Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:
Khối lượng trung bình của 3 nhóm học sinh là:
Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:
Khối lượng trung bình của 3 nhóm học sinh là:
Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:
|
Số cuốn sách |
3 |
4 |
5 |
6 |
7 |
|
Số học sinh |
6 |
15 |
3 |
8 |
8 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).
Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau:
. Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu đã cho ta thấy:
Giá trị lớn nhất là 9
Giá trị nhỏ nhất là 3
Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.
Bảng dưới đây thống kê điểm của An và Bình:

Dựa vào khoảng biến thiên thì bạn nào học đều hơn?
Khoảng biến thiên điểm của bạn An là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên Bình học đều hơn.
Tìm số gần đúng của
với độ chính xác
?
Độ chính xác nên ta quy tròn số gần đúng
đến hàng phần trăm và ta được số gần đúng là
.
Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
Số tiền nước trung bình là:
Phương sai là:
Độ lệch chuẩn là:
Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên người trong
người.
Suy ra số phần tử không gian mẫu là .
Gọi là biến cố
người được chọn không có cặp vợ chồng nào
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là
người được chọn luôn có
cặp vợ chồng.
+ Chọn cặp vợ chồng trong
cặp vợ chồng, có
cách.
+ Chọn thêm người trong 18 người, có
cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Số trung bình của mẫu số liệu
là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 46,25.
Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”
Vậy xác suất của biến cố A là:
Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.
Số cách lấy 3 viên bi bất kì là .
Số cách lấy được 3 viên bi trắng là .
Số cách lấy được 2 viên bi trắng, 1 viên bi đen là .
Số cách lấy được 1 viên bi trắng, 2 viên bi đen là .
Số cách lấy được 3 viên bi đen là .
Số cách lấy được cả 2 viên bi không đỏ là .
Suy ra xác suất cần tìm là .
Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

Tìm trung vị của mẫu số liệu trên.
Cỡ mẫu số liệu trên là .
Thống kê lại:
Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.
Suy ra trung vị
.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần nghìn là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: .
Cho dãy số liệu:
![]()
![]()
Tìm giá trị bất thường của mẫu số liệu trên?
Các giá trị của mẫu số liệu được sắp xếp theo thứ tự không giảm như sau:
Ta tìm được các tứ phân vị
Suy ra khoảng biến thiên tứ phân vị là
Suy ra các giá trị bất thường nằm ngoài đoạn
Vậy các giá trị bất thường là .
Cho phép thử có không gian mẫu
. Cặp biến cố không đối nhau là cặp nào trong các cặp dưới đây?
Cặp biến cố không đối nhau là và
do
và
.
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra đều là môn toán là bao nhiêu?
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển thuộc môn toán là .
Suy ra xác suất cần tìm là .
Phép thử ngẫu nhiên (gọi tắt là phép thử) là gì?
Phép thử ngẫu nhiên (gọi tắt là phép thử) là hoạt động mà ta không thể biết trước được kết quả của nó.