Một chiếc hộp đựng 5 chiếc thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên đồng thời 2 thẻ trong hộp. Xét biến cố A: “Số ghi trên hai thẻ đều là số lẻ”. Tính số phần tử của biến cố A?
Số phần tử của biến cố A là:
Một chiếc hộp đựng 5 chiếc thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên đồng thời 2 thẻ trong hộp. Xét biến cố A: “Số ghi trên hai thẻ đều là số lẻ”. Tính số phần tử của biến cố A?
Số phần tử của biến cố A là:
Kết quả điểm kiểm tra 45 phút môn Hóa Học của 100 em học sinh được trình bày ở bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Cộng |
|
Tần số |
3 |
5 |
14 |
14 |
30 |
22 |
7 |
5 |
100 |
Số trung bình cộng của bảng phân bố tần số nói trên là:
Số trung bình cộng của bảng phân bố tần số nói trên là
Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Khoảng biến thiên tứ phân vị
được xác định bởi:
Khoảng biến thiên tứ phân vị được xác định bởi
.
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có giá trị của là 9,8696044. Do đó, giá trị gần đúng của
chính xác đến hàng phần trăm là 9,9.
Cho một phép thử
có không gian mẫu
. Giả thiết rằng các kết quả có thể của
là đồng khả năng. Khi đó nếu
là một biến cố liên quan đến phép thử
thì xác suất của
(kí hiệu là
) được cho bởi công thức nào sau đây? Biết rằng kí hiệu số phần tử của không gian mẫu và tập E lần lượt là
.
Nếu E là một biến cố có liên quan đến phép thử T thì xác suất của biến cố E được xác định bởi công thức .
Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?
Mô tả không gian mẫu ta có: . (18 phần tử)
Đội sao đỏ của trường gồm 15 học sinh trong đó có 9 bạn nam và 6 bạn nữ. Chọn ngẫu nhiên 3 bạn đi làm nhiệm vụ. Tính xác suất để chọn được 3 bạn nam?
Số cách chọn 3 học sinh từ 15 học sinh là:
Số cách chọn 3 học sinh nam từ 9 học sinh nam là:
Vậy xác suất để chọn được 3 học sinh nam là:
Một hộp đựng
thẻ được đánh số từ
đến
. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho
lớn hơn
. Tính giá trị của k.
Gọi biến cố : Lấy
tấm thẻ có ít nhất một tấm thẻ chia hết cho
. Với
.
Suy ra : Lấy
tấm thẻ không có tấm thẻ nào chia hết cho
.
Ta có:
.
Theo đề: .
Vậy là giá trị cần tìm.
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Giá của một số bó hoa (đơn vị: nghìn đồng) trong cửa hàng được thống kê như sau:
. Mốt của mẫu số liệu này là:
Bó hoa có giá 300 nghìn đồng có tần số lớn nhất nên suy ra .
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được:
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Quy tròn đến hàng phần trăm, ta được:
.
Số quy tròn số
với độ chính xác
là:
Theo bài ra ta có: Độ chính xác nên ta quy tròn số đến số thập phân thứ nhất.
Vậy số quy tròn là .
Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.
Hai giá trị chính giữa là 8 và 14. Suy ra trung vị .
Trung vị của mẫu 3 6 8 là
.
Trung vị của mẫu 14 19 28 là
.
Suy ra .
Xét: .
Xét: .
Ta thấy không có giá trị nào nhỏ hơn và lớn hơn
nên dãy không có giá trị bất thường.
Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.
Trung vị của mẫu số liệu trên là: .
Trung vị của dãy 8 17 21 35 là: .
Trung vị của dãy 43 59 72 119 là: .
Vậy .
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Tìm tứ phân vị dưới của bảng số liệu sau:

Cỡ mẫu số liệu trên là: .
Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra .
Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái . Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.
Suy ra . Vậy tứ phân vị dưới là 26.
Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3 là:
Số phàn tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3” là:
Vậy xác suất của biến cố A cần tìm là:
Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:
Điểm | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
Tần số | 1 | 1 | 3 | 5 | 8 | 13 | 19 | 24 | 14 | 10 | 2 |
Giá trị của phương sai gần bằng:
Kết quả trung bình là:
Giá trị của phương sai là: