Đề kiểm tra 15 phút Chương 7 Bất phương trình bậc hai một ẩn

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Bất phương trình bậc hai một ẩn gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cặp số nào sau đây là nghiệm của bất phương trình - 5x + y \geq 5 ?

    Thay các cặp số vào bất phương trình ta thấy (0;5) là nghiệm của bất phương trình đã cho.

  • Câu 2: Nhận biết

    Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x-5y-1>0\\ 2x+y+5>0 \\ x+y+1<0 \end{matrix}ight.

     Thay tọa độ (0;– 2) vào hệ ta được: \left\{\begin{matrix}2.0-5(-2)-1>0\\ 2.0-2+5>0 \\ 0-2+1<0 \end{matrix}ight. ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.

  • Câu 3: Nhận biết

    Cho bất phương trình 2x + 3y - 1 \leqslant 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

    Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 4: Thông hiểu

    Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

    Tìm hệ bất phương trình thỏa mãn đề bài

    Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0

    => Các hệ phương trình \left\{\begin{matrix}x-2y+6\leq 0 \\ 2x-3y\geq 0\\ x\geq 0\end{matrix}ight.\left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\geq 0\end{matrix}ight. không thỏa mãn.

    Thay tọa độ điểm M(-3;1) vào biểu thức 2x - 3y ta thấy:

    2.\left( { - 2} ight) - 3.\left( 1 ight) =  - 7 < 0

    Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là: \left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\leq 0\end{matrix}ight.

  • Câu 5: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

    Theo định nghĩa thì x + y \geq 0 là bất phương trình bậc nhất hai ẩn. Các bất phương trình còn lại là bất phương trình bậc hai.

  • Câu 6: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
3x + y \geq 9 \\
x \geq y - 3 \\
2y \geq 8 - x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm P(8;4) thỏa mãn cả 4 phươn trình trong hệ.

  • Câu 7: Nhận biết

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Ta có: 3x - 7y > 19 là bất phương trình bậc nhất hai ẩn.

  • Câu 8: Thông hiểu

    Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0?

    (x; y) = (2; 3) => x = 2;{\text{ }}y = 3 thay vào bất phương trình ta có:

    2 + 2.3 - 1 = 7 > 0 => Đáp án sai

    (x; y) = (1; 2) => x = 1;{\text{ }}y = 2 thay vào bất phương trình ta có:

    1 + 2.2 - 1 = 4 > 0 => Đáp án sai

    (x; y) = (0; 1) => x = 0;{\text{ }}y = 1 thay vào bất phương trình ta có:

    0 + 2.1 - 1 = 1> 0 => Đáp án sai

    (x; y) = (-1; 0) => x = -1;{\text{ }}y = 0 thay vào bất phương trình ta có:

    -1 + 2.0 - 1 = -2 < 0 => Đáp án đúng

    Vậy (x; y) = (-1; 0) là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0

  • Câu 9: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + 3y - 2 \geq 0 \\
2x + y + 1 \leq 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với M(0;1) \Rightarrow \left\{ \begin{matrix}
0 + 3.1 - 2 \geq 0 \\
2.0 + 1 + 1 \leq 0 \\
\end{matrix} ight..Bất phương trình thứ hai sai nên không thỏa mãn.

    Với N(–1;1) \Rightarrow \left\{ \begin{matrix}
- 1 + 3.1 - 2 \geq 0 \\
2.( - 1) + 1 + 1 \leq 0 \\
\end{matrix} ight.. Đúng.

  • Câu 10: Nhận biết

    Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y-2\leq 0\\ 2x-3y+2>0\end{matrix}ight.

     Thay cặp số (–1;1) vào hệ ta được \left\{\begin{matrix}-1+1-2\leq 0\\ 2(-1)-3.1+2>0\end{matrix}ight. không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.

  • Câu 11: Vận dụng

    Phần hình vẽ được tô đậm là miền nghiệm của bất phương trình nào? (tính cả bờ là đường thẳng chia đôi mặt phẳng)

    Đường thẳng d có dạng y = ax + b đi qua hai điểm (1;0)(0,2).

    Thay tọa độ hai điểm này vào d: \left\{ \begin{matrix}
0 = a.1 + b \\
2 = a.0 + b \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
a = - 2 \\
b = 2 \\
\end{matrix} ight.\  ight..

    Vậy d có dạng y = - 2x + 2 \Leftrightarrow 2x + y - 2 =
0.

    Thay điểm O(0;0) vào d : 0 + 0 - 2
< 0. Suy ra phần tô màu (chứa O) là nghiệm của bất phương trình 2x + y - 2 \leq 0. (tính cả bờ d)

  • Câu 12: Vận dụng cao

    Cho đường thẳng (d):y = \left( a^{2} - 2 ight)x + a + b và bất phương trình x + y - 3 <
0. Tìm điều kiện của ab để mọi điểm thuộc (d) đều là nghiệm của bất phương trình đã cho.

    Để mọi điểm thuộc đường thẳng  (d)  đều là nghiệm của bất phương trình thì điều kiện cần là  (d):y = \left( a^{2} - 2 ight)x + a + b  phải song song với \left( {d'} ight):y =  - x + 3. Khi đó ta có:

    \left\{ \begin{matrix}
a^{2} - 2 = - 1 \\
a + b eq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = 1 \\
b eq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = - 1 \\
b eq 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
a = 1 \\
b eq 2 \\
\end{matrix} ight. ta được (d):y = - x + b + 1

    Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng (d) là đồ thị của đường thẳng d' khi d' tịnh tiến xuống dưới theo trục Oy.

    Nghĩa là b + 1 < 3 \Rightarrow b <
2.

  • Câu 13: Vận dụng

    Miền nghiệm của bất phương trình - \sqrt{3}x + 2y - \sqrt{5}(y - 2) \leq
\sqrt{35}(2y + x) chứa điểm nào?

    Ta có: - \sqrt{3}x + 2y - \sqrt{5}(y - 2)
\leq \sqrt{35}(2y + x) \Leftrightarrow - \sqrt{3}x + 2y - \sqrt{5}y +
2\sqrt{5} \leq 2\sqrt{35}y + \sqrt{35}x \Leftrightarrow (\sqrt{35} +
\sqrt{3})x + (2\sqrt{35} - 2 + \sqrt{5})y - 2\sqrt{5} \geq
0

    Điểm (1;0) thỏa mãn bất phương trình nên nó thuộc miền nghiệm của bất phương trình.

  • Câu 14: Nhận biết

    Bất phương trình 3x – 2(y – x + 1) > 0 tương đương với bất phương trình nào sau đây?

    Ta có: 3x – 2(y – x + 1) > 0 \Leftrightarrow 5x-2y-2>0.

  • Câu 15: Thông hiểu

    Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn: \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight..

    Để hệ bất phương trình \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight. trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước x^2,y^2 phải bằng 0 nghĩa là:

    m=0

    Vậy với m=0 thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.

  • Câu 16: Vận dụng

    Cho hệ \left\{
\begin{matrix}
2x + 3y < 5\ \ \ (1) \\
x + \frac{3}{2}y < 5\ \ \ (2) \\
\end{matrix} ight.. Gọi S_{1} là tập nghiệm của bất phương trình (1), S_{2} là tập nghiệm của bất phương trình (2) và S là tập nghiệm của hệ thì

    Trước hết, ta vẽ hai đường thẳng:

    \left( d_{1} ight):2x + 3y =
5

    \left( d_{2} ight):x + \frac{3}{2}y =
5

    Ta thấy (0\ \ ;\ \ 0) là nghiệm của cả hai bất phương trình. Điều đó có nghĩa gốc tọa độ thuộc cả hai miền nghiệm của hai bất phương trình. Say khi gạch bỏ các miền không thích hợp, miền không bị gạch là miền nghiệm của hệ.

    Quan sát hình vẽ, chọn đáp án S_{1}
\subset S_{2}. Do miền nghiệm d_{2} rộng hơn và chứa d_{1}.

  • Câu 17: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 18: Nhận biết

    Điểm M(1; -
4) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Xét hệ \left\{ \begin{matrix}
2x - y > 3 \\
2x + 5y \leq 12x + 8 \\
\end{matrix} ight.. Thay tọa độ M(1; - 4) vào hệ: \left\{ \begin{matrix}
2.1 - ( - 4) > 3 \\
2.1 + 5.( - 4) \leq 12.1 + 8 \\
\end{matrix} ight. . Cả 2 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 19: Thông hiểu

    Cho bất phương trình \sqrt{5}x - 1 < \sqrt{2023}y có tập nghiệm T. Khẳng định nào sau đây là đúng?

    Xét điểm (2;1). Ta có: \sqrt{5}.2 - 1 < \sqrt{2023}.1 thỏa mãn. Do đó (2;1) \in T.

  • Câu 20: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{x}{2} + \frac{y}{3} - 1 \geq 0 \\
x \geq 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{0}{2} + \frac{0}{3} - 1 \geq 0 \\
0 \geq 0 \\
0 + \frac{1}{2} - \frac{3.0}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(2;1) \Rightarrow \left\{
\begin{matrix}
\frac{2}{2} + \frac{1}{3} - 1 \geq 0 \\
2 \geq 0 \\
2 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Bất phương trình bậc hai một ẩn Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo