Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho a = 235618
\pm 300. Số quy tròn của số gần đúng 235618 là:

    Số quy tròn của số gần đúng 235618 là: 236000.

  • Câu 2: Nhận biết

    Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:

    Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.

  • Câu 3: Vận dụng

    Chọn ngẫu nhiên 3 số tự nhiên từ tập hợp M = \left\{ 1;2;3;...;2019
ight\}. Xác suất của P để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?

    Có tất cả C_{2019}^{3} cách chọn 3 số tự nhiên từ tập hợp M = \left\{
1;2;3;...;2019 ight\}.

    Suy ra n(\Omega) =
C_{2019}^{3}.

    Xét biến cố A: “Chọn 3 số tự nhiên sao cho không có 2 số tự nhiên liên tiếp”.

    Ta có \overline{A}: “Chọn 3 số tự nhiên sao luôn có 2 số tự nhiên liên tiếp”.

    Xét các trường hợp sau:

    + Trường hợp 1: Trong ba số chọn được chỉ có 2 số liên tiếp:

    - Nếu 2 số liên tiếp là \left\{ 1;2
ight\} hoặc \left\{ 2018;2019
ight\} thì số thứ ba có 2019 - 3
= 2016 cách chọn (do không tính số liên tiếp sau và trước mỗi cặp số đó).

    - Nếu 2 số liên tiếp là \left\{ 2;3
ight\}, \left\{ 3;4
ight\},.,\left\{ 2017;2018
ight\} thì số thứ ba có 2019 - 4
= 2015 cách chọn (do không tính 2 số liền trước và sau mỗi cặp số đó).

    Trường hợp này có 2.2016 + 2016.2015 =
4066272 cách chọn.

    + Trường hợp 2: Chọn được 3 số liên tiếp.

    Tức là chọn các bộ \left\{ 1;2;3
ight\}, \left\{ 2;3;4
ight\},.,\left\{ 2017,2018,2019
ight\}: có tất cả 2017 cách.

    Suy ra n\left( \overline{A} ight) =
4066272 + 2017 = 4068289.

    Vậy P = P(A) = 1 - P\left( \overline{A}
ight) = 1 - \frac{4068289}{C_{2019}^{3}} =
\frac{1365589680}{1369657969} = \frac{677040}{679057}.

  • Câu 4: Thông hiểu

    Một hộp có:

    • 2 viên bi trắng được đánh số từ 1 đến 2;

    • 3 viên bi xanh được đánh số từ 3 đến 5;

    • 2 viên bi đỏ được đánh số từ 6 đến 7.

    Lấy ngẫu nhiên hai viên bi, mô tả không gian mẫu nào dưới đây là đúng?

    Mỗi viên bi đánh một số, nên 2 viên bi lấy ra mang số khác nhau.

    Vậy Ω ={(m, n)| 1 ≤ m ≤ 7, 1 ≤ n ≤ 7 và m ≠ n}.

  • Câu 5: Thông hiểu

    Gieo cùng một lúc hai con xúc xắc khác màu nhưng cân đối và đồng chất một lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7?

    Ta có:

    n(\Omega) = 6^{2} = 36

    Các kết quả thuận lợi cho biến cố C: “tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7” là:

    C = \begin{Bmatrix}
(2;6),(3;5),(3;6),(4;4),(4;5) \\
(4;6),(5;3),(5;4),(5;5),(5;6) \\
(6;2),(6;3),(6;4),(6;5),(6;6) \\
\end{Bmatrix}

    \Rightarrow n(C) = 15

    Vậy xác suất của biến cố C là: P(C) =
\frac{n(C)}{n(\Omega)} = \frac{15}{36} = \frac{5}{12}.

  • Câu 6: Vận dụng

    Cho dữ liệu thống kê số vốn (đơn vị: triệu đồng) mua phân bón vụ mùa của 10 hộ nông dân ở thôn B như sau:

    2,9;\ 1,2;\ 1,1;\ 0,8;\ 3,5;\ 1,6;\
1,8;\ 1,2;\ 1,3;\ 0,7

    Tìm các giá trị bất thường của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    \ 0,7;\ 0,8;1,1;\ 1,2;\ 1,2;\ 1,3;\
1,6;\ 1,8;\ 2,9;\ 3,5

    Ta xác định được các tứ phân vị:\left\{
\begin{matrix}
Q_{2} = 1,25 \\
Q_{1} = 1,1 \\
Q_{3} = 1,8 \\
\end{matrix} ight.

    \Rightarrow \Delta Q = Q_{3} - Q_{1} =
1,8 - 1,1 = 0,7

    \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 0,05 \\Q_{3} + \dfrac{1}{2}\Delta Q = 2,85 \\\end{matrix} ight.

    Suy ra có hai giá trị bất thường là 2,9;\
3,5.

  • Câu 7: Thông hiểu

    Kết quả thi Toán của một số học sinh trong lớp là: 3;6;7;8;8. Trung vị là:

    Dãy số liệu gồm 5 số liệu đã được sắp xếp theo thứ tự không giảm.

    Vì 5 là số lẻ nên trung vị nằm ở vị trí \frac{5 + 1}{2} = 3. Có nghĩa là trung vị bằng 7.

  • Câu 8: Thông hiểu

    Dự báo thời tiết trong 10 ngày tại tỉnh A được ghi lại trong bảng sau:

    Ngày

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    Nhiệt độ (0C)

    24

    25

    26

    27

    27

    26

    27

    21

    19

    18

    Tìm phương sai của mẫu số liệu đã cho?

    Ta có: N = 10

    Nhiệt độ trung bình của 10 ngày là:

    \overline{x} = \frac{24 + 25 + 26 + 27 +
28 + 26 + 27 + 21 + 19 + 18}{10} = 24

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{10}\lbrack(24 - 24)^{2}
+ (25 - 24)^{2} + (26 - 24)^{2}

    + (27 - 24)^{2} + (28 - 24)^{2} + (26 -
24)^{2} + (27 - 24)^{2}

    + (21 - 24)^{2} + (19 - 24)^{2} + (18 -
24)^{2}brack = 10,6

    Vậy phương sai cần tìm là 10,6.

  • Câu 10: Thông hiểu

    Hãy tìm số trung bình của mẫu số liệu khi cho bảng tần số dưới đây:

    Giá trị \mathbf{x}_{\mathbf{i}}

    4

    6

    8

    10

    12

    Tần số \mathbf{n}_{\mathbf{i}}

    1

    4

    9

    5

    2

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{4.1 + 6.4 + 8.9 +
10.5 + 12.2}{21} \approx 8,29

    Vậy đáp án bằng 8,29

  • Câu 11: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "lần đầu tiên xuất hiện mặt sấp" là bao nhiêu?

    Xác suất để lần đầu xuất hiện mặt sấp là \frac{1}{2}. Lần 2 và 3 thì tùy ý nên xác suất là 1.

    Theo quy tắc nhân xác suất: P(A) =\frac{1}{2}.1.1 = \frac{1}{2}.

  • Câu 12: Nhận biết

    Độ lệch chuẩn là gì?

     Độ lệch chuẩn là căn bậc hai của phương sai.

  • Câu 13: Nhận biết

    Điều tra về số học sinh của một trường THPT như sau:

    Khối lớp

    10

    11

    12

    Số học sinh

    1120

    1075

    900

    Khoảng biến thiên của mẫu số liệu trên là.

     Khoảng biến thiên R = 1120 - 900 = 220.

  • Câu 15: Vận dụng

    Tìm tứ phân vị dưới của bảng số liệu sau:

    Cỡ mẫu số liệu trên là: n = 10 + 8 + 4 +
2 + 1 = 25.

    Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra M_{e} = Q_{2} = 27.

    Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái M_{e}. Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.

    Suy ra Q_{1} = \frac{26 + 26}{2} =
26. Vậy tứ phân vị dưới là 26.

  • Câu 16: Nhận biết

    Một homestay có 6 phòng đơn. Trên trang web của homestay có 6 nam và 4 nữ đặt phòng. Người chủ homestay chọn ngẫu nhiên 6 người cho nhận phòng. Tính xác suất để cả 6 người được chọn là nam?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{6} = 210

    Chọn ngẫu nhiên 6 người đều là nam ta có: C_{6}^{6} = 1 cách chọn

    Vậy xác suất để chọn 6 người đều là nam là: P = \frac{1}{210}.

  • Câu 17: Thông hiểu

    Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    2

    4

    6

    15

    9

    3

    1

    Độ lệch chuẩn của mẫu số liệu trên là:

    Ta có: N = 42

    Điểm trung bình của học sinh lớp 10A là:

    \overline{x} = \frac{2.3 + 2.4 + 4.5 +
6.6 + 15.7 + 9.8 + 3.9 + 1.10}{42} \approx 6,76

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{42}\lbrack 2.(3 -
6,67)^{2} + 2.(4 - 6,76)^{2} + ... + 1(10 - 6,67)^{2}brack \approx
2,37

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    s = \sqrt{s^{2}} \approx
1,54

    Vậy độ lệch chuẩn cần tìm là: 1,54.

  • Câu 18: Nhận biết

    Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau: 270;\ 300;\ 350;\ 320;\ 310;\ 280. Khoảng biến thiên của mẫu số liệu bằng:

    Giá trị lớn nhất bằng 350

    Giá trị nhỏ nhất bằng 270

    => Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.

    Vậy khoảng biến thiên của mẫu số liệu bằng 80.

  • Câu 19: Thông hiểu

    Cho \overline{m}=2 +\sqrt{3}= 3,7320508...  Hãy xác định số gần đúng của \overline{m} với độ chính xác d = 0,0001.

    Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.

    Quy tròn \overline{m} đến hàng phần chục nghỉn ra được số gần đúng của \overline{m}m=3,7321

  • Câu 20: Nhận biết

    Một lớp có 40 học sinh, trong đó có 4 học sinh tên Anh. Trong một lần kiểm tra bài cũ, thầy giáo gọi ngẫu nhiên hai học sinh trong lớp lên bảng. Tính xác suất để 2 bạn học sinh tên Anh cùng lên bảng.

    Số phần tử của không gian mẫu n(\Omega) =
C_{40}^{2} = 780.

    Gọi A là biến cố gọi hai học sinh tên Anh lên bảng, ta có n(A) =
C_{4}^{2} = 6.

    Vậy xác suất cần tìm là P(A) =
\frac{6}{780} = \frac{1}{130}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo