Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là
. Thống kê cho thấy
cặp sinh đôi là trai;
cặp sinh đôi là gái và
cặp sinh đôi có giới tính khác nhau. Tỉ lệ cặp sinh đôi thật trong số các cặp sinh đôi có cùng giới tính.
Gọi A: “Nhận được cặp sinh đôi thật”
B: “Nhận được cặp sinh đôi có cùng giới tính”
Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên
Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên
Do thống kê trên các cặp sinh đôi nhận được thì:
Áp dụng công thức xác suất toàn phần ta có:
Thay số ta xác định được .
Do công thức Bayes:
Một cuộc khảo sát
người về hoạt động thể dục thấy có
số người thích đi bộ và
thích đạp xe vào buổi sáng và tất cả mọi người đều tham gia ít nhất một trong hai hoạt động trên. Chọn ngẫu nhiên một người hoạt động thể dục. Nếu gặp được người thích đi xe đạp thì xác suất mà người đó không thích đi bộ là bao nhiêu?
Gọi A là "người thích đi bộ", B là "người thích đi xe đạp"
Theo giả thiết: .
Ta có:
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Một người có 3 chỗ ưa thích như nhau để câu cá. Xác suất câu được cá ở mỗi chỗ lần lượt là
. Biết rằng mỗi chỗ người đó thả câu 3 lần thì chỉ có một lần câu được cá. Người đó đã câu được một con cá. Tính xác suất để con cá câu được đó ở chỗ thứ nhất.
Gọi A là sự kiện câu được cá ở chỗ thứ 1, B là sự kiện câu được 1 con cá.
Theo đề bài, ta biết rằng người đó chọn ngẫu nhiên 1 chỗ rồi thả câu 3 lần và chỉ câu được 1 con cá.
Ta cần tìm xác suất P(A|B), tức là xác suất câu được cá ở chỗ thứ 1 khi biết đã câu được 1 con cá.
Theo công thức Bayes, ta có:
P(B|A) là xác suất câu được 1 con cá khi đã biết câu ở chỗ thứ 1 là A.
Vì xác suất câu được cá ở chỗ thứ 1 là , nên
P(A) là xác suất câu được cá ở chỗ thứ 1.
Vì có 3 chỗ ưa thích như nhau, nên xác suất câu được cá ở chỗ thứ 1 là .
P(B) là xác suất câu được 1 con cá. Ta có thể tính xác suất này bằng cách sử dụng định lý xác suất toàn phần:
Trong đó:
là xác suất câu được 1 con cá khi không câu ở chỗ thứ 1 là A. Vì xác suất câu được cá ở chỗ thứ 2 và chỗ thứ 3 lần lượt là
và
nên
là xác suất không câu được cá ở chỗ thứ 1. Vì có 3 chỗ ưa thích như nhau, nên xác suất không câu được cá ở chỗ thứ 1 là
.
Thay các giá trị vào công thức Bayes, ta có:
Vậy Xác suất con cá câu được ở chỗ thứ 1 là:
Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là
. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là
. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là
. Tính xác suất học sinh đó làm đúng cả hai bài?
Gọi A: “Làm đúng bài thứ nhất”.
Và B: “Làm đúng bài thứ hai”
Khi đó biến cố: “làm đúng cả hai bài” là
Theo bài ta có:
Do đó:
Ta có sơ đồ hình cây như sau:
Vậy
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra một xạ thủ và xạ thủ đó bắn một viên đạn. Tìm xác suất để viên đạn đó trúng đích.
Gọi A là biến cố "Viên đạn trúng đích".
là biến cố "Chọn xạ thủ loại I bắn".
là biến cố "Chọn xạ thủ loại II bắn".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức ta có:
Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là
Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".
B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".
C là biến cố: "Công ty hoàn thành đúng hạn".
Ta có là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".
là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".
là biến cố: "Công ty hoàn thành không đúng hạn".
Vì và
là hai biến cố độc lập nên
và
là hai biến cố độc lập
Mà
.
Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.
Gọi là "đạt
học phần ở lần thi đầu".
Khi đó, tạo thành hệ đầy đủ và
Gọi là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".
Áp dụng công thức xác suất toàn phần ta có:
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Bạn Hoa lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Tính xác suất có điều kiện
?
Ta có:
Vậy
Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt bằng 8
Số phần tử của không gian mẫu là
Gọi là biến cố “Số chấm trên mặt hai lần gieo có tổng bằng 8”.
Theo bài ra, ta có
Khi đó số kết quả thuận lợi của biến cố là
Vậy xác suất cần tính .
Cho
và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Xác định biến cố
: "biến cố
với điều kiện biết
đã xảy ra".
Ta có:
Khi biến cố xảy ra, thì không gian mẫu mới là
.
Khi đó, biến cố
Một công nhân đi làm ở thành phố khi trở về nhà có 2 cách: hoặc đi theo đường ngầm hoặc đi qua cầu. Biết rằng ông ta đi lối đường ngầm trong
các trường hợp, còn lại đi lối cầu. Nếu đi lối đường ngầm
trường hợp ông ta về đến nhà trước 6 giờ tối; còn nếu đi lối cầu chỉ có
trường hợp ông ta về đến nhà sau 6 giờ tối. Tìm xác suất để công nhân đó đã đi lối cầu biết rằng ông ta về đến nhà sau 6 giờ tối.
Gọi A là biến cố đi đường ngầm suy ra là biến cố đi đường cầu
Ta xác định được
Gọi B là "về nhà sau 6 giờ tối", ta cần tính .
Sử dụng công thức Bayes:
Cho ba biến cố
độc lập từng đôi thỏa mãn
và
. Xác định
?
Ta có:
Vì A, B, C có vai trò như nhau nên
Trong danh sách sĩ số hai lớp 12 có 95 học sinh, trong đó có 40 nam và 55 nữ. Trong kỳ thi kiểm tra chất lượng có 23 học sinh đạt điểm giỏi (trong đó có 12 nam và 11 nữ). Gọi tên ngẫu nhiên một học sinh trong danh sách. Tìm xác suất gọi được học sinh đạt điểm giỏi, biết rằng học sinh đó là nữ?
Gọi A là biến cố “gọi được học sinh nữ”
Gọi B là biến cố “gọi được học sinh đạt điểm giỏi”
Ta đi tính . Ta có:
Khi đó: .
Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các khẳng định sau đúng hay sai?
a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là
.Đúng||Sai
b) Xác suất chọn được 2 phế phẩm trong hộp loại II là
Sai||Đúng
c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là
. Đúng||Sai
d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là
. Đúng||Sai
Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các khẳng định sau đúng hay sai?
a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là .Đúng||Sai
b) Xác suất chọn được 2 phế phẩm trong hộp loại II là Sai||Đúng
c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là . Đúng||Sai
d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là . Đúng||Sai
a) Chọn 2 sản phẩm tốt từ 13 sản phẩm tốt trong hộp loại I là cách.
b) Số cách chọn 2 phế phẩm từ 4 phế phẩm trong hộp loại II là cách.
Tổng số cách chọn 2 sản phẩm từ 10 sản phẩm (6 tốt và 4 phế phẩm) trong hộp II là cách
Vậy xác suất chọn được hai phế phẩm là: .
c) Gọi A: “Chọn được trong thùng một hộp loại I”.
Và B: “Chọn được trong thùng một hộp loại II”.
Xác suất chọn hộp loại I là và xác suất chọn hộp loại II là
Gọi C là biến cố “Cả 2 sản phẩm lấy ra đều tốt”.
Xác suất lấy được 2 sản phẩm tốt từ hộp loại I là
Xác suất lấy được 2 sản phẩm tốt từ hộp II là
Vậy xác suất hai sản phẩm lấy ra từ một hộp trong thùng đều tốt là:
d) Xác suất lấy ra hai sản phẩm đều tốt thuộc hộp loại I là
Cho hai biến cố
và
của một phép thử T. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Nếu thì
.
Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?
a) Xác suất của biến cố B là
.Đúng||Sai
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó
. Đúng||Sai
c) Gọi
: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì
. Sai||Đúng
d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là
. Đúng||Sai
Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?
a) Xác suất của biến cố B là .Đúng||Sai
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó . Đúng||Sai
c) Gọi : “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì
. Sai||Đúng
d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là . Đúng||Sai
a) Ta có: B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ” nên .
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì sau khi chuyển, hộp thứ hai có 7 bi đỏ và 4 bi xanh nên .
c) Gọi : “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh thì sau khi chuyển, hộp thứ hai có 6 bi đỏ và 5 bi xanh.
Khi đó .
d) Ta có:
Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là:
Áp dụng công thức xác suất toàn phần, ta có:
.