Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Viết phương trình tiếp tuyến \Delta của đường tròn (C):(x - 1)^{2} + (y + 2)^{2} = 8, biết tiếp tuyến đi qua điểm A(5; -
2).

    Đường tròn (C) có tâm I(1; - 2),\ R =
2\sqrt{2} và tiếp tuyến có dạng

    \Delta:ax + by - 5a + 2b = 0\ \ \left(a^{2} + b^{2}eq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|4a|}{\sqrt{a^{2} + b^{2}}} = 2\sqrt{2}
\Leftrightarrow a^{2} - b^{2} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = b ightarrow a = b = 1 \\
a = - b ightarrow a = 1,\ b = - 1 \\
\end{matrix} ight.\ .

  • Câu 2: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} - 4x + 2y - 3 = 0 là:

    \begin{matrix}
(C):x^{2} + y^{2} - 4x + 2y - 3 = 0 ightarrow a = 2,\ b = - 1,\ c = -
3 \\
ightarrow I(2; - 1),\ R = \sqrt{4 + 1 + 3} = 2\sqrt{2}. \\
\end{matrix}

  • Câu 3: Nhận biết

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 4: Vận dụng

    Dây cung của elip (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 (0 < b < a) vuông góc với trục lớn tại tiêu điểm có độ dài bằng:

    Hai tiêu điểm có tọa độ lần lượt là F_{1}( - \ c;\ 0),\ \ F_{2}(c;\ 0).

    Đường thẳng chứa dây cung vuông góc với trục lớn (trục hoành ) tại tiêu điểm F có phương trình là \Delta:x = c.

    Suy ra \Delta \cap (E) \Leftrightarrow
\left\{ \begin{matrix}
\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \\
x = c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
\frac{c^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
y^{2} = \frac{b^{2}\left( a^{2} - c^{2} ight)}{a^{2}} =
\frac{b^{4}}{a^{2}} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
y = \pm \frac{b^{2}}{a} \\
\end{matrix} ight.

    Vậy tọa độ giao điểm của \Delta(E)M\left( c;\ \frac{b^{2}}{a} ight),\ \ N\left(
c;\  - \frac{b^{2}}{a} ight) \Rightarrow MN =
\frac{2b^{2}}{a}.

  • Câu 5: Thông hiểu

    Đường Hyperbol \frac{x^{2}}{20} - \frac{y^{2}}{16} = 1 có tiêu cự bằng:

    Ta có : \left\{ \begin{matrix}
a^{2} = 20 \\
b^{2} = 16 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2\sqrt{5} \\
b = 4 \\
c = 6 \\
\end{matrix} ight.. Tiêu cự 2c
= 12.

  • Câu 6: Nhận biết

    Đường thẳng 12x
- 7y + 5 = 0 không đi qua điểm nào sau đây ?

    Gọi 12x - 7y + 5 = 0.

    Đặt f(x;y) = 12x - 7y +
5\overset{}{ightarrow}\left\{ \begin{matrix}
f\left( M(1;1) ight) = 10\boxed{=}0 ightarrow M\boxed{\in}d \\
f\left( N( - 1; - 1) ight) = 0 ightarrow N \in d \\
f(P) = 0,\ \ f(Q) = 0 \\
\end{matrix} ight.\ . Chọn M(1;1).

  • Câu 7: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;3), B( -
2;4)C( - 1;5). Đường thẳng d:2x - 3y + 6 = 0 cắt cạnh nào của tam giác đã cho?

    Đặt f(x;y) = 2x - 3y +
6\overset{}{ightarrow}\left\{ \begin{matrix}
f\left( A(1;3) ight) = - 1 < 0 \\
f\left( B( - 2;4) ight) = - 10 < 0 \\
f\left( C( - 1;5) ight) = - 11 < 0 \\
\end{matrix} ight.\ \ \ \ \overset{}{ightarrow} d không cắt cạnh nào của tam giác ABC.

  • Câu 8: Thông hiểu

    Gọi E là tọa độ giao điểm hai đường thẳng \left(
d_{1} ight):x - 3y + 4 = 0\left( d_{2} ight):2x + 3y - 1 = 0. Tính khoảng cách từ E đến đường thẳng (\Delta):3x + y + 4 = 0

    Vì E là giao điểm hai đường thẳng \left(
d_{1} ight):x - 3y + 4 = 0\left( d_{2} ight):2x + 3y - 1 = 0 nên tọa độ điểm E là nghiệm của hệ phương trình: \left\{ \begin{matrix}
x - 3y + 4 = 0 \\
2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 1 \\
\end{matrix} ight.

    Khi đó khoảng cách từ điểm E đến đường thẳng (\Delta):3x + y + 4 = 0 là:

    d(E;\Delta) = \frac{\left| 3.( - 1) + 1
+ 4 ight|}{\sqrt{3^{2} + 1^{2}}} = \frac{\sqrt{10}}{5}

    Vậy khoảng cách cần tìm bằng \frac{\sqrt{10}}{5}.

  • Câu 9: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):16x^{2} + 16y^{2} + 16x - 8y - 11 = 0 là:

    (C):16x^{2} + 16y^{2} + 16x - 8y - 11 =
0 \Leftrightarrow x^{2} + y^{2} + x - \frac{1}{2}y - \frac{11}{16} =
0.

    ightarrow \left\{ \begin{matrix}
I\left( - \frac{1}{2};\frac{1}{4} ight) \\
R = \sqrt{\frac{1}{4} + \frac{1}{16} + \frac{11}{16}} = 1. \\
\end{matrix} ight.

  • Câu 10: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1. Khi đó độ dài trục lớn và trục nhỏ của elip lần lượt là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
\end{matrix} ight.

    Độ dài trục lớn AA_{1} = 2a =
6

    Độ dài trục bé BB_{1} = 2b =
4

    Vậy độ dài trục lớn và trục nhỏ của elip lần lượt là: 6;4

  • Câu 11: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M( - 3;5) và song song với đường phân giác của góc phần tư thứ nhất.

    Góc phần tư (I) : x - y =
0\overset{ightarrow}{}VTCP:\overrightarrow{u}(1;1) =
{\overrightarrow{u}}_{d}\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = - 3 + t \\
y = 5 + t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 12: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x + 3)^{2} + (y - 5)^{2} = 10. Viết phương trình tiếp tuyến của đường tròn đã cho, biết hệ số góc của tiếp tuyền bằng - \frac{1}{3}.

    Đường tròn (C) có tâm I( - 3;5) và bán kính R = \sqrt{10}

    Tiếp tuyến d có hệ số góc k = -
\frac{1}{3} nên có dạng y = -
\frac{1}{3}x + b

    \Leftrightarrow x + 3y - 3b =
0

    Vì d là tiếp tuyến của (C) nên d(I;d) = R

    \Leftrightarrow \frac{| - 3 + 3.5 -
3b|}{\sqrt{1^{2} + 3^{2}}} = \sqrt{10}

    \Leftrightarrow |12 - 3b| = 10\Leftrightarrow \left\lbrack \begin{matrix}b = \dfrac{2}{3} \\b = \dfrac{22}{3} \\\end{matrix} ight.

    Với b = \frac{2}{3} thì phương trình d là: y = - \frac{1}{3}x + \frac{2}{3}
\Rightarrow x + 3y - 2 = 0

    Với b = \frac{22}{3} thì phương trình d là: y = - \frac{1}{3}x +
\frac{22}{3} \Rightarrow x + 3y - 22 = 0

    Vậy các phương trình tiếp tuyến cần tìm là: x + 3y - 2 = 0;x + 3y - 22 = 0.

  • Câu 13: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:

     Ta có: {d_{(A,d)}} = \frac{{\left| {2.1 + 3. - 3 + 5} ight|}}{{\sqrt {{2^2} + {3^2}} }} = \frac{{2\sqrt {13} }}{{13}}.

  • Câu 14: Thông hiểu

    Cho ba đường thẳng \left( d_{1} ight):3x + 2y - 5 = 0, \left( d_{2} ight): - 2x + 3y - 1 =
0\left( d_{3} ight):(m - 1)x
+ (2m - 3)y - 2 = 0 với m là tham số. Xác định giá trị của tham số m để ba đường thẳng \left( d_{1}
ight);\left( d_{2} ight);\left( d_{3} ight) đồng quy?

    Gọi A = d_{1} \cap d_{2}. Khi đó tọa độ điểm A là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
3x + 2y - 5 = 0 \\
- 2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.\  \Rightarrow A(1;1)

    Để ba đường thẳng đồng quy thì A \in
\left( d_{3} ight) hay

    (m - 1).1 + (2m - 3).1 - 2 =
0

    \Leftrightarrow m = 2

    Vậy m = 2 thì ba đường thẳng đã cho đồng quy.

  • Câu 15: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hệ số góc k của đường thẳng \Delta là:

    Ta có:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương \overrightarrow{u}(1;3) nên có hệ số góc k = \frac{3}{1} =
3.

    Vậy hệ số góc của đường thẳng là k=3.

  • Câu 16: Vận dụng

    Nếu ba đường thẳng \ d_{1}:\ 2x + y–4 = 0, d_{2}:5x–2y + 3 = 0d_{3}:mx + 3y–2 = 0 đồng quy thì m nhận giá trị nào trong các giá trị sau?

    \left\{ \begin{matrix}
\ d_{1}:\ 2x + y–4 = 0 \\
d_{2}:5x–2y + 3 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = \frac{5}{9} \\
y = \frac{26}{9} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left(
\frac{5}{9};\frac{26}{9} ight) \in d_{3} ightarrow \frac{5m}{9} + \frac{26}{3} - 2 = 0
\Leftrightarrow m = - 12.

  • Câu 17: Nhận biết

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

  • Câu 18: Thông hiểu

    Viết phương trình đường tròn (C) có tâm I(
- 1;2) và tiếp xúc với đường thẳng \Delta:x - 2y + 7 = 0?

    Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng \Delta:x - 2y + 7 = 0 nên

    R = d(I;\Delta) = \frac{| - 1 - 4 -
7|}{\sqrt{1 + 4}} = \frac{2}{\sqrt{5}}

    Vậy phương trình đường tròn cần tìm là: (x + 1)^{2} + (y - 2)^{2} =
\frac{4}{5}.

  • Câu 19: Thông hiểu

    Trong mặt phẳng Oxy, cho Parabol (P): y^{2} =
8x có tiêu điểm F. Tìm trên (P) điểm M cách F một khoảng là 3.

    Giả sử M\left( x_{M}\ ;\ y_{M} ight)
\in (P). Suy ra {y_{M}}^{2} =
8x_{M}. (1)

    Từ phương trình y^{2} = 8x suy ra p = 4 nên F(2\ ;\ 0).

    Ta có: FM = \frac{p}{2} + x_{M}. Suy ra x_{M} = 1. Kết hợp (1) ta có: y_{M} = \pm 2\sqrt{2}.

    Vậy có hai điểm M\left( 1\ ;\ 2\sqrt{2}
ight) hoặc M\left( 1\ ;\  -
2\sqrt{2} ight)thỏa mãn.

  • Câu 20: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:

     \overrightarrow u  = (0;6) \Rightarrow \overrightarrow n  = (6;0) \Rightarrow \overrightarrow n  = (1;0).

    Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: x-2=0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo