Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng
và hai điểm
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Ta có: .
Để A, B nằm cùng phía đối với thì:
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng
và hai điểm
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Ta có: .
Để A, B nằm cùng phía đối với thì:
Đường tròn có tâm
, bán kính
có phương trình là:
Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:
Gọi .
Vì .
Do đó .
Ta có: .
Viết phương trình tổng quát của đường thẳng
đi qua điểm
và song song với trục
.
Đường Elip
có tiêu cự bằng
Elip có
,
suy ra
.
Vậy tiêu cự .
Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng
?
Ta cần tìm đường thẳng cắt
loại
loại
và
. Chọn
Trong mặt phẳng với hệ tọa độ
, cho hai đường thẳng
và
. Phương trình đường phân giác góc nhọn tạo bởi hai đường thẳng
và
là:
Các đường phân giác của các góc tạo bởi và
là:
Gọi
Gọi là hình chiếu của
lên
Ta có: suy ra
Suy ra là đường phân giác góc tù, suy ra đường phân giác góc nhọn là
.
Trong hệ trục tọa độ
, tọa độ của vectơ
là:
Tọa độ vectơ .
Xét vị trí tương đối của hai đường thẳng
và
.
Tìm m để hai đường thẳng
và
vuông góc với nhau:
và ![]()
Ta có: .
Để hai đường thẳng vuông góc thì: . Phương tình này vô nghiệm nên không tồn tại
Tọa độ tâm
và bán kính
của đường tròn
là:
Cho đường tròn
và điểm
. Gọi
là tiếp tuyến của
, biết
đi qua
và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm
đến
bằng:
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Với giá trị nào của tham số
thì đường thẳng
vuông góc với đường thẳng
?
Ta có tọa độ vectơ pháp tuyến của là:
Tọa độ vectơ pháp tuyến của là:
Để thì
Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.
Cho phương trình đường tròn
. Viết phương trình tiếp tuyến của đường tròn
biết rằng tiếp tuyến vuông góc với đường thẳng
?
Đường tròn (C) có tâm
Vì vuông góc với đường thẳng
nên phương trình
có dạng
Vì là tiếp tuyến của (C) nên ta có:
Với thì phương trình
là
Với thì phương trình
là
Phương trình chính tắc của Elip có đỉnh
và một tiêu điểm là
là
Elip có đỉnh và một tiêu điểm
.
Ta có .
Vậy phương trình .
Lập phương trình chính tắc của Elip đi qua điểm
và có tâm sai
.
Phương trình chính tắc của Elip có dạng: .
Elip đi qua điểm nên
.
Tâm sai .
.
Vậy phương trình chính tắc của Elip cần tìm là .
Cho elip
có phương trình
. Khẳng định nào sai trong các khẳng định sau?
:
.
Elip có
,
,
.
Tiêu cự của elip là
nên khẳng định “
có tiêu cự bằng 3” là khẳng định sai.
Tính góc giữa hai đường thẳng
và ![]()
Ta có:
Vectơ pháp tuyến của hai đường thẳng lần lượt là
Suy ra
Suy ra
Cho
. Một đường thẳng đi qua điểm
và song song với trục hoành cắt
tại hai điểm phân biệt
và
. Độ dài
bằng bao nhiêu?
Phương trình đường thẳng đi qua điểm
và song song trục hoành có phương trình là
Ta có
Vậy độ dài đoạn thẳng
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.