Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Một hộp đựng 10 thẻ được đánh số từ 1 đến 10. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho 4 lớn hơn \frac{13}{15}. Tính giá trị của k.

    Gọi biến cố A: Lấy k tấm thẻ có ít nhất một tấm thẻ chia hết cho 4. Với 1 \leq k \leq 10.

    Suy ra \overline{A}: Lấy k tấm thẻ không có tấm thẻ nào chia hết cho 4.

    Ta có: P\left( \overline{A} ight) =
\frac{C_{8}^{k}}{C_{10}^{k}} \Rightarrow P(A) = 1 -
\frac{C_{8}^{k}}{C_{10}^{k}} = 1 - \frac{(10 - k)(9 -
k)}{90}.

    Theo đề: 1 - \frac{(10 - k)(9 - k)}{90}
> \frac{13}{15} \Leftrightarrow k^{2} - 19k + 78 < 0
\Leftrightarrow 6 < k < 13.

    Vậy k = 7 là giá trị cần tìm.

  • Câu 2: Thông hiểu

    Phương sai của dãy số 2; 3; 4; 5; 6; 7 là:

     Số trung bình: \overline x  = \frac{{2 + 3 + 4 + 5 + 6 + 7}}{6} = 4,5.

    Phương sai: {s^2} =\frac{{{{(2 - 4,5)}^2} + {{(3 - 4,5)}^2} + ... + {{(7 - 4,5)}^2}}}{6}\approx 2,92.

  • Câu 3: Nhận biết

    Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

    Độ lệch chuẩn là \sqrt{s^{2}} = \sqrt{8}
= 2\sqrt{2}.

  • Câu 4: Nhận biết

    Cho số gần đúng a = 3942156 \pm 300. Hãy viết số quy tròn của a?

    Ta có số quy tròn của a = 3942156 \pm
300 là: 3942000.

  • Câu 5: Thông hiểu

    Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?

    Ta có: n(\Omega) =
C_{50}^{3}

    Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.

    Chọn 3 trong 35 sản phẩm đạt chuẩn ta có: \Rightarrow n(B) = C_{35}^{3}

    Vậy xác suất của biến cố B là: P(B) =
\frac{C_{35}^{3}}{C_{50}^{3}} = \frac{187}{560}.

  • Câu 6: Thông hiểu

    Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{23 + 29 + 2.41 + 45
+ 48 + 71 + 72}{8} = 46,25

    Vậy số trung bình là 46,25.

  • Câu 7: Nhận biết

    Cho số đúng \overline{a} = 40 \pm 0,5. Giá trị của \overline{a} thuộc đoạn nào sau đây?

    Ta có:

    \overline{a} = 40 \pm 0,5 \Rightarrow
\overline{a} \in \lbrack 39,5;40,5brack

  • Câu 8: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7}0,429. Sai số tuyệt đối của số 0,429 không vượt quá giá trị nào sau đây?

    Sai số tuyệt đối của số 0,429 là: \left| \frac{3}{7} - 0,429 ight|
\approx 4,3.10^{- 4}

    Suy ra sai số tuyệt đối của số 0,429 không vượt quá 0,0005.

  • Câu 9: Thông hiểu

    Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.

    Hai giá trị chính giữa là 8 và 14. Suy ra trung vị Q_{2} = \frac{8 + 14}{2} = 11.

    Trung vị Q_{1} của mẫu 3 6 8 là Q_{1} = 6.

    Trung vị Q_{3} của mẫu 14 19 28 là Q_{3} = 19.

    Suy ra \Delta_{Q} = Q_{3} - Q_{1} = 19 -
6 = 13.

    Xét: Q_{1} - 1,5\Delta_{Q} = 3 - 1,5.13 =
- 16,5.

    Xét: Q_{3} + 1,5\Delta_{Q} = 28 + 1,5.13
= 47,5.

    Ta thấy không có giá trị nào nhỏ hơn Q_{1} - 1,5\Delta_{Q} = - 16,5 và lớn hơn Q_{3} + 1,5\Delta_{Q} = 47,5 nên dãy không có giá trị bất thường.

  • Câu 10: Nhận biết

    Cho A là một biến cố trong phép thử T. Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A được xác định theo công thức nào sau đây?

    Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A theo công thức:

    P\left( \overline{A} ight) = 1 -
P(A)

  • Câu 11: Nhận biết

    Biểu đồ dưới đây thể hiện tỉ lệ lạm phát cơ bản bình quân năm trong giai đoạn 2018 – 2022:

    (Nguồn: Niêm giám thống kê 2022)

    Trong giai đoạn từ 2018 – 2021, năm có tỉ lệ lạm phát cơ bản bình quân năm cao nhất là?

    Trong giai đoạn từ 2018 – 2021, năm 2020 có tỉ lệ lạm phát cơ bản bình quân năm cao nhất.

  • Câu 12: Nhận biết

    Gieo đồng tiền hai lần. Biến cố để mặt ngửa xuất hiện đúng 1 lần có bao nhiêu phần tử?

    Liệt kê ta có: A = \left\{ NS.SN
ight\}. (2 phần tử)

  • Câu 13: Nhận biết

    Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x_1 ≤ x_2 ≤ x_3 ≤ ... ≤ x_n. Khi đó khoảng biến thiên R của mẫu số liệu bằng:

    Khoảng biến thiên của mẫu số liệu bằng: R = x_n – x_1

  • Câu 14: Nhận biết

    Một hộp chứa: bi xanh, bi đỏ và bi vàng. Lấy ngẫu nhiên một viên bi trong hộp. Gọi A là biến cố: “Lấy được viên bi đỏ”. Biến cố đối của biến cố A là:

    Biến cố đối của biến cố A là “Lấy được viên bi xanh hoặc bi vàng”.

  • Câu 15: Vận dụng

    Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

    Tìm trung vị của mẫu số liệu trên.

    Cỡ mẫu số liệu trên là n =
30.

    Thống kê lại:

    Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.

    Suy ra trung vị

    M_{e} = \frac{17 + 17}{2} =
17.

  • Câu 16: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Nhân hai với tất cả các số liệu: 2a_{1};2a_{2};...;2a_{10}.

    Khoảng biến thiên: R_{2} = 2a_{10} -
2a_{1} = 2(a_{10} - a_{1}).

    Suy ra R_{2} = 2R_{1}.

  • Câu 17: Thông hiểu

    Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:

    Chọn ngẫu nhiên ba viên bi => n\left( \Omega  ight) = C_{14}^3

    Gọi A là biến cố lấy được ba viên bi có cả ba màu. Khi đó: n\left( A ight) = C_3^1.C_5^1.C_6^1 = 90

    => Xác suất để 3 viên bi có cả ba màu là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{90}}{{C_{14}^3}} = \frac{{45}}{{182}}

  • Câu 18: Thông hiểu

    Trên bàn có 4 quyển sách toán, 3 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để trong ba quyển sách lấy ra có ít nhất một quyển là toán?

    Xác suất để trong ba quyển lấy ra có ít nhất một quyển sách Toán là: 1 - \frac{C_{3}^{3}}{C_{7}^{3}} =
\frac{34}{35}

  • Câu 19: Thông hiểu

    Một hộp chứa 9 chiếc thẻ được đánh số từ 1 đến 9. Lấy ngẫu nhiên 3 chiếc thẻ từ hộp. Tính xác suất để tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ.

    Số phần tử của không gian mẫu: n(\Omega)
= C_{9}^{3} = 84.

    Gọi A là biến cố "tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ".

    Ta có:

    n(A) = C_{5}^{3} + C_{4}^{2}.C_{5}^{1} =
40.

    Xác suất để tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ là:

    p(A) = \frac{n(A)}{n(\Omega)} =
\frac{40}{84} = \frac{10}{21}.

  • Câu 20: Thông hiểu

    Tìm phương sai của dãy số liệu: 43 45 46 41 40.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{43 + 45 + 46 + 41 + 40}{5} = 43.

    Ta có phương sai: s^{2} = \frac{(43 - 43)^{2} + (45 - 43)^{2} + (46 -
43)^{2} + (41 - 43)^{2} + (40 - 43)^{2}}{5} = 5,2.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo