Đề kiểm tra 15 phút Chương 7 Bất phương trình bậc hai một ẩn

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Bất phương trình bậc hai một ẩn gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{5x}{2} + \frac{4y}{3} - 1 \geq 0 \\
y > 0 \\
2x - \frac{3y}{2} > 5 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(5;2). Ta có: \left\{ \begin{matrix}
\frac{5.5}{2} + \frac{4.2}{3} - 1 \geq 0 \\
2 > 0 \\
2.5 - \frac{3.2}{2} > 5 \\
\end{matrix} ight.. Cả ba bất phương trình đều đúng. Chọn đáp án này.

  • Câu 2: Vận dụng

    Miền nghiệm của bất phương trình - \sqrt{2}x + 2 - 3(y - 2) > \sqrt{35}(y -
x) không chứa điểm nào?

    Ta có: - \sqrt{2}x + 2 - 3(y - 2) >
\sqrt{35}(y - x) \Leftrightarrow - \sqrt{2}x + 2 - 3y + 6 >
\sqrt{35}y - \sqrt{35}x \Leftrightarrow (\sqrt{35} - \sqrt{2})x +
(\sqrt{35} - 3)y + 8 > 0.

    Điểm ( - 3; - 3) không thỏa mãn bất phương trình trên nên không thuộc miền nghiệm của bất phương trình.

  • Câu 3: Thông hiểu

    Miền nghiệm của bất phương trình - 3x - 5y < - 1 không chứa điểm nào sau đây?

    Xét điểm ( - 1; - 1). Ta có: - 3( - 1) - 5( - 1) = 8 < - 1 không thỏa mãn. Do đó ( - 1; - 1) không thuộc miền nghiệm của bất phương trình.

  • Câu 4: Nhận biết

    Điểm M(1; -
4) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Xét hệ \left\{ \begin{matrix}
2x - y > 3 \\
2x + 5y \leq 12x + 8 \\
\end{matrix} ight.. Thay tọa độ M(1; - 4) vào hệ: \left\{ \begin{matrix}
2.1 - ( - 4) > 3 \\
2.1 + 5.( - 4) \leq 12.1 + 8 \\
\end{matrix} ight. . Cả 2 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 5: Nhận biết

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + 2y < 0 \\
x - 3y > - 2 \\
y - x < 4 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Với C(0; - 1). Ta có: \left\{ \begin{matrix}
0 + 2. - 1 < 0 \\
0 - 3.( - 1) > - 2 \\
- 1 - 0 < 4 \\
\end{matrix} ight.. Cả ba bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 6: Nhận biết

    Bất phương trình 3x – 2(y – x + 1) > 0 tương đương với bất phương trình nào sau đây?

    Ta có: 3x – 2(y – x + 1) > 0 \Leftrightarrow 5x-2y-2>0.

  • Câu 7: Thông hiểu

    Phần tô màu trong hình dưới đây biểu diễn miền nghiệm của hệ bất phương trình nào?

    Tìm hệ bất phương trình thỏa mãn đề bài

    Quan sát hình vẽ ta thấy các giá trị của x thuộc miền nghiệm nhỏ hơn 0

    => Các hệ phương trình \left\{\begin{matrix}x-2y+6\leq 0 \\ 2x-3y\geq 0\\ x\geq 0\end{matrix}ight.\left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\geq 0\end{matrix}ight. không thỏa mãn.

    Thay tọa độ điểm M(-3;1) vào biểu thức 2x - 3y ta thấy:

    2.\left( { - 2} ight) - 3.\left( 1 ight) =  - 7 < 0

    Vậy hệ bất phương trình thỏa mãn hình vẽ đã cho là: \left\{\begin{matrix}x-2y+6\geq 0 \\ 2x-3y\leq 0\\ x\leq 0\end{matrix}ight.

  • Câu 8: Thông hiểu

    Giải hệ phương trình: \left\{ {\begin{array}{*{20}{c}}  {x + y + xy = 11} \\   {{x^2} + {y^2} + 3\left( {x + y} ight) = 28} \end{array}} ight.. Nghiệm (x; y) là:

     Đặt \left\{ {\begin{array}{*{20}{c}}  {x + y = S} \\   {xy = P} \end{array}} ight.

    Hệ phương trình ban đầu trở thành: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {S + P = 11} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {P = 11 - S} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \hfill \\   \Rightarrow {S^2} - 2\left( {11 - S} ight) + 3S = 28 \hfill \\   \Rightarrow {S^2} + 5S - 50 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {S = 5 \Rightarrow P = 6} \\   {S =  - 10 \Rightarrow P = 21} \end{array}} ight. \hfill \\ \end{matrix}

    Với S = 5; P = 6 ta có:

    {X^2} - 5X + 6 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X = 2} \\   {X = 3} \end{array}} ight.

    Với S = -10; P = 21 ta có:

    {X^2} + 10X + 2 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X =  - 3} \\   {X =  - 7} \end{array}} ight.

    Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)

  • Câu 9: Nhận biết

    Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?

    Xét đáp án 4x+5y-t+1>0

    4x+5y-t+1>0 là bất phương trình bậc nhất 3 ẩn x, y, t, không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án 2x - y - 1 > 0

    2x - y - 1 > 0 là bất phương trình bậc nhất hai ẩn có dạng ax + by + c > 0, a = 2, b = -1, c = -1.

    Xét đáp án {x^2} + y < 1

    {x^2} + y < 1 là bất phương trình có chứa x^2 nên không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án \frac{{5x}}{{6{y^2}}} - x > 0

    \frac{{5x}}{{6{y^2}}} - x > 0 không là bất phương trình bậc nhất hai ẩn vì không có dạng ax + by + c > 0.

  • Câu 10: Nhận biết

    Nửa mặt phẳng là miền nghiệm của bất phương trình – x + 2 + 2(y – 2) < 2(1 – x) không chứa điểm nào trong các điểm sau:

     Thay điểm (4; 2) vào bất phương trình, ta được: -2< -6 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 11: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 12: Vận dụng

    Cho hệ bất phương trình \left\{\begin{matrix}2x+y\leq 6\\ 3x+4y\leq 6 \\ 5x-2y\geq 0\\x\leq 2 \\ y\geq -1 \end{matrix}ight. có miền nghiệm là miền ngũ giác ABCDE như hình dưới. Giá trị nhỏ nhất của F = 12x -39y là:

    Tìm giá trị nhỏ nhất của biểu thức F = ax + by

    Đầu tiên học sinh xác định tọa độ các đỉnh đa giác.

    Tọa độ đỉnh A là tọa độ giao điểm hai đường thẳng a và c

    => Tọa độ điểm A là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {2x + y = 6} \\   {5x - 2y = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = \dfrac{4}{3}} \\   {y = \dfrac{{10}}{3}} \end{array}} ight. \hfill \\   \Rightarrow A\left( {\dfrac{4}{3};\dfrac{{10}}{3}} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh B là tọa độ giao điểm hai đường thẳng a và e

    => Tọa độ điểm B là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {2x + y = 6} \\   {x = 2} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 2} \end{array}} ight. \hfill \\   \Rightarrow B\left( {2;2} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh D là tọa độ giao điểm hai đường thẳng b và d

    => Tọa độ điểm D là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {3x- 4y = 6} \\   {y =  - 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x = \dfrac{{2}}{3}} \\   {y =  - 1} \end{array}} ight. \hfill \\   \Rightarrow D\left( {\dfrac{{2}}{3}; - 1} ight) \hfill \\ \end{matrix}

    Tọa độ đỉnh E là tọa độ giao điểm hai đường thẳng d và e

    => Tọa độ điểm E là nghiệm của hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {5x - 2y = 0} \\   {y =  - 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{2}{5}} \\   {y =  - 1} \end{array}} ight. \hfill \\   \Rightarrow E\left( { - \dfrac{2}{5}; - 1} ight) \hfill \\ \end{matrix}

    Ta phải tìm các giá trị x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị nhỏ nhất của biểu thức F trên miền tứ giác ABCDE.

    Tính các giá trị của biểu thức F = 12x -39y tại các đỉnh của đa giác.

    Tại A\left( {\frac{4}{3};\frac{{10}}{3}} ight) ta có: F = 12.\frac{4}{3} - 39.\frac{{10}}{3} =  - 114

    Tại B\left( {2;2} ight) ta có: F = 12.2 - 39.2 =  - 54

    Tại C\left( {2;0} ight) ta có: F = 12.2 - 39.0 = 24

    Tại D\left( {\frac{{2}}{3}; - 1} ight) ta có: F = 12.\frac{{2}}{3} - 39.\left( { - 1} ight) = 47

    Tại E\left( { - \frac{2}{5}; - 1} ight) ta có: F = 12.\left( { - \frac{2}{5}} ight) - 39.\left( { - 1} ight) = \frac{{171}}{5}

    F đạt giá trị nhỏ nhất bằng -114 tại A\left( {\frac{4}{3};\frac{{10}}{3}} ight)

  • Câu 13: Nhận biết

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Chọn đáp án 2x + 3y < 5 vì theo định nghĩa bất phương trình bậc nhất hai ẩn.

  • Câu 14: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y \geq 9 \\
2x \geq y - 3 \\
2y \geq x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(8;4). Ta có: \left\{ \begin{matrix}
8 + 4 \geq 9 \\
2.8 \geq 4 - 3 \\
2.4 \geq 8 \\
4 \leq 6 \\
\end{matrix} ight.. Cả 4 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 15: Nhận biết

    Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình \left\{\begin{matrix}2x-5y-1>0\\ 2x+y+5>0 \\ x+y+1<0 \end{matrix}ight.

     Thay tọa độ (0;– 2) vào hệ ta được: \left\{\begin{matrix}2.0-5(-2)-1>0\\ 2.0-2+5>0 \\ 0-2+1<0 \end{matrix}ight. ta thấy cả 3 bất phương trình đều thỏa mãn. Do đó điểm này thuộc miền nghiệm của hệ.

  • Câu 16: Vận dụng cao

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 17: Vận dụng

    Miền nghiệm của bất phương trình: 3x + 2(y + 3) \geq 4(x + 1) - y + 3 là nửa mặt phẳng chứa điểm:

    Ta có 3x + 2(y + 3) \geq 4(x + 1) - y +3\  \Leftrightarrow \  - x + 3y - 1 \geq 0.

    - 2 + 3.1 - 1 > 0 là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ (2;1).

  • Câu 18: Thông hiểu

    Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: x - 4y + 5 >
0

    - 5 - 4.0 + 5 > 0 là mệnh đề sai nên ( - 5;0) không thuộc miền nghiệm của bất phương trình.

  • Câu 19: Nhận biết

    Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y-2\leq 0\\ 2x-3y+2>0\end{matrix}ight.

     Thay cặp số (–1;1) vào hệ ta được \left\{\begin{matrix}-1+1-2\leq 0\\ 2(-1)-3.1+2>0\end{matrix}ight. không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.

  • Câu 20: Nhận biết

    Trong các cặp số sau đây, cặp nào không là nghiệm của bất phương trình 2x + y < 1?

     Thay (0; 1) vào bất phương trình, ta được: 1 < 1 (sai). Do đó cặp số này không là nghiệm của bất phương trình.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Bất phương trình bậc hai một ẩn Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo