Đề kiểm tra 15 phút Chương 6 Thống kê

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Thống kê gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho mẫu số liệu: 8;4;7;6;5;10;9. Xác định phương sai của mẫu số liệu đã cho?

    Ta có: N = 7

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8 + 4 + 7 + 6 + 5 +
10 + 9}{7} = 7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{7}\lbrack(8 - 7)^{2} +
(4 - 7)^{2} + (7 - 7)^{2}

    + (6 - 7)^{2} + (5 - 7)^{2} + (10 -
7)^{2} + (9 - 7)^{2}brack = 4

    Vậy phương sai của mẫu số liệu bằng 4.

  • Câu 2: Thông hiểu

    Khi điều tra về số dân của tỉnh A, người ta thu được kết quả là \overline{a} = 1.234.872
\pm 30. Tìm số quy tròn của a.

    Số quy tròn của số a là: 1.234.900

  • Câu 3: Thông hiểu

    Cho số gần đúng \overline{a} = 37464689 \pm 350. Hãy viết số quy tròn của 37464689?

    Với \overline{a} = 37464689 \pm
350. Số quy tròn của số 37464689 là: 37464700.

  • Câu 4: Nhận biết

    Cho dãy số liệu 1;1;2;3;4;4;5;5;5;6. Xác định mốt của mẫu số liệu?

    Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất

    Suy ra mốt của mẫu số liệu là 5.

  • Câu 5: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 17658 ± 16.

    Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết \overline{a} ≈ 17700).

  • Câu 6: Vận dụng

    Một người thống kê lại số giày bán được trong tháng của một công ty.

    Hỏi công ty nên nhập nhiều hơn loại cỡ giày nào để bán trong tháng tới?

    Tháng vừa rồi, công ty bán được 70 đôi giày cỡ 40 (nhiều nhất). Đây chính là mốt.

    Vậy suy ra tháng tới, công ty nên nhập thêm giày cỡ 40 để bán.

  • Câu 7: Thông hiểu

    Cho \overline{a}
= \frac{16}{7} = 2,285714... Hãy xác định số gần đúng a của \overline{a} với độ chính xác d = 0,03.

    Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là a = 2,29.

  • Câu 8: Thông hiểu

    Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{23 + 29 + 2.41 + 45
+ 48 + 71 + 72}{8} = 46,25

    Vậy số trung bình là 46,25.

  • Câu 9: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được: \sqrt{8}= 2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

     Quy tròn \sqrt8 đến hàng phần trăm, ta được: 2,83.

  • Câu 10: Vận dụng

    Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

    Tìm mốt của mẫu số liệu trên.

    Cỡ mẫu số liệu trên là n =
30.

    Thống kê lại:

    Hai giá trị có tần số lớn nhất 17 (5 lần) và 18 (5 lần).

    Vậy mốt là 17 và 18.

  • Câu 11: Nhận biết

    Tìm trung vị của dãy số liệu 2 3 1 5 3 7 9 10.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 2 3 3 5 7 9 10.

    Dãy trên có hai giá trị chính giữa là 3 và 5.

    Suy ra trung vị là: M_{e} = \frac{3 +
5}{2} = 4.

  • Câu 12: Vận dụng

    Bạn An đo chiều dài của một sân bóng ghi được 250 \pm 0,2m. Bạn Bằng đo chiều cao của một cột cờ được 15 \pm 0,1m. Trong 2 bạn An và Bằng, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

    Phép đo của bạn A có sai số tương đối \delta_{1} \leq \frac{0,2}{250} = 0,0008 =
0,08\%

    Phép đo của bạn B có sai số tương đối \delta_{2} \leq \frac{0,1}{15} = 0,0066 =
0,66\%

    Như vậy phép đo của bạn A có độ chính xác cao hơn.

  • Câu 13: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Cộng hai với tất cả các số liệu: a_{1} +
2;a_{2} + 2;...;a_{10} + 2.

    Khoảng biến thiên: R_{2} = (a_{10} + 2) -
(a_{1} + 2 ) = a_{10} -
a_{1}.

    Suy ra R_{2} = R_{1}.

  • Câu 14: Nhận biết

    Khoảng biến thiên của mẫu số liệu: 2;5;16;8;7;9;10;12;14;11;6 là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 16

    Giá trị nhỏ nhất là 2

    Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.

  • Câu 15: Nhận biết

    Kết quả làm tròn số b = 500\sqrt{7} đến chữ số thập phân thứ hai là:

    Ta có: b \approx 1322,88

  • Câu 16: Nhận biết

    Kết quả kiểm tra Toán của một số học sinh như sau: 9;\ 9;\ 7;\ 8;\ 9;\ 7;\ 10;\ 8;\
8. Khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 10

    Giá trị nhỏ nhất là 7

    Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3

  • Câu 17: Thông hiểu

    Cho kết quả kiểm tra cân nặng của 6 học sinh nam trong lớp như sau: 62;68;69;63;66;71. Hãy xác định khoảng tứ phân vị của mẫu số liệu?

    Sắp xếp mẫu dữ liệu theo thứ tự không giảm như sau:

    62;63;66;68;69;71

    Ta có: N = 6 suy ra trung vị bằng trung bình cộng của dữ liệu nằm ở vị trí thứ 3 và thứ 4

    Q_{2} = \frac{66 + 68}{2} =
67

    \Rightarrow Q_{1} = 63,Q_{3} =
69

    \Rightarrow \Delta Q = Q_{3} - Q_{1} =
6

    Vậy khoảng biến thiên tứ phân vị bằng 6.

  • Câu 18: Nhận biết

    Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên là R = 7,72 - 4,53 =
3,19.

  • Câu 19: Thông hiểu

    Cho mẫu số liệu 1;3;4;13;x^{2} - 1;18;19;21 (đã sắp xếp thứ tự và x \in \mathbb{N}^{*}). Biết rằng trung vị của mẫu số liệu bằng 14. Tìm x?

    Dãy số liệu có 8 số liệu nên

    14 = \frac{13 + x^{2} - 1}{2}
\Leftrightarrow x^{2} = 16

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 4(tm) \\
x = - 4(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn điều kiện đề bài.

  • Câu 20: Nhận biết

    Giả sử Q_{1},Q_{2},Q_{3} là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Thống kê Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo