Đường Hyperbol
có một tiêu điểm là điểm nào dưới đây?
Ta có : . Các tiêu điểm của
là
và
Đường Hyperbol
có một tiêu điểm là điểm nào dưới đây?
Ta có : . Các tiêu điểm của
là
và
Xác định tâm và bán kính đường tròn
.
Ta có:
Suy ra
Vậy đường tròn có tâm và bán kính lần lượt là: .
Cho hai đường thẳng
;
và điểm
. Phương trình đường tròn có tâm
, đi qua điểm
và tiếp xúc với
là:
Hình vẽ minh họa
Ta có I là tâm đường tròn và nên
Theo giả thiết bài toán ta có:
Suy ra và bán kính
Vậy phương trình đường tròn cần tìm là: .
Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là
và
. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức
, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

Theo đề ta có: Diện tích là:
Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: . Diện tích hình tròn
phần trồng cây lâu năm là:
Suy ra diện tích phần trồng hoa màu là: .
Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?
Với A(4; 0), B(0; 5) ta có:
Đường thẳng AB là đường thẳng đi qua hai điểm A và B, do đó nhận làm vectơ chỉ phương.
Khi đó đường thẳng AB nhận làm vectơ pháp tuyến.
Đường thẳng AB đi qua điểm A(4; 0), có vectơ pháp tuyến nên có phương trình tổng quát là:
Do đó phương trình ở phương án không phải phương trình AB.
Đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) nên có phương trình đoạn chắn của là:
Do đó phương án đúng.
Phương trình đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) là:
Do đó phương án đúng.
Đường thẳng AB đi qua điểm A(4; 0), có vectơ chỉ phương nên có phương trình tham số là:
(t ∈ R)
Do đó phương án (t ∈ R) đúng.
Phương trình chính tắc của hypebol có
gấp đôi
và đi qua điểm
là:
Ta có: .
Phương trình chính tắc: .
Vì thuộc hypebol nên:
.
Do đó, phương trình chính tắc: .
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và đoạn thẳng
có điểm chung.
Đoạn thẳng và
có điểm chung khi và chỉ khi hai điểm
nằm khác phía so với đường thẳng
. Ta có:
Đường thẳng nào dưới đây là đường chuẩn của Hypebol
?
Ta có : .
Tâm sai . Đường chuẩn :
và
Phương trình nào sau đây là phương trình tổng quát của đường thẳng
?
Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:
Gọi .
Vì .
Do đó .
Ta có: .
Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương ![]()
Đường thẳng có phương trình tham số có vectơ chỉ phương là
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Cho bốn điểm
,
,
và
. Xác định vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Viết phương trình tiếp tuyến
của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Trong mặt phẳng
, cho điểm
và đường thẳng
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Khoảng cách từ điểm P đến đường thẳng (d) là:
.
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn đi qua ba điểm đã cho là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Tính góc giữa hai đường thẳng
và ![]()
Ta có:
Vectơ pháp tuyến của hai đường thẳng lần lượt là
Suy ra
Suy ra
Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi
là các tiêu điểm của elip. Khi đó độ dài
bằng:
Ta có độ dài trục lớn bằng 4 m.
=> 2a = 4 => a = 2.
Lại có độ dài trục nhỏ bằng 2m.
=> 2b = 2=> b = 1
Ta có
=>
Một đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.
Đường tròn
có dạng khai triển là:
Cho hai đường thẳng
và
.
Khẳng định nào sau đây là đúng:
Ta có:
Chọn