Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Gieo một con súc sắc cân đối và đồng chất. Xác suất mà mặt có số chấm chẵn xuất hiện là bao nhiêu?

    Ta có: Không gian mẫu \Omega = \left\{
1,2,3,4,5,6 ight\} suy ra n(\Omega) = 6.

    Gọi biến cố A: “Con súc sắc có số chấm chẵn xuất hiện” hay A = \left\{
2;4;6 ight\} suy ra n(A) =
3.

    Từ đó suy ra p(A) =
\frac{n(A)}{n(\Omega)} = \frac{3}{6} = \frac{1}{2}.

    Vậy xác suất để mặt có số chấm chẵn xuất hiện là \frac{1}{2}.

  • Câu 2: Nhận biết

    Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

    Mốt của mẫu số liệu là:

    Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.

  • Câu 3: Thông hiểu

    Một nhóm 18 học sinh gồm 10 học sinh nam. Chọn ngẫu nhiên đồng thời 5 học sinh. Tính xác suất để trong 5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ?

    Số phần tử không gian mẫu n(\Omega) =
C_{18}^{5} = 8568

    Các trường hợp thỏa mãn điều kiện bài toán:

    TH1: Chọn được 3 nam và 2 nữ: C_{10}^{3}.C_{8}^{2} = 3360 cách chọn

    TH2: Chọn được 4 nam và 1 nữ: C_{10}^{4}.C_{8}^{1} = 1680 cách chọn

    Suy ra số kết quả thuận lợi cho biến cố A: “5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ” là: 3360 + 1680 = 5040 cách

    Vậy xác suất của biến cố A là: P(A) =
\frac{5040}{8568} = \frac{10}{17}

  • Câu 4: Thông hiểu

    Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    Tìm trung vị của bảng số liệu trên.

    Bảng số liệu có 20 giá trị => n = 20.

    => {M_e} = \frac{{{x_{10}} + {x_{11}}}}{2} = \frac{{7 + 8}}{2} = 7,5.

  • Câu 5: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "có đúng 2 lần xuất hiện mặt sấp" là bao nhiêu?

    Chọn 2 trong 3 lần để xuất hiện mặt sấp có C_{3}^{2} = 3 cách.

    2 lần xuất hiện mặt sấp có xác suất mỗi lần là \frac{1}{2}. Lần xuất hiện mặt ngửa có xác suất là \frac{1}{2}.

    Vậy: P(A) =3.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{3}{8}.

  • Câu 6: Nhận biết

    Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau: 270;\ 300;\ 350;\ 320;\ 310;\ 280. Khoảng biến thiên của mẫu số liệu bằng:

    Giá trị lớn nhất bằng 350

    Giá trị nhỏ nhất bằng 270

    => Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.

    Vậy khoảng biến thiên của mẫu số liệu bằng 80.

  • Câu 7: Nhận biết

    Viết số quy tròn của số a = 80,3654 đến hàng phần trăm.

    Số quy tròn của số a = 80,3654 đến hàng phần trăm là 80,37.

  • Câu 8: Thông hiểu

    Cho mẫu số liệu: 43;45;46;41;40. Giá trị phương sai và độ lệch chuẩn của mẫu số liệu lần lượt là:

    Trung bình cộng của mẫu số liệu là:

    \overline{x} = \frac{43 + 45 + 46 + 41 +
40}{5} = 43

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{43^{2} + 45^{2} + 46^{2} +
41^{2} + 40^{2}}{5} - 43^{2} = 5,2

    Độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} \approx
2,28.

  • Câu 9: Thông hiểu

    Cho số gần đúng a = 23748123 với độ chính xác d = 101. Số quy tròn của số a là:

    Độ chính xác d = 101 nên ta làm tròn số a = 23748123 đến hàng nghìn, ta được kết quả là a =
23748000.

  • Câu 10: Nhận biết

    Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ S1;\ S2;\ S3;\ S4;\ S5;S6;N1;N2;N3;N4;N5;N6
ight\}.

  • Câu 11: Nhận biết

    Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.

    Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.

     Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.

    Hai giá trị chính giữa là 96 105. Do đó Q_2=\frac{96+105}2=100,5.

    Tứ phân vị Q_1 của mẫu số liệu: 72 77 84 96 là Q_1=\frac{77+84}2=80,5.

    Tứ phân vị Q_3 của mẫu số liệu 105 105 117 124 là: Q_3=\frac{105+117}2=111.

    Khoảng tứ phân vị \Delta_Q=111-80,5=30,5.

  • Câu 12: Thông hiểu

    Phát biểu nào sau đây sai?

    Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."

  • Câu 13: Vận dụng

    Chọn khẳng định đúng.

    Khẳng định đúng là:

    Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.

  • Câu 14: Vận dụng

    Gọi S là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ S. Hãy tính xác suất để chọn được một số gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số 0 là số lẻ).

    Số phần tử của tập S9.A_{9}^{8}.

    Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = 9.A_{9}^{8}.

    Gọi X là biến cố ''Số được chọn gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ''. Do số 0 luôn đứng giữa 2 số lẻ nên số 0 không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng

    + Chọn 1 trong 7 vị trí để xếp số 0, có C_{7}^{1} cách.

    + Chọn 2 trong 5 số lẻ và xếp vào 2 vị trí cạnh số 0 vừa xếp, có A_{5}^{2} cách.

    + Chọn 2 số lẻ trong 3 số lẻ còn lại và chọn 4 số chẵn từ \left\{ 2;\ 4;\ 6;\ 8 ight\} sau đó xếp 6 số này vào 6 vị trí trống còn lại có C_{3}^{2}.C_{4}^{4}.6! cách.

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| =
C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} =
\frac{C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!}{9.A_{9}^{8}} =
\frac{5}{54}.

  • Câu 15: Thông hiểu

    Cho dãy số liệu 9;10;15;18;19;27;30;40;46;100;200. Tứ phân vị thứ nhất của mẫu số liệu là:

    Vì cỡ mẫu của mẫu số liệu bằng 11 là số lẻ

    => Số trung vị của mẫu số liệu trên là 27 \Rightarrow Q_{2} = 27

    Nửa dữ liệu bên trái Q_{2} là: 9;10;15;18;19

    Do đó Q_{1} = 15

    Suy ra tứ phân vị thứ nhất của mẫu số liệu là Q_{1} = 15.

  • Câu 16: Vận dụng

    Bảng dưới đây thống kê điểm Văn của lớp 11C.

    Biết n\mathbb{\in N}. Tìm trung vị của bảng số liệu.

    Vì tổng số học sinh bằng 40 nên ta có: 5n
+ 15 = 40 \Leftrightarrow n = 5.

    Thống kê lại bảng:

    Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.

    Suy ra trung vị M_{e} = \frac{6 + 6}{2} =
6.

  • Câu 17: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Khi đó \Delta_{a} = \left| \overline{a} - a
ight| gọi là:

    Ta có: \Delta_{a} = \left| \overline{a} -
a ight| gọi là sai số tuyệt đối của số gần đúng a.

  • Câu 18: Thông hiểu

    Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.

    Số cách lấy 3 viên bi bất kì là C_{16}^{3} = 560.

    Số cách lấy được 3 viên bi trắng là C_{7}^{3}.C_{6}^{0}.C_{3}^{0} = 35.

    Số cách lấy được 2 viên bi trắng, 1 viên bi đen là C_{7}^{2}.C_{6}^{1}.C_{3}^{0} = 126.

    Số cách lấy được 1 viên bi trắng, 2 viên bi đen là C_{7}^{1}.C_{6}^{2}.C_{3}^{0} = 105.

    Số cách lấy được 3 viên bi đen là C_{7}^{0}.C_{6}^{3}.C_{3}^{0} = 20.

    Số cách lấy được cả 2 viên bi không đỏ là 35 + 126 + 105 + 20 = 286.

    Suy ra xác suất cần tìm là \frac{143}{280}.

  • Câu 19: Thông hiểu

    Có bốn hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có người?

    Vì mỗi hành khách có 4 cách chọn toa tàu nên: n(\Omega) = 4^{4} = 256

    Để xếp theo yêu cầu của bài toán ta thực hiện các bước liên tiếp như sau:

    Chọn 1 toa để xếp 3 người ta có: C_{4}^{1} = 4

    Chọn 3 người để xếp vào toa đó là: C_{4}^{3} = 4

    Chọn 1 toa từ 3 toa còn lại để xếp người còn lại vào: C_{3}^{1} = 3

    Theo quy tắc nhân ta có: 4.4.3 =
48

    Vậy xác suất cần tìm là: \frac{48}{256} =
\frac{3}{16}

  • Câu 20: Thông hiểu

    Gieo ba con xúc xắc một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện trên ba con xúc xắc bằng 9?

    Gọi A là biến cố: “Tổng số chấm trên ba mặt của ba con xúc xắc là 9”

    \left\{ \begin{matrix}
9 = 1 + 2 + 6 \\
9 = 2 + 3 + 4 \\
9 = 1 + 3 + 5 \\
9 = 1 + 4 + 4 \\
9 = 2 + 2 + 5 \\
9 = 3 + 3 + 3 \\
\end{matrix} ight. nên n(A) =
3.3! + 3.2 + 1 = 25

    Lại có |\Omega| = 6^{3} =
216

    Khi đó xác suất của biến cố A là: P(A) =
\frac{25}{216}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo