Đề kiểm tra 15 phút Chương 7 Bất phương trình bậc hai một ẩn

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Bất phương trình bậc hai một ẩn gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
3x + y \geq 9 \\
x \geq y - 3 \\
2y \geq 8 - x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm P(8;4) thỏa mãn cả 4 phươn trình trong hệ.

  • Câu 2: Thông hiểu

    Miền nghiệm của bất phương trình \left( 1 + \sqrt{3} ight)x - \left( 1 - \sqrt{3}
ight)y \geq 2 chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \  - 1). Vì \left( 1 + \sqrt{3} ight).1 - \left( 1 -
\sqrt{3} ight).( - 1) = 2 \geq 2 nên miền nghiệm của bất phương trình chứa điểm A(1\ \ ;\ \  -
1).

  • Câu 3: Thông hiểu

    Miền nghiệm của bất phương trình 2x - \sqrt{2}y + \sqrt{2} - 2 \leq 0 chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 1).2.1 - \sqrt{2}.1 + \sqrt{2} - 2 = 0 \leq
0 nên miền nghiệm của bất phương trình chứa điểm A(1\ \ ;\ \ 1).

  • Câu 4: Vận dụng

    Cho hệ bất phương trình \left\{\begin{matrix}x+5y<1\\ 5x-4y>6\end{matrix}ight.. Hỏi khi cho y = 0, x có thể nhận mấy giá trị nguyên nào?

    Khi y=0 hệ bất phương trình trở thành:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {x + 5.0 < 1} \\   {5x - 4.0 > 6} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {5x > 6} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > \dfrac{6}{5}} \end{array}} ight.\left( {VN} ight) \Rightarrow x \in \left\{ \emptyset  ight\} \hfill \\ \end{matrix}

    Vậy y=0 không có giá trị nguyên nào của x thỏa mãn hệ bất phương trình đã cho.

  • Câu 5: Nhận biết

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 6: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
2x + y - 2 \leq 0 \\
x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Với O(0;0). Ta có: \left\{ \begin{matrix}
2.0 + 0 - 2 \leq 0 \\
0 - 3.0 + 2 > 0 \\
\end{matrix} ight. . Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 7: Nhận biết

    Cho bất phương trình 3x + 2 + 2(y – 2) < 2(x + 1) miền nghiệm của bất phương trình không chứa điểm nào sau đây?

     Thay điểm (4; 2) vào bất phương trình, ta được: 14 < 10 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 8: Thông hiểu

    Giải hệ phương trình: \left\{ {\begin{array}{*{20}{c}}  {x + y + xy = 11} \\   {{x^2} + {y^2} + 3\left( {x + y} ight) = 28} \end{array}} ight.. Nghiệm (x; y) là:

     Đặt \left\{ {\begin{array}{*{20}{c}}  {x + y = S} \\   {xy = P} \end{array}} ight.

    Hệ phương trình ban đầu trở thành: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {S + P = 11} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {P = 11 - S} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \hfill \\   \Rightarrow {S^2} - 2\left( {11 - S} ight) + 3S = 28 \hfill \\   \Rightarrow {S^2} + 5S - 50 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {S = 5 \Rightarrow P = 6} \\   {S =  - 10 \Rightarrow P = 21} \end{array}} ight. \hfill \\ \end{matrix}

    Với S = 5; P = 6 ta có:

    {X^2} - 5X + 6 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X = 2} \\   {X = 3} \end{array}} ight.

    Với S = -10; P = 21 ta có:

    {X^2} + 10X + 2 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X =  - 3} \\   {X =  - 7} \end{array}} ight.

    Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)

  • Câu 9: Nhận biết

    Cho bất phương trình x - 2y - 1 < 0 có tập nghiệm S. Khẳng định nào sau đây là đúng?

    Xét điểm ( - 2; - 1). Ta có: - 2 - 2( - 1) - 1 = - 1 < 0 thỏa mãn. Do đó ( - 2; - 1) \in S.

  • Câu 10: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y \geq 9 \\
2x \geq y - 3 \\
2y \geq x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(8;4). Ta có: \left\{ \begin{matrix}
8 + 4 \geq 9 \\
2.8 \geq 4 - 3 \\
2.4 \geq 8 \\
4 \leq 6 \\
\end{matrix} ight.. Cả 4 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 11: Thông hiểu

    Miền nghiệm của bất phương trình 3x +2(y - 1) > 4(x + 1) - 3y chứa điểm có tọa độ:

    Ta có:

    3x + 2(y + 3) > 4(x + 1) – y + 3

    => −x + 3y – 1 > 0

    −3 + 3.2 – 1 > 0 là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ (3; 2).

  • Câu 12: Vận dụng

    Miền nghiệm của bất phương trình x - 2 + 2(y - 1) > 2x + 4 chứa điểm nào sau đây?

    Đầu tiên ta thu gọn bất phương trình đã cho về thành - x + 2y - 8 > 0.

    Xét điểm B(1\ \ ;\ \ 5).- 1 + 2.5 - 8 = 1 > 0 nên miền nghiệm của bất phương trình đã cho chứa điểm B(1\ \ ;\ \ 5).

  • Câu 13: Vận dụng cao

    Tìm tất cả giá trị của tham số m để hệ bất phương trình \left\{ \begin{matrix}
x \geq 0 \\
x - y \leq 0 \\
y - mx - 2 \leq 0 \\
\end{matrix} ight. có tập nghiệm được biểu diễn trên mặt phẳng tọa độ là một hình tam giác.

    Họ đường thẳng \left( d_{m} ight):y -
mx - 2 = 0 luôn đi qua điểm A(0;2), hay nói cách khác các đường thẳng \left( d_{m} ight) xoay quanh A.

    Mặt khác, ta có 1 - m.0 - 2 \leq
0 đúng với mọi m

    => Miền nghiệm của bất phương trình y
- mx - 2 \leq 0 luôn chứa điểm (0;1).

    Do đó ta có 3 khả năng sau

    Vậy m < 0.

  • Câu 14: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}
y - x > 3 \\
- 1 - x + y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y > x + 3 \\
y < x + 1 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 15: Nhận biết

    Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x-5y-1>0\\ 2x+y+5>0 \\ x+y+1<0 \end{matrix}ight.

     Thay tọa độ (0;– 2) vào hệ ta được: \left\{\begin{matrix}2.0-5(-2)-1>0\\ 2.0-2+5>0 \\ 0-2+1<0 \end{matrix}ight. ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.

  • Câu 16: Nhận biết

    Cặp số (\ 1;\  -
1) là nghiệm của bất phương trình nào?

    Ta có: 1 + 4( - 1) = - 3 <
1.

  • Câu 17: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

    Theo định nghĩa thì x + y \geq 0 là bất phương trình bậc nhất hai ẩn. Các bất phương trình còn lại là bất phương trình bậc hai.

  • Câu 18: Nhận biết

    Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y-2\leq 0\\ 2x-3y+2>0\end{matrix}ight.

     Thay cặp số (–1;1) vào hệ ta được \left\{\begin{matrix}-1+1-2\leq 0\\ 2(-1)-3.1+2>0\end{matrix}ight. không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.

  • Câu 19: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào không thuộc miền nghiệm của hệ bất phương trình?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy chỉ có điểm N( - 1;1) thỏa mãn cả hai phương trình trong hệ \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight..

  • Câu 20: Vận dụng

    Hình vẽ sau biểu diễn miền nghiệm (phần không bị gạch) của bất phương trình bậc nhất hai ẩn nào?

    Xác định bất phương trình qua hình vẽ

    Ta thấy đường thẳng ∆ cắt 2 trục tọa độ tại điểm A(0; 1) và B(2; 0).

    Xét đáp án x + 2y - 2 > 0

    Thay x = 0, y = 1 vào phương trình x + 2y – 2 = 0 ta được 0 + 2. 1 – 2 = 0 = 0 là mệnh đề đúng.

    Thay x = 2, y = 0 vào phương trình x + 2y – 2 = 0 ta được 2 + 2.0 – 2 = 0 = 0 là mệnh đề đúng.

    Thay x = 0, y = 0 vào bất phương trình x + 2y – 2 > 0 ta được 0 + 2.0 – 2 = -2 > 0 là mệnh đề sai, vậy điểm O(0; 0) không thỏa mãn bất phương trình, nên miền nghiệm của bất phương trình x + 2y – 2 > 0 là bờ đường thẳng x + 2y – 2 = 0, không chứa điểm O.

    Vậy x + 2y - 2 > 0 đúng.

    Xét đáp án 3x + y - 2 < 0

    Thay x = 0, y = 1 vào phương trình 3x + y – 2 = 0 ta có 3. 0 + 1 – 2 = -1 = 0 là mệnh đề sai, vậy câu 3x + y - 2 < 0 sai.

    Xét đáp án x - 2y + 1 < 0

    Thay x = 0, y = 1 vào phương trình x - 2y + 1 = 0 ta có 0 - 2. 1 + 1 = -1 = 0 là mệnh đề sai, vậy câu x - 2y + 1 < 0 sai.

    Xét đáp án x + 3y > 0

    Thay x = 0, y = 1 vào phương trình x + 3y = 0 ta có 0 + 3. 1 = 3 = 0 là mệnh đề sai, vậy câu x + 3y > 0 sai.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Bất phương trình bậc hai một ẩn Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo