Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Xác suất để hai số được ó chữ số hàng đơn vị giống nhau là bao nhiêu?

    Số phần tử của tập S9.10 = 90.

    Không gian mẫu là chọn ngẫu nhiên 2 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{90}^{2} = 4005.

    Gọi X là biến cố ''Số được ó chữ số hàng đơn vị giống nhau''. Ta mô tả không gian của biến cố X nhưu sau

    ● Có 10 cách hữ số hàng đơn vị (chọn từ các chữ số \left\{ 0;\ 1;\ 2;\
3;...;\ 9 ight\}).

    ● Có C_{9}^{2} cách chọn hai chữ số hàng chục (chọn từ các chữ số \left\{ 1;\
2;\ 3;...;\ 9 ight\}).

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| = 10.C_{9}^{2}
= 360.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} = \frac{360}{4005} =
\frac{8}{89}..

  • Câu 2: Nhận biết

    Một hộp chứa 10 tấm thẻ được đánh số thứ tự từ 1 đến 10. Chọn ngẫu nhiên hai tấm thẻ. Tính xác suất để chọn được hai tấm thẻ đều ghi số chẵn?

    Từ 1 đến 10 có 5 số chẵn.

    Số cách chọn ngẫu nhiên hai tấm thẻ trong hộp là:

    n(\Omega) = C_{10}^{2} = 45

    Số cách chọn được hai tấm thẻ đều ghi số chẵn là: n(A) = C_{5}^{2} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{45} = \frac{2}{9}

  • Câu 3: Nhận biết

    Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

    Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:

    Quan sát biểu đồ ta thấy:

    Giá trị lớn nhất là 342

    Giá trị nhỏ nhất là: 4

    Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.

  • Câu 4: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố B: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4”.

    Ta có:

    n(\Omega) = 6^{2} = 36

    Các kết quả thuận lợi cho biến cố: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4” là: B = \left\{
(1;1),(1;2),(2;1) ight\}

    \Rightarrow n(B) = 3

    Vậy xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{3}{36} = \frac{1}{12}

  • Câu 5: Thông hiểu

    Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.

    Trung vị của mẫu số liệu trên là: \frac{35 + 43}{2} = 39.

    Trung vị của dãy 8 17 21 35 là: \frac{17
+ 21}{2} = 19.

    Trung vị của dãy 43 59 72 119 là: \frac{59 + 72}{2} = 65,5.

    Vậy Q_{1} = 19;\ Q_{2} = 39;\ Q_{3} =
65,5.

  • Câu 6: Nhận biết

    Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau: 3;\ 4;\ 7;\ 7;\
9. Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu đã cho ta thấy:

    Giá trị lớn nhất là 9

    Giá trị nhỏ nhất là 3

    Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.

  • Câu 7: Nhận biết

    Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Xác suất để sau hai lần gieo được số chấm giống nhau.

     Gieo 2 con xúc xắc, số phần tử của không gian mẫu: n(\Omega)=6.6=36.

    Các kết quả thỏa mãn là: (1,1); (2,2); (3,3); (4,4); (5,5); (6,6). Có 6 kết quả.

    Vậy xác suất là: P=\frac6{36}=\frac16.

  • Câu 9: Nhận biết

    Cho a = 235618
\pm 300. Số quy tròn của số gần đúng 235618 là:

    Số quy tròn của số gần đúng 235618 là: 236000.

  • Câu 10: Thông hiểu

    Gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất liên tiếp hai lần. Tính xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm.

    Không gian mẫu \Omega = \left\{ (i;j)|i;j
= 1,2,3,4,5,6 ight\}

    Số phần tử của không gian mẫu n(\Omega) =
36

    Gọi A là biến cố: “Lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm”.

    \Rightarrow n(A) = 3.6 = 18

    Xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{1}{2}.

  • Câu 11: Thông hiểu

    Cho số a =
367653964 \pm 213. Số quy tròn của số gần đúng 367653964 bằng:

    Hàng lớn nhất có độ chính xác d =
213 là hàng trăm nên ta quy tròn số a đến hàng nghìn.

    Vậy số quy tròn của a là: 367654000.

  • Câu 13: Thông hiểu

    Cho mẫu số liệu: 5;9;8;7;10;9. Số trung bình của mẫu số liệu là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{5 + 9 + 8 + 7 + 10
+ 9}{6} = 8

    Vậy số trung bình là 8.

  • Câu 14: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Xác định khoảng tứ phân vị của mẫu số liệu?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}
Q_{1} = 5 \\
Q_{3} = 7 \\
\end{matrix} ight.\  \Rightarrow \Delta Q = 7 - 5 = 2

    Vậy khoảng tứ phân vị bằng 2.

  • Câu 15: Nhận biết

    Từ một hộp gồm 12 quả bóng gồm 5 quả đỏ và 7 quả xanh, lấy ngẫu nhiên đồng thời 3 quả. Xác suất để lấy được 3 quả màu xanh bằng bao nhiêu?

    Lấy 3 quả bóng từ 12 quả ta có: n(\Omega)
= C_{12}^{3} = 220

    Lấy ngẫu nhiên 3 quả bóng đều màu xanh có: C_{7}^{3} = 35 cách

    Vậy xác suất để lấy được 3 quả bóng màu xanh là: P = \frac{35}{220} = \frac{7}{44}.

  • Câu 16: Nhận biết

    Chiều cao của một ngọn đồi là \overline{h} = 347,13m \pm 0,2m. Tính độ cao chính xác d của phép đo trên?

    Độ chính xác của phép đo d =
0,2m

  • Câu 17: Vận dụng

    Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

    Tìm trung vị của mẫu số liệu này.

    Cỡ mẫu số liệu này là: 2 + 4 + 6 + 12 + 8
+ 3 = 35.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.

    Vậy trung vị M_{e} = 3.

  • Câu 18: Nhận biết

    Một shop bán giày thống kê số lượng giày bán trong vài ngày trong bảng sau:

    Cỡ giày

    37

    38

    39

    40

    41

    42

    Số lượng

    35

    42

    50

    38

    32

    48

    Mốt của bảng số liệu trên là:

    Mốt là giá trị có tần số lớn nhất trong bảng số liệu

    Quan sát bảng số liệu đã cho suy ra mốt của bảng số liệu là 39.

  • Câu 19: Vận dụng

    Biểu đồ dưới đây thể hiện tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2014 – 2021. Tính độ lệch chuẩn của mẫu số liệu.

    Số trung bình của mẫu là:

    \overline{x} = \frac{5,98 + 6,68 + 6,21 + 6,81 + 7,08 + 7,02 +
2,91 + 2,58}{8} =
5,65875

    Từ đó tính được phương sai: s^{2} =
2,96.

    Suy ra độ lệch chuẩn: \sqrt{s^{2}} =
1,72.

  • Câu 20: Thông hiểu

    Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau: 168;155;164;158;163. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)

    Chiều cao trung bình của 5 bạn là:

    \overline{x} = \frac{168 + 155 + 164 +
158 + 163}{5} = \frac{808}{5}

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{5}\lbrack\left( 168 -
\frac{808}{5} ight)^{2} + \left( 155 - \frac{808}{5} ight)^{2} +
\left( 164 - \frac{808}{5} ight)^{2}

    + \left( 158 - \frac{808}{5} ight)^{2}
+ \left( 163 - \frac{808}{5} ight)^{2}brack =
\frac{526}{25}

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{\frac{526}{25}} \approx 4,59.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo