Đề kiểm tra 15 phút Chương 6 Thống kê

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Thống kê gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.

  • Câu 2: Vận dụng

    Cho ba nhóm học sinh:

    Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.

    Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.

    Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.

    Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?

    Tổng khối lượng của mỗi nhóm lần lượt là: \left\{ \begin{matrix}
N_{1} = 6.45kg \\
N_{2} = 11.50kg \\
N_{3} = 8.42kg \\
\end{matrix} ight.

    Khối lượng trung bình của cả ba nhóm là:

    \overline{x} = \frac{N_{1} + N_{2} +
N_{3}}{6 + 8 + 11}

    \Rightarrow \overline{x} = \frac{6.45 +
11.50 + 8.42}{25} = 46,24kg

    Vậy khối lượng trung bình của cả ba nhóm học sinh là \overline{x} = 46,24kg.

  • Câu 3: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7} là 0,429. Sai số tuyệt đối của số 0,429 là:

    Ta có: \frac{3}{7} =0,428571… nên sai số tuyệt đối của 0,429 là

    \Delta = \left| 0,429 - \frac{3}{7}
ight| < |0,429 - 4,4285| = 0,0005

  • Câu 4: Thông hiểu

    Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:

    Khối lượng trung bình của 3 nhóm học sinh là:

    \overline x  = \frac{{48.5 + 45.10 + 40.15}}{{5 + 10 + 15}} = 43

  • Câu 5: Nhận biết

    Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:

    Tiền lương (VND)

    5.000.000

    6.000.000

    7.000.000

    8.000.000

    9.000.000

    9.500.000

    Tần số

    26

    34

    20

    10

    5

    5

    Tìm mốt của bảng phân bổ tần số trên.

    Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.

  • Câu 6: Nhận biết

    Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau: 3;\ 4;\ 7;\ 7;\
9. Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu đã cho ta thấy:

    Giá trị lớn nhất là 9

    Giá trị nhỏ nhất là 3

    Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.

  • Câu 7: Thông hiểu

    Tìm các giá trị bất thường của mẫu số liệu:

    5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49

    Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.

    Giá trị chính giữa là 27 nên Q_{2} =
27.

    Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên Q_{1} = 22.

    Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên Q_{3} = 32.

    Khoảng tứ phân vị \Delta_{Q} = 32 - 22 =
10.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 22 - 1,5.10 = 7.

    Ta co: Q_{3} - 1,5\Delta_{Q} = 32 + 1,5.10 = 47.

    Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.

    Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.

  • Câu 8: Thông hiểu

    Kết quả khi đo chiều dài của một cây thước là \overline{a} = 45 \pm 0,2(cm). Khi đó sai số tuyệt đối của phép đo được ước lượng là:

    Ta có độ dài gần đúng của cây thước là a= 45 với độ chính xác d =0,2cm

    Nên sai số tuyệt đối là \Delta_{a} \leq d= 0,2.

  • Câu 9: Vận dụng

    Nhà sản xuất công bố chiều dài và chiều rộng của 1 tấm ván hình chữ nhật lần lượt là 100
\pm 0,570 \pm 0,5 (đơn vị: cm). Tính diện tích của tấm thép.

    Gọi \overline{a}\overline{b} lần lượt là chiều dài và chiều rộng thực của tấm thép.

    Ta có: 99,5 \leq \overline{a} \leq
100,569,5 \leq \overline{b}
\leq 70,5.

    Suy ra: 99,5.69,5 = 6915,25 \leq
\overline{a}.\overline{b} \leq 100,5.70,5 = 7085,25.

    Do đó: 6915,25 - 7000 = - 84,75 \leq
\overline{a}.\overline{b} - 7000 \leq 7085,25 - 7000 =
85,25

    Vậy diện tích tấm thép là 7000 \pm
85,25.

  • Câu 10: Nhận biết

    Khẳng định nào sau đây là đúng?

     Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.

  • Câu 11: Vận dụng

    Cho bảng số liệu như sau:

    Đại diện

    35

    36

    37

    38

    39

    40

    Tần số

    7

    11

    x

    y

    8

    5

    Biết rằng trung vị và cỡ mẫu của mẫu số liệu lần lượt là 37,550. Tính giá trị x;y?

    Vì cỡ mẫu bằng 50 nên trung vị của mẫu số liệu là trung bình cộng của 2 số ở chính giữa (vị trí 25 và 26).

    Mà trung vị của mẫu số liệu trên là 37,5

    Hay M_{e} = \frac{37 +
38}{2}

    Từ đó ta có số liệu đứng thứ 25 là 37 và thứ 26 là 38.

    Suy ra x = 7

    Mà cỡ mẫu bằng 50 suy ra y =
12

  • Câu 12: Thông hiểu

    Cho số a =
367653964 \pm 213. Số quy tròn của số gần đúng 367653964 là:

    Với a = 367653964 \pm 213 suy ra độ chính xác d = 213

    Vì độ chính xác đến hàng trăm nên số quy trình của số a được làm tròn đến hàng nghìn.

    Vì chữ số hàng năm là 9 > 5

    => Chữ số hàng nghìn được tăng thêm 1 đơn vị từ 3 đến 4 và các chữ số đằng sau thay bởi chữ số 0.

    => Số quy tròn của số gần đúng 367653964 là: .367654000.

  • Câu 13: Nhận biết

    Quy tròn số 21569 đến hàng chục nghìn ta được:

    Quy tròn số 21569 đến hàng nghìn ta được số quy tròn là 22000.

  • Câu 14: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Xác định khoảng tứ phân vị của mẫu số liệu?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}
Q_{1} = 5 \\
Q_{3} = 7 \\
\end{matrix} ight.\  \Rightarrow \Delta Q = 7 - 5 = 2

    Vậy khoảng tứ phân vị bằng 2.

  • Câu 15: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Cộng hai với tất cả các số liệu: a_{1} +
2;a_{2} + 2;...;a_{10} + 2.

    Khoảng biến thiên: R_{2} = (a_{10} + 2) -
(a_{1} + 2 ) = a_{10} -
a_{1}.

    Suy ra R_{2} = R_{1}.

  • Câu 16: Thông hiểu

    Xác định các tứ phân vị của mẫu số liệu: 60;78;80;64;70;76;80;74;86;90?

    Sắp xếp mẫu dữ liệu theo thứ tự không giảm như sau:

    60;64;70;74;76;78;80;80;86;90

    Ta có: N = 10 suy ra trung vị bằng trung bình cộng của dữ liệu nằm ở vị trí thứ 5 và thứ 6

    Q_{2} = \frac{76 + 78}{2} =
77

    Vậy đáp án đúng là: Q_{1} = 70,Q_{2} =
77,Q_{3} = 80.

  • Câu 17: Nhận biết

    Cho các mệnh đề:

    i) Một túi cam nặng khoảng 10,5kg.

    ii) Độ dài đường chéo hình vuông cạnh bằng 1 là \sqrt{2}.

    iii) Bán kính Trái Đất khoảng 6371km.

    Trong các mệnh đề trên, có bao nhiêu số là số gần đúng?

    Có hai số là số gần đúng thuộc các mệnh đề:

    i) Một túi cam nặng khoảng 10,5kg.

    iii) Bán kính Trái Đất khoảng 6371km.

  • Câu 18: Nhận biết

    Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

     Khoảng biến thiên R = 5,1 - 0,4 = 4,7.

  • Câu 19: Nhận biết

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 20: Nhận biết

    Số cam có trong các giỏ được ghi lại như sau: 2;8;12;16. Số trung vị của mẫu số liệu là:

    Vì cỡ mẫu N = 4 là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.

    => Số trung vị của mẫu số liệu: \frac{8 + 12}{2} = 10

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Thống kê Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo