Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:
Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là
Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).
Vậy .
Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:
Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là
Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).
Vậy .
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.
Bảng dưới đây thống kê điểm Văn của lớp 11C.

Biết
. Tìm trung vị của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.
Suy ra trung vị .
Cho số đúng
và số gần đúng của
của
. Xác định sai số tuyệt đối
.
Ta có:
Suy ra sai số tuyệt đối là:
Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:
Chọn ngẫu nhiên ba viên bi =>
Gọi A là biến cố lấy được ba viên bi có cả ba màu. Khi đó:
=> Xác suất để 3 viên bi có cả ba màu là:
Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?
Ta có:
Gọi A là biến cố “lấy được 3 quả cầu màu xanh”
Vậy .
Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu bằng 5.
Một lớp có 43 học sinh trong đó có 23 học sinh nữ và 20 học sinh nam. Chọn ngẫu nhiên 5 học sinh. Xác suất để 5 học sinh được chọn có cả nam và nữ gần nhất với kết quả nào dưới đây?
Số phần tử của không gian mẫu là:
Số cách chọn 5 học sinh chỉ có nam hoặc chỉ có nữ là:
Số cách chọn 5 học sinh có cả nam và nữ là:
Xác suất của biến cố 5 học sinh được chọn có cả nam và nữ là:
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.
Cho số gần đúng của
là
. Sai số tuyệt đối của số gần đúng này là:
Sai số tuyệt đối là:
Chọn ngẫu nhiên hai số phân biệt từ 15 số nguyên dương đầu tiên. Tính xác suất để tích hai số được chọn là một số chẵn?
Trong 15 số nguyên dương đầu tiên có 7 số chẵn và 8 só lẻ.
Ta có:
Gọi A là biến cố “Tích hai số được chọn là một số chẵn”
TH1: 1 số lẻ và 1 số chẵn ta có: cách chọn
TH2: 2 số chẵn ta có: cách chọn
Vậy
Điểm kiểm tra môn Văn của 2 tổ học sinh được thống kê:

Dựa vào khoảng biến thiên thì tổ nào học đều hơn?
Khoảng biến thiên điểm của tổ 1 là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên tổ 1 học đều hơn.
Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:
Điểm | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
Tần số | 1 | 1 | 3 | 5 | 8 | 13 | 19 | 24 | 14 | 10 | 2 |
Giá trị của phương sai gần bằng:
Kết quả trung bình là:
Giá trị của phương sai là:
Bạn Bình ghi lại bảng thống kê số sách mà mà mỗi bạn học sinh lớp 10A đã đọc trong năm 2023. Hỏi trung bình mỗi bạn trong lớp đọc bao nhiêu cuốn sách?

Số học sinh lớp 10A là: (bạn).
Trung bình mỗi bạn đọc: (cuốn sách).
Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:
|
Thời gian (giây) |
8,3 |
8,4 |
8,5 |
8,7 |
8,8 |
|
Số học sinh |
2 |
3 |
9 |
5 |
1 |
Số trung bình cộng thời gian chạy của học sinh là:
Số trung bình cộng thời gian chạy của học sinh là:
Vậy thời gian chạy trung bình của 20 học sinh là 8,53.
Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố lấy được 3 quả màu xanh
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A là:
Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên người trong
người.
Suy ra số phần tử không gian mẫu là .
Gọi là biến cố
người được chọn không có cặp vợ chồng nào
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là
người được chọn luôn có
cặp vợ chồng.
+ Chọn cặp vợ chồng trong
cặp vợ chồng, có
cách.
+ Chọn thêm người trong 18 người, có
cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Cho
. Số gần đúng của
với độ chính xác
là:
Vì độ chính xác nên số gần đúng được quy tròn đến hàng phần chục.
Vậy đáp án đúng là .
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3 là:
Số phàn tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3” là:
Vậy xác suất của biến cố A cần tìm là: