Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một hộp chứa các viên bi kích thước khác nhau, trong đó có 5 viên bi màu đỏ và 6 viên bi màu vàng. Lấy ngẫu nhiên đồng thời 4 viên bi từ hộp. Tính xác suất để trong 4 viên bi lấy ra có đúng 1 viên bi màu vàng.

    Số phần tử của không gian mẫu là: n(\Omega) = C_{15}^{4}

    Số cách để lấy 4 viên bi trong đó có đúng một viên bi màu vàng là: n(A) = C_{6}^{1}.C_{9}^{3}

    Xác suất của biến cố A là: P(A) =
\frac{C_{6}^{1}.C_{9}^{3}}{C_{15}^{4}} = \frac{24}{65}

  • Câu 2: Thông hiểu

    Một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?

    Khi một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg thì khối lượng thực của bao gạo nằm trong đoạn \lbrack
4,8;5,2brack.

  • Câu 4: Nhận biết

    Cho số gần đúng a = 32567 với độ chính xác d = 300. Số quy tròn của số a là:

    Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là 33000.

  • Câu 5: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có cả 3 môn.

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển thuộc 3 môn khác nhau là C_{4}^{1}.C_{3}^{1}.C_{2}^{1} = 24.

    Suy ra xác suất cần tìm là \frac{2}{7}.

  • Câu 6: Nhận biết

    Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Xác suất luôn lấy được 1 bóng hỏng là:

    Trong 3 bóng có 1 bóng hỏng

    Ta có n(\Omega) = C_{12}^{3} =
220.

    Gọi biến cố A : “Trong 3 bóng lấy ra có 1 bóng hỏng”.

    Tính được n\left( \Omega_{A} ight) =
C_{4}^{1}.C_{8}^{2} = 112.

    Vậy P(A) = \frac{112}{220} =
\frac{28}{55}.

  • Câu 7: Thông hiểu

    Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{23 + 29 + 2.41 + 45
+ 48 + 71 + 72}{8} = 46,25

    Vậy số trung bình là 46,25.

  • Câu 8: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 9: Thông hiểu

    Bảng dưới đây là nhiệt độ của một thành phố (đơn vị: độ C).

    Tính độ lệch chuẩn của mẫu số liệu về nhiệt độ.

    Số trung bình là: \overline{x} = \frac{18 + 19 + 20 + 23 + 25 + 26 + 22 +
20}{8} = 21,625.

    Tính được phương sai là: s^{2} =
\frac{463}{64}.

    Độ lệch chuẩn là \sqrt{s^{2}} =
\sqrt{\frac{463}{63}} = \frac{\sqrt{463}}{8}.

  • Câu 10: Nhận biết

    Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:

     Mô tả không gian mẫu: \Omega = \{XD; XV; DV; DX; VX; VD; XX; VV; DD\}

    (Xanh là X, đỏ là D, vàng là V).

  • Câu 11: Thông hiểu

    Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca. Tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.

    Không gian mẫu là chọn tùy ý 4 người từ 13 người.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{13}^{4} = 715.

    Gọi A là biến cố ''4 người được ó ít nhất 3 nữ''. Ta có hai trường hợp thuận lợi cho biến cố A như sau:

    TH1:: Chọn 3 nữ và 1 nam, có C_{8}^{3}C_{5}^{1} cách.

    TH2:: Cả 4 nữ, có C_{8}^{4} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{8}^{3}C_{5}^{1} + C_{8}^{4} = 350.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{350}{715} =
\frac{70}{143}.

  • Câu 12: Nhận biết

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 13: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 14: Nhận biết

    Chọn phát biểu đúng trong các phát biểu sau:

    Phát biểu đúng là: "Độ chính xác của số quy tròn bằng một đơn vị của hàng quy tròn."

  • Câu 15: Thông hiểu

    Cho dãy số liệu 21;35;17;43;8;59;72;119. Kết luận nào dưới đây đúng?

    Sắp xếp dãy số liệu theo thứ tự không tăng như sau:

    8;17;21;35;43;59;72;119

    Khi đó:

    Q_{2} = \frac{x_{4} + x_{5}}{2} =
\frac{35 + 43}{2} = 39

    Q_{1} = \frac{x_{2} + x_{3}}{2} =
\frac{17 + 21}{2} = 19

    Q_{3} = \frac{x_{6} + x_{7}}{2} =
\frac{59 + 72}{2} = 65,5

    Vậy kết luận đúng là: Q_{1} = 19,Q_{3} =
65,5.

  • Câu 16: Vận dụng

    Bảng dưới đây thống kê điểm Văn của lớp 10H.

    Biết n\mathbb{\in N}. Tìm mốt của bảng số liệu.

    Vì tổng số học sinh bằng 40 nên ta có: 5n
+ 15 = 40 \Leftrightarrow n = 5.

    Thống kê lại bảng:

    Vậy mốt là giá trị 6 (xuất hiện 14 lần, nhiều nhất).

  • Câu 17: Vận dụng

    Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp. Xác suất để 2 viên bi được lấy vừa khác màu vừa khác số là bao nhiêu?

    Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{12}^{2} = 66.

    Gọi A là biến cố ''2 viên bi được lấy vừa khác màu vừa khác số''.

    ● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi đỏ là 4.4 = 16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

    ● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi vàng là 3.4 = 12 cách.

    ● Số cách lấy 2 viên bi gồm 1 bi đỏ và 1 bi vàng là 3.3 = 9 cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 16 + 12 + 9 =
37.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{37}{66}.

  • Câu 18: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Không tính toán, hãy chọn kết luận đúng.

    Quan sát hai mẫu số liệu, ta thấy mẫu A có độ phân tán lớn hơn mẫu B. Suy ra mẫu A có phương sai lớn hơn. (Các số liệu ở mẫu B tập trung ở trung tâm)

  • Câu 19: Nhận biết

    Tìm trung vị của dãy số liệu 2 3 1 5 3 7 9 10.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 2 3 3 5 7 9 10.

    Dãy trên có hai giá trị chính giữa là 3 và 5.

    Suy ra trung vị là: M_{e} = \frac{3 +
5}{2} = 4.

  • Câu 20: Thông hiểu

    Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:

    Sản lượng

    20

    21

    22

    23

    24

     

    Tần số

    5

    8

    11

    10

    6

    n = 40

    Phương sai là:

    Sản lượng lúa trung bình là:

    \overline x  = \frac{{5.20 + 8.21 + 11.22 + 10.23 + 6.24}}{{40}} = 22,1

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{5.20}^2} + {{8.21}^2} + {{11.22}^2} + {{10.23}^2} + {{6.24}^2}} ight) - {\left( {22,1} ight)^2} \hfill \\   \Rightarrow {S^2} = 1,54 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo