Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Cho dãy số liệu thống kê
. Tìm số nguyên dương
, biết số trung bình cộng của dãy số liệu thống kê đó bằng
.
Điểm trung bình cộng của dãy số trên là
Vậy thỏa mãn yêu cầu bài toán.
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

Chọn kết luận đúng.
Giá trị trung bình của hai mẫu:
Vậy hai mẫu có giá trị trung bình bằng nhau.
Các bạn sinh viên đi đo chỉ số EQ thu được kết quả: 60 72 63 83 68 74 90 86 74 80.
Ta nên chọn giá trị đại diện cho mẫu số liệu trên thế nào?
Sắp xếp lại mẫu số liệu theo thứ tự không giảm: 60 63 68 72 74 74 80 83 86 90.
Các giá trị của mẫu số liệu có độ lớn không chênh lệch quá nhiều. Do đó ta nên chọn số trung bình cộng làm giá trị đại diện.
Ta có:
.
Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố lấy được 3 quả màu xanh
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A là:
Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi
là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp” và
là biến cố “Kết quả ba lần gieo là như nhau”. Hãy liệt kê các kết quả của biến cố ![]()
,
. Suy ra
.
Một bình chứa
viên bi màu, trong đó có
bi xanh,
bi đỏ,
bi trắng. Lấy ngẫu nhiên
viên bi từ bình đó. Tính xác suất để lấy được
viên bi khác màu.
Lấy viên bi bất kì trong
viên bi trong bình thì có
(cách).
Lấy viên bi cùng màu thì có
(cách) nên có
(cách) lấy được
viên bi khác màu.
Xác suất để lấy được viên bi khác màu trong tổng số
viên bi là
.
Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Cộng |
Số học sinh | 2 | 3 | 7 | 18 | 3 | 2 | 4 | 1 | 40 |
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
.
Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:
Chọn ngẫu nhiên ba viên bi =>
Gọi A là biến cố lấy được ba viên bi có cả ba màu. Khi đó:
=> Xác suất để 3 viên bi có cả ba màu là:
Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác nên ta làm tròn số
đến hàng nghìn, ta được kết quả là
.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là:
Cho mẫu số liệu:
. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?
Ta có
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Gọi
là tập hợp các số tự nhiên gồm
chữ số khác nhau. Chọn ngẫu nhiên một số từ
. Hãy tính xác suất để chọn được một số gồm
chữ số lẻ và chữ số
luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số
là số lẻ).
Số phần tử của tập là
.
Không gian mẫu là chọn ngẫu nhiên số từ tập
.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Số được chọn gồm
chữ số lẻ và chữ số
luôn đứng giữa hai chữ số lẻ
. Do số
luôn đứng giữa
số lẻ nên số
không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng
+ Chọn trong
vị trí để xếp số
, có
cách.
+ Chọn trong
số lẻ và xếp vào
vị trí cạnh số
vừa xếp, có
cách.
+ Chọn số lẻ trong
số lẻ còn lại và chọn
số chẵn từ
sau đó xếp
số này vào
vị trí trống còn lại có
cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Khoảng biến thiên của mẫu số liệu:
là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 16
Giá trị nhỏ nhất là 2
Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.
Cho bảng tần số như sau:
Giá trị | x1 | x2 | x3 | x4 | x5 | x6 |
Tần số | 15 | 9n - 1 | 12 |
| 10 | 17 |
Tìm n để
là hai mốt của bảng tần số trên.
Ta có:
Vậy n = 8.
Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?
Ta có:
Gọi A là biến cố “lấy được 3 quả cầu màu xanh”
Vậy .
Một hộp chứa các viên bi kích thước khác nhau, trong đó có 5 viên bi màu đỏ và 6 viên bi màu vàng. Lấy ngẫu nhiên đồng thời 4 viên bi từ hộp. Tính xác suất để trong 4 viên bi lấy ra có đúng 1 viên bi màu vàng.
Số phần tử của không gian mẫu là:
Số cách để lấy 4 viên bi trong đó có đúng một viên bi màu vàng là:
Xác suất của biến cố A là:
Kết quả kiểm tra Toán của một số học sinh như sau:
. Khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 10
Giá trị nhỏ nhất là 7
Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3
Bảng dưới đây thống kê điểm của An và Bình:

Dựa vào khoảng biến thiên thì bạn nào học đều hơn?
Khoảng biến thiên điểm của bạn An là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên Bình học đều hơn.