Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình elip có độ dài trục lớn và độ dài trục bé lần lượt là 120cm;90cm. Vẽ một hình chữ nhật nội tiếp elip đã cho. Diện tích lớn nhất của hình chữ nhật là:

    Hình vẽ minh họa

    Phương trình chính tắc của elip có dạng (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1.

    Ta có: \left\{ \begin{matrix}
2a = 120 \Rightarrow a = 60 \\
2b = 90 \Rightarrow b = 45 \\
\end{matrix} ight.

    \Rightarrow (E):\frac{x^{2}}{3600} +
\frac{y^{2}}{2025} = 1

    Chọn D\left( x_{0};y_{0} ight) là đỉnh hình chữ nhật và x_{0} > 0;y_{0}
> 0. Ta có:

    \frac{{x_{0}}^{2}}{3600} +
\frac{{y_{0}}^{2}}{2025} = 1

    Diện tích hình chữ nhật là:

    S = 4x_{0}y_{0} =
1350.\frac{x_{0}}{60}.\frac{y_{0}}{45} \leq 1350.\left( \frac{x^{2}}{3600} +
\frac{y^{2}}{2025} ight) = 1350\left( cm^{2} ight)

  • Câu 2: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - 4t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hãy chỉ ra vectơ chỉ phương của đường thẳng d?

    Vectơ chỉ phương của đường thẳng dlà: \overrightarrow{u_{d}} = ( - 4;3).

  • Câu 3: Nhận biết

    Đường elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Ta có: a^{2} = 16, b^{2} = 7 nên c^{2} = a^{2} - b^{2} = 9 \Rightarrow c =
3.

    Tiêu cự của elip là 2c = 6.

  • Câu 4: Thông hiểu

    Tìm giá trị của tham số m sao cho đường thẳng (\Delta):(m - 1)y + mx - 2 =
0 là tiếp tuyến của đường tròn (C):x^{2} + y^{2} - 6x + 5 = 0.

    Đường tròn (C) có tâm I(3; 0) và bán kính R = 2

    Để (\Delta) là tiếp tuyến của đường tròn (C) thì ta phải có:

    d(I;\Delta) = \frac{|3m - 2|}{\sqrt{(m -
1)^{2} + m^{2}}} = 2

    \Leftrightarrow 4\left( 2m^{2} - 2m + 1
ight) = 9m^{2} - 12m + 4

    \Leftrightarrow m^{2} - 4m = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 4 \\
\end{matrix} ight.

  • Câu 5: Thông hiểu

    Xác định góc giữa hai đường thẳng (a):\sqrt{3}x - y + 7 = 0(b):x - \sqrt{3}y - 1 = 0?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{a}} = \left( \sqrt{3};1 ight) \\
\overrightarrow{n_{b}} = \left( 1; - \sqrt{3} ight) \\
\end{matrix} ight.

    \cos(a;b) = \frac{\left|
\overrightarrow{n_{a}}.\overrightarrow{n_{b}} ight|}{\left|
\overrightarrow{n_{a}} ight|.\left| \overrightarrow{n_{b}} ight|} =
\frac{\sqrt{3}}{2}

    \Rightarrow (a;b) = 30^{0}

  • Câu 6: Thông hiểu

    Trong hệ trục Oxy, cho Elip (E) có các tiêu điểm F_{1}( - 4;0),F_{2}(4;0) và một điểm M nằm trên (E). Biết rằng chu vi của tam giác MF_{1}F_{2} bằng 18. Xác định tâm sai e của (E).

    Ta có F_{1}( - 4;0) \Rightarrow c =
4.

    \begin{matrix}
P_{\Delta MF_{1}F_{2}} = \underset{2a}{\overset{MF_{1} + MF_{2}}{︸}} +
F_{1}F_{2} \\
\Leftrightarrow \ \ \ 18 = 2a + 2c \Leftrightarrow 18 = 2a + 8
\Leftrightarrow a = 5. \\
\end{matrix}

    Tâm sai e = \frac{c}{a} =
\frac{4}{5}.

  • Câu 7: Nhận biết

    Cho phương trình đường tròn (C):x^{2} + y^{2} - 6x + 8y - 1 = 0. Xác định tâm và bán kính đường tròn đó?

    Ta có phương trình đường tròn: (C):x^{2}
+ y^{2} - 6x + 8y - 1 = 0 có: a =
3;b = - 4,c = - 1 nên đường tròn (C) có tâm I(3; - 4) và bán kính R = \sqrt{a^{2} + b^{2} - c} =
\sqrt{26}.

  • Câu 8: Nhận biết

    Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0) nên chọn phương án D.

  • Câu 9: Nhận biết

    Đường tròn có tâm trùng với gốc tọa độ, bán kính R = 1 có phương trình là:

    (C):\left\{ \begin{matrix}
I(0;0) \\
R = 1 \\
\end{matrix} ight.\  ightarrow (C):x^{2} + y^{2} = 1.

  • Câu 10: Thông hiểu

    Phương trình tổng quát của đường thẳng d đi qua O và song song với đường thẳng \Delta:6x - 4x + 1 = 0 là:

    \left\{ \begin{matrix}
O(0;0) \in d \\
d||\Delta:6x - 4x + 1 = 0 \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
O(0;0) \in d \\
d:6x - 4x + c = 0\ \ \left( c\boxed{=}1 ight) \\
\end{matrix} ight.\ \overset{ightarrow}{}6.0 - 4.0 + c = 0
\Leftrightarrow c = 0. Vậy d:6x -
4y = 0 \Leftrightarrow d:3x - 2y = 0.

  • Câu 11: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):x + y - 1 = 0(\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    (\Delta):x + y - 1 = 0 có vectơ pháp tuyến là \overrightarrow{n_{\Delta}} =
(1;1)

    (\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương là \overrightarrow{u_{\Delta'}} = (2; -
1) nên (\Delta') có vectơ pháp tuyến là \overrightarrow{n_{\Delta'}} =
(1;2)

    \frac{1}{1} eq \frac{1}{2} nên (\Delta) cắt (\Delta').

  • Câu 12: Thông hiểu

    Cho  có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

    Ta có: BH \bot AC \Rightarrow \left( {AC} ight):x + y + c = 0

    C\left( { - 1;2} ight) \in \left( {AC} ight)

    \begin{matrix}    \Rightarrow  - 1 + 2 + c = 0 \hfill \\   \Rightarrow c =  - 1 \hfill \\ \end{matrix}

    Vậy (AC):x+y−1=0

    A=AN∩AC => A là nghiệm của hệ phương trình

    \left\{ {\begin{array}{*{20}{l}}  {x + y - 1 = 0} \\   {2x - y + 5 = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {x = \dfrac{{ - 4}}{3}} \\   {y = \dfrac{7}{3}} \end{array}} ight. \Rightarrow A\left( {\dfrac{{ - 4}}{3};\dfrac{7}{3}} ight)

  • Câu 13: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình 2x + 3y - 2 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?

    Một vectơ pháp tuyến của đường thẳng 2x +
3y - 2 = 0 là: (2;3).

  • Câu 14: Thông hiểu

    Cho hai đường thẳng \left( d_{1} ight):x + 3y + 8 = 0; \left( d_{2} ight):3x - 4y + 10 =
0 và điểm A( - 2;1). Phương trình đường tròn có tâm I \in \left(
d_{1} ight), đi qua điểm A và tiếp xúc với \left( d_{2} ight) là:

    Hình vẽ minh họa

    Ta có I là tâm đường tròn và I \in \left(
d_{1} ight) nên I( - 3t -
8;t)

    Theo giả thiết bài toán ta có:

    d\left( I;\left( d_{2} ight) ight) =
IA

    \Leftrightarrow \frac{\left| 3( - 3t -
8) - 4t + 10 ight|}{\sqrt{3^{2} + 4^{2}}} = \sqrt{( - 3t - 8 + 2)^{2}
+ (t - 1)^{2}}

    \Leftrightarrow t = - 3

    Suy ra I(1; - 3) và bán kính R = IA = 5

    Vậy phương trình đường tròn cần tìm là: (C):(x - 1)^{2} + (y + 3)^{2} = 25.

  • Câu 15: Vận dụng

    Biết rằng có đúng hai giá trị của tham số k để đường thẳng d:y = kx tạo với đường thẳng \Delta:y = x một góc 60^{0}. Tổng hai giá trị của k bằng:

    \begin{matrix}
\left\{ \begin{matrix}
d:y = kx ightarrow {\overrightarrow{n}}_{d} = (k; - 1) \\
\Delta:y = x ightarrow {\overrightarrow{n}}_{\Delta} = (1; - 1) \\
\end{matrix} ight.\ \overset{}{ightarrow}\frac{1}{2} = cos60^{\circ}
= \frac{|k + 1|}{\sqrt{k^{2} + 1}.\sqrt{2}} \\
\\
\end{matrix}

    \Leftrightarrow k^{2} + 1 = 2k^{2} + 4k
+ 2

    \Leftrightarrow k^{2} + 4k + 1 =
0\overset{sol:\ k = k_{1},\ \ k = k_{2}}{ightarrow}k_{1} + k_{2} = -
4.

  • Câu 16: Thông hiểu

    Trong mặt phẳng Oxy, cho Parabol (P): y^{2} =
8x có tiêu điểm F. Tìm trên (P) điểm M cách F một khoảng là 3.

    Giả sử M\left( x_{M}\ ;\ y_{M} ight)
\in (P). Suy ra {y_{M}}^{2} =
8x_{M}. (1)

    Từ phương trình y^{2} = 8x suy ra p = 4 nên F(2\ ;\ 0).

    Ta có: FM = \frac{p}{2} + x_{M}. Suy ra x_{M} = 1. Kết hợp (1) ta có: y_{M} = \pm 2\sqrt{2}.

    Vậy có hai điểm M\left( 1\ ;\ 2\sqrt{2}
ight) hoặc M\left( 1\ ;\  -
2\sqrt{2} ight)thỏa mãn.

  • Câu 17: Vận dụng

    Cho đường thẳng d_{1}:2x + 3y + m^{2} - 1 = 0d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.. Tính cosin góc tạo bởi giữa hai đường thẳng trên.

    . \left\{ \begin{matrix}
d_{1}:2x + 3y + m^{2} - 1 = 0 ightarrow {\overrightarrow{n}}_{1} =
(2;3) \\
d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3; - 1)
\\
\end{matrix} ight. \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{|6 - 3|}{\sqrt{4 + 9}.\sqrt{9 +
1}} = \frac{3}{\sqrt{130}}.

  • Câu 18: Nhận biết

    Cho đường thẳng \Delta:x - 2y - 1 = 0. Đường thẳng nào sau đây vuông góc với đường thẳng \Delta?

    Đường thẳng d:4x + 2y + 3 = 0 vuông góc với đường thẳng \Delta\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}}
= 4.1 + 2( - 2) = 0.

  • Câu 19: Vận dụng

    Xác định phương trình đường tròn (C) có tâm nằm trên đường thẳng (d):x - 6y - 10 = 0 và tiếp xúc với hai đường thẳng có phương trình \left( d_{1}
ight):3x + 4y + 5 = 0\left(
d_{2} ight):4x - 3y - 5 = 0?

    Vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi K(6a + 10;a). Mặt khác đường tròn tiếp xúc với hai đường thẳng \left( d_{1}
ight):3x + 4y + 5 = 0\left(
d_{2} ight):4x - 3y - 5 = 0 nên khoảng cách từ tâm I đến hai đường thẳng bằng bán kính.

    \frac{\left| 3(6a + 10) + 4a + 5
ight|}{5} = \frac{\left| 4(6a + 10) - 3a - 5 ight|}{5}

    \Leftrightarrow |22a + 35| = |21a +
35|

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 0 \\
a = \frac{- 70}{43} \\
\end{matrix} ight.

    Với a = 0 thì K(10;0);R = 7 khi đó phương trình đường tròn là: (x - 10)^{2} + y^{2} =
49

    Với a = \frac{- 70}{43} thì K\left( \frac{10}{43};\frac{- 70}{43}
ight);R = \frac{7}{43} khi đó phương trình đường tròn là: \left( x - \frac{10}{3} ight)^{2} + \left(
y + \frac{70}{43} ight)^{2} = \left( \frac{7}{43}
ight)^{2}.

  • Câu 20: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 3 + 4t \\
y = 2 - 6t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 3 + 4t \\
y = 2 - 6t \\
\end{matrix} ight.\  ightarrow A( - 3;2) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 3) \\
d_{2}:\left\{ \begin{matrix}
x = 1 - 2t' \\
y = 4 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = ( -
2;3) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{2}{- 2} = \frac{- 3}{3} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo