Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trên mặt phẳng tọa độ Oxy cho tọa độ hai điểm M(1;0),N(7;4). Tọa độ trung điểm I của MN là:

    Tọa độ trung điểm I của MN là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{M} + x_{N}}{2} \\y_{I} = \dfrac{y_{M} + y_{N}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{1 + 7}{2} = 4 \\y_{I} = \dfrac{0 + 4}{2} = 2 \\\end{matrix} ight.

    Vậy tọa độ trung điểm của MN là: I(4;2).

  • Câu 2: Vận dụng

    Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol \frac{x^{2}}{4} - y^{2} =
1 có có phương trình là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Tọa độ các đỉnh hình chữ nhật cở sở là (2;1), (2; - 1), ( -
2;1), ( - 2; - 1). Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm O(0;0) bán kính R = \sqrt{5}.

    Phương trình đường tròn là x^{2} + y^{2}
= 5.

  • Câu 3: Vận dụng

    Với giá trị nào của m thì hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 8 - (m + 1)t \\
y = 10 + t \\
\end{matrix} ight.d_{2}:mx
+ 2y - 14 = 0 song song?

    Ta có:

    \left\{ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 8 - (m + 1)t \\
y = 10 + t \\
\end{matrix} ight.\  ightarrow A(8;10) \in d_{1},\ \
{\overrightarrow{n}}_{1} = (1;m + 1) \\
d_{2}:mx + 2y - 14 = 0 ightarrow {\overrightarrow{n}}_{2} = (m;2) \\
\end{matrix} ight.

    \overset{d_{1}//d_{2}}{ightarrow}\left\{\begin{matrix}A\in d_{2} \\\left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}{\overrightarrow{n}}_{1} = (1;1) \\{\overrightarrow{n}}_{2} = (0;2) \\\end{matrix} ight.\  ightarrow (KTM) \\meq0 ightarrow \dfrac{1}{m} = \dfrac{m + 1}{2} \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}8m + 6eq0 \\meq0 \\m = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - 2 \\\end{matrix} ight.\ .

  • Câu 4: Thông hiểu

    Biết parabol (P) có phương trình đường chuẩn là \Delta:x + 2 = 0. Phương trình chính tắc của (P) là:

    Gọi phương trình chính tắc của Parabol là: (P):y^{2} = 2px

    Parabol có phương trình đường chuẩn là: \Delta:x + 2 = 0 nên \frac{p}{2} = 2 \Rightarrow p = 4

    Suy ra phương trình chính tắc của parabol là: y^{2} = 8x.

  • Câu 5: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} = 9 là:

    (C):x^{2} + y^{2} =
9\overset{}{ightarrow}I(0;0),\ \ R = \sqrt{9} = 3.

  • Câu 6: Vận dụng

    Tìm m để ba đường thẳng d_{1}:2x + y–1 =
0, d_{2}:x + 2y + 1 = 0d_{3}:mx–y–7 = 0 đồng quy?

    \left\{ \begin{matrix}
d_{1}:2x + y–1 = 0 \\
d_{2}:x + 2y + 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A(1; - 1) \in
d_{3} \Leftrightarrow m + 1 - 7 = 0
\Leftrightarrow m = 6.

  • Câu 7: Thông hiểu

    Trong mặt phẳng Oxy có đường thẳng \Delta đi qua điểm A(1;1) và tạo với đường thẳng d:2x + 3y + 1 = 0 một góc bằng 45^{0}. Biết rằng \Delta có dạng ax - 5y + 4 = 0a'x + y - 6 = 0. Tính tổng hai giá trị aa'?

    Gọi \overrightarrow{n} = (a;b) là vectơ pháp tuyến của đường thẳng \Delta.

    Phương trình tổng quát của đường thẳng \Delta là: ax
+ by - a - b = 0

    Ta có:

    \cos(d;\Delta) = \frac{|2a +
3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow cos45^{0} = \frac{|2a +
3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow \frac{\sqrt{2}}{2} =
\frac{|2a + 3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow
\sqrt{2}.\sqrt{13}.\sqrt{a^{2} + b^{2}} = 2|2a + 3b|

    \Leftrightarrow 10a^{2} - 48ab - 10b^{2}
= 0

    \Leftrightarrow \left\lbrack\begin{matrix}a = 5b \\a = - \dfrac{1}{5}b \\\end{matrix} ight.

    Vậy ta có phương trình của \Delta là: x
- 5y + 4 = 05x + y - 6 =
0

    Vậy a = 1;a' = 5 \Rightarrow a +
a' = 1 + 5 = 6

  • Câu 8: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(2; - 1)B(2;5).

    \left\{ \begin{matrix}A(2; - 1) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 10: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?

    Phương trình Parabol có dạng y^{2} =
2px

    Vậy phương trình cần tìm là y^{2} =
2x.

  • Câu 11: Thông hiểu

    Phương trình đường tròn có tâm thuộc đường thẳng \Delta:x - 2y = 0, tiếp xúc với đường thẳng \Delta':2x - y + 2 = 0 đồng thời đường tròn đi qua điểm M(1;3) là:

    Gọi tâm của đường tròn cần tìm là I(2t;t)
\in \Delta:x - 2y = 0

    Theo giả thiết, ta có:

    MI = d\left( I;\Delta^{'} ight)
\Leftrightarrow \sqrt{(2t - 1)^{2} + (t - 3)^{2}} = \frac{|2.2t - t +
2|}{\sqrt{5}}

    \Leftrightarrow \sqrt{5t^{2} - 10t + 10}= \dfrac{|3t + 2|}{\sqrt{5}}

    \Leftrightarrow 8t^{2} - 31t + 23 = 0\Leftrightarrow \left\lbrack \begin{matrix}t = 1 \\t = \dfrac{23}{8} \\\end{matrix} ight.

    Với t = 1 thì đường tròn cần tìm có tâm I(2;1), bán kính R = IM = \sqrt{5}, và có phương trình là: (x - 2)^{2} + (y - 1)^{2} = 5

    Với t = \frac{23}{8} thì đường tròn cần tìm có tâm I\left(
\frac{23}{4};\frac{23}{8} ight), bán kính R = IM = \frac{17\sqrt{5}}{8}, và có phương trình là: \left( x - \frac{23}{4}
ight)^{2} + \left( y - \frac{23}{8} ight)^{2} =
\frac{1445}{64}

    Vậy có hai đường tròn thỏa mãn yêu cầu bài toán là:

    (x - 2)^{2} + (y - 1)^{2} = 5\ và\ \left(
x - \frac{23}{4} ight)^{2} + \left( y - \frac{23}{8} ight)^{2} =
\frac{1445}{64}.

  • Câu 12: Thông hiểu

    Cho Elip (E) đi qua điểm A( - 3;0) và có tâm sai e = \frac{5}{6}. Tiêu cự của (E)

    Gọi phương trình chính tắc của (E)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 với a > b > 0.

    (E) đi qua điểm A( - 3;0) nên \frac{9}{a^{2}} = 1 \Rightarrow a^{2} = 9
\Rightarrow a = 3.

    Lại có e = \frac{c}{a} = \frac{5}{6}
\Rightarrow c = \frac{5a}{6} = \frac{5}{2} \Rightarrow 2c =
5.

  • Câu 13: Nhận biết

    Tìm tọa độ giao điểm của đường thẳng d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight. và trục tung.

    Oy \cap d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\ \overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{3} \\
x = \frac{2}{3},\ \ y = 0 \\
\end{matrix} ight.\ .Chọn \left(
\frac{2}{3};0 ight).

  • Câu 14: Nhận biết

    Trong mặt phẳng tọa độ Oxy, viết phương trình chính tắc của elip biết một đỉnh là A_{1}( - 5;0) và một tiêu điểm là F_{2}(2;0).

    Ta có a = 5;\ c = 2 \Rightarrow b^{2} =
25 - 4 = 21

    Vậy \frac{x^{2}}{25} + \frac{y^{2}}{21} =
1.

  • Câu 15: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 16: Thông hiểu

    Tìm bán kính R của đường tròn đi qua ba điểm A(0;4), B(3;4), C(3;0).

    \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 3;0) \\
\overrightarrow{BC} = (0; - 4) \\
\end{matrix} ight.\  ightarrow BA\bot BC ightarrow R =
\frac{AC}{2} = \frac{\sqrt{(3 - 0)^{2} + (0 - 4)^{2}}}{2} =
\frac{5}{2}.

  • Câu 18: Vận dụng

    Trong mặt phẳng tọa độ có đường thẳng \Delta có phương trình x - my = - 1 và đường tròn (C):x^{2} + y^{2} - 2mx + 2y = 0. Tìm tất cả các giá trị của tham số m để đường thẳng \Delta tiếp xúc với đường tròn (C)?

    Phương trình đường tròn (C) là: (C):(x -
m)^{2} + (y + 1)^{2} = m^{2} + 1

    Suy ra tâm đường tròn: I(m; - 1) và bán kính R = \sqrt{m^{2} +
1}

    Đường thẳng \Delta tiếp xúc với đường tròn (C) khi và chỉ khi

    d(I;\Delta) = R \Leftrightarrow
\frac{\left| m - m.( - 1) + 1 ight|}{\sqrt{1 + m^{2}}} = \sqrt{m^{2} +
1}

    \Leftrightarrow |2m - 1| = m^{2} + 1
\Leftrightarrow \left\lbrack \begin{matrix}
m^{2} + 1 = 2m + 1 \\
m^{2} + 1 = - 2m - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} = 2m \\
m^{2} + 2m + 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 2 \\
\end{matrix} ight.

  • Câu 19: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x + 1)^{2} + y^{2} = 8 là:

    (C):(x + 1)^{2} + y^{2} =
8\overset{}{ightarrow}I( - 1;0),\ R = \sqrt{8} =
2\sqrt{2}.

  • Câu 20: Nhận biết

    Điểm nào sau đây không thuộc đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight. ?

    Gọi d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight.\ .M( - 1;3)\overset{x = - 1,\ y = 3 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
- 1 = - 1 + 2t \\
3 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 ightarrow M \in
d.

    N(1; - 2)\overset{x = 1,\ y = - 2
ightarrow d}{ightarrow}\left\{ \begin{matrix}
1 = - 1 + 2t \\
- 2 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow N \in
d.

    P(3;1)\overset{x = 3,\ y = 1 ightarrow d}{ightarrow}\left\{ \begin{matrix}3 = - 1 + 2t \\1 = 3 - 5t \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t = 2 \\t = \dfrac{2}{5} \\\end{matrix} ight.\  ightarrow P\in d.

    Chọn P(3;1).

    Q( - 3;8)\overset{x = - 3,\ y = 8
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 3 = - 1 + 2t \\
8 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 ightarrow Q \in
d.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo