Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi đường thẳng \Delta:x + y
= 0 và trục hoành.

    Điểm M(x;y) thuộc đường phân giác của các góc tạo bởi \Delta;\ \ Ox:y =
0 khi và chỉ khi

    d(M;\Delta) = d(M;Ox) \Leftrightarrow
\frac{|x + y|}{\sqrt{2}} = \frac{|y|}{\sqrt{1}}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x + \left( 1 + \sqrt{2} ight)y = 0 \\
x + \left( 1 - \sqrt{2} ight)y = 0 \\
\end{matrix} ight.\ .

  • Câu 2: Vận dụng

    Trong mặt phẳng hệ tọa độ Oxy, cho đường tròn (C):x^{2} + y^{2} + 2x - 6y + 5 = 0. Viết phương trình tiếp tuyến của đường tròn (C), biết rằng tiếp tuyến đó song song với đường thẳng \Delta:x + 2y - 15 =
0?

    Ta có: Phương trình đường tròn có tâm I(
- 1;3) và bán kính R = \sqrt{1 + 9
- 5} = \sqrt{5}

    Gọi d là đường thẳng song song với đường thẳng \Delta:x + 2y - 15 = 0 khi đó:

    d:x + 2y - m = 0;(m eq
15)

    Đường thẳng d là tiếp tuyến của đường tròn khi và chỉ khi

    d(I;d) = R \Leftrightarrow \frac{| - 1 +
6 - m|}{\sqrt{1 + 4}} = \sqrt{5}

    \Leftrightarrow |m - 5| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
m - 5 = 5 \\
m - 5 = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 10 \\
m = 0 \\
\end{matrix} ight.

    Vậy có hai tiếp tuyến của đường tròn thỏa mãn yêu cầu bài toán là: x + 2y = 0;x + 2y - 10 = 0

  • Câu 3: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x + 1)^{2} + y^{2} = 8 là:

    (C):(x + 1)^{2} + y^{2} =
8\overset{}{ightarrow}I( - 1;0),\ R = \sqrt{8} =
2\sqrt{2}.

  • Câu 4: Thông hiểu

    Cho phương trình x^{2} + y^{2}–8x + 10y + m = 0(1). Tìm điều kiện của m để (1) là phương trình đường tròn có bán kính bằng 7.

    x^{2} + y^{2}–8x + 10y + m = 0
ightarrow \left\{ \begin{matrix}
a = 4 \\
b = - 5 \\
c = m \\
\end{matrix} ight.

    ightarrow a^{2} + b^{2} - c = R^{2} =
49 \Leftrightarrow m = - 8.

  • Câu 7: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):mx - (m - 1)y + 4 - m^{2} =
0\left( d_{2} ight):(m + 3)x
+ y - 3m - 1 = 0. Tìm giá trị của tham số m để hai đường thẳng hợp với nhau một góc bằng một góc vuông?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):mx - (m - 1)y + 4 - m^{2} = 0 là: \overrightarrow{n_{1}} = (m, - m + 1)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):(m + 3)x + y - 3m - 1 = 0 là: \overrightarrow{n_{2}} = (m + 1;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow m(m + 3) - m + 1 = 0

    \Leftrightarrow m = - 1

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 1.

  • Câu 8: Thông hiểu

    Trong mặt phẳng Oxy cho hai điểm A(1;1),B(5;3). Viết phương trình đường tròn (C) đi qua hai điểm A;B, biết rằng tâm đường tròn thuộc trục hoành?

    Gọi I là tâm đường tròn (C)

    Tâm đường tròn thuộc trục hoành nên I(x;0)

    Đường tròn đi qua hai điểm A;B nên ta có:

    IA = IB \Leftrightarrow IA^{2} =
IB^{2}

    \Leftrightarrow (1 - x)^{2} + 1^{2} = (5
- x)^{2} + 3^{2}

    \Leftrightarrow x^{2} - 2x + 1 + 1 =
x^{2} - 10x + 25 + 9

    \Leftrightarrow x = 4

    Vậy đường tròn (C) có tâm I(4;0) và bán kính R = IA = \sqrt{(1 - 4)^{2} + 1^{2}} =
\sqrt{10}

    Vậy phương trình đường tròn là: (x -
4)^{2} + y^{2} = 10

  • Câu 9: Nhận biết

    Trong hệ trục tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = - 4t + 1 \\
y = - 2 + 3t \\
\end{matrix} ight.. Một vectơ chỉ phương của d là:

    Một vectơ chỉ phương của d( - 4;3) hay (4; - 3).

  • Câu 10: Vận dụng

    Cho hypebol (H): \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 và đường thẳng \Delta: x+y=3. Tích các khoảng cách từ hai tiêu điểm của (H) đến \Delta bằng giá trị nào sau đây?

     Ta có: a=4,b=3 \Rightarrow c=\sqrt{a^2+b^2}=5. Suy ra 2 tiêu điểm F_1(-5;0),F_2(5;0).

    Khoảng cách từ F_2F_1 đến đường thẳng \Delta :x+y-3=0:

    d({F_2},\Delta ) = \frac{{\left| {5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2

    d({F_1},\Delta ) = \frac{{\left| { - 5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2

    Do đó \sqrt2 . 4\sqrt2=8.

  • Câu 11: Thông hiểu

    Cho phương trình Elip \frac{x^{2}}{16}+\frac{y^{2}}{4}=1. Tọa độ đỉnh A_1B_1 của Elip đó là:

    Ta có: \frac{x^{2}}{16}+\frac{y^{2}}{4}=1 => a = 4; b = 2

    => Tọa độ các đỉnh của elip là: {A_1}\left( { - 4;0} ight);{B_1}\left( {0; - 2} ight)

  • Câu 12: Nhận biết

    Đường thẳng nào sau đây song song với đường thẳng 2x + 3y - 1 = 0 ?

    Xét đáp án: \left\{ \begin{matrix}d:2x + 3y - 1 = 0 \\d_{A}:2x + 3y + 1 = 0 \\\end{matrix} ight.\  ightarrow \frac{2}{2} =\frac{3}{3}eq \frac{- 1}{- 1} ightarrow d//d_{A}.Chọn đáp án này.

    Để ý rằng một đường thẳng song song với 2x + 3y - 1 = 0 sẽ có dạng 2x+3y+c=0{(c=-1)}. Do đó kiểm tra chỉ thấy có đáp án 2x + 3y + 1 = 0 thỏa mãn, các đáp án còn lại không thỏa mãn.

  • Câu 13: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1. Tính tâm sai của elip.

    Ta có a^{2} = 4 \Rightarrow a = 2;b^{2} =
1 \Rightarrow b = 1;c^{2} = a^{2} - b^{2} = 3 \Rightarrow c =
\sqrt{3}

    Tâm sai của elip là e = \frac{c}{a} =
\frac{\sqrt{3}}{2}.

  • Câu 14: Thông hiểu

    Một elip có diện tích hình chữ nhật cơ sở là 80, độ dài tiêu cự là 6. Tâm sai của elip đó là

    Diện tích hình chữ nhật cơ sở là 2a.2b =
80, suy ra a.b = 20\ \ \
(1).

    Lại có 2c = 6 \Rightarrow c = 3
\Rightarrow a^{2} - b^{2} = c^{2} = 9\ \ \ \ (2).

    Từ (1) \Rightarrow b =
\frac{20}{a}, thay vào (2) ta được:

    a^{2} - \frac{400}{a^{2}} = 9 \Rightarrow
a^{4} - 9a^{2} - 400 = 0 \Leftrightarrow a^{2} = 25 \Rightarrow a =
5.

    Do đó tâm sai e =
\frac{3}{5}.

  • Câu 15: Nhận biết

    Cho hai đường thẳng (\Delta):x - 2y + 1 = 0(\Delta'):x - 3y + 8 = 0. Khẳng định nào sau đây đúng?

    Ta có: \frac{1}{1} eq \frac{- 2}{-
3} suy ra (\Delta) cắt (\Delta').

    Vậy khẳng định đúng là: “(\Delta) cắt (\Delta')”.

  • Câu 16: Nhận biết

    Cho elip (E):4x^{2} + 5y^{2} = 20. Diện tích hình chữ nhật cơ sở của (E)

    (E):4x^{2} + 5y^{2} = 20 \Leftrightarrow
\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1

    Độ dài trục lớn: 2a =
2\sqrt{5}.

    Độ dài trục bé: 2b = 2.2 =
4.

    Diện tích hình chữ nhật cơ sở của (E) là: 2\sqrt{5}.4 = 8\sqrt{5}.

  • Câu 17: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

    Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 18: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–5y = 0 là:

    (C):x^{2} + y^{2}–5y = 0 ightarrow
I\left( 0;\frac{5}{2} ight),\ R = \sqrt{0 + \frac{25}{4} - 0} =
\frac{5}{2}.

  • Câu 19: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 20: Thông hiểu

    Tính góc tạo bởi hai đường thẳng (\Delta):\sqrt{3}x - y + 7 = 0(\Delta'):x - \sqrt{3}y - 1 = 0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (\Delta):\sqrt{3}x - y + 7 = 0 là: \overrightarrow{n_{\Delta}} = \left( \sqrt{3}; - 1
ight)

    Vectơ pháp tuyến của đường thẳng (\Delta'):x - \sqrt{3}y - 1 = 0 là: \overrightarrow{n_{\Delta'}} = \left( 1;
- \sqrt{3} ight)

    Ta thấy

    \cos(\Delta;\Delta') = \frac{\left|
\overrightarrow{n_{\Delta}}.\overrightarrow{n_{\Delta'}}
ight|}{\left| \overrightarrow{n_{\Delta}} ight|.\left|
\overrightarrow{n_{\Delta'}} ight|}

    = \frac{\left| \sqrt{3}.1 + ( -
1).\left( - \sqrt{3} ight) ight|}{\sqrt{\left( \sqrt{3} ight)^{2}
+ ( - 1)^{2}}.\sqrt{1^{2} + \left( - \sqrt{3} ight)^{2}}} =
\frac{\sqrt{3}}{2}

    \Rightarrow
\widehat{(\Delta;\Delta')} = 30^{0}

    Vậy góc tạo bởi hai đường thẳng đã cho bằng 30^{0}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo