Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen A, B bằng phóng xạ. Xác suất đột biến của tính trạng do gen A0,4; do gen B là 0,5 và do cả hai gen là 0,9. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen A với xác suất 0,7 và lên gen B với xác suất 0,6?

    Gọi C là biến cố có đột biến ở tính trạng đang xét

    A là biến cố phóng xạ tác dụng lên gen A

    B là biến cố phóng xạ tác dụng lên gen B

    C1 là biến cố phóng xạ chỉ tác động lên gen A

    C2 là biến cố phóng xạ chỉ tác dụng lên gen B

    C3 là biến cố phóng xạ tác dụng lên cả 2 gen

    C_{4} là biến cố phóng xạ không tác dụng lên gen nào

    Khi đó hệ C_{1},C_{2},C_{3},C_{4} là một hệ đầy đủ

    C_{1} = A\overline{\text{ }B},C_{2} =\overline{A}\text{ }B,C_{3} = AB,C_{4} = \overline{A}\overline{\text{}B}

    Mặt khác A;B độc lập nên 

    P\left( C_{1} ight) = P(\text{}A)P(\overline{\text{ }B}) = 0,28,P\left( C_{2} ight) =P(\overline{\text{ }A})P(\text{ }B) = 0,18

    P\left( C_{3} ight) = P(\text{}A)P(\text{ }B) = 0,42;P\left( C_{4} ight) = P(\overline{\text{}A})P(\overline{\text{ }B}) = 0,12

    Mặt khác P\left( C|C_{1} ight) =0,4;P\left( C|C_{2} ight) = 0,5;P\left( C|C_{3} ight) = 0,9P\left( C/C_{4} ight) = 0

    Theo công thức xác suất toàn phần ta có:

    P(C) = 0,28.0,4 + 0,18.0,5 + 0,42.0,9 +0,12.0 = 0,58

  • Câu 2: Vận dụng cao

    Một hãng hàng không cho biết rằng 5\% số khách đặt trước vé cho các chuyến đã định sẽ hoãn không đi chuyến bay đó. Do đó hãng đã đưa ra một chính sách là sẽ bán 52 ghế cho một chuyến bay mà trong đó mỗi chuyến chỉ trở được 50 khách hàng. Tìm xác suất để tất cả các khách đặt chỗ trước và không hoãn chuyến bay đều có ghế. Biết rằng xác suất bán được 51 vé hoặc 52 vé là như nhau và bằng 10\%?

    Gọi A là "bán được 52 vé", B là "bán được 51 vé" và C là "bán được nhiều nhất 50 vé".

    Khi đó A, B, C tạo thành hệ đầy đủ.

    Ta có P(A) = 0,1; P(B) = 0,1; P(C) = 0,8

    Gọi H là "khách đặt chỗ trước và không hoãn chuyến đều có ghế".

    Biến cố H|A xảy ra nếu có ít nhất 2 khách hủy chuyến, H|B xảy ra nếu có ít nhất 1 khách hủy chuyến. Tính trực tiếp xác suất của các sự kiện này đều khá phức tạp.

    Do đó để cho đơn giản ta tìm P\left(\overline{H} ight).

    Ta có: \left\{ \begin{matrix}P\left( \overline{H}|A ight) = 0,95^{52}.0,05^{0} +52.0,95^{51}.0,05^{1} \\P\left( \overline{H}|B ight) = 0,95^{51}.0,05^{0} \\P\left( \overline{H}|C ight) = 0 \\\end{matrix} ight.

    Do đó:

    P\left( \overline{H} ight) =P(A).P\left( \overline{H}|A ight) + P(B).P\left( \overline{H}|Bight) + P(C).P\left( \overline{H}|C ight)

    \Rightarrow P\left( \overline{H} ight)= 0,1\left( 0,95^{52}.0,05^{0} + 52.0,95^{51}.0,05^{1} ight)+0,1.0,95^{51}.0,05^{0} + 0,8.0 \approx 0,033

    \Rightarrow P(H) = 1 - P\left(\overline{H} ight) \approx 0,9667 = 96,67\%

  • Câu 3: Vận dụng

    Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó 91\% người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85\%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7\%. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.

    Gọi A: “Người được chọn ra không nhiễm bệnh”.

    Và B: “Người được chọn ra có phản ứng dương tính”

    Theo bài ta có: P(A) = 0,91;P\left( B|A
ight) = 0,07;P\left( B|\overline{A} ight) = 0,85

    P\left( \overline{A} ight) = 1 - P(A)
= 0,09

     

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,85 =
0,15

    Ta có sơ đồ hình cây như sau:

    Vậy P\left( A\overline{B} ight) =
0,91.0,93 = 0,8463

  • Câu 4: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 5: Thông hiểu

    Cho hai biến cố A;B với P(AB) = \frac{1}{4};P\left( A|\overline{B} ight)
= \frac{1}{8};P(B) = \frac{1}{2}. Tính P(A)?

    Ta có:

    P(A) = P\left( \overline{A}\overline{B}
+ AB ight)

    = P\left( A|\overline{B} ight).P\left(
\overline{B} ight) + P(AB)

    = \frac{1}{8}.\frac{1}{2} + \frac{1}{4}
= \frac{5}{16}

  • Câu 6: Nhận biết

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( B|\overline{A} ight)?

    Hai biến cố \overline{A}B là hai biến cố độc lập nên P\left( B|\overline{A} ight) = P(B) =
0,2025.

  • Câu 7: Nhận biết

    Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV

    Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.

    Ta cần tìm P\left( A|B ight) Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên P\left( A|B
ight) = \frac{4}{9}.

  • Câu 8: Thông hiểu

    Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.

    Gọi A là biến cố lần một lấy được bi trắng.

    Gọi B là biến cố lần hai lấy được bi đỏ.

    Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng làP\left( B|A ight).

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{8.9}{10.9} = \dfrac{4}{5} \\P(A \cap B) = \dfrac{8.2}{10.9} = \dfrac{8}{45} \\\end{matrix} ight. khi đó:

    P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{8}{45}}{\dfrac{4}{5}} = \dfrac{2}{9}.

  • Câu 9: Thông hiểu

    Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Bạn Hoa lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.

    Xét các biến cố:

    A: "Quả bóng lấy ra lần đầu có số chẵn"

    B: "Quả bóng lấy ra lần hai có số lẻ".

    Tính xác suất có điều kiện P\left( B|A
ight)?

    Ta có: \left\{ \begin{matrix}n(\Omega) = 12 \(A) = 6 \Rightarrow P(A) = \dfrac{6}{12} = \dfrac{1}{2} \(A \cap B) = 4 \Rightarrow P(A \cap B) = \dfrac{4}{12} = \dfrac{1}{3} \\\end{matrix} ight.

    Vậy P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{1}{3}}{\dfrac{1}{2}} = \dfrac{2}{3}

  • Câu 10: Thông hiểu

    Một căn bệnh có 1\% dân số mắc phải. Một phương pháp chuẩn đoán được phát triển có tỷ lệ chính xác là 99\%. Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính 99\% số trường hợp. Với người không mắc bệnh, phương pháp này cũng chuẩn đoán đúng 99 trong 100 trường hợp. Nếu một người kiểm tra và kết quả là dương tính (bị bệnh), xác suất để người đó thực sự bị bệnh là bao nhiêu?

    Gọi A là biến cố “người đó mắc bệnh”

    Gọi B là biến cố “kết quả kiểm tra người đó là dương tính (bị bệnh)”

    Ta cần tính P\left( A|B ight) với P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}.

    Ta có:

    Xác suất để người đó mắc bệnh khi chưa kiểm tra: P(A) = 1\% = 0,01

    Do đó xác suất để người đó không mắc bệnh khi chưa kiểm tra: P\left( \overline{A} ight) = 1 - 0,01 =
0,99

    Xác suất kết quả dương tính nếu người đó mắc bệnh là: P\left( B|A ight) = 99\% = 0,99

    Xác suất kết quả dương tính nếu người đó không mắc bệnh là: P\left( B|\overline{A} ight) = 1 - 0,99 =
0,01

    Khi đó:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,01.0,99}{0,01.0,99 + 0,99.0,01} = 0,5

    Xác suất kết để người đó mắc bệnh nếu kết quả kiểm tra người đó là dương tính là 0,5.

  • Câu 11: Nhận biết

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 12: Vận dụng

    Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có 6 viên kẹo màu trắng, còn lại là kẹo màu xanh. Bạn T lấy ngẫu nhiên 1 viên kẹo từ trong túi, không trả lại. Sau đó T lại lấy ngẫu nhiên thêm 1 viên kẹo khác từ trong túi. Hỏi ban đầu trong túi có bao nhiêu viên kẹo? Biết rằng xác suất T lấy được cả hai viên kẹo màu trắng là \frac{1}{3}.

    Gọi A là biến cố “T lấy được viên kẹo màu trắng ở lần thứ nhất”

    Gọi B là biến cố “T lấy được viên kẹo màu trắng ở lần thứ hai”.

    Ta có xác suất để T lấy được cả hai viên kẹo màu trắng là: \frac{1}{3}

    Gọi số kẹo ban đầu trong túi là: n (viên)

    Điều kiện n \in \mathbb{N}^{*};n eq1

    Ta có: P(A) = \frac{6}{n};P\left( B|Aight) = \frac{5}{n - 1}

    Theo công thức nhân xác suất, ta có:

    P(AB) = P(A).P\left( B|A ight) =\frac{6}{n}.\frac{5}{n - 1} = \frac{30}{n^{2} - n}

    P(AB) = \frac{1}{3}

    \Rightarrow \frac{30}{n^{2} - n} =\frac{1}{3} \Leftrightarrow n^{2} - n = 90 \Leftrightarrow \left\lbrack\begin{matrix}n = - 9(ktm) \\n = 10(tm) \\\end{matrix} ight.

    Vậy ban đầu trong túi có 10 viên kẹo.

  • Câu 13: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 14: Thông hiểu

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Đáp án là:

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Không gian mẫu là số cách sắp xếp 5 hành khách lên 3 toa tàu. Vì mỗi hành khách có 3 cách chọn toa nên có 3^{5} cách xếp.

    Suy ra số phần tử của không gian mẫu là n(\Omega) = 3^{5} = 243.

    Gọi A là biến cố ''5 hành khách bước lên tàu mà mỗi toa có ít nhất 1 hành khách''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A}, tức có toa không có hành khách nào bước lên tàu, có 2 khả năng sau:

    Trường hợp thứ nhất: Có 2 toa không có hành khách bước lên.

    +) Chọn 2 trong 3 toa để không có khách bước lên, có C_{3}^{2} cách.

    +) Sau đó cả 5 hành khách lên toa còn lại, có 1 cách.

    Do đó trường hợp này có C_{3}^{2}.1 =
3 cách.

    Trường hợp thứ hai: Có 1 toa không có hành khách bước lên.

    +) Chọn 1 trong 3 toa để không có khách bước lên, có C_{3}^{1} cách.

    +) Hai toa còn lại ta cần xếp 5 hành khách lên và mỗi toa có ít nhất 1 hành khách, có 2^{5} - C_{2}^{1}.1 = 30.

    Do đó trường hợp này có C_{3}^{1}.30 =
90 cách.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = 3 + 90 =
93.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 243 - 93 = 150.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{150}{243} = \frac{50}{81} \approx
0,62.

  • Câu 15: Thông hiểu

    Tỷ lệ người nghiện thuốc là ở một vùng là 30\%. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là 60\%, còn tỷ lệ người bị viêm họng trong số những người không nghiện là 40\%. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Tính xác suất người đó nghiện thuốc lá.

    Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:

    P(A) = 0,3;P\left( B|A ight) =
0,6;P\left( B|\overline{A} ight) = 0,4

    Cần tính xác suất là C = A|B.

    Sử dụng công thức Baye ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight)P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,3.0,6}{0,3.0,6 + 0,7.0,4} = \frac{9}{23}

  • Câu 16: Thông hiểu

    Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Anh, trong đó có 1 bạn nữ và 2 bạn nam. Giáo viên chủ nhiệm gọi ngẫu nhiên 1 bạn lên bảng, khi đó:

    a) Xác suất để có tên Anh là \frac{1}{10}.Đúng||Sai

    b) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nữ là \frac{3}{17}.Sai||Đúng

    c) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nam là \frac{2}{13}.Đúng||Sai

    d) Nếu giáo viên chủ nhiệm gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là \frac{3}{17}.Sai||Đúng

    Đáp án là:

    Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Anh, trong đó có 1 bạn nữ và 2 bạn nam. Giáo viên chủ nhiệm gọi ngẫu nhiên 1 bạn lên bảng, khi đó:

    a) Xác suất để có tên Anh là \frac{1}{10}.Đúng||Sai

    b) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nữ là \frac{3}{17}.Sai||Đúng

    c) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nam là \frac{2}{13}.Đúng||Sai

    d) Nếu giáo viên chủ nhiệm gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là \frac{3}{17}.Sai||Đúng

    Gọi A là biến cố “tên là Anh”

    Gọi B là biến cố “nữ”.

    a) Xác suất để học sinh được gọi có tên là Anh là: P(A) = \frac{3}{10} = \frac{1}{10}.

    b) Xác suất để thầy giáo gọi bạn đó lên bảng có tên Anh, nhưng với điều kiện bạn đó nữ là P\left( A|B
ight)

    Ta có: P(B) = \frac{17}{30};P(A \cap B) =
\frac{1}{30}

    \Rightarrow P\left( A|B ight) =\dfrac{P(A \cap B)}{P(B)} = \dfrac{\dfrac{1}{30}}{\dfrac{17}{30}} =\dfrac{1}{17}

    c) Gọi C là biến cố “nam”.

    Xác suất để thầy giáo gọi bạn đó lên bảng có tên Anh, nhưng với điều kiện bạn đó nam là P\left( A|C
ight)

    Ta có: P(C) = \frac{13}{30};P(A \cap C) =
\frac{2}{30}

    \Rightarrow P\left( A|C ight) =\dfrac{P(A \cap C)}{P(A)} = \dfrac{\dfrac{2}{30}}{\dfrac{13}{30}} =\dfrac{2}{13}.

    d) Nếu thầy giáo gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là P\left( B|A
ight),

    \Rightarrow P\left( B|A ight) =\dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{1}{30}}{\dfrac{3}{30}} =\frac{1}{3}.

  • Câu 17: Thông hiểu

    Có hai hộp thuốc:

    Hộp I có 2 vỉ thuốc ngoại và 5 vỉ thuốc nội.

    Hộp II có 3 vỉ thuốc ngoại và 6 vỉ thuốc nội.

    Từ hộp I và hộp II lần lượt lấy ra 2 vỉ thuốc và 1 vỉ thuốc. Từ 3 vỉ thuốc đó lại lấy ra một vỉ. Biết vỉ lấy ra sau cùng là thuốc ngoại. Tính xác suất để vỉ thuốc này thuộc hộp số II?

    Gọi A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp I”

    A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp II”

    Ta có A1, A2 lập thành hệ đầy đủ các biến cố khi đó ta xác định được:

    P\left( A_{1} ight) =
\frac{2}{3};P\left( A_{2} ight) = \frac{1}{3}

    P\left( B|A_{1} ight) =
\frac{2}{7};P\left( B|A_{2} ight) = \frac{3}{9}

    Gọi B là biến cố “vỉ thuốc lấy ra sau cùng là thuốc ngoại”.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2}
ight)

    \Rightarrow P(B) =
\frac{2}{3}.\frac{2}{7} + \frac{1}{3}.\frac{3}{9} =
\frac{19}{63}.

    Áp dụng công thức Bayes ta có:

    P\left( A_{2}|B ight) = \dfrac{P\left(A_{2} ight).P\left( B|A_{2} ight)}{P(B)} =\dfrac{\dfrac{1}{3}.\dfrac{3}{9}}{\dfrac{19}{63}} =\dfrac{7}{19}.

  • Câu 18: Thông hiểu

    Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là 20\%; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70\%, trong số người không nghiện thuốc lá là 15\%. Hỏi khi ta gặp ngẫu nhiên một người dân của tỉnh T thì khả năng mà đó bị bệnh phổi là bao nhiêu \%?

    Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”

    Gọi B là biến cố “người bị bệnh phổi”

    Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.

    Ta cần tính P(B)

    Ta có: \left\{ \begin{matrix}P(A) = 0,2 \Rightarrow P\left( \overline{A} ight) = 1 - P(A) = 0,8 \\P\left( B|A ight) = 0,7 \\P\left( B|\overline{A} ight) = 0,15 \\\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A ight) +P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,2..0,7 + 0,8.0,15 =0,26

  • Câu 19: Vận dụng

    Trong một kho rượu, số lượng rượu loại M và loại N bằng nhau. Người ta chọn ngẫu nhiên một chai và đưa cho 5 người nếm thử. Biết xác suất đoán đúng của mỗi người là 0,8. Có 3 người kết luận rượu loại M, 2 người kết luận rượu loại N. Hỏi khi đó xác suất chai rượu đó thuộc loại M là bao nhiêu?

    Gọi A là chai rượu thuộc loại M thì A;\overline{A} tạo thành hệ đầy đủ và P(A) = P\left( \overline{A} ight) =
\frac{1}{2}

    Gọi H là "có 3 người kết luận rượu loại M và 2 người kết luận rượu loại N".

    Theo công thức toàn phần ta có:

    P(H) = P(A).P\left( H|A ight) +
P\left( \overline{A} ight).P\left( H|\overline{A} ight)

    \Rightarrow P(H) =
0,5.C_{5}^{3}.0,8^{3}.0,2^{2} + 0,5.C_{5}^{2}.0,8^{2}.0,2^{3} =
0,128

    Vậy xác suất cần tính là:

    P\left( A|H ight) = \frac{P(A).P\left(
H|A ight)}{P(H)} = \frac{0,5.C_{5}^{3}.0,8^{3}.0,2^{2}}{0,128} =
0,8

  • Câu 20: Nhận biết

    Cho hai biến cố A;B với P(A + B) = \frac{3}{4}. Tính P\left( \overline{A}.\overline{B}
ight)?

    Ta có: P\left( \overline{A}.\overline{B}
ight) = P\left( \overline{A + B} ight) = 1 - P(A + B) =
\frac{1}{4}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 45 lượt xem
Sắp xếp theo