Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?
Ta có:
Gọi A là biến cố “lấy được 3 quả cầu màu xanh”
Vậy .
Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?
Ta có:
Gọi A là biến cố “lấy được 3 quả cầu màu xanh”
Vậy .
Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.
Sắp xếp các giá trị theo thứ tự không giảm:
3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7
Từ mẫu số liệu ta tính được: và
,
.
Suy ra .
Ta có:
.
Ta có:
.
Ta thấy không có số liệu nào nhỏ hơn và lớn hơn
nên mẫu không có giá trị bất thường.
Cho dãy số liệu
. Tứ phân vị thứ nhất của mẫu số liệu là:
Vì cỡ mẫu của mẫu số liệu bằng 11 là số lẻ
=> Số trung vị của mẫu số liệu trên là
Nửa dữ liệu bên trái là:
Do đó
Suy ra tứ phân vị thứ nhất của mẫu số liệu là .
Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:
|
Thời gian (giây) |
8,3 |
8,4 |
8,5 |
8,7 |
8,8 |
|
Số học sinh |
2 |
3 |
9 |
5 |
1 |
Mốt của bảng số liệu trên là:
Quan sát bảng số liệu ta thấy:
Số học sinh đạt kết quả 8,5 giây là lớn nhất bằng 9 học sinh.
=> Mốt của bảng số liệu là 8,5.
Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.
Số 23 xuất hiện nhiều nhất nên nó là mốt.
Gieo đồng tiền
lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?
Phép thử: Gieo đồng tiền lần cân đối và đồng chất.
Ta có .
Biến cố : Được ít nhất một lần xuất hiện mặt sấp.
: Tất cả đều là mặt ngửa.
.
.
.
Cho mẫu số liệu:
. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?
Ta có
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Số gần đúng của
có ba chữ số đáng tin viết dưới dạng chuẩn là:
Vì số gần đúng của số có ba chữ số đáng tin nên ba chữ số đó là
,
,
.
Nên cách viết dưới dạng chuẩn là
Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên
bước. Xác suất sau
bước quân vua trở về ô xuất phát là bao nhiêu?

Tại mọi ô đang đứng, ông vua có khả năng lựa chọn để bước sang ô bên cạnh.
Do đó không gian mẫu .
Gọi là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá
Chia hai trường hợp:
+ Từ ô ban đầu đi đến ô đen, đến đây có cách để đi bước hai rồi về lại vị trí ban đầu.
+ Từ ô ban đầu đi đến ô trắng, đến đây có cách để đi bước hai rồi về lại vị trí ban đầu.
Do số phần tử của biến cố A là .
Vậy xác suất .
Lấy ngẫu nhiên 3 quả cầu từ hộp gồm 6 quả cầu trắng và 3 quả cầu đen. Tính xác suất để lấy được ba quả cùng màu?
Số phần tử của không gian mẫu
Gọi A là biến cố lấy được 3 quả cùng màu
TH1: Lấy được 3 quả màu trắng có: cách
TH2: Lấy được 3 quả màu đen có: cách
Vậy xác suất của biến cố A cần tìm là:
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được:
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Quy tròn đến hàng phần trăm, ta được:
.
Số điểm của một vận động viên trong 5 hiệp được ghi lại như sau: 9 8 15 8 20. Tính tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 8 9 15 20.
Số liệu chính giữa là 9 nên trung vị của mẫu số liệu trên là 9.
Trung vị của mẫu số liệu 8 8 là .
Trung vị của mẫu số liệu 15 20 là .
Vậy .
Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.
Vậy số phần tử của A là 4 phần tử.
Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.
Khoảng biến thiên điểm số là:
Khoảng biến thiên là .
Đội sao đỏ của trường gồm 15 học sinh trong đó có 9 bạn nam và 6 bạn nữ. Chọn ngẫu nhiên 3 bạn đi làm nhiệm vụ. Tính xác suất để chọn được 3 bạn nam?
Số cách chọn 3 học sinh từ 15 học sinh là:
Số cách chọn 3 học sinh nam từ 9 học sinh nam là:
Vậy xác suất để chọn được 3 học sinh nam là:
Tìm phương sai của mẫu số liệu:
?
Ta có:
Số trung bình là:
Phương sai của mẫu số liệu là:
Vậy đáp án là 2.
Cho số gần đúng của
là
. Sai số tuyệt đối của số gần đúng này là:
Sai số tuyệt đối là:
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất lấy được toàn màu đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Trên bàn có 3 quả táo và 4 quả cam. Xác định số phần tử không gian mẫu của phép thử lấy 2 quả ở trên bàn sau đó bỏ ra ngoài rồi lấy tiếp 1 quả nữa.
Lấy 2 quả trong 7 quả ở trên bàn và không tính thứ tự nên số cách là: (cách).
Sau khi bỏ 2 quả ra ngoài còn lại 5 quả. Lấy 1 quả trong 5 quả trên bàn có 5 cách.
Vậy số phần tử không gian mẫu là:
Bảng dưới đây thống kê điểm Văn của lớp 10H.

Biết
. Tìm mốt của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Vậy mốt là giá trị 6 (xuất hiện 14 lần, nhiều nhất).