Trong mặt phẳng cho các điểm
. Phương trình đường tròn đi qua ba điểm là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Trong mặt phẳng cho các điểm
. Phương trình đường tròn đi qua ba điểm là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Biết điểm . Giả sử
thì khoảng cách từ điểm
đến các tiêu điểm của
bằng bao nhiêu?
Ta có: và
Có hai điểm M thỏa mãn là:
Tiêu điểm của là:
Vậy đáp án cần tìm là: và
.
Cho đường tròn có tâm
thuộc đường thẳng
có bán kính
và cắt đường thẳng
tại hai điểm
sao cho
. Phương trình đường tròn (C) cần tìm là:
Gọi tâm I thuộc đường thẳng nên suy ra
Do đó:
Với nên phương trình đường tròn là
.
Với nên phương trình đường tròn là
.
Trong mặt phẳng với hệ tọa độ , cho tam giác
có
,
và
. Phương trình đường phân giác trong của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Một tòa tháp có mặt cắt hình hypebol có phương trình . Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:
Gọi r là bán kính đáy của tháp
Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.
Chọn điểm nằm trên hypebol nên ta có:
Vậy Bán kính đáy của tháp khoảng 22,25m.
Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.
Vectơ có giá song song hoặc trùng với đường thẳng thì
được gọi là vectơ chỉ phương của đường thẳng đó.
Với giá trị nào của thì hai đường thẳng
và
trùng nhau?
Trong mặt phẳng hệ trục tọa độ cho các tọa độ các điểm
và
. Xác định tọa độ điểm
sao cho
là trọng tâm tam giác
?
Xét tam giác ABD có G là trọng tâm khi đó ta có:
Vậy tọa độ điểm .
Cho elip có phương trình chính tắc . Tính tâm sai của elip.
Ta có
Tâm sai của elip là .
Viết phương trình tham số của đường thẳng đi qua điểm
và song song với đường phân giác của góc phần tư thứ nhất.
Góc phần tư (I) :
Xét vị trí tương đối của hai đường thẳng và
.
Biết parabol có phương trình đường chuẩn là
. Phương trình chính tắc của
là:
Gọi phương trình chính tắc của Parabol là:
Parabol có phương trình đường chuẩn là: nên
Suy ra phương trình chính tắc của parabol là: .
Phương trình đường tròn có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đã cho tâm và bán kính lần lượt là: .
Phương trình nào dưới đây đi qua hai điểm là:
Phương trình đường thẳng đi qua hai điểm là:
hay
.
Cho hai điểm thuộc đường tròn
. Biết tâm
của đường tròn
nằm trên đường thẳng
. Tính giá trị biểu thức
?
Tâm I của đường tròn (C) nằm trên đường thẳng nên ta có:
Hai điểm thuộc đường tròn (C) nên ta suy ra đường trung trực của đoạn thẳng AB cũng đi qua tâm I.
Gọi M là trung điểm của đoạn thẳng AB => M(0; 3)
Đường trung trực AB đi qua điểm M(0; 3) và nhận là vecto pháp tuyến có phương trình
Vì trung trực AB cũng đi qua tâm I nên ta có:
Từ (*) và (**) suy ra
Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°.
Xét hai đường thẳng và
.
Ta có: .
Mà nên suy ra hai đường thẳng vuông góc với nhau.
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại đáp án vì không có dạng
Xét đáp án
loại.
Xét đáp án
loại.
Xét đáp án
Chọn đáp án này.
Trong mặt phẳng với hệ tọa độ , có tất cả bao nhiêu đường thẳng đi qua điểm
đồng thời tạo với trục hoành một góc
Cho đường thẳng và một điểm
Khi đó.
(i) Có duy nhất một đường thẳng đi qua song song hoặc trùng hoặc vuông góc với
(ii) Có đúng hai đường thẳng đi qua và tạo với
một góc
Chọn phương án .
Trong mặt phẳng , phương trình nào sau đây là phương trình chính tắc của một elip?
Phương trình chính tắc của elip có dạng nên chọn phương án
.
Công thức nào dưới đây là công thức tính khoảng cách từ một điểm đến đường thẳng
?
Công thức tính khoảng cách từ một điểm đến đường thẳng
là: