Tìm chỉ số IQ trung bình của nhóm học sinh. Biết kết quả đo IQ là
.
Chỉ số IQ trung bình cần tìm là:
Vậy chỉ số IQ trung bình của nhóm học sinh là 72,6.
Tìm chỉ số IQ trung bình của nhóm học sinh. Biết kết quả đo IQ là
.
Chỉ số IQ trung bình cần tìm là:
Vậy chỉ số IQ trung bình của nhóm học sinh là 72,6.
Cho mẫu số liệu:
. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?
Ta có
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Biểu đồ dưới đây thể hiện tỉ lệ lạm phát cơ bản bình quân năm trong giai đoạn 2018 – 2022:

(Nguồn: Niêm giám thống kê 2022)
Trong giai đoạn từ 2018 – 2021, năm có tỉ lệ lạm phát cơ bản bình quân năm cao nhất là?
Trong giai đoạn từ 2018 – 2021, năm 2020 có tỉ lệ lạm phát cơ bản bình quân năm cao nhất.
Cho số
. Số quy tròn của số gần đúng
là:
Do độ chính xác nên làm quy tròn số gần đúng
đến hàng nghìn ta được:
Từ một hộp chứa
quả cầu màu đỏ và
quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất để 3 quả cầu lấy được đều màu xanh.
Số phần tử của không gian mẫu .
Gọi là biến cố "
quả cầu lấy được đều là màu xanh". Suy ra
.
Vậy xác suất cần tìm là .
Khoảng biến thiên tứ phân vị
được xác định bởi:
Khoảng biến thiên tứ phân vị được xác định bởi
.
Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:
Số phần tử của không gian mẫu là 10 626.
Lấy 4 viên bi trong 16 viên bi đỏ, trắng có cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là
=> Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Vậy có 8 806 kết quả thuận lợi cho biến cố B.
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi. Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
6 viên bi được lấy ra có đủ cả ba màu
. Để tìm số phần tử của biến cố
ta đi tìm số phần tử của biến cố
tức là 6 viên bi lấy ra không có đủ ba màu như sau
TH1: Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).
Do đó trường hợp này có cách.
TH2: Chọn 6 viên bi có đúng hai màu xanh và đỏ, có cách.
Chọn 6 viên bi có đúng hai màu đỏ và vàng, có cách.
Chọn 6 viên bi có đúng hai màu xanh và vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
2 |
4 |
6 |
15 |
9 |
3 |
1 |
Độ lệch chuẩn của mẫu số liệu trên là:
Ta có:
Điểm trung bình của học sinh lớp 10A là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu đã cho là:
Vậy độ lệch chuẩn cần tìm là: .
Một nhóm có 6 nam và 4 nữ. Cần chọn 3 bạn để đi trực nhật. Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ.
Chọn 3 bạn bất kì từ 10 bạn, suy ra .
Gọi A là biến cố "3 bạn đi trực nhật luôn có mặt bạn nữ".
Trường hợp 1: 3 bạn nữ
Có: (cách)
Trường hợp 2: 2 bạn nữ + 1 bạn nam
Có: (cách)
Trường hợp 3: 1 bạn nữ + 2 bạn nam
Có: (cách)
Vậy .
Xác suất .
Cho dãy số liệu
. Tứ phân vị thứ nhất của mẫu số liệu là:
Vì cỡ mẫu của mẫu số liệu bằng 11 là số lẻ
=> Số trung vị của mẫu số liệu trên là
Nửa dữ liệu bên trái là:
Do đó
Suy ra tứ phân vị thứ nhất của mẫu số liệu là .
Bảng dưới đây thống kê điểm Văn của lớp 11C.

Biết
. Tìm trung vị của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.
Suy ra trung vị .
Cho 40 tấm thẻ được đánh số theo thứ tự từ 1 đến 40. Chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để ba tấm thẻ được chọn có tổng các số ghi trên ba tấm thẻ đó là một số chẵn?
Số phần tử không gian mẫu là:
Gọi A là biến cố chọn được 3 tấm thẻ có các số ghi trên ba tấm thẻ đó là một số chẵn.
TH1: 2 số ghi số lẻ, 1 số ghi số chẵn ta có:
TH2: 3 số ghi số chẵn ta có:
Vậy xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn là:
Cho A là một biến cố liên quan đến phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề đúng là: .
Xác suất của biến cố
kí hiệu là
. Biến cố
là biến cố đối của A, có xác suất là ![]()
Chọn phát biểu sai trong các phát biểu sau:
Phát biểu sai là: "Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1."
Một hộp chứa 10 tấm thẻ được đánh số thứ tự từ 1 đến 10. Chọn ngẫu nhiên hai tấm thẻ. Tính xác suất để chọn được hai tấm thẻ đều ghi số chẵn?
Từ 1 đến 10 có 5 số chẵn.
Số cách chọn ngẫu nhiên hai tấm thẻ trong hộp là:
Số cách chọn được hai tấm thẻ đều ghi số chẵn là:
Vậy xác suất của biến cố A là:
Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.
Khoảng biến thiên điểm số là:
Khoảng biến thiên là .
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Cộng hai với tất cả các số liệu: .
Khoảng biến thiên:
.
Suy ra .
Khi sử dụng máy tính bỏ túi ta được
. Giá trị gần đúng của
quy tròn đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 3 ở hàng phần trăm là số 6 > 5 nên theo nguyên lý làm tròn ra được kết quả là: .
Tìm số gần đúng của a = 3456782 với độ chính xác d = 100.
Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 3457000.