Điểm kiểm tra môn Văn của 2 tổ học sinh được thống kê:

Dựa vào khoảng biến thiên thì tổ nào học đều hơn?
Khoảng biến thiên điểm của tổ 1 là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên tổ 1 học đều hơn.
Điểm kiểm tra môn Văn của 2 tổ học sinh được thống kê:

Dựa vào khoảng biến thiên thì tổ nào học đều hơn?
Khoảng biến thiên điểm của tổ 1 là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên tổ 1 học đều hơn.
Kết quả làm tròn số
đến chữ số thập phân thứ hai là:
Ta có:
Cho phép thử với không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Đâu không phải là cặp biến cố đối nhau.
Cặp E = {1; 4; 6} và F = {2; 3} không phải là biến cố đối.
Tìm chỉ số IQ trung bình của nhóm học sinh. Biết kết quả đo IQ là
.
Chỉ số IQ trung bình cần tìm là:
Vậy chỉ số IQ trung bình của nhóm học sinh là 72,6.
Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất
lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?
Gọi là biến cố “Số chấm trong hai lần gieo là bằng nhau”.
.
,
.
Vậy .
Trên bàn có 3 quả táo và 4 quả cam. Xác định số phần tử không gian mẫu của phép thử lấy 2 quả ở trên bàn sau đó bỏ ra ngoài rồi lấy tiếp 1 quả nữa.
Lấy 2 quả trong 7 quả ở trên bàn và không tính thứ tự nên số cách là: (cách).
Sau khi bỏ 2 quả ra ngoài còn lại 5 quả. Lấy 1 quả trong 5 quả trên bàn có 5 cách.
Vậy số phần tử không gian mẫu là:
Bốn quyển sách được đánh dấu bằng những chữ cái U, V, X, Y được xếp tuỳ ý trên 1 kệ sách dài. Xác suất để chúng được sắp xếp theo thứ tự bảng chữ cái là:
Số cách sắp xếp 4 phần tử vào dãy nằm ngang gồm 4 vị trí có (cách). Suy ra
.
Chỉ có duy nhất 1 cách sắp xếp 4 chữ U, V, X, Y theo thứ tự bảng chữ cái.
Vậy xác suất .
Tìm số gần đúng của a = 2851275 với độ chính xác d = 300.
Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 2851000.
Tìm các giá trị bất thường của mẫu số liệu:
5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49
Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.
Giá trị chính giữa là 27 nên .
Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên .
Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên .
Khoảng tứ phân vị .
Ta có:
.
Ta co:
.
Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.
Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.
Chọn khẳng định sai?
Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc ”
Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn ”.
Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:
Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.
Điểm kiểm tra môn Lịch Sử của một học sinh qua 8 lần thi được ghi lại như sau:
![]()
Biết số trung vị của mẫu số liệu trên bằng
. Kết quả nào dưới đây đúng?
Vì là số chẵn nên trung vị của mẫu số liệu là trung bình cộng của số liện ở vị trí thứ 4 và thứ 5.
Suy ra
Vậy .
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.
Số trung bình là
.
Phương sai là
.
Độ lệch chuẩn là .
Tại khoa truyền nhiễm của bệnh viện A có 12 bác sĩ và tỉ lệ bác sĩ nam và bác sĩ nữ bằng nhau. Chọn ngẫu nhiên 6 bác sĩ trong khoa để lập đoàn kiểm tra truyền nhiễm trong khu vực B. Tính xác suất để 6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ?
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ” là:
Vậy xác suất của biến cố A cần tìm là:
Cho năm đoạn thẳng có độ dài:
,
,
,
,
. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đó. Tính xác suất để ba đoạn thẳng lấy ra là ba cạnh của một tam giác.
* Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đã cho có cách.
Suy ra .
* Gọi là biến cố "lấy được ba đoạn thẳng là ba cạnh của một tam giác".
Các trường hợp ba đoạn thẳng là ba cạnh của một tam giác là:
(thỏa mãn: hiệu hai cạnh bé hơn cạnh còn lại, tổng hai cạnh lớn hơn cạnh còn lại).
Do đó Vậy sác xuất cần tìm là
.
Cho giá trị gần đúng của
là
. Sai số tuyệt đối của số
không vượt quá giá trị nào sau đây?
Sai số tuyệt đối của số là:
Suy ra sai số tuyệt đối của số không vượt quá
.
Một hộp chứa 2 bi xanh, 3 bi đỏ. Lấy ngẫu nhiên 3 bi. Tính xác suất để có ít nhất một bi xanh trong 3 viên.
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy ít nhất 1 bi xanh.
Chọn 1 bi xanh, 2 bi đỏ, có (cách).
Chọn 2 bi xanh, 1 bi đỏ, có (cách).
Suy ra .
Xác suất cần tìm là .
Người ta thống kê cân nặng của 10 học sinh theo thứ tự tăng dần. Số trung vị của mẫu số liệu trên là:
Ta có: là một số chẵn
=> Số trung vị là:
Hay số trung vị của mẫu số liệu trên bằng trung bình cộng của khối lượng của học sinh thứ 5 và thứ 6.