Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có 3 hộp bi:

    Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.

    Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.

    Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng

    Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 3 bi. Tính xác suất để 3 bi lấy ra có 3 màu khác nhau. Trong trường hợp đó tính xác suất để 3 bi được lấy từ hộp thứ 3?

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ A_{1};A_{2};A_{3} là hệ biến cố xung khắc và đầy đủ:

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi C là biến cố” 3 bi lấy ra có ba màu khác nhau”

    Ta có:

    P(C) = P\left( A_{1} ight).P\left(
C|A_{1} ight) + P\left( A_{2} ight).P\left( C|A_{2} ight) +
P\left( A_{3} ight).P\left( C|A_{3} ight)

    \Rightarrow P(C) =
\frac{1}{3}.\frac{3.4.5}{C_{12}^{3}} +
\frac{1}{3}.\frac{4.5.6}{C_{15}^{3}} +
\frac{1}{3}.\frac{5.6.7}{C_{18}^{3}} \approx 26,46\%

    \Rightarrow P\left( A_{3}|C ight) =
\frac{P\left( A_{3} ight).P\left( C|A_{3} ight)}{P(C)} =
\frac{\frac{1}{3}.\frac{210}{C_{18}^{3}}}{0,2646} = 32,42\%

  • Câu 2: Thông hiểu

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Vận dụng

    Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó 91\% người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85\%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7\%. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.

    Gọi A: “Người được chọn ra không nhiễm bệnh”.

    Và B: “Người được chọn ra có phản ứng dương tính”

    Theo bài ta có: P(A) = 0,91;P\left( B|A
ight) = 0,07;P\left( B|\overline{A} ight) = 0,85

    P\left( \overline{A} ight) = 1 - P(A)
= 0,09

     

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,85 =
0,15

    Ta có sơ đồ hình cây như sau:

    Vậy P\left( A\overline{B} ight) =
0,91.0,93 = 0,8463

  • Câu 4: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 5: Thông hiểu

    Có hai chuồng thỏ. Chuồng I có 5 con thỏ đen và 10 con thỏ trắng. Chuồng II có 7 con thỏ đen và 3 con thỏ trắng. Trước tiên, từ chuồng II lấy ra ngẫu nhiên 1 con thỏ rồi cho vào chuồng I. Sau đó, từ chuồng I lấy ra ngẫu nhiên 1 con thỏ. Tính xác suất để con thỏ được lấy ra là con thỏ trắng. (Kết quả làm tròn đến chữ số thập phân thứ 2).

    Xét A:“Con thỏ được lấy ra từ chuồng II để cho vào chuồng I là con thỏ trắng”.

    Và B: “Con thỏ được lấy ra từ chuồng I là con thỏ trắng”.

    Tính P(A): Đây là xác suất để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng II rồi cho vào chuồng I: n(\Omega) =
C_{10}^{1};n(A) = C_{3}^{1} \Rightarrow P(A) = \frac{3}{10}

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{3}{10} = \frac{7}{10}

    Tính P\left( B|A ight): Đây là xác suất để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng I với điều kiện đã chọn ra 1 con thỏ trắng từ chuồng II rồi cho vào chuồng I.

    Tức là có 5 con thỏ đen và 11 con thỏ trắng ở trong chuồng I

    Tương tự ta có: P\left( B|A ight) =
\frac{11}{16}

    Tính P\left( B|\overline{A}
ight): Đây là để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng I với điều kiện đã chọn ra 1 con thỏ đen từ chuồng II rồi cho vào chuồng I

    Tức là có 6 con thỏ đen và 10 con thỏ trắng ở trong chuồng I. Tương tự như trên ta có: P\left( B|\overline{A}
ight) = \frac{10}{16}.

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) =
\frac{3}{10}.\frac{11}{16} + \frac{7}{10}.\frac{10}{16} =
\frac{103}{106}

  • Câu 6: Vận dụng

    Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là 0,5; còn không mưa là 0,3. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?

    Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:

    P(AB) = 0,5;P\left(
\overline{A}\overline{B} ight) = 0,3

    Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên

    P\left( A\overline{B} ight) = P\left(
\overline{A}B ight) = \frac{1 - 0,5 - 0,3}{2} = 0,1

    Xác suất cần tính là P\left(
\overline{B}|A ight) có:

    P\left( \overline{B}|A ight) =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A} ight)} =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A}\overline{B}
ight) + P\left( \overline{A}B ight)}

    = \frac{0,1}{0,1 + 0,3} = 0,25 =
25\%

  • Câu 7: Thông hiểu

    Một công ty du lịch bố trí chỗ cho đoàn khách tại ba khách sạn A;B;C theo tỉ lệ 20\%;50\%;30\%. Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là 5\%;4\%;8\%. Tính xác suất để một khách nghỉ ở phòng điều hòa bị hỏng.

    Gọi H ” Để một khách ở phòng điều hòa bị hỏng”

    Gọi A;B;C lần lượt là các biến cố Khách nghỉ tại ba khách sạn A;B;C.

    Ta có: \left\{ \begin{matrix}
P(A) = 20\% = 0,2;P\left( H|A ight) = 5\% = 0,05 \\
P(B) = 50\% = 0,5;P\left( H|B ight) = 4\% = 0,04 \\
P(C) = 30\% = 0,3;P\left( H|C ight) = 8\% = 0,08 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(H) = P\left( H|A ight)P(A) + P\left(
H|B ight)P(B) + P\left( H|C ight)P(C)

    P(H) = 0,05.0,2 + 0,04.0,5 + 0,08.0,3 =
\frac{27}{500}.

  • Câu 8: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để cả hai bi đều đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 9: Thông hiểu

    Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Bạn Hoa lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.

    Xét các biến cố:

    A: "Quả bóng lấy ra lần đầu có số chẵn"

    B: "Quả bóng lấy ra lần hai có số lẻ".

    Tính xác suất có điều kiện P\left( B|A
ight)?

    Ta có: \left\{ \begin{matrix}n(\Omega) = 12 \(A) = 6 \Rightarrow P(A) = \dfrac{6}{12} = \dfrac{1}{2} \(A \cap B) = 4 \Rightarrow P(A \cap B) = \dfrac{4}{12} = \dfrac{1}{3} \\\end{matrix} ight.

    Vậy P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{1}{3}}{\dfrac{1}{2}} = \dfrac{2}{3}

  • Câu 10: Vận dụng

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên ra 2 phiếu từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó cho học sinh A rút ngẫu nhiên ra 2 phiếu từ hộp thứ hai.

    Gọi E1 là biến cố thầy giáo rút 2 câu thuộc từ hộp 1 bỏ sang hộp 2

    Gọi E2 là biến cố thầy giáo rút 1 câu thuộc và 1 câu không thuộc từ hộp 1 bỏ sang hộp 2

    Gọi E3 là biến cố thầy giáo rút 2 câu không thuộc từ hộp 1 bỏ sang hộp 2

    Gọi C là biến cố sinh viên rút ra 2 câu thuộc từ hộp 2

    P(C) = P\left( E_{1} ight)P\left(
C|E_{1} ight) + P\left( E_{2} ight)P\left( C|E_{2} ight) + P\left(
E_{3} ight)P\left( C|E_{3} ight)

    Ta xác định được:

    P\left( E_{1} ight) =
\frac{C_{10}^{2}}{C_{15}^{2}} = \frac{3}{7};P\left( E_{2} ight) =
\frac{C_{10}^{1}.C_{5}^{1}}{C_{15}^{2}} = \frac{10}{21}

    P\left( E_{3} ight) =
\frac{C_{5}^{2}}{C_{15}^{2}} = \frac{2}{21};P\left( C|E_{1} ight) =
\frac{C_{10}^{2}}{C_{11}^{2}} = \frac{9}{11}

    P\left( C|E_{2} ight) =
\frac{C_{9}^{2}}{C_{11}^{2}} = \frac{12}{35};P\left( C|E_{3} ight) =
\frac{C_{8}^{2}}{C_{11}^{2}} = \frac{3}{35}

    Thay vào công thức ta suy ra kết quả P(C)
\approx 0,522

  • Câu 11: Thông hiểu

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( AB\overline{C} ight)?

    Ta có:

    P\left( AB\overline{C} ight) = P(AB) -
P(ABC) = p^{2}.

  • Câu 12: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 13: Vận dụng cao

    Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?

    Gọi E1 là biến cố phế phẩm máy số I

    \Rightarrow P\left( E_{1} ight) = 0,04
\Rightarrow P\left( \overline{E_{1}} ight) = 1 - 0,04 =
0,96

    E2 là biến cố phế phẩm máy số II

    \Rightarrow P\left( E_{2} ight) = 0,03
\Rightarrow P\left( \overline{E_{2}} ight) = 1 - 0,03 =
0,97

    E3 là biến cố phế phẩm máy số III

    \Rightarrow P\left( E_{3} ight) = 0,05
\Rightarrow P\left( \overline{E_{3}} ight) = 1 - 0,05 =
0,95

    Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt

    Xác suất để khách hàng lấy được linh kiện tốt là:

    P(B) =
\frac{C_{80}^{1}}{C_{300}^{1}}.0,96 +
\frac{C_{120}^{1}}{C_{300}^{1}}.0,97 +
\frac{C_{100}^{1}}{C_{300}^{1}}.0,95 = 0,96

    Gọi \overline{B} là biến cố khách hàng lấy 1 linh kiện loại không tốt

    Ta xác định được:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,04

    P\left( E_{1}|\overline{B} ight) =
\frac{P\left( E_{1} ight).P\left( \overline{B}|E_{1} ight)}{P\left(
\overline{B} ight)} = \frac{C_{80}^{1}.0,04}{0,04} = 0,26

    P\left( E_{2}|\overline{B} ight) =
\frac{P\left( E_{2} ight).P\left( \overline{B}|E_{2} ight)}{P\left(
\overline{B} ight)} = \frac{C_{120}^{1}.0,03}{0,04} = 0,3

    P\left( E_{3}|\overline{B} ight) =
\frac{P\left( E_{3} ight).P\left( \overline{B}|E_{3} ight)}{P\left(
\overline{B} ight)} = \frac{C_{100}^{1}.0,05}{0,04} =
0,41

    Vậy linh kiện đó do máy III là cao nhất.

  • Câu 14: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{B}|A ight)?

    Ta có:

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -
\frac{0,3}{0,6} = \frac{1}{2}.

  • Câu 15: Thông hiểu

    Một công nhân đứng hai máy hoạt động độc lập nhau. Xác suất để máy thứ nhất, máy thứ 2 không bị hỏng trong một ca làm việc lần lượt là 0,90,8. Tính xác suất để cả 2 máy đều không bị hỏng trong một ca làm việc?

    Gọi A là biến cố cả 2 máy đều không bị hỏng trong một ca làm việc

    Theo yêu cầu của đầu bài, ta phải tính P(A)

    Nếu gọi Ai là biến cố máy thứ i không bị hỏng trong một ca làm việc với (i = 1, 2)

    Khi đó ta có: A = A_1.A_2

    Vì vậy xác suất cần tìm là: P(A) = P(A_1.A_2)

    Theo giả thiết A1, A2 là 2 biến cố độc lập với nhau nên ta có:

    P(A) = P(A_1.A_2) = P(A_1).P(A_2) = 0,72

  • Câu 16: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 17: Nhận biết

    Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.

    Xét các biến cố A: "Quả bóng lấy ra đầu tiên có màu đỏ"

    B: "Tổng số của hai quả bóng lấy ra là số lẻ"

    Xác định B|A là biến cố B khi biết A đã xảy ra?

    Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).

    Do đó, không gian mẫu mới là

    \Omega' = A = \left\{
(1;2),(1;3),(1;4),(1;5),(2;1),(2;3),(2;4),(2;5) ight\}

    Biến cố B khi biết A đã xảy ra là:

    B|A = A \cap B = \left\{
(1;2),(1;4),(2;1),(2;3),(2;5) ight\}

  • Câu 18: Thông hiểu

    Trong một trường học, tỉ lệ học sinh nữ là 52\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là 18\%15\%. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?

    Gọi A_{1};A_{2} lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam

    Nên 1 2 A A, là hệ biến cố đầy đủ.

    Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = 52\% = 0,52 \\
P\left( A_{2} ight) = 1 - 0,52 = 0,48 \\
P\left( B|A_{1} ight) = 18\% = 0,18 \\
P\left( B|A_{2} ight) = 15\% = 0,15 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) = 0,18.0,52 + 0,15.0,48
= \frac{207}{1250} = 0,1656

    Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)} = \frac{0,15.0,48}{0,1656}
= \frac{10}{23}

  • Câu 19: Thông hiểu

    Trong một trường học, tỉ lệ học sinh nữ là 53\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là 21\%17\%. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.

    Gọi A: “Học sinh được chọn là nữ” ⇒\overline{A} : “Học sinh được chọn là nam”

    B: “học sinh được chọn có tham gia câu lạc bộ M”.

    Từ giả thiết ta có:

    \left\{ \begin{matrix}
P(A) = 0,53 \Rightarrow P\left( \overline{A} ight) = 1 - 0,53 = 0,47
\\
P\left( B|A ight) = 0,21 \\
P\left( B|\overline{A} ight) = 0,17 \\
\end{matrix} ight.

    Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,53.0,21 + 0,47.0,17
= \frac{239}{1250}.

  • Câu 20: Thông hiểu

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( A\overline{B}\overline{C}
ight)?

    Ta có:

    P\left( A\overline{B}\overline{C}
ight) = P\left( A\overline{B} ight) - P\left( A\overline{B}C
ight)

    = p(1 - p) - p^{2} = p -
2p^{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo