Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M( - 3;5) và song song với đường phân giác của góc phần tư thứ nhất.

    Góc phần tư (I) : x - y =
0\overset{ightarrow}{}VTCP:\overrightarrow{u}(1;1) =
{\overrightarrow{u}}_{d}\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = - 3 + t \\
y = 5 + t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 2: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x - 1)^{2} + (y + 3)^{2} = 16 là:

    (C):(x - 1)^{2} + (y + 3)^{2} =
16\overset{}{ightarrow}I(1; - 3),\ \ R = \sqrt{16} = 4.

  • Câu 3: Thông hiểu

    Biết điểm M \in
(H):\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1. Giả sử x_{M} = 8 thì khoảng cách từ điểm M đến các tiêu điểm của (H) bằng bao nhiêu?

    Ta có: M \in (H)x_{M} = 8

    \Rightarrow \frac{8^{2}}{16} -
\frac{{y_{M}}^{2}}{9} = 1 \Rightarrow y_{M} = \pm 3\sqrt{3}

    Có hai điểm M thỏa mãn là: M_{1}\left(
8;3\sqrt{3} ight),M_{2}\left( 8; - 3\sqrt{3} ight)

    Tiêu điểm của (H) là: F_{1}( - 5;0),F_{2}(0;5)

    \Rightarrow \left\{ \begin{matrix}
M_{1}F_{1} = M_{2}F_{1} = 14 \\
M_{1}F_{2} = M_{2}F_{2} = 6 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: 614.

  • Câu 4: Nhận biết

    Đường elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Ta có: a^{2} = 16, b^{2} = 7 nên c^{2} = a^{2} - b^{2} = 9 \Rightarrow c =
3.

    Tiêu cự của elip là 2c = 6.

  • Câu 5: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: x – 2y + 2 = 0d_2: – 3x + 6y – 10 = 0.

     Vì \frac{1}{{ - 3}} = \frac{{ - 2}}{6} eq\frac2{-10} nên hai đường thẳng song song.

  • Câu 6: Nhận biết

    Elip (E):\frac{x^{2}}{36}+\frac{y^{2}}{9}=1 có độ dài trục lớn bằng:

     Ta có: a^2=36 \Rightarrow a=6 \Rightarrow 2a=12.

  • Câu 7: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:

     \overrightarrow u  = (0;6) \Rightarrow \overrightarrow n  = (6;0) \Rightarrow \overrightarrow n  = (1;0).

    Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: x-2=0.

  • Câu 8: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 3 + 4t \\
y = 2 - 6t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 3 + 4t \\
y = 2 - 6t \\
\end{matrix} ight.\  ightarrow A( - 3;2) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 3) \\
d_{2}:\left\{ \begin{matrix}
x = 1 - 2t' \\
y = 4 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = ( -
2;3) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{2}{- 2} = \frac{- 3}{3} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.

  • Câu 9: Vận dụng

    Cho hai đường thẳng d_{1}:3x + 4y + 12 = 0d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.. Tìm các giá trị của tham số a để d_{1}d_{2} hợp với nhau một góc bằng 45^{0}.

    Ta có:

    \left\{ \begin{matrix}
d_{1}:3x + 4y + 12 = 0 ightarrow {\overrightarrow{n}}_{1} = (3;4) \\
d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (2;a) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight) = 45^{\circ}}{ightarrow}\frac{1}{\sqrt{2}} = cos45^{\circ} =
\cos\varphi = \frac{|6 + 4a|}{\sqrt{25}.\sqrt{a^{2} + 4}}

    \Leftrightarrow 25\left( a^{2} + 4
ight) = 8\left( 4a^{2} + 12a + 9 ight)

    \Leftrightarrow 7a^{2} + 96a - 28 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - 14 \\
a = \frac{2}{7} \\
\end{matrix} ight.\ .

  • Câu 10: Nhận biết

    Điểm nào dưới đây thuộc đường thẳng 2x - y + 1 = 0?

    Thay tọa độ các điểm vào đường thẳng 2x -
y + 1 = 0 ta thấy điểm thuộc đường thẳng đã cho là D(0;1).

  • Câu 11: Vận dụng

    Đường tròn (C) có tâm (1) thuộc đường thẳng \Delta:x = 5 và tiếp xúc với hai đường thẳng d_{1}:3x–y + 3 = 0,d_{2}:x–3y + 9 =
0 có phương trình là:

    Ta có:

    \begin{matrix}
I \in \Delta ightarrow I(5;a) ightarrow R = d\left\lbrack I;d_{1}
ightbrack = d\left\lbrack I;d_{2} ightbrack = \frac{|18 -
a|}{\sqrt{10}} = \frac{|14 - 3a|}{\sqrt{10}} \\
\Leftrightarrow \left\lbrack \begin{matrix}
a = 8 ightarrow I(5;8),\ R = \sqrt{10} \\
a = - 2 ightarrow I(5; - 2),\ R = 2\sqrt{10} \\
\end{matrix} ight.\ . \\
\end{matrix}

    Vậy phương trình các đường tròn:

    (x - 5)^{2} + (y - 8)^{2} = 10 hoặc (x - 5)^{2} + (y + 2)^{2} =
40.

  • Câu 12: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{25} + \frac{y^{2}}{9} =
1. Biết điểm M \in (E) sao cho \widehat{F_{1}MF_{2}} = 90^{0}. Hãy tính bán kính đường tròn nội tiếp tam giác MF_{1}F_{2}.

    Gọi M(x;y)\widehat{F_{1}MF_{2}} = 90^{0} \Rightarrow M{F_{1}}^{2} + M{F_{2}}^{2} =
F_{1}{F_{2}}^{2} \Leftrightarrow x^{2} + y^{2} = c^{2} = 16 (1)

    Do M \in (E) \Rightarrow \frac{x^{2}}{25}
+ \frac{y^{2}}{9} = 1(2)

    Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc x^{2} = \frac{175}{16};y^{2} = \frac{81}{16}
\Leftrightarrow x = \pm \frac{5\sqrt{7}}{4};y = \frac{9}{4}

    Ta có: nửa chu vi p = \frac{MF_{1} +
MF_{2} + F_{1}F_{2}}{2} = \frac{2a + 2c}{2} = a + c = 9

    Khoảng các từ M đến trục Ox:d(M;Ox) =
\left| y_{M} ight| = \frac{9}{4}

    S_{\Delta MF_{1}F_{2}} =
\frac{1}{2}d(M;Ox).F_{1}F_{2} = 9

    Bán kính đuờng tròn nội tiếp: r =
\frac{S}{p} = 1.

  • Câu 13: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 14: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} - 4x - 6y - 12 = 0 và đường thẳng d:3x + 4y - 6 = 0. Tìm phương trình tiếp tuyến của (C) song song với đường thẳng d?

    Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5

    Phương trình đường thẳng \Delta_{1} song song với d có dạng 3x + 4y + c_{1} = 0

    \Delta_{1} tiếp xúc với (C) nên d\left( I;\Delta_{1} ight) = R

    Hay \frac{\left| 3.2 + 4.3 + c_{1}
ight|}{\sqrt{3^{2} + 4^{2}}} = 5 \Leftrightarrow \left| 18 + c_{1}
ight| = 25

    \Leftrightarrow \left\lbrack
\begin{matrix}
18 + c_{1} = 25 \\
18 + c_{1} = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
c_{1} = 7 \\
c_{1} = - 43 \\
\end{matrix} ight.

    Vậy phương trình tiếp tuyến của (C) song song với (d) là: 3x +
4y + 7 = 0 hoặc 3x + 4y - 43 =
0.

  • Câu 15: Thông hiểu

    Khoảng cách từ điểm M(2;0) đến đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 3t \\
y = 2 + 4t \\
\end{matrix} ight. bằng:

    \Delta:\left\{ \begin{matrix}
x = 1 + 3t \\
y = 2 + 4t \\
\end{matrix} ight.\  ightarrow \Delta:4x - 3y + 2 = 0 ightarrow
d(M;\Delta) = \frac{|8 + 0 + 2|}{\sqrt{16 + 9}} = 2.

  • Câu 16: Thông hiểu

    Cho elip (E): \frac{x^{2}}{25}+\frac{y^{2}}{9}=1. Trong các khẳng định sau, khẳng định nào sai?

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 5;b = 3} ight)

    Ta có: b = \sqrt {{a^2} - {c^2}}  = 4

    Khi đó: {F_1}\left( { - 4;0} ight);{F_2}\left( {4;0} ight) đúng

    Ta có: \frac{c}{a}=\frac{4}{5} đúng

    Đỉnh A1(–a; 0) => A1(–5; 0) đúng

    Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3 

    Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.

  • Câu 17: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–5y = 0 là:

    (C):x^{2} + y^{2}–5y = 0 ightarrow
I\left( 0;\frac{5}{2} ight),\ R = \sqrt{0 + \frac{25}{4} - 0} =
\frac{5}{2}.

  • Câu 18: Thông hiểu

    Cho phương trình {x^2} + {y^2} - 2mx - 4(m - 2)y + 6 - m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:

    Từ phương trình đường tròn ta có:

    I\left( {m;2m - 4} ight)

    Điều kiện để phương trình đã cho là phương trình đường tròn là:

    \begin{matrix}  {m^2} + 4{\left( {m - 2} ight)^2} - 6 + m > 0 \hfill \\   \Leftrightarrow {m^2} + 4{m^2} - 16m + 16 - 6 + m > 0 \hfill \\   \Leftrightarrow 5{m^2} - 15m + 10 > 0 \hfill \\   \Leftrightarrow m \in ( - \infty ;1) \cup (2; + \infty ) \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Khoảng cách nhỏ nhất từ điểm M(15;1) đến một điểm bất kì thuộc đường thẳng \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight. bằng:

    \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight.\  ightarrow \Delta:x - 3y - 2 = 0

    \overset{\forall N \in
\Delta}{ightarrow}MN_{\min} = d(M;\Delta) = \frac{|15 - 3 -
2|}{\sqrt{1 + 9}} = \sqrt{10}.

  • Câu 20: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?

     Vectơ chỉ phương của trục Ox là (1; 0).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo