Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 2: Nhận biết

    Viết số quy tròn của \pi đến hàng phần nghìn?

    Ta có số quy tròn của \pi đến hàng phần nghìn là 3,142.

  • Câu 3: Thông hiểu

    Cho dãy số liệu thống kê 11,13,x + 10,x^{2} - 1,11,10. Tìm số nguyên dương x, biết số trung bình cộng của dãy số liệu thống kê đó bằng 12,5.

    Điểm trung bình cộng của dãy số trên là

    \frac{11 + 13 + (x + 10) + \left( x^{2}
- 1 ight) + 12 + 10}{6} = 12,5

    \Leftrightarrow x^{2} + x - 20 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 5(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn yêu cầu bài toán.

  • Câu 4: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Chọn kết luận đúng.

    Giá trị trung bình của hai mẫu:

    \overline{x_{A}} = \frac{2.3 + 2.4 + 2.5 + 3.6 + 2.7 + 2.8 + 2.9}{2 +2 + 2 + 3 + 2 + 2 + 2} =6

    \overline{x_{A}} = \frac{1.3 + 4.5 + 5.6 + 4.7 + 1.9}{1 + 4 + 5 + 4 +1} = 6

    Vậy hai mẫu có giá trị trung bình bằng nhau.

  • Câu 5: Vận dụng

    Các bạn sinh viên đi đo chỉ số EQ thu được kết quả: 60 72 63 83 68 74 90 86 74 80.

    Ta nên chọn giá trị đại diện cho mẫu số liệu trên thế nào?

    Sắp xếp lại mẫu số liệu theo thứ tự không giảm: 60 63 68 72 74 74 80 83 86 90.

    Các giá trị của mẫu số liệu có độ lớn không chênh lệch quá nhiều. Do đó ta nên chọn số trung bình cộng làm giá trị đại diện.

    Ta có: \overline{x} = \frac{60 + 63 + 68 + 72 + 74 + 74 + 80 + 83 + 86 +
90}{10} = 75.

  • Câu 6: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{15}^{3} = 455

    Gọi A là biến cố lấy được 3 quả màu xanh

    Số phần tử của biến cố A là: n(A) =
C_{5}^{3} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{455} = \frac{2}{91}

  • Câu 7: Nhận biết

    Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi A là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp” và B là biến cố “Kết quả ba lần gieo là như nhau”. Hãy liệt kê các kết quả của biến cố A
\cup B.

    A = \left\{ SSS,\ SSN,\ NSS
ight\}, B = \left\{ SSS,\ NNN
ight\}. Suy ra A \cup B = \left\{
SSS,\ SSN,\ NSS,\ NNN ight\}.

  • Câu 8: Thông hiểu

    Một bình chứa 6 viên bi màu, trong đó có 2 bi xanh, 2 bi đỏ, 2 bi trắng. Lấy ngẫu nhiên 2 viên bi từ bình đó. Tính xác suất để lấy được 2 viên bi khác màu.

    Lấy 2 viên bi bất kì trong 6 viên bi trong bình thì có C_{6}^{2} = 15(cách).

    Lấy 2 viên bi cùng màu thì có C_{2}^{2} + C_{2}^{2} + C_{2}^{2} =
3 (cách) nên có 15 - 3 =
12(cách) lấy được 2 viên bi khác màu.

    Xác suất để lấy được 2viên bi khác màu trong tổng số 6 viên bi là P = \frac{12}{15} =
\frac{4}{5}.

  • Câu 9: Nhận biết

    Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Cộng

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    40

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{3.2 + 4.3 + 5.7 + 6.18 + 7.3 + 8.2 + 9.4 + 10.1}}{{40}} = 6,1.

  • Câu 10: Thông hiểu

    Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:

    Chọn ngẫu nhiên ba viên bi => n\left( \Omega  ight) = C_{14}^3

    Gọi A là biến cố lấy được ba viên bi có cả ba màu. Khi đó: n\left( A ight) = C_3^1.C_5^1.C_6^1 = 90

    => Xác suất để 3 viên bi có cả ba màu là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{90}}{{C_{14}^3}} = \frac{{45}}{{182}}

  • Câu 11: Thông hiểu

    Cho số gần đúng a = 23748123 với độ chính xác d = 101. Số quy tròn của số a là:

    Độ chính xác d = 101 nên ta làm tròn số a = 23748123 đến hàng nghìn, ta được kết quả là a =
23748000.

  • Câu 12: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{7} =
2,645751311. Giá trị gần đúng của \sqrt{7} chính xác đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,65

  • Câu 13: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}Q_{1} = 5 \\Q_{3} = 7 \\\end{matrix} ight.\  \Rightarrow \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 2 \\Q_{3} + \dfrac{1}{2}\Delta Q = 10 \\\end{matrix} ight.

    Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.

    Vậy không có giá trị nào bất thường trong mẫu số liệu.

  • Câu 14: Vận dụng

    Gọi S là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ S. Hãy tính xác suất để chọn được một số gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số 0 là số lẻ).

    Số phần tử của tập S9.A_{9}^{8}.

    Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = 9.A_{9}^{8}.

    Gọi X là biến cố ''Số được chọn gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ''. Do số 0 luôn đứng giữa 2 số lẻ nên số 0 không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng

    + Chọn 1 trong 7 vị trí để xếp số 0, có C_{7}^{1} cách.

    + Chọn 2 trong 5 số lẻ và xếp vào 2 vị trí cạnh số 0 vừa xếp, có A_{5}^{2} cách.

    + Chọn 2 số lẻ trong 3 số lẻ còn lại và chọn 4 số chẵn từ \left\{ 2;\ 4;\ 6;\ 8 ight\} sau đó xếp 6 số này vào 6 vị trí trống còn lại có C_{3}^{2}.C_{4}^{4}.6! cách.

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| =
C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} =
\frac{C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!}{9.A_{9}^{8}} =
\frac{5}{54}.

  • Câu 15: Nhận biết

    Khoảng biến thiên của mẫu số liệu: 2;5;16;8;7;9;10;12;14;11;6 là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 16

    Giá trị nhỏ nhất là 2

    Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.

  • Câu 16: Thông hiểu

    Cho bảng tần số như sau:

    Giá trị

    x1

    x2

    x3

    x4

    x5

    x6

    Tần số

    15

    9n - 1

    12

    n^{2} + 7

    10

    17

    Tìm n để M_{0}^{(1)}=x_2;M_{0}^{(2)}=x_4 là hai mốt của bảng tần số trên.

    Ta có: 

    M_{0}^{(1)}=x_2;M_{0}^{(2)}=x_4

    \begin{matrix}   \Rightarrow 9n - 1 = {n^2} + 7,\left( {n > 2} ight) \hfill \\   \Leftrightarrow {n^2} - 9n + 8 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 1\left( {ktm} ight)} \\   {n = 8\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy n = 8.

     

  • Câu 17: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?

    Ta có: n(\Omega) = C_{15}^{3} =
455

    Gọi A là biến cố “lấy được 3 quả cầu màu xanh”

    \Rightarrow n(A) = C_{6}^{3} =
20

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{20}{455} = \frac{4}{91}.

  • Câu 18: Thông hiểu

    Một hộp chứa các viên bi kích thước khác nhau, trong đó có 5 viên bi màu đỏ và 6 viên bi màu vàng. Lấy ngẫu nhiên đồng thời 4 viên bi từ hộp. Tính xác suất để trong 4 viên bi lấy ra có đúng 1 viên bi màu vàng.

    Số phần tử của không gian mẫu là: n(\Omega) = C_{15}^{4}

    Số cách để lấy 4 viên bi trong đó có đúng một viên bi màu vàng là: n(A) = C_{6}^{1}.C_{9}^{3}

    Xác suất của biến cố A là: P(A) =
\frac{C_{6}^{1}.C_{9}^{3}}{C_{15}^{4}} = \frac{24}{65}

  • Câu 19: Nhận biết

    Kết quả kiểm tra Toán của một số học sinh như sau: 9;\ 9;\ 7;\ 8;\ 9;\ 7;\ 10;\ 8;\
8. Khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 10

    Giá trị nhỏ nhất là 7

    Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3

  • Câu 20: Thông hiểu

    Bảng dưới đây thống kê điểm của An và Bình:

    Dựa vào khoảng biến thiên thì bạn nào học đều hơn?

    Khoảng biến thiên điểm của bạn An là R_{1} = 9,5 - 6,5 = 3.

    Khoảng biến thiên điểm của bạn Bình là R_{2} = 8,3 - 7,6 = 0,7.

    R_{2} < R_{1} nên Bình học đều hơn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo