Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Tại khoa truyền nhiễm của bệnh viện A có 12 bác sĩ và tỉ lệ bác sĩ nam và bác sĩ nữ bằng nhau. Chọn ngẫu nhiên 6 bác sĩ trong khoa để lập đoàn kiểm tra truyền nhiễm trong khu vực B. Tính xác suất để 6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ?
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ” là:
Vậy xác suất của biến cố A cần tìm là:
Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác nên ta làm tròn số
đến hàng nghìn, ta được kết quả là
.
Biểu đồ dưới đây thể hiện tỉ lệ lạm phát cơ bản bình quân năm trong giai đoạn 2018 – 2022:

(Nguồn: Niêm giám thống kê 2022)
Trong giai đoạn từ 2018 – 2021, năm có tỉ lệ lạm phát cơ bản bình quân năm cao nhất là?
Trong giai đoạn từ 2018 – 2021, năm 2020 có tỉ lệ lạm phát cơ bản bình quân năm cao nhất.
Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là .
Gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất liên tiếp hai lần. Tính xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm.
Không gian mẫu
Số phần tử của không gian mẫu
Gọi A là biến cố: “Lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm”.
Xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm là: .
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "có đúng 2 lần xuất hiện mặt sấp" là bao nhiêu?
Chọn 2 trong 3 lần để xuất hiện mặt sấp có cách.
2 lần xuất hiện mặt sấp có xác suất mỗi lần là . Lần xuất hiện mặt ngửa có xác suất là
.
Vậy: .
Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư được bỏ đúng phong bì.
Số phần tử không gian mẫu là: .
Gọi là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.
Ta xét các trường hợp sau:
Nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Không thể có trường hợp hai lá thư bỏ đúng và một lá thư bỏ sai.
Cả ba lá thư đều được bỏ đúng có duy nhất cách.
.
Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: .
Cách 2:
Gọi là biến cố “Không có lá thư nào được bỏ đúng phong bì”.
.
Độ lệch chuẩn là gì?
Độ lệch chuẩn là căn bậc hai của phương sai.
Cho bảng số liệu thống kê kết quả thi chạy 100m của một nhóm học sinh (đơn vị: giây) như sau:
|
Thời gian |
12 |
13 |
14 |
15 |
16 |
|
Số học sinh |
6 |
4 |
5 |
3 |
2 |
Tính thời gian chạy trung bình của nhóm học sinh đó?
Số học sinh tham gia chạy là 20 (học sinh)
Thi gian chạy trung bình của nhóm 20 học sinh là:
(giây)
Vậy thời gian chạy trung bình của nhóm học sinh bằng 13,55 giây.
Gieo một con xúc sắc cân đối và đồng chất hai lần. Tính xác suất để cả hai lần xuất hiện mặt 6 chấm.
* Số phần tử của không gian mẫu là: .
* Gọi ”Cả hai lần xuất hiện mặt sáu chấm”. Số phần tử của biến cố
là
.
* Xác suất của biến cố là
.
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Giả sử E là một biến cố liên quan phép thử
với không gian mẫu
. Phát biểu nào dưới đây sai?
khi và chỉ khi
là biến cố không thể.
Phát biểu nào sau đây sai?
Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."
Kết quả điểm kiểm tra 45 phút môn Hóa Học của 100 em học sinh được trình bày ở bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Cộng |
|
Tần số |
3 |
5 |
14 |
14 |
30 |
22 |
7 |
5 |
100 |
Số trung bình cộng của bảng phân bố tần số nói trên là:
Số trung bình cộng của bảng phân bố tần số nói trên là
Cho mẫu số liệu: 10 7 8 5 4. Tính độ lệch chuẩn của mẫu số liệu đó.
Số trung bình: .
Phương sai: .
Độ lệch chuẩn: .
Tìm tứ phân vị dưới của bảng số liệu sau:

Cỡ mẫu số liệu trên là: .
Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra .
Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái . Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.
Suy ra . Vậy tứ phân vị dưới là 26.
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có = 1,732050808. Do đó: Giá trị gần đúng của
chính xác đến hàng phần trăm là 1,73.
Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”.
Ta có:
Gọi A là biến cố “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”
Vậy