Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: 3x – 2y – 3 = 0d_2: 6x – 2y – 8 = 0.

     Vì \frac{3}{6} e \frac{{ - 2}}{{ - 2}} nên hai đường thẳng cắt nhau.

  • Câu 2: Vận dụng

    Biết rằng có đúng hai giá trị của tham số k để đường thẳng d:y = kx tạo với đường thẳng \Delta:y = x một góc 60^{0}. Tổng hai giá trị của k bằng:

    \begin{matrix}
\left\{ \begin{matrix}
d:y = kx ightarrow {\overrightarrow{n}}_{d} = (k; - 1) \\
\Delta:y = x ightarrow {\overrightarrow{n}}_{\Delta} = (1; - 1) \\
\end{matrix} ight.\ \overset{}{ightarrow}\frac{1}{2} = cos60^{\circ}
= \frac{|k + 1|}{\sqrt{k^{2} + 1}.\sqrt{2}} \\
\\
\end{matrix}

    \Leftrightarrow k^{2} + 1 = 2k^{2} + 4k
+ 2

    \Leftrightarrow k^{2} + 4k + 1 =
0\overset{sol:\ k = k_{1},\ \ k = k_{2}}{ightarrow}k_{1} + k_{2} = -
4.

  • Câu 3: Nhận biết

    Dạng chính tắc của parabol là?

     Dạng chính tắc của Parabol: y^{2}=2px.

  • Câu 4: Nhận biết

    Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương \overrightarrow{u}=(1;3)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 3t + 2 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;3} ight)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 2t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 2 \hfill \\  y = t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;1} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 3 \hfill \\  y = 2t + 1 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

  • Câu 5: Thông hiểu

    Trong mặt phẳng Oxy, điểm M nằm trên đường tròn (x + 3)^{2} + (y - 4)^{2} =
4 sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm M là:

    Đường tròn (x + 3)^{2} + (y - 4)^{2} =
4 có tâm I( - 3;4) và bán kính R = 2.

    Phương trình đường thẳng OI đi qua O(0;0) và nhận \overrightarrow{OI} = ( - 3;4) làm VTCP là: \left\{ \begin{matrix}
x = - 3t \\
y = 4t \\
\end{matrix}\ \ \ \ (t\mathbb{\in R}) ight..

    Ta có: OM \leq |OI - R| = 3

    Để OM ngắn nhất \Leftrightarrow OM =
3

    Dấu bằng xảy ra \Leftrightarrow
\overrightarrow{OM} = \frac{3}{5}\overrightarrow{OI} \Leftrightarrow
M\left( - \frac{9}{5};\frac{12}{5} ight).

  • Câu 6: Vận dụng

    Xác định phương trình đường tròn (C) có tâm nằm trên đường thẳng (d):x - 6y - 10 = 0 và tiếp xúc với hai đường thẳng có phương trình \left( d_{1}
ight):3x + 4y + 5 = 0\left(
d_{2} ight):4x - 3y - 5 = 0?

    Vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi K(6a + 10;a). Mặt khác đường tròn tiếp xúc với hai đường thẳng \left( d_{1}
ight):3x + 4y + 5 = 0\left(
d_{2} ight):4x - 3y - 5 = 0 nên khoảng cách từ tâm I đến hai đường thẳng bằng bán kính.

    \frac{\left| 3(6a + 10) + 4a + 5
ight|}{5} = \frac{\left| 4(6a + 10) - 3a - 5 ight|}{5}

    \Leftrightarrow |22a + 35| = |21a +
35|

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 0 \\
a = \frac{- 70}{43} \\
\end{matrix} ight.

    Với a = 0 thì K(10;0);R = 7 khi đó phương trình đường tròn là: (x - 10)^{2} + y^{2} =
49

    Với a = \frac{- 70}{43} thì K\left( \frac{10}{43};\frac{- 70}{43}
ight);R = \frac{7}{43} khi đó phương trình đường tròn là: \left( x - \frac{10}{3} ight)^{2} + \left(
y + \frac{70}{43} ight)^{2} = \left( \frac{7}{43}
ight)^{2}.

  • Câu 7: Thông hiểu

    Xét vị trí tương đối giữa hai đường thẳng d_1:-2x+y+1=0d_2:4x - 2y - 2 = 0.

     Ta có: \frac{{ - 2}}{4} = \frac{1}{{ - 2}} = \frac{1}{{ - 2}} nên hai đường thẳng trùng nhau.

  • Câu 8: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(2;4), B(5;0)C(2;1). Trung tuyến BM của tam giác đi qua điểm N có hoành độ bằng 20 thì tung độ của điểm N bằng bao nhiêu?

    \left\{ \begin{matrix}
A(2;4) \\
C(2;1) \\
\end{matrix} ight.\ \overset{ightarrow}{}M\left( 2;\frac{5}{2}
ight) ightarrow \overrightarrow{MB} = \left( 3; - \frac{5}{2}
ight) = \frac{1}{2}(6; - 5)

    \overset{ightarrow}{}MB:\left\{
\begin{matrix}
x = 5 + 6t \\
y = - 5t \\
\end{matrix} ight.\ .

    Ta có: N\left( 20;y_{N} ight) \in
BM\overset{ightarrow}{}\left\{ \begin{matrix}
20 = 5 + 6t \\
y_{N} = - 5t \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
t = \frac{5}{2} \\
y_{N} = - \frac{25}{2} \\
\end{matrix} ight.\ \overset{ightarrow}{}

    Chọn - \frac{25}{2}.

  • Câu 9: Thông hiểu

    Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?

    Với A(4; 0), B(0; 5) ta có: \overrightarrow {AB}  = \left( { - 4;5} ight)

    Đường thẳng AB là đường thẳng đi qua hai điểm A và B, do đó nhận \overrightarrow {AB}  = \left( { - 4;5} ight) làm vectơ chỉ phương.

    Khi đó đường thẳng AB nhận \overrightarrow n  = \left( {5;4} ight) làm vectơ pháp tuyến.

    Đường thẳng AB đi qua điểm A(4; 0), có vectơ pháp tuyến \overrightarrow n  = \left( {5;4} ight) nên có phương trình tổng quát là: 5\left( {x-4} ight) + 4\left( {y-0} ight) = 0

    \begin{matrix}   \Leftrightarrow 5x + 4y-20 = 0 \hfill \\   \Leftrightarrow 4y = -5x + 20 \hfill \\   \Leftrightarrow y = \dfrac{{ - 5}}{4}x + 5 \hfill \\ \end{matrix}

    Do đó phương trình ở phương án y=\frac{-5}{4}x+15 không phải phương trình AB.

    Đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) nên có phương trình đoạn chắn của là: \frac{x}{4}+\frac{y}{5}=1

    Do đó phương án \frac{x}{4}+\frac{y}{5}=1 đúng.

    Phương trình đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) là: 

    \frac{{x - 4}}{{0 - 4}} = \frac{{y - 0}}{{5 - 0}} \Leftrightarrow \frac{{x - 5}}{{ - 4}} = \frac{y}{5}

    Do đó phương án \frac{x-4}{-4}=\frac{y}{5} đúng.

    Đường thẳng AB đi qua điểm A(4; 0), có vectơ chỉ phương \overrightarrow {AB}  = \left( { - 4;5} ight) nên có phương trình tham số là: \left\{\begin{matrix}x=4-4t\\ y=5t\end{matrix}ight. (t ∈ R)

    Do đó phương án \left\{\begin{matrix}x=4-4t\\ y=5t\end{matrix}ight.(t ∈ R) đúng.

  • Câu 10: Thông hiểu

    Tìm phương trình chính tắc của hyperbol nếu nó có tiêu cự bằng 12 và độ dài trục thực bằng 10.

    Ta có : \left\{ \begin{matrix}
2c = 12 \\
2a = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 6 \\
a = 5 \\
b^{2} = 11 \\
\end{matrix} ight..

    Phương trình chính tắc (H):\frac{x^{2}}{25} - \frac{y^{2}}{11} =
1.

  • Câu 11: Nhận biết

    Trong mặt phẳng tọa độ Oxy, viết phương trình chính tắc của elip biết một đỉnh là A_{1}( - 5;0) và một tiêu điểm là F_{2}(2;0).

    Ta có a = 5;\ c = 2 \Rightarrow b^{2} =
25 - 4 = 21

    Vậy \frac{x^{2}}{25} + \frac{y^{2}}{21} =
1.

  • Câu 12: Vận dụng

    Trong mặt phẳng Oxy, cho điểm C(3;0) và elip (E):\frac{x^{2}}{9} + \frac{y^{2}}{1} =
1. A,B2 điểm thuộc (E) sao cho \bigtriangleup ABC đều, biết tọa độ của A\left( \frac{a}{2};\frac{c\sqrt{3}}{2}
ight)A có tung độ âm. Tính tổng a + c.

    Nhận xét: Điểm C(3;0)là đỉnh của elip (E) \Rightarrow điều kiện cần để \bigtriangleup ABC đều đó là A,B đối xứng

    Nhau qua Ox.Suy ra A,B là giao điểm của đường thẳng \Delta:x = x_{0} và elip (E).

    +) Ta có elip (E):\frac{x^{2}}{9} +
\frac{y^{2}}{1} = 1 \Rightarrow
\left\lbrack \begin{matrix}
y = - \frac{1}{3}\sqrt{9 - x^{2}} \\
y = \frac{1}{3}\sqrt{9 - x^{2}} \\
\end{matrix} ight..

    +) Theo giả thiết A có tung độ âm nên tọa độ của A\left( x_{0}; -
\frac{1}{3}\sqrt{9 - x_{0}^{2}} ight) (điều kiện x_{0} < 3 do A eq C)

    +) Ta có AC = \sqrt{(3 - x_{0})^{2} +
\frac{1}{9}(9 - x_{0}^{2})}d_{(C;\Delta)} = |3 - x_{0}|

    +) \bigtriangleup ABC đều \Leftrightarrow d_{(C;\Delta)} =
\frac{\sqrt{3}}{2}AC \Leftrightarrow |3 - x_{0}| =
\frac{\sqrt{3}}{2}\sqrt{(3 - x_{0})^{2} + \frac{1}{9}\left( 9 -
x_{0}^{2} ight)}

    \Leftrightarrow (3 - x_{0})^{2} =
\frac{3}{4}\left\lbrack (3 - x_{0})^{2} + \frac{1}{9}(9 - x_{0}^{2})
ightbrack

    \Leftrightarrow \frac{1}{3}x_{0}^{2} -
\frac{3}{2}x_{0} + \frac{3}{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = \frac{3}{2}(t/m) \\
x_{0} = 3(L) \\
\end{matrix} ight.

    \Rightarrow A\left( \frac{3}{2}; -
\frac{\sqrt{3}}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = 3 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow a + c = 2.

  • Câu 13: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?

    Loại các đáp án x^{2} + y^{2} - 2xy - 1 =
0.x^{2} - y^{2} - 2x + 3y - 1 =
0. vì không có dạng x^{2} + y^{2} -
2ax - 2by + c = 0.

    Xét đáp án: x^{2} + y^{2} - x - y + 9 = 0
ightarrow a = \frac{1}{2},\ \ b = \frac{1}{2},\ c = 9 ightarrow
a^{2} + b^{2} - c < 0 ightarrowloại.

    Xét đáp án : x^{2} + y^{2} - x = 0
ightarrow a = \frac{1}{2},\ b = c = 0 ightarrow a^{2} + b^{2} - c
> 0 ightarrowChọn đáp án này.

  • Câu 14: Nhận biết

    Đường thẳng nào sau đây vuông góc với đường thẳng 4x - 3y + 1 = 0 ?

    Kí hiệu d:4x - 3y + 1 = 0 ightarrow
{\overrightarrow{n}}_{d} = (4; - 3).

    (i) Xét đáp án d_{1}:\left\{
\begin{matrix}
x = 4t \\
y = - 3 - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (3;4)
ightarrow {\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{d} =
0 nên chọn đáp án này.

    (ii) Tương tự kiểm tra và loại các đáp án còn lại.

  • Câu 15: Thông hiểu

    Cho phương trình x^{2} + y^{2}–8x + 10y + m = 0(1). Tìm điều kiện của m để (1) là phương trình đường tròn có bán kính bằng 7.

    x^{2} + y^{2}–8x + 10y + m = 0
ightarrow \left\{ \begin{matrix}
a = 4 \\
b = - 5 \\
c = m \\
\end{matrix} ight.

    ightarrow a^{2} + b^{2} - c = R^{2} =
49 \Leftrightarrow m = - 8.

  • Câu 16: Thông hiểu

    Tính góc tạo bởi giữa hai đường thẳng d_{1}:2x + 2\sqrt{3}y + 5 = 0d_{2}:y - 6 = 0.

    Ta có

    \left\{ \begin{matrix}
d_{1}:2x + 2\sqrt{3}y + 5 = 0 ightarrow {\overrightarrow{n}}_{1} =
\left( 1;\sqrt{3} ight) \\
d_{2}:y - 6 = 0. ightarrow {\overrightarrow{n}}_{2} = (0;1) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{\left| \sqrt{3}
ight|}{\sqrt{1 + 3}.\sqrt{0 + 1}} = \frac{\sqrt{3}}{2} ightarrow
\varphi = 30^{\circ}.

  • Câu 17: Nhận biết

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

  • Câu 18: Nhận biết

    Cho đường tròn (C):x^{2}+y^{2}+4x+4y-17=0 , hỏi độ dài đường kính bằng bao nhiêu?

     Ta có tâm I( - 2; - 2). Suy ra bán kính R = \sqrt {{{( - 2)}^2} + {{( - 2)}^2} + 17}  = 5.

    Do đó đường kính bằng 10.

  • Câu 19: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:

     \overrightarrow u  = (0;6) \Rightarrow \overrightarrow n  = (6;0) \Rightarrow \overrightarrow n  = (1;0).

    Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: x-2=0.

  • Câu 20: Thông hiểu

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo