Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho năm đoạn thẳng có độ dài: 1\ cm, 3\
cm, 5\ cm,7\ cm, 9\
cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đó. Tính xác suất để ba đoạn thẳng lấy ra là ba cạnh của một tam giác.

    * Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đã cho có C_{5}^{3} = 10 cách.

    Suy ra n(\Omega) = 10.

    * Gọi A là biến cố "lấy được ba đoạn thẳng là ba cạnh của một tam giác".

    Các trường hợp ba đoạn thẳng là ba cạnh của một tam giác là:

    \left\{ 3;5;7 ight\},\ \left\{ 3;7;9
ight\},\ \left\{ 5;7;9 ight\} (thỏa mãn: hiệu hai cạnh bé hơn cạnh còn lại, tổng hai cạnh lớn hơn cạnh còn lại).

    Do đó n(A) = 3. Vậy sác xuất cần tìm là P(A) = \frac{n(A)}{n(\Omega)} =
\frac{3}{10}.

  • Câu 2: Vận dụng

    Bảng dưới đây thống kê điểm Văn của lớp 11C.

    Biết n\mathbb{\in N}. Tìm trung vị của bảng số liệu.

    Vì tổng số học sinh bằng 40 nên ta có: 5n
+ 15 = 40 \Leftrightarrow n = 5.

    Thống kê lại bảng:

    Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.

    Suy ra trung vị M_{e} = \frac{6 + 6}{2} =
6.

  • Câu 3: Thông hiểu

    Thời gian chạy 50 m của 20 học sinh được ghi lại trong bảng sau đây:

    Thời gian

    (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Tần số

    2

    3

    9

    5

    1

    Hãy tìm khoảng biến thiên của mẫu số liệu đã cho.

     Khoảng biến thiên: R=8,8-8,3=0,5.

  • Câu 4: Nhận biết

    Gieo đồng tiền 5lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là bao nhiêu?

    n(\Omega) = 2^{5} = 32.

    A: “được ít nhất một đồng tiền xuất hiện mặt sấp”.

    Xét biến cố đối \overline{A}: “không có đồng tiền nào xuất hiện mặt sấp”.

    \overline{A} = \left\{ (N,N,N,N,N)
ight\}, có n\left( \overline{A}
ight) = 1.

    Suy ra n(A) = 32 - 1 = 31.

    KL: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{31}{32}.

  • Câu 5: Thông hiểu

    Lớp 12 có 9 học sinh giỏi, lớp 11 có 10 học sinh giỏi, lớp 10 có 3 học sinh giỏi. Chọn ngẫu nhiên hai trong số học sinh đó. Tính xác suất để cả hai học sinh đó cùng một lớp.

    Số phần tử của không gian mẫu là |\Omega|
= C_{22}^{2} = 231.

    Gọi A là biến cố cả hai học sinh được chọn từ cùng một lớp.

    Chọn 2 học sinh của lớp 12, có C_{9}^{2}
= 36(cách).

    Chọn 2 học sinh của lớp 11, có C_{10}^{2}
= 45(cách).

    Chọn 2 học sinh của lớp 10, có C_{3}^{2}
= 3(cách).

    Suy ra \left| \Omega_{A} ight| = 36 +
45 + 3 = 84.

    Xác suất cần tìm là P(A) = \frac{84}{231}
= \frac{4}{11}.

  • Câu 6: Thông hiểu

    Cho dãy số liệu: 5;1;3;8;6;9;10;20;18. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    1;3;5;6;8;9;10;18;20

    Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là Q_{2} = 8

    Tứ phân vị thứ nhất là trung vị của dãy số liệu: 1;3;5;6. Khi đó Q_{1} = \frac{3 + 5}{2} = 4.

    Tứ phân vị thứ ba là trung vị của dãy số liệu: 9;10;18;20. Khi đó Q_{3} = \frac{10 + 18}{2} = 14

    Vậy khoảng tứ phân vị của mẫu số liệu là

    \Delta Q = Q_{3} - Q_{1} = 14 - 4 =
10

  • Câu 7: Nhận biết

    Số quy tròn số 2,718282 với độ chính xác d = 0,01 là:

    Theo bài ra ta có: Độ chính xác 0,001
< d = 0,01 nên ta quy tròn số đến số thập phân thứ nhất.

    Vậy số quy tròn là 2,7.

  • Câu 8: Thông hiểu

    Tại khoa truyền nhiễm của bệnh viện A có 12 bác sĩ và tỉ lệ bác sĩ nam và bác sĩ nữ bằng nhau. Chọn ngẫu nhiên 6 bác sĩ trong khoa để lập đoàn kiểm tra truyền nhiễm trong khu vực B. Tính xác suất để 6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{6} = 924

    Số kết quả thuận lợi cho biến cố A: “6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ” là: n(A) =
C_{6}^{3}.C_{6}^{3} = 400

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{400}{924} =
\frac{100}{231}

  • Câu 9: Thông hiểu

    Đội sao đỏ của trường gồm 15 học sinh trong đó có 9 bạn nam và 6 bạn nữ. Chọn ngẫu nhiên 3 bạn đi làm nhiệm vụ. Tính xác suất để chọn được 3 bạn nam?

    Số cách chọn 3 học sinh từ 15 học sinh là: C_{15}^{3}

    Số cách chọn 3 học sinh nam từ 9 học sinh nam là: C_{9}^{3}

    Vậy xác suất để chọn được 3 học sinh nam là: \frac{C_{9}^{3}}{C_{15}^{3}} =
\frac{12}{65}

  • Câu 10: Nhận biết

    Hộp A4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Hộp B7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên mỗi hộp một viên bi. Xác suất để hai viên bi được lấy ra có cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu: 15.18 =
270.

    Số cách chọn từ mỗi hộp 1 viên bi sau cho 2 viên bi cùng màu là: 4.7 + 5.6 + 6.5 = 88.

    Vậy xác suất cần tìm là \frac{88}{270} =
\frac{44}{135}.

  • Câu 11: Thông hiểu

    Cho mẫu số liệu 1;3;4;13;x^{2} - 1;18;19;21 (đã sắp xếp thứ tự và x \in \mathbb{N}^{*}). Biết rằng trung vị của mẫu số liệu bằng 14. Tìm x?

    Dãy số liệu có 8 số liệu nên

    14 = \frac{13 + x^{2} - 1}{2}
\Leftrightarrow x^{2} = 16

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 4(tm) \\
x = - 4(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn điều kiện đề bài.

  • Câu 12: Nhận biết

    Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên là R = 7,72 - 4,53 =
3,19.

  • Câu 13: Thông hiểu

    Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:

    C_{24}^4 = 10{\text{ }}626

    Số phần tử của không gian mẫu là 10 626.

    Lấy 4 viên bi trong 16 viên bi đỏ, trắng có C_{16}^4 cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là

    C_{16}^4 = 1820

    => Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    10{\text{ }}626-1{\text{ }}820 = 8{\text{ }}806

    Vậy có 8 806 kết quả thuận lợi cho biến cố B.

  • Câu 14: Thông hiểu

    Lớp trưởng lớp 10A thống kê số học sinh và số cây trồng được theo từng tổ trong buổi ngoại khóa như sau:

    Tổ

    1

    2

    3

    4

    Số học sinh

    11

    10

    12

    10

    Số cây

    30

    30

    38

    29

    Bạn lớp trưởng cho biết số cây mỗi bạn trong lớp trồng được đều không vượt quá 3 cây. Biết rằng bảng trên có một tổ bị thống kê sai. Tổ mà bạn lớp trưởng đã thống kê sai là:

    Xét đáp án Tổ 1

    Số cây tối đa tổ 1 trồng được là: 11.3 = 33 (cây)

    Vì 30 (cây) < 33 (cây) nên thống kê số cây tổ 1 trồng được không sai.

    Xét đáp án Tổ 2

    Số cây tối đa tổ 2 trồng được là: 10.3 = 30 (cây)

    Vì 30 (cây) = 30 (cây) nên thống kê số cây tổ 1 trồng được không sai.

    Xét đáp án Tổ 3

    Số cây tối đa tổ 3 trồng được là: 12.3 = 36 (cây)

    Vì 38 (cây) > 36 (cây) nên thống kê số cây tổ 3 trồng được là sai.

    Xét đáp án Tổ 4

    Số cây tối đa tổ 3 trồng được là: 10.3 = 30 (cây)

    Vì 29 (cây) < 30 (cây) nên thống kê số cây tổ 4 trồng được không sai.

  • Câu 15: Vận dụng

    Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

    Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.

    Số trung bình của mẫu số liệu (1) và (2) là:

    \overline{x_{1}} = \frac{8 + 6 + 7 + 5 + 9}{5} = 7

    \overline{x_{2}} = \frac{6 + 7 + 7 + 8 + 7}{5} = 7

    Phương sai của (1) là: {s_{1}}^{2}
= \frac{(8 - 7)^{2} + (6 - 7)^{2} +
(7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Phương sai của (2) là: {s_{2}}^{2}
= \frac{(6 - 7)^{2} + (7 - 7)^{2} +
(7 - 7)^{2} + (8 - 7)^{2} + (7 - 7)^{2}}{5} = 0,4

    {s_{2}}^{2} < {s_{1}}^{2} nên bạn Huy học đều hơn bạn Dũng.

  • Câu 16: Nhận biết

    Gieo con súc sắc hai lần. Biến cố A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm. Mô tả biến cố A.

    Liệt kê ta có: A = \left\{ (1,6),\
(2,6),\ (3,6),\ (4,6),\ (5,6),\ (6,6),\ (6,1),\ (6,2),\ (6,3),\ (6,4),\
(6,5) ight\}.

  • Câu 17: Thông hiểu

    Cửa hàng thống kê cỡ giày trong một đơn hàng ngẫu nhiên của một vị khách như sau: 35;37;39;41;38;40;40;37;40. Xác định trung vị của mẫu số liệu?

    Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:

    35;37;37;38;39;40;40;40;41

    Trung vị của mẫu số liệu là 39.

  • Câu 18: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 19: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 20: Nhận biết

    Độ lệch chuẩn là gì?

     Độ lệch chuẩn là căn bậc hai của phương sai.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo