự từ 1 đến 10 gồm 5 thẻ mang số lẻ và 5 thẻ mang số chẵn.

    Hộp thứ hai chứa 9 thẻ đánh số thứ tự từ 1 đến 9 gồm 5 thẻ số lẻ và 4 thẻ số chẵn.

    Chọn ngẫu nhiên mỗi hộp 1 thẻ thì số cách chọn là:

    n(\Omega) = 10.9 = 90

    Gọi biến cố A: “Tích thu được là số chẵn” khi đó ta xét 3 trường hợp sau:

    TH1: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.

    TH2: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ lẻ có: 5.5 = 25 cách.

    TH3: Hộp thứ nhất chọn được thẻ lẻ và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.

    Theo quy tắc cộng ta có:

    n(A) = 20 + 25 + 20 = 65

    Vậy xác suất cần tìm là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{65}{90} = \frac{13}{18}

  • Câu 12: Nhận biết

    Viết số quy tròn của số a = 80,3654 đến hàng phần trăm.

    Số quy tròn của số a = 80,3654 đến hàng phần trăm là 80,37.

  • Câu 13: Thông hiểu

    Tại khoa truyền nhiễm của bệnh viện A có 12 bác sĩ và tỉ lệ bác sĩ nam và bác sĩ nữ bằng nhau. Chọn ngẫu nhiên 6 bác sĩ trong khoa để lập đoàn kiểm tra truyền nhiễm trong khu vực B. Tính xác suất để 6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{6} = 924

    Số kết quả thuận lợi cho biến cố A: “6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ” là: n(A) =
C_{6}^{3}.C_{6}^{3} = 400

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{400}{924} =
\frac{100}{231}

  • Câu 14: Thông hiểu

    Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:

    Chọn ba viên bi ngẫu nhiên trong hộp => n\left( \Omega  ight) = C_8^3

    Biến cố A: “Lấy ra được 3 viên bi màu đỏ” => n\left( A ight) = C_5^3

    => Xác suất của biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{C_5^3}}{{C_8^3}} = \frac{5}{{28}}

  • Câu 15: Nhận biết

    Kết quả kiểm tra cân nặng của 10 học sinh lớp 10C được liệt kê như sau: 45;46;42;50;38;42;44;42;40;60. Khoảng biến thiên của mẫu số liệu này bằng:

    Quan sát dãy số liệu ta có:

    Giá trị lớn nhất bằng 60

    Giá trị nhỏ nhất bằng 38

    Suy ra khoảng biến thiên của mẫu số liệu là 60 – 38 = 22.

  • Câu 16: Nhận biết

    Cho các mệnh đề:

    i) Một túi cam nặng khoảng 10,5kg.

    ii) Độ dài đường chéo hình vuông cạnh bằng 1 là \sqrt{2}.

    iii) Bán kính Trái Đất khoảng 6371km.

    Trong các mệnh đề trên, có bao nhiêu số là số gần đúng?

    Có hai số là số gần đúng thuộc các mệnh đề:

    i) Một túi cam nặng khoảng 10,5kg.

    iii) Bán kính Trái Đất khoảng 6371km.

  • Câu 17: Thông hiểu

    Cho \overline{a}
= \frac{16}{7} = 2,285714... Hãy xác định số gần đúng a của \overline{a} với độ chính xác d = 0,03.

    Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là a = 2,29.

  • Câu 18: Thông hiểu

    Tìm phương sai trong mẫu số liệu: 4;5;7;9;10?

    Số trung bình bằng: \overline{x} =
\frac{4 + 5 + 7 + 9 + 10}{5} = 7

    Phương sai bằng:

    s^{2} = \frac{1}{5}\lbrack(4 - 7)^{2} +
(5 - 7)^{2}

    + (7 - 7)^{2} + (9 - 7)^{2} + (10 -
7)^{2}brack = 5,2

    Vậy phương sai cần tìm là 5,2.

  • Câu 19: Vận dụng

    Cho ba nhóm học sinh:

    Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.

    Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.

    Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.

    Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?

    Tổng khối lượng của mỗi nhóm lần lượt là: \left\{ \begin{matrix}
N_{1} = 6.45kg \\
N_{2} = 11.50kg \\
N_{3} = 8.42kg \\
\end{matrix} ight.

    Khối lượng trung bình của cả ba nhóm là:

    \overline{x} = \frac{N_{1} + N_{2} +
N_{3}}{6 + 8 + 11}

    \Rightarrow \overline{x} = \frac{6.45 +
11.50 + 8.42}{25} = 46,24kg

    Vậy khối lượng trung bình của cả ba nhóm học sinh là \overline{x} = 46,24kg.

  • Câu 20: Nhận biết

    Gieo xúc xắc hai lần. Tính xác suất để tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.

    Gieo một con xúc xắc 2 lần. Suy ra n(\Omega)=6.6=36.

    Các kết quả thỏa mãn yêu cầu đề bài là: (1; 1), (1; 2), (2; 1),(1; 4), (4; 1), (2;3), (3;2). 7 kết quả.

    Vậy xác suất P=\frac7{36}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo