Miền nghiệm của bất phương trình
chứa điểm nào sau đây?
Xét điểm . Vì
nên miền nghiệm của bất phương trình chứa điểm
.
Miền nghiệm của bất phương trình
chứa điểm nào sau đây?
Xét điểm . Vì
nên miền nghiệm của bất phương trình chứa điểm
.
Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Trên mặt phẳng tọa độ, đường thẳng chia mặt phẳng thành hai nửa mặt phẳng.
Chọn điểm không thuộc đường thẳng đó. Ta thấy
là nghiệm của bất phương trình đã cho. Vậy miền nghiệm của bất phương trình là nửa mặt phẳng bờ
chứa điểm
kể cả
.
Vậy bất phương trình luôn có vô số nghiệm.
Cặp số nào sau đây là nghiệm của bất phương trình
?
Thay các cặp số vào bất phương trình ta thấy là nghiệm của bất phương trình đã cho.
Phần tô đậm trong hình vẽ sau, biểu diễn tập nghiệm của bất phương trình nào trong các bất phương trình sau?

Đường thẳng đi qua hai điểm và
nên có phương trình
.
Mặt khác, cặp số không thỏa mãn bất phương trình
nên phần tô đậm ở hình trên biểu diễn miền nghiệm của bất phương trình
.
Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn:
.
Để hệ bất phương trình trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước
phải bằng
nghĩa là:
Vậy với thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả ba bất phương trình đều đúng. Chọn đáp án này.
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Bất phương trình bậc nhất hai ẩn là:
Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình ![]()
Thay cặp số vào hệ ta được
không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.
Cho đường thẳng
và bất phương trình
. Tìm điều kiện của
và
để mọi điểm thuộc
đều là nghiệm của bất phương trình đã cho.
Để mọi điểm thuộc đường thẳng đều là nghiệm của bất phương trình thì điều kiện cần là
phải song song với
. Khi đó ta có:
Với ta được
Để thỏa mãn yêu cầu bài toán thì điều kiện đủ là đường thẳng là đồ thị của đường thẳng
khi
tịnh tiến xuống dưới theo trục
.
Nghĩa là .
Miền nghiệm của bất phương trình
chứa điểm nào sau đây?
Đầu tiên ta thu gọn bất phương trình đã cho về thành
Xét điểm Vì
nên miền nghiệm của bất phương trình đã cho chứa điểm
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào không thuộc miền nghiệm của hệ bất phương trình?
Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy chỉ có điểm thỏa mãn cả hai phương trình trong hệ
.
Cho hệ bất phương trình
có tập nghiệm
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: . Do đó không có điểm nào thỏa mãn hệ phương trình.
Hệ này vô nghiệm.
Bất phương trình
tương đương với bất phương trình nào sau đây?
Ta có: .
Giải hệ phương trình:
. Nghiệm (x; y) là:
Đặt
Hệ phương trình ban đầu trở thành:
Với S = 5; P = 6 ta có:
Với S = -10; P = 21 ta có:
Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)
Cặp số (1; – 1) là nghiệm của bất phương trình nào sau đây?
Thay cặp số (1; – 1) vào bất phương trình ta được:
thỏa mãn. Suy ra cặp số này là nghiệm của bất phương trình.
Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm
sao cho
được gọi là ……của bất phương trình
”.
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm sao cho
được gọi là miền nghiệm của bất phương trình
.
Cho hệ
. Gọi
là tập nghiệm của bất phương trình (1),
là tập nghiệm của bất phương trình (2) và
là tập nghiệm của hệ thì
Trước hết, ta vẽ hai đường thẳng:
Ta thấy là nghiệm của cả hai bất phương trình. Điều đó có nghĩa gốc tọa độ thuộc cả hai miền nghiệm của hai bất phương trình. Say khi gạch bỏ các miền không thích hợp, miền không bị gạch là miền nghiệm của hệ.
Quan sát hình vẽ, chọn đáp án . Do miền nghiệm
rộng hơn và chứa
.
Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Thay tọa độ vào hệ
ta được
thỏa mãn.
Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình 
Thay tọa độ vào hệ ta được:
ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.
Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.