Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một hộp chứa 5 viên bi trắng, 10 viên bi xanh và 15 viên bi đỏ. Lấy ngẫu nhiên từ trong hộp 7 viên bi. Xác suất để trong số 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{30}^{7}

    Gọi A là biến cố để trong 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ

    \overline{A} là biến cố để trong 7 viên bi được lấy ra có số viên bi nhỏ hơn 2.

    TH1: 7 viên bi trong đó có 1 viên bi đỏ ta có: 15.C_{15}^{6}

    TH2: 7 viên bi trong đó có không có viên bi đỏ ta có: C_{15}^{7}

    \Rightarrow n\left( \overline{A} ight)
= 15.C_{15}^{6} + C_{15}^{7}

    Vậy xác suất của biến cố A cần tìm là:

    P(A) = 1 - P\left( \overline{A} ight)
= 1 - \frac{15.C_{15}^{6} + C_{15}^{7}}{C_{30}^{7}} =
\frac{5011}{5220}

  • Câu 2: Nhận biết

    Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

    Mốt của mẫu số liệu là:

    Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.

  • Câu 3: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra đều là môn toán là bao nhiêu?

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển thuộc môn toán là C_{4}^{3}.C_{3}^{0}.C_{2}^{0} = 4.

    Suy ra xác suất cần tìm là \frac{1}{21}.

  • Câu 4: Vận dụng

    Cho dãy số liệu:

    5;6;19;21;22;23;24;25;

    26;27;28;31;35;38;47.

    Tìm giá trị bất thường của mẫu số liệu trên?

    Các giá trị của mẫu số liệu được sắp xếp theo thứ tự không giảm như sau:

    5;6;19;21;22;23;24;25;

    26;27;28;31;35;38;47

    Ta tìm được các tứ phân vị Q_{1} =
21;Q_{3} = 31

    Suy ra khoảng biến thiên tứ phân vị là \Delta Q = Q_{3} - Q_{1} = 31 - 21 =
10

    \Rightarrow \left\{ \begin{matrix}
Q_{3} + 1,5\Delta Q = 46 \\
Q_{1} - 1,5\Delta Q = 6 \\
\end{matrix} ight.

    Suy ra các giá trị bất thường nằm ngoài đoạn \lbrack 6;46brack

    Vậy các giá trị bất thường là 5;47.

  • Câu 5: Thông hiểu

    Cho \overline{a}
= \frac{16}{7} = 2,285714... Hãy xác định số gần đúng a của \overline{a} với độ chính xác d = 0,03.

    Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là a = 2,29.

  • Câu 6: Thông hiểu

    Chọn ngẫu nhiên hai số khác nhau từ tập hợp số A = \left\{ 1;2;3;4;5;6;7;8;9
ight\}. Tính xác suất để trong hai số lấy ra có ít nhất một số lẻ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{9}^{2} = 36

    Gọi B là biến cố: “Cả hai số lấy ra đều là số chẵn” \Rightarrow n(B) = C_{6}^{4} = 6

    Suy ra xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{6}{36} = \frac{1}{6}

    Ta có biến cố \overline{B} là biến cố: “Trong hai số lấy ra có ít nhất một số lẻ”

    Khi đó P\left( \overline{B} ight) = 1 -
P(B) = 1 - \frac{1}{6} = \frac{5}{6}

  • Câu 7: Thông hiểu

    Khối lượng 30 gói hàng được cho bởi bảng:

    Tính số trung bình của bảng trên. (làm tròn đến hàng phần trăm).

    Số trung bình cộng của mẫu số liệu trên là:

    \overline{x} =\frac{4.250 + 4.300 + 5.350 + 6.400+ 4.450 + 7.500}{30}\approx 388,33.

  • Câu 8: Nhận biết

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm. Điều đó có nghĩa là gì?

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm có nghĩa là: “Chiều cao đúng của học sinh là một số nằm trong khoảng từ 174,8cm đến 175,2cm.”

  • Câu 9: Thông hiểu

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:

    Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.

    Vậy số phần tử của A là 4 phần tử.

  • Câu 10: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}Q_{1} = 5 \\Q_{3} = 7 \\\end{matrix} ight.\  \Rightarrow \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 2 \\Q_{3} + \dfrac{1}{2}\Delta Q = 10 \\\end{matrix} ight.

    Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.

    Vậy không có giá trị nào bất thường trong mẫu số liệu.

  • Câu 11: Nhận biết

    Cho A là biến cố liên quan đến phép thử có không gian mẫu \Omega. Tìm mệnh đề đúng.

    Theo định nghĩa xác suất cổ điển, cho phép thử T có không gian mẫu \Omega. Giả thiết rằng các kết quả có thể của T là đồng khả năng, khi đó cho A là biến cố có liên quan đến phép thử có không gian mẫu \Omega. Thì xác suất của biến cố A được tính bởi công thức P(A) = \frac{n(A)}{n(\Omega)}, trong đó n(A);n(\Omega) tương ứng là số phần tử của biến cố A và của không gian mẫu.

  • Câu 12: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 13: Nhận biết

    Cho ba chiếc hộp như sau:

    Hộp 1 chứa 1 viên bi đỏ, 1 viên bi vàng.

    Hộp 2 chứa 1 viên bi đỏ, 1 viên bi xanh.

    Hộp 3 chứa 1 viên bi vàng, 1 viên bi xanh.

    Từ mỗi hộp lấy ngẫu nhiên một viên bi và các phần tử của không gian mẫu được mô tả bằng sơ đồ sau:

    Gọi A là biến cố: “Trong ba viên bi lấy ra có đúng một viên bi màu đỏ”. Xác định số kết quả thuận lợi cho biến cố A?

    Số kết quả thuận lợi cho biến cố A là 4.

  • Câu 14: Vận dụng

    Tìm tứ phân vị dưới của bảng số liệu sau:

    Cỡ mẫu số liệu trên là: n = 10 + 8 + 4 +
2 + 1 = 25.

    Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra M_{e} = Q_{2} = 27.

    Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái M_{e}. Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.

    Suy ra Q_{1} = \frac{26 + 26}{2} =
26. Vậy tứ phân vị dưới là 26.

  • Câu 15: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?

    Ta có: \overline{A}: "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.

    Theo quy tắc nhân xác suất: P(\overline{A}) =\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{1}{8}.

    Vậy: P(A) = 1 - P(\overline{A}) = 1 -\frac{1}{8} = \frac{7}{8}.

  • Câu 16: Nhận biết

    Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau: 27;26;21;28;25;30;26;23;26. Giá trị khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 30

    Giá trị nhỏ nhất là 21

    Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.

  • Câu 17: Thông hiểu

    Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:

    Điểm

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    Tần số

    1

    1

    3

    5

    8

    13

    19

    24

    14

    10

    2

    Giá trị của phương sai gần bằng:

    Kết quả trung bình là:

    \overline x  = \frac{{9.1 + 10.1 + 11.3 + 12.5 + 13.8 + 14.13 + 15.19 + 16.24 + 17.14 + 18.10 + 19.2}}{{100}} = 15,23

    Giá trị của phương sai là:

     \begin{matrix}  {S^2} = \dfrac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + {n_3}{x_4}^2 + ... + {n_k}{x_k}^2} ight) - {\left( {\overline x } ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{100}}({1.9^2} + {1.10^2} + {3.11^2} + {5.12^2} + {8.13^2} + {13.14^2} \hfill \\   + {19.15^2} + {24.16^2} + {14.17^2} + {10.18^2} + {2.19^2}) - {\left( {15,23} ight)^2} \hfill \\   \Rightarrow {S^2} \approx 3,96 \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên là R = 7,72 - 4,53 =
3,19.

  • Câu 19: Vận dụng

    Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư được bỏ đúng phong bì.

    Số phần tử không gian mẫu là: n(\Omega) =
3! = 6.

    Gọi A là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.

    Ta xét các trường hợp sau:

    Nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Không thể có trường hợp hai lá thư bỏ đúng và một lá thư bỏ sai.

    Cả ba lá thư đều được bỏ đúng có duy nhất 1 cách.

    \Rightarrow n(A) = 4.

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}.

    Cách 2:

    Gọi B là biến cố “Không có lá thư nào được bỏ đúng phong bì”.

    \Rightarrow n(B) = 2 \Rightarrow P(A) = 1
- P(B) = 1 - \frac{n(B)}{n(\Omega)} = 1 - \frac{2}{6} =
\frac{2}{3}.

  • Câu 20: Thông hiểu

    Tìm số trung vị của dãy số liệu 1;1;2;3;4;4;5;5;5;6?

    Dãy số liệu được sắp xếp theo thứ tự không giảm

    Suy ra số trung vị của dãy số liệu đã cho là \frac{4 + 4}{2} = 4.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo