Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các khẳng định sau đúng hay sai?

    a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là 78.Đúng||Sai

    b) Xác suất chọn được 2 phế phẩm trong hộp loại II là \frac{12}{15} Sai||Đúng

    c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là \frac{87}{175}. Đúng||Sai

    d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là \frac{52}{87}. Đúng||Sai

    Đáp án là:

    Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các khẳng định sau đúng hay sai?

    a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là 78.Đúng||Sai

    b) Xác suất chọn được 2 phế phẩm trong hộp loại II là \frac{12}{15} Sai||Đúng

    c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là \frac{87}{175}. Đúng||Sai

    d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là \frac{52}{87}. Đúng||Sai

    a) Chọn 2 sản phẩm tốt từ 13 sản phẩm tốt trong hộp loại I là C_{13}^{2} = 78 cách.

    b) Số cách chọn 2 phế phẩm từ 4 phế phẩm trong hộp loại II là C_{4}^{2} = 6 cách.

    Tổng số cách chọn 2 sản phẩm từ 10 sản phẩm (6 tốt và 4 phế phẩm) trong hộp II là C_{10}^{2} = 45 cách

    Vậy xác suất chọn được hai phế phẩm là: \frac{6}{45} = \frac{2}{15}.

    c) Gọi A: “Chọn được trong thùng một hộp loại I”.

    Và B: “Chọn được trong thùng một hộp loại II”.

    Xác suất chọn hộp loại I là P(A) =
\frac{2}{5} và xác suất chọn hộp loại II là P(B) = \frac{3}{5}

    Gọi C là biến cố “Cả 2 sản phẩm lấy ra đều tốt”.

    Xác suất lấy được 2 sản phẩm tốt từ hộp loại I là P\left( C|A ight) =
\frac{C_{13}^{2}}{C_{15}^{2}} = \frac{26}{35}

    Xác suất lấy được 2 sản phẩm tốt từ hộp II là P\left( C|B ight) = \frac{C_{6}^{2}}{C_{10}^{2}}
= \frac{1}{3}

    Vậy xác suất hai sản phẩm lấy ra từ một hộp trong thùng đều tốt là:

    P(C) = P\left( C|A ight).P(A) +
P\left( C|B ight).P(B)

    \Rightarrow P(C) =
\frac{26}{35}.\frac{2}{5} + \frac{1}{3}.\frac{3}{5} =
\frac{87}{175}

    d) Xác suất lấy ra hai sản phẩm đều tốt thuộc hộp loại I là

    P\left( A|C ight) = \dfrac{P\left( C|Aight).P(A)}{P(C)} = \dfrac{\dfrac{26}{35}.\dfrac{2}{5}}{\dfrac{87}{125}} =\dfrac{52}{87}

  • Câu 2: Thông hiểu

    Cho hai biến cố A;B với P(A) > 0;P(B) > 0. Xét tính đúng sai của các khẳng định sau:

    a) P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(A)Đúng||Sai

    b) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(A)} Đúng||Sai

    c) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B}
ight)}Đúng||Sai

    d) P(A) = P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight) Đúng||Sai

    e) Biết P(B) = 0,8;P\left( A|B ight) =
0,7;P\left( A|\overline{B} ight) = 0,5 khi đó P(A) = 0,6.Sai||Đúng

    Đáp án là:

    Cho hai biến cố A;B với P(A) > 0;P(B) > 0. Xét tính đúng sai của các khẳng định sau:

    a) P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(A)Đúng||Sai

    b) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(A)} Đúng||Sai

    c) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B}
ight)}Đúng||Sai

    d) P(A) = P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight) Đúng||Sai

    e) Biết P(B) = 0,8;P\left( A|B ight) =
0,7;P\left( A|\overline{B} ight) = 0,5 khi đó P(A) = 0,6.Sai||Đúng

    Các khẳng định đúng là:

    a) P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(A)

    b) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(A)}

    c) P\left( B|A ight) =
\frac{P(B).P\left( A|B ight)}{P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)}

    d) P(A) = P(A \cap B) + P\left( A \cap
\overline{B} ight) = P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)

    e) Ta có: P\left( \overline{B} ight) =
1 - P(B) = 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,5 =
0,66

  • Câu 3: Thông hiểu

    Ông Bình hằng ngày đi làm bằng xe máy hoặc xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4. Nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7. Xét một tuần mà thứ Hai ông Bình đi làm bằng xe buýt.

    Gọi A là biến cố: “Thứ Ba, ông Bình đi làm bằng xe máy” và B là biến cố: “Thứ Tư, ông Bình đi làm bằng xe máy”.

    a) Xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là \frac{7}{10}. Sai||Đúng

    b) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy là \frac{3}{10}. Đúng||Sai

    c) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt là \frac{4}{10}. Đúng||Sai

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là \frac{9}{25}. Đúng||Sai

    Đáp án là:

    Ông Bình hằng ngày đi làm bằng xe máy hoặc xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4. Nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7. Xét một tuần mà thứ Hai ông Bình đi làm bằng xe buýt.

    Gọi A là biến cố: “Thứ Ba, ông Bình đi làm bằng xe máy” và B là biến cố: “Thứ Tư, ông Bình đi làm bằng xe máy”.

    a) Xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là \frac{7}{10}. Sai||Đúng

    b) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy là \frac{3}{10}. Đúng||Sai

    c) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt là \frac{4}{10}. Đúng||Sai

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là \frac{9}{25}. Đúng||Sai

    Từ giả thiết của bài toán ta có sơ đồ hình cây như sau:

    a) Dựa vào sơ đồ cây ta có xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là 0,6 (nhánh O\overline{A}).

    b) Dựa vào sơ đồ cây ta có xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông Bình đi làm bằng xe máy là 0,3 = \frac{3}{10} (nhánh \overline{A}B).

    c) Dựa vào sơ đồ cây ta có xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt 0,4 = \frac{4}{10} (nhánh AB)

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là:

    P(B) = 0,4.0,3 + 0,6.0,4 =
0,36(nhánh OAB và nhánh O\overline{A}B).

  • Câu 4: Nhận biết

    Một đợt xổ số phát hành N vé, trong đó có M vé có thưởng. Một người mua t(r < N - M). Tính xác suất để người đó có ít nhất một vé trúng thưởng

    Gọi A: “Người đó có ít nhất một vé trúng thưởng”.

    \overline{A}: “người đó không có vé trúng thưởng”

    Ta có: P\left( \overline{A} ight) =
\frac{C_{N - M}^{t}}{C_{N}^{t}} khi đó P(A) = 1 - P\left( \overline{A} ight) = 1 -
\frac{C_{N - M}^{t}}{C_{N}^{t}}

  • Câu 5: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 6: Thông hiểu

    Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là:

    Gọi A là biến cố “viên bi lấy lần thứ nhất là màu đỏ”.

    Gọi B là biến cố “viên bi lấy lần thứ hai là màu đỏ”.

    Không gian mẫu n(Ω )= 10.9 cách chọn

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có cách 9 chọn, do đó: P(A) = \frac{7.9}{9.10} =
\frac{7}{10}

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ trong 6 viên bi còn lại có 6 cách chọn, do đó: P(A \cap B) = \frac{7.6}{10.9} =
\frac{7}{15}

    Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ: P\left(B|A ight) = \dfrac{P(A \cap B)}{P(A)} =\dfrac{\dfrac{7}{15}}{\dfrac{7}{10}} = \dfrac{2}{3}.

  • Câu 7: Thông hiểu

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số

    a) Số viên bi màu đỏ có đánh số là 30.Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \frac{3}{5}. Sai||Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số \frac{7}{16}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số

    a) Số viên bi màu đỏ có đánh số là 30.Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \frac{3}{5}. Sai||Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số \frac{7}{16}. Đúng||Sai

    a) Số viên bi màu đỏ có đánh số là 60\%.50 = 30

    b) Số viên bi màu vàng không đánh số là 50\%.30 = 15

    c) Gọi A là biến cố “viên bi được lấy ra có đánh số” và B là biến cố “viên bi được lấy ra có màu đỏ”,

    ⇒ B là biến cố “viên bi được lấy ra có màu vàng”

    Lúc này ta đi tính P(A) theo công thức:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    Ta có: \left\{ \begin{matrix}
  P\left( B ight) = \dfrac{{50}}{{80}} = \dfrac{5}{8} \hfill \\
  P\left( {\overline B } ight) = \dfrac{{30}}{{80}} = \dfrac{3}{8} \hfill \\
  P\left( {A|B} ight) = 60\%  = \dfrac{3}{5} \hfill \\
  P\left( {A|\overline B } ight) = 100\%  - 50\%  = \dfrac{1}{2} \hfill \\ 
\end{matrix}  ight.

    Vậy P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight) =
\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =
\frac{9}{16}.

    d) A là biến cố “viên bi được lấy ra có đánh số”

    \overline{A} là biến cố “viên bi được lấy ra không có đánh số”

    Ta có: P\left( \overline{A} ight) = 1 -
P(A) = 1 - \frac{9}{16} = \frac{7}{16}.

  • Câu 8: Thông hiểu

    Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Xác suất để một đứa trẻ là trai hoặc gái là bằng nhau. Hỏi xác suất hai đứa trẻ đều là con gái là bao nhiêu?

    Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.

    Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng: (trai, trai), (gái, gái), (gái, trai), (trai, gái).

    Gọi A là biến cố “Cả hai đứa trẻ đều là con gái” Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”

    Ta có: P(A) = \frac{1}{4};P(B) =
\frac{3}{4}

    Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:

    P(A \cap B) = P(A) =
\frac{1}{4}

    Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là: P\left( A|B ight) =\dfrac{P(A \cap B)}{P(B)} = \dfrac{\dfrac{1}{4}}{\dfrac{3}{4}} =\dfrac{1}{3}.

  • Câu 9: Vận dụng

    Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Tính xác suất để viên bi rút ra sau cùng màu đỏ?

    Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",

    D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".

    Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.

    Ta có: \left\{ \begin{gathered}
  P\left( {{D_1}{D_2}} ight) = \frac{4}{6}.\frac{4}{7};P\left( {{D_1}{X_2}} ight) = \frac{4}{6}.\frac{3}{7} \hfill \\
  P\left( {{X_1}{D_2}} ight) = \frac{2}{6}.\frac{3}{7};P\left( {{X_1}{X_2}} ight) = \frac{2}{6}.\frac{4}{7} \hfill \\ 
\end{gathered}  ight.

    Gọi A là "viên bi rút ra sau cùng là màu đỏ".

    Ta xác định được: \left\{ \begin{gathered}
  P\left( {A|{D_1}{D_2}} ight) = \frac{4}{6};P\left( {A|{D_1}{X_2}} ight) = \frac{3}{6} \hfill \\
  P\left( {A|{X_1}{D_2}} ight) = \frac{5}{6};P\left( {A|{X_1}{X_2}} ight) = \frac{4}{6} \hfill \\ 
\end{gathered}  ight.

    Áp dụng công thức xác suất toàn phần:

    P(A) = P\left( D_{1}D_{2} ight)P\left(
A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left( A|D_{1}X_{2}
ight)

    + P\left( X_{1}D_{2} ight)P\left(
A|X_{1}D_{2} ight) + P\left( X_{1}X_{2} ight)P\left( A|X_{1}X_{2}
ight)

    = \frac{4}{6}.\frac{4}{7}.\frac{4}{6} +
\frac{4}{6}.\frac{3}{7}.\frac{3}{6} +
\frac{2}{6}.\frac{3}{7}.\frac{5}{6} +
\frac{2}{6}.\frac{4}{7}.\frac{4}{6} = \frac{9}{14}

  • Câu 10: Thông hiểu

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.

    a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng \frac{2}{5}.Đúng||Sai

    b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng \frac{8}{23}. Đúng||Sai

    c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng \frac{15}{23}. Sai||Đúng

    d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng \frac{3}{5}.Sai||Đúng

    Đáp án là:

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.

    a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng \frac{2}{5}.Đúng||Sai

    b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng \frac{8}{23}. Đúng||Sai

    c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng \frac{15}{23}. Sai||Đúng

    d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng \frac{3}{5}.Sai||Đúng

    Gọi A : “Học sinh được chọn giỏi môn Toán”

    B: “Học sinh được chọn giỏi môn Văn”

    Gọi C : “Học sinh được chọn không giỏi môn Toán”

    D: “Học sinh được chọn không giỏi môn Văn”

    Số học sinh giỏi cả 2 môn là: 23 + 20 -
35 = 8

    a) Trong số 23 học sinh giỏi Toán, chỉ có đúng 8 học sinh giỏi Văn nên xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn là:

    P\left( A|B ight) = \frac{8}{20} =
\frac{2}{5}

    b) Trong số 20 học sinh giỏi Văn, chỉ có đúng 8 học sinh giỏi Toán nên xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán là:

    P\left( B|A ight) =
\frac{8}{23}

    c) Trong số 20 học sinh giỏi Văn, có đúng 8 học sinh giỏi cả Văn và Toán, nên số học sinh giỏi Văn mà không giỏi Toán là 12.

    Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" là:

    P\left( C|B ight) = \frac{12}{20} =
\frac{3}{5}

    d) Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là 23 - 8 = 15

    Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" là: P\left( D|A ight) =
\frac{15}{23}

  • Câu 11: Thông hiểu

    Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.

    Gọi A là biến cố lần một lấy được bi trắng.

    Gọi B là biến cố lần hai lấy được bi đỏ.

    Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng làP\left( B|A ight).

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{8.9}{10.9} = \dfrac{4}{5} \\P(A \cap B) = \dfrac{8.2}{10.9} = \dfrac{8}{45} \\\end{matrix} ight. khi đó:

    P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{8}{45}}{\dfrac{4}{5}} = \dfrac{2}{9}.

  • Câu 12: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 13: Vận dụng

    Ba máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 25\%, máy II sản xuất 30\% và máy III sản xuất 45\% tổng sản lượng. Tỷ lệ phế phẩm của các máy lần lượt là 0,1\%;0,2\%;0,4\%. Tìm xác suất để khi chọn ngẫu nhiên ra 1 sản phẩm từ kho thì chi tiết phế phẩm đó do máy II sản xuất?

    Gọi Ai: “Sản phẩm do máy i sản xuất”

    A: “Sản phẩm là phế phẩm”

    Ta có: A1, A2, A3 là một hệ đầy đủ các biến cố và

    P\left( A_{1} ight) = 0,25;P\left(
A_{2} ight) = 0,3;P\left( A_{3} ight) = 0,45

    P\left( A|A_{1} ight) = 0,001;P\left(
A|A_{2} ight) = 0,002;P\left( A|A_{3} ight) = 0,004

    Theo công thức xác suất toàn phần ta có:

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{3} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight) = 0,00265

    Theo công thức Bayes ta có:

    P\left( A_{2}|A ight) = \frac{P\left(
A|A_{2} ight).P\left( A_{2} ight)}{P(A)} = 0,226

  • Câu 14: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A}B ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = \frac{5}{12}

  • Câu 15: Vận dụng

    Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là 0,5; còn không mưa là 0,3. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?

    Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:

    P(AB) = 0,5;P\left(
\overline{A}\overline{B} ight) = 0,3

    Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên

    P\left( A\overline{B} ight) = P\left(
\overline{A}B ight) = \frac{1 - 0,5 - 0,3}{2} = 0,1

    Xác suất cần tính là P\left(
\overline{B}|A ight) có:

    P\left( \overline{B}|A ight) =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A} ight)} =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A}\overline{B}
ight) + P\left( \overline{A}B ight)}

    = \frac{0,1}{0,1 + 0,3} = 0,25 =
25\%

  • Câu 16: Vận dụng

    Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là 0,7. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,8. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,2. Tính xác suất học sinh đó làm đúng cả hai bài?

    Gọi A: “Làm đúng bài thứ nhất”.

    Và B: “Làm đúng bài thứ hai”

    Khi đó biến cố: “làm đúng cả hai bài” là AB

    Theo bài ta có: P(A) = 0,7;P\left( B|A
ight) = 0,8;P\left( B|\overline{A} ight) = 0,2

    Do đó:

    P\left( \overline{A} ight) = 1 - P(A)
= 0,3

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight) = 1 - 0,8 = 0,2

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,2 =
0,8

    Ta có sơ đồ hình cây như sau:

    Vậy P(AB) = 0,8.0,7 = 0,56

  • Câu 17: Thông hiểu

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

  • Câu 18: Vận dụng cao

    Có 3 cửa hàng I, II, III cùng kinh doanh sản phẩm Y, trong đó thị phần của cửa hàng I, III như nhau và gấp đôi thị phần của cửa hàng II. Tỉ lệ sản phẩm loại A trong 3 cửa hàng lần lượt là 70\%; 75\% ; 50\%. Một khách hàng chọn ngẫu nhiên 1 cửa hàng và tử đó mua một sản phẩm. Giả sử khách hàng đã mua được sản phẩm loại A, hỏi khả năng người ấy đã mua được ở cửa hàng nào là nhiều nhất?

    Gọi T: "Khách hàng mua được sản phẩm loại A"

    Ai: "Mua ở cửa hàng i"

    Ta có {A1, A2, A3} là một hệ đầy đủ các biến cố và xác định được:P\left( A_{1}
ight) = \frac{2}{5} = 0,4;P\left( A_{2} ight) = \frac{1}{5} =
0,2;P\left( A_{3} ight) = \frac{2}{5} = 0,4

    P\left( T|A_{1} ight) = 0,7;P\left(
A|A_{2} ight) = 0,75;P\left( T|A_{3} ight) = 0,5

    Áp dụng công thức xác suất toàn phần ta có xác suất để khách hàng mua được sản phẩm loại A là:

    P(T) = P\left( A_{1} ight)P\left(
T|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( T|A_{3} ight)

    \Rightarrow P(T) = 0,4.0,7 + 0,2.0,75 +
0,4.0,5 = 0,63

    Áp dụng công thức Bayes, ta có:

    P\left( A_{1}|T ight) = \frac{P\left(
A_{1} ight)P\left( T|A_{1} ight)}{P(T)} = \frac{0,4.0,7}{0,63} =
0,4444

    P\left( A_{21}|T ight) = \frac{P\left(
A_{2} ight)P\left( T|A_{2} ight)}{P(T)} = \frac{0,2.0,75}{0,63} =
0,2381

    P\left( A_{3}|T ight) = \frac{P\left(
A_{3} ight)P\left( T|A_{3} ight)}{P(T)} = \frac{0,4.0,5}{0,63} =
0,3175

    Ta thấy rằng P(A1|T) là lớn nhất tức là khả năng người ấy đã mua ở cửa hàng I là nhiều nhất.

  • Câu 19: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 20: Nhận biết

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo