Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần nghìn.
Sử dụng máy tính bỏ túi ta có giá trị của là 9,8696044. Do đó giá trị gần đúng của
chính xác đến hàng phần nghìn là 9,870.
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần nghìn.
Sử dụng máy tính bỏ túi ta có giá trị của là 9,8696044. Do đó giá trị gần đúng của
chính xác đến hàng phần nghìn là 9,870.
Một túi gạo có ghi thông tin khối lượng là
. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?
Khi một túi gạo có ghi thông tin khối lượng là thì khối lượng thực của bao gạo nằm trong đoạn
.
Cho dãy số liệu thống kê
. Tìm số nguyên dương
, biết số trung bình cộng của dãy số liệu thống kê đó bằng
.
Điểm trung bình cộng của dãy số trên là
Vậy thỏa mãn yêu cầu bài toán.
Tìm các giá trị bất thường của mẫu số liệu:
5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49
Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.
Giá trị chính giữa là 27 nên .
Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên .
Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên .
Khoảng tứ phân vị .
Ta có:
.
Ta co:
.
Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.
Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.
Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.
Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu .
Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.
TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình (cách).
TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình (cách).
TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình (cách).
Số kết quả thuận lợi của biến cố A là: .
Xác suất của biến cố A là: .
Điểm thi học kì của một học sinh như sau: 4 6 7 2 10 9 3 5 8 7 3 8.
Tính số trung bình cộng của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là:
.
Cho A là biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề đúng là:
Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Nhân hai với tất cả các số liệu: .
Khoảng biến thiên: .
Suy ra .
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Tính sản lượng lúa trung bình trong bảng thống kê dưới đây:
|
Sản lượng (tạ) |
20 |
21 |
22 |
23 |
24 |
|
Tần số |
5 |
8 |
11 |
10 |
6 |
Sản lượng lúa trung bình là:
Vậy sản lượng lúa trung bình là 22,1 tạ.
Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).

Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?
Sắp xếp lại số liệu theo thứ tự không giảm:
20 20 20 30 60 100 150 270 440 980
Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.
Tứ phân vị không được coi là giá trị đại diện.
Do đó ta lấy trung vị làm giá trị đại diện. Ta có:.
Chọn đáp án: Trung vị, giá trị đại diện là 80.
Gieo đồng tiền hai lần. Biến cố để mặt ngửa xuất hiện đúng
lần có bao nhiêu phần tử?
Liệt kê ta có: . (2 phần tử)
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.
Cho số gần đúng của
là
. Sai số tuyệt đối của số gần đúng này là:
Sai số tuyệt đối là:
Phát biểu nào sau đây sai?
Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."
Một tổ học sinh có
nam và
nữ. Chọn ngẫu nhiên
người. Xác suất chọn được 2 nữ là:
Chọn ngẫu nhiên người trong
người có
cách chọn.
Hai người được chọn đều là nữ có cách.
Xác suất để hai người được chọn đều là nữ là: .
Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:
Chọn ba viên bi ngẫu nhiên trong hộp =>
Biến cố A: “Lấy ra được 3 viên bi màu đỏ” =>
=> Xác suất của biến cố A là: