Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho năm đoạn thẳng có độ dài: 1\ cm, 3\
cm, 5\ cm,7\ cm, 9\
cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đó. Tính xác suất để ba đoạn thẳng lấy ra là ba cạnh của một tam giác.

    * Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đã cho có C_{5}^{3} = 10 cách.

    Suy ra n(\Omega) = 10.

    * Gọi A là biến cố "lấy được ba đoạn thẳng là ba cạnh của một tam giác".

    Các trường hợp ba đoạn thẳng là ba cạnh của một tam giác là:

    \left\{ 3;5;7 ight\},\ \left\{ 3;7;9
ight\},\ \left\{ 5;7;9 ight\} (thỏa mãn: hiệu hai cạnh bé hơn cạnh còn lại, tổng hai cạnh lớn hơn cạnh còn lại).

    Do đó n(A) = 3. Vậy sác xuất cần tìm là P(A) = \frac{n(A)}{n(\Omega)} =
\frac{3}{10}.

  • Câu 2: Nhận biết

    Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.

    Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.

  • Câu 3: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}Q_{1} = 5 \\Q_{3} = 7 \\\end{matrix} ight.\  \Rightarrow \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 2 \\Q_{3} + \dfrac{1}{2}\Delta Q = 10 \\\end{matrix} ight.

    Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.

    Vậy không có giá trị nào bất thường trong mẫu số liệu.

  • Câu 4: Thông hiểu

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    Theo định nghĩa ta có phép thử ngẫu nhiên là những phép thử mà ta không thể đoán trước kết quả của nó, mặc dù đã biết được tập hợp tất cả các kết quả của phép thử đó

    Đáp án "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi." không phải phép thử vì ta có thể biết chắc chắn kết quả chỉ có thể là 1 số cụ thể là tổng số bi đỏ và xanh.

  • Câu 5: Thông hiểu

    Tìm số trung vị của dãy số liệu 1;1;2;3;4;4;5;5;5;6?

    Dãy số liệu được sắp xếp theo thứ tự không giảm

    Suy ra số trung vị của dãy số liệu đã cho là \frac{4 + 4}{2} = 4.

  • Câu 6: Nhận biết

    Làm tròn số gần đúng 3,14159 với độ chính xác 0,001?

    Số gần đúng 3,14159 làm tròn với độ chính xác 0,001 là: 3,14.

  • Câu 7: Nhận biết

    Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.

    Khoảng biến thiên điểm số là:

    Khoảng biến thiên là R = 93 - 50 =
43.

  • Câu 8: Thông hiểu

    Một mẫu số liệu có giá trị tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là: 135;205. Hãy chỉ ra giá trị bất thường trong các đáp án dưới đây?

    Ta có: \left\{ \begin{matrix}Q_{3} = 205 \\Q_{1} = 135 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 30 \\Q_{3} + \dfrac{1}{2}\Delta Q = 310 \\\end{matrix} ight.

    Vậy giá trị bất thường là 312.

  • Câu 9: Nhận biết

    Khi sử dụng máy tính bỏ túi ta được \sqrt{5} = 2,236067977. Giá trị gần đúng của \sqrt{5} quy tròn đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 3 ở hàng phần trăm là số 6 > 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,24.

  • Câu 10: Vận dụng

    Cho bảng số liệu như sau:

    Đại diện

    35

    36

    37

    38

    39

    40

    Tần số

    7

    11

    x

    y

    8

    5

    Biết rằng trung vị và cỡ mẫu của mẫu số liệu lần lượt là 37,550. Tính giá trị x;y?

    Vì cỡ mẫu bằng 50 nên trung vị của mẫu số liệu là trung bình cộng của 2 số ở chính giữa (vị trí 25 và 26).

    Mà trung vị của mẫu số liệu trên là 37,5

    Hay M_{e} = \frac{37 +
38}{2}

    Từ đó ta có số liệu đứng thứ 25 là 37 và thứ 26 là 38.

    Suy ra x = 7

    Mà cỡ mẫu bằng 50 suy ra y =
12

  • Câu 11: Nhận biết

    Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ 1;2;3;4;5;6;8;9;10;12;15;16;18;20;24;25;30;36 ight\}. (18 phần tử)

  • Câu 12: Thông hiểu

    Một hộp có 3 viên bi đỏ, 4 viên bi vàng và 5 viên bi xanh. Lấy ngẫu nhiên 2 viên bi. Tính xác suất để lấy được 2 viên màu vàng.

    Lấy ngẫu nhiên 2 viên bi từ 12 viên bi, suy ra n(\Omega)=C_{12}^2=66.

    Gọi A là biến cố "lấy được 2 viên bi vàng", suy ra n(A)=C_4^2=6.

    Vậy xác suất: P(A)=\frac6{66}=\frac1{11}.

     

  • Câu 13: Thông hiểu

    Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của \pi^{2}chính xác đến hàng phần trăm.

    Sử dụng máy tính bỏ túi ta có giá trị của \pi^{2} là 9,8696044. Do đó, giá trị gần đúng của \pi^{2} chính xác đến hàng phần trăm là 9,9.

  • Câu 14: Nhận biết

    Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Xác suất luôn lấy được 1 bóng hỏng là:

    Trong 3 bóng có 1 bóng hỏng

    Ta có n(\Omega) = C_{12}^{3} =
220.

    Gọi biến cố A : “Trong 3 bóng lấy ra có 1 bóng hỏng”.

    Tính được n\left( \Omega_{A} ight) =
C_{4}^{1}.C_{8}^{2} = 112.

    Vậy P(A) = \frac{112}{220} =
\frac{28}{55}.

  • Câu 15: Thông hiểu

    Cho dãy số liệu thống kê 11,13,x + 10,x^{2} - 1,11,10. Tìm số nguyên dương x, biết số trung bình cộng của dãy số liệu thống kê đó bằng 12,5.

    Điểm trung bình cộng của dãy số trên là

    \frac{11 + 13 + (x + 10) + \left( x^{2}
- 1 ight) + 12 + 10}{6} = 12,5

    \Leftrightarrow x^{2} + x - 20 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 5(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn yêu cầu bài toán.

  • Câu 17: Nhận biết

    Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng

     Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng bình phương của độ lệch chuẩn.

  • Câu 18: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Nhân hai với tất cả các số liệu: 2a_{1};2a_{2};...;2a_{10}.

    Khoảng biến thiên: R_{2} = 2a_{10} -
2a_{1} = 2(a_{10} - a_{1}).

    Suy ra R_{2} = 2R_{1}.

  • Câu 19: Nhận biết

    Cho A là một biến cố trong phép thử T. Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A được xác định theo công thức nào sau đây?

    Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A theo công thức:

    P\left( \overline{A} ight) = 1 -
P(A)

  • Câu 20: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo