Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:

    21

    17

    22

    18

    20

    17

    15

    13

    15

    20

    15

    12

    18

    17

    25

    17

    21

    15

    12

    18

    16

    23

    14

    18

    19

    13

    16

    19

    18

    17

    Khoảng biến thiên R của mẫu số liệu trên là:

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.

    Khoảng biến thiên của mẫu số liệu trên là: R=25-12=13

  • Câu 2: Vận dụng

    Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

    Tìm mốt của bảng trên.

    Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.

  • Câu 3: Thông hiểu

    Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu là |\Omega|
= C_{13}^{2} = 78.

    Gọi A là biến cố lấy được hai bi cùng màu.

    Chọn 2 bi xanh, có C_{7}^{2} =
21(cách).

    Chọn 2 bi đỏ, có C_{6}^{2} =
15(cách).

    Suy ra \left| \Omega_{A} ight| = 21 +
15 = 36.

    Xác suất cần tìm là P(A) = \frac{36}{78}
\simeq 0,46.

  • Câu 4: Vận dụng

    Cho dữ liệu thống kê số vốn (đơn vị: triệu đồng) mua phân bón vụ mùa của 10 hộ nông dân ở thôn B như sau:

    2,9;\ 1,2;\ 1,1;\ 0,8;\ 3,5;\ 1,6;\
1,8;\ 1,2;\ 1,3;\ 0,7

    Tìm các giá trị bất thường của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    \ 0,7;\ 0,8;1,1;\ 1,2;\ 1,2;\ 1,3;\
1,6;\ 1,8;\ 2,9;\ 3,5

    Ta xác định được các tứ phân vị:\left\{
\begin{matrix}
Q_{2} = 1,25 \\
Q_{1} = 1,1 \\
Q_{3} = 1,8 \\
\end{matrix} ight.

    \Rightarrow \Delta Q = Q_{3} - Q_{1} =
1,8 - 1,1 = 0,7

    \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 0,05 \\Q_{3} + \dfrac{1}{2}\Delta Q = 2,85 \\\end{matrix} ight.

    Suy ra có hai giá trị bất thường là 2,9;\
3,5.

  • Câu 5: Thông hiểu

    Số kênh của một số hãng truyền hình cáp được ghi như sau: 36 38 33 34 32 30 34 35.

    Tìm tứ phân vị của mẫu số liệu trên.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 30 32 33 34 34 35 36 38.

    Trung vị của mẫu số liệu trên là: \frac{34 + 34}{2} = 34.

    Trung vị của mẫu số liệu 30 32 33 34 là: \frac{32 + 33}{2} = 32,5.

    Trung vị của mẫu số liệu 34 35 36 38 là: \frac{35 + 36}{2} = 35,5.

    Vậy Q_{1} = 32,5;\ Q_{2} = 34;\ Q_{3} =
35,5.

  • Câu 7: Nhận biết

    Cho số đúng \overline{a} = 40 \pm 0,5. Giá trị của \overline{a} thuộc đoạn nào sau đây?

    Ta có:

    \overline{a} = 40 \pm 0,5 \Rightarrow
\overline{a} \in \lbrack 39,5;40,5brack

  • Câu 8: Thông hiểu

    Tìm phương sai của dãy số liệu: 43 45 46 41 40.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{43 + 45 + 46 + 41 + 40}{5} = 43.

    Ta có phương sai: s^{2} = \frac{(43 - 43)^{2} + (45 - 43)^{2} + (46 -
43)^{2} + (41 - 43)^{2} + (40 - 43)^{2}}{5} = 5,2.

    Độ lệch chuẩn: \sqrt{s^{2}} = \sqrt{5,2}
= \frac{\sqrt{130}}{5}.

  • Câu 9: Thông hiểu

    Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.

    Hai giá trị chính giữa là 8 và 14. Suy ra trung vị Q_{2} = \frac{8 + 14}{2} = 11.

    Trung vị Q_{1} của mẫu 3 6 8 là Q_{1} = 6.

    Trung vị Q_{3} của mẫu 14 19 28 là Q_{3} = 19.

    Suy ra \Delta_{Q} = Q_{3} - Q_{1} = 19 -
6 = 13.

    Xét: Q_{1} - 1,5\Delta_{Q} = 3 - 1,5.13 =
- 16,5.

    Xét: Q_{3} + 1,5\Delta_{Q} = 28 + 1,5.13
= 47,5.

    Ta thấy không có giá trị nào nhỏ hơn Q_{1} - 1,5\Delta_{Q} = - 16,5 và lớn hơn Q_{3} + 1,5\Delta_{Q} = 47,5 nên dãy không có giá trị bất thường.

  • Câu 10: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{15}^{3} = 455

    Gọi A là biến cố lấy được 3 quả màu xanh

    Số phần tử của biến cố A là: n(A) =
C_{5}^{3} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{455} = \frac{2}{91}

  • Câu 11: Vận dụng

    Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi. Suy ra số phần tử của không gian mẫu là |\Omega| = C_{14}^{6} = 3003.

    Gọi A là biến cố ''6 viên bi được lấy ra có đủ cả ba màu''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A} tức là 6 viên bi lấy ra không có đủ ba màu như sau

    TH1: Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).

    Do đó trường hợp này có C_{6}^{6} =
1 cách.

    TH2: Chọn 6 viên bi có đúng hai màu xanh và đỏ, có C_{8}^{6} cách.

    Chọn 6 viên bi có đúng hai màu đỏ và vàng, có C_{11}^{6} - C_{6}^{6} cách.

    Chọn 6 viên bi có đúng hai màu xanh và vàng, có C_{9}^{6} - C_{6}^{6} cách.

    Do đó trường hợp này có C_{8}^{6} +
\left( C_{11}^{6} - C_{6}^{6} ight) + \left( C_{9}^{6} - C_{6}^{6}
ight) = 572 cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| = 1 + 572 =
573.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = |\Omega| -
\left| \Omega_{\overline{A}} ight| = 3003 - 573 = 2430.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{2430}{3003} =
\frac{810}{1001}..

  • Câu 12: Nhận biết

    Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau: 27;26;21;28;25;30;26;23;26. Giá trị khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 30

    Giá trị nhỏ nhất là 21

    Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.

  • Câu 13: Thông hiểu

    Hãy xác định sai số tuyệt đối của số a = 123456 biết sai số tương đối \delta_{a} = 0,2\%.

    Ta có: \delta_{a} =
\frac{\Delta_{a}}{|a|} \Rightarrow \Delta_{a} = \delta_{a}|a| =
146,912.

  • Câu 14: Nhận biết

    Một cái hộp chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ hộp này. Xác suất để viên bi được lấy lần thứ 2 là bi xanh là:

    Ta có: Số phần tử của không gian mẫu n(\Omega) = C_{10}^{1}.C_{9}^{1}.

    Gọi A là biến cố: “ Viên bi được lấy lần thứ 2là bi xanh”.

    - Trường hợp 1: Lần 1 lấy viên đỏ, lần 2 lấy viên xanh: Có C_{6}^{1}.C_{4}^{1} cách chọn.

    - Trường hợp 2: Lần 1 lấy viên xanh, lần 2 lấy viên xanh: Có C_{4}^{1}.C_{3}^{1} cách chọn.

    n(A) = C_{6}^{1}.C_{4}^{1} +
C_{4}^{1}.C_{3}^{1}.

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{24 + 12}{10.9} = \frac{2}{5}.

  • Câu 15: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất ba lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm bằng bao nhiêu?

    Ta có: n(\Omega) = 6^{3} =216

    Gọi A là biến cố ít nhất một lần xuất hiện mặt sáu chấm

    Suy ra \overline{A} là biến cố không có lần nào xuất hiện mặt sáu chấm.

    \Rightarrow n\left( \overline{A} ight)= 5^{3} = 125

    Khi đó xác suất của biến cố A cần tìm là: P(A) = 1 - P\left( \overline{A} ight) = 1 -\frac{125}{216} = \frac{91}{216}

  • Câu 16: Nhận biết

    Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{4} = 495

    Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”

    \Rightarrow n(A) = C_{5}^{4} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{495} = \frac{1}{99}

  • Câu 17: Nhận biết

    Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Cộng

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    40

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{3.2 + 4.3 + 5.7 + 6.18 + 7.3 + 8.2 + 9.4 + 10.1}}{{40}} = 6,1.

  • Câu 18: Thông hiểu

    Cho dãy số liệu thống kê 11,13,x + 10,x^{2} - 1,11,10. Tìm số nguyên dương x, biết số trung bình cộng của dãy số liệu thống kê đó bằng 12,5.

    Điểm trung bình cộng của dãy số trên là

    \frac{11 + 13 + (x + 10) + \left( x^{2}
- 1 ight) + 12 + 10}{6} = 12,5

    \Leftrightarrow x^{2} + x - 20 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 5(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn yêu cầu bài toán.

  • Câu 19: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 28658 ± 100.

    Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết \overline{a} ≈ 29000).

  • Câu 20: Thông hiểu

    Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng 7?

    Ta có:

    Số phần tử không gian mẫu là: n(\Omega) =
6.6 = 36

    Gọi A là biến cố “tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng “.

    \Rightarrow A = \left\{
(1;6),(6;1),(2;5),(5;2),(4;3),(3;4) ight\}

    \Rightarrow n(A) = 6

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{6}{20} = \frac{3}{10}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo