Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác nên ta làm tròn số
đến hàng nghìn, ta được kết quả là
.
Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác nên ta làm tròn số
đến hàng nghìn, ta được kết quả là
.
Bảng dưới đây thống kê thời gian nảy mầm của một giống cây trong các điều kiện khác nhau.

Tính thời gian trung bình thời gian nảy mầm của loại giống cây trên.
Thời gian trung bình thời gian nảy mầm của loại giống cây trên là:
.
Gieo cùng một lúc hai con xúc xắc khác màu nhưng cân đối và đồng chất một lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7?
Ta có:
Các kết quả thuận lợi cho biến cố C: “tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7” là:
Vậy xác suất của biến cố C là: .
Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

Tìm mốt của mẫu số liệu trên.
Cỡ mẫu số liệu trên là .
Thống kê lại:
Hai giá trị có tần số lớn nhất 17 (5 lần) và 18 (5 lần).
Vậy mốt là 17 và 18.
Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

Tìm khoảng tứ phân vị của mẫu số liệu này.
Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.
Số liệu chính giữa là 162 nên .
Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên .
Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên .
Khoảng tứ phân vị
.
Hai hộp chứa các thẻ được đánh số. Hộp thứ nhất chứa 10 thẻ được đánh số từ 1 đến 10; hộp thứ hai chứa 9 thẻ được đánh số từ 1 đến 9. Chọn ngẫu nhiên mỗi hộp một thẻ và nhân các số trên hai thẻ lại với nhau. Tính xác suất để tích thu được là một số chẵn?
Hộp thứ nhất chứa 10 thẻ được đánh số thứ tự từ 1 đến 10 gồm 5 thẻ mang số lẻ và 5 thẻ mang số chẵn.
Hộp thứ hai chứa 9 thẻ đánh số thứ tự từ 1 đến 9 gồm 5 thẻ số lẻ và 4 thẻ số chẵn.
Chọn ngẫu nhiên mỗi hộp 1 thẻ thì số cách chọn là:
Gọi biến cố A: “Tích thu được là số chẵn” khi đó ta xét 3 trường hợp sau:
TH1: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.
TH2: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ lẻ có: 5.5 = 25 cách.
TH3: Hộp thứ nhất chọn được thẻ lẻ và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.
Theo quy tắc cộng ta có:
Vậy xác suất cần tìm là:
Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:
Nếu đơn vị đo của số liệu là thì đơn vị của độ lệch chuẩn là:
Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:
Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là
Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).
Vậy .
Tìm phương sai của dãy số liệu: 8 15 14 18.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "lần đầu tiên xuất hiện mặt sấp" là bao nhiêu?
Xác suất để lần đầu xuất hiện mặt sấp là . Lần 2 và 3 thì tùy ý nên xác suất là 1.
Theo quy tắc nhân xác suất: .
Kết quả điều tra về điện năng tiêu thụ (đơn vị: kw/h) của một số hộ dân trong khu vực được thống kê như sau:
. Tính trung vị của dãy số liệu đã cho?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Vì cỡ mẫu (số lẻ) nên số trung vị của dãy số liệu trên là số liệu thứ 6.
Suy ra .
Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”
Vậy xác suất của biến cố A là:
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất 1 quyển là toán là bao nhiêu?
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển lý là .
Số cách lấy được 2 quyển lý, 1 quyển hóa là .
Số cách lấy được 1 quyển lý, 2 quyển hóa là .
Số cách lấy 3 quyển sách mà không có sách toán là .
Suy ra số cách lấy 3 quyển sách mà có ít nhất 1 quyển sách toán là 74 cách.
Suy ra xác suất cần tìm là .
Quy tròn số
đến hàng phần chục ta được số
. Sai số tuyệt đối là:
Sai số tuyệt đối là: .
Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau:
. Xác định khoảng biến thiên của mẫu số liệu?
Quan sát dãy số liệu ta thấy:
Giá trị lớn nhất là 169
Giá trị nhỏ nhất là 150
Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.
Tìm phương sai của mẫu số liệu:
?
Ta có:
Số trung bình là:
Phương sai của mẫu số liệu là:
Vậy đáp án là 2.
Người ta phân tích thuế mặt hàng A tại 30 tỉnh một quốc gia và tính được:
. Giá trị nhỏ nhất bằng 20, giá trị lớn nhất bằng 120. Chọn kết luận đúng.
Khoảng tứ phân vị
.
Khoảng biến thiên .
Ý nghĩa của khoảng tứ phân vị được thể hiện ở hình ảnh bên dưới:
Như vậy có khoảng 75% số tỉnh có thuế mặt hàng A lớn hơn 26.