Cho hai biến cố
với
. Tính
?
Ta có:
Cho hai biến cố
với
. Tính
?
Ta có:
Một công nhân đi làm ở thành phố khi trở về nhà có 2 cách: hoặc đi theo đường ngầm hoặc đi qua cầu. Biết rằng ông ta đi lối đường ngầm trong
các trường hợp, còn lại đi lối cầu. Nếu đi lối đường ngầm
trường hợp ông ta về đến nhà trước 6 giờ tối; còn nếu đi lối cầu chỉ có
trường hợp ông ta về đến nhà sau 6 giờ tối. Tìm xác suất để công nhân đó đã đi lối cầu biết rằng ông ta về đến nhà sau 6 giờ tối.
Gọi A là biến cố đi đường ngầm suy ra là biến cố đi đường cầu
Ta xác định được
Gọi B là "về nhà sau 6 giờ tối", ta cần tính .
Sử dụng công thức Bayes:
Bạn T quên mất số cuối cùng trong số điện thoại cần gọi (số điện thoại gồm 6 chữ số) và T chọn số cuối cùng này một cách ngẫu nhiên. Tính xác suất để T gọi đúng số điện thoại này mà không phải thử quá 3 lần. Nếu biết số cuối cùng là số lẻ thì xác suất này là bao nhiêu?
Gọi Ai: “gọi đúng ở lần thứ i” (i = 1, 2, 3)
Khi đó, biến cố “gọi đúng khi không phải thử quá ba lần” là:
Ta có:
Khi đã biết số cuối cùng là số lẻ thì khi đó các số để chọn quay chỉ còn giới hạn lại trong 5 trường hợp (số lẻ) nên:
Tỷ lệ người nghiện thuốc là ở một vùng là
. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là
, còn tỷ lệ người bị viêm họng trong số những người không nghiện là
. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Tính xác suất người đó nghiện thuốc lá.
Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:
Cần tính xác suất là C = A|B.
Sử dụng công thức Baye ta có:
Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là:
Gọi A là biến cố “viên bi lấy lần thứ nhất là màu đỏ”.
Gọi B là biến cố “viên bi lấy lần thứ hai là màu đỏ”.
Không gian mẫu cách chọn
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có cách 9 chọn, do đó:
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ trong 6 viên bi còn lại có 6 cách chọn, do đó:
Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ: .
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là
; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ An được
điểm, làm đúng mỗi câu trung bình An được
điểm và làm đúng mỗi câu khó An được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là
. Sai||Đúng
b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là
. Sai||Đúng
c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn
. Sai||Đúng
Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là ; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ An được
điểm, làm đúng mỗi câu trung bình An được
điểm và làm đúng mỗi câu khó An được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là . Sai||Đúng
b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là . Sai||Đúng
c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn . Sai||Đúng
Gọi A là biến cố An làm đúng câu dễ
B là biến cố An làm đúng câu trung bình
C là biến cố An làm đúng câu khó.
Khi đó A, B, C độc lập với nhau.
a) Xác suất để An làm ba câu thuộc ba loại trên và đúng cả ba câu là:
. Khẳng định Sai.
b) Xác suất để An làm đúng 2 trong số 3 câu là:
Khẳng định Sai.
c) Xác suất để An làm đúng 3 câu đủ ba loại là:
Xác suất An làm sai 3 câu mức độ trung bình. .
Khẳng định Đúng.
d) Để An làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:
TH1: Đúng 4 câu khó và câu còn lại sai
TH2: Đúng 3 câu khó và đúng 2 câu trung bình
Vậy xác suất cần tìm là
Khẳng định Sai.
Tan giờ học buổi chiều một sinh viên có
về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn
số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là
. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là
. Hôm nay sinh viên đó về muộn. Tính xác suất để để sinh viên đó đi chơi với bạn bè.
Gọi B là biến cố sinh viên đó đi học về muộn
E1 là biến cố tan học về nhà ngay
E2 là biến cố tan học đi chơi game
E3 là biến cố tan học về đi chơi với bạn
B có thể xảy ra một trong 3 biến cố
Xác suất để sinh viên đó đi chơi với bạn là:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Có 3 cửa hàng I, II, III cùng kinh doanh sản phẩm Y, trong đó thị phần của cửa hàng I, III như nhau và gấp đôi thị phần của cửa hàng II. Tỉ lệ sản phẩm loại A trong 3 cửa hàng lần lượt là
. Một khách hàng chọn ngẫu nhiên 1 cửa hàng và tử đó mua một sản phẩm. Giả sử khách hàng đã mua được sản phẩm loại A, hỏi khả năng người ấy đã mua được ở cửa hàng nào là nhiều nhất?
Gọi T: "Khách hàng mua được sản phẩm loại A"
Ai: "Mua ở cửa hàng i"
Ta có {A1, A2, A3} là một hệ đầy đủ các biến cố và xác định được:
Áp dụng công thức xác suất toàn phần ta có xác suất để khách hàng mua được sản phẩm loại A là:
Áp dụng công thức Bayes, ta có:
Ta thấy rằng P(A1|T) là lớn nhất tức là khả năng người ấy đã mua ở cửa hàng I là nhiều nhất.
Một người có 3 chỗ ưa thích như nhau để câu cua. Xác suất câu được cua ở mỗi chỗ lần lượt là
. Biết rằng đến một chỗ người đó thả câu 3 lần và chỉ câu được một con cua. Tính xác suất để cá câu được ở chỗ thứ nhất?
Gọi A1, A2, A3 lần lượt là "cá câu được ở chỗ thứ i" thì hệ A1, A2, A3 tạo thành hệ đầy đủ.
Dễ thấy
Gọi H là "thả câu 3 lần và chỉ câu được 1 con cua".
Theo công thức toàn phần, ta có:
Ở đó
Theo công thức Bayes suy ra:
Có ba kiện hàng (mỗi kiện hàng có
sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là
. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?
Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.
Gọi A là các sản phẩm lấy ra đều tốt.
Áp dụng công thức xác suất toàn phần ta có:
Từ đó ta có:
Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là
và dự án 2 là
. Biết công ty thắng thầu dự án 1, tìm xác suất công ty thắng thầu dự án 2?
Gọi A là biến cố ”Thắng thầu dự án 1″
Gọi B là biến cố “Thắng thầu dự án 2″
Theo đề bài ta có: với 2 biến cố
độc lập.
Gọi D là biến cố “thắng thầu dự án thứ 2 biết thắng thầu dự án 1” do là hai biến cố độc lập nên:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố
và
là hai biến cố độc lập, với
.
a)
Sai|| Đúng
b)
Đúng||Sai
c)
Sai|| Đúng
d)
Đúng||Sai
Cho hai biến cố và
là hai biến cố độc lập, với
.
a) Sai|| Đúng
b) Đúng||Sai
c) Sai|| Đúng
d) Đúng||Sai
Ta có:
Do hai biến cố và
là hai biến cố độc lập nên
và
;
và
;
và
độc lập với nhau.
a) và
là hai biến cố độc lập nên:
b) và
là hai biến cố độc lập nên:
c) và
là hai biến cố độc lập nên:
d) và
là hai biến cố độc lập nên:
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Bạn Hoa lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Tính xác suất có điều kiện
?
Ta có:
Vậy
Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là
. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là
. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là
. Tính xác suất học sinh đó làm đúng cả hai bài?
Gọi A: “Làm đúng bài thứ nhất”.
Và B: “Làm đúng bài thứ hai”
Khi đó biến cố: “làm đúng cả hai bài” là
Theo bài ta có:
Do đó:
Ta có sơ đồ hình cây như sau:
Vậy
Tại một phòng khám chuyên khoa tỷ lệ người đến khám có bệnh là
. Người ta áp dụng phương pháp chẩn đoán mới thì thấy nếu khẳng định có bệnh thì đúng 9 trên 10 trường hợp; còn nếu khẳng định không bệnh thì đúng 5 trên 10 trường hợp. Tính xác suất để chẩn đoán có bệnh?
Gọi A là "người đến khám có bệnh" thì A, tạo thành hệ đầy đủ
Gọi B là "Chẩn đoán có bệnh".
Ta có
Tìm P(B) từ:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Cho hai biến cố
,
với
. Phát biểu nào sau đây đúng?
Theo công thức xác suất toàn phần, ta có:
.