Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Một loài sinh vật có các kiểu gen AA, Aa, aa theo tỉ lệ: 1 : 2 : 1. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen AA thì các cá thể con đều có kiểu gen AA. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen Aa thì cá thể con có kiểu gen AA, Aa theo tỉ lệ 1 : 1. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen aa thì cá thể con chỉ có các kiểu Aa. Chọn một cá thể con từ cá thể mẹ có kiểu gen AA. Tính xác suất ñể cá thể con có kiểu gen Aa.

    Gọi B là biến cố cá thể con có kiểu gen Aa

    A1 là biến cố cá thể bố có kiểu gen AA

    A2 là biến cố cá thể bố có kiểu gen Aa

    A3 là biến cố cá thể bố có kiểu gen aa

    Hệ: A1, A2, A3 là hệ đầy đủ

    Ta xác định được:

    P\left( A_{1} ight) =
\frac{1}{4};P\left( A_{2} ight) = \frac{2}{4};P\left( A_{3} ight) =
\frac{1}{4}

    P\left( B|A_{1} ight) = 0;P\left(
B|A_{2} ight) = \frac{1}{2};P\left( B|A_{3} ight) = 1

    Do đó:

    P(B) = P\left( A_{1} ight)P\left(
B|A_{1} ight) + P\left( A_{2} ight)P\left( B|A_{2} ight) + P\left(
A_{3} ight)P\left( B|A_{3} ight)

    \Rightarrow P(B) = \frac{1}{4}.0 +
\frac{2}{4}.\frac{1}{2} + \frac{1}{4}.1 = \frac{1}{4} + \frac{1}{4} =
\frac{1}{2}

  • Câu 2: Thông hiểu

    Một thùng hàng có 30 sản phẩm, trong đó có 4 chất lượng thấp. Lấy liên tiếp hai sản phẩm trong thùng sản phẩm trên, trong đó sản phẩm lấy ra ở lần thứ nhất không được bỏ lại vào thùng. Tính xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp?

    Gọi A: “Sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp”

    Và B: “Sản phẩm lấy ra ở lần thứ hai có chất lượng thấp”.

    Khi đó, xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp chính là: P\left( B|A
ight)

    Từ bài ra ta có:

    n(\Omega) = 30.29 = 870

    n(B) = 4.29 = 116 \Rightarrow P(B) =
\frac{116}{870} = \frac{2}{15}

    n(AB) = 4.3 = 12 \Rightarrow P(AB) =
\frac{12}{870} = \frac{2}{145}

    P\left( A|B ight) = \frac{P(AB)}{P(B)}
= \frac{2}{145}:\frac{2}{15} = \frac{3}{29}

  • Câu 3: Nhận biết

    Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV

    Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.

    Ta cần tìm P\left( A|B ight) Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên P\left( A|B
ight) = \frac{4}{9}.

  • Câu 4: Thông hiểu

    Áo sơ mi May10 trước khi xuất khẩu sang phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98\% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95\% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu?

    Gọi A là biến cố ”Qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,98

    Gọi B là biên cố “Qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,95

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên hay ta đi tính P(A \cap B)

    Ta có:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = 0,95.0,98 = \frac{931}{1000}.

  • Câu 5: Vận dụng

    Bạn T quên mất số cuối cùng trong số điện thoại cần gọi (số điện thoại gồm 6 chữ số) và T chọn số cuối cùng này một cách ngẫu nhiên. Tính xác suất để T gọi đúng số điện thoại này mà không phải thử quá 3 lần. Nếu biết số cuối cùng là số lẻ thì xác suất này là bao nhiêu?

    Gọi Ai: “gọi đúng ở lần thứ i” (i = 1, 2, 3)

    Khi đó, biến cố “gọi đúng khi không phải thử quá ba lần” là:

    A = A_{1} + \overline{A_{1}}A_{2} +
\overline{A_{1}}\overline{A_{2}}A_{3}

    Ta có:

    P(A) = P\left( A_{1} ight) + P\left(
\overline{A_{1}}A_{2} ight) + P\left(
\overline{A_{1}}\overline{A_{2}}A_{3} ight)

    = P\left( A_{1} ight) + P\left(
\overline{A_{1}} ight)P\left( A_{2}|\overline{A_{1}} ight) + P\left(
\overline{A_{1}} ight)P\left( \overline{A_{2}}|\overline{A_{1}}
ight)P\left( A_{3}|\overline{A_{1}}\overline{A_{2}}
ight)

    Khi đã biết số cuối cùng là số lẻ thì khi đó các số để chọn quay chỉ còn giới hạn lại trong 5 trường hợp (số lẻ) nên:

    P(A) = \frac{1}{5} +
\frac{4}{5}.\frac{1}{4} + \frac{4}{5}.\frac{3}{4}.\frac{1}{3} =
0,6

  • Câu 6: Thông hiểu

    Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt bằng 8

    Số phần tử của không gian mẫu là n(\Omega) = 6.6 = 36

    Gọi A là biến cố “Số chấm trên mặt hai lần gieo có tổng bằng 8”.

    Theo bài ra, ta có A = \left\{
(2;6),(3;5),(4;4),(5;3),(6;2) ight\}

    Khi đó số kết quả thuận lợi của biến cố là n(A) = 5

    Vậy xác suất cần tính P(A) =
\frac{5}{36} .

  • Câu 7: Thông hiểu

    Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.

    Gọi A là biến cố lần một lấy được bi trắng.

    Gọi B là biến cố lần hai lấy được bi đỏ.

    Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng làP\left( B|A ight).

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{8.9}{10.9} = \dfrac{4}{5} \\P(A \cap B) = \dfrac{8.2}{10.9} = \dfrac{8}{45} \\\end{matrix} ight. khi đó:

    P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{8}{45}}{\dfrac{4}{5}} = \dfrac{2}{9}.

  • Câu 8: Vận dụng

    Trước khi đưa sản phẩm ra thị trường người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 34 người tả lời “sẽ mua”, 97 người trả lời “có thể sẽ mua” và 69 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 70%, 30% và 1%. Trong số khách hàng thực sự mua sản phẩm thì có bao nhiêu phần trăm trả lời “sẽ mua”?

    Gọi H1, H2, H3 lần lượt là 3 biến cố tương ứng với 3 cách trả lời của khách hàng được phỏng vấn:

    H1 – người đó trả lời “sẽ mua”

    H2 – người đó trả lời “có thể mua”

    H3 – người đó trả lời “không mua”

    H1, H2, H3 là một hệ đầy đủ các biến cố với xác suất tương ứng \frac{34}{200};\frac{97}{200};\frac{69}{200}

    Ta xác định được: P\left( A|H_{1} ight)
= 0,7;P\left( A|H_{2} ight) = 0,3;P\left( A|H_{3} ight) =
0,01

    Theo công thức xác suất đầy đủ ta có:

    P(A) = \frac{34}{200}.0,7 +
\frac{97}{200}.0,3 + \frac{69}{200}.0,01 = 0,268.

    Theo công thức Bayes:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P(A)} = \frac{0,17.0,7}{0,268} =
0,444 = 44,4\%.

  • Câu 9: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 10: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 11: Thông hiểu

    Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là 20\%; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70\%, trong số người không nghiện thuốc lá là 15\%. Tính xác suất mà người đó là nghiện thuốc lá khi biết bị bệnh phổi?

    Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”

    Gọi B là biến cố “người bị bệnh phổi”

    Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.

    Ta cần tính P(B)

    Ta có: \left\{ \begin{matrix}
P(A) = 0,2 \Rightarrow P\left( \overline{A} ight) = 1 - P(A) = 0,8 \\
P\left( B|A ight) = 0,7 \\
P\left( B|\overline{A} ight) = 0,15 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,2..0,7 + 0,8.0,15 =
0,26

    Xác suất mà người đó là nghiện thuốc lá khi biết bị bệnh phổi là P\left( A|B ight)

    Theo công thức Bayes, ta có:

    P\left( A|B ight) = \frac{P(A).)P\left(
B|A ight)}{P(B)} = \frac{0,2.0,7}{0,26} = \frac{7}{13}.

    Như vậy trong số người bị bệnh phổi của tỉnh T có khoảng \frac{7}{13} số người nghiện thuốc lá.

  • Câu 12: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{B}|A ight)?

    Ta có:

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -
\frac{0,3}{0,6} = \frac{1}{2}.

  • Câu 13: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 14: Thông hiểu

    Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,91

    Đáp án là:

    Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,91

    Suy ra số phần tử của không gian mẫu là n(\Omega) = C_{16}^{3} = 560.

    Gọi A là biến cố ''3 cuốn sách lấy ra không cùng một loại''.

    Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A} là 3 cuốn sách lấy ra cùng một loại.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = C_{5}^{3} +
C_{7}^{3} + C_{4}^{3} = 49.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 511.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{511}{560} = \frac{73}{80} \approx
0,91.

  • Câu 15: Vận dụng

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Đáp án là:

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Gọi A là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và B : "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.

    Dễ thấy \overline{A},\overline{B} là hai biến cố độc lập.

    Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là

    P(\overline{A}\overline{B}) =
P(\overline{A}) \cdot P(\overline{B}) = 0,2 \cdot 0,9 =
0,18.

    Gọi P là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:

    P = 1 - P(\overline{A}\overline{B}) = 1
- 0,18 = 0,82.

  • Câu 16: Thông hiểu

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Biết nó là phế phẩm. Tính xác suất để sản phẩm đó do máy I sản xuất.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất đầy đủ, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

    Gọi B là "sản phẩm do máy I sản xuất". Khi đó ta cần tính P(B|A)

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)} = \frac{0,25.0,1\%}{0,22\%} \approx
0,1136

  • Câu 17: Thông hiểu

    Có hai chuồng thỏ. Chuồng I có 5 con thỏ đen và 10 con thỏ trắng. Chuồng II có 7 con thỏ đen và 3 con thỏ trắng. Trước tiên, từ chuồng II lấy ra ngẫu nhiên 1 con thỏ rồi cho vào chuồng I. Sau đó, từ chuồng I lấy ra ngẫu nhiên 1 con thỏ. Tính xác suất để con thỏ được lấy ra là con thỏ trắng. (Kết quả làm tròn đến chữ số thập phân thứ 2).

    Xét A:“Con thỏ được lấy ra từ chuồng II để cho vào chuồng I là con thỏ trắng”.

    Và B: “Con thỏ được lấy ra từ chuồng I là con thỏ trắng”.

    Tính P(A): Đây là xác suất để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng II rồi cho vào chuồng I: n(\Omega) =
C_{10}^{1};n(A) = C_{3}^{1} \Rightarrow P(A) = \frac{3}{10}

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{3}{10} = \frac{7}{10}

    Tính P\left( B|A ight): Đây là xác suất để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng I với điều kiện đã chọn ra 1 con thỏ trắng từ chuồng II rồi cho vào chuồng I.

    Tức là có 5 con thỏ đen và 11 con thỏ trắng ở trong chuồng I

    Tương tự ta có: P\left( B|A ight) =
\frac{11}{16}

    Tính P\left( B|\overline{A}
ight): Đây là để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng I với điều kiện đã chọn ra 1 con thỏ đen từ chuồng II rồi cho vào chuồng I

    Tức là có 6 con thỏ đen và 10 con thỏ trắng ở trong chuồng I. Tương tự như trên ta có: P\left( B|\overline{A}
ight) = \frac{10}{16}.

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) =
\frac{3}{10}.\frac{11}{16} + \frac{7}{10}.\frac{10}{16} =
\frac{103}{106}

  • Câu 18: Vận dụng cao

    Ba khẩu pháo cùng bắn vào một mục tiêu với xác suất trúng đích của mỗi khẩu là 0,4;0,7;0,8. Biết rằng xác suất để mục tiêu bị tiêu diệt khi trúng một phát đạn là 30\%, khi trúng 2 phát đạn là 70\%, còn trúng 3 phát đạn thì chắc chắn mục tiêu bị tiêu diệt. Giả sử mỗi khẩu pháo bắn 1 phát. Tính xác suất để khẩu thứ 3 có đóng góp vào thành công đó?

    Gọi \ A_{i} : "Khẫu pháo thứ i bắn trúng" (i = 1,2,3)

    B_{k} : "Mục tiêu trúng k phát đạn" (k = 0,1,2,3)

    B : "Mục tiêu bị tiêu diệt".

    Ta có: \left\{ B_{k},k = 0,1,2,3
ight\} là một hệ đầy đủ các biến cố và

    B_{0} =
\overline{A_{1}}\overline{A_{2}}\overline{A_{3}},\ B_{1} =
A_{1}\overline{A_{2}}\overline{A_{3}} +
\overline{A_{1}}A_{2}\overline{A_{3}} +
\overline{A_{1}}\overline{A_{2}}A_{3}

    B_{2} = A_{1}A_{2}\overline{A_{3}} +
A_{1}\overline{A_{2}}A_{3} + \overline{A_{1}}A_{2}A_{3},\ B_{3} =
A_{1}A_{2}A_{3}

    Ta có các giả thiết sau:

    P\left( A_{1} ight) = 0,4;P\left(
A_{2} ight) = 0,7;P\left( A_{3} ight) = 0,8

    P\left( B \mid B_{0} ight) = 0,P\left(
B \mid B_{1} ight) = 0,3;P\left( B \mid B_{2} ight) = 0,7;P\left( B
\mid B_{3} ight) = 1

    Từ đó, ta tính được:

    P\left( B_{0} ight) = P\left(
\overline{A_{1}} ight)P\left( \overline{A_{2}} ight)P\left(
\overline{A_{3}} ight)

    = (0,6)(0,3)(0,2)

    = 0,036

    P\left( B_{1} ight) = P\left( A_{1}
ight)P\left( \overline{A_{2}} ight)P\left( \overline{A_{3}} ight)
+ P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left(
\overline{A_{3}} ight) + P\left( \overline{A_{1}} ight)P\left(
\overline{A_{2}} ight)P\left( A_{3} ight)

    = (0,4)(0,3)(0,2) + (0,6)(0,7)(0,2) +
(0,6)(0,3)(0,8)

    = 0,252

    P\left( B_{2} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( \overline{A_{3}} ight) + P\left(
A_{1} ight)P\left( \overline{A_{2}} ight)P\left( A_{3} ight) +
P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left( A_{3}
ight)

    = (0,4)(0,7)(0,2) + (0,4)(0,3)(0,8) +
(0,6)(0,7)(0,8)

    = 0,488

    P\left( B_{3} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( A_{3} ight)

    = (0,4)(0,7)(0,8)

    = 0,224

    Theo công thức xác suất đầy đủ ta có:

    P(B) = P\left( B \mid B_{0}
ight)P\left( B_{0} ight) + P\left( B \mid B_{1} ight)P\left( B_{1}
ight) + P\left( B \mid B_{2} ight)P\left( B_{2} ight) + P\left( B
\mid B_{3} ight)P\left( B_{3} ight)

    = 0.(0,036) + (0,3)(0,252) +
(0,7)(0,488) + 1.(0,224)

    = 0,6412

    Khi đó ta có:

    P\left( BA_{3} ight) = P\left\lbrack
BA_{3}\left( A_{1}A_{2} + \overline{A_{1}}A_{2} + A_{1}\overline{A_{2}}
+ \overline{A_{1}}\overline{A_{2}} ight) ightbrack

    = P\left( A_{1}A_{2}A_{3}B ight) +
P\left( \overline{A_{1}}A_{2}A_{3}B ight) + P\left(
A_{1}\overline{A_{2}}A_{3}B ight) + P\left(
\overline{A_{1}}\overline{A_{2}}A_{3}B ight)

    = P\left( B \mid A_{1}A_{2}A_{3}
ight)P\left( A_{1}A_{2}A_{3} ight) + P\left( B \mid
\overline{A_{1}}A_{2}A_{3} ight)P\left( \overline{A_{1}}A_{2}A_{3}
ight)

    + P\left( B \mid
A_{1}\overline{A_{2}}A_{3} ight)P\left( A_{1}\overline{A_{2}}A_{3}
ight) + P\left( B \mid \overline{A_{1}}\overline{A_{2}}A_{3}
ight)P\left( \overline{A_{1}}\overline{A_{2}}A_{3}
ight)

    = 1.(0,224) +
(0,7)\lbrack(0,6)(0,7)(0,8)brack +
(0,7)\lbrack(0,4)(0,3)(0,8)brack

    +
(0,3)\lbrack(0,6)(0,3)(0,8)brack

    = 0,5696

    Do đó

    P\left( A_{3} \mid B ight) =
\frac{P\left( BA_{3} ight)}{P(B)} = \frac{0,5696}{0,6412} =
0,8883

  • Câu 19: Thông hiểu

    Một căn bệnh có 1\% dân số mắc phải. Một phương pháp chuẩn đoán được phát triển có tỷ lệ chính xác là 99\%. Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính 99\% số trường hợp. Với người không mắc bệnh, phương pháp này cũng chuẩn đoán đúng 99 trong 100 trường hợp. Nếu một người kiểm tra và kết quả là dương tính (bị bệnh), xác suất để người đó thực sự bị bệnh là bao nhiêu?

    Gọi A là biến cố “người đó mắc bệnh”

    Gọi B là biến cố “kết quả kiểm tra người đó là dương tính (bị bệnh)”

    Ta cần tính P\left( A|B ight) với P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}.

    Ta có:

    Xác suất để người đó mắc bệnh khi chưa kiểm tra: P(A) = 1\% = 0,01

    Do đó xác suất để người đó không mắc bệnh khi chưa kiểm tra: P\left( \overline{A} ight) = 1 - 0,01 =
0,99

    Xác suất kết quả dương tính nếu người đó mắc bệnh là: P\left( B|A ight) = 99\% = 0,99

    Xác suất kết quả dương tính nếu người đó không mắc bệnh là: P\left( B|\overline{A} ight) = 1 - 0,99 =
0,01

    Khi đó:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,01.0,99}{0,01.0,99 + 0,99.0,01} = 0,5

    Xác suất kết để người đó mắc bệnh nếu kết quả kiểm tra người đó là dương tính là 0,5.

  • Câu 20: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 45 lượt xem
Sắp xếp theo