Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°.

     Xét hai đường thẳng d_1: 6x – 5y + 4 = 0d_2:\left\{\begin{matrix}x=10-6t\\ y=1+5t\end{matrix}ight..

    Ta có: \overrightarrow {{n_1}}  = (6; - 5);\overrightarrow {{n_2}}  = (5;6)

    \overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 6.5 - 5.6 = 0 nên suy ra hai đường thẳng vuông góc với nhau.

  • Câu 2: Thông hiểu

    Đường tròn (C) có tâm là gốc tọa độ O(0;0) và tiếp xúc với đường thẳng \Delta:8x + 6y + 100 = 0. Bán kính R của đường tròn (C) bằng:

    R = d(O;\Delta) = \frac{|100|}{\sqrt{64 +36}} = 10.

  • Câu 3: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} = 9 là:

    (C):x^{2} + y^{2} =
9\overset{}{ightarrow}I(0;0),\ \ R = \sqrt{9} = 3.

  • Câu 4: Thông hiểu

    Phương trình tổng quát của đường thẳng \Delta đi qua điểm A(5;4) và có vectơ pháp tuyến \overrightarrow{n}(11; - 12) là:

    Đường thẳng \Delta đi qua điểm A(5;4) và nhận \overrightarrow{n}(11; - 12) là vectơ pháp tuyến có phương trình tổng quát là:

    11(x - 5) - 12(y - 4) = 0

    \Leftrightarrow 11x - 12y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng là 11x - 12y - 7 =
0.

  • Câu 5: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?

    Phương trình Elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} - b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1

  • Câu 6: Nhận biết

    Cho parabol (P):y = 2x^{2} + x - 3. Giao điểm của (P) với trục hoành tại hai điểm A\left( x_{1};y_{1} ight),B\left(
x_{2};y_{2} ight). Khẳng định nào sau đây đúng?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    2x^{2} + x - 3 = 0

    Áp dụng định lí Vi – et ta có:

    x_{1} + x_{2} = - \frac{b}{a} = -
\frac{1}{2}

  • Câu 7: Thông hiểu

    Tìm phương trình chính tắc của elip nếu trục lớn gấp đôi trục bé và có tiêu cự bằng 4\sqrt{3}.

    Elip (E) có trục lớn gấp đôi trục bé \Rightarrow A_{1}A_{2} = 2B_{1}B_{2}
\Leftrightarrow 2a = 2.2b \Leftrightarrow a = 2b.

    Elip (E) có tiêu cự bằng 4\sqrt{3}\overset{}{ightarrow}2c = 4\sqrt{3}
\Rightarrow c = 2\sqrt{3}.

    Ta có a^{2} = b^{2} + c^{2}
\Leftrightarrow (2b)^{2} = b^{2} + \left( 2\sqrt{3} ight)^{2}
\Rightarrow b = 2. Khi đó, a = 2b =
4.

    Phương trình chính tắc của Elip là (E):\frac{x^{2}}{16} + \frac{y^{2}}{4} =
1.

  • Câu 8: Vận dụng

    Tìm tất cả các giá trị của tham số m để hai đường thẳng d_{1}:4x + 3my–m^{2} = 0d_{2}:\left\{ \begin{matrix}
x = 2 + t \\
y = 6 + 2t \\
\end{matrix} ight. cắt nhau tại một điểm thuộc trục tung.

    Oy \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = 2 + t = 0 \\
y = 6 + 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 2 \\
\end{matrix} ight.\  ightarrow Oy \cap d_{2} = A(0;2) \in
d_{1}

    \Leftrightarrow
6m - m^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 6 \\
\end{matrix} ight.\ .

  • Câu 9: Thông hiểu

    Xét vị trí tương đối giữa hai đường thẳng d_1:-2x+y+1=0d_2:4x - 2y - 2 = 0.

     Ta có: \frac{{ - 2}}{4} = \frac{1}{{ - 2}} = \frac{1}{{ - 2}} nên hai đường thẳng trùng nhau.

  • Câu 10: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường thẳng d đi qua điểm P(1; - 3) và có vectơ pháp tuyến \overrightarrow{n}(2; - 1) có phương trình tổng quát là:

    Ta có: đường thẳng d nhận \overrightarrow{n}(2; - 1) làm vectơ pháp tuyến, mặt khác d đi qua điểm P(1; - 3) nên d có phương trình tổng quát là:

    2(x - 1) - 1(y + 3) = 0

    \Leftrightarrow 2x - y - 5 =
0

  • Câu 11: Vận dụng

    Một tòa tháp có mặt cắt hình hypebol có phương trình \frac{x^{2}}{36}-\frac{y^{2}}{49}=1. Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:

    Gọi r là bán kính đáy của tháp (r > 0)

    Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.

    Chọn điểm M(r; –25) nằm trên hypebol nên ta có:

    \begin{matrix}  \dfrac{{{r^2}}}{{36}} - \dfrac{{{{\left( { - 25} ight)}^2}}}{{49}} = 1 \hfill \\   \Leftrightarrow \dfrac{{{r^2}}}{{36}} = 1 + \dfrac{{{{\left( { - 25} ight)}^2}}}{{49}} = \dfrac{{674}}{{49}} \hfill \\   \Leftrightarrow {r^2} = \dfrac{{674}}{{49}}.36 = \dfrac{{24264}}{{49}} \hfill \\   \Rightarrow r \approx 22,25\left( m ight) \hfill \\ \end{matrix}

    Vậy Bán kính đáy của tháp khoảng 22,25m.

  • Câu 12: Nhận biết

    Cho đường thẳng \Delta có phương trình 4x + 5y - 8 = 0. Xác định vectơ chỉ phương của \Delta?

    Đường thẳng \Delta:4x + 5y - 8 =
0 có vectơ pháp tuyến là \overrightarrow{n} = (4;5) nên có vectơ chỉ phương là \overrightarrow{u} = (5; -
4).

  • Câu 13: Nhận biết

    Điểm nào dưới đây thuộc đường thẳng 2x - y + 1 = 0?

    Thay tọa độ các điểm vào đường thẳng 2x -
y + 1 = 0 ta thấy điểm thuộc đường thẳng đã cho là D(0;1).

  • Câu 14: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, có tất cả bao nhiêu đường thẳng đi qua điểm M(2\ ;\ 0) đồng thời tạo với trục hoành một góc 45{^\circ}?

    Cho đường thẳng d và một điểm M. Khi đó.

    (i) Có duy nhất một đường thẳng đi qua M song song hoặc trùng hoặc vuông góc với d.

    (ii) Có đúng hai đường thẳng đi qua M và tạo với d một góc 0^{\circ} < \alpha <
90^{\circ}.

    Chọn phương án 2.

  • Câu 15: Thông hiểu

    Elip có một tiêu điểm F( - 2;0) và tích độ dài trục lớn với trục bé bằng 12\sqrt{5}. Phương trình chính tắc của elip là:

    Gọi (E) có dạng \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Theo giả thiết ta có: \left\{
\begin{matrix}
ab = 3\sqrt{5} \\
a^{2} - b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight..

    Vậy (E) cần tìm là \frac{x^{2}}{9} +
\frac{y^{2}}{5} = 1.

  • Câu 16: Thông hiểu

    Đường tròn (C) có tâm I(2;3) và tiếp xúc với trục Ox có phương trình là:

    (C):\left\{ \begin{matrix}
I(2;3) \\
R = d\lbrack I;Oxbrack = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y - 3)^{2} =
9.

  • Câu 17: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình đường tròn?

    Phương trình x^{2} + y^{2} + 2x - 4y + 9
= 0 có dạng x^{2} + y^{2} - 2ax -
2by + c = 0 với a = - 1;b = 2;c =
9

    Ta có: a^{2} + b^{2} - c = 1 + 4 - 9 <
0

    Vậy phương trình x^{2} + y^{2} + 2x - 4y
+ 9 = 0 không là phương trình đường tròn.

    Phương trình x^{2} + y^{2} + 6x + 4y + 13
= 0 có dạng x^{2} + y^{2} - 2ax -
2by + c = 0 với a = 3;b = 2;c = -
13

    Ta có: a^{2} + b^{2} - c = 0

    Vậy phương trình x^{2} + y^{2} + 6x + 4y
+ 13 = 0 không là phương trình đường tròn.

    Ta có:

    2x^{2} + 2y^{2} - 6x - 4y - 1 =
0

    \Leftrightarrow x^{2} + y^{2} - 3x - 2y
- \frac{1}{2} = 0

    \Leftrightarrow \left( x - \frac{3}{2}
ight)^{2} + (y - 1)^{2} = \frac{5}{2}

    Vậy đường tròn có bán kính I\left(
\frac{3}{2};1 ight) và bán kính R
= \frac{\sqrt{10}}{2}

    Phương trình 2x^{2} + y^{2} + 2x - 3y + 9
= 0 không phải là phương trình đường tròn vì hệ số của x^{2};y^{2} khác nhau.

  • Câu 18: Nhận biết

    Tìm tọa độ giao điểm của đường thẳng d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight. và trục tung.

    Oy \cap d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\ \overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{3} \\
x = \frac{2}{3},\ \ y = 0 \\
\end{matrix} ight.\ .Chọn \left(
\frac{2}{3};0 ight).

  • Câu 19: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 20: Vận dụng

    Đường tròn (C) đi qua hai điểm 4x^{2} + y^{2} - 10x - 6y - 2 = 0. và tiếp xúc với đường thẳng \Delta:3x + y - 3 =
0. Viết phương trình đường tròn (C), biết tâm của (C) có tọa độ là những số nguyên.

    AB:x - y + 1 = 0, đoạn AB có trung điểm M(2;3) ightarrowtrung trực của đoạn AB là d:x + y - 5 = 0
ightarrow I(a;5 - a),\ \ a\mathbb{\in Z}.

    Ta có: R = IA = d\lbrack I;\Deltabrack
= \sqrt{(a - 1)^{2} + (a - 3)^{2}} = \frac{|2a +
2|}{\sqrt{10}}

    \Leftrightarrow a = 4 ightarrow
I(4;1),\ R = \sqrt{10}.

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y - 1)^{2} = 10 \Leftrightarrow x^{2} + y^{2} - 8x - 2y + 7 =
0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo