Viết phương trình tham số của đường thẳng
đi qua điểm
và vuông góc với đường thẳng
?
Vì nên vectơ chỉ phương của đường thẳng d là vectơ pháp tuyến của
Đường thẳng có vectơ pháp tuyến là:
và đi qua điểm
là:
.
Viết phương trình tham số của đường thẳng
đi qua điểm
và vuông góc với đường thẳng
?
Vì nên vectơ chỉ phương của đường thẳng d là vectơ pháp tuyến của
Đường thẳng có vectơ pháp tuyến là:
và đi qua điểm
là:
.
Viết phương trình tổng quát của đường thẳng d đi qua điểm M(–1; 2) và song song với trục Ox ?
Đường thẳng song song với trục .
Phương trình đường thẳng có vectơ pháp tuyến và đi qua
là:
.
Đường tròn
có tâm
và tiếp xúc với trục
có phương trình là:
Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm
và đi qua điểm
?
Gọi phương trình chính tắc của elip là:
Ta có:
Khi đó ta có:
Do elip đi qua điểm
Từ (*) và (**) ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: .
Trong mặt phẳng tọa độ
, cho tọa độ điểm
và hai đường thẳng
;
. Một đường tròn
có tâm
thuộc đường thẳng
, đi qua điểm
và tiếp xúc với
. Kết luận nào sau đây đúng?
Ta có:
Lại có đường tròn tâm I đi qua P và tiếp xúc với đường thẳng nên
Vậy khẳng định đúng là: .
Tìm phương trình chính tắc của Elip có độ dài trục lớn bằng
và đi qua điểm
:
Ta có phương trình chính tắc Elip (E) có dạng .
Theo giả thiết ta có
.
Mặt khác (E) đi qua nên ta có
.
Vậy phương trình chính tắc của (E) là: .
Đường Hyperbol
có một tiêu điểm là điểm nào dưới đây?
Ta có : . Các tiêu điểm của
là
và
Cho hai đường tròn
và
. Tìm giá trị tham số m để hai đường tròn tiếp xúc nhau?
Dễ thấy đường tròn (C) có tâm O(0; 0) và bán kính R = 1
Đường tròn (C’) có tâm I(m + 1; -2m) và bán kính
Ta thấy:
điểm O nằm trong đường tròn tâm I suy ra (C) và (C’) chỉ có thể tiếp xúc trong với nhau.
Điều kiện để hai đường tròn tiếp xúc trong là:
Vậy có hai giá trị m thỏa mãn điều kiện là: hoặc
.
VD
1
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
cắt
.
Vậy khẳng định đúng là: “ cắt
”.
Xét vị trí tương đối giữa hai đường thẳng
và
.
Ta có: nên hai đường thẳng trùng nhau.
Một tòa tháp có mặt cắt hình hypebol có phương trình
. Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:
Gọi r là bán kính đáy của tháp
Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.
Chọn điểm nằm trên hypebol nên ta có:
Vậy Bán kính đáy của tháp khoảng 22,25m.
Trong mặt phẳng tọa độ
, cho đường thẳng
và tọa độ một điểm
. Ta kí hiệu khoảng cách từ điểm
đến đường thẳng
là
. Kết luận nào sau đây đúng?
Khoảng cách từ điểm A đến đường thẳng được tính bởi công thức:
Vậy kết luận đúng là: “”.
Khoảng cách từ giao điểm của hai đường thẳng
và
đến đường thẳng
bằng:
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Cho đường thẳng
. Điểm nào dưới đây thuộc đường thẳng đã cho?
Thay vào đường thẳng
suy ra
Vậy điểm thuộc đường thẳng
.
Đường tròn
có tâm
và bán kính
lần lượt là:
Cho đường tròn
và đường thẳng
. Tìm giá trị của tham số m để
cắt
?
Đường tròn (C) có tâm I(m; -2) và R = 3
Để cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Trong mặt phẳng tọa độ
, viết phương trình chính tắc của elip biết một đỉnh là
và một tiêu điểm là
.
Ta có
Vậy .
Tìm
để hai đường thẳng
và
trùng nhau?
Tọa độ tâm
và bán kính
của đường tròn
là: