Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được:
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Quy tròn đến hàng phần trăm, ta được:
.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được:
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Quy tròn đến hàng phần trăm, ta được:
.
Gọi
là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp
. Xác suất để hai số được ó chữ số hàng đơn vị giống nhau là bao nhiêu?
Số phần tử của tập là
.
Không gian mẫu là chọn ngẫu nhiên số từ tập
.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Số được ó chữ số hàng đơn vị giống nhau
. Ta mô tả không gian của biến cố
nhưu sau
● Có cách hữ số hàng đơn vị (chọn từ các chữ số
).
● Có cách chọn hai chữ số hàng chục (chọn từ các chữ số
).
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Xác suất của biến cố
kí hiệu là
. Biến cố
là biến cố đối của A, có xác suất là ![]()
Chọn phát biểu sai trong các phát biểu sau:
Phát biểu sai là: "Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1."
Người ta phân tích thuế mặt hàng A tại 30 tỉnh một quốc gia và tính được:
. Giá trị nhỏ nhất bằng 20, giá trị lớn nhất bằng 120. Chọn kết luận đúng.
Khoảng tứ phân vị
.
Khoảng biến thiên .
Ý nghĩa của khoảng tứ phân vị được thể hiện ở hình ảnh bên dưới:
Như vậy có khoảng 75% số tỉnh có thuế mặt hàng A lớn hơn 26.
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?
Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là .
Theo quy tắc nhân xác suất: .
Một hộp đựng
thẻ, đánh số từ
đến
. Chọn ngẫu nhiên
thẻ. Gọi
là biến cố để tổng số của
thẻ được chọn không vượt quá
. Tìm số phần tử của biến cố
.
Liệt kê ta có: . (4 phần tử)
Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.
Trung vị của mẫu số liệu trên là: .
Trung vị của dãy 8 17 21 35 là: .
Trung vị của dãy 43 59 72 119 là: .
Vậy .
Cho dãy số liệu về chiều cao của một nhóm học sinh như sau:
. Các tứ phân vị của mẫu số liệu là:
Dãy số liệu sắp xếp theo thứ tự không giảm là:
Trung vị là
Nửa dữ liệu bên trái là:
Do đó
Nửa dữ liệu bên phải là:
Do đó
Thời gian chạy 50 m của 20 học sinh được ghi lại trong bảng sau đây:
Thời gian (giây) | 8,3 | 8,4 | 8,5 | 8,7 | 8,8 |
Tần số | 2 | 3 | 9 | 5 | 1 |
Hãy tìm khoảng biến thiên của mẫu số liệu đã cho.
Khoảng biến thiên: .
Cho mẫu số liệu:
. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?
Ta có
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có = 1,732050808. Do đó: Giá trị gần đúng của
chính xác đến hàng phần trăm là 1,73.
Lớp trưởng lớp 10A thống kê số học sinh và số cây trồng được theo từng tổ trong buổi ngoại khóa như sau:
Tổ | 1 | 2 | 3 | 4 |
Số học sinh | 11 | 10 | 12 | 10 |
Số cây | 30 | 30 | 38 | 29 |
Bạn lớp trưởng cho biết số cây mỗi bạn trong lớp trồng được đều không vượt quá 3 cây. Biết rằng bảng trên có một tổ bị thống kê sai. Tổ mà bạn lớp trưởng đã thống kê sai là:
Xét đáp án Tổ 1
Số cây tối đa tổ 1 trồng được là: 11.3 = 33 (cây)
Vì 30 (cây) < 33 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 2
Số cây tối đa tổ 2 trồng được là: 10.3 = 30 (cây)
Vì 30 (cây) = 30 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 3
Số cây tối đa tổ 3 trồng được là: 12.3 = 36 (cây)
Vì 38 (cây) > 36 (cây) nên thống kê số cây tổ 3 trồng được là sai.
Xét đáp án Tổ 4
Số cây tối đa tổ 3 trồng được là: 10.3 = 30 (cây)
Vì 29 (cây) < 30 (cây) nên thống kê số cây tổ 4 trồng được không sai.
Giáo viên chủ nhiệm mang đến lớp 6 cuốn sách khoa học và 4 cuốn sách tham khảo (các sách khác nhau từng đôi một). Giáo viên cho bạn C mượn ngẫu nhiên 3 quyển sách để đọc. Tính xác suất của biến cố: “X mượn ít nhất một cuốn sách tham khảo”.
Số phần tử không gian mẫu là:
Gọi A là biến cố: “X mượn ít nhất một cuốn sách tham khảo”.
Khi đó là biến cố X mượn 3 cuốn sách khoa học. Khi đó:
Vậy xác suất của biến cố A là:
Cho bảng thống kê điểm kiểm tra môn Hóa học của học sinh lớp 10C như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
Tính điểm kiểm tra trung bình của học sinh lớp 10C?
Số học sinh lớp 10C bằng: (học sinh)
Điểm kiểm tra trung bình của học sinh lớp 10C là:
Vậy điểm kiểm tra trung bình của 35 học sinh lớp 10C bằng 6,4.
Gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất liên tiếp hai lần. Tính xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm.
Không gian mẫu
Số phần tử của không gian mẫu
Gọi A là biến cố: “Lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm”.
Xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm là: .
Một shop bán giày thống kê số lượng giày bán trong vài ngày trong bảng sau:
|
Cỡ giày |
37 |
38 |
39 |
40 |
41 |
42 |
|
Số lượng |
35 |
42 |
50 |
38 |
32 |
48 |
Mốt của bảng số liệu trên là:
Mốt là giá trị có tần số lớn nhất trong bảng số liệu
Quan sát bảng số liệu đã cho suy ra mốt của bảng số liệu là 39.
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.
Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

Tìm khoảng tứ phân vị của mẫu số liệu này.
Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.
Số liệu chính giữa là 162 nên .
Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên .
Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên .
Khoảng tứ phân vị
.