Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đường tròn có tâm trùng với gốc tọa độ, bán kính R = 1 có phương trình là:

    (C):\left\{ \begin{matrix}
I(0;0) \\
R = 1 \\
\end{matrix} ight.\  ightarrow (C):x^{2} + y^{2} = 1.

  • Câu 2: Nhận biết

    Xét vị trí tương đối của hai đường thẳng \left( d_{1} ight):2x - 3y + 1 =
0\left( d_{2} ight): - 4x +
6y - 1 = 0?

    Ta có: \frac{2}{- 4} = \frac{- 3}{6} eq
\frac{1}{- 1}

    Vậy hai đường thẳng đã cho song song với nhau.

  • Câu 3: Thông hiểu

    Cho tọa độ hai điểm A(8;0),B(0;6). Phương trình đường tròn ngoại tiếp tam giác OAB là:

    Ta có tam giác OAB vuông tại O nên tâm I của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền AB suy ra I(4; 3) và bán kính R = IA = \sqrt{(8 - 4)^{2} + (0 - 3)^{2}} =
5

    Vậy phương trình đường tròn ngoại tiếp tam giác OAB là: (x - 4)^{2} + (y - 3)^{2} = 25

  • Câu 4: Nhận biết

    Cho hai đường thẳng \left( d_{1} ight):2x + y + 15 = 0\left( d_{2} ight): - 4x - 2y + 3 =
0. Khẳng định nào sau đây đúng?

    Ta có: \frac{2}{- 4} = \frac{1}{- 2} eq
\frac{15}{3} suy ra \left( d_{1}
ight)\left( d_{2}
ight) song song với nhau.

  • Câu 5: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?

    Phương trình Parabol có dạng y^{2} =
2px

    Vậy phương trình cần tìm là y^{2} =
2x.

  • Câu 6: Thông hiểu

    Cho bốn điểm A(4;
- 3), B(5;1), C(2;3)D(
- 2;\ 2). Xác định vị trí tương đối của hai đường thẳng ABCD.

    \left\{ \begin{matrix}{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (1;4) \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = ( - 4; - 1) \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\frac{1}{- 4}eq \frac{4}{- 1} \\{\overrightarrow{u}}_{AB} \cdot {\overrightarrow{u}}_{CD}eq 0 \\\end{matrix} ight.

    ightarrow AB,\ \ CD cắt nhau nhưng không vuông góc.

  • Câu 7: Vận dụng

    Cho elip (E):\frac{x^{2}}{100} + \frac{y^{2}}{36} =
1. Qua một tiêu điểm của (E) dựng đường thẳng song song với trục Oy và cắt (E) tại hai điểm MN. Độ dài MN bằng bao nhiêu?

    Xét (E):\frac{x^{2}}{100} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a^{2} = 100 \\
b^{2} = 36 \\
\end{matrix} ight.\  \Leftrightarrow c^{2} = a^{2} - b^{2} = 100 - 36
= 64.

    Khi đó, Elip có tiêu điểm là F_{1}( - \
8;0) \Rightarrow đường thẳng d//Oy và đi qua F_{1}x =
- \ 8.

    Giao điểm của d(E) là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x = - \ 8 \\
\frac{x^{2}}{100} + \frac{y^{2}}{36} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \ 8 \\
y = \pm \ \frac{24}{5} \\
\end{matrix} ight.\ .

    Vậy tọa độ hai điểm M\left( - \
8;\frac{24}{5} ight),\ \ N\left( - \ 8; - \ \frac{24}{5} ight)
\Rightarrow MN = \frac{48}{5}.

  • Câu 8: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M(6; - 10) và vuông góc với trục Oy.

    \begin{matrix}
\left\{ \begin{matrix}
M(6; - 10) \in d \\
d\bot Oy:x = 0 ightarrow {\overrightarrow{u}}_{d} = (1;0) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}
x = 6 + t \\
y = - 10 \\
\end{matrix} ight.\ \overset{t = - 4}{ightarrow}A(2; - 10) \in d \\
ightarrow d:\left\{ \begin{matrix}
x = 2 + t \\
y = - 10 \\
\end{matrix} ight.\ . \\
\end{matrix}

  • Câu 9: Vận dụng

    Trong mặt phẳng tọa độ, người ta xác định chuyển động của một vật thể trong thời gian 60 giờ. Người ta xác định được vật thể nằm ở vị trí có tọa độ \left( 8
+ 5sint^{0};6 + 5cost^{0} ight) tại thời điểm t;(0 \leq t \leq 360). Tìm tọa độ chất điểm khi ở gần gốc tọa độ nhất?

    Từ cách xác định tọa độ của chất điểm ta có:

    \left\{ \begin{matrix}
x = 8 + 5sint^{0} \\
y = 6 + 5cost^{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 8 = 5sint^{0} \\
y - 6 = 5cost^{0} \\
\end{matrix} ight.

    \Leftrightarrow (x - 8)^{2} + (y -
6)^{2} = 25\ \ (*)

    Vậy chất điểm luôn thuộc đường tròn (C) tâm I(8;6) và có bán kính R = 5

    Gọi chất điểm là A. Khi đó A gần gốc tọa độ nhất khi A là giao điểm của OI và đường tròn. Tức là:

    \overrightarrow{OA} =
k.\overrightarrow{OI};(0 < k < 1)

    Hay \left\{ \begin{matrix}
x_{A} = 8k \\
y_{A} = 6k \\
\end{matrix} ight. thay vào (*) ta được:

    (8k - 8)^{2} + (6k - 6)^{2} =
25

    \Leftrightarrow (k - 1)^{2} =\dfrac{1}{4} \Leftrightarrow \left\lbrack \begin{matrix}k = \dfrac{3}{2} \\k = \dfrac{1}{2} \\\end{matrix} ight.

    0 < k < 1 nên lấy k = \frac{1}{2}. Khi đó tọa độ điểm A là \left\{ \begin{matrix}
x_{A} = 4 \\
y_{A} = 3 \\
\end{matrix} ight.

  • Câu 10: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 11: Nhận biết

    Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0) nên chọn phương án D.

  • Câu 12: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA( -
3;1),B(2;1),C( - 1;5). Phương trình tổng quát của đường trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I( -
2;3)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = ( - 4;4) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{u} = (1;1).

    Phương trình tổng quát của đường thẳng BI là:

    1(x - 2) + 1(y + 1) = 0

    \Leftrightarrow x + y - 1 =
0

  • Câu 13: Nhận biết

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 14: Thông hiểu

    Cho phương trình đường tròn (C):x^{2} + y^{2} - 2x + 4y + 4 = 0. Viết phương trình tiếp tuyến của đường tròn (C) biết rằng tiếp tuyến vuông góc với đường thẳng x + 2y + 5 = 0?

    Đường tròn (C) có tâm I(1; - 2);R =
1

    \Delta vuông góc với đường thẳng x + 2y + 5 = 0 nên phương trình \Delta có dạng 2x - y + m = 0

    \Delta là tiếp tuyến của (C) nên ta có:

    d(I;\Delta) = R \Leftrightarrow \frac{|2
+ 2 + m|}{\sqrt{1^{2} + 2^{2}}} = 1

    \Leftrightarrow |4 + m| = \sqrt{5}
\Leftrightarrow \left\lbrack \begin{matrix}
m = \sqrt{5} - 4 \\
m = - \sqrt{5} - 4 \\
\end{matrix} ight.

    Với m = \sqrt{5} - 4 thì phương trình \Delta2x - y + \sqrt{5} - 4 = 0

    Với m = - \sqrt{5} - 4 thì phương trình \Delta2x - y - \sqrt{5} - 4 = 0

  • Câu 15: Nhận biết

    Cho phương trình x^{2} + y^{2} - 2ax - 2by + c = 0(1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để x^{2} + y^{2} - 2ax - 2by +
c = 0(1) là phương trình đường tròn là a^{2} + b^{2}\  > \ c.

  • Câu 16: Thông hiểu

    Các cặp đường thẳng nào sau đây vuông góc với nhau?

    (i) \left\{ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = t \\
y = - 1 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (1; - 2)
\\
d_{2}:2x + y–1 = 0 ightarrow {\overrightarrow{n}}_{2} = (2;1)
ightarrow {\overrightarrow{u}}_{2} = (1; - 2) \\
\end{matrix} ight.

    ightarrow {\overrightarrow{u}}_{1}
\cdot {\overrightarrow{u}}_{2}\boxed{=}0 ightarrow loại.

    (ii) \left\{ \begin{matrix}
d_{1}:x - 2 = 0 ightarrow {\overrightarrow{n}}_{1} = (1;0) \\
d_{2}:d_{2}:\left\{ \begin{matrix}
x = t \\
y = 0 \\
\end{matrix} ight.\ . ightarrow {\overrightarrow{u}}_{2} = (1;0)
ightarrow {\overrightarrow{n}}_{2} = (0;1) \\
\end{matrix} ight.

    ightarrow {\overrightarrow{n}}_{1}
\cdot {\overrightarrow{n}}_{2} = 0 ightarrow d_{1}\bot d_{2}. Chọn đáp án này.

    Tương tự, kiểm tra và loại các đáp án còn lại.

  • Câu 17: Thông hiểu

    Biết parabol (P) có phương trình đường chuẩn là \Delta:x + 2 = 0. Phương trình chính tắc của (P) là:

    Gọi phương trình chính tắc của Parabol là: (P):y^{2} = 2px

    Parabol có phương trình đường chuẩn là: \Delta:x + 2 = 0 nên \frac{p}{2} = 2 \Rightarrow p = 4

    Suy ra phương trình chính tắc của parabol là: y^{2} = 8x.

  • Câu 18: Thông hiểu

    Trong mặt phẳng Oxy, cho Parabol (P): y^{2} =
8x có tiêu điểm F. Tìm trên (P) điểm M cách F một khoảng là 3.

    Giả sử M\left( x_{M}\ ;\ y_{M} ight)
\in (P). Suy ra {y_{M}}^{2} =
8x_{M}. (1)

    Từ phương trình y^{2} = 8x suy ra p = 4 nên F(2\ ;\ 0).

    Ta có: FM = \frac{p}{2} + x_{M}. Suy ra x_{M} = 1. Kết hợp (1) ta có: y_{M} = \pm 2\sqrt{2}.

    Vậy có hai điểm M\left( 1\ ;\ 2\sqrt{2}
ight) hoặc M\left( 1\ ;\  -
2\sqrt{2} ight)thỏa mãn.

  • Câu 19: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(–1\ ;\ 3)D(3\ ;\ 1).

    Ta có:

    \left\{ \begin{matrix}C( - 1;3) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 20: Vận dụng

    Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi hai đường thẳng \Delta_{1}:x + 2y - 3 = 0\Delta_{2}:2x - y + 3 = 0.

    Điểm M(x;y) thuộc đường phân giác của các góc tạo bởi \Delta_{1};\ \
\Delta_{2} khi và chỉ khi

    d\left( M;\Delta_{1} ight) = d\left(
M;\Delta_{2} ight) \Leftrightarrow \frac{|x + 2y - 3|}{\sqrt{5}} =
\frac{|2x - y + 3|}{\sqrt{5}}

    \Leftrightarrow \left\lbrack
\begin{matrix}
3x + y = 0 \\
x - 3y + 6 = 0 \\
\end{matrix} ight.\ .

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo