Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Đáp án là:

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100\ 000 con nghĩa là P(X) = 15.10^{- 6}.

    Khi con bò bị bệnh bò điên, thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60%, nghĩa là: P\left(
Y|X ight) = 0,6.

    Khi con bò không bị bệnh, thì xác xuất để xả ra phản ứng dương tính trong xét nghiệm đó là 20%, nghĩa là P\left(
Y|\overline{X} ight) = 0,2. Khi đó, ta có:

    P(Y \cap X) = P\left( Y|X ight).P(X) =
0,6\ .\ 15\ .\ 10^{- 6} = 9.10^{- 6}.

  • Câu 2: Nhận biết

    Cho hai biến cố A;B với P(A + B) = \frac{3}{4}. Tính P\left( \overline{A}.\overline{B}
ight)?

    Ta có: P\left( \overline{A}.\overline{B}
ight) = P\left( \overline{A + B} ight) = 1 - P(A + B) =
\frac{1}{4}

  • Câu 3: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{A} \cap B ight)?

    Cách 1: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B)

    P\left( \overline{A}|B ight) = 1 -
P\left( A|B ight) = 1 - \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7}
= \frac{4}{7}

    Do đó: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B) = \frac{4}{7}.0,7 = 0,4 =
\frac{2}{5}

    Cách 2: Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,7 - 0,3 = 0,4.

  • Câu 4: Vận dụng

    Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai. Tính xác suất của biến cố C: “Hai viên bi lấy ra khác màu”

    Gọi A là biến cố “Viên bi lấy ra từ hộp thứ nhất có màu xanh”

    Gọi B là biến cố “Viên bi lấy ra từ hộp thứ hai có màu đỏ”.

    Ta có:

    P(A) = \frac{4}{10} = 0,4 \Rightarrow
P\left( \overline{A} ight) = 1 - P(A) = 0,6

    P\left( B|A ight) = \frac{4}{10} = 0,4
\Rightarrow P\left( \overline{B}|A ight) = 1 - P\left( B|A ight) =
0,6

    P\left( B|\overline{A} ight) =
\frac{5}{10} = 0,5 \Rightarrow P\left( \overline{B}|\overline{A} ight)
= 1 - P\left( B|\overline{A} ight) = 0,5

    Ta có sơ đồ cây:

    Dựa vào sơ đồ cây, ta có: P(C) = P(AB) +
P\left( \overline{A}\overline{B} ight) = 0,16 + 0,3 =
0,46

  • Câu 5: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
A\overline{B} ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( A\overline{B}
ight) = P(A) - P(AB) = \frac{1}{4}

  • Câu 6: Vận dụng

    Cho hai hộp đựng các viên bi có cùng kích thước và khối lượng như sau:

    Hộp thứ nhất có 3 viên bi xanh và 6 viên vi đỏ.

    Hộp thứ hai có 3 viên vi xanh và 7 viên bi đỏ.

    Lấy ngẫu nhiên ra một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ngẫu nhiên đồng thời hai viên từ hộp thứ hai, biết rằng hai bi lấy ra từ hộp thứ hai là bi màu đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi màu đỏ.

    Gọi A1: “Lấy ra một bi một màu xanh ở hộp thứ nhất”

    Và A2: “Lấy ra một bi một màu đỏ ở hộp thứ nhất”

    Nên A_{1};A_{2} là hệ biến cố đầy đủ

    Gọi B: “Hai bi lấy ra từ hộp thứ hai là màu đỏ”

    Ta có:

    P\left( A_{1} ight) =
\frac{C_{3}^{1}}{C_{9}^{1}} = \frac{1}{3};P\left( A_{2} ight) =
\frac{C_{6}^{1}}{C_{9}^{1}} = \frac{2}{3}

    P\left( B|A_{1} ight) =
\frac{C_{7}^{2}}{C_{11}^{2}} = \frac{21}{55};P\left( B|A_{2} ight) =
\frac{C_{8}^{2}}{C_{11}^{2}} = \frac{28}{55}

    Áp dụng công thức xác suất toàn phần

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) =
\frac{1}{3}.\frac{21}{55} + \frac{2}{3}.\frac{28}{55} =
\frac{7}{15}

    Xác suất viên bi lấy ra từ hộp thứ nhất màu đỏ, biết rằng hai bi lấy ra từ hộp thứ hai màu đỏ, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \dfrac{P\left(B|A_{2} ight).P\left( A_{2} ight)}{P(B)} =\dfrac{\dfrac{28}{55}.\dfrac{2}{3}}{\dfrac{7}{15}} =\dfrac{8}{11}

  • Câu 7: Vận dụng

    Có 3 hộp bi:

    Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.

    Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.

    Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng

    Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 1 bi. Tính xác suất để bi lấy ra là bi xanh. Nếu bi lấy ra không là bi xanh, tính xác suất để bi đó được lấy từ hộp 2?

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ A_{1};A_{2};A_{3} là hệ biến cố xung khắc và đầy đủ:

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi B là biến cố “Lấy được bi xanh”

    Ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(B) =
\frac{1}{3}.\frac{3}{12} + \frac{1}{3}.\frac{4}{15} +
\frac{1}{3}.\frac{5}{18} \approx 26,48\%

    \overline{B} là biến cố bi lấy ra không phải là bi xanh, ta cần tính:

    P\left( A_{2}|B ight) = \frac{P\left(
A_{2} ight).P\left( \overline{B}|A_{2} ight)}{P\left( \overline{B}
ight)} = \frac{\frac{1}{3}.\frac{11}{15}}{1 - 0,2648} =
33,25\%

  • Câu 8: Nhận biết

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 9: Thông hiểu

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Biết công ty thắng thầu dự án 1, tìm xác suất công ty thắng thầu dự án 2?

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi E là biến cố “thắng thầu dự án 2 biết không thắng thầu dự án 1” do A; B là hai biến cố độc lập nên:

    P(E) = P\left( B|\overline{A} ight) =
P(B) = 0,7.

  • Câu 10: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 11: Thông hiểu

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( AB\overline{C} ight)?

    Ta có:

    P\left( AB\overline{C} ight) = P(AB) -
P(ABC) = p^{2}.

  • Câu 12: Thông hiểu

    Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?

    Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ

    Theo yêu cầu của đầu bài ta phải tính xác xác suất P(A)

    Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).

    Khi đó ta có: A = A_1 . A_2

    Vì vậy các xác suất cần tìm là:

    P(A) = P\left( A_{1}.\ A_{2} ight) =
P\left( A_{1} ight).P\left( A_{2}|A_{1} ight) =
\frac{8}{10}.\frac{7}{9} = \frac{28}{45}

  • Câu 13: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 14: Thông hiểu

    Cho hai biến cố A;B với P(A) > 0;P(B) > 0. Xét tính đúng sai của các khẳng định sau:

    a) P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(A)Đúng||Sai

    b) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(A)} Đúng||Sai

    c) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B}
ight)}Đúng||Sai

    d) P(A) = P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight) Đúng||Sai

    e) Biết P(B) = 0,8;P\left( A|B ight) =
0,7;P\left( A|\overline{B} ight) = 0,5 khi đó P(A) = 0,6.Sai||Đúng

    Đáp án là:

    Cho hai biến cố A;B với P(A) > 0;P(B) > 0. Xét tính đúng sai của các khẳng định sau:

    a) P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(A)Đúng||Sai

    b) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(A)} Đúng||Sai

    c) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B}
ight)}Đúng||Sai

    d) P(A) = P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight) Đúng||Sai

    e) Biết P(B) = 0,8;P\left( A|B ight) =
0,7;P\left( A|\overline{B} ight) = 0,5 khi đó P(A) = 0,6.Sai||Đúng

    Các khẳng định đúng là:

    a) P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(A)

    b) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(A)}

    c) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)}

    d) P(A) = P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)

    e) Ta có: P\left( \overline{B} ight) =
1 - P(B) = 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,5 =
0,66

  • Câu 15: Thông hiểu

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

  • Câu 16: Thông hiểu

    Có hai hộp thuốc:

    Hộp I có 2 vỉ thuốc ngoại và 5 vỉ thuốc nội.

    Hộp II có 3 vỉ thuốc ngoại và 6 vỉ thuốc nội.

    Từ hộp I và hộp II lần lượt lấy ra 2 vỉ thuốc và 1 vỉ thuốc. Từ 3 vỉ thuốc đó lại lấy ra một vỉ. Tính xác suất để vỉ lấy ra sau cùng là thuốc ngoại?

    Gọi A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp I”

    A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp II”

    Ta có A1, A2 lập thành hệ đầy đủ các biến cố khi đó ta xác định được:

    P\left( A_{1} ight) =
\frac{2}{3};P\left( A_{2} ight) = \frac{1}{3}

    P\left( B|A_{1} ight) =
\frac{2}{7};P\left( B|A_{2} ight) = \frac{3}{9}

    Gọi B là biến cố “vỉ thuốc lấy ra sau cùng là thuốc ngoại”.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2}
ight)

    \Rightarrow P(B) =
\frac{2}{3}.\frac{2}{7} + \frac{1}{3}.\frac{3}{9} =
\frac{19}{63}.

  • Câu 17: Thông hiểu

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Biết hạt giống lấy ra lần hai loại A. Tính xác suất để hai hạt lấy ra lần thứ nhất đều loại B.

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0, 1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

    Áp dụng công thức Bayes, ta được:

    \Rightarrow P\left( H_{2}|F ight) =\dfrac{P\left( H_{2} ight).P\left( F|H_{2} ight)}{P(F)} =\dfrac{\dfrac{C_{6}^{2}}{C_{13}^{2}}.\dfrac{7}{11}}{0,538} =0,227.

  • Câu 18: Thông hiểu

    Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt bằng 8

    Số phần tử của không gian mẫu là n(\Omega) = 6.6 = 36

    Gọi A là biến cố “Số chấm trên mặt hai lần gieo có tổng bằng 8”.

    Theo bài ra, ta có A = \left\{
(2;6),(3;5),(4;4),(5;3),(6;2) ight\}

    Khi đó số kết quả thuận lợi của biến cố là n(A) = 5

    Vậy xác suất cần tính P(A) =
\frac{5}{36} .

  • Câu 19: Vận dụng

    Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là

    Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".

    B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".

    C là biến cố: "Công ty hoàn thành đúng hạn".

    Ta có \overline{A} là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".

    \overline{B} là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".

    \overline{C} là biến cố: "Công ty hoàn thành không đúng hạn".

    P(A) = 0,95;P(B) = 0,85;P(\overline{A})
= 0,05;P(\overline{B}) = 0,15

    AB là hai biến cố độc lập nên \overline{A}\overline{B} là hai biến cố độc lập

    \overline{C} =
\overline{A.B}

    P(\overline{C}) =
P(\overline{A}.\overline{B}) = P(\overline{A}).P(\overline{B}) =
0,0075.

    \Rightarrow P(C) = 1 - P(\overline{C}) =
0,9925.

  • Câu 20: Vận dụng cao

    Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?

    Gọi E1 là biến cố phế phẩm máy số I

    \Rightarrow P\left( E_{1} ight) = 0,04
\Rightarrow P\left( \overline{E_{1}} ight) = 1 - 0,04 =
0,96

    E2 là biến cố phế phẩm máy số II

    \Rightarrow P\left( E_{2} ight) = 0,03
\Rightarrow P\left( \overline{E_{2}} ight) = 1 - 0,03 =
0,97

    E3 là biến cố phế phẩm máy số III

    \Rightarrow P\left( E_{3} ight) = 0,05
\Rightarrow P\left( \overline{E_{3}} ight) = 1 - 0,05 =
0,95

    Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt

    Xác suất để khách hàng lấy được linh kiện tốt là:

    P(B) =
\frac{C_{80}^{1}}{C_{300}^{1}}.0,96 +
\frac{C_{120}^{1}}{C_{300}^{1}}.0,97 +
\frac{C_{100}^{1}}{C_{300}^{1}}.0,95 = 0,96

    Gọi \overline{B} là biến cố khách hàng lấy 1 linh kiện loại không tốt

    Ta xác định được:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,04

    P\left( E_{1}|\overline{B} ight) =
\frac{P\left( E_{1} ight).P\left( \overline{B}|E_{1} ight)}{P\left(
\overline{B} ight)} = \frac{C_{80}^{1}.0,04}{0,04} = 0,26

    P\left( E_{2}|\overline{B} ight) =
\frac{P\left( E_{2} ight).P\left( \overline{B}|E_{2} ight)}{P\left(
\overline{B} ight)} = \frac{C_{120}^{1}.0,03}{0,04} = 0,3

    P\left( E_{3}|\overline{B} ight) =
\frac{P\left( E_{3} ight).P\left( \overline{B}|E_{3} ight)}{P\left(
\overline{B} ight)} = \frac{C_{100}^{1}.0,05}{0,04} =
0,41

    Vậy linh kiện đó do máy III là cao nhất.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo