Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Cho hai biến cố
và
, với
.
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai|| Đúng
d)
Sai|| Đúng
Cho hai biến cố và
, với
.
a) Đúng||Sai
b) Đúng||Sai
c) Sai|| Đúng
d) Sai|| Đúng
a) Ta có:
b)
c)
d)
Một thùng hàng có 30 sản phẩm, trong đó có 4 chất lượng thấp. Lấy liên tiếp hai sản phẩm trong thùng sản phẩm trên, trong đó sản phẩm lấy ra ở lần thứ nhất không được bỏ lại vào thùng. Tính xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp?
Gọi A: “Sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp”
Và B: “Sản phẩm lấy ra ở lần thứ hai có chất lượng thấp”.
Khi đó, xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp chính là:
Từ bài ra ta có:
Một chiếc hộp có
viên bi, trong đó có
viên bi có tô màu và
viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là
. Đúng||Sai
b) Sơ đồ cây biểu thị tình huống trên là.
Đúng||Sai
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:
Đúng||Sai
d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là:
. Đúng||Sai
Một chiếc hộp có viên bi, trong đó có
viên bi có tô màu và
viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là . Đúng||Sai
b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: Đúng||Sai
d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: . Đúng||Sai
Gọi A là biến cố “bạn Việt lấy ra viên bi có tô màu”
Gọi B là biến cố “bạn Nam lấy ra viên bi có tô màu”, suy ra B là biến cố “bạn Việt lấy ra viên bi không có tô màu”.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là .
b) Ta có:
Sơ đồ cây cần tìm là:
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:
d) A là biến cố “bạn Việt lấy ra viên bi có tô màu” suy ra A là biến cố “bạn Việt lấy ra viên bi không có tô màu”
Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng
và
. do có nhiễu trên đường truyền nên
tín hiệu A bị méo và thu được như tín hiệu B còn
tín hiệu B bị méo cà thu được như A. Xác suất thu được tín hiệu A là:
Gọi A là biến cố “Phát tín hiệu A ”
Gọi B là biến cố “Phát tín hiệu A ”
Gọi TA là biến cố “Phát được tín hiệu A ”
Gọi TB là biến cố “Phát được tín hiệu B”.
Ta cần tính ta có:
khi đó:
Theo công thức Bayes, ta có:
Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt bằng 8
Số phần tử của không gian mẫu là
Gọi là biến cố “Số chấm trên mặt hai lần gieo có tổng bằng 8”.
Theo bài ra, ta có
Khi đó số kết quả thuận lợi của biến cố là
Vậy xác suất cần tính .
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố
và
của một phép thử T. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Nếu thì
.
Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?
Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?
Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó
người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là
, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là
. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.
Gọi A: “Người được chọn ra không nhiễm bệnh”.
Và B: “Người được chọn ra có phản ứng dương tính”
Theo bài ta có:
Ta có sơ đồ hình cây như sau:
Vậy
Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Nếu viên rút ra sau cùng màu đỏ, tìm xác suất lúc ban đầu rút được viên bi đỏ ở hộp I cho vào hộp II?
Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",
D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".
Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.
Ta có:
Gọi A là "viên bi rút ra sau cùng là màu đỏ".
Ta xác định được:
Áp dụng công thức xác suất đầy đủ:
Ta cần tính xác suất
Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên ra 2 phiếu từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó cho học sinh A rút ngẫu nhiên ra 2 phiếu từ hộp thứ hai.
Gọi E1 là biến cố thầy giáo rút 2 câu thuộc từ hộp 1 bỏ sang hộp 2
Gọi E2 là biến cố thầy giáo rút 1 câu thuộc và 1 câu không thuộc từ hộp 1 bỏ sang hộp 2
Gọi E3 là biến cố thầy giáo rút 2 câu không thuộc từ hộp 1 bỏ sang hộp 2
Gọi C là biến cố sinh viên rút ra 2 câu thuộc từ hộp 2
Ta xác định được:
Thay vào công thức ta suy ra kết quả
Cửa hàng nhận trứng của ba cơ sở nuôi gà theo tỉ lệ
. Nếu tỉ lệ trứng hỏng của ba cơ sở là
thì xác suất để một quả trứng mua tại cửa hàng bị hỏng là bao nhiêu?
Khi mua một quả trứng của cửa hàng thì có một và chỉ một trong 3 biến cố xảy ra:
A1 lấy trứng của cơ sở I.
A2 lấy trứng của cơ sở II.
A3 lấy trứng của cơ sở III.
Xác suất của ba biến cố trên lần lượt là:
Gọi B là biến cố trứng mua tại cửa hàng bị hỏng.
Xác suất trứng hỏng tại ba cơ sở lần lượt là:
Do đó:
.
Một chiếc hộp có
viên bi, trong đó có
viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có
số viên bi màu đỏ đánh số và
số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
a) Số viên bi màu đỏ có đánh số là
. Đúng||Sai
b) Số viên bi màu vàng không đánh số là
. Đúng||Sai
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là:
Sai|| Đúng
d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là:
. Đúng||Sai
Một chiếc hộp có viên bi, trong đó có
viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có
số viên bi màu đỏ đánh số và
số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
a) Số viên bi màu đỏ có đánh số là . Đúng||Sai
b) Số viên bi màu vàng không đánh số là . Đúng||Sai
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: Sai|| Đúng
d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: . Đúng||Sai
a) Số viên bi màu đỏ có đánh số là
b) Số viên bi màu vàng không đánh số là
c) Gọi A là biến cố “viên bi được lấy ra có đánh số”
Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra B là biến cố “viên bi được lấy ra có màu vàng”
Lúc này ta đi tính theo công thức:
Ta có:
.
d) A là biến cố “viên bi được lấy ra có đánh số” suy ra A là biến cố “viên bi được lấy ra không có đánh số”. Khi đó ta có:
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là
Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".
B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".
C là biến cố: "Công ty hoàn thành đúng hạn".
Ta có là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".
là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".
là biến cố: "Công ty hoàn thành không đúng hạn".
Vì và
là hai biến cố độc lập nên
và
là hai biến cố độc lập
Mà
.
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
3 cuốn sách lấy ra không cùng một loại
.
Để tìm số phần tử của , ta đi tìm số phần tử của biến cố
, với biến cố
là 3 cuốn sách lấy ra cùng một loại.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Một nhà máy sản xuất bóng đèn gồm 3 phân xưởng, phân xưởng 1 sản xuất 50% tổng số bóng đèn, phân xưởng 2 sản xuất 20% tổng số bóng đèn, phân xưởng 3 sản xuất 30% tổng số bóng đèn. Tỷ lệ phế phẩm tương ứng của các phân xưởng là 2%, 3%, 4%. Tính tỷ lệ phế phẩm chung của toàn nhà máy?
Để xác định tỷ lệ phế phẩm chung của toàn nhà máy, ta lấy ngẫu nhiên 1 sản phẩm từ lô hàng của nhà máy.
Tính xác suất để sản phẩm này là phế phẩm
Gọi lần lượt là các biến cố " Chọn được sản phẩm của phân xưởng 1,2,3".
Ta có là hệ biến cố xung khắc và đầy đủ.
Gọi B là biến cố "Lấy được phế phẩm" ta có:
Vậy tỷ lệ phế phẩm của nhà máy là