Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.

    Gọi A_{i} là "trong 5 sản phẩm cuối có i chính phẩm".

    Khi đó hệ A_{0},A_{1},A_{2},A_{3},A_{4},A_{5} tạo thành hệ đầy đủ

    A_{0} xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.

    Suy ra P\left( A_{0} ight) =
0

    A_{1} xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.

    P\left( A_{1} ight) =
\frac{C_{3}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
= \frac{1}{225}

    A_{2} xảy ra nếu lấy 1 chính, 1 phế từ lô I,1 chính, 2 phế từ lô II hoặc 2 phế từ lô I,2 chính, 1 phế từ lô II

    P\left( A_{2} ight) =
\frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} =
\frac{14}{225}

    A_{3} xảy ra nếu lấy 2 chính từ lô I,1 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,2 chính, 1 phế từ lô II hoặc 2 phế từ lô I,3 chính từ lô II

    P\left( A_{3} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{3}}{C_{10}^{3}} = \frac{7}{25}

    A_{4} xảy ra nếu lấy 2 chính từ lô I,2 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,3 chính từ lô II

    P\left( A_{4} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{3}}{C_{10}^{3}} = \frac{98}{225}

    A_{5} xảy ra nếu lấy 2 chính từ lô I,3 chính từ lô II

    P\left( A_{5} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{3}}{C_{10}^{3}} =
\frac{49}{225}

    Gọi A là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ

    P(\bar{A}) = \sum_{i =
0}^{5}\mspace{2mu}\mspace{2mu} P\left( A_{i} ight)P\left( \bar{A} \mid
A_{i} ight)

    = \frac{C_{5}^{2}}{C_{5}^{2}} \cdot 0 +
\frac{C_{4}^{2}}{C_{5}^{2}} \cdot \frac{1}{225} +
\frac{C_{3}^{2}}{C_{5}^{2}} \cdot \frac{14}{225} +
\frac{C_{2}^{2}}{C_{5}^{2}} \cdot \frac{7}{25} + 0 \cdot \frac{98}{225}
+ 0 \cdot \frac{49}{225}

    \simeq 0.4933

    Suy ra P(A) = 1 - P(\bar{A}) \simeq
0,6507.

  • Câu 2: Vận dụng

    Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó 91\% người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85\%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7\%. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.

    Gọi A: “Người được chọn ra không nhiễm bệnh”.

    Và B: “Người được chọn ra có phản ứng dương tính”

    Theo bài ta có: P(A) = 0,91;P\left( B|A
ight) = 0,07;P\left( B|\overline{A} ight) = 0,85

    P\left( \overline{A} ight) = 1 - P(A)
= 0,09

     

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,85 =
0,15

    Ta có sơ đồ hình cây như sau:

    Vậy P\left( A\overline{B} ight) =
0,91.0,93 = 0,8463

  • Câu 3: Nhận biết

    Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.

    Xét các biến cố A: "Quả bóng lấy ra đầu tiên có màu đỏ"

    B: "Tổng số của hai quả bóng lấy ra là số lẻ"

    Xác định B|A là biến cố B khi biết A đã xảy ra?

    Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).

    Do đó, không gian mẫu mới là

    \Omega' = A = \left\{
(1;2),(1;3),(1;4),(1;5),(2;1),(2;3),(2;4),(2;5) ight\}

    Biến cố B khi biết A đã xảy ra là:

    B|A = A \cap B = \left\{
(1;2),(1;4),(2;1),(2;3),(2;5) ight\}

  • Câu 4: Thông hiểu

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Đáp án là:

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100\ 000 con nghĩa là P(X) = 15.10^{- 6}.

    Khi con bò bị bệnh bò điên, thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60%, nghĩa là: P\left(
Y|X ight) = 0,6.

    Khi con bò không bị bệnh, thì xác xuất để xả ra phản ứng dương tính trong xét nghiệm đó là 20%, nghĩa là P\left(
Y|\overline{X} ight) = 0,2. Khi đó, ta có:

    P(Y \cap X) = P\left( Y|X ight).P(X) =
0,6\ .\ 15\ .\ 10^{- 6} = 9.10^{- 6}.

  • Câu 5: Vận dụng

    Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai. Tính xác suất của biến cố C: “Hai viên bi lấy ra khác màu”

    Gọi A là biến cố “Viên bi lấy ra từ hộp thứ nhất có màu xanh”

    Gọi B là biến cố “Viên bi lấy ra từ hộp thứ hai có màu đỏ”.

    Ta có:

    P(A) = \frac{4}{10} = 0,4 \Rightarrow
P\left( \overline{A} ight) = 1 - P(A) = 0,6

    P\left( B|A ight) = \frac{4}{10} = 0,4
\Rightarrow P\left( \overline{B}|A ight) = 1 - P\left( B|A ight) =
0,6

    P\left( B|\overline{A} ight) =
\frac{5}{10} = 0,5 \Rightarrow P\left( \overline{B}|\overline{A} ight)
= 1 - P\left( B|\overline{A} ight) = 0,5

    Ta có sơ đồ cây:

    Dựa vào sơ đồ cây, ta có: P(C) = P(AB) +
P\left( \overline{A}\overline{B} ight) = 0,16 + 0,3 =
0,46

  • Câu 6: Thông hiểu

    Trong một trường học, tỉ lệ học sinh nữ là 52\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là 18\%15\%. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?

    Gọi A_{1};A_{2} lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam

    Nên 1 2 A A, là hệ biến cố đầy đủ.

    Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = 52\% = 0,52 \\
P\left( A_{2} ight) = 1 - 0,52 = 0,48 \\
P\left( B|A_{1} ight) = 18\% = 0,18 \\
P\left( B|A_{2} ight) = 15\% = 0,15 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) = 0,18.0,52 + 0,15.0,48
= \frac{207}{1250} = 0,1656

    Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)} = \frac{0,15.0,48}{0,1656}
= \frac{10}{23}

  • Câu 7: Thông hiểu

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng

    Có 3 hộp bi:

    Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.

    Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.

    Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng

    Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 3 bi. Tính xác suất để 3 bi lấy ra có 3 màu khác nhau. Trong trường hợp đó tính xác suất để 3 bi được lấy từ hộp thứ 3?

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ A_{1};A_{2};A_{3} là hệ biến cố xung khắc và đầy đủ:

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi C là biến cố” 3 bi lấy ra có ba màu khác nhau”

    Ta có:

    P(C) = P\left( A_{1} ight).P\left(
C|A_{1} ight) + P\left( A_{2} ight).P\left( C|A_{2} ight) +
P\left( A_{3} ight).P\left( C|A_{3} ight)

    \Rightarrow P(C) =
\frac{1}{3}.\frac{3.4.5}{C_{12}^{3}} +
\frac{1}{3}.\frac{4.5.6}{C_{15}^{3}} +
\frac{1}{3}.\frac{5.6.7}{C_{18}^{3}} \approx 26,46\%

    \Rightarrow P\left( A_{3}|C ight) =
\frac{P\left( A_{3} ight).P\left( C|A_{3} ight)}{P(C)} =
\frac{\frac{1}{3}.\frac{210}{C_{18}^{3}}}{0,2646} = 32,42\%

  • Câu 10: Thông hiểu

    Có hai hộp thuốc:

    Hộp I có 2 vỉ thuốc ngoại và 5 vỉ thuốc nội.

    Hộp II có 3 vỉ thuốc ngoại và 6 vỉ thuốc nội.

    Từ hộp I và hộp II lần lượt lấy ra 2 vỉ thuốc và 1 vỉ thuốc. Từ 3 vỉ thuốc đó lại lấy ra một vỉ. Tính xác suất để vỉ lấy ra sau cùng là thuốc ngoại?

    Gọi A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp I”

    A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp II”

    Ta có A1, A2 lập thành hệ đầy đủ các biến cố khi đó ta xác định được:

    P\left( A_{1} ight) =
\frac{2}{3};P\left( A_{2} ight) = \frac{1}{3}

    P\left( B|A_{1} ight) =
\frac{2}{7};P\left( B|A_{2} ight) = \frac{3}{9}

    Gọi B là biến cố “vỉ thuốc lấy ra sau cùng là thuốc ngoại”.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2}
ight)

    \Rightarrow P(B) =
\frac{2}{3}.\frac{2}{7} + \frac{1}{3}.\frac{3}{9} =
\frac{19}{63}.

  • Câu 11: Thông hiểu

    Một sinh viên làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là 0,7. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ 2 là 0,8, nhưng nếu làm sai bài thứ 1 thì khả năng làm đúng bài thứ 2 là 0,2. Tính xác suất để sinh viên làm đúng ít nhất một bài?

    Gọi A1 là biến cố làm đúng bài 1

    Gọi A2 là biến cố làm đúng bài 2

    Làm đúng ít nhất 1 bài

    P\left( A_{1} + A_{2} ight) = 1 -
P\left( \overline{A_{1} + A_{2}} ight) = 1 - P\left(
\overline{A_{1}}.\overline{A_{2}} ight)

    = 1 - P\left( \overline{A_{1}}
ight).P\left( \overline{A_{2}}|\overline{A_{1}} ight) =
0,76

  • Câu 12: Nhận biết

    Cho hai biến cố ABcủa một phép thử T. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, ký hiệu là P\left( \left. \ A ight|B ight). Phát biểu nào sau đây đúng?

    Nếu P(B) > 0 thì P\left( \left. \ A ight|B ight) =
\frac{P(A).P\left( \left. \ B ight|A ight)}{P(B)}.

  • Câu 13: Thông hiểu

    Tỷ lệ người nghiện thuốc là ở một vùng là 30\%. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là 60\%, còn tỷ lệ người bị viêm họng trong số những người không nghiện là 40\%. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Tính xác suất người đó nghiện thuốc lá.

    Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:

    P(A) = 0,3;P\left( B|A ight) =
0,6;P\left( B|\overline{A} ight) = 0,4

    Cần tính xác suất là C = A|B.

    Sử dụng công thức Baye ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight)P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,3.0,6}{0,3.0,6 + 0,7.0,4} = \frac{9}{23}

  • Câu 14: Nhận biết

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 15: Thông hiểu

    Một thùng hàng có 30 sản phẩm, trong đó có 4 chất lượng thấp. Lấy liên tiếp hai sản phẩm trong thùng sản phẩm trên, trong đó sản phẩm lấy ra ở lần thứ nhất không được bỏ lại vào thùng. Tính xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp?

    Gọi A: “Sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp”

    Và B: “Sản phẩm lấy ra ở lần thứ hai có chất lượng thấp”.

    Khi đó, xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp chính là: P\left( B|A
ight)

    Từ bài ra ta có:

    n(\Omega) = 30.29 = 870

    n(B) = 4.29 = 116 \Rightarrow P(B) =
\frac{116}{870} = \frac{2}{15}

    n(AB) = 4.3 = 12 \Rightarrow P(AB) =
\frac{12}{870} = \frac{2}{145}

    P\left( A|B ight) = \frac{P(AB)}{P(B)}
= \frac{2}{145}:\frac{2}{15} = \frac{3}{29}

  • Câu 16: Nhận biết

    Cho AB là hai biến cố độc lập thoả mãn P(A) = 0,5P(B) = 0,4. Khi đó, P(A \cap B) bằng:

    A và B là hai biến cố độc lập nên

    P(A
\cap B) = P(A).P(B) = 0,4.0,5 = 0,2

  • Câu 17: Nhận biết

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 18: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 19: Thông hiểu

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

  • Câu 20: Vận dụng

    Tỷ lệ người nghiện thuốc là ở một vùng là 30\%. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là 60\%, còn tỷ lệ người bị viêm họng trong số những người không nghiện là 40\%. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Nếu người đó không bị viêm họng, tính xác suất người đó nghiện thuốc lá.

    Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:

    P(A) = 0,3;P\left( B|A ight) =
0,6;P\left( B|\overline{A} ight) = 0,4

    Cần tính xác suất là C = A|B.

    Sử dụng công thức Baye ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight)P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,3.0,6}{0,3.0,6 + 0,7.0,4} = \frac{9}{23}

    Gọi D = A|\overline{B} ta có:

    P(D) = \frac{P\left( A\overline{B}
ight)}{P\left( \overline{B} ight)} = \frac{P(A) - P(AB)}{1 -
P(B)}

    = \frac{P(A) - P(A)P\left( B|A
ight)}{1 - P(B)} \approx 0,2222

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 45 lượt xem
Sắp xếp theo