Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.
Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
2 |
4 |
6 |
15 |
9 |
3 |
1 |
Độ lệch chuẩn của mẫu số liệu trên là:
Ta có:
Điểm trung bình của học sinh lớp 10A là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu đã cho là:
Vậy độ lệch chuẩn cần tìm là: .
Khi điều tra về số dân của tỉnh A, người ta thu được kết quả là
. Tìm số quy tròn của
.
Số quy tròn của số là:
Cho bảng số liệu thống kê kết quả thi của một số học sinh như sau:
|
Học sinh |
An |
Hoa |
Tuấn |
Hùng |
Quân |
Linh |
|
Điểm |
9 |
8 |
7 |
10 |
8 |
6 |
Tìm phương sai của mẫu số liệu?
Ta có:
Điểm trung bình của các học sinh trong bảng số liệu là:
Ta có bảng sau:
|
Giá trị |
Độ lệch |
Bình phương độ lệch |
|
9 |
9 – 8 = 1 |
1 |
|
8 |
8 – 8 = 0 |
0 |
|
7 |
7 – 8 = -1 |
1 |
|
10 |
10 – 8 = 2 |
4 |
|
8 |
8 – 8 = 0 |
0 |
|
6 |
6 – 8 = -2 |
4 |
|
Tổng |
10 |
|
Suy ra phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là .
Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên người trong
người.
Suy ra số phần tử không gian mẫu là .
Gọi là biến cố
người được chọn không có cặp vợ chồng nào
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là
người được chọn luôn có
cặp vợ chồng.
+ Chọn cặp vợ chồng trong
cặp vợ chồng, có
cách.
+ Chọn thêm người trong 18 người, có
cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Khối lượng 30 gói hàng được cho bởi bảng:

Tính số trung bình của bảng trên. (làm tròn đến hàng phần trăm).
Số trung bình cộng của mẫu số liệu trên là:
.
Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.
Vậy số phần tử của A là 4 phần tử.
Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm tứ phân vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3. Suy ra trung vị .
Trung vị của 17 giá trị bên trái là giá trị ở vị trí thứ 9. Đó là số 2. Suy ra
.
Trung vị của 17 giá trị bên phải là giá trị ở vị trí thứ 27. Đó là số 4. Suy ra
.
Quy tròn số 0,1352 đến hàng phần mười.
Vì số 0,1352 có chữ số hàng phần trăm là 3 < 5 nên khi làm tròn số 0,1352 đến hàng phần mười, ta được 0,1352 ≈ 0,1
Xét một phép thử có không gian mẫu
gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Biến cố đối của biến cố A là
Biến cố đối của biến cố A là biến cố “A không xảy ra”.
Một hộp chứa 10 tấm thẻ được đánh số thứ tự từ 1 đến 10. Chọn ngẫu nhiên hai tấm thẻ. Tính xác suất để chọn được hai tấm thẻ đều ghi số chẵn?
Từ 1 đến 10 có 5 số chẵn.
Số cách chọn ngẫu nhiên hai tấm thẻ trong hộp là:
Số cách chọn được hai tấm thẻ đều ghi số chẵn là:
Vậy xác suất của biến cố A là:
Giáo viên chủ nhiệm mang đến lớp 6 cuốn sách khoa học và 4 cuốn sách tham khảo (các sách khác nhau từng đôi một). Giáo viên cho bạn C mượn ngẫu nhiên 3 quyển sách để đọc. Tính xác suất của biến cố: “X mượn ít nhất một cuốn sách tham khảo”.
Số phần tử không gian mẫu là:
Gọi A là biến cố: “X mượn ít nhất một cuốn sách tham khảo”.
Khi đó là biến cố X mượn 3 cuốn sách khoa học. Khi đó:
Vậy xác suất của biến cố A là:
Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình
có hai nghiệm phân biệt là:
Phương trình có hai nghiệm phân biệt khi và chỉ khi
Mà
=>
Gieo con xúc xắc cân đối và đồng chất =>
Biến cố A xúc xắc xuất hiện mặt b chấm thỏa mãn phương trình =>
=> Xác suất để phương trình có hai nghiệm phân biệt là:
Lấy ngẫu nhiên 3 quả cầu từ hộp gồm 6 quả cầu trắng và 3 quả cầu đen. Tính xác suất để lấy được ba quả cùng màu?
Số phần tử của không gian mẫu
Gọi A là biến cố lấy được 3 quả cùng màu
TH1: Lấy được 3 quả màu trắng có: cách
TH2: Lấy được 3 quả màu đen có: cách
Vậy xác suất của biến cố A cần tìm là:
Cửa hàng thống kê cỡ giày trong một đơn hàng ngẫu nhiên của một vị khách như sau:
. Xác định trung vị của mẫu số liệu?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Trung vị của mẫu số liệu là .
Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:
|
Số cuốn sách |
3 |
4 |
5 |
6 |
7 |
|
Số học sinh |
6 |
15 |
3 |
8 |
8 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).
Quy tròn số 73,316 đến hàng phần trăm.
Quy tròn số 73,316 đến hàng phần trăm ta được số 73,32.
Cho mẫu số liệu như sau:

Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 29.
Giá trị nhỏ nhất là 23
Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.
Vậy đáp án là 6.
Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.
Số trung bình của mẫu số liệu (1) và (2) là:
Phương sai của (1) là:
Phương sai của (2) là:
Vì nên bạn Huy học đều hơn bạn Dũng.
Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?
Mô tả không gian mẫu ta có: . (18 phần tử)