Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Sai số tuyệt đối của số gần đúng a là:

    Sai số tuyệt đối của số gần đúng a là: \Delta_{a} = \left| \overline{a} - a
ight|

  • Câu 2: Thông hiểu

    Tìm số trung vị của dãy số liệu 1;1;2;3;4;4;5;5;5;6?

    Dãy số liệu được sắp xếp theo thứ tự không giảm

    Suy ra số trung vị của dãy số liệu đã cho là \frac{4 + 4}{2} = 4.

  • Câu 3: Vận dụng

    Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

    Tìm trung vị của mẫu số liệu trên.

    Cỡ mẫu số liệu trên là n =
30.

    Thống kê lại:

    Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.

    Suy ra trung vị

    M_{e} = \frac{17 + 17}{2} =
17.

  • Câu 4: Vận dụng

    Chọn khẳng định đúng.

    Khẳng định đúng là:

    Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.

  • Câu 6: Thông hiểu

    Điểm kiểm tra giữa học kì 2 môn Toán của một nhóm học sinh được ghi lại như sau: 4,5;\
5,0;\ 7,5;\ 8,5;\ 5,5;\ 6,0;\ 6,5;\ 9,0;\ 4,5;\ 10;\ 9,0. Số trung vị của mẫu số liệu đã cho là:

    Sắp xếp dãy số liệu theo thứ tự không giảm như sau:

    4,5;\ 4,5;\ 5,0;\ 5,5;\ 6,0;6,5;\ 7,5;\
8,5;\ 9,0;\ 9,0;\ 10

    Ta có: N = 11 là số lẻ suy ra trung vị của mẫu số liệu đứng ở vị trí số \frac{11 + 1}{2} = 6

    Hay trung vị của mẫu số liệu là 6,5.

  • Câu 7: Nhận biết

    Xác định khoảng biến thiên R của mẫu số liệu: 6 5 3 7 8 10 15.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.

    Suy ra khoảng biến thiên R = 15 - 3 =
12.

  • Câu 8: Nhận biết

    Gieo con súc sắc hai lần. Biến cố A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm. Mô tả biến cố A.

    Liệt kê ta có: A = \left\{ (1,6),\
(2,6),\ (3,6),\ (4,6),\ (5,6),\ (6,6),\ (6,1),\ (6,2),\ (6,3),\ (6,4),\
(6,5) ight\}.

  • Câu 9: Thông hiểu

    Một hộp chứa 2 bi xanh, 3 bi đỏ. Lấy ngẫu nhiên 3 bi. Tính xác suất để có ít nhất một bi xanh trong 3 viên.

    Số phần tử của không gian mẫu là |\Omega|
= C_{5}^{3} = 10.

    Gọi A là biến cố lấy ít nhất 1 bi xanh.

    Chọn 1 bi xanh, 2 bi đỏ, có C_{2}^{1}.C_{3}^{2} = 6(cách).

    Chọn 2 bi xanh, 1 bi đỏ, có C_{2}^{2}.C_{3}^{1} = 3(cách).

    Suy ra \left| \Omega_{A} ight| = 3 + 6
= 9.

    Xác suất cần tìm là P(A) =
\frac{9}{10}.

  • Câu 10: Nhận biết

    Khoảng biến thiên tứ phân vị \Delta Q được xác định bởi:

    Khoảng biến thiên tứ phân vị \Delta
Q được xác định bởi Q_{3} -
Q_{1}.

  • Câu 11: Nhận biết

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 12: Nhận biết

    Tung một đồng xu hai lần liên tiếp. Không gian mẫu trong trò chơi trên là:

     Ta có: Ω = {SS; SN; NS; NN}

  • Câu 13: Nhận biết

    Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{8}^{2} = 28

    Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”

    \Rightarrow n(A) = 4

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{4}{28} = \frac{1}{7}

  • Câu 14: Nhận biết

    Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001.

    Vì độ chính xác đến hàng phần nghìn nên ta quy tròn a đến hàng phần trăm, vậy số quy tròn của a là 5,25.

  • Câu 15: Thông hiểu

    Hãy chọn kết quả lần lượt là số trung bình và phương sai của mẫu số liệu 3;5;5;6;7;7;8;9;10?

    Ta có:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{3 + 5 + 5 + 6 + 7 +
7 + 8 + 9 + 10}{9} \approx 6,7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{9}.\lbrack(3 - 6,7)^{2}
+ 2.(5 - 6,7)^{2} + (6 - 6,7)^{2} + 2.(7 - 6,7)^{2}

    + (8 - 6,7)^{2} + (9 - 6,7)^{2} + (10 -
6,7)^{2}brack \approx 4,2

    Vậy số trung bình và phương sai của mẫu số liệu lần lượt là: 6,7;\ 4,2.

  • Câu 16: Thông hiểu

    Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.

    Hai giá trị chính giữa là 8 và 14. Suy ra trung vị Q_{2} = \frac{8 + 14}{2} = 11.

    Trung vị Q_{1} của mẫu 3 6 8 là Q_{1} = 6.

    Trung vị Q_{3} của mẫu 14 19 28 là Q_{3} = 19.

    Suy ra \Delta_{Q} = Q_{3} - Q_{1} = 19 -
6 = 13.

    Xét: Q_{1} - 1,5\Delta_{Q} = 3 - 1,5.13 =
- 16,5.

    Xét: Q_{3} + 1,5\Delta_{Q} = 28 + 1,5.13
= 47,5.

    Ta thấy không có giá trị nào nhỏ hơn Q_{1} - 1,5\Delta_{Q} = - 16,5 và lớn hơn Q_{3} + 1,5\Delta_{Q} = 47,5 nên dãy không có giá trị bất thường.

  • Câu 17: Vận dụng

    Một lớp học có 40 học sinh trong đó có 4 cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra 3 học sinh để làm cán sự lớp gồm lớp trưởng, lớp phó và bí thư. Xác suất để chọn ra 3 học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh trong 40 học sinh.

    Suy ra số phần tử không gian mẫu là |\Omega| = C_{40}^{3} = 9880.

    Gọi A là biến cố ''3 học sinh được chọn không có cặp anh em sinh đôi nào''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}3 học sinh được chọn luôn có 1 cặp anh em sinh đôi.

    + Chọn 1 cặp em sinh đôi trong 4 cặp em sinh đôi, có C_{4}^{1} cách.

    + Chọn thêm 1 học sinh trong 38 học sinh, có C_{38}^{1} cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{4}^{1}.C_{38}^{1} = 152.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 9880 - 152 =
9728.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{9728}{9880} =
\frac{64}{65}.

  • Câu 18: Thông hiểu

    Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.

    Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{22}^{4} = 7315.

    Gọi A là biến cố ''Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A} là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{7}^{1}C_{6}^{1}C_{5}^{1}C_{4}^{1} = 840.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = |\Omega| -
\left| \Omega_{\overline{A}} ight| = 6475.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{6475}{7315} =
\frac{185}{209}.

  • Câu 19: Thông hiểu

    Một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?

    Khi một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg thì khối lượng thực của bao gạo nằm trong đoạn \lbrack
4,8;5,2brack.

  • Câu 20: Thông hiểu

    Trong một hộp chứa một số bi, mỗi bi mang một số từ 1 đến 21 và không có hai bi nào mang số giống nhau. Chọn ngẫu nhiên từ hộp đó ra 2 bi. Xác suất hai bi được chọn đều mang số lẻ là:

    Số cách chọn 2 bi từ 21 bi là: C_{21}^{2}

    Từ số 1 đến 21 có 11 số lẻ nên số cách chọn được 2 viên bi đều mang số lẻ là: C_{11}^{2}

    Vậy xác suất để hai viên bi đều ghi số lẻ là: \frac{C_{11}^{2}}{C_{21}^{2}} =
\frac{11}{42}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo