Quy tròn số 14869 đến hàng trăm. Số gần đúng nhận được là:
Quy tròn 14869 đến hàng trăm, ta được: 14900.
Quy tròn số 14869 đến hàng trăm. Số gần đúng nhận được là:
Quy tròn 14869 đến hàng trăm, ta được: 14900.
Cho số
. Số quy tròn của số gần đúng
là:
Do độ chính xác nên làm quy tròn số gần đúng
đến hàng nghìn ta được:
Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.
Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280
Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra .
Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra .
Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra .
Khoảng tứ phân vị: .
Gieo một con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố “Số chấm xuất hiện trong lần gieo không bé hơn 3”.
Số phần tử của không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “Số chấm xuất hiện trong lần gieo không bé hơn 3” là:
Xác suất của biến cố A là: .
Một hộp chứa 5 viên bi trắng, 10 viên bi xanh và 15 viên bi đỏ. Lấy ngẫu nhiên từ trong hộp 7 viên bi. Xác suất để trong số 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố để trong 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ
là biến cố để trong 7 viên bi được lấy ra có số viên bi nhỏ hơn 2.
TH1: 7 viên bi trong đó có 1 viên bi đỏ ta có:
TH2: 7 viên bi trong đó có không có viên bi đỏ ta có:
Vậy xác suất của biến cố A cần tìm là:
Một chiếc hộp chứa 20 quả cầu gồm 8 quả màu xanh, 7 quả màu đỏ và 5 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu từ chiếc hộp. Tính xác suất để 6 quả cầu lấy được ít nhất một quả màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố trong 6 quả cầu lấy được ít nhất một quả đỏ.
Gọi B là biến cố trong 6 quả cầu lấy được không có quả đỏ.
Số phần tử của biến cố B là:
Xác suất của biến cố B là:
Vậy xác suất của biến cố A cần tìm là:
Cho
. Số gần đúng của
với độ chính xác
là:
Vì độ chính xác nên số gần đúng được quy tròn đến hàng phần chục.
Vậy đáp án đúng là .
Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.
Số trung bình là
.
Phương sai là
.
Độ lệch chuẩn là .
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?
Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là .
Theo quy tắc nhân xác suất: .
Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:
"Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.
Bảng sau thống kê điểm kiểm tra của học sinh lớp 10C.

Tìm trung vị của dãy số liệu trên.
Cỡ mẫu số liệu này là:
.
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 20. Đó là số 17.
Vậy trung vị .
Người ta thống kê cân nặng của 10 học sinh theo thứ tự tăng dần. Số trung vị của mẫu số liệu trên là:
Ta có: là một số chẵn
=> Số trung vị là:
Hay số trung vị của mẫu số liệu trên bằng trung bình cộng của khối lượng của học sinh thứ 5 và thứ 6.
Có
học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối
có
học sinh nam và
học sinh nữ, khối
có
học sinh nam. Chọn ngẫu nhiên
học sinh bất kỳ để trao thưởng, xác suất để
học sinh được có cả nam và nữ đồng thời có cả khối
và khối
là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
học sinh được ó cả nam và nữ đồng thời có cả khối
và khối
. Ta có các trường hợp thuận lợi cho biến cố
là:
TH1: Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có cách.
TH2: Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có cách.
TH3: Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng
, hỏi tổ có bao nhiêu học sinh nữ?
Gọi số học sinh nữ là
Chọn bất kỳ 2 học sinh ta có cách.
Do đó số phần tử của không gian mẫu là
Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.
Để chọn 2 học sinh được 2 học sinh nữ có:
(cách)
Do đó số kết quả thuận lợi cho biến cố A là:
Xác suất để chọn được 2 học sinh nữ là:
Mà
Vậy có 5 học sinh nữ trong tổ.
Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:
Số sách | 1 | 2 | 3 | 4 | 5 | 6 | |
Số học sinh đọc | 10 | m | 8 | 6 | n | 3 | n = 40 |
Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.
Số trung bình là:
Phương sai là:
Theo bài ra ta có:
Kiểm tra được: m = 8 và n = 5 thỏa mãn.
Tìm phương sai của dãy số liệu: 8 15 14 18.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.
Cho bảng thống kê sản lượng lúa (đơn vị: ha) của các thửa ruộng có cùng diện tích trong tỉnh A như sau:
|
Sản lượng |
20 |
21 |
22 |
23 |
24 |
|
Số thửa ruộng |
5 |
8 |
11 |
10 |
6 |
Tìm phương sai của bảng số liệu?
Số thửa ruộng được thống kê sản lượng là:
Sản lượng lúa trung bình của 40 thửa ruộng là:
Phương sai của sản lượng lúa của 40 thửa ruộng là:
Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp. Xác suất để 2 viên bi được lấy vừa khác màu vừa khác số là bao nhiêu?
Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
2 viên bi được lấy vừa khác màu vừa khác số
.
● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi đỏ là cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).
● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi vàng là cách.
● Số cách lấy 2 viên bi gồm 1 bi đỏ và 1 bi vàng là cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .