Chọn mệnh đề sai? Đường thẳng
được xác định khi biết
Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”
Chọn mệnh đề sai? Đường thẳng
được xác định khi biết
Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm
và
?
Kiểm tra đường thẳng nào không chứa loại.
Có thể kiểm tra đường thẳng nào không đi qua điểm
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
và đường thẳng
. Khi đó, phương trình đường tròn
có tâm
và đi qua hai điểm
là:
Hình vẽ minh họa
Ta có: Gọi I là tâm của đường tròn (C). Vì nên
Hai điểm A, B cùng thuộc đường tròn (C) nên
Suy ra
Vậy phương trình đường tròn cần tìm là:
Tìm
để hai đường thẳng
và
trùng nhau?
Elip
có độ dài trục bé bằng:
Ta có: .
Độ dài trục bé .
Đường thẳng nào sau đây vuông góc với đường thẳng
?
Kí hiệu
(i) Xét đáp án nên chọn đáp án này.
(ii) Tương tự kiểm tra và loại các đáp án còn lại.
Đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Ta có:
Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm
và đi qua điểm
?
Gọi phương trình chính tắc của elip là:
Ta có:
Khi đó ta có:
Do elip đi qua điểm
Từ (*) và (**) ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: .
Cho đường tròn
và đường thẳng
. Tìm phương trình tiếp tuyến của
song song với đường thẳng
?
Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng song song với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của song song với
là:
hoặc
.
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Ta có:
.
Trong mặt phẳng với hệ tọa độ
, cho hai điểm
và đường thẳng
. Tìm tọa độ giao điểm của đường thẳng
và
.
Đường thẳng
tạo với đường thẳng
một góc
. Tìm hệ số góc
của đường thẳng
.
gọi
Ta có:
Phương trình chính tắc của Elip có độ dài trục lớn bằng
, độ dài trục nhỏ bằng
là:
+ Phương trình Elip dạng:
+ Do có độ dài trục lớn bằng .
+ Do có độ dài trục nhỏ bằng .
+ Suy ra phương trình là .
Trong mặt phẳng tọa độ
, viết phương trình chính tắc của elip biết một đỉnh là
và một tiêu điểm là
.
Ta có
Vậy .
Đường tròn
có tâm
thuộc đường thẳng
và tiếp xúc với hai đường thẳng
có phương trình là:
Ta có:
Vậy phương trình các đường tròn:
hoặc
Cho Hyperbol
. Tìm điểm
trên
sao cho khoảng cách từ
đến đường thẳng
đạt giá trị nhỏ nhất.
Gọi . Phương trình tiếp tuyến của
tại
là
.
khi
thay vào
ta có:
.
Với ta có :
Với ta có :
Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:
.
Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: .
Xác định vị trí tương đối của hai đường thẳng
và
?
Ta có: suy ra hai đường thẳng (d) và (d’) song song với nhau.
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có: