Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong một trường học, tỉ lệ học sinh nữ là 52\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là 18\%15\%. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?

    Gọi A_{1};A_{2} lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam

    Nên 1 2 A A, là hệ biến cố đầy đủ.

    Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = 52\% = 0,52 \\
P\left( A_{2} ight) = 1 - 0,52 = 0,48 \\
P\left( B|A_{1} ight) = 18\% = 0,18 \\
P\left( B|A_{2} ight) = 15\% = 0,15 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) = 0,18.0,52 + 0,15.0,48
= \frac{207}{1250} = 0,1656

    Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)} = \frac{0,15.0,48}{0,1656}
= \frac{10}{23}

  • Câu 2: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 3: Vận dụng

    Một hệ thống được cấu tạo bởi 3 bộ phận độc lập nhau. Hệ thống sẽ hoạt động nếu ít nhất 2 trong 3 bộ phận còn hoạt động. Nếu độ tin cậy của mỗi bộ phận là 0.95 thì độ tin cậy của hệ thống là bao nhiêu?

    Gọi Bi: "Bộ phận thứ i hoạt động tốt" (i = 1, 2, 3)

    H: "Hệ thống hoạt động tốt"

    Theo giả thiết, ta thấy rằng P(Bi) = 0.95 với i = 1, 2, 3 và

    H = \overline{B_{1}}B_{2}B_{3} +
B_{1}\overline{B_{2}}B_{3} + B_{1}B_{2}\overline{B_{3}} +
B_{1}B_{2}B_{3}

    Do tính độc lập, xung khắc và đối xứng nên:

    P(H) = 3P\left( \overline{B_{1}}
ight)P\left( B_{2} ight)P\left( B_{3} ight) + P\left( B_{1}
ight)P\left( B_{2} ight)P\left( B_{3} ight)

    \Rightarrow P(H) = 3.(0,95)^{2}.(0,05) +
0,95^{3} = 99,28.

  • Câu 4: Vận dụng cao

    Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?

    Gọi E1 là biến cố phế phẩm máy số I

    \Rightarrow P\left( E_{1} ight) = 0,04
\Rightarrow P\left( \overline{E_{1}} ight) = 1 - 0,04 =
0,96

    E2 là biến cố phế phẩm máy số II

    \Rightarrow P\left( E_{2} ight) = 0,03
\Rightarrow P\left( \overline{E_{2}} ight) = 1 - 0,03 =
0,97

    E3 là biến cố phế phẩm máy số III

    \Rightarrow P\left( E_{3} ight) = 0,05
\Rightarrow P\left( \overline{E_{3}} ight) = 1 - 0,05 =
0,95

    Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt

    Xác suất để khách hàng lấy được linh kiện tốt là:

    P(B) =
\frac{C_{80}^{1}}{C_{300}^{1}}.0,96 +
\frac{C_{120}^{1}}{C_{300}^{1}}.0,97 +
\frac{C_{100}^{1}}{C_{300}^{1}}.0,95 = 0,96

    Gọi \overline{B} là biến cố khách hàng lấy 1 linh kiện loại không tốt

    Ta xác định được:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,04

    P\left( E_{1}|\overline{B} ight) =
\frac{P\left( E_{1} ight).P\left( \overline{B}|E_{1} ight)}{P\left(
\overline{B} ight)} = \frac{C_{80}^{1}.0,04}{0,04} = 0,26

    P\left( E_{2}|\overline{B} ight) =
\frac{P\left( E_{2} ight).P\left( \overline{B}|E_{2} ight)}{P\left(
\overline{B} ight)} = \frac{C_{120}^{1}.0,03}{0,04} = 0,3

    P\left( E_{3}|\overline{B} ight) =
\frac{P\left( E_{3} ight).P\left( \overline{B}|E_{3} ight)}{P\left(
\overline{B} ight)} = \frac{C_{100}^{1}.0,05}{0,04} =
0,41

    Vậy linh kiện đó do máy III là cao nhất.

  • Câu 5: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 6: Thông hiểu

    Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Một khách hàng lấy ngẫu nhiên 1 linh kiện từ lô hàng đó. Tính xác suất để được linh kiện tốt?

    Gọi E1 là biến cố phế phẩm máy số I

    \Rightarrow P\left( E_{1} ight) = 0,04
\Rightarrow P\left( \overline{E_{1}} ight) = 1 - 0,04 =
0,96

    E2 là biến cố phế phẩm máy số II

    \Rightarrow P\left( E_{2} ight) = 0,03
\Rightarrow P\left( \overline{E_{2}} ight) = 1 - 0,03 =
0,97

    E3 là biến cố phế phẩm máy số III

    \Rightarrow P\left( E_{3} ight) = 0,05
\Rightarrow P\left( \overline{E_{3}} ight) = 1 - 0,05 =
0,95

    Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt

    Xác suất để khách hàng lấy được linh kiện tốt là:

    P(B) =
\frac{C_{80}^{1}}{C_{300}^{1}}.0,96 +
\frac{C_{120}^{1}}{C_{300}^{1}}.0,97 +
\frac{C_{100}^{1}}{C_{300}^{1}}.0,95 = 0,96

  • Câu 7: Thông hiểu

    Trong một kỳ thi, có 60\% học sinh đã làm đúng bài toán đầu tiên và 40\% học sinh đã làm đúng bài toán thứ hai. Biết rằng có 20\% học sinh làm đúng cả hai bài toán. Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là bao nhiêu?

    Gọi biến cố A: "học sinh đã làm đúng bài toán đầu tiên"

    \Rightarrow P(A) =
60\% = 0,6

    Biến cố B: "học sinh đã làm đúng bài toán thứ hai”

    \Rightarrow P(B) = 40\% =
0,4

    Biến cố A \cap B: "học sinh làm đúng cả hai bài toán"

    \Rightarrow P(A \cap
B) = 20\% = 0,2

    Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3} \approx 0,333

  • Câu 8: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{B}|A ight)?

    Ta có:

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -
\frac{0,3}{0,6} = \frac{1}{2}.

  • Câu 9: Thông hiểu

    Có ba kiện hàng (mỗi kiện hàng có 20 sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là 18, 16, 12. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?

    Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là các sản phẩm lấy ra đều tốt.

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Áp dụng công thức xác suất toàn phần ta có:

    P\left( A|A_{1} ight) =
\frac{18}{20}.\frac{18}{20}

    P\left( A|A_{2} ight) =
\frac{16}{20}.\frac{16}{20}

    P\left( A|A_{3} ight) =
\frac{12}{20}.\frac{12}{20}

    Từ đó ta có:

    P(A) = P\left( A_{1} ight).P\left(
A|A_{1} ight) + P\left( A_{2} ight).P\left( A|A_{2} ight) +
P\left( A_{3} ight).P\left( A|A_{3} ight)

    \Rightarrow P(A) =
\frac{1}{3}.\frac{18}{20}.\frac{18}{20} +
\frac{1}{3}.\frac{16}{20}.\frac{16}{20} +
\frac{1}{3}.\frac{12}{20}.\frac{12}{20} = \frac{181}{300} \approx
0,6033

  • Câu 10: Thông hiểu

    Một cửa hàng sách ước lượng rằng: trong tổng số các khách hàng đến cửa hàng có 30\% khách cần hỏi nhân viên bán hàng, 20\% khách mua sách và 15\% khách thực hiện cả hai điều trên. Gặp ngẫu nhiên một khách trong nhà sách. Tính xác suất để người này không mua sách, biết rằng người này đã hỏi nhân viên bán hàng?

    Gọi A là "khách hỏi nhân viên bán hàng" và B là "khách mua sách".

    Ta có: \left\{ \begin{matrix}
P(A) = 0,3;P(B) = 0,2 \\
P(AB) = 0,15 \\
\end{matrix} ight.

    P\left( \overline{B}|A ight) =
\frac{P\left( \overline{B}|A ight)}{P(A)} = \frac{P(A) - P(AB)}{P(A)}
= 0,5.

  • Câu 11: Vận dụng

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên ra 2 phiếu từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó cho học sinh A rút ngẫu nhiên ra 2 phiếu từ hộp thứ hai.

    Gọi E1 là biến cố thầy giáo rút 2 câu thuộc từ hộp 1 bỏ sang hộp 2

    Gọi E2 là biến cố thầy giáo rút 1 câu thuộc và 1 câu không thuộc từ hộp 1 bỏ sang hộp 2

    Gọi E3 là biến cố thầy giáo rút 2 câu không thuộc từ hộp 1 bỏ sang hộp 2

    Gọi C là biến cố sinh viên rút ra 2 câu thuộc từ hộp 2

    P(C) = P\left( E_{1} ight)P\left(
C|E_{1} ight) + P\left( E_{2} ight)P\left( C|E_{2} ight) + P\left(
E_{3} ight)P\left( C|E_{3} ight)

    Ta xác định được:

    P\left( E_{1} ight) =
\frac{C_{10}^{2}}{C_{15}^{2}} = \frac{3}{7};P\left( E_{2} ight) =
\frac{C_{10}^{1}.C_{5}^{1}}{C_{15}^{2}} = \frac{10}{21}

    P\left( E_{3} ight) =
\frac{C_{5}^{2}}{C_{15}^{2}} = \frac{2}{21};P\left( C|E_{1} ight) =
\frac{C_{10}^{2}}{C_{11}^{2}} = \frac{9}{11}

    P\left( C|E_{2} ight) =
\frac{C_{9}^{2}}{C_{11}^{2}} = \frac{12}{35};P\left( C|E_{3} ight) =
\frac{C_{8}^{2}}{C_{11}^{2}} = \frac{3}{35}

    Thay vào công thức ta suy ra kết quả P(C)
\approx 0,522

  • Câu 12: Thông hiểu

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên một người trong đợt kiểm tra sức khoẻ đó. Giả sử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)

    Xét các biến cố:

    A: "Người được chọn mắc bệnh X"

    B: "Người được chọn có phản ứng dương tính với xét nghiệm Y".

    Theo giả thiết ta có:

    P(A) = 0,002 \Rightarrow P\left(
\overline{A} ight) = 1 - 0,002 = 0,998

    P\left( B|A ight) = 1;P\left(
B|\overline{A} ight) = 0,06

    Theo công thức Bayes, ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,002.1}{0,002.1 + 0,998.0,06} \approx 0,03

  • Câu 13: Nhận biết

    Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.

    Xét các biến cố A: "Quả bóng lấy ra đầu tiên có màu đỏ"

    B: "Tổng số của hai quả bóng lấy ra là số lẻ"

    Xác định B|A là biến cố B khi biết A đã xảy ra?

    Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).

    Do đó, không gian mẫu mới là

    \Omega' = A = \left\{
(1;2),(1;3),(1;4),(1;5),(2;1),(2;3),(2;4),(2;5) ight\}

    Biến cố B khi biết A đã xảy ra là:

    B|A = A \cap B = \left\{
(1;2),(1;4),(2;1),(2;3),(2;5) ight\}

  • Câu 14: Thông hiểu

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M,N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A : "Cây phát triển bình thường trên lô đất M ";

    B : "Cây phát triển bình thường trên lô đất N".

    a) Các cặp biến cố \overline{A}B,A\overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A} \cap
BD = A \cap
\overline{B} không là hai biến cố xung khắc.Sai||Đúng
    c) P\left( \overline{A} ight) =
0,56;P\left( \overline{B} ight) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Đáp án là:

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M,N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A : "Cây phát triển bình thường trên lô đất M ";

    B : "Cây phát triển bình thường trên lô đất N".

    a) Các cặp biến cố \overline{A}B,A\overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A} \cap
BD = A \cap
\overline{B} không là hai biến cố xung khắc.Sai||Đúng
    c) P\left( \overline{A} ight) =
0,56;P\left( \overline{B} ight) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Các cặp biến cố \overline{A}B,A\overline{B} là độc lập vì hai lô đất khác nhau.

    Hai biến cố C = \overline{A} \cap
BD = A \cap\overline{B} là hai biến cố xung khắc.

    Ta có: \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = 1 - 0,56 = 0,44 \\
P\left( \overline{B} ight) = 1 - P(B) = 1 - 0,62 = 0,38 \\
\end{matrix} ight..

    Xác suất để cây chi phát triển bình thường trên một lô đất là:

    P(C \cup D)

    \  = P(C) + P(D) = P\left( \overline{A}
ight) \cdot P(B) + P(A) \cdot P\left( \overline{B}
ight)

    \  = 0,44.0,62 + 0,56.0,38 =
0,4856

  • Câu 15: Thông hiểu

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Biết công ty thắng thầu dự án 1, tìm xác suất công ty thắng thầu dự án 2?

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi D là biến cố “thắng thầu dự án thứ 2 biết thắng thầu dự án 1” do A; B là hai biến cố độc lập nên:

    P(D) = P\left( B|A ight) = P(B) =
0,7

  • Câu 16: Vận dụng

    Phòng thi đánh giá năng lực có 10 học sinh trong đó có 2 học sinh giỏi (trả lời 100% các câu hỏi), 3 học sinh khá (trả lời 80% các câu hỏi), 5 học sinh trung bình (trả lời 50% các câu hỏi). Gọi ngẫu nhiên một học sinh vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Thấy học sinh này trả lời được cả 4 câu, tính xác suất để học sinh đó là học sinh khá? Xác suất gần bằng số nào sau đây?

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố gọi một học sinh Giỏi, Khá, Trung Bình

    Nên A_{1};A_{2};A_{3} là hệ biến cố đầy đủ.

    Gọi B “học sinh đó trả lời được 4 câu hỏi”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = \frac{C_{2}^{1}}{C_{10}^{1}} = \frac{1}{5} \\
P\left( A_{2} ight) = \frac{C_{3}^{1}}{C_{10}^{1}} = \frac{3}{10} \\
P\left( A_{3} ight) = \frac{C_{5}^{1}}{C_{10}^{1}} = \frac{1}{2} \\
\end{matrix} ight.

    Ta lại có:

    2 học sinh Giỏi (trả lời 100% các câu hỏi) ⇒ Trả lời 20 câu hỏi

    3 học sinh Khá (trả lời 80% các câu hỏi) ⇒ Trả lời 20.80\% = 16 câu hỏi.

    5 học sinh Trung Bình (trả lời 50% các câu hỏi) ⇒ Trả lời 20.50\% = 10 câu hỏi.

    Từ đó: \left\{ \begin{matrix}P\left( B|A_{1} ight) = \dfrac{C_{20}^{4}}{C_{20}^{4}} = 1 \\P\left( B|A_{2} ight) = \dfrac{C_{16}^{4}}{C_{20}^{4}} =\dfrac{364}{969} \\P\left( B|A_{3} ight) = \dfrac{C_{10}^{4}}{C_{20}^{4}} = \dfrac{14}{323}\\\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2} ight) + P\left(
B|A_{3} ight).P\left( A_{3} ight)

    \Rightarrow P(B) = 1.\frac{1}{5} +
\frac{364}{969}.\frac{3}{10} + \frac{14}{323}.\frac{1}{2} =
\frac{108}{323}

    Xác suất để sinh viên đó là sinh viên khá là P\left( A_{2}|B ight)

    Áp dụng công thức Bayes ta có:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)}

    \Rightarrow P\left( A_{2}|B ight) =\dfrac{\dfrac{364}{969}.\dfrac{3}{10}}{\dfrac{108}{323}} = \dfrac{91}{270}\approx 0,337

  • Câu 17: Thông hiểu

    Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Anh, trong đó có 1 bạn nữ và 2 bạn nam. Giáo viên chủ nhiệm gọi ngẫu nhiên 1 bạn lên bảng, khi đó:

    a) Xác suất để có tên Anh là \frac{1}{10}.Đúng||Sai

    b) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nữ là \frac{3}{17}.Sai||Đúng

    c) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nam là \frac{2}{13}.Đúng||Sai

    d) Nếu giáo viên chủ nhiệm gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là \frac{3}{17}.Sai||Đúng

    Đáp án là:

    Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Anh, trong đó có 1 bạn nữ và 2 bạn nam. Giáo viên chủ nhiệm gọi ngẫu nhiên 1 bạn lên bảng, khi đó:

    a) Xác suất để có tên Anh là \frac{1}{10}.Đúng||Sai

    b) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nữ là \frac{3}{17}.Sai||Đúng

    c) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nam là \frac{2}{13}.Đúng||Sai

    d) Nếu giáo viên chủ nhiệm gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là \frac{3}{17}.Sai||Đúng

    Gọi A là biến cố “tên là Anh”

    Gọi B là biến cố “nữ”.

    a) Xác suất để học sinh được gọi có tên là Anh là: P(A) = \frac{3}{10} = \frac{1}{10}.

    b) Xác suất để thầy giáo gọi bạn đó lên bảng có tên Anh, nhưng với điều kiện bạn đó nữ là P\left( A|B
ight)

    Ta có: P(B) = \frac{17}{30};P(A \cap B) =
\frac{1}{30}

    \Rightarrow P\left( A|B ight) =\dfrac{P(A \cap B)}{P(B)} = \dfrac{\dfrac{1}{30}}{\dfrac{17}{30}} =\dfrac{1}{17}

    c) Gọi C là biến cố “nam”.

    Xác suất để thầy giáo gọi bạn đó lên bảng có tên Anh, nhưng với điều kiện bạn đó nam là P\left( A|C
ight)

    Ta có: P(C) = \frac{13}{30};P(A \cap C) =
\frac{2}{30}

    \Rightarrow P\left( A|C ight) =\dfrac{P(A \cap C)}{P(A)} = \dfrac{\dfrac{2}{30}}{\dfrac{13}{30}} =\dfrac{2}{13}.

    d) Nếu thầy giáo gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là P\left( B|A
ight),

    \Rightarrow P\left( B|A ight) =\dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{1}{30}}{\dfrac{3}{30}} =\frac{1}{3}.

  • Câu 18: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 19: Vận dụng

    Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?

    Đáp án: 0,48

    Đáp án là:

    Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?

    Đáp án: 0,48

    Xét các biến cố: A: “Chọn được bạn biết chơi bóng đá”

    B: “Chọn được bạn biết chơi cầu lông”

    Khi đó P(A) = \frac{27}{40} =
0,675; P(B) = \frac{25}{40} =
0,625; P(A \cup B) =
1.

    Suy ra P(A \cap B) = P(A) + P(B) - P(A
\cup B) = 0,675 + 0,625 - 1 = 0,3.

    Vậy xác suất chọn được bạn biết chơi bóng đá, bạn đó biết chơi cầu lông là P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{0,3}{0,625} = 0,48.

    Đáp số: 0,48.

  • Câu 20: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để cả hai bi đều đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo