Cho hai hộp đựng phiếu bốc thăm trúng thưởng giống nhau:
Hộp thứ nhất có tỉ lệ trúng thưởng bằng
.
Hộp thứ hai có tỉ lệ trúng thưởng bằng
.
Chọn ngẫu nhiên một thùng và lấy ngẫu nhiên một phiếu trong thùng đó thấy phiếu đó trúng thưởng. Bỏ lại phiếu trở lại thùng, từ thùng đó lấy tiếp một phiếu. Tìm xác suất để lần thứ hai cũng lấy được phiếu trúng thưởng.
Gọi A là biến cố phiếu đầu tiên lấy là phiếu trúng thưởng.
Biến cố A có thể xảy ra cùng với một trong các biến cố sau:
H1 phiếu bốc thăm lấy ra từ thùng I.
H2 phiếu bốc thăm lấy ra từ thùng II.
Theo công thức xác xuất toàn phần ta có:
Theo dữ kiện đề bài ta có:
Do đó:
Sau khi biến cố A đã xảy ra, xác suất của các biến cố thay đổi theo công thức Bayes như sau:
Gọi B là biến cố lấy phiếu lần thứ hai là trúng thưởng.
B vẫn có thể xảy ra với một trong hai giả thiết do đó theo công thức xác suất toàn phần ta có:
Vì phiếu lấy lần thứ nhất bỏ trở lại thùng, do đó tỉ lệ trúng thưởng ở các thùng đó vẫn không thay đổi.
Vì thế