Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Số học sinh

    2

    3

    9

    5

    1

    Số trung bình cộng thời gian chạy của học sinh là:

    Số trung bình cộng thời gian chạy của học sinh là:

    \overline{x} = \frac{2.8,3 + 3.8,4 +
9.8,5 + 5.8,7 + 1.8,8}{20} = 8,53

    Vậy thời gian chạy trung bình của 20 học sinh là 8,53.

  • Câu 2: Nhận biết

    Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{6 + 7 + 8 + 9 + 10}{5} = 8.

    Phương sai là s^{2} = \frac{(6 - 8)^{2} + (7 - 8)^{2} + (8 - 8)^{2} + (9
- 8)^{2} + (10 - 8)^{2}}{5} =
2.

  • Câu 3: Nhận biết

    Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?

    Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.

    Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.

  • Câu 4: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.

  • Câu 5: Nhận biết

    Nguyên lí xác suất bé được phát biểu như sau: “Nếu có một biến cố có xác suất rất bé thì trong một phép thử biến cố đó sẽ …”. Cụm từ cần điền vào chỗ trống là:

    Nguyên lí xác suất bé được phát biểu như sau: “Nếu có một biến cố có xác suất rất bé thì trong một phép thử biến cố đó sẽ không xảy ra”.

  • Câu 6: Thông hiểu

    Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:

    Ta có: n(\Omega) = 2^{3} = 8

    Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”

    \Rightarrow A = \left\{
SSS;SSN;SNS;NSS;NSN;NNS ight\}

    \Rightarrow n(A) = 7

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{7}{8}

  • Câu 7: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Xác định khoảng tứ phân vị của mẫu số liệu?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}
Q_{1} = 5 \\
Q_{3} = 7 \\
\end{matrix} ight.\  \Rightarrow \Delta Q = 7 - 5 = 2

    Vậy khoảng tứ phân vị bằng 2.

  • Câu 8: Thông hiểu

    Tìm chỉ số IQ trung bình của nhóm học sinh. Biết kết quả đo IQ là 60;72;63;63;68;72;90;86;72;80.

    Chỉ số IQ trung bình cần tìm là:

    \overline{x} = \frac{60 + 2.63 + 68 +
3.72 + 80 + 86 + 90}{10} = s72,6

    Vậy chỉ số IQ trung bình của nhóm học sinh là 72,6.

  • Câu 9: Thông hiểu

    Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ ba có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa, tính xác suất để trong 7 hoa được có số hoa hồng bằng số hoa ly.

    Không gian mẫu là số cách chọn ngẫu nhiên 7 hoa từ ba bó hoa gồm 21 hoa.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{21}^{7} = 116280.

    Gọi A là biến cố ''7 hoa được ó số hoa hồng bằng số hoa ly''. Ta có các trường hợp thuận lợi cho biến cố A là:

    TH1: Chọn 1 hoa hồng, 1 hoa ly và 5 hoa huệ nên có C_{8}^{1}.C_{7}^{1}.C_{6}^{5} cách.

    TH2: Chọn 2 hoa hồng, 2 hoa ly và 3 hoa huệ nên có C_{8}^{2}.C_{7}^{2}.C_{6}^{3} cách.

    TH3: Chọn 3 hoa hồng, 3 hoa ly và 1 hoa huệ nên có C_{8}^{3}.C_{7}^{3}.C_{6}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{8}^{1}.C_{7}^{1}.C_{6}^{5} + C_{8}^{2}.C_{7}^{2}.C_{6}^{3} +
C_{8}^{3}.C_{7}^{3}.C_{6}^{1} = 23856.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{23856}{116280} =
\frac{994}{4845}.

  • Câu 10: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{7} =
2,645751311. Giá trị gần đúng của \sqrt{7} chính xác đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,65

  • Câu 11: Thông hiểu

    Nhiệt độ của thành phố Hà Nội ghi nhận trong 10 ngày lần lượt là: 24;\ 21;\ 30;\ 34;\
28;\ 35;\ 33;\ 36;\ 25;\ 27. Khoảng tứ phân vị của mẫu số liệu là:

    Sắp xếp dãy dữ liệu theo thứ tự không giảm là:

    21;24;25;27;28;30;33;34;35;36

    Suy ra Q_{2} = 29;Q_{1} = 25;Q_{3} =
34

    Khoảng tứ phân vị của mẫu số liệu là:

    \Delta Q = Q_{3} - Q_{1} =
9

  • Câu 12: Nhận biết

    Độ lệch chuẩn là gì?

     Độ lệch chuẩn là căn bậc hai của phương sai.

  • Câu 13: Vận dụng

    Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

    Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.

    Sắp xếp các giá trị theo thứ tự không giảm:

    3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7

    Từ mẫu số liệu ta tính được: Q_{2} =
6,7Q_{1} = 4,5, Q_{3} = 7,8.

    Suy ra \Delta_{Q} = Q_{3} - Q_{1} = 7,8 -
4,5 = 3,3.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 4,5 -
1,5.3,3 = - 0,45.

    Ta có: Q_{3} + 1,5\Delta_{Q} = 7,8 +
1,5.3,3 = 12,75.

    Ta thấy không có số liệu nào nhỏ hơn -
0,45 và lớn hơn 12,75 nên mẫu không có giá trị bất thường.

  • Câu 14: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 28658 ± 100.

    Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết \overline{a} ≈ 29000).

  • Câu 15: Thông hiểu

    Từ một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Lấy ngẫu nhiên 7 viên bi. Tính xác suất để lấy được ít nhất một viên bi vàng?

    Số phần tử không gian mẫu: n(\Omega) =
C_{15}^{7} = 6435

    Số phần tử biến cố lấy ngẫu nhiên 7 viên bi không có viên bi màu vàng là: C_{11}^{7} = 330

    Vậy xác suất để lấy được ít nhất một viên bi vàng là: P = \frac{6435 - 330}{6435} =
\frac{37}{39}

  • Câu 17: Thông hiểu

    Cho số gần đúng a = 23748123 với độ chính xác d = 101. Số quy tròn của số a là:

    Độ chính xác d = 101 nên ta làm tròn số a = 23748123 đến hàng nghìn, ta được kết quả là a =
23748000.

  • Câu 18: Vận dụng

    Cho kết quả ném phi tiêu của Hùng như sau: 9;9;10;8;9;10;10;7;8;8;10;9;8. Hãy các tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:

    7;8;8;8;8;9;9;9;9;10;10;10;10

    Ta có: Q_{2} = 9 là số đứng thứ 7.

    Q_{1} = 8 là trung bình cộng 2 số đứng thứ 3;4.

    Q_{3} = 10 là trung bình cộng 2 số đứng thứ 10;11.

  • Câu 19: Vận dụng

    Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Xác suất sau 3 bước quân vua trở về ô xuất phát là bao nhiêu?

    Tại mọi ô đang đứng, ông vua có 8 khả năng lựa chọn để bước sang ô bên cạnh.

    Do đó không gian mẫu n(\Omega) =
8^{3}.

    Gọi A là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá

    Chia hai trường hợp:

    + Từ ô ban đầu đi đến ô đen, đến đây có 4 cách để đi bước hai rồi về lại vị trí ban đầu.

    + Từ ô ban đầu đi đến ô trắng, đến đây có 2 cách để đi bước hai rồi về lại vị trí ban đầu.

    Do số phần tử của biến cố A là n(A) = 4.4
+ 2.4 = 24.

    Vậy xác suất P(A) = \frac{24}{8^{3}} =
\frac{3}{64}.

  • Câu 20: Nhận biết

    Gieo 3 đồng tiền. Phép thử ngẫu nhiên này có không gian mẫu là:

    Liệt kê các phần tử: \left\{ NNN,\ SSS,\
NNS,\ SSN,\ NSN,\ SNS,\ NSS,SNN ight\}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo