Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong hệ trục tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = - 4t + 1 \\
y = - 2 + 3t \\
\end{matrix} ight.. Một vectơ chỉ phương của d là:

    Một vectơ chỉ phương của d( - 4;3) hay (4; - 3).

  • Câu 2: Vận dụng

    Cho Hyperbol (H):\frac{x^{2}}{4} - y^{2} = 1. Hãy tìm tọa độ điểm M trên (H) thỏa mãn M thuộc nhánh phải và MF_{1} nhỏ nhất (ngắn nhất).

    Ta có: \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
c = \sqrt{5} \\
\end{matrix} ight.\ .

    Gọi M\left( x_{0};y_{0} ight) \in
(H).

    Ta có: \frac{x^{2}}{4} - y^{2} = 1
\Leftrightarrow x^{2} = 4\left( y^{2} + 1 ight). M thuộc nhánh phải của (H) nên x_{0}
\geq 2.

    MF_{1} = 2 + \frac{2}{\sqrt{5}}x_{0} \geq
2 + \frac{4}{\sqrt{5}}. MF_{1} nhỏ nhất bằng \frac{4}{\sqrt{5}} khi M \equiv A(2;0).

  • Câu 3: Thông hiểu

    Cho hình elip có phương trình \frac{x^{2}}{25} + \frac{y^{2}}{16} = 1. Hình elip có độ dài tiêu cự bằng:

    Ta có: \frac{x^{2}}{25} +
\frac{y^{2}}{16} = 1 \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 4 \\
\end{matrix} ight.

    Độ dài tiêu cự là: 2c = 2\sqrt{a^{2} -
b^{2}} = 6

  • Câu 4: Vận dụng

    Cho ba đường thẳng \left( d_{1} ight):3x - 2y + 5 = 0, \left( d_{2} ight):2x + 4y - 7 =
0\left( d_{3} ight):3x + 4y -
1 = 0. Phương trình nào dưới đây là phương trình đường thẳng đi qua giao điểm của hai đường thẳng \left(
d_{1} ight);\left( d_{2} ight) và song song với \left( d_{3} ight)?

    Đường thẳng \left( d_{3} ight):3x + 4y
- 1 = 0\overrightarrow{n_{3}} =
(3;4)

    Gọi M là giao điểm của hai đường thẳng \left( d_{1} ight);\left( d_{2}
ight), tọa độ điểm M là nghiệm của hệ phương trình: \left\{ \begin{matrix}
3x - 2y + 5 = 0 \\
2x + 4y - 7 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{3}{8} \\
y = \frac{31}{16} \\
\end{matrix} ight.\  \Rightarrow M\left( - \frac{3}{8};\frac{31}{16}
ight)

    Đường thẳng d đi qua giao điểm M có vecto pháp tuyến \overrightarrow{n_{3}} = (3;4)

    Vậy phương trình tổng quát của đường thẳng cần tìm là: 3x + 4y - \frac{53}{8} = 0 hay 24x + 32y - 53 = 0.

  • Câu 5: Thông hiểu

    Tìm điều kiện của tham số m để hai đường thẳng \left( d_{1} ight):mx + y - m - 1 =
0\left( d_{2} ight):x + my =
2 cắt nhau?

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) cắt nhau khi và chỉ khi:

    \frac{m}{1} eq \frac{1}{m}
\Leftrightarrow m^{2} eq 1 \Leftrightarrow m eq \pm 1

    Vậy hai đường thẳng cắt nhau khi và chỉ khi m eq \pm 1.

  • Câu 6: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(3;2)¸ P(4;0)Q(0; - 2). Đường thẳng đi qua điểm A và song song với PQ có phương trình tham số là:

    Gọi d là đường thẳng qua A và song song với PQ.

    Ta có: \left\{ \begin{matrix}
A(3;2) \in d \\
{\overrightarrow{u}}_{d} = \overrightarrow{PQ} = ( - 4; - 2) = - 2(2;1)
\\
\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}
x = 3 + 2t \\
y = 2 + t \\
\end{matrix} ight.

    \overset{t = - 2}{ightarrow}M( - 1;0)
\in d ightarrow d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 7: Nhận biết

    Tìm tọa độ giao điểm của hai đường thẳng 7x - 3y + 16 = 0x + 10 = 0.

    \left\{ \begin{matrix}
d_{1}:7x - 3y + 16 = 0 \\
d_{2}:x + 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 10 \\
y = - 18 \\
\end{matrix} ight.\ . Chọn ( -
10; - 18).

  • Câu 8: Nhận biết

    Cho một hypebol (E):\frac{x^{2}}{144} - \frac{y^{2}}{25} =
1 có hai tiêu điểm là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 144 \\
b^{2} = 25 \\
c^{2} = a^{2} + b^{2} = 169 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 12 \\
b = 5 \\
c = 13 \\
\end{matrix} ight.

    Vậy hai tiêu điểm cần tìm là: F_{1}( -
13;0),F_{2}(13;0).

  • Câu 9: Thông hiểu

    Tâm của đường tròn (C):x^{2} + y^{2} - 10x + 1 = 0 cách trục Oy một khoảng bằng:

    (C):x^{2} + y^{2} - 10x + 1 = 0
ightarrow I(5;0) ightarrow d\lbrack I;Oybrack = 5.

  • Câu 10: Nhận biết

    Nhận xét nào đúng về vị trí tương đối của hai đường thẳng (d):2x + 3y + 15 =
0(\Delta):x - 2y - 3 =
0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (d):2x +
3y + 15 = 0 là: \overrightarrow{n_{d}} = (2;3)

    Vectơ pháp tuyến của đường thẳng (\Delta):x - 2y + 3 = 0 là: \overrightarrow{n_{\Delta}} = (1; -
2)

    Suy ra \overrightarrow{n_{d}}\overrightarrow{n_{d}} không cùng phương và \overrightarrow{n_{d}}.\overrightarrow{n_{d}} = 2
- 6 = - 4 eq 0

    Suy ra hai đường thẳng cắt nhau và không vuông góc.

  • Câu 11: Thông hiểu

    Viết phương trình đường tròn (C) có tâm I(
- 1;2) và tiếp xúc với đường thẳng \Delta:x - 2y + 7 = 0?

    Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng \Delta:x - 2y + 7 = 0 nên

    R = d(I;\Delta) = \frac{| - 1 - 4 -
7|}{\sqrt{1 + 4}} = \frac{2}{\sqrt{5}}

    Vậy phương trình đường tròn cần tìm là: (x + 1)^{2} + (y - 2)^{2} =
\frac{4}{5}.

  • Câu 12: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):x^{2} + y^{2} + 4x - 2y - 8 =
0, biết tiếp tuyến vuông góc với đường thẳng d:2x - 3y + 2018 = 0.

    Đường tròn (C) có tâm I( - 2;1),\ R =
\sqrt{13} và tiếp tuyến có dạng

    \Delta:3x + 2y + c = 0.

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c - 4|}{\sqrt{13}} = \sqrt{13} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 17 \\
c = - 9 \\
\end{matrix} ight.\ .

  • Câu 13: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?

    Phương trình Parabol có dạng y^{2} =
2px

    Vậy phương trình cần tìm là y^{2} =
2x.

  • Câu 14: Thông hiểu

    Cho hai điểm P(5;4),Q(1;2). Vectơ pháp tuyến của đường thẳng PQ là:

    Một vectơ chỉ phương của PQ là: \overrightarrow{PQ} = ( - 4; - 2) = -
2(2;1)

    Vậy vectơ pháp tuyến của PQ là: \overrightarrow{n}( - 1;2).

  • Câu 15: Nhận biết

    Trên mặt phẳng tọa độ Oxy cho tọa độ hai điểm M(1;0),N(7;4). Tọa độ trung điểm I của MN là:

    Tọa độ trung điểm I của MN là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{M} + x_{N}}{2} \\y_{I} = \dfrac{y_{M} + y_{N}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{1 + 7}{2} = 4 \\y_{I} = \dfrac{0 + 4}{2} = 2 \\\end{matrix} ight.

    Vậy tọa độ trung điểm của MN là: I(4;2).

  • Câu 16: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;5), B( -
4; - 5)C(4; - 1). Phương trình đường phân giác ngoài của góc A là:

    \left\{ \begin{matrix}
A(1;5),\ B( - 4; - 5) ightarrow AB:2x - y + 3 = 0 \\
A(1;5),\ C(4; - 1) ightarrow AC:2x + y - 7 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \frac{|2x - y + 3|}{\sqrt{5}} =
\frac{|2x + y - 7|}{\sqrt{5}} \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 ightarrow f(x;y) = x - 1 \\
y - 5 = 0 \\
\end{matrix} ight.

    ightarrow \left\{ \begin{matrix}
f\left( B( - 4; - 5) ight) = - 5 < 0 \\
f\left( C(4; - 1) ight) = 3 > 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc Ay - 5 =
0.

  • Câu 17: Nhận biết

    Cho phương trình x^{2} + y^{2} – 2ax – 2by + c = 0. Điều kiện của a, b, c để phương trình đã cho là phương trình đường tròn là

     Điều kiện: a^{2} + b^{2} > c.

  • Câu 18: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 2x – 6y – 15 = 0 có tâm và bán kính lần lượt là:

    Tâm và bán kính đường tròn (C) là: I(1; 3), R = 5

  • Câu 19: Thông hiểu

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

  • Câu 20: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(–2\ ;\ 0),\ B(1\ ;\ 4) và đường thẳng d:\left\{ \begin{matrix}
x = - t \\
y = 2 - t \\
\end{matrix} ight.. Tìm tọa độ giao điểm của đường thẳng ABd.

    \left\{ \begin{matrix}
A(–2\ ;\ 0),\ B(1\ ;\ 4) ightarrow AB:4x - 3y + 8 = 0 \\
d:\left\{ \begin{matrix}
x = - t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow d:x - y + 2 = 0 \\
\end{matrix} ight.

    \overset{AB \cap d}{ightarrow}\left\{
\begin{matrix}
4x - 3y + 8 = 0 \\
x - y + 2 = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight.\ .

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo