Cho hai biến cố
với
. Tính
?
Ta có:
Cho hai biến cố
với
. Tính
?
Ta có:
Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là:
Gọi A là biến cố “viên bi lấy lần thứ nhất là màu đỏ”.
Gọi B là biến cố “viên bi lấy lần thứ hai là màu đỏ”.
Không gian mẫu cách chọn
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có cách 9 chọn, do đó:
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ trong 6 viên bi còn lại có 6 cách chọn, do đó:
Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ: .
Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Cho hai biến cố
với
. Tính
?
Ta có:
Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là
; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là
, trong số người không nghiện thuốc lá là
. Hỏi khi ta gặp ngẫu nhiên một người dân của tỉnh T thì khả năng mà đó bị bệnh phổi là bao nhiêu
?
Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”
Gọi B là biến cố “người bị bệnh phổi”
Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.
Ta cần tính
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Bạn T quên mất số cuối cùng trong số điện thoại cần gọi (số điện thoại gồm 6 chữ số) và T chọn số cuối cùng này một cách ngẫu nhiên. Tính xác suất để T gọi đúng số điện thoại này mà không phải thử quá 3 lần. Nếu biết số cuối cùng là số lẻ thì xác suất này là bao nhiêu?
Gọi Ai: “gọi đúng ở lần thứ i” (i = 1, 2, 3)
Khi đó, biến cố “gọi đúng khi không phải thử quá ba lần” là:
Ta có:
Khi đã biết số cuối cùng là số lẻ thì khi đó các số để chọn quay chỉ còn giới hạn lại trong 5 trường hợp (số lẻ) nên:
Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.
Gọi A là biến cố lần một lấy được bi trắng.
Gọi B là biến cố lần hai lấy được bi đỏ.
Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng là.
Ta có: khi đó:
.
Giả sử
email của bạn nhận được là email rác. Bạn sử dụng một hệ thống lọc email rác mà khả năng lọc đúng email rác của hệ thống này là
và có
những email không phải là email rác nhưng vẫn bị lọc. Các khẳng định sau đúng hay sai?
a) Gọi A: “Email nhận được là email rác”.
Và B: “Email bị lọc đúng email rác của hệ thống lọc email rác”.
Vì 5% email nhận được là rác nên xác suất nhận được một email rác là
b) Xác suất email bị lọc của email rác là .
c) Xác suất email nhận được không phải rác là
Xác suất email bị lọc của email không phải rác là
Vậy xác suất chọn một email bị lọc bất kể là rác hay không là
d) Xác suất chọn một email trong số những email bị lọc thực sự là email rác là
.
Cho hai biến cố
,
với
. Phát biểu nào sau đây đúng?
Theo công thức xác suất toàn phần, ta có:
.
Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Biết rằng viên bi lấy ra từ hộp thứ ba màu đỏ, tính xác suất để lúc đầu ta lấy được viên bi đỏ từ hộp thứ nhất bỏ vào hộp thứ ba?
Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì tạo thành một hệ đầy đủ.
Ta có:
Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:
Áp dụng công thức xác suất đầy đủ ta có:
Gọi B là sự kiện cần tính xác suất.
Dễ thấy . Theo công thức Bayes ta có:
Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là
. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là
. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là
. Tính xác suất học sinh đó làm đúng cả hai bài?
Gọi A: “Làm đúng bài thứ nhất”.
Và B: “Làm đúng bài thứ hai”
Khi đó biến cố: “làm đúng cả hai bài” là
Theo bài ta có:
Do đó:
Ta có sơ đồ hình cây như sau:
Vậy
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Một nhà máy sản xuất bóng đèn gồm 3 phân xưởng, phân xưởng 1 sản xuất 50% tổng số bóng đèn, phân xưởng 2 sản xuất 20% tổng số bóng đèn, phân xưởng 3 sản xuất 30% tổng số bóng đèn. Tỷ lệ phế phẩm tương ứng của các phân xưởng là 2%, 3%, 4%. Tính tỷ lệ phế phẩm chung của toàn nhà máy?
Để xác định tỷ lệ phế phẩm chung của toàn nhà máy, ta lấy ngẫu nhiên 1 sản phẩm từ lô hàng của nhà máy.
Tính xác suất để sản phẩm này là phế phẩm
Gọi lần lượt là các biến cố " Chọn được sản phẩm của phân xưởng 1,2,3".
Ta có là hệ biến cố xung khắc và đầy đủ.
Gọi B là biến cố "Lấy được phế phẩm" ta có:
Vậy tỷ lệ phế phẩm của nhà máy là
Cho hai biến cố
và
là hai biến cố độc lập, với
.
a)
Sai|| Đúng
b)
Đúng||Sai
c)
Sai|| Đúng
d)
Đúng||Sai
Cho hai biến cố và
là hai biến cố độc lập, với
.
a) Sai|| Đúng
b) Đúng||Sai
c) Sai|| Đúng
d) Đúng||Sai
Ta có:
Do hai biến cố và
là hai biến cố độc lập nên
và
;
và
;
và
độc lập với nhau.
a) và
là hai biến cố độc lập nên:
b) và
là hai biến cố độc lập nên:
c) và
là hai biến cố độc lập nên:
d) và
là hai biến cố độc lập nên:
Một hộp đựng 10 phiếu trong đó có 2 phiếu trúng thưởng. Có 10 người lần lượt rút thăm. Tính xác suất nhận được phần thưởng của mỗi người?
Gọi Ai: “người thứ i nhận được phiếu trúng thưởng” (i = 1, . . . , 10)
Ta có:
Cho hai biến cố
và
của một phép thử T. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Nếu thì
.
Một cửa hàng có hai loại bóng đèn Led, trong đó có
bóng đèn Led là màu trắng và
bóng đèn Led là màu xanh, các bóng đèn có kích thước như nhau. Các bóng đèn Led màu trắng có tỉ lệ hỏng là
và các bóng đèn Led màu xanh có tỉ lệ hỏng là
. Một khách hàng chọn mua ngẫu nhiên một bóng đèn Led từ cửa hàng. Xác suất để khách hàng chọn được bóng đèn Led không hỏng bằng bao nhiêu?
Xét các biến cố:
A: "Khách hàng chọn được bóng đèn Led màu trắng"
B: "Khách hàng chọn được bóng đèn Led không hỏng".
Ta có:
Theo công thức xác suất toàn phần, ta có:
Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.
a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng
.Đúng||Sai
b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng
. Đúng||Sai
c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng
. Sai||Đúng
d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng
.Sai||Đúng
Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.
a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng .Đúng||Sai
b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng . Đúng||Sai
c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng . Sai||Đúng
d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng .Sai||Đúng
Gọi A : “Học sinh được chọn giỏi môn Toán”
B: “Học sinh được chọn giỏi môn Văn”
Gọi C : “Học sinh được chọn không giỏi môn Toán”
D: “Học sinh được chọn không giỏi môn Văn”
Số học sinh giỏi cả 2 môn là:
a) Trong số 23 học sinh giỏi Toán, chỉ có đúng 8 học sinh giỏi Văn nên xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn là:
b) Trong số 20 học sinh giỏi Văn, chỉ có đúng 8 học sinh giỏi Toán nên xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán là:
c) Trong số 20 học sinh giỏi Văn, có đúng 8 học sinh giỏi cả Văn và Toán, nên số học sinh giỏi Văn mà không giỏi Toán là 12.
Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" là:
d) Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là
Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" là:
Có ba hộp giống nhau:
Hộp thứ nhất đựng 10 sản phẩm trong đó có 6 chính phẩm.
Hộp thứ hai đựng 15 sản phẩm trong đó có 10 chính phẩm.
Hộp thứ ba đựng 20 sản phẩm trong đó có 15 chính phẩm.
Lấy ngẫu nhiên một hộp và từ đó lấy ngẫu nhiên một sản phẩm. Tìm xác suất để lấy được chính phẩm?
Gọi A là biến cố: “Lấy được chính phẩm”. Biến cố A có thể xảy ra đồng thời với ba biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:
- Sản phẩm lấy ra thuốc hộp I.
- Sản phẩm lấy ra thuốc hộp II.
- Sản phẩm lấy ra thuốc hộp III.
Vì theo giả thiết của bài toán, các biến cố ;
;
là đồng khả năng, do đó:
Xác suất có điều kiện của biến cố A khi các biến cố ;
;
xảy ra bằng:
Do đó: