Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đề bài: P(A) = 0,5 \Rightarrow P\left(
\overline{A} ight) = 0,5;P(B) = 0,6 \Rightarrow P\left( \overline{B}
ight) = 0,4

    P(A \cap B) = 0,4

    a) A,B độc lập \Leftrightarrow P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A,B không độc lập

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight) = P(A) - P(A \cap B) +
P(B) - P(A \cap B) = P(A) + P(B) -
2P(A \cap B) = 0,5 + 0,6 - 2.0,4 = 0,3

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P\left( B \cap \overline{A} ight)}{P\left( \overline{A}
ight)}

    = \frac{P(B) - P(A \cap B)}{P\left(
\overline{A} ight)} = \frac{0,6 - 0,4}{0,5} = 0,4

  • Câu 2: Vận dụng cao

    Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.

    Gọi A_{i} là "trong 5 sản phẩm cuối có i chính phẩm".

    Khi đó hệ A_{0},A_{1},A_{2},A_{3},A_{4},A_{5} tạo thành hệ đầy đủ

    A_{0} xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.

    Suy ra P\left( A_{0} ight) =
0

    A_{1} xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.

    P\left( A_{1} ight) =
\frac{C_{3}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
= \frac{1}{225}

    A_{2} xảy ra nếu lấy 1 chính, 1 phế từ lô I,1 chính, 2 phế từ lô II hoặc 2 phế từ lô I,2 chính, 1 phế từ lô II

    P\left( A_{2} ight) =
\frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} =
\frac{14}{225}

    A_{3} xảy ra nếu lấy 2 chính từ lô I,1 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,2 chính, 1 phế từ lô II hoặc 2 phế từ lô I,3 chính từ lô II

    P\left( A_{3} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{3}}{C_{10}^{3}} = \frac{7}{25}

    A_{4} xảy ra nếu lấy 2 chính từ lô I,2 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,3 chính từ lô II

    P\left( A_{4} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{3}}{C_{10}^{3}} = \frac{98}{225}

    A_{5} xảy ra nếu lấy 2 chính từ lô I,3 chính từ lô II

    P\left( A_{5} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{3}}{C_{10}^{3}} =
\frac{49}{225}

    Gọi A là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ

    P(\bar{A}) = \sum_{i =
0}^{5}\mspace{2mu}\mspace{2mu} P\left( A_{i} ight)P\left( \bar{A} \mid
A_{i} ight)

    = \frac{C_{5}^{2}}{C_{5}^{2}} \cdot 0 +
\frac{C_{4}^{2}}{C_{5}^{2}} \cdot \frac{1}{225} +
\frac{C_{3}^{2}}{C_{5}^{2}} \cdot \frac{14}{225} +
\frac{C_{2}^{2}}{C_{5}^{2}} \cdot \frac{7}{25} + 0 \cdot \frac{98}{225}
+ 0 \cdot \frac{49}{225}

    \simeq 0.4933

    Suy ra P(A) = 1 - P(\bar{A}) \simeq
0,6507.

  • Câu 3: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 4: Thông hiểu

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số

    a) Số viên bi màu đỏ có đánh số là 30.Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \frac{3}{5}. Sai||Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số \frac{7}{16}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số

    a) Số viên bi màu đỏ có đánh số là 30.Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \frac{3}{5}. Sai||Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số \frac{7}{16}. Đúng||Sai

    a) Số viên bi màu đỏ có đánh số là 60\%.50 = 30

    b) Số viên bi màu vàng không đánh số là 50\%.30 = 15

    c) Gọi A là biến cố “viên bi được lấy ra có đánh số” và B là biến cố “viên bi được lấy ra có màu đỏ”,

    ⇒ B là biến cố “viên bi được lấy ra có màu vàng”

    Lúc này ta đi tính P(A) theo công thức:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    Ta có: \left\{ \begin{matrix}
  P\left( B ight) = \dfrac{{50}}{{80}} = \dfrac{5}{8} \hfill \\
  P\left( {\overline B } ight) = \dfrac{{30}}{{80}} = \dfrac{3}{8} \hfill \\
  P\left( {A|B} ight) = 60\%  = \dfrac{3}{5} \hfill \\
  P\left( {A|\overline B } ight) = 100\%  - 50\%  = \dfrac{1}{2} \hfill \\ 
\end{matrix}  ight.

    Vậy P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight) =
\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =
\frac{9}{16}.

    d) A là biến cố “viên bi được lấy ra có đánh số”

    \overline{A} là biến cố “viên bi được lấy ra không có đánh số”

    Ta có: P\left( \overline{A} ight) = 1 -
P(A) = 1 - \frac{9}{16} = \frac{7}{16}.

  • Câu 5: Nhận biết

    Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.

    Xét các biến cố A: "Quả bóng lấy ra đầu tiên có màu đỏ"

    B: "Tổng số của hai quả bóng lấy ra là số lẻ"

    Xác định B|A là biến cố B khi biết A đã xảy ra?

    Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).

    Do đó, không gian mẫu mới là

    \Omega' = A = \left\{
(1;2),(1;3),(1;4),(1;5),(2;1),(2;3),(2;4),(2;5) ight\}

    Biến cố B khi biết A đã xảy ra là:

    B|A = A \cap B = \left\{
(1;2),(1;4),(2;1),(2;3),(2;5) ight\}

  • Câu 6: Thông hiểu

    Khi kiểm tra sức khỏe tổng quát của bệnh nhân ở một bệnh viện, người ta thu được kết quả như sau:

    - Có 40% bệnh nhân bị đau dạ dày

    - Có 30% bệnh nhân thường xuyên bị stress

    - Trong số các bệnh nhân bị stress có 80% bệnh nhân bị đau dạ dày.

    Chọn ngẫu nhiên 1 bệnh nhân

    a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3. Đúng||Sai

    b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress là 0,8. Đúng||Sai

    c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai

    d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày là 0,6. Đúng||Sai

    Đáp án là:

    Khi kiểm tra sức khỏe tổng quát của bệnh nhân ở một bệnh viện, người ta thu được kết quả như sau:

    - Có 40% bệnh nhân bị đau dạ dày

    - Có 30% bệnh nhân thường xuyên bị stress

    - Trong số các bệnh nhân bị stress có 80% bệnh nhân bị đau dạ dày.

    Chọn ngẫu nhiên 1 bệnh nhân

    a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3. Đúng||Sai

    b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress là 0,8. Đúng||Sai

    c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai

    d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày là 0,6. Đúng||Sai

    Xét các biến cố: A:“Chọn được bệnh nhân thường xuyên bị stress”

    B:“Chọn được bệnh nhân bị đau dạ dày”

    Khi đó: P(A) = 0,3;P(B) =
0,4;P(B|A) = 0,8

    Xác suất chọn được bệnh nhân vừa thường xuyên bị stress, vừa bị đau dạ dày là: P(A \cap B) = P(A).P\left( B|A
ight) = 0,24

    Xác suất chọn được bệnh nhân vừa thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày là:

    P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = 0,6

  • Câu 7: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
A\overline{B} ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( A\overline{B}
ight) = P(A) - P(AB) = \frac{1}{4}

  • Câu 8: Thông hiểu

    Có ba kiện hàng (mỗi kiện hàng có 20 sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là 18, 16, 12. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?

    Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là các sản phẩm lấy ra đều tốt.

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Áp dụng công thức xác suất toàn phần ta có:

    P\left( A|A_{1} ight) =
\frac{18}{20}.\frac{18}{20}

    P\left( A|A_{2} ight) =
\frac{16}{20}.\frac{16}{20}

    P\left( A|A_{3} ight) =
\frac{12}{20}.\frac{12}{20}

    Từ đó ta có:

    P(A) = P\left( A_{1} ight).P\left(
A|A_{1} ight) + P\left( A_{2} ight).P\left( A|A_{2} ight) +
P\left( A_{3} ight).P\left( A|A_{3} ight)

    \Rightarrow P(A) =
\frac{1}{3}.\frac{18}{20}.\frac{18}{20} +
\frac{1}{3}.\frac{16}{20}.\frac{16}{20} +
\frac{1}{3}.\frac{12}{20}.\frac{12}{20} = \frac{181}{300} \approx
0,6033

  • Câu 9: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 10: Thông hiểu

    Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?

    a) Xác suất của biến cố B là P(B) =
\frac{1}{2}.Đúng||Sai

    b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó P\left( A|B ight) =
\frac{7}{11}. Đúng||Sai

    c) Gọi \overline{B}: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì P\left( A|\overline{B} ight) =
\frac{7}{11}. Sai||Đúng

    d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là P(A) = \frac{13}{22}. Đúng||Sai

    Đáp án là:

    Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?

    a) Xác suất của biến cố B là P(B) =
\frac{1}{2}.Đúng||Sai

    b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó P\left( A|B ight) =
\frac{7}{11}. Đúng||Sai

    c) Gọi \overline{B}: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì P\left( A|\overline{B} ight) =
\frac{7}{11}. Sai||Đúng

    d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là P(A) = \frac{13}{22}. Đúng||Sai

    a) Ta có: B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ” nên P(B) =
\frac{5}{10} = \frac{1}{2}.

    b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì sau khi chuyển, hộp thứ hai có 7 bi đỏ và 4 bi xanh nên P\left( A|B ight) = \frac{7}{11}.

    c) Gọi \overline{B}: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh thì sau khi chuyển, hộp thứ hai có 6 bi đỏ và 5 bi xanh.

    Khi đó P\left( A|\overline{B} ight) =
\frac{6}{11}.

    d) Ta có: P\left( \overline{B} ight) =
1 - P(B) = 1 - \frac{1}{2} = 0,5

    Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là: P(A)

    Áp dụng công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,5.\frac{7}{11} +
0,5.\frac{6}{11} = \frac{13}{22}.

  • Câu 11: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 12: Thông hiểu

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Xác suất công ty thắng thầu đúng 1 dự án là:

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi C là biến cố “Thắng thầu đúng 1 dự án” khi đó ta có:

    P(C) = P\left( A \cap \overline{B} +
\overline{A} \cap B ight)

    = P\left( A \cap \overline{B} ight) +
P\left( \overline{A} \cap B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight)P(B)

    = 0,6.0,3 + 0,4.0,7 = 0,46

  • Câu 13: Vận dụng

    Một người có 3 chỗ ưa thích như nhau để câu cá. Xác suất câu được cá ở mỗi chỗ lần lượt là 0,7;0,8;0,9. Biết rằng mỗi chỗ người đó thả câu 3 lần thì chỉ có một lần câu được cá. Người đó đã câu được một con cá. Tính xác suất để con cá câu được đó ở chỗ thứ nhất.

    Gọi A là sự kiện câu được cá ở chỗ thứ 1, B là sự kiện câu được 1 con cá.

    Theo đề bài, ta biết rằng người đó chọn ngẫu nhiên 1 chỗ rồi thả câu 3 lần và chỉ câu được 1 con cá.

    Ta cần tìm xác suất P(A|B), tức là xác suất câu được cá ở chỗ thứ 1 khi biết đã câu được 1 con cá.

    Theo công thức Bayes, ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    P(B|A) là xác suất câu được 1 con cá khi đã biết câu ở chỗ thứ 1 là A.

    Vì xác suất câu được cá ở chỗ thứ 1 là 0,8, nên P\left( B|A ight) = 0,8

    P(A) là xác suất câu được cá ở chỗ thứ 1.

    Vì có 3 chỗ ưa thích như nhau, nên xác suất câu được cá ở chỗ thứ 1 là \frac{1}{3}.

    P(B) là xác suất câu được 1 con cá. Ta có thể tính xác suất này bằng cách sử dụng định lý xác suất toàn phần:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    Trong đó:

    P\left( B|\overline{A} ight) là xác suất câu được 1 con cá khi không câu ở chỗ thứ 1 là A. Vì xác suất câu được cá ở chỗ thứ 2 và chỗ thứ 3 lần lượt là 0,90,7 nên P\left( B|\overline{A} ight) =
0,9.0,7

    P\left( \overline{A} ight) là xác suất không câu được cá ở chỗ thứ 1. Vì có 3 chỗ ưa thích như nhau, nên xác suất không câu được cá ở chỗ thứ 1 là \frac{2}{3}.

    Thay các giá trị vào công thức Bayes, ta có:

    0,8 = \dfrac{{\dfrac{{103}}{{150}}.P\left( {A|B} ight)}}{{\dfrac{1}{3}}} \Rightarrow P\left( {A|B} ight) \approx 0,388

    Vậy Xác suất con cá câu được ở chỗ thứ 1 là: 0,388

  • Câu 14: Thông hiểu

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Vận dụng

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A;B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) A;B là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai|| Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai|| Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A;B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) A;B là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai|| Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai|| Đúng

    Ta có:\left\{ \begin{matrix}
P(A) = 0,5 \Rightarrow P\left( \overline{A} ight) = 1 - 0,5 = 0,5 \\
P(B) = 0,6 \Rightarrow P\left( \overline{B} ight) = 1 - 0,6 = 0,4 \\
P(A \cap B) = 0,4 \\
\end{matrix} ight.

    a) A;B là hai biến cố độc lập khi và chỉ khi P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A;B không độc lập.

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight)

    = P(A) - P(A \cap B) + P(B) - P(A \cap
B)

    = P(A) + P(B) - 2P(A \cap
B)

    = 0,5 + 0.6 - 2.0,4 = 0,3.

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8.

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P(B) - P(A \cap B)}{P\left( \overline{A} ight)} = \frac{0,6 -
0,4}{0,5} = 0,4.

  • Câu 16: Nhận biết

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 17: Thông hiểu

    Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,91

    Đáp án là:

    Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,91

    Suy ra số phần tử của không gian mẫu là n(\Omega) = C_{16}^{3} = 560.

    Gọi A là biến cố ''3 cuốn sách lấy ra không cùng một loại''.

    Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A} là 3 cuốn sách lấy ra cùng một loại.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = C_{5}^{3} +
C_{7}^{3} + C_{4}^{3} = 49.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 511.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{511}{560} = \frac{73}{80} \approx
0,91.

  • Câu 18: Thông hiểu

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất toàn phần, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

  • Câu 19: Vận dụng

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án : 0,03

    Đáp án là:

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án : 0,03

    Xét các biến cố:

    A : "Người được chọn mắc bệnh X ";

    B : "Người được chọn có phản ứng dương tính với xét nghiệm Y".

    Theo giả thiết ta có:

    P(A) = 0,002;P\left( \overline{A} ight)
= 1 - 0,002 = 0,998;

    P(B \mid A) = 1;P\left( B \mid
\overline{A} ight) = 0,06

    Theo công thức Bayes, ta có:

    P(A \mid B) = \frac{P(A) \cdot P(B \mid
A)}{P(A) \cdot P(B \mid A) + P\left( \overline{A} ight).P\left( B \mid
\overline{A} ight)}

    = \frac{0,002 \cdot 1}{0,002 \cdot 1 +
0,998 \cdot 0,06} \approx 0,03

    Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm Y thì xác suất bị mắc bệnh X của người đó là khoảng 0,03.

  • Câu 20: Vận dụng

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Đáp án là:

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Gọi A là biến cố Bình làm đúng câu dễ

    B là biến cố Bình làm đúng câu trung bình

    C là biến cố Bình làm đúng câu khó.

    Khi đó A, B, C độc lập với nhau.

    a) Xác suất để Bình làm ba câu thuộc ba loại trên và đúng cả ba câu là

    P = P(A).P(B).P(C) = 0,072 =
7,2\%.

    Khẳng định sai.

    b) Xác suất để Bình làm đúng 2 trong số 3 câu là

    P\left( \overline{A} ight).P(B).P(C) +
P(A).P\left( \overline{B} ight).P(C) + P(A).P(B).P\left( \overline{C}
ight)

    = 0,2.0,6.0,15 + 0,8.0,4.0,15 + 0,8.0,6.0,85 = 0,474

    Khẳng định sai.

    c) Xác suất để Bình làm đúng 3 câu đủ ba loại là:

    P = P(A).P(B).P(C) = 0,072 =
7,2\%

    Xác suất Bình làm sai 3 câu mức độ trung bình. (0,4)^{3} = 0,064.

    Khẳng định đúng.

    d) Để Bình làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:

    TH1: Đúng 4 câu khó và câu còn lại sai

    (0,15)^{4}(0,2 + 0,4 + 0,85) =
7,34.10^{- 4}

    TH2: Đúng 3 câu khó và đúng 2 câu trung bình

    (0,15)^{3}.(0,6)^{2} = 1,215.10^{-
3}

    Vậy xác suất cần tìm là 0,1949\%

    Khẳng định sai.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 45 lượt xem
Sắp xếp theo