Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Bài kiểm tra 15 phút Xác suất có điều kiện của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là 0,7. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,8. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,2. Tính xác suất học sinh đó làm đúng cả hai bài?

    Gọi A: “Làm đúng bài thứ nhất”.

    Và B: “Làm đúng bài thứ hai”

    Khi đó biến cố: “làm đúng cả hai bài” là AB

    Theo bài ta có: P(A) = 0,7;P\left( B|A
ight) = 0,8;P\left( B|\overline{A} ight) = 0,2

    Do đó:

    P\left( \overline{A} ight) = 1 - P(A)
= 0,3

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight) = 1 - 0,8 = 0,2

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,2 =
0,8

    Ta có sơ đồ hình cây như sau:

    Vậy P(AB) = 0,8.0,7 = 0,56

  • Câu 2: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 3: Thông hiểu

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( \overline{A}\overline{B}\overline{C}
ight)?

    Ta có:

    P\left( A\overline{B}\overline{C}
ight) = P\left( A\overline{B} ight) - P\left( A\overline{B}C
ight)

    = p(1 - p) - p^{2} = p -
2p^{2}

    Vì A, B, C có vai trò như nhau nên P\left( A\overline{B}C ight) = P\left(
AB\overline{C} ight)

    \Rightarrow P\left(
\overline{A}\overline{B}\overline{C} ight) = P\left(
\overline{B}\overline{C} ight) - P\left( A\overline{B}\overline{C}
ight)

    = (1 - p)^{2} - p - 2p^{2} = 3p^{2} - 3p
+ 1

  • Câu 4: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 5: Vận dụng cao

    Một hãng hàng không cho biết rằng 5\% số khách đặt trước vé cho các chuyến đã định sẽ hoãn không đi chuyến bay đó. Do đó hãng đã đưa ra một chính sách là sẽ bán 52 ghế cho một chuyến bay mà trong đó mỗi chuyến chỉ trở được 50 khách hàng. Tìm xác suất để tất cả các khách đặt chỗ trước và không hoãn chuyến bay đều có ghế. Biết rằng xác suất bán được 51 vé hoặc 52 vé là như nhau và bằng 10\%?

    Gọi A là "bán được 52 vé", B là "bán được 51 vé" và C là "bán được nhiều nhất 50 vé".

    Khi đó A, B, C tạo thành hệ đầy đủ.

    Ta có P(A) = 0,1; P(B) = 0,1; P(C) = 0,8

    Gọi H là "khách đặt chỗ trước và không hoãn chuyến đều có ghế".

    Biến cố H|A xảy ra nếu có ít nhất 2 khách hủy chuyến, H|B xảy ra nếu có ít nhất 1 khách hủy chuyến. Tính trực tiếp xác suất của các sự kiện này đều khá phức tạp.

    Do đó để cho đơn giản ta tìm P\left(\overline{H} ight).

    Ta có: \left\{ \begin{matrix}P\left( \overline{H}|A ight) = 0,95^{52}.0,05^{0} +52.0,95^{51}.0,05^{1} \\P\left( \overline{H}|B ight) = 0,95^{51}.0,05^{0} \\P\left( \overline{H}|C ight) = 0 \\\end{matrix} ight.

    Do đó:

    P\left( \overline{H} ight) =P(A).P\left( \overline{H}|A ight) + P(B).P\left( \overline{H}|Bight) + P(C).P\left( \overline{H}|C ight)

    \Rightarrow P\left( \overline{H} ight)= 0,1\left( 0,95^{52}.0,05^{0} + 52.0,95^{51}.0,05^{1} ight)+0,1.0,95^{51}.0,05^{0} + 0,8.0 \approx 0,033

    \Rightarrow P(H) = 1 - P\left(\overline{H} ight) \approx 0,9667 = 96,67\%

  • Câu 6: Thông hiểu

    Có hai hộp thuốc:

    Hộp I có 2 vỉ thuốc ngoại và 5 vỉ thuốc nội.

    Hộp II có 3 vỉ thuốc ngoại và 6 vỉ thuốc nội.

    Từ hộp I và hộp II lần lượt lấy ra 2 vỉ thuốc và 1 vỉ thuốc. Từ 3 vỉ thuốc đó lại lấy ra một vỉ. Tính xác suất để vỉ lấy ra sau cùng là thuốc ngoại?

    Gọi A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp I”

    A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp II”

    Ta có A1, A2 lập thành hệ đầy đủ các biến cố khi đó ta xác định được:

    P\left( A_{1} ight) =
\frac{2}{3};P\left( A_{2} ight) = \frac{1}{3}

    P\left( B|A_{1} ight) =
\frac{2}{7};P\left( B|A_{2} ight) = \frac{3}{9}

    Gọi B là biến cố “vỉ thuốc lấy ra sau cùng là thuốc ngoại”.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2}
ight)

    \Rightarrow P(B) =
\frac{2}{3}.\frac{2}{7} + \frac{1}{3}.\frac{3}{9} =
\frac{19}{63}.

  • Câu 7: Thông hiểu

    Cho hai biến cố A;BP(A) = 0,2;P(B) = 0,6;P\left( A|B ight) =
0,3. Xác định P\left( \overline{A}B
ight)?

    Theo công thức tính xác suất có điều kiện ta có:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}\Rightarrow P(AB) = P\left( A|B ight)P(B) = 0,3.0,6 =0,18

    \overline{A}BAB là hai biến cố xung khắc và \overline{A}B \cup AB = B nên theo tính chất của xác suất ta có:

    P\left( \overline{A}B ight) + P(AB) =
P(B)

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = 0,6 - 0,18 = 0,42

  • Câu 8: Thông hiểu

    Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh nam nữ tại một trường phổ thông T. Xét phép thử chọn ngẫu nhiên 1 học sinh trong nhóm đó. Gọi A là biến cố “học sinh được chọn biết chơi ít nhất một nhạc cụ”, và B là biến cố “học sinh được chọn là nam”. Biết xác xuất học sinh được chọn là nam bằng 0,6; xác suất học sinh được chọn là nam và biết chơi ít nhất một nhạc cụ là 0,3; xác suất học sinh được chọn là nữ và biết chơi ít nhất một nhạc cụ là 0,15. Tính P(A)?

    Theo bài ra ta có: \left\{ \begin{matrix}
P(B) = 0,6 \Rightarrow P\left( \overline{B} ight) = 1 - 0,6 = 0,4 \\
P\left( A|B ight) = 0,3 \\
P\left( A|\overline{B} ight) = 0,15 \\
\end{matrix} ight.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,3 + 0,4.0,15 =
0,24.

  • Câu 9: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{A} \cap B ight)?

    Cách 1: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B)

    P\left( \overline{A}|B ight) = 1 -
P\left( A|B ight) = 1 - \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7}
= \frac{4}{7}

    Do đó: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B) = \frac{4}{7}.0,7 = 0,4 =
\frac{2}{5}

    Cách 2: Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,7 - 0,3 = 0,4.

  • Câu 10: Vận dụng

    Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Tính xác suất để viên bi đó màu đỏ?

    Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì A_{1}A_{2};\overline{A_{1}}A_{2};A_{1}\overline{A_{2}};\overline{A_{1}}\overline{A_{2}} tạo thành một hệ đầy đủ.

    Ta có: \left\{ \begin{matrix}
P\left( A_{1}A_{2} ight) = 0,3;P\left( \overline{A_{1}}A_{2} ight) =
0,2 \\
P\left( A_{1}\overline{A_{2}} ight) = 0,3;P\left(
\overline{A_{1}}\overline{A_{2}} ight) = 0,2 \\
\end{matrix} ight.

    Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:

    P\left( A|A_{1}A_{2} ight) = 1;P\left(
A|\overline{A_{1}}A_{2} ight) = 0,5

    P\left( A|A_{1}\overline{A_{2}} ight)
= 0,5;P\left( A|\overline{A_{1}}\overline{A_{2}} ight) =
0

    Áp dụng công thức xác suất đầy đủ ta có:

    P(A) = P\left( A_{1}A_{2} ight)P\left(
A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2} ight)P\left(
A|\overline{A_{1}}A_{2} ight)

    + P\left(
\overline{A_{1}}\overline{A_{2}} ight)P\left(
A|\overline{A_{1}}\overline{A_{2}} ight) + P\left(
A_{1}\overline{A_{2}} ight)P\left( A_{1}\overline{A_{2}}
ight)

    = 0,3.1 + 0,3.0,5 + 0,2.0,5 + 0,2.0 =
0,55

  • Câu 11: Thông hiểu

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Đáp án là:

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100\ 000 con nghĩa là P(X) = 15.10^{- 6}.

    Khi con bò bị bệnh bò điên, thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60%, nghĩa là: P\left(
Y|X ight) = 0,6.

    Khi con bò không bị bệnh, thì xác xuất để xả ra phản ứng dương tính trong xét nghiệm đó là 20%, nghĩa là P\left(
Y|\overline{X} ight) = 0,2. Khi đó, ta có:

    P(Y \cap X) = P\left( Y|X ight).P(X) =
0,6\ .\ 15\ .\ 10^{- 6} = 9.10^{- 6}.

  • Câu 12: Thông hiểu

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất toàn phần, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

  • Câu 13: Nhận biết

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( B|\overline{A} ight)?

    Hai biến cố \overline{A}B là hai biến cố độc lập nên P\left( B|\overline{A} ight) = P(B) =
0,2025.

  • Câu 14: Thông hiểu

    Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là:

    Gọi A là biến cố “viên bi lấy lần thứ nhất là màu đỏ”.

    Gọi B là biến cố “viên bi lấy lần thứ hai là màu đỏ”.

    Không gian mẫu n(Ω )= 10.9 cách chọn

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có cách 9 chọn, do đó: P(A) = \frac{7.9}{9.10} =
\frac{7}{10}

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ trong 6 viên bi còn lại có 6 cách chọn, do đó: P(A \cap B) = \frac{7.6}{10.9} =
\frac{7}{15}

    Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ: P\left(B|A ight) = \dfrac{P(A \cap B)}{P(A)} =\dfrac{\dfrac{7}{15}}{\dfrac{7}{10}} = \dfrac{2}{3}.

  • Câu 15: Nhận biết

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 16: Thông hiểu

    Trong một trường học, tỉ lệ học sinh nữ là 53\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là 21\%17\%. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.

    Gọi A: “Học sinh được chọn là nữ” ⇒\overline{A} : “Học sinh được chọn là nam”

    B: “học sinh được chọn có tham gia câu lạc bộ M”.

    Từ giả thiết ta có:

    \left\{ \begin{matrix}
P(A) = 0,53 \Rightarrow P\left( \overline{A} ight) = 1 - 0,53 = 0,47
\\
P\left( B|A ight) = 0,21 \\
P\left( B|\overline{A} ight) = 0,17 \\
\end{matrix} ight.

    Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,53.0,21 + 0,47.0,17
= \frac{239}{1250}.

  • Câu 17: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P(A.B)?

    Ta có: P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

  • Câu 18: Thông hiểu

    Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Anh, trong đó có 1 bạn nữ và 2 bạn nam. Giáo viên chủ nhiệm gọi ngẫu nhiên 1 bạn lên bảng, khi đó:

    a) Xác suất để có tên Anh là \frac{1}{10}.Đúng||Sai

    b) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nữ là \frac{3}{17}.Sai||Đúng

    c) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nam là \frac{2}{13}.Đúng||Sai

    d) Nếu giáo viên chủ nhiệm gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là \frac{3}{17}.Sai||Đúng

    Đáp án là:

    Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Anh, trong đó có 1 bạn nữ và 2 bạn nam. Giáo viên chủ nhiệm gọi ngẫu nhiên 1 bạn lên bảng, khi đó:

    a) Xác suất để có tên Anh là \frac{1}{10}.Đúng||Sai

    b) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nữ là \frac{3}{17}.Sai||Đúng

    c) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nam là \frac{2}{13}.Đúng||Sai

    d) Nếu giáo viên chủ nhiệm gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là \frac{3}{17}.Sai||Đúng

    Gọi A là biến cố “tên là Anh”

    Gọi B là biến cố “nữ”.

    a) Xác suất để học sinh được gọi có tên là Anh là: P(A) = \frac{3}{10} = \frac{1}{10}.

    b) Xác suất để thầy giáo gọi bạn đó lên bảng có tên Anh, nhưng với điều kiện bạn đó nữ là P\left( A|B
ight)

    Ta có: P(B) = \frac{17}{30};P(A \cap B) =
\frac{1}{30}

    \Rightarrow P\left( A|B ight) =\dfrac{P(A \cap B)}{P(B)} = \dfrac{\dfrac{1}{30}}{\dfrac{17}{30}} =\dfrac{1}{17}

    c) Gọi C là biến cố “nam”.

    Xác suất để thầy giáo gọi bạn đó lên bảng có tên Anh, nhưng với điều kiện bạn đó nam là P\left( A|C
ight)

    Ta có: P(C) = \frac{13}{30};P(A \cap C) =
\frac{2}{30}

    \Rightarrow P\left( A|C ight) =\dfrac{P(A \cap C)}{P(A)} = \dfrac{\dfrac{2}{30}}{\dfrac{13}{30}} =\dfrac{2}{13}.

    d) Nếu thầy giáo gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là P\left( B|A
ight),

    \Rightarrow P\left( B|A ight) =\dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{1}{30}}{\dfrac{3}{30}} =\frac{1}{3}.

  • Câu 19: Vận dụng

    Tỷ lệ người nghiện thuốc là ở một vùng là 30\%. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là 60\%, còn tỷ lệ người bị viêm họng trong số những người không nghiện là 40\%. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Nếu người đó không bị viêm họng, tính xác suất người đó nghiện thuốc lá.

    Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:

    P(A) = 0,3;P\left( B|A ight) =
0,6;P\left( B|\overline{A} ight) = 0,4

    Cần tính xác suất là C = A|B.

    Sử dụng công thức Baye ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight)P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,3.0,6}{0,3.0,6 + 0,7.0,4} = \frac{9}{23}

    Gọi D = A|\overline{B} ta có:

    P(D) = \frac{P\left( A\overline{B}
ight)}{P\left( \overline{B} ight)} = \frac{P(A) - P(AB)}{1 -
P(B)}

    = \frac{P(A) - P(A)P\left( B|A
ight)}{1 - P(B)} \approx 0,2222

  • Câu 20: Vận dụng

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Đáp án là:

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Gọi A là biến cố Bình làm đúng câu dễ

    B là biến cố Bình làm đúng câu trung bình

    C là biến cố Bình làm đúng câu khó.

    Khi đó A, B, C độc lập với nhau.

    a) Xác suất để Bình làm ba câu thuộc ba loại trên và đúng cả ba câu là

    P = P(A).P(B).P(C) = 0,072 =
7,2\%.

    Khẳng định sai.

    b) Xác suất để Bình làm đúng 2 trong số 3 câu là

    P\left( \overline{A} ight).P(B).P(C) +
P(A).P\left( \overline{B} ight).P(C) + P(A).P(B).P\left( \overline{C}
ight)

    = 0,2.0,6.0,15 + 0,8.0,4.0,15 + 0,8.0,6.0,85 = 0,474

    Khẳng định sai.

    c) Xác suất để Bình làm đúng 3 câu đủ ba loại là:

    P = P(A).P(B).P(C) = 0,072 =
7,2\%

    Xác suất Bình làm sai 3 câu mức độ trung bình. (0,4)^{3} = 0,064.

    Khẳng định đúng.

    d) Để Bình làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:

    TH1: Đúng 4 câu khó và câu còn lại sai

    (0,15)^{4}(0,2 + 0,4 + 0,85) =
7,34.10^{- 4}

    TH2: Đúng 3 câu khó và đúng 2 câu trung bình

    (0,15)^{3}.(0,6)^{2} = 1,215.10^{-
3}

    Vậy xác suất cần tìm là 0,1949\%

    Khẳng định sai.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo