Khoảng cách từ giao điểm của hai đường thẳng
và
đến đường thẳng
bằng:
Khoảng cách từ giao điểm của hai đường thẳng
và
đến đường thẳng
bằng:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:
Ta có: .
Cho phương trình Elip
. Tọa độ đỉnh
và
của Elip đó là:
Ta có: => a = 4; b = 2
=> Tọa độ các đỉnh của elip là:
Tìm tọa độ giao điểm của hai đường thẳng
và
.
Chọn
.
Đường tròn
đi qua điểm
và tiếp xúc với hai trục tọa độ
có phương trình là:
Vì thuộc góc phần tư (IV) nên
Khi đó:
Trong các phương trình sau, phương trình nào là phương trình đường tròn?
Phương trình có dạng
với
Ta có:
Vậy phương trình không là phương trình đường tròn.
Phương trình có dạng
với
Ta có:
Vậy phương trình không là phương trình đường tròn.
Ta có:
Vậy đường tròn có bán kính và bán kính
Phương trình không phải là phương trình đường tròn vì hệ số của
khác nhau.
Cho đường tròn
và đường thẳng
. Tìm phương trình tiếp tuyến của
song song với đường thẳng
?
Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng song song với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của song song với
là:
hoặc
.
Cho hypebol
và đường thẳng
. Tích các khoảng cách từ hai tiêu điểm của
đến
bằng giá trị nào sau đây?
Ta có: . Suy ra 2 tiêu điểm
.
Khoảng cách từ và
đến đường thẳng
:
Do đó .
Cho phương trình
. Điều kiện để
là phương trình đường tròn là:
Điều kiện để là phương trình đường tròn là
.
Đường Hyperbol
có tiêu cự bằng:
Ta có : . Tiêu cự
Đường Hyperbol
có một tiêu điểm là điểm nào dưới đây?
Ta có : . Các tiêu điểm của
là
và
Trong hệ trục tọa độ Oxy, cho đường thẳng
. Một vectơ chỉ phương của
là:
Một vectơ chỉ phương của là
hay
.
Trong mặt phẳng với hệ tọa độ
, cho hai đường thẳng
và
. Phương trình đường phân giác góc nhọn tạo bởi hai đường thẳng
và
là:
Các đường phân giác của các góc tạo bởi và
là:
Gọi
Gọi là hình chiếu của
lên
Ta có: suy ra
Suy ra là đường phân giác góc tù, suy ra đường phân giác góc nhọn là
.
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
.
Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.
Vectơ có giá song song hoặc trùng với đường thẳng thì
được gọi là vectơ chỉ phương của đường thẳng đó.
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có phương trình cạnh
là
, phương trình cạnh
là
. Biết trọng tâm của tam giác là điểm
và phương trình đường thẳng
có dạng
. Tính giá trị biểu thức
.
Tọa độ điểm A là nghiệm của hệ phương trình
Ta có
Gọi là trung điểm của BC thì
nên
Mặt khác
Suy ra một vectơ pháp tuyến của BC là
Suy ra phương trình đường thẳng BC là
Suy ra
Trong mặt phẳng tọa độ
, cho ba điểm
. Biết rằng
, khi đó tọa độ điểm
là:
Giả sử tọa độ điểm
Ta có:
Vì nên
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn có bán kính bằng
.
Elip
có độ dài trục lớn bằng:
Ta có: .