Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra một xạ thủ và xạ thủ đó bắn một viên đạn. Tìm xác suất để viên đạn đó trúng đích.

    Gọi A là biến cố "Viên đạn trúng đích".

    B_{1} là biến cố "Chọn xạ thủ loại I bắn".

    B_{2} là biến cố "Chọn xạ thủ loại II bắn".

    P\left( {B}_{2} ight) =\frac{8}{10} = 0,8,P\left( A \mid B_{2} ight) =0,7

    P\left( {B}_{1} ight) =\frac{2}{10} = 0,2,P\left( A \mid B_{1} ight) =0,9

    Ta có B_{1},{B}_{2} tạo thành họ đầy đủ các biến cố.

    Áp dụng công thức ta có:

    P\left( \text{ }A ight) = P\left({\text{ }B}_{1} ight)P\left( \text{ }A \mid B_{1} ight) + P\left({\text{ }B}_{2} ight)P\left( \text{ }A \mid B_{2}ight)

    = 0,2 \cdot 0,9 + 0,8 \cdot 0,7 =
0,74

  • Câu 2: Thông hiểu

    Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Tính xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất là màu trắng?

    Gọi C là biến cố “viên bi lấy lần thứ nhất là màu trắng”.

    Gọi D là biến cố “viên bi lấy lần thứ hai là màu đỏ”.

    Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có 9 cách chọn, do đó: P(C) = \frac{3.9}{10.9} =
\frac{3}{10}

    Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ có 7 cách chọn, do đó: P(C
\cap D) = \frac{3.7}{10.9} = \frac{7}{30}

    Vậy xác suất để viên bi lấy lần thứ hai là màu trắng nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là: P\left( D|C ight) = \dfrac{P(C \cap D)}{P(C)} =\dfrac{\dfrac{7}{30}}{\dfrac{3}{10}} = \dfrac{7}{9}.

  • Câu 3: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P(A \cap B)?

    Ta có:

    P\left( A \cap \overline{B} ight) +
P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} ight) = 0,8 - 0,55 = 0,25.

  • Câu 4: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{A} \cap B ight)?

    Cách 1: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B)

    P\left( \overline{A}|B ight) = 1 -
P\left( A|B ight) = 1 - \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7}
= \frac{4}{7}

    Do đó: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B) = \frac{4}{7}.0,7 = 0,4 =
\frac{2}{5}

    Cách 2: Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,7 - 0,3 = 0,4.

  • Câu 5: Nhận biết

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 6: Vận dụng

    Tan giờ học buổi chiều một sinh viên có 60\% về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn 20\% số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là 80\%. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là 90\%. Hôm nay sinh viên đó về muộn. Tính xác suất để để sinh viên đó đi chơi với bạn bè.

    Gọi B là biến cố sinh viên đó đi học về muộn

    E1 là biến cố tan học về nhà ngay = > P\left( E_{1} ight) = 0,6,P\left( B|E_{1}
ight) = 0,3

    E2 là biến cố tan học đi chơi game = > P\left( E_{2} ight) = 0,2,P\left( B|E_{2}
ight) = 0,8

    E3 là biến cố tan học về đi chơi với bạn = > P\left( E_{3} ight) = 0,2,P\left( B|E_{3}
ight) = 0,9

    B có thể xảy ra một trong 3 biến cố

    P(B) = P\left( E_{1} ight).P\left(
B|E_{1} ight) + P\left( E_{2} ight).P\left( B|E_{2} ight) +
P\left( E_{3} ight).P\left( B|E_{3} ight)

    = > P(B) = 0,52

    Xác suất để sinh viên đó đi chơi với bạn là:

    P\left( E_{3}|B ight) = \frac{P\left(
E_{3} ight).P\left( B|E_{3} ight)}{P(B)} = 0,375 =
37,5\%

  • Câu 7: Thông hiểu

    Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.

    a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là \frac{9}{10}. Sai||Đúng

    b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là \frac{1}{19}. Đúng||Sai

    c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là \frac{9}{190}. Sai||Đúng

    d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là \frac{189}{190}. Đúng||Sai

    Đáp án là:

    Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.

    a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là \frac{9}{10}. Sai||Đúng

    b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là \frac{1}{19}. Đúng||Sai

    c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là \frac{9}{190}. Sai||Đúng

    d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là \frac{189}{190}. Đúng||Sai

    Xét các biến cố: A: "Lần thứ nhất lấy được bóng đèn loại II"; B: "Lần thứ hai lấy được bóng đèn loại II".

    a) Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: P(A) = \frac{2}{20} = \frac{1}{10}.

    b) Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp. Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là: P\left( B|A ight) = \frac{1}{19}.

    c) Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:

    P(C) = P(A \cap B) = P(A).P\left( B|A
ight) = \frac{1}{10}.\frac{1}{19} = \frac{1}{190}.

    d) Để ít nhất 1 lần lấy được bóng đèn loại I là:

    P\left( \overline{C} ight) = 1 - P(C) =
1 - \frac{1}{190} = \frac{189}{190}.

  • Câu 8: Thông hiểu

    Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là 20\%; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70\%, trong số người không nghiện thuốc lá là 15\%. Hỏi khi ta gặp ngẫu nhiên một người dân của tỉnh T thì khả năng mà đó bị bệnh phổi là bao nhiêu \%?

    Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”

    Gọi B là biến cố “người bị bệnh phổi”

    Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.

    Ta cần tính P(B)

    Ta có: \left\{ \begin{matrix}P(A) = 0,2 \Rightarrow P\left( \overline{A} ight) = 1 - P(A) = 0,8 \\P\left( B|A ight) = 0,7 \\P\left( B|\overline{A} ight) = 0,15 \\\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A ight) +P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,2..0,7 + 0,8.0,15 =0,26

  • Câu 9: Thông hiểu

    Dây chuyền lắp ráp nhận được các chi tiết do hai máy sản xuất. Trung bình máy thứ nhất cung cấp 60\% chi tiết, máy thứ hai cung cấp 40\% chi tiết. Biết 90\% chi tiết do máy thứ nhất sản xuất đều đạt tiêu chuẩn và 85\% chi tiết do máy thứ hai sản xuất là đạt tiêu chuẩn. Lấy ngẫu nhiên từ dây chuyển một sản phẩm, thấy nó đạt tiêu chuẩn. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất.

    Gọi A là biến cố chi tiết lấy từ dây chuyển đạt tiêu chuẩn.

    Biến cố A có thể xảy ra đồng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố.

    H1 chi tiết máy do máy một sản xuất.

    H2 chi tiết máy do máy hai sản xuất.

    Như vậy xác suất để chi tiết máy dó máy một sản xuất bằng:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)}

    Theo dữ kiện đề bài cho ta có:\left\{
\begin{matrix}
P\left( H_{1} ight) = 0,6;P\left( H_{2} ight) = 0,4 \\
P\left( A|H_{1} ight) = 0,9;P\left( A|H_{2} ight) = 0,85 \\
\end{matrix} ight.

    Do đó:

    P\left( H_{1}|A ight) =
\frac{0,6.0,9}{0,6.0,9 + 0,4.0,85} = 0,614

  • Câu 10: Vận dụng

    Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai. Tính xác suất của biến cố C: “Hai viên bi lấy ra khác màu”

    Gọi A là biến cố “Viên bi lấy ra từ hộp thứ nhất có màu xanh”

    Gọi B là biến cố “Viên bi lấy ra từ hộp thứ hai có màu đỏ”.

    Ta có:

    P(A) = \frac{4}{10} = 0,4 \Rightarrow
P\left( \overline{A} ight) = 1 - P(A) = 0,6

    P\left( B|A ight) = \frac{4}{10} = 0,4
\Rightarrow P\left( \overline{B}|A ight) = 1 - P\left( B|A ight) =
0,6

    P\left( B|\overline{A} ight) =
\frac{5}{10} = 0,5 \Rightarrow P\left( \overline{B}|\overline{A} ight)
= 1 - P\left( B|\overline{A} ight) = 0,5

    Ta có sơ đồ cây:

    Dựa vào sơ đồ cây, ta có: P(C) = P(AB) +
P\left( \overline{A}\overline{B} ight) = 0,16 + 0,3 =
0,46

  • Câu 11: Vận dụng cao

    Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?

    Gọi E1 là biến cố phế phẩm máy số I

    \Rightarrow P\left( E_{1} ight) = 0,04
\Rightarrow P\left( \overline{E_{1}} ight) = 1 - 0,04 =
0,96

    E2 là biến cố phế phẩm máy số II

    \Rightarrow P\left( E_{2} ight) = 0,03
\Rightarrow P\left( \overline{E_{2}} ight) = 1 - 0,03 =
0,97

    E3 là biến cố phế phẩm máy số III

    \Rightarrow P\left( E_{3} ight) = 0,05
\Rightarrow P\left( \overline{E_{3}} ight) = 1 - 0,05 =
0,95

    Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt

    Xác suất để khách hàng lấy được linh kiện tốt là:

    P(B) =
\frac{C_{80}^{1}}{C_{300}^{1}}.0,96 +
\frac{C_{120}^{1}}{C_{300}^{1}}.0,97 +
\frac{C_{100}^{1}}{C_{300}^{1}}.0,95 = 0,96

    Gọi \overline{B} là biến cố khách hàng lấy 1 linh kiện loại không tốt

    Ta xác định được:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,04

    P\left( E_{1}|\overline{B} ight) =
\frac{P\left( E_{1} ight).P\left( \overline{B}|E_{1} ight)}{P\left(
\overline{B} ight)} = \frac{C_{80}^{1}.0,04}{0,04} = 0,26

    P\left( E_{2}|\overline{B} ight) =
\frac{P\left( E_{2} ight).P\left( \overline{B}|E_{2} ight)}{P\left(
\overline{B} ight)} = \frac{C_{120}^{1}.0,03}{0,04} = 0,3

    P\left( E_{3}|\overline{B} ight) =
\frac{P\left( E_{3} ight).P\left( \overline{B}|E_{3} ight)}{P\left(
\overline{B} ight)} = \frac{C_{100}^{1}.0,05}{0,04} =
0,41

    Vậy linh kiện đó do máy III là cao nhất.

  • Câu 12: Vận dụng

    Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là

    Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".

    B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".

    C là biến cố: "Công ty hoàn thành đúng hạn".

    Ta có \overline{A} là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".

    \overline{B} là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".

    \overline{C} là biến cố: "Công ty hoàn thành không đúng hạn".

    P(A) = 0,95;P(B) = 0,85;P(\overline{A})
= 0,05;P(\overline{B}) = 0,15

    AB là hai biến cố độc lập nên \overline{A}\overline{B} là hai biến cố độc lập

    \overline{C} =
\overline{A.B}

    P(\overline{C}) =
P(\overline{A}.\overline{B}) = P(\overline{A}).P(\overline{B}) =
0,0075.

    \Rightarrow P(C) = 1 - P(\overline{C}) =
0,9925.

  • Câu 13: Nhận biết

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( B|\overline{A} ight)?

    Hai biến cố \overline{A}B là hai biến cố độc lập nên P\left( B|\overline{A} ight) = P(B) =
0,2025.

  • Câu 14: Thông hiểu

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu

    Một công nhân đứng hai máy hoạt động độc lập nhau. Xác suất để máy thứ nhất, máy thứ 2 không bị hỏng trong một ca làm việc lần lượt là 0,90,8. Tính xác suất để cả 2 máy đều không bị hỏng trong một ca làm việc?

    Gọi A là biến cố cả 2 máy đều không bị hỏng trong một ca làm việc

    Theo yêu cầu của đầu bài, ta phải tính P(A)

    Nếu gọi Ai là biến cố máy thứ i không bị hỏng trong một ca làm việc với (i = 1, 2)

    Khi đó ta có: A = A_1.A_2

    Vì vậy xác suất cần tìm là: P(A) = P(A_1.A_2)

    Theo giả thiết A1, A2 là 2 biến cố độc lập với nhau nên ta có:

    P(A) = P(A_1.A_2) = P(A_1).P(A_2) = 0,72

  • Câu 16: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 17: Vận dụng

    Cho hai hộp đựng phiếu bốc thăm trúng thưởng giống nhau:

    Hộp thứ nhất có tỉ lệ trúng thưởng bằng \frac{3}{4}.

    Hộp thứ hai có tỉ lệ trúng thưởng bằng \frac{2}{3}.

    Chọn ngẫu nhiên một thùng và lấy ngẫu nhiên một phiếu trong thùng đó thấy phiếu đó trúng thưởng. Bỏ lại phiếu trở lại thùng, từ thùng đó lấy tiếp một phiếu. Tìm xác suất để lần thứ hai cũng lấy được phiếu trúng thưởng.

    Gọi A là biến cố phiếu đầu tiên lấy là phiếu trúng thưởng.

    Biến cố A có thể xảy ra cùng với một trong các biến cố sau:

    H1 phiếu bốc thăm lấy ra từ thùng I.

    H2 phiếu bốc thăm lấy ra từ thùng II.

    Theo công thức xác xuất toàn phần ta có:

    P(A) = P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)

    Theo dữ kiện đề bài ta có: \left\{
\begin{matrix}
P\left( H_{1} ight) = P\left( H_{2} ight) = \frac{1}{2} \\
P\left( A|H_{1} ight) = \frac{3}{4};P\left( A|H_{2} ight) =
\frac{2}{3} \\
\end{matrix} ight.

    Do đó: P(A) = \frac{1}{2}.\frac{3}{4} +
\frac{1}{2}.\frac{2}{3} = \frac{17}{24}

    Sau khi biến cố A đã xảy ra, xác suất của các biến cố H_{1};H_{2} thay đổi theo công thức Bayes như sau:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P(A)} = \frac{3}{8}:\frac{17}{24}
= \frac{9}{17}

    P\left( H_{2}|A ight) = \frac{P\left(
H_{2} ight).P\left( A|H_{2} ight)}{P(A)} = \frac{1}{3}:\frac{17}{24}
= \frac{8}{17}

    Gọi B là biến cố lấy phiếu lần thứ hai là trúng thưởng.

    B vẫn có thể xảy ra với một trong hai giả thiết H_{1};H_{2} do đó theo công thức xác suất toàn phần ta có:

    P(B) = P\left( H_{1}|A ight).P\left(
B|H_{1}A ight) + P\left( H_{2}|A ight).P\left( B|H_{2}A
ight)

    Vì phiếu lấy lần thứ nhất bỏ trở lại thùng, do đó tỉ lệ trúng thưởng ở các thùng đó vẫn không thay đổi.

    Vì thế

    P\left( B|H_{1}A ight) =
\frac{3}{4};P\left( B|H_{2}A ight) = \frac{2}{3}

    \Rightarrow P(B) =
\frac{9}{17}.\frac{3}{4} + \frac{8}{17}.\frac{2}{3} = \frac{145}{204} =
0,71

  • Câu 18: Thông hiểu

    Cho hai biến cố A;BP(A) = 0,2;P(B) = 0,6;P\left( A|B ight) =
0,3. Xác định P\left( \overline{A}B
ight)?

    Theo công thức tính xác suất có điều kiện ta có:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}\Rightarrow P(AB) = P\left( A|B ight)P(B) = 0,3.0,6 =0,18

    \overline{A}BAB là hai biến cố xung khắc và \overline{A}B \cup AB = B nên theo tính chất của xác suất ta có:

    P\left( \overline{A}B ight) + P(AB) =
P(B)

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = 0,6 - 0,18 = 0,42

  • Câu 19: Thông hiểu

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Biết nó là phế phẩm. Tính xác suất để sản phẩm đó do máy I sản xuất.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất đầy đủ, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

    Gọi B là "sản phẩm do máy I sản xuất". Khi đó ta cần tính P(B|A)

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)} = \frac{0,25.0,1\%}{0,22\%} \approx
0,1136

  • Câu 20: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 44 lượt xem
Sắp xếp theo