Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Với
, tâm sai của hypebol là
.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Với
, tâm sai của hypebol là
.
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol
có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là
Đường tròn
có tâm
và đi qua
có phương trình là:
Hay
Đường thẳng nào là đường chuẩn của parabol
.
Ta có: .
Đường chuẩn: .
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Tìm giá trị của tham số
để hai đường thẳng vuông góc với nhau?
Ta có:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Cho ba đường thẳng
,
và
. Phương trình nào dưới đây là phương trình đường thẳng đi qua giao điểm của hai đường thẳng
và song song với
?
Đường thẳng có
Gọi M là giao điểm của hai đường thẳng , tọa độ điểm M là nghiệm của hệ phương trình:
Đường thẳng d đi qua giao điểm M có vecto pháp tuyến
Vậy phương trình tổng quát của đường thẳng cần tìm là: hay
.
Elip có một tiêu điểm
và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Phương trình chính tắc của đường tròn tâm
và bán kính
là:
Phương trình đường tròn có dạng
Vì phương trình đường tròn cần tìm có tâm và bán kính
nên phương trình cần tìm là:
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Cho đường thẳng
. Đường thẳng nào sau đây vuông góc với đường thẳng
?
Đường thẳng vuông góc với đường thẳng
vì
.
Cho phương trình
. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
Từ phương trình đường tròn ta có:
Điều kiện để phương trình đã cho là phương trình đường tròn là:
Xác định góc giữa hai đường thẳng
và
?
Ta có:
Tìm tọa độ giao điểm của hai đường thẳng
và
.
Chọn
.
Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi hai đường thẳng
và
.
Điểm thuộc đường phân giác của các góc tạo bởi
khi và chỉ khi
Biết đường tròn
có tâm
tiếp xúc với đường thẳng
. Tính bán kính đường tròn
?
Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng (d):
Suy ra .
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hệ số góc
của đường thẳng
là:
Ta có:
Đường thẳng có vectơ chỉ phương
nên có hệ số góc
.
Vậy hệ số góc của đường thẳng là .
Hãy xác định phương trình chính tắc của parabol
. Biết rằng
cắt đường thẳng
tại hai điểm
và
?
Phương trình chính tắc của (P) có dạng
Ta có đường thẳng d cắt (P) tại hai điểm
Ta có:
Với
Với
Vậy phương trình chính tắc của parabol cần tìm là: .
Xác định phương trình đường tròn
có tâm nằm trên đường thẳng
và tiếp xúc với hai đường thẳng có phương trình
và
?
Vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi . Mặt khác đường tròn tiếp xúc với hai đường thẳng
và
nên khoảng cách từ tâm I đến hai đường thẳng bằng bán kính.
Với thì
khi đó phương trình đường tròn là:
Với thì
khi đó phương trình đường tròn là:
.