Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có hai hộp đựng bóng giống nhau (khác màu sắc):

    Hộp thứ chứa 10 quả bóng trong đó có 9 quả màu đen.

    Hộp thứ hai chứa 20 quả bóng trng đó có 18 quả màu đen,

    Từ hộp thứ nhất lấy ngẫu nhiên một quả bóng bỏ sang hộp thứ hai. Tìm xác suất để lấy ngẫu nhiên một quả bóng từ hộp thứ hai được quả màu đen?

    Gọi A là biến cố lấy được quả bóng màu đen từ hộp thứ hai.

    Biến cố A có thể xảy ra đòng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:

    H1 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai là màu đen.

    H2 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai không phải màu đen.

    Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai là quả bóng màu đen bằng: P\left( H_{1} ight) =
\frac{9}{10}

    Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai không phải quả bóng màu đen bằng: P\left( H_{2} ight) =
\frac{1}{10}

    Xác suất có điều kiện để từ hộp thứ hai lấy được quả bóng màu đen khi các giả thuyết H_{1};H_{2} xảy ra là:

    P\left( A|H_{1} ight) =
\frac{19}{21};P\left( A|H_{2} ight) = \frac{18}{21} =
\frac{6}{7}

    Do đó:

    P(A) = P\left( H_{1} ight).\left(
A|H_{1} ight) + P\left( H_{2} ight)P\left( A|H_{2}
ight)

    \Rightarrow P(A) =
\frac{9}{10}.\frac{19}{21} + \frac{1}{10}.\frac{6}{7} = 0,9

  • Câu 2: Thông hiểu

    Một cửa hàng sách ước lượng rằng: trong tổng số các khách hàng đến cửa hàng có 30\% khách cần hỏi nhân viên bán hàng, 20\% khách mua sách và 15\% khách thực hiện cả hai điều trên. Gặp ngẫu nhiên một khách trong nhà sách. Tính xác suất để người này không mua sách, biết rằng người này đã hỏi nhân viên bán hàng?

    Gọi A là "khách hỏi nhân viên bán hàng" và B là "khách mua sách".

    Ta có: \left\{ \begin{matrix}
P(A) = 0,3;P(B) = 0,2 \\
P(AB) = 0,15 \\
\end{matrix} ight.

    P\left( \overline{B}|A ight) =
\frac{P\left( \overline{B}|A ight)}{P(A)} = \frac{P(A) - P(AB)}{P(A)}
= 0,5.

  • Câu 3: Vận dụng

    Theo thống kê ở các gia đình có hai con thì xác suất để con thứ nhất và con thứ hai là đều con trai là 0,27 và hai con đều là gái là 0,23, còn xác suất con thứ nhất và con thứ hai có một trai và một gái là đồng khả năng. Biết khi xét một gia đình được chọn ngẫu nhiên có con thứ nhất là con gái, tìm xác suất để con thứ hai là trai.

    Gọi A là 'con thứ nhất là con trai' và B là 'con thứ hai là con trai' thì theo đề bài ta có:

    P(AB) = 0,27, P(\bar{A}\bar{B}) = 0,23P(A\bar{B}) = P(\bar{A}B) = 0,25

    Ta cần tìm B \mid \bar{A}.

    Ta có

    P\left( B\mid\bar{A} ight) =
\frac{P\left( B\bar{A} ight)}{P\left( \bar{A} ight)} = \frac{P\left(
B\bar{A} ight)}{P\left( \bar{A}B ight) + P\left( \bar{A}\bar{B}
ight)}= \frac{0,25}{0,25 + 0,23} \simeq
0,5208

  • Câu 4: Nhận biết

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 5: Vận dụng cao

    Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?

    Gọi E1 là biến cố phế phẩm máy số I

    \Rightarrow P\left( E_{1} ight) = 0,04
\Rightarrow P\left( \overline{E_{1}} ight) = 1 - 0,04 =
0,96

    E2 là biến cố phế phẩm máy số II

    \Rightarrow P\left( E_{2} ight) = 0,03
\Rightarrow P\left( \overline{E_{2}} ight) = 1 - 0,03 =
0,97

    E3 là biến cố phế phẩm máy số III

    \Rightarrow P\left( E_{3} ight) = 0,05
\Rightarrow P\left( \overline{E_{3}} ight) = 1 - 0,05 =
0,95

    Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt

    Xác suất để khách hàng lấy được linh kiện tốt là:

    P(B) =
\frac{C_{80}^{1}}{C_{300}^{1}}.0,96 +
\frac{C_{120}^{1}}{C_{300}^{1}}.0,97 +
\frac{C_{100}^{1}}{C_{300}^{1}}.0,95 = 0,96

    Gọi \overline{B} là biến cố khách hàng lấy 1 linh kiện loại không tốt

    Ta xác định được:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,04

    P\left( E_{1}|\overline{B} ight) =
\frac{P\left( E_{1} ight).P\left( \overline{B}|E_{1} ight)}{P\left(
\overline{B} ight)} = \frac{C_{80}^{1}.0,04}{0,04} = 0,26

    P\left( E_{2}|\overline{B} ight) =
\frac{P\left( E_{2} ight).P\left( \overline{B}|E_{2} ight)}{P\left(
\overline{B} ight)} = \frac{C_{120}^{1}.0,03}{0,04} = 0,3

    P\left( E_{3}|\overline{B} ight) =
\frac{P\left( E_{3} ight).P\left( \overline{B}|E_{3} ight)}{P\left(
\overline{B} ight)} = \frac{C_{100}^{1}.0,05}{0,04} =
0,41

    Vậy linh kiện đó do máy III là cao nhất.

  • Câu 6: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P\left( \overline{A} \cap B
ight)?

    Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,65 - 0,25 = 0,4.

  • Câu 7: Vận dụng

    Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là

    Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".

    B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".

    C là biến cố: "Công ty hoàn thành đúng hạn".

    Ta có \overline{A} là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".

    \overline{B} là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".

    \overline{C} là biến cố: "Công ty hoàn thành không đúng hạn".

    P(A) = 0,95;P(B) = 0,85;P(\overline{A})
= 0,05;P(\overline{B}) = 0,15

    AB là hai biến cố độc lập nên \overline{A}\overline{B} là hai biến cố độc lập

    \overline{C} =
\overline{A.B}

    P(\overline{C}) =
P(\overline{A}.\overline{B}) = P(\overline{A}).P(\overline{B}) =
0,0075.

    \Rightarrow P(C) = 1 - P(\overline{C}) =
0,9925.

  • Câu 8: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 9: Vận dụng

    Ba máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 25\%, máy II sản xuất 30\% và máy III sản xuất 45\% tổng sản lượng. Tỷ lệ phế phẩm của các máy lần lượt là 0,1\%;0,2\%;0,4\%. Tìm xác suất để khi chọn ngẫu nhiên ra 1 sản phẩm từ kho thì chi tiết phế phẩm đó do máy II sản xuất?

    Gọi Ai: “Sản phẩm do máy i sản xuất”

    A: “Sản phẩm là phế phẩm”

    Ta có: A1, A2, A3 là một hệ đầy đủ các biến cố và

    P\left( A_{1} ight) = 0,25;P\left(
A_{2} ight) = 0,3;P\left( A_{3} ight) = 0,45

    P\left( A|A_{1} ight) = 0,001;P\left(
A|A_{2} ight) = 0,002;P\left( A|A_{3} ight) = 0,004

    Theo công thức xác suất toàn phần ta có:

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{3} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight) = 0,00265

    Theo công thức Bayes ta có:

    P\left( A_{2}|A ight) = \frac{P\left(
A|A_{2} ight).P\left( A_{2} ight)}{P(A)} = 0,226

  • Câu 10: Thông hiểu

    Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra hai xạ thủ và mỗi người bắn một viên đạn. Tìm xác suất để cả hai viên đạn đó trúng đích.

    Gọi B là biến cố "Cả 2 viên đạn trúng đích".

    B_{i},(i = 1,2) là biến cố "Chọn được i xạ thủ loại I".

    P\left( {\text{ }B}_{0} ight) =\frac{C_{8}^{2}}{C_{10}^{2}} = \frac{28}{45};P\left( \text{ }B \mid B_{0} ight) = 0,7 \cdot 0,7 = 0,49

    P\left( {\text{ }B}_{1} ight) =\frac{C_{2}^{1} \cdot C_{8}^{1}}{C_{10}^{2}} = \frac{16}{45};P\left(\text{ }B \mid B_{1} ight) = 0,9 \cdot 0,7 = 0,63

    P\left( {\text{ }B}_{2} ight) =\frac{C_{2}^{2}}{C_{10}^{2}} = \frac{1}{45};P\left( \text{ }B \mid B_{2} ight) = 0,9.0,9 = 0,81

    Ta có B_{1},B_{2},B_{3} tạo thành họ đầy đủ các biến cố.

    Áp dụng công thức, ta có

    P(\text{ }B) = P\left( {\text{ }B}_{0}ight) \cdot P\left( \text{ }B \mid B_{0} ight) + P\left( {\text{}B}_{1} ight) \cdot P\left( \text{ }B \mid B_{1} ight) + P\left({\text{ }B}_{2} ight) \cdot P\left( \text{ }B \mid B_{2}ight)

    = \frac{28}{45} \cdot 0,49 +
\frac{16}{45} \cdot 0,63 + \frac{1}{45}0,81 = 0,5469

  • Câu 11: Thông hiểu

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Đáp án là:

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100\ 000 con nghĩa là P(X) = 15.10^{- 6}.

    Khi con bò bị bệnh bò điên, thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60%, nghĩa là: P\left(
Y|X ight) = 0,6.

    Khi con bò không bị bệnh, thì xác xuất để xả ra phản ứng dương tính trong xét nghiệm đó là 20%, nghĩa là P\left(
Y|\overline{X} ight) = 0,2. Khi đó, ta có:

    P(Y \cap X) = P\left( Y|X ight).P(X) =
0,6\ .\ 15\ .\ 10^{- 6} = 9.10^{- 6}.

  • Câu 12: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 13: Thông hiểu

    Cho 2 lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô này lấy ngầu nhiên ra 1 sản phẩm. Các khẳng định sau đúng hay sai?

    a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng \frac{5}{8}.Đúng||Sai

    b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng \frac{3}{8}. Đúng||Sai

    c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất đế sản phẩm đó của lô thứ II bằng \frac{2}{5}. Đúng||Sai

    d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất đế sản phẩm đó của lô thứ I bằng \frac{1}{2}. Sai||Đúng

    Đáp án là:

    Cho 2 lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô này lấy ngầu nhiên ra 1 sản phẩm. Các khẳng định sau đúng hay sai?

    a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng \frac{5}{8}.Đúng||Sai

    b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng \frac{3}{8}. Đúng||Sai

    c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất đế sản phẩm đó của lô thứ II bằng \frac{2}{5}. Đúng||Sai

    d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất đế sản phẩm đó của lô thứ I bằng \frac{1}{2}. Sai||Đúng

    Gọi B_{1} là biến cố: “Lô lấy ra là lô I”

    Gọi B_{2} là biến cố: “Lô lấy ra là lô II”

    a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”

    Ta có: P(A) = P\left( B_{1}
ight).P\left( A|B_{1} ight) + P\left( B_{2} ight).P\left( A|B_{2}
ight)

    \left\{ \begin{matrix}P\left( B_{1} ight) = \dfrac{1}{2};P\left( B_{2} ight) = \dfrac{1}{2}\\P\left( A|B_{1} ight) = \dfrac{15}{20} = \dfrac{3}{4} \\P\left( A|B_{2} ight) = \dfrac{10}{20} = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy P(A) = \frac{1}{2}.\frac{3}{4} +
\frac{1}{2}.\frac{1}{2} = \frac{5}{8}

    b) Ta có: P(A) = \frac{5}{8} \Rightarrow
P\left( \overline{A} ight) = 1 - P(A) = 1 - \frac{5}{8} =
\frac{3}{8}

    c) Ta có: \left\{ \begin{matrix}P\left( B_{2} ight) = \dfrac{1}{2};P\left( A|B_{2} ight) =\dfrac{1}{2} \\P(A) = \dfrac{5}{8} \\\end{matrix} ight.

    P\left( B_{2}|A ight) = \frac{P\left(
B_{2} ight).P\left( A|B_{2} ight)}{P(A)} =
\frac{0,5.0,5}{\frac{5}{8}} = \frac{2}{5}

    d) Ta có: \left\{ \begin{matrix}P(A) = \dfrac{5}{8};P\left( \overline{A} ight) = \dfrac{3}{8} \\P\left( B_{1} ight) = \dfrac{1}{2};P\left( \overline{A}|B_{1} ight) =\dfrac{1}{4} \\\end{matrix} ight.

    P\left( B_{1}|A ight) = \frac{P\left(B_{1} ight).P\left( \overline{A}|B_{1} ight)}{P\left( \overline{A}ight)} = \frac{0,5.0,25}{\dfrac{3}{8}} = \dfrac{1}{3}.

  • Câu 14: Thông hiểu

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( A\overline{B}\overline{C}
ight)?

    Ta có:

    P\left( A\overline{B}\overline{C}
ight) = P\left( A\overline{B} ight) - P\left( A\overline{B}C
ight)

    = p(1 - p) - p^{2} = p -
2p^{2}

  • Câu 15: Thông hiểu

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Đáp án là:

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Không gian mẫu là số cách sắp xếp 5 hành khách lên 3 toa tàu. Vì mỗi hành khách có 3 cách chọn toa nên có 3^{5} cách xếp.

    Suy ra số phần tử của không gian mẫu là n(\Omega) = 3^{5} = 243.

    Gọi A là biến cố ''5 hành khách bước lên tàu mà mỗi toa có ít nhất 1 hành khách''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A}, tức có toa không có hành khách nào bước lên tàu, có 2 khả năng sau:

    Trường hợp thứ nhất: Có 2 toa không có hành khách bước lên.

    +) Chọn 2 trong 3 toa để không có khách bước lên, có C_{3}^{2} cách.

    +) Sau đó cả 5 hành khách lên toa còn lại, có 1 cách.

    Do đó trường hợp này có C_{3}^{2}.1 =
3 cách.

    Trường hợp thứ hai: Có 1 toa không có hành khách bước lên.

    +) Chọn 1 trong 3 toa để không có khách bước lên, có C_{3}^{1} cách.

    +) Hai toa còn lại ta cần xếp 5 hành khách lên và mỗi toa có ít nhất 1 hành khách, có 2^{5} - C_{2}^{1}.1 = 30.

    Do đó trường hợp này có C_{3}^{1}.30 =
90 cách.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = 3 + 90 =
93.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 243 - 93 = 150.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{150}{243} = \frac{50}{81} \approx
0,62.

  • Câu 16: Nhận biết

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 17: Thông hiểu

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M,N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A : "Cây phát triển bình thường trên lô đất M ";

    B : "Cây phát triển bình thường trên lô đất N".

    a) Các cặp biến cố \overline{A}B,A\overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A} \cap
BD = A \cap
\overline{B} không là hai biến cố xung khắc.Sai||Đúng
    c) P\left( \overline{A} ight) =
0,56;P\left( \overline{B} ight) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Đáp án là:

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M,N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A : "Cây phát triển bình thường trên lô đất M ";

    B : "Cây phát triển bình thường trên lô đất N".

    a) Các cặp biến cố \overline{A}B,A\overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A} \cap
BD = A \cap
\overline{B} không là hai biến cố xung khắc.Sai||Đúng
    c) P\left( \overline{A} ight) =
0,56;P\left( \overline{B} ight) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Các cặp biến cố \overline{A}B,A\overline{B} là độc lập vì hai lô đất khác nhau.

    Hai biến cố C = \overline{A} \cap
BD = A \cap\overline{B} là hai biến cố xung khắc.

    Ta có: \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = 1 - 0,56 = 0,44 \\
P\left( \overline{B} ight) = 1 - P(B) = 1 - 0,62 = 0,38 \\
\end{matrix} ight..

    Xác suất để cây chi phát triển bình thường trên một lô đất là:

    P(C \cup D)

    \  = P(C) + P(D) = P\left( \overline{A}
ight) \cdot P(B) + P(A) \cdot P\left( \overline{B}
ight)

    \  = 0,44.0,62 + 0,56.0,38 =
0,4856

  • Câu 18: Vận dụng

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên ra 2 phiếu từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó cho học sinh A rút ngẫu nhiên ra 2 phiếu từ hộp thứ hai.

    Gọi E1 là biến cố thầy giáo rút 2 câu thuộc từ hộp 1 bỏ sang hộp 2

    Gọi E2 là biến cố thầy giáo rút 1 câu thuộc và 1 câu không thuộc từ hộp 1 bỏ sang hộp 2

    Gọi E3 là biến cố thầy giáo rút 2 câu không thuộc từ hộp 1 bỏ sang hộp 2

    Gọi C là biến cố sinh viên rút ra 2 câu thuộc từ hộp 2

    P(C) = P\left( E_{1} ight)P\left(
C|E_{1} ight) + P\left( E_{2} ight)P\left( C|E_{2} ight) + P\left(
E_{3} ight)P\left( C|E_{3} ight)

    Ta xác định được:

    P\left( E_{1} ight) =
\frac{C_{10}^{2}}{C_{15}^{2}} = \frac{3}{7};P\left( E_{2} ight) =
\frac{C_{10}^{1}.C_{5}^{1}}{C_{15}^{2}} = \frac{10}{21}

    P\left( E_{3} ight) =
\frac{C_{5}^{2}}{C_{15}^{2}} = \frac{2}{21};P\left( C|E_{1} ight) =
\frac{C_{10}^{2}}{C_{11}^{2}} = \frac{9}{11}

    P\left( C|E_{2} ight) =
\frac{C_{9}^{2}}{C_{11}^{2}} = \frac{12}{35};P\left( C|E_{3} ight) =
\frac{C_{8}^{2}}{C_{11}^{2}} = \frac{3}{35}

    Thay vào công thức ta suy ra kết quả P(C)
\approx 0,522

  • Câu 19: Nhận biết

    Cho hai biến cố A, B với 0 <
P(B) < 1. Phát biểu nào sau đây đúng?

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight).

  • Câu 20: Thông hiểu

    Có ba hộp giống nhau:

    Hộp thứ nhất đựng 10 sản phẩm trong đó có 6 chính phẩm.

    Hộp thứ hai đựng 15 sản phẩm trong đó có 10 chính phẩm.

    Hộp thứ ba đựng 20 sản phẩm trong đó có 15 chính phẩm.

    Lấy ngẫu nhiên một hộp và từ đó lấy ngẫu nhiên một sản phẩm. Tìm xác suất để lấy được chính phẩm?

    Gọi A là biến cố: “Lấy được chính phẩm”. Biến cố A có thể xảy ra đồng thời với ba biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:

    H_{1} - Sản phẩm lấy ra thuốc hộp I.

    H_{2} - Sản phẩm lấy ra thuốc hộp II.

    H_{3} - Sản phẩm lấy ra thuốc hộp III.

    Vì theo giả thiết của bài toán, các biến cố H_{1}; H_{2}; H_{3} là đồng khả năng, do đó:

    P\left( H_{1} ight) = P\left( H_{2}
ight) = P\left( H_{3} ight) = \frac{1}{3}

    Xác suất có điều kiện của biến cố A khi các biến cố H_{1}; H_{2}; H_{3} xảy ra bằng:

    P\left( A|H_{1} ight) =
\frac{6}{10};P\left( A|H_{2} ight) = \frac{10}{15};P\left( A|H_{3}
ight) = \frac{15}{20}

    Do đó:

    P(A) = P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2} ight) +
P\left( H_{3} ight).P\left( A|H_{3} ight)

    \Rightarrow P(A) =
\frac{1}{3}.\frac{6}{10} + \frac{1}{3}.\frac{10}{15} +
\frac{1}{3}.\frac{15}{20} = \frac{124}{180} = \frac{31}{45}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo