Đề kiểm tra 15 phút Chương 6 Thống kê

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Thống kê gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một mẫu số liệu có giá trị tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là: 135;205. Hãy chỉ ra giá trị bất thường trong các đáp án dưới đây?

    Ta có: \left\{ \begin{matrix}Q_{3} = 205 \\Q_{1} = 135 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 30 \\Q_{3} + \dfrac{1}{2}\Delta Q = 310 \\\end{matrix} ight.

    Vậy giá trị bất thường là 312.

  • Câu 2: Nhận biết

    Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

    Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:

    Quan sát biểu đồ ta thấy:

    Giá trị lớn nhất là 342

    Giá trị nhỏ nhất là: 4

    Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.

  • Câu 3: Vận dụng

    Bảng dưới đây thống kê điểm Văn của lớp 11C.

    Biết n\mathbb{\in N}. Tìm trung vị của bảng số liệu.

    Vì tổng số học sinh bằng 40 nên ta có: 5n
+ 15 = 40 \Leftrightarrow n = 5.

    Thống kê lại bảng:

    Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.

    Suy ra trung vị M_{e} = \frac{6 + 6}{2} =
6.

  • Câu 4: Vận dụng

    Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

    Tìm trung vị của mẫu số liệu trên.

    Cỡ mẫu số liệu trên là n =
30.

    Thống kê lại:

    Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.

    Suy ra trung vị

    M_{e} = \frac{17 + 17}{2} =
17.

  • Câu 5: Vận dụng

    Chọn khẳng định đúng.

    Khẳng định đúng là:

    Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.

  • Câu 6: Thông hiểu

    Một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?

    Khi một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg thì khối lượng thực của bao gạo nằm trong đoạn \lbrack
4,8;5,2brack.

  • Câu 7: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 17658 ± 16.

    Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết \overline{a} ≈ 17700).

  • Câu 8: Nhận biết

    Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

    Tìm khoảng tứ phân vị của mẫu số liệu này.

    Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.

    Số liệu chính giữa là 162 nên Q_{2} =
162.

    Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên Q_{1} = 154.

    Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên Q_{3} = 165.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 165 - 154 =
11.

  • Câu 9: Thông hiểu

    Cho số đúng \overline{a} = 1,12512 và số gần đúng của \overline{a} của 1,125. Xác định sai số tuyệt đối \Delta_{a}.

    Ta có: a = 1,125

    Suy ra sai số tuyệt đối là:

    \Delta_{a} = \left| \overline{a} - a
ight| = |1,12512 - 1,125| = 0,00012

  • Câu 10: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 11: Thông hiểu

    Cho dãy số liệu thống kê 11,13,x + 10,x^{2} - 1,11,10. Tìm số nguyên dương x, biết số trung bình cộng của dãy số liệu thống kê đó bằng 12,5.

    Điểm trung bình cộng của dãy số trên là

    \frac{11 + 13 + (x + 10) + \left( x^{2}
- 1 ight) + 12 + 10}{6} = 12,5

    \Leftrightarrow x^{2} + x - 20 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 5(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn yêu cầu bài toán.

  • Câu 12: Thông hiểu

    Cho 2145623 \pm
30000. Sai số tương đối của số gần đúng này là:

    Ta có:

    \delta_{a} \leq \frac{|d|}{a}
\Rightarrow \delta_{a} \leq \frac{30000}{2145623} \approx
1,4\%

  • Câu 13: Nhận biết

    Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?

    Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.

    Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.

  • Câu 14: Nhận biết

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 15: Vận dụng

    Một người đo kích thước mảnh vườn hình chữ nhật rồi ghi lại chiều dài là 5 \pm
0,03 (m) và chiều rộng là 3 \pm
0,01 (m). Xác định sai số tương đối của phép đo diện tích mảnh vườn.

    Gọi x\ ;\ y là chiều dài và chiều rộng của mảnh vườn.

    \left\{ \begin{matrix}
5 \pm 0,03 \\
3 \pm 0,01 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
4,97 \leq x \leq 5,03 \\
2,99 \leq y \leq 3,01 \\
\end{matrix} ight.

    Gọi diện tích mảnh vườn là S. Khi đó 14,8603 \leq S \leq 15,1403. Suy ra S = 14,72 \pm
0,14(m2).

    Sai số tương đối trong phép đo là \delta
\leq \frac{0,14}{14,72} \approx 0,0095 = 0,95\%.

  • Câu 16: Nhận biết

    Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

     Khoảng biến thiên R = 5,1 - 0,4 = 4,7.

  • Câu 17: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Sai số tuyệt đối của số gần đúng a là:

    Sai số tuyệt đối của số gần đúng a là: \Delta_{a} = \left| \overline{a} - a
ight|

  • Câu 18: Thông hiểu

    Dự báo thời tiết trong 10 ngày tại tỉnh A được ghi lại trong bảng sau:

    Ngày

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    Nhiệt độ (0C)

    24

    25

    26

    27

    27

    26

    27

    21

    19

    18

    Tìm phương sai của mẫu số liệu đã cho?

    Ta có: N = 10

    Nhiệt độ trung bình của 10 ngày là:

    \overline{x} = \frac{24 + 25 + 26 + 27 +
28 + 26 + 27 + 21 + 19 + 18}{10} = 24

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{10}\lbrack(24 - 24)^{2}
+ (25 - 24)^{2} + (26 - 24)^{2}

    + (27 - 24)^{2} + (28 - 24)^{2} + (26 -
24)^{2} + (27 - 24)^{2}

    + (21 - 24)^{2} + (19 - 24)^{2} + (18 -
24)^{2}brack = 10,6

    Vậy phương sai cần tìm là 10,6.

  • Câu 19: Nhận biết

    Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng

     Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng bình phương của độ lệch chuẩn.

  • Câu 20: Thông hiểu

    Một công ty nhỏ gồm 1 giám đốc và 4 nhân viên. Thu nhập của giám đốc là 15 triệu đồng, thu nhập của nhân viên là 5 triệu đồng. Tìm trung vị cho mẫu số liệu về lương của các thành viên trong công ty.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 5 5 5 5 15.

    Dãy trên có giá trị chính giữa bằng 5.

    Vậy trung vị của mẫu số liệu trên bằng 5.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Thống kê Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo