Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Bảng dưới đây ghi lại thời gian chạy trong 1 cuộc thi của các bạn lớp 10B. (đơn vị: giây)

    Hãy tính thời gian chạy trung bình của các bạn. (kết quả làm tròn đến hàng phần nghìn)

    Lớp 10B có: 5 + 7 + 10 + 8 + 6 =
36 (bạn).

    Thời gian chạy trung bình của các bạn là:

    \overline{x} =\frac{5.12 + 7.13 + 10.14 + 8.15 +6.16}{36}\approx 14,083 (giây).

  • Câu 2: Nhận biết

    Gieo hai đồng tiền một lần. Kí hiệu S, N lần lượt để chỉ đồng tiền lật sấp, lật ngửa. Mô tả không gian mẫu nào dưới đây là đúng?

    Gieo hai đồng tiền một lần ta được không gian mẫu là: Ω = \left \{ {SN, NS, SS, NN}  ight \}

  • Câu 3: Thông hiểu

    Phường A thống kê số con của mỗi hộ gia đình trong khu dân cư như sau:

    Số con

    0

    1

    2

    3

    4

    Số hộ gia đình

    2

    7

    5

    1

    1

    Phương sai của mẫu số liệu bằng:

    Số con trung bình là:

    \overline{x} = \frac{0.2 + 1.7 + 2.5 +
3.1 + 4.1}{16} = 1,5

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{16}\lbrack 2.\left( 0 -
\frac{3}{2} ight)^{2} + 7.\left( 1 - \frac{3}{2} ight)^{2} +
5.\left( 2 - \frac{3}{2} ight)^{2}+ 1.\left( 3 - \frac{3}{2} ight)^{2} +
1.\left( 4 - \frac{3}{2} ight)^{2}brack = 1

    Vậy phương sai cần tìm là s^{2} =
1.

  • Câu 4: Nhận biết

    Cho số gần đúng a = 32567 với độ chính xác d = 300. Số quy tròn của số a là:

    Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là 33000.

  • Câu 5: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?

    Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là \frac{1}{2}.

    Theo quy tắc nhân xác suất: P(A) =1.\frac{1}{2}.\frac{1}{2} = \frac{1}{4}.

  • Câu 6: Nhận biết

    Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:

    21

    17

    22

    18

    20

    17

    15

    13

    15

    20

    15

    12

    18

    17

    25

    17

    21

    15

    12

    18

    16

    23

    14

    18

    19

    13

    16

    19

    18

    17

    Khoảng biến thiên R của mẫu số liệu trên là:

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.

    Khoảng biến thiên của mẫu số liệu trên là: R=25-12=13

  • Câu 7: Thông hiểu

    Gieo hai con xúc xắc. Xác suất để tổng số chấm trên hai mặt xúc xắc chia hết cho 3 là.

     Gieo 2 con xúc sắc, số kết quả của không gian mẫu là: n(\Omega)=36.

    Các kết quả thỏa mãn yêu cầu đề bài là: (1; 2); (1; 5); (2; 1); (2; 4); (3; 3); (3; 6); (4; 2); (4; 5); (5; 1); (5; 4); (6; 3); (6; 6). Có 12 phần tử.

    Xác suất là: P=\frac{12}{36}=\frac13.

  • Câu 8: Thông hiểu

    Tìm giá trị bất thường của mẫu số liệu: 8 50 6 4 2

    Sắp xếp mẫu theo thứ tự không giảm: 2 4 6 8 50

    Số liệu chính giữa là 6 nên Q_{2} =
6.

    Trung vị của mẫu số liệu 2 4 là Q_{1} =
\frac{2 + 4}{2} = 3.

    Trung vị của mẫu số liệu 8 50 là Q_{3} =
\frac{8 + 50}{2} = 29.

    Khoảng tứ phân vị là \Delta_{Q} = 29 - 3
= 26.

    Ta có: Q_{1} - 1,5\Delta Q = 3 - 1,5.26 =
- 36.

    Ta có: Q_{3} + 1,5\Delta Q = 29 + 1,5.26
= 68.

    Không có giá trị nào trong mẫu nhỏ hơn -36 và lớn hơn 68. Vậy mẫu không có giá trị bất thường.

  • Câu 9: Thông hiểu

    Lấy ngẫu nhiên hai tấm thẻ trong một hộp chứa 9 tấm thẻ được đánh số t 1 đến 9. Tính xác suất để tổng của các số trên hai tấm thẻ lấy ra là số chẵn?

    Từ 1 đến 9 có 4 số chẵn và 5 số lẻ.

    Số phần tử không gian mẫu là: n(\Omega) =
C_{9}^{2} = 36

    Gọi A là biến cố tổng của các số trên hai thẻ lấy ra là số chẵn.

    Để tổng nhận được là số chẵn thì 2 số được chọn hoặc là hai số chẵn hoặc là hai số lẻ.

    2 số được chọn là 2 số chẵn ta có: C_{4}^{2} cách chọn.

    2 số được chọn là 2 số lẻ ta có: C_{5}^{2} cách chọn.

    Suy ra số kết quả thuận lợi cho biến cố A là: n(A) = C_{4}^{2} + C_{5}^{2} = 16

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{16}{36} = \frac{4}{9}

  • Câu 10: Nhận biết

    Cho ba chiếc hộp như sau:

    Hộp 1 chứa 1 viên bi đỏ, 1 viên bi vàng.

    Hộp 2 chứa 1 viên bi đỏ, 1 viên bi xanh.

    Hộp 3 chứa 1 viên bi vàng, 1 viên bi xanh.

    Từ mỗi hộp lấy ngẫu nhiên một viên bi và các phần tử của không gian mẫu được mô tả bằng sơ đồ sau:

    Gọi A là biến cố: “Trong ba viên bi lấy ra có đúng một viên bi màu đỏ”. Xác định số kết quả thuận lợi cho biến cố A?

    Số kết quả thuận lợi cho biến cố A là 4.

  • Câu 11: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Nhân hai với tất cả các số liệu: 2a_{1};2a_{2};...;2a_{10}.

    Khoảng biến thiên: R_{2} = 2a_{10} -
2a_{1} = 2(a_{10} - a_{1}).

    Suy ra R_{2} = 2R_{1}.

  • Câu 12: Thông hiểu

    Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng 7?

    Ta có:

    Số phần tử không gian mẫu là: n(\Omega) =
6.6 = 36

    Gọi A là biến cố “tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng “.

    \Rightarrow A = \left\{
(1;6),(6;1),(2;5),(5;2),(4;3),(3;4) ight\}

    \Rightarrow n(A) = 6

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{6}{20} = \frac{3}{10}.

  • Câu 13: Vận dụng

    Các bạn sinh viên đi đo chỉ số EQ thu được kết quả: 60 72 63 83 68 74 90 86 74 80.

    Ta nên chọn giá trị đại diện cho mẫu số liệu trên thế nào?

    Sắp xếp lại mẫu số liệu theo thứ tự không giảm: 60 63 68 72 74 74 80 83 86 90.

    Các giá trị của mẫu số liệu có độ lớn không chênh lệch quá nhiều. Do đó ta nên chọn số trung bình cộng làm giá trị đại diện.

    Ta có: \overline{x} = \frac{60 + 63 + 68 + 72 + 74 + 74 + 80 + 83 + 86 +
90}{10} = 75.

  • Câu 14: Thông hiểu

    Khi điều tra về số dân của tỉnh A, người ta thu được kết quả là \overline{a} = 1.234.872
\pm 30. Tìm số quy tròn của a.

    Số quy tròn của số a là: 1.234.900

  • Câu 15: Nhận biết

    Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.

     Số 23 xuất hiện nhiều nhất nên nó là mốt.

  • Câu 16: Nhận biết

    Cho số gần đúng a = 3942156 \pm 300. Hãy viết số quy tròn của a?

    Ta có số quy tròn của a = 3942156 \pm
300 là: 3942000.

  • Câu 17: Vận dụng

    Gọi S là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ S. Hãy tính xác suất để chọn được một số gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số 0 là số lẻ).

    Số phần tử của tập S9.A_{9}^{8}.

    Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = 9.A_{9}^{8}.

    Gọi X là biến cố ''Số được chọn gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ''. Do số 0 luôn đứng giữa 2 số lẻ nên số 0 không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng

    + Chọn 1 trong 7 vị trí để xếp số 0, có C_{7}^{1} cách.

    + Chọn 2 trong 5 số lẻ và xếp vào 2 vị trí cạnh số 0 vừa xếp, có A_{5}^{2} cách.

    + Chọn 2 số lẻ trong 3 số lẻ còn lại và chọn 4 số chẵn từ \left\{ 2;\ 4;\ 6;\ 8 ight\} sau đó xếp 6 số này vào 6 vị trí trống còn lại có C_{3}^{2}.C_{4}^{4}.6! cách.

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| =
C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} =
\frac{C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!}{9.A_{9}^{8}} =
\frac{5}{54}.

  • Câu 18: Nhận biết

    Cho dãy số liệu 1;1;2;3;4;4;5;5;5;6. Xác định mốt của mẫu số liệu?

    Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất

    Suy ra mốt của mẫu số liệu là 5.

  • Câu 19: Thông hiểu

    Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.

    Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280

    Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra   {Q_2} = \frac{{225 + 235}}{2} = 230.

    Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra Q_1=220.

    Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra Q_3=250.

    Khoảng tứ phân vị: \Delta_Q=250-220=30.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo