Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
Viết phương trình tham số của đường trung tuyến
của tam giác
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
Viết phương trình tham số của đường trung tuyến
của tam giác
Hypebol
có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Cho bốn điểm
,
,
và
. Xác định vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Tìm phương trình chính tắc của Hyperbol
mà hình chữ nhật cơ sở có một đỉnh là ![]()
Gọi . Tọa độ đỉnh của hình chữ nhật cơ sở là
,
,
,
.
Hình chữ nhật cơ sở của có một đỉnh là
, suy ra
. Phương trình chính tắc của
là
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Phương trình đường phân giác trong của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Tọa độ tâm
và bán kính
của đường tròn
là:
Đường thẳng
đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Vậy
Đường tròn
đi qua hai điểm
và có tâm
thuộc đường thẳng
Phương trình của đường tròn
là:
Ta có:
Vậy đường tròn cần tìm là:
Phương trình nào dưới đây đi qua hai điểm
là:
Phương trình đường thẳng đi qua hai điểm là:
hay
.
Viết phương trình tiếp tuyến của đường tròn
tại điểm
.
Tâm .
Phương trình tiếp tuyến tại là:
.
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến song song với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Tính khoảng cách từ điểm
đến đường thẳng ![]()
Khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Đường chuẩn của Parabol
là:
Từ phương trình Parabol ta có
Do đó phương trình đường chuẩn của Parabol là
Trong mặt phẳng tọa độ
, cho hình chữ nhật
có điểm
. Gọi
đối xứng với điểm
qua
, điểm
là hình chiếu vuông góc của
lên đường thẳng
. Biết rằng tọa độ điểm
thuộc đường thẳng
. Khi đó:
Ta có: ADB’C là hình bình hành
Mà
Tam giác vuông cân tại I
là hình thang cân =>
đi qua điểm
và có vecto pháp tuyến
Phương trình CI:
Trong mặt phẳng tọa độ
, viết phương trình chính tắc của elip biết một đỉnh là
và một tiêu điểm là
.
Ta có
Vậy .
Trong mặt phẳng
có đường thẳng
đi qua điểm
và tạo với đường thẳng
một góc bằng
. Biết rằng
có dạng
và
. Tính tổng hai giá trị
và
?
Gọi là vectơ pháp tuyến của đường thẳng
.
Phương trình tổng quát của đường thẳng là:
Ta có:
Vậy ta có phương trình của là:
và
Vậy
Phương trình tiếp tuyến
của đường tròn
tại điểm
là:
Đường tròn (C) có tâm nên tiếp tuyến tại M có VTPT là
nên có phương trình là:
Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là
và
. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức
, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

Theo đề ta có: Diện tích là:
Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: . Diện tích hình tròn
phần trồng cây lâu năm là:
Suy ra diện tích phần trồng hoa màu là: .