Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Tính xác suất để viên bi rút ra sau cùng màu đỏ?

    Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",

    D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".

    Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.

    Ta có: \left\{ \begin{gathered}
  P\left( {{D_1}{D_2}} ight) = \frac{4}{6}.\frac{4}{7};P\left( {{D_1}{X_2}} ight) = \frac{4}{6}.\frac{3}{7} \hfill \\
  P\left( {{X_1}{D_2}} ight) = \frac{2}{6}.\frac{3}{7};P\left( {{X_1}{X_2}} ight) = \frac{2}{6}.\frac{4}{7} \hfill \\ 
\end{gathered}  ight.

    Gọi A là "viên bi rút ra sau cùng là màu đỏ".

    Ta xác định được: \left\{ \begin{gathered}
  P\left( {A|{D_1}{D_2}} ight) = \frac{4}{6};P\left( {A|{D_1}{X_2}} ight) = \frac{3}{6} \hfill \\
  P\left( {A|{X_1}{D_2}} ight) = \frac{5}{6};P\left( {A|{X_1}{X_2}} ight) = \frac{4}{6} \hfill \\ 
\end{gathered}  ight.

    Áp dụng công thức xác suất toàn phần:

    P(A) = P\left( D_{1}D_{2} ight)P\left(
A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left( A|D_{1}X_{2}
ight)

    + P\left( X_{1}D_{2} ight)P\left(
A|X_{1}D_{2} ight) + P\left( X_{1}X_{2} ight)P\left( A|X_{1}X_{2}
ight)

    = \frac{4}{6}.\frac{4}{7}.\frac{4}{6} +
\frac{4}{6}.\frac{3}{7}.\frac{3}{6} +
\frac{2}{6}.\frac{3}{7}.\frac{5}{6} +
\frac{2}{6}.\frac{4}{7}.\frac{4}{6} = \frac{9}{14}

  • Câu 2: Thông hiểu

    Dây chuyền lắp ráp nhận được các chi tiết do hai máy sản xuất. Trung bình máy thứ nhất cung cấp 60\% chi tiết, máy thứ hai cung cấp 40\% chi tiết. Biết 90\% chi tiết do máy thứ nhất sản xuất đều đạt tiêu chuẩn và 85\% chi tiết do máy thứ hai sản xuất là đạt tiêu chuẩn. Lấy ngẫu nhiên từ dây chuyển một sản phẩm, thấy nó đạt tiêu chuẩn. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất.

    Gọi A là biến cố chi tiết lấy từ dây chuyển đạt tiêu chuẩn.

    Biến cố A có thể xảy ra đồng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố.

    H1 chi tiết máy do máy một sản xuất.

    H2 chi tiết máy do máy hai sản xuất.

    Như vậy xác suất để chi tiết máy dó máy một sản xuất bằng:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)}

    Theo dữ kiện đề bài cho ta có:\left\{
\begin{matrix}
P\left( H_{1} ight) = 0,6;P\left( H_{2} ight) = 0,4 \\
P\left( A|H_{1} ight) = 0,9;P\left( A|H_{2} ight) = 0,85 \\
\end{matrix} ight.

    Do đó:

    P\left( H_{1}|A ight) =
\frac{0,6.0,9}{0,6.0,9 + 0,4.0,85} = 0,614

  • Câu 3: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 4: Thông hiểu

    Một chiếc hộp có 100 viên bi, trong đó có 70 viên bi có tô màu và 30 viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là \frac{3}{7}. Đúng||Sai

    b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: \frac{191}{330}Đúng||Sai

    d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: \frac{139}{330}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 100 viên bi, trong đó có 70 viên bi có tô màu và 30 viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là \frac{3}{7}. Đúng||Sai

    b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: \frac{191}{330}Đúng||Sai

    d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: \frac{139}{330}. Đúng||Sai

    Gọi A là biến cố “bạn Việt lấy ra viên bi có tô màu”

    Gọi B là biến cố “bạn Nam lấy ra viên bi có tô màu”, suy ra B là biến cố “bạn Việt lấy ra viên bi không có tô màu”.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là P(B) = \frac{70}{100} = \frac{7}{10}.

    b) Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,3

    P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{n(A \cap B)}{n(B)} = \frac{70.69}{70.99} =
\frac{23}{33}

    P\left( A|\overline{B} ight) = 1 -
P\left( A|B ight) = 1 - \frac{23}{33} = \frac{10}{33}

    Sơ đồ cây cần tìm là:

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) =
\frac{7}{10}.\frac{23}{33} + \frac{3}{10}.\frac{10}{33} =
\frac{191}{330}

    d) A là biến cố “bạn Việt lấy ra viên bi có tô màu” suy ra A là biến cố “bạn Việt lấy ra viên bi không có tô màu”

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{191}{330} = \frac{139}{330}

  • Câu 5: Thông hiểu

    Một công nhân đi làm ở thành phố khi trở về nhà có 2 cách: hoặc đi theo đường ngầm hoặc đi qua cầu. Biết rằng ông ta đi lối đường ngầm trong \frac{1}{3} các trường hợp, còn lại đi lối cầu. Nếu đi lối đường ngầm 75\% trường hợp ông ta về đến nhà trước 6 giờ tối; còn nếu đi lối cầu chỉ có 70\% trường hợp ông ta về đến nhà sau 6 giờ tối. Tìm xác suất để công nhân đó đã đi lối cầu biết rằng ông ta về đến nhà sau 6 giờ tối.

    Gọi A là biến cố đi đường ngầm suy ra \overline{A} là biến cố đi đường cầu

    Ta xác định được P(A) =
\frac{1}{3};P\left( \overline{A} ight) = \frac{2}{3}

    Gọi B là "về nhà sau 6 giờ tối", ta cần tính P\left( \overline{A}|B ight).

    Sử dụng công thức Bayes:

    P\left( \overline{A}|B ight) =
\frac{P\left( \overline{A} ight).P\left( B|\overline{A}
ight)}{P(B)}

    = \dfrac{\dfrac{2}{3}.0,3}{\dfrac{2}{3}.0,3+ \dfrac{1}{3}.0,25} \approx 0,7059

  • Câu 6: Vận dụng

    Theo thống kê ở các gia đình có hai con thì xác suất để con thứ nhất và con thứ hai là đều con trai là 0,27 và hai con đều là gái là 0,23, còn xác suất con thứ nhất và con thứ hai có một trai và một gái là đồng khả năng. Biết khi xét một gia đình được chọn ngẫu nhiên có con thứ nhất là con gái, tìm xác suất để con thứ hai là trai.

    Gọi A là 'con thứ nhất là con trai' và B là 'con thứ hai là con trai' thì theo đề bài ta có:

    P(AB) = 0,27, P(\bar{A}\bar{B}) = 0,23P(A\bar{B}) = P(\bar{A}B) = 0,25

    Ta cần tìm B \mid \bar{A}.

    Ta có

    P\left( B\mid\bar{A} ight) =
\frac{P\left( B\bar{A} ight)}{P\left( \bar{A} ight)} = \frac{P\left(
B\bar{A} ight)}{P\left( \bar{A}B ight) + P\left( \bar{A}\bar{B}
ight)}= \frac{0,25}{0,25 + 0,23} \simeq
0,5208

  • Câu 7: Thông hiểu

    Có 6 khẩu súng cũ và 4 khẩu súng mới, trong đó xác suất trúng khi bắn bằng súng cũ là 0,8, còn súng mới là 0,95. Thực hiện bắn bằng một khẩu súng vào một mục tiêu thì thấy trúng. Hỏi sử dụng loại súng nào khả năng bắn trúng cao hơn?

    Gọi M là biến cố "bắn bằng khẩu mới" thì \overline{M} là biến cố "bắn bằng khẩu cũ".

    Có P(M) = 0,4 và P( \overline{M} ) = 0,6.

    Gọi T là biến cố "bắn trúng" thì theo đề bài, ta có:

    P(T | M) = 0,95; P(T |  \overline{M} ) = 0,8.

    Áp dụng công thức xác suất điều kiện suy ra

    P\left( M|T ight) = \frac{P(M).P\left(
T|M ight)}{P(T)} = \frac{0,38}{P(T)}

    P\left( \overline{M}|T ight) =
\frac{P\left( \overline{M} ight).P\left( T|\overline{M} ight)}{P(T)}
= \frac{0,48}{P(T)}

    Suy ra bắn bằng khẩu cũ có khả năng xảy ra cao hơn.

  • Câu 8: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P(A.B)?

    Ta có: P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

  • Câu 9: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P(A \cap B)?

    Ta có:

    P\left( A \cap \overline{B} ight) +
P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} ight) = 0,8 - 0,55 = 0,25.

  • Câu 10: Vận dụng cao

    Ba người thợ cùng may một loại áo với xác suất may được sản phẩm chất lượng cao tương ứng là 0,9; 0,9 ; 0,8. Biết một người khi may 8 áo thì có 6 sản phẩm chất lượng cao. Tìm xác suất để người đó may 8 áo nữa thì có 6 áo chất lượng cao?

    Áp dụng công thức xác suất đầy đủ

    P(A) = P\left( A_{1} ight)P\left( A
\mid A_{1} ight) + P\left( A_{2} ight)P\left( A \mid A_{2} ight) +
P\left( A_{3} ight)P\left( A \mid A_{3} ight)

    =
\frac{1}{3}.C_{8}^{6}{.0,9}^{6}.{0,1}^{2} +
\frac{1}{3}.C_{8}^{6}.{0,9}^{6}.{0,1}^{2} +
\frac{1}{3}.C_{8}^{6}.{0,8}^{6}.{0,2}^{2}\simeq 0,1971

    Gọi B là "trong 8 áo sau có 6 áo chất lượng cao". Vì trong không gian điều kiện A, hệ A_{i} vẫn là hệ đầy đủ.

    Áp dụng công thức xác suất toàn phần có

    P(B) = P\left( A_{1} \mid A
ight)P\left( B \mid A_{1}A ight) + P\left( A_{2} \mid A
ight)P\left( B \mid A_{2}A ight) + P\left( A_{3} \mid A
ight)P\left( B \mid A_{3}A ight)

    Ở đó:

    P\left( A_{1} \mid A ight) =\frac{P\left( A_{1} ight)P\left( A \mid A_{1} ight)}{P(A)} \simeq\dfrac{\dfrac{1}{3}.C_{8}^{6}.{0,9}^{6}.{0,1}^{2}}{0.1971} \simeq0,2516

    P\left( A_{2} \mid A ight) \simeq
0,2516,\ P\left( A_{3} \mid A ight) \simeq 0,4965

    Thay vào ta tính được

    P(A) \simeq
0,2516.C_{8}^{6}.{0,9}^{6}.{0.1}^{2} +
0.2516.C_{8}^{6}.{0,9}^{6}.{0,1}^{2}

    +
0,4965.C_{8}^{6}.{0,8}^{6}.{0,2}^{2}\simeq 0,2206

  • Câu 11: Thông hiểu

    Trong một trường học, tỉ lệ học sinh nữ là 53\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là 21\%17\%. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.

    Gọi A: “Học sinh được chọn là nữ” ⇒\overline{A} : “Học sinh được chọn là nam”

    B: “học sinh được chọn có tham gia câu lạc bộ M”.

    Từ giả thiết ta có:

    \left\{ \begin{matrix}
P(A) = 0,53 \Rightarrow P\left( \overline{A} ight) = 1 - 0,53 = 0,47
\\
P\left( B|A ight) = 0,21 \\
P\left( B|\overline{A} ight) = 0,17 \\
\end{matrix} ight.

    Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,53.0,21 + 0,47.0,17
= \frac{239}{1250}.

  • Câu 12: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 13: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A}B ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = \frac{5}{12}

  • Câu 14: Thông hiểu

    Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Vận dụng

    Một người có 3 chỗ ưa thích như nhau để câu cua. Xác suất câu được cua ở mỗi chỗ lần lượt là 0,6;0,7;0,8. Biết rằng đến một chỗ người đó thả câu 3 lần và chỉ câu được một con cua. Tính xác suất để cá câu được ở chỗ thứ nhất?

    Gọi A1, A2, A3 lần lượt là "cá câu được ở chỗ thứ i" thì hệ A1, A2, A3 tạo thành hệ đầy đủ.

    Dễ thấy P\left( A_{1} ight) = P\left(
A_{2} ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi H là "thả câu 3 lần và chỉ câu được 1 con cua".

    Theo công thức toàn phần, ta có:

    P(H) = P\left( A_{1} ight)P\left(
H|A_{1} ight) + P\left( A_{2} ight)P\left( H|A_{2} ight) + P\left(
A_{3} ight)P\left( H|A_{3} ight)

    Ở đó \left\{ \begin{matrix}
P\left( H|A_{1} ight) = 3.0,6^{1}.0,4^{2} \\
P\left( H|A_{2} ight) = 3.0,7^{1}.0,3^{2} \\
P\left( H|A_{3} ight) = 3.0,8^{1}.0,2^{2} \\
\end{matrix} ight.\  \Rightarrow P(H) = 0,191

    Theo công thức Bayes suy ra:

    P\left( A_{1}|H ight) = \frac{P\left(
A_{1} ight).P\left( H|A_{1} ight)}{P(H)} \approx 0,5026

  • Câu 16: Thông hiểu

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,7;P\left( \overline{B} ight) =
0,6.

    a) P\left( A|B ight) = 0,6 Sai|| Đúng

    b) P\left( B|\overline{A} ight) =
0,4 Đúng||Sai

    c) P\left( \overline{A}|B ight) =
0,4 Sai|| Đúng

    d) P\left( \overline{B}|\overline{A}
ight) = 0,6 Đúng||Sai

    Đáp án là:

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,7;P\left( \overline{B} ight) =
0,6.

    a) P\left( A|B ight) = 0,6 Sai|| Đúng

    b) P\left( B|\overline{A} ight) =
0,4 Đúng||Sai

    c) P\left( \overline{A}|B ight) =
0,4 Sai|| Đúng

    d) P\left( \overline{B}|\overline{A}
ight) = 0,6 Đúng||Sai

    Ta có: \left\{ \begin{matrix}
P(A) = 0,7 \Rightarrow P\left( \overline{A} ight) = 0,3 \\
P\left( \overline{B} ight) = 0,6 \Rightarrow P(B) = 1 - 0,6 = 0,4 \\
\end{matrix} ight.

    Do hai biến cố AB là hai biến cố độc lập nên \overline{B}A;\overline{A}B; \overline{B}\overline{A} độc lập với nhau.

    a) AB là hai biến cố độc lập nên: P\left( A|B ight) = P(A) = 0,7 eq
0,6

    b) \overline{A}B là hai biến cố độc lập nên: P\left( B|\overline{A} ight) = P(B) =
0,4

    c) \overline{A}Blà hai biến cố độc lập nên: P\left( \overline{A}|B ight) = P\left(
\overline{A} ight) = 0,3 eq 0,4

    d) \overline{B}\overline{A} là hai biến cố độc lập nên: P\left( \overline{B}|\overline{A} ight) =
P\left( \overline{B} ight) = 0,6

  • Câu 17: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 18: Thông hiểu

    Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp.

    Xét các biến cố: A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”; B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.

    Hỏi hai biến cố A và B có độc lập không?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp.

    Xét các biến cố: A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”; B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.

    Hỏi hai biến cố A và B có độc lập không?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Đáp án là:

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Không gian mẫu là số cách sắp xếp 5 hành khách lên 3 toa tàu. Vì mỗi hành khách có 3 cách chọn toa nên có 3^{5} cách xếp.

    Suy ra số phần tử của không gian mẫu là n(\Omega) = 3^{5} = 243.

    Gọi A là biến cố ''5 hành khách bước lên tàu mà mỗi toa có ít nhất 1 hành khách''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A}, tức có toa không có hành khách nào bước lên tàu, có 2 khả năng sau:

    Trường hợp thứ nhất: Có 2 toa không có hành khách bước lên.

    +) Chọn 2 trong 3 toa để không có khách bước lên, có C_{3}^{2} cách.

    +) Sau đó cả 5 hành khách lên toa còn lại, có 1 cách.

    Do đó trường hợp này có C_{3}^{2}.1 =
3 cách.

    Trường hợp thứ hai: Có 1 toa không có hành khách bước lên.

    +) Chọn 1 trong 3 toa để không có khách bước lên, có C_{3}^{1} cách.

    +) Hai toa còn lại ta cần xếp 5 hành khách lên và mỗi toa có ít nhất 1 hành khách, có 2^{5} - C_{2}^{1}.1 = 30.

    Do đó trường hợp này có C_{3}^{1}.30 =
90 cách.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = 3 + 90 =
93.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 243 - 93 = 150.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{150}{243} = \frac{50}{81} \approx
0,62.

  • Câu 20: Vận dụng

    Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng 4?

    Gọi Ti: "Tổng số nốt hai lần tung bằng i" (i = 1, 6)

    Nj,k: "Số nốt trên lần tung thứ j bằng k" (j = 1, 2; k = 1, 6)

    Ta tìm

    P\left( T_{i}|N_{1,2} \cup N_{1,4} \cup N_{1,6} ight) = \frac{P\left( N_{1,2} \cup N_{2;2} ight)}{P\left(N_{1,2} \cup N_{1,4} \cup N_{1,6} ight)}= \dfrac{\left( \dfrac{1}{6}ight)^{2}}{\dfrac{1}{2}} = \dfrac{1}{18}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo