Đường thẳng nào sau đây song song với đường thẳng
?
Xét đáp án: Chọn đáp án này.
Để ý rằng một đường thẳng song song với sẽ có dạng
Do đó kiểm tra chỉ thấy có đáp án
thỏa mãn, các đáp án còn lại không thỏa mãn.
Đường thẳng nào sau đây song song với đường thẳng
?
Xét đáp án: Chọn đáp án này.
Để ý rằng một đường thẳng song song với sẽ có dạng
Do đó kiểm tra chỉ thấy có đáp án
thỏa mãn, các đáp án còn lại không thỏa mãn.
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn ngoại tiếp tam giác
là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Đường tròn
đi qua điểm
và tiếp xúc với hai trục tọa độ
có phương trình là:
Vì thuộc góc phần tư (I) nên
Khi đó:
Khái niệm nào sau đây định nghĩa về hypebol?
Cho cố định với
. Hypebol
là tập hợp điểm
sao cho
với
là một số không đổi và
.
Đâu là đường thẳng không có điểm chung với đường thẳng
?
Kí hiệu
(i) Xét đáp án: không cùng phương nên loại.
(ii) Xét đáp án: không cùng phương nên loại.
(iii) Xét đáp án: không cùng phương nên loại.
(iv) Xét đáp án:
(Chọn)
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Điều kiện để phương trình là phương trình của một đường tròn là:
Kiểm tra các đáp án ta được kết quả đúng là:
Trên hệ trục tọa độ cho đường tròn
. Trong các điểm sau điểm nào nằm trên đường tròn đã cho?
Thay tọa độ điểm vào phương trình đường tròn
ta được:
Vậy điểm thuộc đường tròn là .
Cho một hypebol
có hai tiêu điểm là:
Ta có:
Vậy hai tiêu điểm cần tìm là: .
Cho hai đường thẳng
và
. Khi đó hai đường thẳng này:
Ta có:
Lập phương trình chính tắc của Elip đi qua điểm
và có tâm sai
.
Phương trình chính tắc của Elip có dạng: .
Elip đi qua điểm nên
.
Tâm sai .
.
Vậy phương trình chính tắc của Elip cần tìm là .
Cho hai đường thẳng
và
. Tính góc hợp bởi hai đường thẳng đã cho?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta có:
Vậy góc hợp bởi hai đường thẳng bằng .
Cho hypebol (H):
. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:
Ta có:
Ta có: a = 6; b =3
=> Độ dài trục ảo là 6, độ dài trục thực là 12
=> Tỉ số giữa độ dài trục ảo và độ dài trục thực là:
Trong mặt phẳng với hệ tọa độ
, cho hai đường thẳng
và
song song nhau. Đường thẳng vừa song song và cách đều với
là:
Tính góc giữa hai đường thẳng
và ![]()
Ta có:
Vectơ pháp tuyến của hai đường thẳng lần lượt là
Suy ra
Suy ra
Viết phương trình tham số của đường thẳng
có phương trình
?
Đường thẳng đi qua điểm
và có vectơ pháp tuyến là
nên có vectơ chỉ phương là:
.
Vậy phương trình tham số của là:
.
Cho đường thẳng
. Điểm nào dưới đây không nằm trên đường thẳng đã cho?
Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: .
Trong mặt phẳng tọa độ
, đường tròn tâm
và tiếp xúc với đường thẳng
có phương trình là:
Đường tròn tâm I tiếp xúc với đường thẳng có bán kính R bằng khoảng cách từ điểm I đến đường thẳng
.
Suy ra
Vậy phương trình đường tròn tâm và tiếp xúc với đường thẳng
có phương trình là:
.
Cho elip (E):
. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài
và
lần lượt là:
Phương trình elip (E) có dạng
Ta có:
Khi đó:
Với ta có:
Tương tự ta có:
Theo bài ra ta có: