Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường tròn tâm I(2; - 5) và tiếp xúc với đường thẳng \Delta: - 3x + 4y + 11 = 0 có phương trình là:

    Đường tròn tâm I tiếp xúc với đường thẳng \Delta có bán kính R bằng khoảng cách từ điểm I đến đường thẳng \Delta.

    Suy ra R = d(I;\Delta) = \frac{\left| -
3.2 + 4.( - 5) + 11 ight|}{5} = 3

    Vậy phương trình đường tròn tâm I(2; -
5) và tiếp xúc với đường thẳng \Delta: - 3x + 4y + 11 = 0 có phương trình là: (x - 2)^{2} + (y + 5)^{2} =
9.

  • Câu 2: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x + 1)^{2} + y^{2} = 8 là:

    (C):(x + 1)^{2} + y^{2} =
8\overset{}{ightarrow}I( - 1;0),\ R = \sqrt{8} =
2\sqrt{2}.

  • Câu 3: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 4: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

     Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 5: Vận dụng

    Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm (2;1) và có một đường chuẩn là x + \frac{2}{\sqrt{3}} =
0.

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1.

    Ta có : \left\{ \begin{matrix}
\frac{2^{2}}{a^{2}} - \frac{1^{2}}{b^{2}} = 1 \\
\frac{a^{2}}{c} = \frac{2}{\sqrt{3}} \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b^{2} = \frac{a^{2}}{4 - a^{2}} \\
c^{2} = \frac{3}{4}a^{4} \\
\frac{a^{2}}{4 - a^{2}} = \frac{3}{4}a^{4} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 2,\ b^{2} = 1 \\
a^{2} = \frac{10}{3},\ b^{2} = 5 \\
\end{matrix} ight.\ . Suy ra phương trình chính tắc của (H) là \frac{x^{2}}{2} - y^{2} = 1.

  • Câu 6: Thông hiểu

    Phương trình chính tắc của Elip có đỉnh ( - 3;\ 0) và một tiêu điểm là (1;\ 0)

    Elip có đỉnh ( - 3;\ 0) \Rightarrow a =
3 và một tiêu điểm (1;\ 0)
\Rightarrow c = 1.

    Ta có c^{2} = a^{2} - b^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 9 - 1 = 8.

    Vậy phương trình (E):\frac{x^{2}}{9} +
\frac{y^{2}}{8} = 1.

  • Câu 7: Thông hiểu

    Trong hệ trục tọa độ Oxy cho đường thẳng (d):2x - y - 4 = 0. Một đường tròn (C) tiếp xúc với các trục tọa độ và có tâm nằm trên đường thẳng (d). Kết quả nào dưới đây đúng?

    Ta có tâm đường tròn thuộc đường thẳng d nên I(m;2m - 4) \in (d). Theo giả thiết để bài ta có:

    d(I;Ox) = d(I;Oy)

    \Leftrightarrow |2m - 4| = |m|
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = \frac{4}{3} \\
\end{matrix} ight.

    Với m = \frac{4}{3} \Rightarrow I\left(
\frac{4}{3}; - \frac{4}{3} ight)

    \Rightarrow R = d(I;Oy) = |m| =
\frac{4}{3}

    Vậy phương trình đường tròn là: \left( x
- \frac{4}{3} ight)^{2} + \left( x + \frac{4}{3} ight)^{2} =
\frac{16}{9}

    Với m = 4 \Rightarrow I(4;4)

    \Rightarrow R = d(I;Oy) = |m| =
4

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y + 4)^{2} = 16.

  • Câu 8: Thông hiểu

    Nếu đường thẳng (\Delta) đi qua gốc tọa độ và song song với đường thẳng (d):4x - 3y + 5 = 0 thì (\Delta) có phương trình tổng quát là:

    Một vectơ pháp tuyến của (\Delta) là: \overrightarrow{n}(4; - 3)

    Mặt khác (\Delta) đi qua gốc tọa độ hay đi qua điểm O(0;0)

    Vậy phương trình đường thẳng (\Delta) là:

    4(x - 0) - 3(y - 0) = 0

    \Leftrightarrow 4x - 3y = 0

    Vậy đáp án đúng là: 4x - 3y = 0.

  • Câu 9: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Với c^{2} = a^{2} +
b^{2} (c > 0), tâm sai của hypebol là e = \frac{c}{a}.

  • Câu 10: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 11: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1. Khi đó độ dài trục lớn và trục nhỏ của elip lần lượt là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
\end{matrix} ight.

    Độ dài trục lớn AA_{1} = 2a =
6

    Độ dài trục bé BB_{1} = 2b =
4

    Vậy độ dài trục lớn và trục nhỏ của elip lần lượt là: 6;4

  • Câu 12: Thông hiểu

    Cho elip đi qua điểm A(2; - 2) và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Theo bài ra ta có hệ phương trình:

    \left\{ \begin{matrix}
a = 2b \\
\frac{2^{2}}{a^{2}} + \frac{( - 2)^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{4}{a^{2}} + \frac{4}{b^{2}} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{5}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 20 \\
b^{2} = 5 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{20} + \frac{y^{2}}{5} =
1.

  • Câu 13: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d_{1}:3x - 4y - 3 = 0d_{2}:12x + 5y - 12 = 0. Phương trình đường phân giác góc nhọn tạo bởi hai đường thẳng d_{1}d_{2} là:

    Các đường phân giác của các góc tạo bởi d_{1}:3x - 4y - 3 = 0d_{2}:12x + 5y - 12 = 0 là:

    \frac{|3x - 4y - 3|}{5} = \frac{|12x +
5y - 12|}{13} \Leftrightarrow \left\lbrack \begin{matrix}
3x + 11y - 3 = 0 \\
11x - 3y - 11 = 0 \\
\end{matrix} ight.\ .

    Gọi I = d_{1} \cap d_{2} ightarrow
I(1;0);\ \ d:3x + 11y - 3 = 0 ightarrow M( - 10;3) \in d,

    Gọi H là hình chiếu của M lên d_{1}.

    Ta có: IM = \sqrt{130},\ \ MH = \frac{| -
30 - 12 - 3|}{5} = 9, suy ra

    \sin\widehat{MIH} = \frac{MH}{IM} =
\frac{9}{\sqrt{130}} ightarrow \widehat{MIH} > 52^{\circ}
ightarrow 2\widehat{MIH} > 90^{\circ}.

    Suy ra d:3x + 11y - 3 = 0 là đường phân giác góc tù, suy ra đường phân giác góc nhọn là 11x - 3y - 11 = 0.

  • Câu 14: Thông hiểu

    Trong mặt phẳng Oxy có đường thẳng \Delta đi qua điểm A(1;1) và tạo với đường thẳng d:2x + 3y + 1 = 0 một góc bằng 45^{0}. Biết rằng \Delta có dạng ax - 5y + 4 = 0a'x + y - 6 = 0. Tính tổng hai giá trị aa'?

    Gọi \overrightarrow{n} = (a;b) là vectơ pháp tuyến của đường thẳng \Delta.

    Phương trình tổng quát của đường thẳng \Delta là: ax
+ by - a - b = 0

    Ta có:

    \cos(d;\Delta) = \frac{|2a +
3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow cos45^{0} = \frac{|2a +
3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow \frac{\sqrt{2}}{2} =
\frac{|2a + 3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow
\sqrt{2}.\sqrt{13}.\sqrt{a^{2} + b^{2}} = 2|2a + 3b|

    \Leftrightarrow 10a^{2} - 48ab - 10b^{2}
= 0

    \Leftrightarrow \left\lbrack\begin{matrix}a = 5b \\a = - \dfrac{1}{5}b \\\end{matrix} ight.

    Vậy ta có phương trình của \Delta là: x
- 5y + 4 = 05x + y - 6 =
0

    Vậy a = 1;a' = 5 \Rightarrow a +
a' = 1 + 5 = 6

  • Câu 16: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: 3x – 2y – 3 = 0d_2: 6x – 2y – 8 = 0.

     Vì \frac{3}{6} e \frac{{ - 2}}{{ - 2}} nên hai đường thẳng cắt nhau.

  • Câu 17: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

    Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 18: Vận dụng

    Đường tròn (C) đi qua điểm M(2; - 1) và tiếp xúc với hai trục tọa độ Ox,\ Oy có phương trình là:

    M(2; - 1) thuộc góc phần tư (IV) nên A(a; - a),\ \ a >
0.

    Khi đó: R = a^{2} = IM^{2} = (a - 2)^{2}
+ (a - 1)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 1 ightarrow I(1; - 1),R = 1 ightarrow (C):(x - 1)^{2} + (y +
1)^{2} = 1 \\
a = 5 ightarrow I(5; - 5),\ R = 5 ightarrow (C):(x - 5)^{2} + (y +
5)^{2} = 25 \\
\end{matrix} ight.\ .

  • Câu 19: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):mx - (m - 1)y + 4 - m^{2} =
0\left( d_{2} ight):(m + 3)x
+ y - 3m - 1 = 0. Tìm giá trị của tham số m để hai đường thẳng hợp với nhau một góc bằng một góc vuông?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):mx - (m - 1)y + 4 - m^{2} = 0 là: \overrightarrow{n_{1}} = (m, - m + 1)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):(m + 3)x + y - 3m - 1 = 0 là: \overrightarrow{n_{2}} = (m + 1;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow m(m + 3) - m + 1 = 0

    \Leftrightarrow m = - 1

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 1.

  • Câu 20: Vận dụng

    Tìm m để ba đường thẳng d_{1}:2x + y–1 =
0, d_{2}:x + 2y + 1 = 0d_{3}:mx–y–7 = 0 đồng quy?

    \left\{ \begin{matrix}
d_{1}:2x + y–1 = 0 \\
d_{2}:x + 2y + 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A(1; - 1) \in
d_{3} \Leftrightarrow m + 1 - 7 = 0
\Leftrightarrow m = 6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo