Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.
Gọi A là biến cố lần một lấy được bi trắng.
Gọi B là biến cố lần hai lấy được bi đỏ.
Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng là.
Ta có: khi đó:
.
Cho hai biến cố
với
. Tính
?
Ta có:
Một công ty du lịch bố trí chỗ cho đoàn khách tại ba khách sạn
theo tỉ lệ
. Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là
. Tính xác suất để một khách nghỉ ở phòng điều hòa bị hỏng.
Gọi ” Để một khách ở phòng điều hòa bị hỏng”
Gọi lần lượt là các biến cố Khách nghỉ tại ba khách sạn
.
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
.
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là
và dự án 2 là
. Khả năng thắng thầu của 2 dự án là 0,4. Gọi
lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a)
là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là
. Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là
. Sai|| Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án
. Sai|| Đúng
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là và dự án 2 là
. Khả năng thắng thầu của 2 dự án là 0,4. Gọi
lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a) là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là . Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là . Sai|| Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án . Sai|| Đúng
Ta có:
a) là hai biến cố độc lập khi và chỉ khi
Mà nên
không độc lập.
b) Gọi C là biến cố thắng thầu đúng 1 dự án
.
c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1
.
d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”
.
Cho ba biến cố
độc lập từng đôi thỏa mãn
và
. Xác định
?
Ta có:
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.
Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì .
Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?
Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ
B là biến cố trong 3 chứng từ rút ra, chỉ có chứng từ thứ 3 không hợp lệ.
Theo yêu cầu của đầu bài ta phải tính xác xác suất
Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).
Khi đó ta có: và
Vì vậy các xác suất cần tìm là:
Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.
Gọi là "trong 5 sản phẩm cuối có
chính phẩm".
Khi đó hệ tạo thành hệ đầy đủ
xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.
Suy ra
xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.
xảy ra nếu lấy 1 chính, 1 phế từ lô
chính, 2 phế từ lô II hoặc 2 phế từ lô
chính, 1 phế từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô
hoặc 1 chính, 1 phế từ lô
chính, 1 phế từ lô II hoặc 2 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính từ lô II
Gọi là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ
Suy ra .
Ba máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất
, máy II sản xuất
và máy III sản xuất
tổng sản lượng. Tỷ lệ phế phẩm của các máy lần lượt là
. Tìm xác suất để khi chọn ngẫu nhiên ra 1 sản phẩm từ kho thì chi tiết phế phẩm đó do máy II sản xuất?
Gọi Ai: “Sản phẩm do máy i sản xuất”
A: “Sản phẩm là phế phẩm”
Ta có: A1, A2, A3 là một hệ đầy đủ các biến cố và
Theo công thức xác suất toàn phần ta có:
Theo công thức Bayes ta có:
Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?
a) Xác suất của biến cố B là
.Đúng||Sai
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó
. Đúng||Sai
c) Gọi
: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì
. Sai||Đúng
d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là
. Đúng||Sai
Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?
a) Xác suất của biến cố B là .Đúng||Sai
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó . Đúng||Sai
c) Gọi : “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì
. Sai||Đúng
d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là . Đúng||Sai
a) Ta có: B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ” nên .
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì sau khi chuyển, hộp thứ hai có 7 bi đỏ và 4 bi xanh nên .
c) Gọi : “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh thì sau khi chuyển, hộp thứ hai có 6 bi đỏ và 5 bi xanh.
Khi đó .
d) Ta có:
Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là:
Áp dụng công thức xác suất toàn phần, ta có:
.
Một hộp bút bi Thiên Long có 15 chiếc bút trong đó có 9 chiếc bút mới. Người ta lấy ngẫu nhiên 1 chiếc bút để sử dụng sau đó trả lại vào hộp. Lần thứ hai lấy ngẫu nhiên 2 chiếc bút, tính xác suất cả hai chiếc bút lấy ra đều là chiếc mới.
Gọi A ”Hai chiếc bút lấy ra đều là chiếc mới”; B0 ” Lấy ra một chiếc bút cũ” và B1 ”Lấy ra một chiếc bút mới”
Nên B0; B0 là hệ biến cố đầy đủ.
Từ 15 chiếc bút có 9 chiếc bút mới và 6 chiếc bút cũ
Ta có:
Áp dụng công thức xác suất toàn phần
.
Cho
và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Biết nó là phế phẩm. Tính xác suất để sản phẩm đó do máy I sản xuất.
Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.
Gọi A là "lấy ra sản phẩm là phế phẩm".
Áp dụng công thức xác suất đầy đủ, ta có
Gọi B là "sản phẩm do máy I sản xuất". Khi đó ta cần tính P(B|A)
Cho hai biến cố
với
. Tính
?
Ta có:
Một hộp đựng 10 phiếu trong đó có 2 phiếu trúng thưởng. Có 10 người lần lượt rút thăm. Tính xác suất nhận được phần thưởng của mỗi người?
Gọi Ai: “người thứ i nhận được phiếu trúng thưởng” (i = 1, . . . , 10)
Ta có:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Một đoàn tàu gồm
toa đỗ ở sân ga. Có
hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên
toa. Tính xác suất để mỗi toa có ít nhất
hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,62
Một đoàn tàu gồm toa đỗ ở sân ga. Có
hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên
toa. Tính xác suất để mỗi toa có ít nhất
hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,62
Không gian mẫu là số cách sắp xếp hành khách lên
toa tàu. Vì mỗi hành khách có
cách chọn toa nên có
cách xếp.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
hành khách bước lên tàu mà mỗi toa có ít nhất
hành khách
. Để tìm số phần tử của biến cố
ta đi tìm số phần tử của biến cố
, tức có toa không có hành khách nào bước lên tàu, có
khả năng sau:
Trường hợp thứ nhất: Có toa không có hành khách bước lên.
+) Chọn trong
toa để không có khách bước lên, có
cách.
+) Sau đó cả hành khách lên toa còn lại, có
cách.
Do đó trường hợp này có cách.
Trường hợp thứ hai: Có toa không có hành khách bước lên.
+) Chọn trong
toa để không có khách bước lên, có
cách.
+) Hai toa còn lại ta cần xếp hành khách lên và mỗi toa có ít nhất
hành khách, có
.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một bình đựng 9 viên bi xanh và 7 viên bi đỏ. Lần lượt lấy ngẫu nhiên ra 2 bi, mỗi lần lấy 1 bi không hoàn lại. Tính xác suất để bi thứ 2 màu xanh nếu biết bi thứ nhất màu đỏ?
Gọi A là biến cố “lần thứ nhất lấy được bi màu đỏ”.
Gọi B là biến cố “lần thứ hai lấy được bi màu xanh”.
Ta cần tìm
Không gian mẫu cách chọn
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi rong 15 bi còn lại có 15 cách chọn, do đó:
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu xanh có 9 cách chọn, do đó:
Vậy xác suất để viên bi lấy lần thứ hai là màu xanh nếu biết rằng viên bi lấy lần thứ nhất là màu đỏ là: .