Cho hai biến cố và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Cho hai biến cố và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Tính xác suất để lấy được bi trắng.
Gọi A là biến cố lấy được bi trắng
Cách 1: Ta có sơ đồ cây mô tả như sau:
.
Cách 2: Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I
Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II
Ta xác định được:
Khi đó:
Cho hai biến cố với
. Tính
?
Ta có:
Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Xác suất để một đứa trẻ là trai hoặc gái là bằng nhau. Hỏi xác suất hai đứa trẻ đều là con gái là bao nhiêu?
Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.
Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng: (trai, trai), (gái, gái), (gái, trai), (trai, gái).
Gọi A là biến cố “Cả hai đứa trẻ đều là con gái” Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”
Ta có:
Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:
Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là: .
Cho hai biến cố với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Cho ba biến cố độc lập từng đôi thỏa mãn
và
. Xác định
?
Ta có:
Vì A, B, C có vai trò như nhau nên
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a) và
là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là . Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là . Sai||Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án . Sai||Đúng
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a) và
là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là . Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là . Sai||Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án . Sai||Đúng
Đề bài:
a) độc lập
mà nên
không độc lập
b) Gọi là biến cố thắng thầu đúng 1 dự án
c) Gọi là biến cố thắng dự 2 biết thắng dự án 1
d) Gọi là biến cố “thắng dự án 2 biết không thắng dự án 1”
Trong một trường học, tỉ lệ học sinh nữ là . Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là
và
. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.
Gọi A: “Học sinh được chọn là nữ” ⇒ : “Học sinh được chọn là nam”
B: “học sinh được chọn có tham gia câu lạc bộ M”.
Từ giả thiết ta có:
Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:
.
Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là ; còn không mưa là
. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?
Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:
Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên
Xác suất cần tính là có:
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm
mà ai mắc bệnh
khi xét nghiệm
cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh
lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh
là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Đáp án : 0,03
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm
mà ai mắc bệnh
khi xét nghiệm
cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh
lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh
là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Đáp án : 0,03
Xét các biến cố:
: "Người được chọn mắc bệnh
";
: "Người được chọn có phản ứng dương tính với xét nghiệm Y".
Theo giả thiết ta có:
;
Theo công thức Bayes, ta có:
Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm thì xác suất bị mắc bệnh
của người đó là khoảng 0,03.
Tan giờ học buổi chiều một sinh viên có về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn
số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là
. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là
. Tính xác suất để trong một ngày nào đó sinh viên không về muộn.
Gọi B là biến cố sinh viên đó đi học về muộn
là biến cố sinh viên đó đi học không về muộn
E1 là biến cố tan học về nhà ngay
E2 là biến cố tan học đi chơi game
E3 là biến cố tan học về đi chơi với bạn
B có thể xảy ra một trong 3 biến cố
Cho và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Theo thống kê ở các gia đình có hai con thì xác suất để con thứ nhất và con thứ hai là đều con trai là và hai con đều là gái là
, còn xác suất con thứ nhất và con thứ hai có một trai và một gái là đồng khả năng. Biết khi xét một gia đình được chọn ngẫu nhiên có con thứ nhất là con gái, tìm xác suất để con thứ hai là trai.
Gọi là 'con thứ nhất là con trai' và
là 'con thứ hai là con trai' thì theo đề bài ta có:
,
và
Ta cần tìm .
Ta có
Một lớp có 60 học sinh, trong đó 40 học sinh mặc áo có màu xanh, 10 học sinh mặc áo có cả xanh lẫn trắng. Chọn ngẫu nhiên 1 học sinh. Tính xác suất để học sinh đó áo có màu trắng với điều kiện áo em đó đã có màu xanh?
Minh họa bài toán
Gọi A là biến cố “học sinh được chọn mặc áo trắng”
Gọi B là biến cố “học sinh được chọn mặc áo xanh”
A.B là biến cố “học sinh được chọn mặc áo trắng lẫn xanh” Xác suất để học sinh đó áo có màu trắng với điều kiện áo em đó đã có màu xanh:
Cho hai biến cố và
của một phép thử T. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Nếu thì
.
Cho hai biến cố với
. Tính
?
Ta có:
Nếu hai biến cố thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Xác định biến cố : "biến cố
với điều kiện biết
đã xảy ra".
Ta có:
Khi biến cố xảy ra, thì không gian mẫu mới là
.
Khi đó, biến cố
Có 3 cửa hàng I, II, III cùng kinh doanh sản phẩm Y, trong đó thị phần của cửa hàng I, III như nhau và gấp đôi thị phần của cửa hàng II. Tỉ lệ sản phẩm loại A trong 3 cửa hàng lần lượt là . Một khách hàng chọn ngẫu nhiên 1 cửa hàng và tử đó mua một sản phẩm. Giả sử khách hàng đã mua được sản phẩm loại A, hỏi khả năng người ấy đã mua được ở cửa hàng nào là nhiều nhất?
Gọi T: "Khách hàng mua được sản phẩm loại A"
Ai: "Mua ở cửa hàng i"
Ta có {A1, A2, A3} là một hệ đầy đủ các biến cố và xác định được:
Áp dụng công thức xác suất toàn phần ta có xác suất để khách hàng mua được sản phẩm loại A là:
Áp dụng công thức Bayes, ta có:
Ta thấy rằng P(A1|T) là lớn nhất tức là khả năng người ấy đã mua ở cửa hàng I là nhiều nhất.
Một túi đựng bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .