Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với đường phân giác của góc phần tư thứ nhất.
Góc phần tư (I) :
Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với đường phân giác của góc phần tư thứ nhất.
Góc phần tư (I) :
Tọa độ tâm
và bán kính
của đường tròn
là:
Biết điểm
. Giả sử
thì khoảng cách từ điểm
đến các tiêu điểm của
bằng bao nhiêu?
Ta có: và
Có hai điểm M thỏa mãn là:
Tiêu điểm của là:
Vậy đáp án cần tìm là: và
.
Đường elip
có tiêu cự bằng
Ta có: ,
nên
.
Tiêu cự của elip là .
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng song song.
Elip
có độ dài trục lớn bằng:
Ta có: .
Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:
.
Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: .
Xét vị trí tương đối của hai đường thẳng
và
.
Cho hai đường thẳng
và
. Tìm các giá trị của tham số
để
và
hợp với nhau một góc bằng ![]()
Ta có:
Điểm nào dưới đây thuộc đường thẳng
?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Đường tròn
có tâm
thuộc đường thẳng
và tiếp xúc với hai đường thẳng
có phương trình là:
Ta có:
Vậy phương trình các đường tròn:
hoặc
Trong mặt phẳng với hệ tọa độ
, cho elip
. Biết điểm
sao cho
Hãy tính bán kính đường tròn nội tiếp tam giác ![]()
Gọi vì
(1)
Do (2)
Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc
Ta có: nửa chu vi
Khoảng các từ M đến trục Ox:
Bán kính đuờng tròn nội tiếp: .
Cho tam giác
có phương trình các cạnh
lần lượt là
và trực tâm
. Phương trình tổng quát của cạnh
là:
Ta có: nên tọa độ điểm A là nghiệm hệ phương trình:
Ta có
Điểm
Ta có: nên tọa độ điểm B là nghiệm hệ phương trình:
Đường thẳng BC đi qua điểm B nhận làm vecto pháp tuyến có phương trình là:
Cho đường tròn
và đường thẳng
. Tìm phương trình tiếp tuyến của
song song với đường thẳng
?
Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng song song với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của song song với
là:
hoặc
.
Khoảng cách từ điểm
đến đường thẳng
bằng:
Cho elip (E):
. Trong các khẳng định sau, khẳng định nào sai?
Phương trình elip (E) có dạng
Ta có:
Khi đó: đúng
Ta có: đúng
Đỉnh A1(–a; 0) => A1(–5; 0) đúng
Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3
Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.
Tọa độ tâm
và bán kính
của đường tròn
là:
Cho phương trình
. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
Từ phương trình đường tròn ta có:
Điều kiện để phương trình đã cho là phương trình đường tròn là:
Khoảng cách nhỏ nhất từ điểm
đến một điểm bất kì thuộc đường thẳng
bằng:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?
Vectơ chỉ phương của trục Ox là (1; 0).