Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng \overline{x} của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là: \overline{x} = \frac{7 + 9 + 8 + 9}{4} =
8,25.

  • Câu 2: Thông hiểu

    Cửa hàng thống kê cỡ giày trong một đơn hàng ngẫu nhiên của một vị khách như sau: 35;37;39;41;38;40;40;37;40. Xác định trung vị của mẫu số liệu?

    Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:

    35;37;37;38;39;40;40;40;41

    Trung vị của mẫu số liệu là 39.

  • Câu 3: Nhận biết

    Cho số gần đúng của \pi3,142. Sai số tuyệt đối của số gần đúng này là:

    Sai số tuyệt đối là: |\pi - 3,142| =
0,0004

  • Câu 4: Vận dụng

    20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 8 tấm thẻ. Hãy tính xác suất để có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.

    Không gian mẫu là cách chọn 8 tấm thể trong 20 tấm thẻ.

    Suy ra số phần tử của không mẫu là |\Omega| = C_{20}^{8}.

    Gọi A là biến cố ''3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10''. Để tìm số phần tử của A ta làm như sau

    ● Đầu tiên chọn 3 tấm thẻ trong 10 tấm thẻ mang số lẻ, có C_{10}^{3} cách.

    ● Tiếp theo chọn 4 tấm thẻ trong 8 tấm thẻ mang số chẵn (không chia hết cho 10), có C_{8}^{4} cách.

    ● Sau cùng ta chọn 1 trong 2 tấm thẻ mang số chia hết cho 10, có C_{2}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{10}^{3}.C_{8}^{4}.C_{2}^{1}.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} =
\frac{C_{10}^{3}.C_{8}^{4}.C_{2}^{1}}{C_{20}^{8}} =
\frac{560}{4199}.

  • Câu 5: Thông hiểu

    Một mẫu số liệu có giá trị tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là: 135;205. Hãy chỉ ra giá trị bất thường trong các đáp án dưới đây?

    Ta có: \left\{ \begin{matrix}Q_{3} = 205 \\Q_{1} = 135 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 30 \\Q_{3} + \dfrac{1}{2}\Delta Q = 310 \\\end{matrix} ight.

    Vậy giá trị bất thường là 312.

  • Câu 6: Thông hiểu

    Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.

    Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{22}^{4} = 7315.

    Gọi A là biến cố ''Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A} là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{7}^{1}C_{6}^{1}C_{5}^{1}C_{4}^{1} = 840.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = |\Omega| -
\left| \Omega_{\overline{A}} ight| = 6475.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{6475}{7315} =
\frac{185}{209}.

  • Câu 7: Thông hiểu

    Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau: 168;155;164;158;163. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)

    Chiều cao trung bình của 5 bạn là:

    \overline{x} = \frac{168 + 155 + 164 +
158 + 163}{5} = \frac{808}{5}

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{5}\lbrack\left( 168 -
\frac{808}{5} ight)^{2} + \left( 155 - \frac{808}{5} ight)^{2} +
\left( 164 - \frac{808}{5} ight)^{2}

    + \left( 158 - \frac{808}{5} ight)^{2}
+ \left( 163 - \frac{808}{5} ight)^{2}brack =
\frac{526}{25}

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{\frac{526}{25}} \approx 4,59.

  • Câu 8: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7} là 0,429. Sai số tuyệt đối của số 0,429 là:

    Ta có: \frac{3}{7} =0,428571… nên sai số tuyệt đối của 0,429 là

    \Delta = \left| 0,429 - \frac{3}{7}
ight| < |0,429 - 4,4285| = 0,0005

  • Câu 9: Nhận biết

    Gieo đồng tiền hai lần. Biến cố để mặt ngửa xuất hiện đúng 1 lần có bao nhiêu phần tử?

    Liệt kê ta có: A = \left\{ NS.SN
ight\}. (2 phần tử)

  • Câu 10: Nhận biết

    Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau: 3;\ 4;\ 7;\ 7;\
9. Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu đã cho ta thấy:

    Giá trị lớn nhất là 9

    Giá trị nhỏ nhất là 3

    Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.

  • Câu 11: Vận dụng

    Một người thống kê lại số giày bán được trong tháng của một công ty.

    Hỏi công ty nên nhập nhiều hơn loại cỡ giày nào để bán trong tháng tới?

    Tháng vừa rồi, công ty bán được 70 đôi giày cỡ 40 (nhiều nhất). Đây chính là mốt.

    Vậy suy ra tháng tới, công ty nên nhập thêm giày cỡ 40 để bán.

  • Câu 13: Thông hiểu

    Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.

    Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280

    Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra   {Q_2} = \frac{{225 + 235}}{2} = 230.

    Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra Q_1=220.

    Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra Q_3=250.

    Khoảng tứ phân vị: \Delta_Q=250-220=30.

  • Câu 15: Vận dụng

    Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

    Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.

    Số trung bình của mẫu số liệu (1) và (2) là:

    \overline{x_{1}} = \frac{8 + 6 + 7 + 5 + 9}{5} = 7

    \overline{x_{2}} = \frac{6 + 7 + 7 + 8 + 7}{5} = 7

    Phương sai của (1) là: {s_{1}}^{2}
= \frac{(8 - 7)^{2} + (6 - 7)^{2} +
(7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Phương sai của (2) là: {s_{2}}^{2}
= \frac{(6 - 7)^{2} + (7 - 7)^{2} +
(7 - 7)^{2} + (8 - 7)^{2} + (7 - 7)^{2}}{5} = 0,4

    {s_{2}}^{2} < {s_{1}}^{2} nên bạn Huy học đều hơn bạn Dũng.

  • Câu 16: Nhận biết

    Quy tròn số 14869 đến hàng trăm. Số gần đúng nhận được là:

     Quy tròn 14869 đến hàng trăm, ta được: 14900.

  • Câu 17: Nhận biết

    Gieo ngẫu nhiên 2 đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:

    Mô tả không gian mẫu ta có: \Omega =
\left\{ SS;SN;NS;NN ight\}. (4 phần tử)

  • Câu 18: Nhận biết

    Kết quả kiểm tra Toán của một số học sinh như sau: 9;\ 9;\ 7;\ 8;\ 9;\ 7;\ 10;\ 8;\
8. Khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 10

    Giá trị nhỏ nhất là 7

    Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3

  • Câu 19: Thông hiểu

    Một thùng có 7 sản phẩm, trong đó có 4 sản phẩm loại I3 sản phẩm loại II. Lấy ngẫu nhiên 2 sản phẩm từ thùng đó. Xác suất để lấy được 2 sản phẩm cùng loại là bao nhiêu?

    Lấy ngẫu nhiên 2 sản phẩm trong 7 sản phẩm thì có C_{7}^{2} = 21 (cách).

    2sản phẩm được lấy ra đều là sản phẩm loại IC_{4}^{2} = 6(cách).

    2sản phẩm được lấy ra đều là sản phẩm loại IIC_{3}^{2} = 3(cách).

    Xác suất để lấy được 2sản phẩm cùng loại là P = \frac{6 + 3}{21} =
\frac{3}{7}.

  • Câu 20: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Cả 3 phương án trên đều đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo