Cho hai biến cố
và
, với
. Tính
?
Ta có: .
Cho hai biến cố
và
, với
. Tính
?
Ta có: .
Trong một kì thi tốt nghiệp trung học phổ thông, một tỉnh X có
học sinh lựa chọn tổ hợp A00 (gồm các môn Toán, Vật lí, Hoá học). Biết rằng, nếu một học sinh chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là
; còn nếu một học sinh không chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là
. Chọn ngẫu nhiên một học sinh của tỉnh X đã tốt nghiệp trung học phổ thông trong kì thi trên. Biết rằng học sinh này đã đỗ đại học. Tính xác suất để học sinh đó chọn tổ hợp A00. (Kết quả làm tròn đến chữ số thập phân thứ 2).
Gọi A: “Học sinh đó chọn tổ hợp A00”
Và B: “Học sinh đó đỗ đại học”.
Ta cần tính
Ta có:
là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó chọn tổ hợp A00
là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó không chọn tổ hợp A00
Thay vào công thức Bayes ta được:
Cho hai biến cố
và
của một phép thử T. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Nếu thì
.
Cho hai biến cố
có
. Xác định
?
Theo công thức tính xác suất có điều kiện ta có:
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất ta có:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Ba người thợ cùng may một loại áo với xác suất may được sản phẩm chất lượng cao tương ứng là
. Biết một người khi may 8 áo thì có 6 sản phẩm chất lượng cao. Tìm xác suất để người đó may 8 áo nữa thì có 6 áo chất lượng cao?
Áp dụng công thức xác suất đầy đủ
Gọi là "trong 8 áo sau có 6 áo chất lượng cao". Vì trong không gian điều kiện
, hệ
vẫn là hệ đầy đủ.
Áp dụng công thức xác suất toàn phần có
Ở đó:
Thay vào ta tính được
Điều trị phương pháp I, phương pháp II, phương pháp III tương ứng cho
bệnh nhân. Xác suất khỏi của các phương pháp tương ứng là
. Điều trị một trong 3 phương pháp cho bệnh nhân đã khỏi, tìm phương pháp có tỉ lệ chữa khỏi bệnh thấp nhất?
Tổng số bệnh nhân điều trị là 10000 người
Gọi A1 là biến cố bệnh nhân điều trị bởi phương pháp thứ I.
A2 là biến cố bệnh nhân điều trị bởi phương pháp thứ II.
A3 là biến cố bệnh nhân điều trị bởi phương pháp thứ III.
Khi đó:
Gọi B là biến cố điều trị khỏi bệnh.
Khi đó
Áp dụng công thức xác suất toàn phần ta có:
Ta có:
Vậy phương pháp có tỉ lệ chữa khỏi bệnh thấp nhất là phương pháp III.
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Có ba kiện hàng (mỗi kiện hàng có
sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là
. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?
Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.
Gọi A là các sản phẩm lấy ra đều tốt.
Áp dụng công thức xác suất toàn phần ta có:
Từ đó ta có:
Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là
. Thống kê cho thấy
cặp sinh đôi là trai;
cặp sinh đôi là gái và
cặp sinh đôi có giới tính khác nhau. Tính tỷ lệ cặp sinh đôi thật.
Gọi A: “Nhận được cặp sinh đôi thật”
B: “Nhận được cặp sinh đôi có cùng giới tính”
Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên
Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên
Do thống kê trên các cặp sinh đôi nhận được thì:
Áp dụng công thức xác suất toàn phần ta có:
Thay số ta xác định được .
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Trong một vùng dân cư, cứ
người thì có
người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là
, trong số người không hút thuốc lá là
. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Nếu người đó không bị viêm họng thì xác suất để người đó hút thuốc lá là bao nhiêu?
Gọi A: "Người này hút thuốc"
B: "Người này bị viêm họng"
Theo giả thiết ta có:
Ta thấy rằng là một hệ đầy đủ các biến cố.
Theo công thức xác suất toàn phần ta tính được:
Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó không bị viêm họng là:
Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Xác suất để một đứa trẻ là trai hoặc gái là bằng nhau. Hỏi xác suất hai đứa trẻ đều là con gái là bao nhiêu?
Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.
Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng: (trai, trai), (gái, gái), (gái, trai), (trai, gái).
Gọi A là biến cố “Cả hai đứa trẻ đều là con gái” Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”
Ta có:
Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:
Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là: .
Cho hai biến cố
và
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Công thức tính xác suất của biến cố khi biết biến cố
đã xảy ra
là:
.
Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là
; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là
. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi
là biến cố một con bò bị bệnh bò điên,
là biến cố một con bò phản ứng dương tính với xét nghiệm.
a)
. Đúng||Sai
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Sai||Đúng
Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là ; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là
. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi
là biến cố một con bò bị bệnh bò điên,
là biến cố một con bò phản ứng dương tính với xét nghiệm.
a) . Đúng||Sai
b) . Sai||Đúng
c) . Đúng||Sai
d) . Sai||Đúng
Tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên con nghĩa là
.
Khi con bò bị bệnh bò điên, thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60%, nghĩa là:
Khi con bò không bị bệnh, thì xác xuất để xả ra phản ứng dương tính trong xét nghiệm đó là 20%, nghĩa là . Khi đó, ta có:
Cho ba biến cố
độc lập từng đôi thỏa mãn
và
. Xác định
?
Ta có:
Vì A, B, C có vai trò như nhau nên
Một hộp có 4 viên bi, mỗi viên có thể là màu đen hoặc trắng. Lấy ngẫu nhiên ra hai viên bi. Tính xác suất để lấy được hai bi trắng.
Số lượng bi trắng và đen trong hộp chỉ có thể xảy ra 1 trong 5 trường hợp sau:
H4: 4 bi trắng
H3: 3 bi trắng; 1 bi đen
H2: 2 bi trắng; 2 bi đen
H1: 1 bi trắng; 3 bi đen
H0: 0 bi trắng; 4 bi đen
Gọi biến cố A là biến cố lấy được 2 bi trắng
Ta có:
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Gọi A là biến cố “qua được lần kiểm tra đầu tiên”
Gọi B là biến cố “qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính .
Ta có
Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng
?
Gọi Ti: "Tổng số nốt hai lần tung bằng i"
Nj,k: "Số nốt trên lần tung thứ j bằng k"
Ta tìm