Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên ra 1 phiếu từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ hộp thứ hai. Tính xác suất để học sinh trả lời được câu hỏi trong phiếu.

    Gọi E1 là biến cố thầy giáo rút 1 câu thuộc từ hộp 1 bỏ vào hộp 2. Khi đó hộp 2 có 9 câu thuộc và 1 câu không thuộc.

    Gọi E2 là biến cố thầy giáo rút 1 câu không thuộc từ hộp 1 bỏ vào hộp 2. Khi đó hộp 2 có 8 câu thuộc và 2 câu không thuộc.

    E1, E2 tạo thành một nhóm biến cố đầy đủ. B xảy ra với 1 trong 2 biến cố.

    B=(E_1∩B)∪(E_2∩B)

    => P(B)=P(E_1).P(B|E_1)+P(E_2).P(B|E_2)

    Ta có: \left\{ \begin{gathered}
  P\left( {{E_1}} ight) = \frac{{C_{10}^1}}{{C_{15}^1}} = \frac{2}{3};P\left( {{E_2}} ight) = \frac{{C_5^1}}{{C_{15}^1}} = \frac{1}{3} \hfill \\
  P\left( {B|{E_1}} ight) = \frac{{C_9^1}}{{C_{10}^1}} = \frac{9}{{10}};P\left( {B|{E_2}} ight) = \frac{{C_8^1}}{{C_{10}^1}} = \frac{4}{5} \hfill \\ 
\end{gathered}  ight.

    Thay vào công thức suy ra P(B)=0,942

  • Câu 2: Vận dụng cao

    Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Nếu viên rút ra sau cùng màu đỏ, tìm xác suất lúc ban đầu rút được viên bi đỏ ở hộp I cho vào hộp II?

    Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",

    D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".

    Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.

    Ta có: \left\{ \begin{gathered}
  P\left( {{D_1}{D_2}} ight) = \frac{4}{6}.\frac{4}{7};P\left( {{D_1}{X_2}} ight) = \frac{4}{6}.\frac{3}{7} \hfill \\
  P\left( {{X_1}{D_2}} ight) = \frac{2}{6}.\frac{3}{7};P\left( {{X_1}{X_2}} ight) = \frac{2}{6}.\frac{4}{7} \hfill \\ 
\end{gathered}  ight.

    Gọi A là "viên bi rút ra sau cùng là màu đỏ".

    Ta xác định được: \left\{ \begin{gathered}
  P\left( {A|{D_1}{D_2}} ight) = \frac{4}{6};P\left( {A|{D_1}{X_2}} ight) = \frac{3}{6} \hfill \\
  P\left( {A|{X_1}{D_2}} ight) = \frac{5}{6};P\left( {A|{X_1}{X_2}} ight) = \frac{4}{6} \hfill \\ 
\end{gathered}  ight.

    Áp dụng công thức xác suất đầy đủ:

    P(A) = P\left( D_{1}D_{2} ight)P\left(
A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left( A|D_{1}X_{2}
ight)

    + P\left( X_{1}D_{2} ight)P\left(
A|X_{1}D_{2} ight) + P\left( X_{1}X_{2} ight)P\left( A|X_{1}X_{2}
ight)

    = \frac{4}{6}.\frac{4}{7}.\frac{4}{6} +
\frac{4}{6}.\frac{3}{7}.\frac{3}{6} +
\frac{2}{6}.\frac{3}{7}.\frac{5}{6} +
\frac{2}{6}.\frac{4}{7}.\frac{4}{6} = \frac{9}{14}

    Ta cần tính xác suất B = \left(
D_{1}D_{2} + D_{1}X_{2} ight)|A

    \Rightarrow P(B) = \frac{P\left\lbrack
\left( D_{1}D_{2} + D_{1}X_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left\lbrack \left( D_{1}D_{2}
ight)A ightbrack + P\left\lbrack \left( D_{1}X_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left( D_{1}D_{2}
ight)P\left( A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left(
A|D_{1}X_{2} ight)}{P(A)}

    = \dfrac{{\dfrac{4}{7}.\dfrac{4}{7}.\dfrac{4}{6} + \dfrac{4}{6}.\dfrac{3}{7}.\dfrac{3}{6}}}{{\dfrac{9}{{11}}}} = \dfrac{{50}}{{81}} \approx 61,73\%

  • Câu 3: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 4: Vận dụng

    Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có 6 viên kẹo màu trắng, còn lại là kẹo màu xanh. Bạn T lấy ngẫu nhiên 1 viên kẹo từ trong túi, không trả lại. Sau đó T lại lấy ngẫu nhiên thêm 1 viên kẹo khác từ trong túi. Hỏi ban đầu trong túi có bao nhiêu viên kẹo? Biết rằng xác suất T lấy được cả hai viên kẹo màu trắng là \frac{1}{3}.

    Gọi A là biến cố “T lấy được viên kẹo màu trắng ở lần thứ nhất”

    Gọi B là biến cố “T lấy được viên kẹo màu trắng ở lần thứ hai”.

    Ta có xác suất để T lấy được cả hai viên kẹo màu trắng là: \frac{1}{3}

    Gọi số kẹo ban đầu trong túi là: n (viên)

    Điều kiện n \in \mathbb{N}^{*};n eq1

    Ta có: P(A) = \frac{6}{n};P\left( B|Aight) = \frac{5}{n - 1}

    Theo công thức nhân xác suất, ta có:

    P(AB) = P(A).P\left( B|A ight) =\frac{6}{n}.\frac{5}{n - 1} = \frac{30}{n^{2} - n}

    P(AB) = \frac{1}{3}

    \Rightarrow \frac{30}{n^{2} - n} =\frac{1}{3} \Leftrightarrow n^{2} - n = 90 \Leftrightarrow \left\lbrack\begin{matrix}n = - 9(ktm) \\n = 10(tm) \\\end{matrix} ight.

    Vậy ban đầu trong túi có 10 viên kẹo.

  • Câu 5: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 6: Nhận biết

    Cho hai biến cố A;B với P(A + B) = \frac{3}{4}. Tính P\left( \overline{A}.\overline{B}
ight)?

    Ta có: P\left( \overline{A}.\overline{B}
ight) = P\left( \overline{A + B} ight) = 1 - P(A + B) =
\frac{1}{4}

  • Câu 7: Thông hiểu

    Có hai hộp bên ngoài giống nhau:

    Hộp thứ nhất đựng 1 sản phẩm lỗi và 9 sản phẩm tốt.

    Hộp thứ hai đựng 2 sản phẩm lỗi và 8 sản phẩm tốt.

    Lấy ngẫu nhiên một hộp, sau đó lấy ngẫu nhiên một sản phẩm. Xác suất để được sản phẩm tốt là:

    Gọi A1 là biến cố lấy sản phẩm từ hộp thứ nhất.

    A2 là biến cố lấy sản phẩm từ hộp thứ hai.

    Vì chọn ngẫu nhiên nên P\left( A_{1}
ight) = P\left( A_{2} ight) = \frac{1}{2}

    Gọi B là biến cố lấy được sản phẩm tốt ta có:

    P\left( B|A_{1} ight) =
\frac{9}{10};P\left( B|A_{2} ight) = \frac{8}{10}

    Do đó:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2}
ight)

    \Rightarrow P(B) =
\frac{1}{2}.\frac{9}{10} + \frac{1}{2}.\frac{8}{10} = \frac{17}{20} =
0,85

  • Câu 8: Thông hiểu

    Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?

    a) Xác suất của biến cố B là P(B) =
\frac{1}{2}.Đúng||Sai

    b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó P\left( A|B ight) =
\frac{7}{11}. Đúng||Sai

    c) Gọi \overline{B}: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì P\left( A|\overline{B} ight) =
\frac{7}{11}. Sai||Đúng

    d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là P(A) = \frac{13}{22}. Đúng||Sai

    Đáp án là:

    Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?

    a) Xác suất của biến cố B là P(B) =
\frac{1}{2}.Đúng||Sai

    b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó P\left( A|B ight) =
\frac{7}{11}. Đúng||Sai

    c) Gọi \overline{B}: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì P\left( A|\overline{B} ight) =
\frac{7}{11}. Sai||Đúng

    d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là P(A) = \frac{13}{22}. Đúng||Sai

    a) Ta có: B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ” nên P(B) =
\frac{5}{10} = \frac{1}{2}.

    b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì sau khi chuyển, hộp thứ hai có 7 bi đỏ và 4 bi xanh nên P\left( A|B ight) = \frac{7}{11}.

    c) Gọi \overline{B}: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh thì sau khi chuyển, hộp thứ hai có 6 bi đỏ và 5 bi xanh.

    Khi đó P\left( A|\overline{B} ight) =
\frac{6}{11}.

    d) Ta có: P\left( \overline{B} ight) =
1 - P(B) = 1 - \frac{1}{2} = 0,5

    Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là: P(A)

    Áp dụng công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,5.\frac{7}{11} +
0,5.\frac{6}{11} = \frac{13}{22}.

  • Câu 9: Thông hiểu

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Đáp án là:

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Không gian mẫu là số cách sắp xếp 5 hành khách lên 3 toa tàu. Vì mỗi hành khách có 3 cách chọn toa nên có 3^{5} cách xếp.

    Suy ra số phần tử của không gian mẫu là n(\Omega) = 3^{5} = 243.

    Gọi A là biến cố ''5 hành khách bước lên tàu mà mỗi toa có ít nhất 1 hành khách''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A}, tức có toa không có hành khách nào bước lên tàu, có 2 khả năng sau:

    Trường hợp thứ nhất: Có 2 toa không có hành khách bước lên.

    +) Chọn 2 trong 3 toa để không có khách bước lên, có C_{3}^{2} cách.

    +) Sau đó cả 5 hành khách lên toa còn lại, có 1 cách.

    Do đó trường hợp này có C_{3}^{2}.1 =
3 cách.

    Trường hợp thứ hai: Có 1 toa không có hành khách bước lên.

    +) Chọn 1 trong 3 toa để không có khách bước lên, có C_{3}^{1} cách.

    +) Hai toa còn lại ta cần xếp 5 hành khách lên và mỗi toa có ít nhất 1 hành khách, có 2^{5} - C_{2}^{1}.1 = 30.

    Do đó trường hợp này có C_{3}^{1}.30 =
90 cách.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = 3 + 90 =
93.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 243 - 93 = 150.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{150}{243} = \frac{50}{81} \approx
0,62.

  • Câu 10: Thông hiểu

    Một cuộc khảo sát 1000 người về hoạt động thể dục thấy có 80\% số người thích đi bộ và 60\% thích đạp xe vào buổi sáng và tất cả mọi người đều tham gia ít nhất một trong hai hoạt động trên. Chọn ngẫu nhiên một người hoạt động thể dục. Nếu gặp được người thích đi xe đạp thì xác suất mà người đó không thích đi bộ là bao nhiêu?

    Gọi A là "người thích đi bộ", B là "người thích đi xe đạp"

    Theo giả thiết: P(A) = 0,8' P(B) = 0,6; P(A + B) = 1.

    Ta có:

    P\left( \bar{A}\mid B ight) =
\frac{P\left( \bar{A}B ight)}{P(B)} = \frac{P(B) -
P(AB)}{P(B)}

    = \frac{P(B) + \lbrack P(A + B) - P(A) -
P(B)brack}{P(B)}

    = \frac{P(A + B) - P(A)}{P(B)} = \frac{1
- 0,8}{0,6} \simeq 0,3333

  • Câu 11: Vận dụng

    Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen A, B bằng phóng xạ. Xác suất đột biến của tính trạng do gen A0,4; do gen B là 0,5 và do cả hai gen là 0,9. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen A với xác suất 0,7 và lên gen B với xác suất 0,6?

    Gọi C là biến cố có đột biến ở tính trạng đang xét

    A là biến cố phóng xạ tác dụng lên gen A

    B là biến cố phóng xạ tác dụng lên gen B

    C1 là biến cố phóng xạ chỉ tác động lên gen A

    C2 là biến cố phóng xạ chỉ tác dụng lên gen B

    C3 là biến cố phóng xạ tác dụng lên cả 2 gen

    C_{4} là biến cố phóng xạ không tác dụng lên gen nào

    Khi đó hệ C_{1},C_{2},C_{3},C_{4} là một hệ đầy đủ

    C_{1} = A\overline{\text{ }B},C_{2} =\overline{A}\text{ }B,C_{3} = AB,C_{4} = \overline{A}\overline{\text{}B}

    Mặt khác A;B độc lập nên 

    P\left( C_{1} ight) = P(\text{}A)P(\overline{\text{ }B}) = 0,28,P\left( C_{2} ight) =P(\overline{\text{ }A})P(\text{ }B) = 0,18

    P\left( C_{3} ight) = P(\text{}A)P(\text{ }B) = 0,42;P\left( C_{4} ight) = P(\overline{\text{}A})P(\overline{\text{ }B}) = 0,12

    Mặt khác P\left( C|C_{1} ight) =0,4;P\left( C|C_{2} ight) = 0,5;P\left( C|C_{3} ight) = 0,9P\left( C/C_{4} ight) = 0

    Theo công thức xác suất toàn phần ta có:

    P(C) = 0,28.0,4 + 0,18.0,5 + 0,42.0,9 +0,12.0 = 0,58

  • Câu 12: Thông hiểu

    Một công nhân đứng hai máy hoạt động độc lập nhau. Xác suất để máy thứ nhất, máy thứ 2 không bị hỏng trong một ca làm việc lần lượt là 0,90,8. Tính xác suất để cả 2 máy đều không bị hỏng trong một ca làm việc?

    Gọi A là biến cố cả 2 máy đều không bị hỏng trong một ca làm việc

    Theo yêu cầu của đầu bài, ta phải tính P(A)

    Nếu gọi Ai là biến cố máy thứ i không bị hỏng trong một ca làm việc với (i = 1, 2)

    Khi đó ta có: A = A_1.A_2

    Vì vậy xác suất cần tìm là: P(A) = P(A_1.A_2)

    Theo giả thiết A1, A2 là 2 biến cố độc lập với nhau nên ta có:

    P(A) = P(A_1.A_2) = P(A_1).P(A_2) = 0,72

  • Câu 13: Thông hiểu

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Xác suất công ty thắng thầu đúng 1 dự án là:

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi C là biến cố “Thắng thầu đúng 1 dự án” khi đó ta có:

    P(C) = P\left( A \cap \overline{B} +
\overline{A} \cap B ight)

    = P\left( A \cap \overline{B} ight) +
P\left( \overline{A} \cap B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight)P(B)

    = 0,6.0,3 + 0,4.0,7 = 0,46

  • Câu 14: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
A\overline{B} ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( A\overline{B}
ight) = P(A) - P(AB) = \frac{1}{4}

  • Câu 15: Nhận biết

    Một đợt xổ số phát hành N vé, trong đó có M vé có thưởng. Một người mua t(r < N - M). Tính xác suất để người đó có ít nhất một vé trúng thưởng

    Gọi A: “Người đó có ít nhất một vé trúng thưởng”.

    \overline{A}: “người đó không có vé trúng thưởng”

    Ta có: P\left( \overline{A} ight) =
\frac{C_{N - M}^{t}}{C_{N}^{t}} khi đó P(A) = 1 - P\left( \overline{A} ight) = 1 -
\frac{C_{N - M}^{t}}{C_{N}^{t}}

  • Câu 16: Thông hiểu

    Cho hai biến cố AB, với P\left( \overline{A} ight) = 0,4;P(B) = 0,8;P(A
\cap B) = 0,4.

    a) P(A) = 0,6;P\left( \overline{B}
ight) = 0,2 Đúng||Sai

    b) P\left( A|B ight) =
\frac{1}{2} Đúng||Sai

    c) P\left( \overline{B}|A ight) =
\frac{2}{3} Sai|| Đúng

    d) P\left( \overline{A} \cap B ight) =
\frac{3}{5} Sai|| Đúng

    Đáp án là:

    Cho hai biến cố AB, với P\left( \overline{A} ight) = 0,4;P(B) = 0,8;P(A
\cap B) = 0,4.

    a) P(A) = 0,6;P\left( \overline{B}
ight) = 0,2 Đúng||Sai

    b) P\left( A|B ight) =
\frac{1}{2} Đúng||Sai

    c) P\left( \overline{B}|A ight) =
\frac{2}{3} Sai|| Đúng

    d) P\left( \overline{A} \cap B ight) =
\frac{3}{5} Sai|| Đúng

    a) Ta có: \left\{ \begin{matrix}
P\left( \overline{A} ight) = 0,4 \Rightarrow P(A) = 1 - 0,4 = 0,6 \\
P(B) = 0,8 \Rightarrow P\left( \overline{B} ight) = 1 - 0,8 = 0,2 \\
P(A \cap B) = 0,4 \\
\end{matrix} ight.

    b) P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{0,4}{0,8} = \frac{1}{2}

    c) P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight) = 1 - \frac{P(A \cap B)}{P(A)} = 1 - \frac{0,4}{0,6}
= \frac{1}{3}

    d) P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,8 - 0,4 = 0,4

  • Câu 17: Thông hiểu

    Cửa hàng nhận trứng của ba cơ sở nuôi gà theo tỉ lệ 25\%;35\%;40\%. Nếu tỉ lệ trứng hỏng của ba cơ sở là 5\%;4\%;2\% thì xác suất để một quả trứng mua tại cửa hàng bị hỏng là bao nhiêu?

    Khi mua một quả trứng của cửa hàng thì có một và chỉ một trong 3 biến cố xảy ra:

    A1 lấy trứng của cơ sở I.

    A2 lấy trứng của cơ sở II.

    A3 lấy trứng của cơ sở III.

    Xác suất của ba biến cố trên lần lượt là:

    P\left( A_{1} ight) = 0,25;P\left(
A_{2} ight) = 0,35;P\left( A_{3} ight) = 0,40

    Gọi B là biến cố trứng mua tại cửa hàng bị hỏng.

    Xác suất trứng hỏng tại ba cơ sở lần lượt là:

    P\left( B|A_{1} ight) = 0,05;P\left(
B|A_{2} ight) = 0,04;P\left( B|A_{3} ight) = 0,02

    Do đó:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(B) = 0,25.0,05 + 0,35.0,04
+ 0,4.0,02 = 0,0345.

  • Câu 18: Vận dụng

    Trong một kho rượu, số lượng rượu loại M và loại N bằng nhau. Người ta chọn ngẫu nhiên một chai và đưa cho 5 người nếm thử. Biết xác suất đoán đúng của mỗi người là 0,8. Có 3 người kết luận rượu loại M, 2 người kết luận rượu loại N. Hỏi khi đó xác suất chai rượu đó thuộc loại M là bao nhiêu?

    Gọi A là chai rượu thuộc loại M thì A;\overline{A} tạo thành hệ đầy đủ và P(A) = P\left( \overline{A} ight) =
\frac{1}{2}

    Gọi H là "có 3 người kết luận rượu loại M và 2 người kết luận rượu loại N".

    Theo công thức toàn phần ta có:

    P(H) = P(A).P\left( H|A ight) +
P\left( \overline{A} ight).P\left( H|\overline{A} ight)

    \Rightarrow P(H) =
0,5.C_{5}^{3}.0,8^{3}.0,2^{2} + 0,5.C_{5}^{2}.0,8^{2}.0,2^{3} =
0,128

    Vậy xác suất cần tính là:

    P\left( A|H ight) = \frac{P(A).P\left(
H|A ight)}{P(H)} = \frac{0,5.C_{5}^{3}.0,8^{3}.0,2^{2}}{0,128} =
0,8

  • Câu 19: Vận dụng

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Đáp án là:

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Gọi A là biến cố Bình làm đúng câu dễ

    B là biến cố Bình làm đúng câu trung bình

    C là biến cố Bình làm đúng câu khó.

    Khi đó A, B, C độc lập với nhau.

    a) Xác suất để Bình làm ba câu thuộc ba loại trên và đúng cả ba câu là

    P = P(A).P(B).P(C) = 0,072 =
7,2\%.

    Khẳng định sai.

    b) Xác suất để Bình làm đúng 2 trong số 3 câu là

    P\left( \overline{A} ight).P(B).P(C) +
P(A).P\left( \overline{B} ight).P(C) + P(A).P(B).P\left( \overline{C}
ight)

    = 0,2.0,6.0,15 + 0,8.0,4.0,15 + 0,8.0,6.0,85 = 0,474

    Khẳng định sai.

    c) Xác suất để Bình làm đúng 3 câu đủ ba loại là:

    P = P(A).P(B).P(C) = 0,072 =
7,2\%

    Xác suất Bình làm sai 3 câu mức độ trung bình. (0,4)^{3} = 0,064.

    Khẳng định đúng.

    d) Để Bình làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:

    TH1: Đúng 4 câu khó và câu còn lại sai

    (0,15)^{4}(0,2 + 0,4 + 0,85) =
7,34.10^{- 4}

    TH2: Đúng 3 câu khó và đúng 2 câu trung bình

    (0,15)^{3}.(0,6)^{2} = 1,215.10^{-
3}

    Vậy xác suất cần tìm là 0,1949\%

    Khẳng định sai.

  • Câu 20: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 45 lượt xem
Sắp xếp theo