Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (1; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight.\  ightarrow B(2; - 8) \in d_{2},\ \
{\overrightarrow{u}}_{2} = ( - 2;4) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{1}{- 2} = \frac{- 2}{4} \\
B \in d_{1} \leftrightarrow t = 3 \\
\end{matrix} ight.\  ightarrow d_{1} \equiv d_{2}.

  • Câu 2: Vận dụng

    Cho parabol (P) có đường chuẩn là đường thẳng ∆: x + 5 = 0. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:

    Phương trình đường chuẩn ∆: x + 5 = 0

    => \frac{p}{2} = 5

    => p = 10

    Từ đó ta thu được phương trình parabol (P): y^2 = 20x.

    Tiêu điểm F của (P) là F(5; 0).

    Giả sử điểm M(x_M; y_M) là điểm thuộc (P).

    => y^2_M=20x_M

    Với F(5; 0)M(x_M; y_M) ta có:

    \begin{matrix}  \overrightarrow {FM}  = \left( {{x_M} - 5;{y_M}} ight) \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{{\left( {{x_M} - 5} ight)}^2} + {y_M}^2}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{x_M}^2 - 10{x_M} + 25 + 20{x_M}}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{x_M}^2 + 10{x_M} + 25}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{{\left( {{x_M} + 5} ight)}^2}}  = {x_M} + 5 \hfill \\  FM = 6 \Rightarrow {x_M} + 5 = 6 \Rightarrow {x_M} = 1 \hfill \\ \end{matrix}

    Với {x_M} = 1 \Rightarrow {y_M}^2 = 20.1 = 20

    Vậy tọa độ điểm M là: M(1;-2\sqrt{5}),M(1;-2\sqrt{5})

  • Câu 3: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;2), B(0;3)C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

    \left\{ \begin{matrix}
A(1;2) \\
B(0;3),\ \ C(4;0) ightarrow BC:3x + 4y - 12 = 0 \\
\end{matrix} ight.

    ightarrow h_{A} = d(A;BC) = \frac{|3 +
8 - 12|}{\sqrt{9 + 16}} = \frac{1}{5}.

  • Câu 4: Nhận biết

    Đường thẳng nào là đường chuẩn của parabol y^{2}=2x.

     Ta có: 2p=2 \Leftrightarrow p=1.

    Đường chuẩn: x=-\frac p2=-\frac12.

  • Câu 5: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):2x^{2} + 2y^{2} - 8x + 4y - 1 = 0 là:

    Ta có: \begin{matrix}
(C):2x^{2} + 2y^{2} - 8x + 4y - 1 = 0 \Leftrightarrow x^{2} + y^{2} - 4x
+ 2y - \frac{1}{2} = 0 \\
ightarrow \left\{ \begin{matrix}
a = 2,\ b = - 1 \\
c = - \frac{1}{2} \\
\end{matrix} ight.\  ightarrow I(2; - 1),\ R = \sqrt{4 + 1 +
\frac{1}{2}} = \frac{\sqrt{22}}{2}. \\
\end{matrix}

  • Câu 6: Vận dụng

    Viết phương trình tổng quát của đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:x + 3y - 1 = 0, d_{2}:x - 3y - 5 = 0 và vuông góc với đường thẳng d_{3}:2x - y + 7 =
0.

    \left\{ \begin{matrix}
d_{1}:x + 3y - 1 = 0 \\
d_{2}:x - 3y - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - \frac{2}{3} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left( 3; -
\frac{2}{3} ight). Ta có

    \left\{ \begin{matrix}
A \in d \\
d\bot d_{3}:2x - y + 7 = 0 \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
A \in d \\
d:x + 2y + c = 0 \\
\end{matrix} ight. ightarrow
3 + 2.\left( - \frac{2}{3} ight) + c = 0 \Leftrightarrow c = -
\frac{5}{3}.

    Vậy d:x + 2y - \frac{5}{3} = 0
\Leftrightarrow d:3x + 6y - 5 = 0.

  • Câu 7: Nhận biết

    Cho hai đường thẳng ∆_1: 11x – 12y + 1 = 0∆_2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này:

     Ta có:

    \begin{matrix}  \overrightarrow {{n_{{\Delta _1}}}}  = \left( {11; - 12} ight) \hfill \\  \overrightarrow {{n_{{\Delta _2}}}}  = \left( {12;11} ight) \hfill \\  \overrightarrow {{n_{{\Delta _1}}}} .\overrightarrow {{n_{{\Delta _2}}}}  = 0 \Rightarrow \overrightarrow {{n_{{\Delta _1}}}}  \bot \overrightarrow {{n_{{\Delta _2}}}}  \hfill \\   \Rightarrow {\Delta _1} \bot {\Delta _2} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Với giá trị nào của m thì hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 8 - (m + 1)t \\
y = 10 + t \\
\end{matrix} ight.d_{2}:mx
+ 2y - 14 = 0 song song?

    Ta có:

    \left\{ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 8 - (m + 1)t \\
y = 10 + t \\
\end{matrix} ight.\  ightarrow A(8;10) \in d_{1},\ \
{\overrightarrow{n}}_{1} = (1;m + 1) \\
d_{2}:mx + 2y - 14 = 0 ightarrow {\overrightarrow{n}}_{2} = (m;2) \\
\end{matrix} ight.

    \overset{d_{1}//d_{2}}{ightarrow}\left\{\begin{matrix}A\in d_{2} \\\left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}{\overrightarrow{n}}_{1} = (1;1) \\{\overrightarrow{n}}_{2} = (0;2) \\\end{matrix} ight.\  ightarrow (KTM) \\meq0 ightarrow \dfrac{1}{m} = \dfrac{m + 1}{2} \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}8m + 6eq0 \\meq0 \\m = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - 2 \\\end{matrix} ight.\ .

  • Câu 9: Nhận biết

    Elip (E):\frac{x^{2}}{16}+\frac{y^{2}}{4}=1 có độ dài tiêu cự bằng:

     Ta có: a=4;b=2 \Rightarrow c=\sqrt{a^2-b^2}=2\sqrt3.

    Do đó độ dài tiêu cự 2c=4\sqrt3.

  • Câu 10: Nhận biết

    Biết đường tròn (C) có tâm I(3; - 2) tiếp xúc với đường thẳng (d'):x - 5y + 1 = 0. Tính bán kính đường tròn (C)?

    Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng (d):

    Suy ra R = d\left( I,(d') ight) =\frac{\left| 3 - 5.( - 2) + 1 ight|}{\sqrt{1^{2} + ( - 5)^{2}}} =\frac{14}{\sqrt{26}}.

  • Câu 11: Thông hiểu

    Cho hai điểm P(5;4),Q(1;2). Vectơ pháp tuyến của đường thẳng PQ là:

    Một vectơ chỉ phương của PQ là: \overrightarrow{PQ} = ( - 4; - 2) = -
2(2;1)

    Vậy vectơ pháp tuyến của PQ là: \overrightarrow{n}( - 1;2).

  • Câu 12: Thông hiểu

    Cho đường thẳng (d):3x - 4y + 2 = 0 và đường tròn (C):x^{2} + (y + 4)^{2} = 25. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng (d) và đường tròn (C)?

    Ta có: (C):x^{2} + (y + 4)^{2} = 25
\Rightarrow \left\{ \begin{matrix}
I(0; - 4) \\
R = 5 \\
\end{matrix} ight.

    Lại có khoảng cách từ tâm I đến đường thẳng d là:

    d\left( I;(d) ight) = \frac{\left| 3.0
- 4.( - 4) + 2 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{18}{5} <
R

    Vậy đường thẳng (d) cắt đường tròn (C) là khẳng định đúng.

  • Câu 13: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: x – 2y + 2 = 0d_2: – 3x + 6y – 10 = 0.

     Vì \frac{1}{{ - 3}} = \frac{{ - 2}}{6} eq\frac2{-10} nên hai đường thẳng song song.

  • Câu 14: Thông hiểu

    Cho phương trình Elip \frac{x^{2}}{16}+\frac{y^{2}}{4}=1. Tọa độ đỉnh A_1B_1 của Elip đó là:

    Ta có: \frac{x^{2}}{16}+\frac{y^{2}}{4}=1 => a = 4; b = 2

    => Tọa độ các đỉnh của elip là: {A_1}\left( { - 4;0} ight);{B_1}\left( {0; - 2} ight)

  • Câu 15: Thông hiểu

    Cho tọa độ hai điểm M\left( - 2\sqrt{3};\frac{3}{2} ight),N\left(
2;\frac{3\sqrt{3}}{2} ight). Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm M;N?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a;b
> 0)

    Do elip đi qua hai điểm M\left( -
2\sqrt{3};\frac{3}{2} ight),N\left( 2;\frac{3\sqrt{3}}{2}
ight) nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{12}{a^{2}} + \dfrac{9}{b^{2}} = 1 \\\dfrac{4}{a^{2}} + \dfrac{27}{b^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} = 16 \\b^{2} = 9 \\\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{16} + \frac{y^{2}}{9} =
1

  • Câu 16: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A( - 1;1),B(3;1),C(1;3). Phương trình đường tròn đi qua ba điểm đã cho là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A( -
1;1),B(3;1),C(1;3) nên ta có hệ phương trình:

    \left\{ \begin{matrix}
1 + 1 + 2a - 2b + c = 0 \\
9 + 1 - 6a - 2b + c = 0 \\
1 + 9 - 2a - 6b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c = - 2 \\
- 6a - 2b + c = - 10 \\
- 2a - 6b + c = - 10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = - 2 \\
\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):x^{2} + y^{2} - 2x - 2y - 2 = 0.

  • Câu 17: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:(m - 3)x + 2y + m^{2} - 1 = 0d_{2}: - x + my + m^{2} - 2m + 1 =
0 cắt nhau?

    \left\{ \begin{matrix}
d_{1}:(m - 3)x + 2y + m^{2} - 1 = 0 \\
d_{2}: - x + my + m^{2} - 2m + 1 = 0 \\
\end{matrix} ight.

    \overset{d_{1} \cap d_{2} =M}{ightarrow}\left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}: - 3x + 2y - 1 = 0 \\d_{2}: - x + 1 = 0 \\\end{matrix} ight.\  ightarrow TM \\meq0 ightarrow \frac{m - 3}{- 1}eq\frac{2}{m}\Leftrightarrow \left\{ \begin{matrix}meq1 \\meq2 \\\end{matrix} ight.\  \\\end{matrix} ight.\ .

    Chọn \left\{ \begin{matrix}
m eq 1 \\
m eq 2 \\
\end{matrix} ight..

  • Câu 18: Nhận biết

    Trên mặt phẳng tọa độ Oxy cho tọa độ hai điểm M(1;0),N(7;4). Tọa độ trung điểm I của MN là:

    Tọa độ trung điểm I của MN là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{M} + x_{N}}{2} \\y_{I} = \dfrac{y_{M} + y_{N}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{1 + 7}{2} = 4 \\y_{I} = \dfrac{0 + 4}{2} = 2 \\\end{matrix} ight.

    Vậy tọa độ trung điểm của MN là: I(4;2).

  • Câu 19: Vận dụng

    Xác định phương trình đường tròn (C) có tâm nằm trên đường thẳng (d):x - 6y - 10 = 0 và tiếp xúc với hai đường thẳng có phương trình \left( d_{1}
ight):3x + 4y + 5 = 0\left(
d_{2} ight):4x - 3y - 5 = 0?

    Vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi K(6a + 10;a). Mặt khác đường tròn tiếp xúc với hai đường thẳng \left( d_{1}
ight):3x + 4y + 5 = 0\left(
d_{2} ight):4x - 3y - 5 = 0 nên khoảng cách từ tâm I đến hai đường thẳng bằng bán kính.

    \frac{\left| 3(6a + 10) + 4a + 5
ight|}{5} = \frac{\left| 4(6a + 10) - 3a - 5 ight|}{5}

    \Leftrightarrow |22a + 35| = |21a +
35|

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 0 \\
a = \frac{- 70}{43} \\
\end{matrix} ight.

    Với a = 0 thì K(10;0);R = 7 khi đó phương trình đường tròn là: (x - 10)^{2} + y^{2} =
49

    Với a = \frac{- 70}{43} thì K\left( \frac{10}{43};\frac{- 70}{43}
ight);R = \frac{7}{43} khi đó phương trình đường tròn là: \left( x - \frac{10}{3} ight)^{2} + \left(
y + \frac{70}{43} ight)^{2} = \left( \frac{7}{43}
ight)^{2}.

  • Câu 20: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M( - 3;5) và song song với đường phân giác của góc phần tư thứ nhất.

    Góc phần tư (I) : x - y =
0\overset{ightarrow}{}VTCP:\overrightarrow{u}(1;1) =
{\overrightarrow{u}}_{d}\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = - 3 + t \\
y = 5 + t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo