Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là:

    Ta có : \left\{ \begin{matrix}
a = 4 \\
2c = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 5 \\
b = 3 \\
\end{matrix} ight.\ .

    Phương trình chính tắc của Hyperbol là \frac{x^{2}}{16} - \frac{y^{2}}{9} =
1.

  • Câu 2: Thông hiểu

    Xác định phương trình đường tròn (C) tâm I( -
2;1). Biết (C) cắt đường thẳng \Delta:x - 2y + 3 = 0 tại hai điểm AB sao cho AB = 2.

    Gọi h là khoảng cách từ điểm I đến đường thẳng \Delta:x - 2y + 3 = 0. Ta có:

    h = d(I;\Delta) = \frac{| - 2 - 2 +
3|}{\sqrt{1^{2} + ( - 2)^{2}}} = \frac{1}{\sqrt{5}}

    Gọi R là bán kính đường tròn, từ giả thiết suy ra:

    R = \sqrt{h^{2} + \frac{AB^{2}}{4}} =
\sqrt{\frac{1}{5} + \frac{2^{2}}{4}} = \sqrt{\frac{6}{5}}

    Vậy phương trình đường tròn cần tìm là: (x + 2)^{2} + (y - 1)^{2} =
\frac{6}{5}.

  • Câu 3: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + (y + 4)^{2} = 5 là:

    (C):x^{2} + (y + 4)^{2} =
5\overset{}{ightarrow}I(0; - 4),\ R = \sqrt{5}.

  • Câu 4: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:2x+2\sqrt{3}y+4=0d_2: y – 4 =0

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {2.0 + 2\sqrt 3 .1} ight|}}{{\sqrt {{2^2} + {{(2\sqrt 3 )}^2}} .\sqrt {{0^2} + {1^2}} }} = \frac{{\sqrt 3 }}{2}. Suy ra góc giữa hai đường thẳng bằng 30^{\circ}.

  • Câu 5: Thông hiểu

    Cho  có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

    Ta có: BH \bot AC \Rightarrow \left( {AC} ight):x + y + c = 0

    C\left( { - 1;2} ight) \in \left( {AC} ight)

    \begin{matrix}    \Rightarrow  - 1 + 2 + c = 0 \hfill \\   \Rightarrow c =  - 1 \hfill \\ \end{matrix}

    Vậy (AC):x+y−1=0

    A=AN∩AC => A là nghiệm của hệ phương trình

    \left\{ {\begin{array}{*{20}{l}}  {x + y - 1 = 0} \\   {2x - y + 5 = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {x = \dfrac{{ - 4}}{3}} \\   {y = \dfrac{7}{3}} \end{array}} ight. \Rightarrow A\left( {\dfrac{{ - 4}}{3};\dfrac{7}{3}} ight)

  • Câu 6: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 - t \\
\end{matrix} ight. và hai điểm A(1;2), B( -
3;4). Tìm m để d cắt đoạn thẳngAB.

    d:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 - t \\
\end{matrix} ight.\  ightarrow d:x + 2y - m - 2 = 0. Đoạn thẳng AB cắt d khi và chỉ khi

    \left( x_{A} + 2y_{A} - m - 2
ight)\left( x_{B} + 2y_{B} - m - 2 ight) \leq 0

    \Leftrightarrow (3 - m)^{2} \leq 0
\Leftrightarrow m = 3.

  • Câu 7: Nhận biết

    Trong mặt phẳng tọa độ Oxy, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?

    Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.

  • Câu 8: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A(6;5),B(0; - 3),C(3; - 4). Phương trình đường tròn ngoại tiếp tam giác ABC là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A(6;5),B(0;
- 3),C(3; - 4) nên ta có hệ phương trình:

    \left\{ \begin{matrix}
6^{2} + 5^{2} + 2.6.a + 2.5.b + c = 0 \\
0^{2} + ( - 3)^{2} + 2.0a + 2.( - 3).b + c = 0 \\
3^{2} + ( - 4)^{2} + 2.3a + 2.( - 4).b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
12a + 10b + c = - 61 \\
- 6a + c = - 9 \\
6a - 8b + c = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 1 \\
c = - 15 \\
\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):(x - 3)^{2} + (y - 1)^{2} = 25.

  • Câu 9: Nhận biết

    Cho đường thẳng (\Delta):3x + 4y - 4 = 0 và tọa độ điểm C(1; - 1). Tính d(C;\Delta)?

    Ta có khoảng cách từ điểm C đến đường thẳng (\Delta):3x + 4y - 4 = 0 là:

    d(C;\Delta) = \frac{\left| 3.1 + 4.( -
1) - 4 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{5}{5} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 10: Vận dụng

    Trong mặt phẳng tọa độ, người ta xác định chuyển động của một vật thể trong thời gian 60 giờ. Người ta xác định được vật thể nằm ở vị trí có tọa độ \left( 8
+ 5sint^{0};6 + 5cost^{0} ight) tại thời điểm t;(0 \leq t \leq 360). Tìm tọa độ chất điểm khi ở gần gốc tọa độ nhất?

    Từ cách xác định tọa độ của chất điểm ta có:

    \left\{ \begin{matrix}
x = 8 + 5sint^{0} \\
y = 6 + 5cost^{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 8 = 5sint^{0} \\
y - 6 = 5cost^{0} \\
\end{matrix} ight.

    \Leftrightarrow (x - 8)^{2} + (y -
6)^{2} = 25\ \ (*)

    Vậy chất điểm luôn thuộc đường tròn (C) tâm I(8;6) và có bán kính R = 5

    Gọi chất điểm là A. Khi đó A gần gốc tọa độ nhất khi A là giao điểm của OI và đường tròn. Tức là:

    \overrightarrow{OA} =
k.\overrightarrow{OI};(0 < k < 1)

    Hay \left\{ \begin{matrix}
x_{A} = 8k \\
y_{A} = 6k \\
\end{matrix} ight. thay vào (*) ta được:

    (8k - 8)^{2} + (6k - 6)^{2} =
25

    \Leftrightarrow (k - 1)^{2} =\dfrac{1}{4} \Leftrightarrow \left\lbrack \begin{matrix}k = \dfrac{3}{2} \\k = \dfrac{1}{2} \\\end{matrix} ight.

    0 < k < 1 nên lấy k = \frac{1}{2}. Khi đó tọa độ điểm A là \left\{ \begin{matrix}
x_{A} = 4 \\
y_{A} = 3 \\
\end{matrix} ight.

  • Câu 12: Thông hiểu

    Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là 1420. Phương trình chính tắc của Hypebol là:

    Phương trình chính tắc của Hypebol có dạng \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1

    Ta có: \left\{ \begin{matrix}
2a = 14 \\
2c = 20 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 7 \\
c = 10 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 49 \\
c^{2} = 100 \\
\end{matrix} ight.

    \Rightarrow b^{2} = c^{2} - a^{2} =
51

    Vậy phương trình chính tắc của Hypebol là: \frac{x^{2}}{49} - \frac{y^{2}}{51} =
1.

  • Câu 13: Thông hiểu

    Cho hypebol (H): \frac{x^{2}}{36}+\frac{y^{2}}{9}=1. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:

    Ta có: \frac{x^{2}}{36}+\frac{y^{2}}{9}=1

    Ta có: a = 6; b =3

    => Độ dài trục ảo là 6, độ dài trục thực là 12

    => Tỉ số giữa độ dài trục ảo và độ dài trục thực là: 

    \frac{{2b}}{{2a}} = \frac{6}{{12}} = \frac{1}{2}

  • Câu 14: Vận dụng

    Cho ba đường thẳng \left( d_{1} ight):3x - 2y + 5 = 0, \left( d_{2} ight):2x + 4y - 7 =
0\left( d_{3} ight):3x + 4y -
1 = 0. Phương trình nào dưới đây là phương trình đường thẳng đi qua giao điểm của hai đường thẳng \left(
d_{1} ight);\left( d_{2} ight) và song song với \left( d_{3} ight)?

    Đường thẳng \left( d_{3} ight):3x + 4y
- 1 = 0\overrightarrow{n_{3}} =
(3;4)

    Gọi M là giao điểm của hai đường thẳng \left( d_{1} ight);\left( d_{2}
ight), tọa độ điểm M là nghiệm của hệ phương trình: \left\{ \begin{matrix}
3x - 2y + 5 = 0 \\
2x + 4y - 7 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{3}{8} \\
y = \frac{31}{16} \\
\end{matrix} ight.\  \Rightarrow M\left( - \frac{3}{8};\frac{31}{16}
ight)

    Đường thẳng d đi qua giao điểm M có vecto pháp tuyến \overrightarrow{n_{3}} = (3;4)

    Vậy phương trình tổng quát của đường thẳng cần tìm là: 3x + 4y - \frac{53}{8} = 0 hay 24x + 32y - 53 = 0.

  • Câu 15: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{25} + \frac{y^{2}}{9} =
1. Biết điểm M \in (E) sao cho \widehat{F_{1}MF_{2}} = 90^{0}. Hãy tính bán kính đường tròn nội tiếp tam giác MF_{1}F_{2}.

    Gọi M(x;y)\widehat{F_{1}MF_{2}} = 90^{0} \Rightarrow M{F_{1}}^{2} + M{F_{2}}^{2} =
F_{1}{F_{2}}^{2} \Leftrightarrow x^{2} + y^{2} = c^{2} = 16 (1)

    Do M \in (E) \Rightarrow \frac{x^{2}}{25}
+ \frac{y^{2}}{9} = 1(2)

    Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc x^{2} = \frac{175}{16};y^{2} = \frac{81}{16}
\Leftrightarrow x = \pm \frac{5\sqrt{7}}{4};y = \frac{9}{4}

    Ta có: nửa chu vi p = \frac{MF_{1} +
MF_{2} + F_{1}F_{2}}{2} = \frac{2a + 2c}{2} = a + c = 9

    Khoảng các từ M đến trục Ox:d(M;Ox) =
\left| y_{M} ight| = \frac{9}{4}

    S_{\Delta MF_{1}F_{2}} =
\frac{1}{2}d(M;Ox).F_{1}F_{2} = 9

    Bán kính đuờng tròn nội tiếp: r =
\frac{S}{p} = 1.

  • Câu 16: Thông hiểu

    Khoảng cách từ giao điểm của hai đường thẳng x - 3y + 4 = 02x + 3y - 1 = 0 đến đường thẳng \Delta:3x + y + 4 = 0 bằng:

    \left\{ \begin{matrix}
x - 3y + 4 = 0 \\
2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 1 \\
\end{matrix} ight.\  ightarrow A( - 1;1)

    ightarrow d(A;\Delta) = \frac{| - 3 +
1 + 4|}{\sqrt{9 + 1}} = \frac{2}{\sqrt{10}}.

  • Câu 17: Nhận biết

    Cho elip (E):4x^{2} + 5y^{2} = 20. Diện tích hình chữ nhật cơ sở của (E)

    (E):4x^{2} + 5y^{2} = 20 \Leftrightarrow
\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1

    Độ dài trục lớn: 2a =
2\sqrt{5}.

    Độ dài trục bé: 2b = 2.2 =
4.

    Diện tích hình chữ nhật cơ sở của (E) là: 2\sqrt{5}.4 = 8\sqrt{5}.

  • Câu 18: Nhận biết

    Xác định tâm và bán kính đường tròn (C):(x - 4)^{2} + (y + 5)^{2} = 12?

    Ta có: (C):(x - 4)^{2} + (y + 5)^{2} =
12

    Vậy đường tròn có bán kính I(4; -
5) và bán kính R =
2\sqrt{3}

  • Câu 19: Thông hiểu

    Khoảng cách nhỏ nhất từ điểm M(15;1) đến một điểm bất kì thuộc đường thẳng \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight. bằng:

    \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight.\  ightarrow \Delta:x - 3y - 2 = 0

    \overset{\forall N \in
\Delta}{ightarrow}MN_{\min} = d(M;\Delta) = \frac{|15 - 3 -
2|}{\sqrt{1 + 9}} = \sqrt{10}.

  • Câu 20: Nhận biết

    Đường thẳng d đi qua điểm A( - 4;5) và có vectơ pháp tuyến \overrightarrow{n} = (3;2) có phương trình tham số là:

    \left\{ \begin{matrix}A( - 4;5) \in d \\{\overrightarrow{n}}_{d} = (3;2) ightarrow {\overrightarrow{u}}_{d} =( - 2;3) \\\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}x = - 4 - 2t \\y = 5 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo