Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:
Mô tả không gian mẫu: .
(Xanh là X, đỏ là D, vàng là V).
Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:
Mô tả không gian mẫu: .
(Xanh là X, đỏ là D, vàng là V).
Một hộp chứa 9 chiếc thẻ được đánh số từ 1 đến 9. Lấy ngẫu nhiên 3 chiếc thẻ từ hộp. Tính xác suất để tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ.
Số phần tử của không gian mẫu: .
Gọi A là biến cố "tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ".
Ta có:
.
Xác suất để tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ là:
.
Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:
Số phần tử của không gian mẫu là 10 626.
Lấy 4 viên bi trong 16 viên bi đỏ, trắng có cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là
=> Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Vậy có 8 806 kết quả thuận lợi cho biến cố B.
Các bạn sinh viên đi đo chỉ số EQ thu được kết quả: 60 72 63 83 68 74 90 86 74 80.
Ta nên chọn giá trị đại diện cho mẫu số liệu trên thế nào?
Sắp xếp lại mẫu số liệu theo thứ tự không giảm: 60 63 68 72 74 74 80 83 86 90.
Các giá trị của mẫu số liệu có độ lớn không chênh lệch quá nhiều. Do đó ta nên chọn số trung bình cộng làm giá trị đại diện.
Ta có:
.
Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”
Vậy xác suất của biến cố A là:
Tìm trung vị của dãy số liệu 2 3 1 5 3 7 9 10.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 2 3 3 5 7 9 10.
Dãy trên có hai giá trị chính giữa là 3 và 5.
Suy ra trung vị là: .
Số điểm của một vận động viên trong 5 hiệp được ghi lại như sau: 9 8 15 8 20. Tính tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 8 9 15 20.
Số liệu chính giữa là 9 nên trung vị của mẫu số liệu trên là 9.
Trung vị của mẫu số liệu 8 8 là .
Trung vị của mẫu số liệu 15 20 là .
Vậy .
Xác định khoảng tứ phân vị của mẫu số liệu:
?
Ta có: là số lẻ
Suy ra
Vậy khoảng tứ phân vị của mẫu số liệu bằng 3.
Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi
là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp” và
là biến cố “Kết quả ba lần gieo là như nhau”. Hãy liệt kê các kết quả của biến cố ![]()
,
. Suy ra
.
Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau:
. Giá trị khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 30
Giá trị nhỏ nhất là 21
Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.
Số quy tròn của
với độ chính xác
là:
Xét ta thấy chữ số khác
đầu tiên bên trái của d nằm ở hàng phần trăm.
Nên suy ra hàng lớn nhất có độ chính xác là hàng phần trăm nên ta quy tròn số
ở hàng gấp 10 lần hàng vừa tìm được, tức là hàng phần mười.
Xét chữ số ở hàng phần trăm của là 5 nên ta suy ra được số quy tròn của
đến hàng phần mười là
.
Chọn ngẫu nhiên hai số khác nhau từ tập hợp số
. Tính xác suất để trong hai số lấy ra có ít nhất một số lẻ?
Số phần tử không gian mẫu là:
Gọi B là biến cố: “Cả hai số lấy ra đều là số chẵn”
Suy ra xác suất của biến cố B là:
Ta có biến cố là biến cố: “Trong hai số lấy ra có ít nhất một số lẻ”
Khi đó
Số quy tròn của số gần đúng
với
là:
Quy tròn đến hàng trăm nên số quy tròn của số gần đúng
là:
.
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.
Cho một đa giác
có
đỉnh nội tiếp một đường tròn
. Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của
. Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của
, số đó gần với số nào nhất trong các số sau?
Số phần tử của không gian mẫu là: .
Gọi là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của
”.
Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:
Bước 1: Chọn đỉnh đầu tiên của tứ giác, có cách.
Bước 2: Chọn đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia
chiếc kẹo cho
đứa trẻ sao cho mỗi đứa trẻ có ít nhất
cái, có
cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.
Số phần tử của biến cố
là:
.
Xác suất của biến cố là:
.
Cho bảng kết quả kiểm tra môn Tiếng Anh của học sinh như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Tổng |
|
Số học sinh |
1 |
2 |
3 |
4 |
5 |
4 |
1 |
N = 20 |
Tính số trung vị của mẫu số liệu đã cho?
Dãy số liệu đã cho có 20 số liệu nên số hạng chính giữa nằm ở số liệu thứ 10 và 11.
Đó là số 7 và số 8.
Suy ra .
Xác định khoảng tứ phân vị của mẫu số liệu: 8 6 5 1 9 10 15.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 5 6 8 9 10 15
Trung vị là giá trị chính giữa của mẫu số liệu, suy ra
.
Trung vị của mẫu 1 5 6 là
.
Trung vị của mẫu 9 10 15 là
.
Vậy khoảng tứ phân vị .
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng 7?
Ta có:
Số phần tử không gian mẫu là:
Gọi A là biến cố “tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng “.
Vậy .