Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d_{1}:5x + 3y - 3 = 0d_{2}:5x + 3y + 7 = 0 song song nhau. Đường thẳng vừa song song và cách đều với d_{1},\ d_{2} là:

    d\left( M(x;y);d_{1} ight) = d\left(M(x;y);d_{2} ight)

    \Leftrightarrow \frac{|5x + 3y - 3|}{\sqrt{34}} =\frac{|5x + 3y + 7|}{\sqrt{34}} \Leftrightarrow 5x + 3y + 2 =0.

  • Câu 2: Nhận biết

    Điểm nào sau đây thuộc đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight. ?

    M(2;–1)\overset{x = 2,\ y = - 1
ightarrow d}{ightarrow}\left\{ \begin{matrix}
2 = 1 + 2t \\
- 1 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
t = 4 \\
\end{matrix} ight.\ \ \ (VN) ightarrow M\boxed{\in}d.

    N(–7;0)\overset{x = - 7,\ y = 0
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 7 = 1 + 2t \\
0 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = - 4 \\
t = 3 \\
\end{matrix} ight.\ \ (VN) ightarrow N\boxed{\in}d.

    P(3;5)\overset{x = 3,\ y = 5 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
3 = 1 + 2t \\
5 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 1 \\
t = - 2 \\
\end{matrix} ight.\ \ (VN) ightarrow P\boxed{\in}d.

    Q(3;\ 2)\overset{x = 3,\ y = 2 \in
d}{ightarrow}\left\{ \begin{matrix}
3 = 1 + 2t \\
2 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow Q \in
d.Chọn Q(3;\ 2).

  • Câu 3: Thông hiểu

    Hãy xác định phương trình chính tắc của parabol (P). Biết rằng (P) cắt đường thẳng d:x + 2y = 0 tại hai điểm A,BAB =
4\sqrt{5}?

    Phương trình chính tắc của (P) có dạng y^{2} = 2px;(p > 0)

    Ta có đường thẳng d cắt (P) tại hai điểm \left\{ \begin{matrix}
A \equiv O \\
B = ( - 2m;m) \\
\end{matrix} ight.

    Ta có:

    AB = 4\sqrt{5} \Leftrightarrow AB^{2} =
5m^{2} = \left( 4\sqrt{5} ight)^{2}

    \Leftrightarrow m^{2} = 16
\Leftrightarrow m = \pm 4

    Với m = 4 \Rightarrow B( - 8;4) \Rightarrow 16 = 2p.( - 8)
\Rightarrow p = - 1 < 0(ktm)

    Với m = - 4 \Rightarrow B(8; - 4) \Rightarrow 16 = 2p.8
\Rightarrow p = 1(tm)

    Vậy phương trình chính tắc của parabol cần tìm là: y^{2} = 2x.

  • Câu 4: Nhận biết

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{25} +
\frac{y^{2}}{9} = 1. Tiêu cự của (E) bằng

    Phương trình chính tắc của elip có dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\ (a
> 0,b > 0).

    Do đó elip (E) có \left\{
\begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow c = \sqrt{a^{2} - b^{2}} =
4.

    Tiêu cự của elip (E) bằng 2c =
8.

  • Câu 5: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - 4t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hãy chỉ ra vectơ chỉ phương của đường thẳng d?

    Vectơ chỉ phương của đường thẳng dlà: \overrightarrow{u_{d}} = ( - 4;3).

  • Câu 6: Thông hiểu

    Tính góc tạo bởi giữa hai đường thẳng d_{1}:6x - 5y + 15 = 0d_{2}:\left\{ \begin{matrix}
x = 10 - 6t \\
y = 1 + 5t \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
d_{1}:6x - 5y + 15 = 0 ightarrow {\overrightarrow{n}}_{1} = (6; - 5)
\\
d_{2}:\left\{ \begin{matrix}
x = 10 - 6t \\
y = 1 + 5t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (5;6) \\
\end{matrix} ight.

    ightarrow {\overrightarrow{n}}_{1}
\cdot {\overrightarrow{n}}_{2} = 0\overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\varphi = 90^{\circ}.

  • Câu 7: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) tiếp xúc với đường tròn (O;1), cắt các trục Ox,Oy lần lượt tại các điểm A;B. Tam giác OAB có diện tích nhỏ nhất là:

    Hình vẽ minh họa

    Gọi A(a;0);(a eq 0) là giao điểm của đường thẳng (d)Ox

    B(0;b);(b eq 0) là giao điểm của đường thẳng (d)Oy

    Khi đó:

    OA = |a|;OB = |b|

    \Rightarrow S_{OAB} = \frac{1}{2}OA.OB =
\frac{1}{2}|ab|\ \ (*)

    Xét tam giác OAB vuông tại O ta có:

    \frac{1}{OA^{2}} + \frac{1}{OB^{2}} =
\frac{1}{OH^{2}}

    \Leftrightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} = 1 \Leftrightarrow a^{2} + b^{2} =
a^{2}b^{2}

    \Rightarrow a^{2}b^{2} = a^{2} + b^{2}
\geq 2|a|.|b|

    \Leftrightarrow |ab| \geq 2

    Từ (*) \Rightarrow S_{OAB} \geq
1

    Vậy giá trị nhỏ nhất của diện tích tam giác OAB bằng 1.

  • Câu 8: Vận dụng

    Đâu là đường thẳng không có điểm chung với đường thẳng x - 3y + 4 = 0?

    Kí hiệu d:x - 3y + 4 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1; - 3).

    (i) Xét đáp án: d_{1}:\left\{
\begin{matrix}
x = 1 + t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (1;3)
ightarrow {\overrightarrow{n}}_{1},\ \ \overrightarrow{n} không cùng phương nên loại.

    (ii) Xét đáp án: d_{2}:\left\{
\begin{matrix}
x = 1 - t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3;1)
ightarrow {\overrightarrow{n}}_{2},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iii) Xét đáp án: d_{3}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{3} = (1;3)
ightarrow {\overrightarrow{n}}_{3},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iv) Xét đáp án: d_{4}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M(1;2) \in d_{4} \\
{\overrightarrow{n}}_{4} = (1; - 3) \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
{\overrightarrow{n}}_{4} = \overrightarrow{n} \\
M\boxed{\in}d \\
\end{matrix} ight.\  ightarrow d||d_{4}. (Chọn)

  • Câu 9: Nhận biết

    Cho elip (E) có phương trình 16x^{2} + 25y^{2} = 400. Khẳng định nào sai trong các khẳng định sau?

    (E): 16x^{2} + 25y^{2} = 400 \Leftrightarrow
\frac{x^{2}}{25} + \frac{y^{2}}{16} = 1.

    Elip (E)a = 5, b =
4, c = \sqrt{a^{2} - b^{2}} =
\sqrt{5^{2} - 4^{2}} = 3.

    Tiêu cự của elip (E)2c = 6 nên khẳng định “(E) có tiêu cự bằng 3” là khẳng định sai.

  • Câu 10: Vận dụng

    Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là 60m30m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức S = \pi
ab, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

    Theo đề ta có: Diện tích (E)là: S_{(E)} = \pi.a.b = 30.15.\pi = 450\pi,\
\left( m^{2} ight)

    Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: R =
15m. Diện tích hình tròn (C)phần trồng cây lâu năm là: S_{(C)} = \pi.R^{2} = 15^{2}.\pi = 225\pi,\ \left(
m^{2} ight)

    Suy ra diện tích phần trồng hoa màu là: S
= S_{(E)} - S_{(C)} = 225\pi,\ \left( m^{2} ight) \Rightarrow T =
1.

  • Câu 11: Thông hiểu

    Tìm tọa độ tâm I của đường tròn đi qua ba điểm A(0;4), B(2;4), C(4;0).

    A,\ B,\ C \in (C):x^{2} + y^{2} + 2ax +
2by + c = 0

    \Leftrightarrow \left\{ \begin{matrix}
16 + 8b + c = 0 \\
20 + 4a + 8b + c = 0 \\
16 + 8a + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
c = - 8 \\
\end{matrix} ight.\  ightarrow I(1;1).

  • Câu 12: Thông hiểu

    Tìm phương trình chính tắc của hyperbol nếu nó có tiêu cự bằng 12 và độ dài trục thực bằng 10.

    Ta có : \left\{ \begin{matrix}
2c = 12 \\
2a = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 6 \\
a = 5 \\
b^{2} = 11 \\
\end{matrix} ight..

    Phương trình chính tắc (H):\frac{x^{2}}{25} - \frac{y^{2}}{11} =
1.

  • Câu 13: Nhận biết

    Một đường thẳng có bao nhiêu vectơ pháp tuyến?

     Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.

  • Câu 14: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} = 9 là:

    (C):x^{2} + y^{2} =
9\overset{}{ightarrow}I(0;0),\ \ R = \sqrt{9} = 3.

  • Câu 15: Nhận biết

    Cho hai đường thẳng \Delta_1\Delta_2 có phương trình lần lượt là ax + by + c = 0dx + ey + f = 0. Xét hệ \left\{\begin{matrix}ax+by+c=0\\ dx+ey+f=0\end{matrix}ight.. Khi đó hai đường cắt nhau khi và chỉ khi:

     Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.

  • Câu 16: Nhận biết

    Xác định tâm và bán kính đường tròn (C):(x - 4)^{2} + (y + 5)^{2} = 12?

    Ta có: (C):(x - 4)^{2} + (y + 5)^{2} =
12

    Vậy đường tròn có bán kính I(4; -
5) và bán kính R =
2\sqrt{3}

  • Câu 17: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} - 4x - 6y - 12 = 0 và đường thẳng d:3x + 4y - 6 = 0. Tìm phương trình tiếp tuyến của (C) vuông góc với đường thẳng d?

    Ta có:

    Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5

    Phương trình đường thẳng \Delta_{2} vuông góc với d có dạng 4x - 3y + c_{2} = 0

    \Delta_{2} tiếp xúc với (C) nên d\left( I;\Delta_{2} ight) = R

    Hay \frac{\left| 4.2 - 3.3 + c_{2}
ight|}{\sqrt{4^{2} + ( - 3)^{2}}} = 5 \Leftrightarrow \left| c_{2} - 1
ight| = 25

    \Leftrightarrow \left\lbrack
\begin{matrix}
c_{2} - 1 = 25 \\
c_{2} - 1 = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
c_{2} = 26 \\
c_{2} = - 24 \\
\end{matrix} ight.

    Vậy phương trình tiếp tuyến của (C) vuông góc với (d) là: 4x -
3y + 1 = 0 hoặc 4x - 3y - 15 =
0.

  • Câu 18: Thông hiểu

    Trong mặt phẳng hệ trục tọa độ Oxy cho các tọa độ các điểm A(3; - 5),B( - 1;2)G(2; - 2). Xác định tọa độ điểm D sao cho G là trọng tâm tam giác ABD?

    Xét tam giác ABD có G là trọng tâm khi đó ta có:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{D}}{3} \\y_{G} = \dfrac{y_{A} + y_{B} + y_{D}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = \dfrac{3 - 1 + x_{D}}{3} \\- 2 = \dfrac{- 5 + 2 + y_{D}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{D} = 4 \\y_{D} = - 3 \\\end{matrix} ight.

    Vậy tọa độ điểm D(4; - 3).

  • Câu 19: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):3x + y - 6 = 0 và đường thẳng \Delta:\left\{ \begin{matrix}
x = - t \\
y = 5 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Xác định số đo góc giữa hai đường thẳng đã cho?

    Vectơ pháp tuyến của đường thẳng d và \Delta lần lượt là \overrightarrow{n_{d}} =
(3;1);\overrightarrow{n_{\Delta}} = (2; - 1).

    Khi đó góc giữa hai đường thẳng là:

    \cos(d;\Delta) = \frac{\left|
\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}} ight|}{\left|
\overrightarrow{n_{d}} ight|.\left| \overrightarrow{n_{\Delta}}
ight|} = \frac{|3.2 - 1.1|}{\sqrt{3^{2} + 1^{2}}.\sqrt{2^{2} + ( -
1)^{2}}} = \frac{\sqrt{2}}{2}

    \Rightarrow (d;\Delta) =
45^{0}

    Vậy góc giữa hai đường thẳng là 45^{0}.

  • Câu 20: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(1;2),B(2; - 1),C(0;1). Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I\left( \frac{1}{2};\frac{3}{2}
ight)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = \left( -
\frac{3}{2};\frac{5}{2} ight) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{n} =
(5;3).

    Phương trình tổng quát của đường thẳng BI là:

    5(x - 2) + 3(y + 1) = 0

    \Leftrightarrow 5x + 3y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng cần tìm là 5x + 3y - 7 =
0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo