Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho parabol (P) có phương trình chính tắc là y^{2}=2px, với p > 0. Khi đó khẳng định nào sau đây sai?

    Đáp án sai: Trục đối xứng của parabol là trục Oy. Đáp án đúng là trục Ox mới là trục đối xứng.

  • Câu 2: Vận dụng

    Cho Hyperbol (H):\frac{x^{2}}{4} - y^{2} = 1. Hãy tìm tọa độ điểm M trên (H) thỏa mãn M thuộc nhánh phải và MF_{1} nhỏ nhất (ngắn nhất).

    Ta có: \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
c = \sqrt{5} \\
\end{matrix} ight.\ .

    Gọi M\left( x_{0};y_{0} ight) \in
(H).

    Ta có: \frac{x^{2}}{4} - y^{2} = 1
\Leftrightarrow x^{2} = 4\left( y^{2} + 1 ight). M thuộc nhánh phải của (H) nên x_{0}
\geq 2.

    MF_{1} = 2 + \frac{2}{\sqrt{5}}x_{0} \geq
2 + \frac{4}{\sqrt{5}}. MF_{1} nhỏ nhất bằng \frac{4}{\sqrt{5}} khi M \equiv A(2;0).

  • Câu 3: Thông hiểu

    Tính góc giữa hai đường thẳng \left( d_{1} ight):2x - y - 10 = 0\left( d_{2} ight):x - 3y + 9 =
0

    Ta có:

    Vectơ pháp tuyến của hai đường thẳng lần lượt là \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 1) \\
\overrightarrow{n_{2}} = (1; - 3) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 2.1 + ( - 1).( - 3) = 5
\\
\left| \overrightarrow{n_{1}} ight| = \sqrt{2^{2} + ( - 1)^{2}} =
\sqrt{5} \\
\left| \overrightarrow{n_{2}} ight| = \sqrt{1^{2} + ( - 3)^{2}} =
\sqrt{10} \\
\end{matrix} ight.

    Suy ra \cos\left( d_{1};d_{2} ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{\sqrt{2}}{2}

    \Rightarrow \widehat{\left( d_{1};d_{2}
ight)} = 45^{0}

  • Câu 4: Nhận biết

    Cho đường tròn (C) có phương trình (x + 5)^{2} + (y – 2)^{2} = 25. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:

    Viết lại phương trình đường tròn như sau:

    \begin{matrix}  {(x + 5)^2} + {(y - 2)^2} = 25 \hfill \\   \Leftrightarrow {x^2} + 10x + 25 + {y^2} - 4y + 4 = 25 \hfill \\   \Leftrightarrow {x^2} + {y^2} + 10x - 4y + 4 = 0 \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A(6;5),B(0; - 3),C(3; - 4). Phương trình đường tròn ngoại tiếp tam giác ABC là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A(6;5),B(0;
- 3),C(3; - 4) nên ta có hệ phương trình:

    \left\{ \begin{matrix}
6^{2} + 5^{2} + 2.6.a + 2.5.b + c = 0 \\
0^{2} + ( - 3)^{2} + 2.0a + 2.( - 3).b + c = 0 \\
3^{2} + ( - 4)^{2} + 2.3a + 2.( - 4).b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
12a + 10b + c = - 61 \\
- 6a + c = - 9 \\
6a - 8b + c = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 1 \\
c = - 15 \\
\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):(x - 3)^{2} + (y - 1)^{2} = 25.

  • Câu 6: Vận dụng

    Viết phương trình tổng quát của đường thẳng (d). Biết rằng (d) đi qua điểm N(2;3) cắt đường thẳng (\Delta):3x - y + 1 = 0 tại điểm Bx_{B}
> 0 sao cho BN =
2\sqrt{2}?

    Gọi B(b;3b + 1);(b > 0) là giao điểm của d\Delta:3x - y + 1 = 0.

    Suy ra \overrightarrow{NB} = (b - 2;3b - 2)

    Theo giả thiết ta có:

    BN = 2\sqrt{2} \Leftrightarrow (b -
2)^{2} + (3b - 2)^{2} = 8

    \Leftrightarrow 10b^{2} - 16b = 0\Leftrightarrow \left\lbrack \begin{matrix}b = 0(ktm) \\b = \dfrac{8}{5}(tm) \\\end{matrix} ight.

    Khi đó \overrightarrow{NB} = \left( -
\frac{2}{5};\frac{14}{5} ight) \Rightarrow \overrightarrow{n_{d}} =
(7;1)

    Phương trình tổng quát của đường thẳng d là: 7(x - 2) + 1(y - 3) = 0 \Leftrightarrow 7x + y -
17 = 0

  • Câu 7: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?

     Vectơ chỉ phương của trục Ox là (1; 0).

  • Câu 8: Vận dụng

    Cho phương trình x^{2} + y^{2} - 2(m + 1)x + 4y - 1 =
0(1). Với giá trị nào của m để (1) là phương trình đường tròn có bán kính nhỏ nhất?

    Ta có: x^{2} + y^{2} - 2(m + 1)x + 4y - 1
= 0 ightarrow \left\{ \begin{matrix}
a = m + 1 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.

    ightarrow R^{2} = a^{2} + b^{2} - c =
(m + 1)^{2} + 5 ightarrow R_{\min} = 5 \Leftrightarrow m = -
1.

  • Câu 9: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:3mx + 2y + 6 = 0d_{2}:\left( m^{2} + 2 ight)x + 2my + 6 =
0 cắt nhau?

    Ta có: \left\{ \begin{matrix}
d_{1}:3mx + 2y + 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3m;2) \\
d_{2}:\left( m^{2} + 2 ight)x + 2my + 6 = 0 ightarrow
{\overrightarrow{n}}_{2} = \left( m^{2} + 2;2m ight) \\
\end{matrix} ight.

    ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}:y + 3 = 0 \\d_{2}:x + y + 3 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ (TM) \\meq 0\overset{d_{1} \cap d_{2} = M}{ightarrow}\frac{m^{2} +2}{3m}\frac{2m}{2} \Leftrightarrow m \pm 1 \\\end{matrix} ight.\ .

  • Câu 10: Thông hiểu

    Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?

    Giả sử: A\left( {1; - 2} ight) \in \left( d ight):x - 2y + 5 = 0

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0\left( L ight)

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0 loại đáp án (d) đi qua A(1; –2).

    Ta có (d):x−2y+5=0

    ⇒VTPT \overrightarrow n  = \left( {1; - 2} ight)

    ⇒VTCP \overrightarrow u  = \left( {2;1} ight) loại đáp án (d) có phương trình tham số: \left\{\begin{matrix}x=t\\ y=-2t\end{matrix}ight.

    Ta có (d):x−2y+5=0

    \Rightarrow y = \frac{1}{2}x + \frac{5}{2} hệ số góc k = \frac{1}{2}.

  • Câu 11: Thông hiểu

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

  • Câu 12: Thông hiểu

    Tâm của đường tròn (C):x^{2} + y^{2} - 10x + 1 = 0 cách trục Oy một khoảng bằng:

    (C):x^{2} + y^{2} - 10x + 1 = 0
ightarrow I(5;0) ightarrow d\lbrack I;Oybrack = 5.

  • Câu 13: Nhận biết

    Cho hai đường thẳng (\Delta):a_{1}x + b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 với {a_{1}}^{2} + {b_{1}}^{2} > 0;{a_{2}}^{2}
+ {b_{2}}^{2} > 0. Nếu \left\{
\begin{matrix}
a_{1}x + b_{1}y + c = 0 \\
a_{2}x + b_{2}y + c = 0 \\
\end{matrix} ight. vô nghiệm thì vị trí tương đối của hai đường thẳng là:

    Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình \left\{ \begin{matrix}
a_{1}x + b_{1}y + c = 0 \\
a_{2}x + b_{2}y + c = 0 \\
\end{matrix} ight..

    Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.

  • Câu 14: Vận dụng

    Biết rằng có đúng hai giá trị của tham số k để đường thẳng d:y = kx tạo với đường thẳng \Delta:y = x một góc 60^{0}. Tổng hai giá trị của k bằng:

    \begin{matrix}
\left\{ \begin{matrix}
d:y = kx ightarrow {\overrightarrow{n}}_{d} = (k; - 1) \\
\Delta:y = x ightarrow {\overrightarrow{n}}_{\Delta} = (1; - 1) \\
\end{matrix} ight.\ \overset{}{ightarrow}\frac{1}{2} = cos60^{\circ}
= \frac{|k + 1|}{\sqrt{k^{2} + 1}.\sqrt{2}} \\
\\
\end{matrix}

    \Leftrightarrow k^{2} + 1 = 2k^{2} + 4k
+ 2

    \Leftrightarrow k^{2} + 4k + 1 =
0\overset{sol:\ k = k_{1},\ \ k = k_{2}}{ightarrow}k_{1} + k_{2} = -
4.

  • Câu 15: Thông hiểu

    Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm F_{1}\left(
- \sqrt{3};0 ight) và đi qua điểm D\left( 1;\frac{\sqrt{3}}{2} ight)?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;\left( a > b > 0,c^{2} = a^{2} - b^{2} ight)

    Ta có:

    c^{2} = a^{2} - b^{2} \Rightarrow c =
\sqrt{a^{2} - b^{2}} = \sqrt{3}

    Khi đó ta có: a^{2} - b^{2} = 3\ \
(*)

    Do elip đi qua điểm D\left(
1;\frac{\sqrt{3}}{2} ight)

    \Rightarrow \frac{1}{a^{2}} +
\frac{3}{4b^{2}} = 1 \Rightarrow 4b^{2} + 3a^{2} = 4a^{2}b^{2}\ \
(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}
a^{2} - b^{2} = 3 \\
4b^{2} + 3a^{2} = 4a^{2}b^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 3.\left( 3 + b^{2} ight) = 4.\left( 3 + b^{2} ight).b^{2}
\\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 5b^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{4} + \frac{y^{2}}{1} =
1.

  • Câu 16: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

    Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 17: Nhận biết

    Đường Hyperbol \frac{x^{2}}{16} - \frac{y^{2}}{9} = 1 có một tiêu điểm là điểm nào dưới đây?

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 9 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow c = 5. Các tiêu điểm của (H)( - 5;0)(5;0).

  • Câu 18: Nhận biết

    Xác định tâm và bán kính đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0.

    Ta có: \left\{ \begin{matrix}
- 2a = - 6 \\
- 2b = 2 \\
c = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = - 1 \\
c = 6 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
I(3; - 1) \\
R = \sqrt{a^{2} + b^{2} - c^{2}} = 2 \\
\end{matrix} ight.

    Vậy đường tròn có tâm và bán kính lần lượt là: I(3; - 1),R = 2.

  • Câu 19: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD có đỉnh A(–2\ ;\ 1) và phương trình đường thẳng chứa cạnh CD\left\{ \begin{matrix}
x = 1 + 4t \\
y = 3t \\
\end{matrix} ight.. Viết phương trình tham số của đường thẳng chứa cạnh AB.

    \left\{ \begin{matrix}
A( - 2;1) \in AB,\ \ \ {\overrightarrow{u}}_{CD} = (4;3) \\
AB||CD ightarrow {\overrightarrow{u}}_{AB} = -
{\overrightarrow{u}}_{CD} = ( - 4; - 3) \\
\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}
x = - 2 - 4t \\
y = 1 - 3t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

    Góc phần tư (I) : x - y =
0\overset{ightarrow}{}VTCP:\overrightarrow{u}(1;1) =
{\overrightarrow{u}}_{d}\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = - 3 + t \\
y = 5 + t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 20: Nhận biết

    Xét vị trí tương đối của hai đường thẳng \left( d_{1} ight):2x - 3y + 1 =
0\left( d_{2} ight): - 4x +
6y - 1 = 0?

    Ta có: \frac{2}{- 4} = \frac{- 3}{6} eq
\frac{1}{- 1}

    Vậy hai đường thẳng đã cho song song với nhau.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo