Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Đâu là đường thẳng không có điểm chung với đường thẳng x - 3y + 4 = 0?

    Kí hiệu d:x - 3y + 4 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1; - 3).

    (i) Xét đáp án: d_{1}:\left\{
\begin{matrix}
x = 1 + t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (1;3)
ightarrow {\overrightarrow{n}}_{1},\ \ \overrightarrow{n} không cùng phương nên loại.

    (ii) Xét đáp án: d_{2}:\left\{
\begin{matrix}
x = 1 - t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3;1)
ightarrow {\overrightarrow{n}}_{2},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iii) Xét đáp án: d_{3}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{3} = (1;3)
ightarrow {\overrightarrow{n}}_{3},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iv) Xét đáp án: d_{4}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M(1;2) \in d_{4} \\
{\overrightarrow{n}}_{4} = (1; - 3) \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
{\overrightarrow{n}}_{4} = \overrightarrow{n} \\
M\boxed{\in}d \\
\end{matrix} ight.\  ightarrow d||d_{4}. (Chọn)

  • Câu 2: Nhận biết

    Một đường thẳng có vectơ chỉ phương là \overrightarrow{u_{\Delta}} = (12; - 13). Vectơ nào sau đây là vectơ pháp tuyến của \Delta?

    Ta có:

    Đường thẳng \Delta có vectơ chỉ phương \overrightarrow{u} = (a;b) thì sẽ có một vectơ pháp tuyến là: \overrightarrow{n} = ( - b;a)

    Áp dụng vào bài toán ta được:

    Vectơ pháp tuyến của \Delta là: \overrightarrow{n_{\Delta}} =
(13;12).

  • Câu 3: Vận dụng

    Tập hợp các điểm cách đường thẳng \Delta:3x - 4y + 2 = 0 một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?

    d\left( M(x;y);\Delta ight) = 2
\Leftrightarrow \frac{|3x - 4y + 2|}{5} = 2 \Leftrightarrow \left\lbrack
\begin{matrix}
3x - 4y + 12 = 0 \\
3x - 4y - 8 = 0 \\
\end{matrix} ight.\ .

  • Câu 4: Nhận biết

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 5: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:3mx + 2y - 6 = 0d_{2}:\left( m^{2} + 2 ight)x + 2my - 3 =
0 song song?

    Ta có: \ \left\{ \begin{matrix}
d_{1}:3mx + 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3m;2) \\
d_{2}:\left( m^{2} + 2 ight)x + 2my - 3 = 0 ightarrow
{\overrightarrow{n}}_{2} = \left( m^{2} + 2;2m ight) \\
\end{matrix} ight.

    \begin{matrix}\\ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}:y - 3 = 0 \\d_{2}:2x + 2y - 3 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ (không\ TM) \\meq0\overset{d_{1}||d_{2}}{ightarrow}\frac{m^{2} + 2}{3m} =\frac{2m}{2}eq\frac{- 3}{- 6} \Leftrightarrow m = \pm 1 \\\end{matrix} ight.\ .\ \  \\\end{matrix}

    Chọn m = 1;\ \ m = - 1.

  • Câu 6: Thông hiểu

    Tìm bán kính R của đường tròn đi qua ba điểm A(0;4), B(3;4), C(3;0).

    \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 3;0) \\
\overrightarrow{BC} = (0; - 4) \\
\end{matrix} ight.\  ightarrow BA\bot BC ightarrow R =
\frac{AC}{2} = \frac{\sqrt{(3 - 0)^{2} + (0 - 4)^{2}}}{2} =
\frac{5}{2}.

  • Câu 7: Thông hiểu

    Tìm phương trình chính tắc của Elip có độ dài trục lớn bằng 4\sqrt{10} và đi qua điểm A(0;\ 6):

    Ta có phương trình chính tắc Elip (E) có dạng \frac{x^{2)}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a
> b > 0).

    Theo giả thiết ta có 2a =
4\sqrt{10} \Rightarrow a =
2\sqrt{10}.

    Mặt khác (E) đi qua A(0;\ 6) nên ta có \frac{6^{2}}{b^{2}} = 1 \Rightarrow b = 6.

    Vậy phương trình chính tắc của (E) là: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{40}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{36}}\mathbf{=}\mathbf{1}.

  • Câu 8: Thông hiểu

    Cho elip (E): \frac{x^{2}}{25}+\frac{y^{2}}{9}=1. Trong các khẳng định sau, khẳng định nào sai?

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 5;b = 3} ight)

    Ta có: b = \sqrt {{a^2} - {c^2}}  = 4

    Khi đó: {F_1}\left( { - 4;0} ight);{F_2}\left( {4;0} ight) đúng

    Ta có: \frac{c}{a}=\frac{4}{5} đúng

    Đỉnh A1(–a; 0) => A1(–5; 0) đúng

    Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3 

    Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.

  • Câu 9: Thông hiểu

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 3y + 8 = 0, đi qua điểm A( - 2;1) và tiếp xúc với đường thẳng \Delta:\ 3x - 4y + 10 = 0. Phương trình của đường tròn (C) là:

    Dễ thấy A \in \Delta nên tâm I của đường tròn nằm trên đường thẳng qua A vuông góc với \Delta

    \Delta^{'}:4x + 3y + 5 = 0
ightarrow I = \Delta^{'} \cap d:\left\{ \begin{matrix}
4x + 3y + 5 = 0 \\
x + 3y + 8 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 3 \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
I(1; - 3) \\
R = IA = 5 \\
\end{matrix} ight.\ .

    Vậy phương trình đường tròn là: (x -
1)^{2} + (y + 3)^{2} = 25.

  • Câu 10: Thông hiểu

    Cho hai điểm C(2;3),D(1;4). Đường thẳng nào sau đây cách đều hai điểm C,D?

    Gọi đường thẳng cần tìm là đường thẳng d.

    Khi đó đường thẳng d cách đều hai điểm C và D khi:

    TH1: Đường thẳng đó song song hoặc trùng với đường thẳng CD,

    Ta có: \overrightarrow{CD} = ( -
1;1) nên một vectơ pháp tuyến của CD là \overrightarrow{n} = (1;1)

    Vậy trong các đường thẳng đã cho chỉ có đường thẳng x + y - 1 = 0.

    TH2: d là đường trung trực của CD.

    Khi đó d đi qua trung điểm I\left(
\frac{3}{2};\frac{7}{2} ight) của CD và nhận \overrightarrow{CD} = ( - 1;1) làm VTPT.

    Suy ra phương trình đường thẳng d là:

    - 1\left( x - \frac{3}{2} ight) +
1\left( y - \frac{7}{2} ight) = 0

    \Leftrightarrow - x + y - 2 =
0

    Vậy đáp án là x + y - 1 = 0

  • Câu 11: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:(m - 3)x + 2y + m^{2} - 1 = 0d_{2}: - x + my + m^{2} - 2m + 1 =
0 cắt nhau?

    \left\{ \begin{matrix}
d_{1}:(m - 3)x + 2y + m^{2} - 1 = 0 \\
d_{2}: - x + my + m^{2} - 2m + 1 = 0 \\
\end{matrix} ight.

    \overset{d_{1} \cap d_{2} =M}{ightarrow}\left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}: - 3x + 2y - 1 = 0 \\d_{2}: - x + 1 = 0 \\\end{matrix} ight.\  ightarrow TM \\meq0 ightarrow \frac{m - 3}{- 1}eq\frac{2}{m}\Leftrightarrow \left\{ \begin{matrix}meq1 \\meq2 \\\end{matrix} ight.\  \\\end{matrix} ight.\ .

    Chọn \left\{ \begin{matrix}
m eq 1 \\
m eq 2 \\
\end{matrix} ight..

  • Câu 12: Thông hiểu

    Cho hai điểm P(5;4),Q(1;2). Vectơ pháp tuyến của đường thẳng PQ là:

    Một vectơ chỉ phương của PQ là: \overrightarrow{PQ} = ( - 4; - 2) = -
2(2;1)

    Vậy vectơ pháp tuyến của PQ là: \overrightarrow{n}( - 1;2).

  • Câu 13: Nhận biết

    Đường thẳng nào dưới đây là đường chuẩn của Hypebol \frac{x^{2}}{16} - \frac{y^{2}}{12}
= 1?

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 12 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2\sqrt{3} \\
c = 2 \\
\end{matrix} ight..

    Tâm sai e = \frac{c}{a} = 2. Đường chuẩn : x + 2 = 0x - 2 = 0.

  • Câu 14: Vận dụng

    Cho elip (E):\frac{x^{2}}{100} + \frac{y^{2}}{36} =
1. Qua một tiêu điểm của (E) dựng đường thẳng song song với trục Oy và cắt (E) tại hai điểm MN. Độ dài MN bằng bao nhiêu?

    Xét (E):\frac{x^{2}}{100} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a^{2} = 100 \\
b^{2} = 36 \\
\end{matrix} ight.\  \Leftrightarrow c^{2} = a^{2} - b^{2} = 100 - 36
= 64.

    Khi đó, Elip có tiêu điểm là F_{1}( - \
8;0) \Rightarrow đường thẳng d//Oy và đi qua F_{1}x =
- \ 8.

    Giao điểm của d(E) là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x = - \ 8 \\
\frac{x^{2}}{100} + \frac{y^{2}}{36} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \ 8 \\
y = \pm \ \frac{24}{5} \\
\end{matrix} ight.\ .

    Vậy tọa độ hai điểm M\left( - \
8;\frac{24}{5} ight),\ \ N\left( - \ 8; - \ \frac{24}{5} ight)
\Rightarrow MN = \frac{48}{5}.

  • Câu 15: Nhận biết

    Trong mặt phẳng tọa độ Oxy, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?

    Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.

  • Câu 16: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:

     Ta có: I(4;-1) ,R=\sqrt{11}.

  • Câu 17: Vận dụng

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 3y - 5 = 0, bán kính R = 2\sqrt{2} và tiếp xúc với đường thẳng \Delta:\ x - y - 1 = 0. Phương trình của đường tròn (C) là:

    I \in d ightarrow I(5 - 3a;a)
ightarrow d\lbrack I;\Deltabrack = R = 2\sqrt{2} \Leftrightarrow
\frac{|4 - 4a|}{\sqrt{2}} = 2\sqrt{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 0 \\
a = 2 \\
\end{matrix} ight.\  ightarrow \left\lbrack \begin{matrix}
I(5;0) \\
I( - 1;2) \\
\end{matrix} ight.\ .

    Vậy các phương trình đường tròn là: (x -
5)^{2} + y^{2} = 8 hoặc (x + 1)^{2}
+ (y - 2)^{2} = 8.

  • Câu 18: Nhận biết

    Đường thẳng nào song song với đường thẳng \Delta:2x - y - 1 = 0?

    Đường thẳng song song với đường thẳng \Delta:2x - y - 1 = 0 là: 4x - 2y - 1 = 0.

  • Câu 19: Nhận biết

    Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:

     Ta có: {d_{(M,\Delta )}} = \frac{{\left| {3. - 1 - 4.1 - 3} ight|}}{{\sqrt {{3^2} + {{( - 4)}^2}} }} = 2.

  • Câu 20: Nhận biết

    Đường Hyperbol \frac{x^{2}}{16} - \frac{y^{2}}{9} = 1 có một tiêu điểm là điểm nào dưới đây?

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 9 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow c = 5. Các tiêu điểm của (H)( - 5;0)(5;0).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo