Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đường elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Ta có: a^{2} = 16, b^{2} = 7 nên c^{2} = a^{2} - b^{2} = 9 \Rightarrow c =
3.

    Tiêu cự của elip là 2c = 6.

  • Câu 2: Nhận biết

    Công thức nào dưới đây là công thức tính khoảng cách từ một điểm B\left( x_{0};y_{0}
ight) đến đường thẳng (\Delta):ax
+ by + c = 0?

    Công thức tính khoảng cách từ một điểm B\left( x_{0};y_{0} ight) đến đường thẳng (\Delta):ax + by + c = 0 là:

    d(B;\Delta) = \frac{\left| ax_{0} +
by_{0} + c ight|}{\sqrt{a^{2} + b^{2}}}

  • Câu 3: Vận dụng

    Trong mặt phẳng Oxy, cho tam giác ABC có tọa độ các điểm A(1;3),B( - 1; - 1),C(1;1). Gọi I(a;b) là tâm đường tròn ngoại tiếp tam giác ABC. Xác định giá trị biểu thức P = a + b?

    Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IA = IB = IC \Rightarrow \left\{ \begin{matrix}
IA^{2} = IB^{2} \\
IA^{2} = IC^{2} \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
IA = \sqrt{(1 - a)^{2} + (3 - b)^{2}} \\
IB = \sqrt{( - 1 - a)^{2} + ( - 1 - b)^{2}} \\
IC = \sqrt{(1 - a)^{2} + (1 - b)^{2}} \\
\end{matrix} ight.

    Từ đó ta suy ra hệ phương trình:

    \left\{ \begin{matrix}
(1 - a)^{2} + (3 - b)^{2} = ( - 1 - a)^{2} + ( - 1 - b)^{2} \\
(1 - a)^{2} + (3 - b)^{2} = (1 - a)^{2} + (1 - b)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4a - 8b = - 8 \\
- 4b = - 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2 \\
b = 2 \\
\end{matrix} ight.

    \Leftrightarrow P = a + b =
0

  • Câu 4: Nhận biết

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 5: Thông hiểu

    Cho hai đường thẳng (\Delta):x + \sqrt{3}y - 6 = 0(\Delta)':\sqrt{3}x - y + 7 = 0. Tính góc hợp bởi hai đường thẳng đã cho?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (\Delta):x + \sqrt{3}y - 6 = 0 là: \overrightarrow{n_{\Delta}} = \left( 1;\sqrt{3}
ight)

    Vectơ pháp tuyến của đường thẳng (\Delta)':\sqrt{3}x - y + 7 = 0 là: \overrightarrow{n_{\Delta}} = \left(
1;\sqrt{3} ight)

    Ta có: \overrightarrow{n_{\Delta}}.\overrightarrow{n_{\Delta}}
= 0 \Rightarrow (\Delta)\bot(\Delta')

    Vậy góc hợp bởi hai đường thẳng bằng 90^{0}.

  • Câu 6: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} = 9 là:

    (C):x^{2} + y^{2} =
9\overset{}{ightarrow}I(0;0),\ \ R = \sqrt{9} = 3.

  • Câu 7: Thông hiểu

    Cho phương trình x^{2} + y^{2} - 2x + 2my\  + 10 = 0(1). Có bao nhiêu giá trị m nguyên dương không vượt quá 10 để (1) là phương trình của đường tròn?

    Ta có: x^{2} + y^{2} - 2x + 2my\  + \ 10
= 0 ightarrow \left\{ \begin{matrix}
a = 1 \\
b = - m \\
c = 10 \\
\end{matrix} ight.

    ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow m^{2} - 9 > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 3 \\
m > 3 \\
\end{matrix} ight.\  \Leftrightarrow m = 4;5\ldots;10. Có 7 giá trị m.

  • Câu 8: Thông hiểu

    Viết phương trình tham số của đường thẳng \Delta có phương trình x - 3y + 2 = 0?

    Đường thẳng \Delta:x - 3y + 2 =
0 đi qua điểm A( - 2;0) và có vectơ pháp tuyến là \overrightarrow{n} =
(1; - 3) nên có vectơ chỉ phương là: \overrightarrow{u} = (3;1).

    Vậy phương trình tham số của \Delta là: \left\{ \begin{matrix}
x = - 2 + 3t \\
y = t \\
\end{matrix} ight..

  • Câu 9: Thông hiểu

    Cho đường tròn (C) có tâm I thuộc đường thẳng d_{1}:x - y + 1 = 0 có bán kính R = 2 và cắt đường thẳng d_{2}:3x - 4y = 0 tại hai điểm A;B sao cho AB = 2\sqrt{3}. Phương trình đường tròn (C) cần tìm là:

    Gọi tâm I thuộc đường thẳng d_{1} nên suy ra I(a;a + 1)

    d\left( I;\left( d_{2} ight) ight) =
\sqrt{R^{2} - \frac{AB^{2}}{4}} = \sqrt{4 - \frac{12}{4}} =
1

    Do đó:

    \frac{\left| 3a - 4(a + 1)
ight|}{\sqrt{3^{2} + ( - 4)^{2}}} = 1 \Leftrightarrow | - a - 4| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
a = 1 \\
a = - 9 \\
\end{matrix} ight.

    Với a = 1 \Rightarrow I(1;2) nên phương trình đường tròn là (x - 1)^{2} + (y
- 2)^{2} = 4.

    Với a = - 9 \Rightarrow I( - 8; -
8) nên phương trình đường tròn là (x + 9)^{2} + (y + 8)^{2} = 4.

  • Câu 10: Nhận biết

    Trong mặt phẳng tọa độ Oxy, viết phương trình chính tắc của elip biết một đỉnh là A_{1}( - 5;0) và một tiêu điểm là F_{2}(2;0).

    Ta có a = 5;\ c = 2 \Rightarrow b^{2} =
25 - 4 = 21

    Vậy \frac{x^{2}}{25} + \frac{y^{2}}{21} =
1.

  • Câu 11: Nhận biết

    Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.

    Vectơ \overrightarrow u có giá song song hoặc trùng với đường thẳng thì \overrightarrow u được gọi là vectơ chỉ phương của đường thẳng đó.

  • Câu 12: Vận dụng

    Cho parabol (P) có đường chuẩn là đường thẳng ∆: x + 5 = 0. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:

    Phương trình đường chuẩn ∆: x + 5 = 0

    => \frac{p}{2} = 5

    => p = 10

    Từ đó ta thu được phương trình parabol (P): y^2 = 20x.

    Tiêu điểm F của (P) là F(5; 0).

    Giả sử điểm M(x_M; y_M) là điểm thuộc (P).

    => y^2_M=20x_M

    Với F(5; 0)M(x_M; y_M) ta có:

    \begin{matrix}  \overrightarrow {FM}  = \left( {{x_M} - 5;{y_M}} ight) \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{{\left( {{x_M} - 5} ight)}^2} + {y_M}^2}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{x_M}^2 - 10{x_M} + 25 + 20{x_M}}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{x_M}^2 + 10{x_M} + 25}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{{\left( {{x_M} + 5} ight)}^2}}  = {x_M} + 5 \hfill \\  FM = 6 \Rightarrow {x_M} + 5 = 6 \Rightarrow {x_M} = 1 \hfill \\ \end{matrix}

    Với {x_M} = 1 \Rightarrow {y_M}^2 = 20.1 = 20

    Vậy tọa độ điểm M là: M(1;-2\sqrt{5}),M(1;-2\sqrt{5})

  • Câu 13: Thông hiểu

    Cho tọa độ hai điểm M\left( - 2\sqrt{3};\frac{3}{2} ight),N\left(
2;\frac{3\sqrt{3}}{2} ight). Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm M;N?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a;b
> 0)

    Do elip đi qua hai điểm M\left( -
2\sqrt{3};\frac{3}{2} ight),N\left( 2;\frac{3\sqrt{3}}{2}
ight) nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{12}{a^{2}} + \dfrac{9}{b^{2}} = 1 \\\dfrac{4}{a^{2}} + \dfrac{27}{b^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} = 16 \\b^{2} = 9 \\\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{16} + \frac{y^{2}}{9} =
1

  • Câu 14: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:4x - 7y + m = 0 và hai điểm A(1;2), B( -
3;4). Tìm tất cả các giá trị của tham số m để d và đoạn thẳng AB có điểm chung.

    Đoạn thẳng ABd:4x - 7y + m = 0 có điểm chung khi và chỉ khi hai điểm A\ ;\ B nằm khác phía so với đường thẳng d. Ta có:

    \left( 4x_{A} - 7y_{A} + m ight)\left(
4x_{B} - 7y_{B} + m ight) \leq 0

    \Leftrightarrow (m - 10)(m - 40) \leq 0
\Leftrightarrow 10 \leq m \leq 40.

  • Câu 15: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng (d):2x + y - 4 = 0(d'):2x + y + 7 = 0?

    Ta có: \frac{a}{a'} =
\frac{b}{b'} eq \frac{c}{c'} suy ra hai đường thẳng (d) và (d’) song song với nhau.

  • Câu 16: Thông hiểu

    Khoảng cách nhỏ nhất từ điểm M(15;1) đến một điểm bất kì thuộc đường thẳng \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight. bằng:

    \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight.\  ightarrow \Delta:x - 3y - 2 = 0

    \overset{\forall N \in
\Delta}{ightarrow}MN_{\min} = d(M;\Delta) = \frac{|15 - 3 -
2|}{\sqrt{1 + 9}} = \sqrt{10}.

  • Câu 18: Thông hiểu

    Hãy xác định phương trình chính tắc của parabol (P). Biết rằng (P) cắt đường thẳng d:x + 2y = 0 tại hai điểm A,BAB =
4\sqrt{5}?

    Phương trình chính tắc của (P) có dạng y^{2} = 2px;(p > 0)

    Ta có đường thẳng d cắt (P) tại hai điểm \left\{ \begin{matrix}
A \equiv O \\
B = ( - 2m;m) \\
\end{matrix} ight.

    Ta có:

    AB = 4\sqrt{5} \Leftrightarrow AB^{2} =
5m^{2} = \left( 4\sqrt{5} ight)^{2}

    \Leftrightarrow m^{2} = 16
\Leftrightarrow m = \pm 4

    Với m = 4 \Rightarrow B( - 8;4) \Rightarrow 16 = 2p.( - 8)
\Rightarrow p = - 1 < 0(ktm)

    Với m = - 4 \Rightarrow B(8; - 4) \Rightarrow 16 = 2p.8
\Rightarrow p = 1(tm)

    Vậy phương trình chính tắc của parabol cần tìm là: y^{2} = 2x.

  • Câu 19: Nhận biết

    Trong mặt phẳng tọa độ Oxy, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?

    Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.

  • Câu 20: Vận dụng

    Cho đường thẳng (\Delta):x + (a - 1)y - a = 0 và đường tròn (C):x^{2} + y^{2} - 2x + 4y + 2 =
0. Tìm điều kiện của tham số a để (d) tiếp xúc với (C)?

    Đường tròn (C) có tâm I(1; - 2) và bán kính R = \sqrt{1^{2} + 2^{2} - 2} =
\sqrt{3}

    Để đường thẳng (\Delta)là tiếp tuyến của đường tròn (C) thì

    d(I;\Delta) = R \Leftrightarrow
\frac{\left| 1 - 2(a - 1) - a ight|}{\sqrt{1 + (a - 1)^{2}}} =
\sqrt{3}

    \Leftrightarrow \frac{|3 -
3a|}{\sqrt{a^{2} - 2a + 2}} = \sqrt{3}

    \Leftrightarrow |3 - 3a| =
\sqrt{3}.\sqrt{a^{2} - 2a + 2}

    \Leftrightarrow (3 - 3a)^{2} = 3a^{2} -
6a + 6

    \Leftrightarrow 2a^{2} - 4a + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = 1 + \dfrac{1}{\sqrt{2}} \\a = 1 - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Vậy a = 1 \pm \frac{1}{\sqrt{2}} thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo