Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Nếu c^{2} = a^{2} +
b^{2} thì (H) có các tiêu điểm là F_{1}(c;0), F_{2}( - c;0).

  • Câu 2: Vận dụng

    Đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:2x + y - 3 = 0d_{2}:x - 2y + 1 = 0 đồng thời tạo với đường thẳng d_{3}:y - 1 = 0 một góc 45^{0} có phương trình:

    \left\{ \begin{matrix}
d_{1}:2x + y - 3 = 0 \\
d_{2}:x - 2y + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.

    ightarrow d_{1} \cap d_{2} = A(1;1) \in
\Delta.

    Ta có d_{3}:y - 1 = 0 ightarrow
{\overrightarrow{n}}_{3} = (0;1),gọi {\overrightarrow{n}}_{\Delta} = (a;b),\ \ \varphi
= \left( \Delta;d_{3} ight). Khi đó

    \frac{1}{\sqrt{2}} = \cos\varphi =
\frac{|b|}{\sqrt{a^{2} + b^{2}}.\sqrt{0 + 1}} \Leftrightarrow a^{2} +
b^{2} = 2b^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = b ightarrow a = b = 1 ightarrow \Delta:x + y - 2 = 0 \\
a = - b ightarrow a = 1,\ b = - 1 ightarrow \Delta:x - y = 0 \\
\end{matrix} ight.\ .

  • Câu 3: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).

     Vectơ chỉ phương của đường thẳng AB là (2; 1).

  • Câu 4: Nhận biết

    Xác định tâm và bán kính đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0.

    Ta có: \left\{ \begin{matrix}
- 2a = - 6 \\
- 2b = 2 \\
c = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = - 1 \\
c = 6 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
I(3; - 1) \\
R = \sqrt{a^{2} + b^{2} - c^{2}} = 2 \\
\end{matrix} ight.

    Vậy đường tròn có tâm và bán kính lần lượt là: I(3; - 1),R = 2.

  • Câu 5: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} - 4x - 6y - 12 = 0 và đường thẳng d:3x + 4y - 6 = 0. Tìm phương trình tiếp tuyến của (C) song song với đường thẳng d?

    Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5

    Phương trình đường thẳng \Delta_{1} song song với d có dạng 3x + 4y + c_{1} = 0

    \Delta_{1} tiếp xúc với (C) nên d\left( I;\Delta_{1} ight) = R

    Hay \frac{\left| 3.2 + 4.3 + c_{1}
ight|}{\sqrt{3^{2} + 4^{2}}} = 5 \Leftrightarrow \left| 18 + c_{1}
ight| = 25

    \Leftrightarrow \left\lbrack
\begin{matrix}
18 + c_{1} = 25 \\
18 + c_{1} = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
c_{1} = 7 \\
c_{1} = - 43 \\
\end{matrix} ight.

    Vậy phương trình tiếp tuyến của (C) song song với (d) là: 3x +
4y + 7 = 0 hoặc 3x + 4y - 43 =
0.

  • Câu 6: Nhận biết

    Đường tròn có tâm I(1;2), bán kính R = 3 có phương trình là:

    (C):\left\{ \begin{matrix}
I(1;2) \\
R = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 1)^{2} + (y - 2)^{2} = 9
\Leftrightarrow x^{2} + y^{2} - 2x - 4y - 4 = 0.

  • Câu 7: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(–2\ ;\ 0),\ B(1\ ;\ 4) và đường thẳng d:\left\{ \begin{matrix}
x = - t \\
y = 2 - t \\
\end{matrix} ight.. Tìm tọa độ giao điểm của đường thẳng ABd.

    \left\{ \begin{matrix}
A(–2\ ;\ 0),\ B(1\ ;\ 4) ightarrow AB:4x - 3y + 8 = 0 \\
d:\left\{ \begin{matrix}
x = - t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow d:x - y + 2 = 0 \\
\end{matrix} ight.

    \overset{AB \cap d}{ightarrow}\left\{
\begin{matrix}
4x - 3y + 8 = 0 \\
x - y + 2 = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight.\ .

  • Câu 8: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 2 + 2t \\
y = - 3t \\
\end{matrix} ight.\
d_{2}:\left\{ \begin{matrix}
x = 2 + mt \\
y = - 6 + (1 - 2m)t \\
\end{matrix} ight. trùng nhau?

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 2 + 2t \\
y = - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (2; - 3)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 + mt \\
y = - 6 + (1 - 2m)t \\
\end{matrix} ight.\  ightarrow A(2; - 6) \in d_{2},\ \
{\overrightarrow{u}}_{2} = (m;1 - 2m) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{1} \\
\frac{m}{2} = \frac{1 - 2m}{- 3} \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 9: Vận dụng

    Cho parabol (P) có đường chuẩn là đường thẳng ∆: x + 5 = 0. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:

    Phương trình đường chuẩn ∆: x + 5 = 0

    => \frac{p}{2} = 5

    => p = 10

    Từ đó ta thu được phương trình parabol (P): y^2 = 20x.

    Tiêu điểm F của (P) là F(5; 0).

    Giả sử điểm M(x_M; y_M) là điểm thuộc (P).

    => y^2_M=20x_M

    Với F(5; 0)M(x_M; y_M) ta có:

    \begin{matrix}  \overrightarrow {FM}  = \left( {{x_M} - 5;{y_M}} ight) \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{{\left( {{x_M} - 5} ight)}^2} + {y_M}^2}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{x_M}^2 - 10{x_M} + 25 + 20{x_M}}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{x_M}^2 + 10{x_M} + 25}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{{\left( {{x_M} + 5} ight)}^2}}  = {x_M} + 5 \hfill \\  FM = 6 \Rightarrow {x_M} + 5 = 6 \Rightarrow {x_M} = 1 \hfill \\ \end{matrix}

    Với {x_M} = 1 \Rightarrow {y_M}^2 = 20.1 = 20

    Vậy tọa độ điểm M là: M(1;-2\sqrt{5}),M(1;-2\sqrt{5})

  • Câu 10: Thông hiểu

    Đường thẳng d đi qua điểm M( - 2;1) và vuông góc với đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - 3t \\
y = - 2 + 5t \\
\end{matrix} ight. có phương trình tham số là:

    \left\{ \begin{matrix}
M( - 2;1) \in d \\
{\overrightarrow{u}}_{\Delta} = ( - 3;5) \\
d\bot\Delta \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M( - 2;1) \in d \\
{\overrightarrow{n}}_{d} = ( - 3;5) ightarrow {\overrightarrow{u}}_{d}
= (5;3) \\
\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}
x = - 2 + 5t \\
y = 1 + 3t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 12: Vận dụng

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 2y - 2 = 0, bán kính R = 5 và tiếp xúc với đường thẳng \Delta:\ 3x - 4y - 11 = 0. Biết tâm I có hoành độ dương. Phương trình của đường tròn (C) là:

    \begin{matrix}
I \in d ightarrow I(2 - 2a;a),\ \ a < 1 ightarrow d\lbrack
I;\Deltabrack = R = 5 \\
\Leftrightarrow \frac{|10a + 5|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
a = 2\ \ (l) \\
a = - 3 \\
\end{matrix} ight.\  ightarrow I(8; - 3) \\
\end{matrix}.

    Vậy phương trình đường tròn là: (x -
8)^{2} + (y + 3)^{2} = 25.

  • Câu 13: Nhận biết

    Một đường thẳng có bao nhiêu vectơ pháp tuyến?

     Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.

  • Câu 14: Nhận biết

    Dạng chính tắc của hypebol là

    Dạng chính tắc của hypebol là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1.

  • Câu 15: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 16: Nhận biết

    Đường thẳng 12x
- 7y + 5 = 0 không đi qua điểm nào sau đây ?

    Gọi 12x - 7y + 5 = 0.

    Đặt f(x;y) = 12x - 7y +
5\overset{}{ightarrow}\left\{ \begin{matrix}
f\left( M(1;1) ight) = 10\boxed{=}0 ightarrow M\boxed{\in}d \\
f\left( N( - 1; - 1) ight) = 0 ightarrow N \in d \\
f(P) = 0,\ \ f(Q) = 0 \\
\end{matrix} ight.\ . Chọn M(1;1).

  • Câu 17: Thông hiểu

    Cho phương trình x^{2} + y^{2}–8x + 10y + m = 0(1). Tìm điều kiện của m để (1) là phương trình đường tròn có bán kính bằng 7.

    x^{2} + y^{2}–8x + 10y + m = 0
ightarrow \left\{ \begin{matrix}
a = 4 \\
b = - 5 \\
c = m \\
\end{matrix} ight.

    ightarrow a^{2} + b^{2} - c = R^{2} =
49 \Leftrightarrow m = - 8.

  • Câu 18: Nhận biết

    Khoảng cách từ điểm A(0;1) đến đường thẳng (\Delta):5x - 12y - 1 = 0 bằng:

    Áp dụng công thức tính khoảng cách từ một điểm đến một đường thẳng ta có:

    d(A;\Delta) = \frac{|5.1 - 12.1 -
1|}{\sqrt{5^{2} + ( - 12)^{2}}} = 1

    Vậy khoảng cách từ điểm A đến đường thẳng đã cho bằng 1.

  • Câu 19: Thông hiểu

    Phương trình chính tắc của Elip có đỉnh ( - 3;\ 0) và một tiêu điểm là (1;\ 0)

    Elip có đỉnh ( - 3;\ 0) \Rightarrow a =
3 và một tiêu điểm (1;\ 0)
\Rightarrow c = 1.

    Ta có c^{2} = a^{2} - b^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 9 - 1 = 8.

    Vậy phương trình (E):\frac{x^{2}}{9} +
\frac{y^{2}}{8} = 1.

  • Câu 20: Thông hiểu

    Tìm phương trình chính tắc của elip có tiêu cự bằng 6 và trục lớn bằng 10.

    Phương trình chính tắc của elip: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{a}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{b}^{\mathbf{2}}}\mathbf{=}\mathbf{1.}

    Độ dài trục lớn 2a = 10 \Leftrightarrow a
= 5.

    Tiêu cự 2c = 6 \Leftrightarrow c =
3.

    Ta có: a^{2} = b^{2} + c^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 16

    Vậy phương trình chính tắc của elip là \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{25}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{16}}\mathbf{=}\mathbf{1.}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo