Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khái niệm nào sau đây định nghĩa về hypebol?

    Cho F_{1},\ F_{2} cố định với F_{1}F_{2} = 2c,\ (c > 0). Hypebol (H) là tập hợp điểm M sao cho \left| MF_{1} - MF_{2} ight| = 2a với a là một số không đổi và a < c.

  • Câu 2: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):16x^{2} + 16y^{2} + 16x - 8y - 11 = 0 là:

    (C):16x^{2} + 16y^{2} + 16x - 8y - 11 =
0 \Leftrightarrow x^{2} + y^{2} + x - \frac{1}{2}y - \frac{11}{16} =
0.

    ightarrow \left\{ \begin{matrix}
I\left( - \frac{1}{2};\frac{1}{4} ight) \\
R = \sqrt{\frac{1}{4} + \frac{1}{16} + \frac{11}{16}} = 1. \\
\end{matrix} ight.

  • Câu 4: Nhận biết

    Đường thẳng d:51x - 30y + 11 = 0 đi qua điểm nào sau đây?

    Đặt f(x;y) = 51x - 30y +
11\overset{}{ightarrow}\left\{ \begin{matrix}
f(M) = f\left( - 1; - \frac{4}{3} ight) = 0 ightarrow M \in d \\
f(N) = f\left( - 1;\frac{4}{3} ight) = - 80\boxed{=}0 ightarrow
N\boxed{\in}d \\
f(P)\boxed{=}0 \\
f(Q)\boxed{=}0 \\
\end{matrix} ight.\ .

    Chọn M\left( - 1; - \frac{4}{3}
ight).

  • Câu 5: Thông hiểu

    Xác định góc giữa hai đường thẳng (a):\sqrt{3}x - y + 7 = 0(b):x - \sqrt{3}y - 1 = 0?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{a}} = \left( \sqrt{3};1 ight) \\
\overrightarrow{n_{b}} = \left( 1; - \sqrt{3} ight) \\
\end{matrix} ight.

    \cos(a;b) = \frac{\left|
\overrightarrow{n_{a}}.\overrightarrow{n_{b}} ight|}{\left|
\overrightarrow{n_{a}} ight|.\left| \overrightarrow{n_{b}} ight|} =
\frac{\sqrt{3}}{2}

    \Rightarrow (a;b) = 30^{0}

  • Câu 6: Nhận biết

    Đường thẳng nào sau đây song song với đường thẳng (d):2x + 3y - 1 = 0?

    Đường thẳng (d):2x + 3y - 1 = 0 song song với đường thẳng 2x + 3y + 5 =
0\frac{2}{2} = \frac{3}{3} eq
\frac{- 1}{5}.

  • Câu 7: Vận dụng

    Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:

     Gọi M(a;b)

    M \in \Delta \Rightarrow a+b-1=0 \Rightarrow a=1-b

    Do đó M(1-b;b).

    Ta có: MN=5 \Leftrightarrow\sqrt {{{( - 1 - 1 + b)}^2} + {{(3 - b)}^2}}  = 5\Rightarrow b =  - 1 \Rightarrow a = 2.

  • Câu 8: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(2; - 1)D(2;5).

    Ta có:

    \left\{ \begin{matrix}C(2; - 1) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 9: Thông hiểu

    Biết điểm M \in
(H):\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1. Giả sử x_{M} = 8 thì khoảng cách từ điểm M đến các tiêu điểm của (H) bằng bao nhiêu?

    Ta có: M \in (H)x_{M} = 8

    \Rightarrow \frac{8^{2}}{16} -
\frac{{y_{M}}^{2}}{9} = 1 \Rightarrow y_{M} = \pm 3\sqrt{3}

    Có hai điểm M thỏa mãn là: M_{1}\left(
8;3\sqrt{3} ight),M_{2}\left( 8; - 3\sqrt{3} ight)

    Tiêu điểm của (H) là: F_{1}( - 5;0),F_{2}(0;5)

    \Rightarrow \left\{ \begin{matrix}
M_{1}F_{1} = M_{2}F_{1} = 14 \\
M_{1}F_{2} = M_{2}F_{2} = 6 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: 614.

  • Câu 10: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:

     Ta có: I(4;-1) ,R=\sqrt{11}.

  • Câu 11: Thông hiểu

    Cho phương trình x^{2} + y^{2}–8x + 10y + m = 0(1). Tìm điều kiện của m để (1) là phương trình đường tròn có bán kính bằng 7.

    x^{2} + y^{2}–8x + 10y + m = 0
ightarrow \left\{ \begin{matrix}
a = 4 \\
b = - 5 \\
c = m \\
\end{matrix} ight.

    ightarrow a^{2} + b^{2} - c = R^{2} =
49 \Leftrightarrow m = - 8.

  • Câu 12: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(–1\ ;\ 3)D(3\ ;\ 1).

    Ta có:

    \left\{ \begin{matrix}C( - 1;3) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 13: Nhận biết

    Cho hình elip có phương trình \frac{x^{2}}{64} + \frac{y^{2}}{36} = 1. Hình elip có tiêu cự trục lớn bằng:

    Ta có: \frac{x^{2}}{64} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a = 8 \\
b = 6 \\
\end{matrix} ight.

    Độ dài trục lớn là: 2a = 2.8 =
16

  • Câu 14: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ các đỉnh A(1; - 2),B(3;4),C( - 1;5). Viết phương trình đường cao AH của tam giác ABC?

    Ta có: AH\bot BC nên đường cao AH là một vectơ pháp tuyến là \overrightarrow{BC} = ( - 4;1)

    Phương trình đường cao AH là:

    - 4(x - 1) + 1(y + 2) = 0

    \Leftrightarrow - 4x + y + 6 =
0.

    Vậy đường thẳng cần tìm có phương trình - 4x + y + 6 =
0.

  • Câu 15: Thông hiểu

    Cho hai đường thẳng \left( d_{1} ight):x + 3y + 8 = 0; \left( d_{2} ight):3x - 4y + 10 =
0 và điểm A( - 2;1). Phương trình đường tròn có tâm I \in \left(
d_{1} ight), đi qua điểm A và tiếp xúc với \left( d_{2} ight) là:

    Hình vẽ minh họa

    Ta có I là tâm đường tròn và I \in \left(
d_{1} ight) nên I( - 3t -
8;t)

    Theo giả thiết bài toán ta có:

    d\left( I;\left( d_{2} ight) ight) =
IA

    \Leftrightarrow \frac{\left| 3( - 3t -
8) - 4t + 10 ight|}{\sqrt{3^{2} + 4^{2}}} = \sqrt{( - 3t - 8 + 2)^{2}
+ (t - 1)^{2}}

    \Leftrightarrow t = - 3

    Suy ra I(1; - 3) và bán kính R = IA = 5

    Vậy phương trình đường tròn cần tìm là: (C):(x - 1)^{2} + (y + 3)^{2} = 25.

  • Câu 16: Vận dụng

    Xác định a để hai đường thẳng d_{1}:ax + 3y–4 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + t \\
y = 3 + 3t \\
\end{matrix} ight. cắt nhau tại một điểm nằm trên trục hoành.

    Ox \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = - 1 + t \\
y = 3 + 3t = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 0 \\
\end{matrix} ight.

    ightarrow Ox \cap d_{2} = A( - 2;0)
\in d_{1}

    ightarrow - 2a - 4 = 0 \Leftrightarrow
a = - 2.

  • Câu 17: Thông hiểu

    Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm F_{1}\left(
- \sqrt{3};0 ight) và đi qua điểm D\left( 1;\frac{\sqrt{3}}{2} ight)?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;\left( a > b > 0,c^{2} = a^{2} - b^{2} ight)

    Ta có:

    c^{2} = a^{2} - b^{2} \Rightarrow c =
\sqrt{a^{2} - b^{2}} = \sqrt{3}

    Khi đó ta có: a^{2} - b^{2} = 3\ \
(*)

    Do elip đi qua điểm D\left(
1;\frac{\sqrt{3}}{2} ight)

    \Rightarrow \frac{1}{a^{2}} +
\frac{3}{4b^{2}} = 1 \Rightarrow 4b^{2} + 3a^{2} = 4a^{2}b^{2}\ \
(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}
a^{2} - b^{2} = 3 \\
4b^{2} + 3a^{2} = 4a^{2}b^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 3.\left( 3 + b^{2} ight) = 4.\left( 3 + b^{2} ight).b^{2}
\\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 5b^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{4} + \frac{y^{2}}{1} =
1.

  • Câu 18: Vận dụng

    Cho Elip (E):\frac{x^{2}}{16} + \frac{y^{2}}{12} =
1 và một điểm M nằm trên (E). Giải sử điểm M có hoành độ bằng 1. Hãy tính khoảng cách từ M đến hai tiêu điểm của (E).

    Giả sử phương trình (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\
(a > b > 0) Ta có : \left\{
\begin{matrix}
a^{2} = 16 \\
b^{2} = 12 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c^{2} = a^{2} - b^{2} = 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 2 \\
\end{matrix} ight.

    Gọi F_{1},F_{2} lần lượt là hai tiêu điểm của Elip (E),M\left( 1;y_{M} ight) \in (E), ta có :

    \left\{ \begin{matrix}
MF_{1} = a + \frac{c}{a}x_{M} = 4 + \frac{1}{2}.1 = 4,5 \\
MF_{2} = a - \frac{c}{a}x_{M} = 4 - \frac{1}{2}.1 = 3,5 \\
\end{matrix} ight..

  • Câu 19: Vận dụng

    Viết phương trình tiếp tuyến \Delta của đường tròn (C):(x - 1)^{2} + (y + 2)^{2} = 8, biết tiếp tuyến đi qua điểm A(5; -
2).

    Đường tròn (C) có tâm I(1; - 2),\ R =
2\sqrt{2} và tiếp tuyến có dạng

    \Delta:ax + by - 5a + 2b = 0\ \ \left(a^{2} + b^{2}eq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|4a|}{\sqrt{a^{2} + b^{2}}} = 2\sqrt{2}
\Leftrightarrow a^{2} - b^{2} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = b ightarrow a = b = 1 \\
a = - b ightarrow a = 1,\ b = - 1 \\
\end{matrix} ight.\ .

  • Câu 20: Thông hiểu

    Các cặp đường thẳng nào sau đây vuông góc với nhau?

    (i) \left\{ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = t \\
y = - 1 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (1; - 2)
\\
d_{2}:2x + y–1 = 0 ightarrow {\overrightarrow{n}}_{2} = (2;1)
ightarrow {\overrightarrow{u}}_{2} = (1; - 2) \\
\end{matrix} ight.

    ightarrow {\overrightarrow{u}}_{1}
\cdot {\overrightarrow{u}}_{2}\boxed{=}0 ightarrow loại.

    (ii) \left\{ \begin{matrix}
d_{1}:x - 2 = 0 ightarrow {\overrightarrow{n}}_{1} = (1;0) \\
d_{2}:d_{2}:\left\{ \begin{matrix}
x = t \\
y = 0 \\
\end{matrix} ight.\ . ightarrow {\overrightarrow{u}}_{2} = (1;0)
ightarrow {\overrightarrow{n}}_{2} = (0;1) \\
\end{matrix} ight.

    ightarrow {\overrightarrow{n}}_{1}
\cdot {\overrightarrow{n}}_{2} = 0 ightarrow d_{1}\bot d_{2}. Chọn đáp án này.

    Tương tự, kiểm tra và loại các đáp án còn lại.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo