Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

Khoảng biến thiên của mẫu số liệu là:
Khoảng biến thiên là .
Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

Khoảng biến thiên của mẫu số liệu là:
Khoảng biến thiên là .
Tìm số gần đúng của a = 3456782 với độ chính xác d = 100.
Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 3457000.
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có cả 3 môn.
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển thuộc 3 môn khác nhau là .
Suy ra xác suất cần tìm là .
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
Số tiền nước trung bình là:
Phương sai là:
Độ lệch chuẩn là:
Kết quả kiểm tra Toán của một số học sinh như sau:
. Khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 10
Giá trị nhỏ nhất là 7
Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3
Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 | 5 | 7 | 6 | 2 | 5 | 9 | 7 | 6 | 9 |
20 | 6 | 10 | 7 | 5 | 8 | 9 | 7 | 8 | 5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
Ta có bảng tần số sau:
Số cuộn phim | 0 | 2 | 5 | 6 | 7 | 8 | 9 | 10 | 20 |
|
Số nhiếp ảnh gia | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 1 | 1 | n = 20 |
Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.
Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.
=> Q2 = 7.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.
=> Q1 = 5.
Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.
=> Q3 = (8 + 9) : 2 = 8,5.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.
Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.
Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)
Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.
Vậy mẫu số liệu có giá trị ngoại lệ là 20.
Xét phép thử tung con súc sắc 6 mặt hai lần. Xác định số phần tử của không gian mẫu.
Không gian mẫu gồm các bộ , trong đó
.
nhận 6 giá trị,
cũng nhận 6 giá trị nên có
bộ
.
Vậy và
.
Giả sử E là một biến cố liên quan phép thử
với không gian mẫu
. Phát biểu nào dưới đây sai?
khi và chỉ khi
là biến cố không thể.
Giáo viên chủ nhiệm mang đến lớp 6 cuốn sách khoa học và 4 cuốn sách tham khảo (các sách khác nhau từng đôi một). Giáo viên cho bạn C mượn ngẫu nhiên 3 quyển sách để đọc. Tính xác suất của biến cố: “X mượn ít nhất một cuốn sách tham khảo”.
Số phần tử không gian mẫu là:
Gọi A là biến cố: “X mượn ít nhất một cuốn sách tham khảo”.
Khi đó là biến cố X mượn 3 cuốn sách khoa học. Khi đó:
Vậy xác suất của biến cố A là:
Gọi
là tập hợp các số tự nhiên gồm
chữ số khác nhau. Chọn ngẫu nhiên một số từ
. Hãy tính xác suất để chọn được một số gồm
chữ số lẻ và chữ số
luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số
là số lẻ).
Số phần tử của tập là
.
Không gian mẫu là chọn ngẫu nhiên số từ tập
.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Số được chọn gồm
chữ số lẻ và chữ số
luôn đứng giữa hai chữ số lẻ
. Do số
luôn đứng giữa
số lẻ nên số
không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng
+ Chọn trong
vị trí để xếp số
, có
cách.
+ Chọn trong
số lẻ và xếp vào
vị trí cạnh số
vừa xếp, có
cách.
+ Chọn số lẻ trong
số lẻ còn lại và chọn
số chẵn từ
sau đó xếp
số này vào
vị trí trống còn lại có
cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Gieo một xúc xắc 2 lần . Biến cố A là biến cố để sau hai lần gieo có ít nhất 1 mặt 6 chấm.
Các kết quả phù hợp là: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}
Một công ty nhỏ gồm 1 giám đốc và 4 nhân viên. Thu nhập của giám đốc là 15 triệu đồng, thu nhập của nhân viên là 5 triệu đồng. Tìm trung vị cho mẫu số liệu về lương của các thành viên trong công ty.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 5 5 5 5 15.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu trên bằng 5.
Một túi gạo có ghi thông tin khối lượng là
. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?
Khi một túi gạo có ghi thông tin khối lượng là thì khối lượng thực của bao gạo nằm trong đoạn
.
Một nhóm có 6 nam và 4 nữ. Cần chọn 3 bạn để đi trực nhật. Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ.
Chọn 3 bạn bất kì từ 10 bạn, suy ra .
Gọi A là biến cố "3 bạn đi trực nhật luôn có mặt bạn nữ".
Trường hợp 1: 3 bạn nữ
Có: (cách)
Trường hợp 2: 2 bạn nữ + 1 bạn nam
Có: (cách)
Trường hợp 3: 1 bạn nữ + 2 bạn nam
Có: (cách)
Vậy .
Xác suất .
Cho mẫu số liệu: 10 7 8 5 4. Tính độ lệch chuẩn của mẫu số liệu đó.
Số trung bình: .
Phương sai: .
Độ lệch chuẩn: .
Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:
Chọn ngẫu nhiên ba viên bi =>
Gọi A là biến cố lấy được ba viên bi có cả ba màu. Khi đó:
=> Xác suất để 3 viên bi có cả ba màu là:
Tìm tứ phân vị trên của bảng số liệu sau:

Cỡ mẫu số liệu trên là: .
Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra .
Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên phải . Hai giá trị chính giữa là giá trị ở vị trí thứ 19 và 20. Đó là số 28 và số 28.
Suy ra . Vậy tứ phân vị trên là 28.
Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:
|
Thời gian (giây) |
8,3 |
8,4 |
8,5 |
8,7 |
8,8 |
|
Số học sinh |
2 |
3 |
9 |
5 |
1 |
Số trung bình cộng thời gian chạy của học sinh là:
Số trung bình cộng thời gian chạy của học sinh là:
Vậy thời gian chạy trung bình của 20 học sinh là 8,53.
Quy tròn số
đến hàng chục, được số
. Khi đó sai số tuyệt đối là:
Sai số tuyệt đối là:
Cho dãy số liệu
. Xác định mốt của mẫu số liệu?
Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất
Suy ra mốt của mẫu số liệu là 5.