Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho đường thẳng (d):\left\{ \begin{matrix}
x = t \\
y = 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào dưới đây không nằm trên đường thẳng đã cho?

    Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: T(1;1).

  • Câu 2: Thông hiểu

    Trong hệ trục Oxy, cho Elip (E) có các tiêu điểm F_{1}( - 4;0),F_{2}(4;0) và một điểm M nằm trên (E). Biết rằng chu vi của tam giác MF_{1}F_{2} bằng 18. Xác định tâm sai e của (E).

    Ta có F_{1}( - 4;0) \Rightarrow c =
4.

    \begin{matrix}
P_{\Delta MF_{1}F_{2}} = \underset{2a}{\overset{MF_{1} + MF_{2}}{︸}} +
F_{1}F_{2} \\
\Leftrightarrow \ \ \ 18 = 2a + 2c \Leftrightarrow 18 = 2a + 8
\Leftrightarrow a = 5. \\
\end{matrix}

    Tâm sai e = \frac{c}{a} =
\frac{4}{5}.

  • Câu 4: Nhận biết

    Dạng chính tắc của hypebol là

    Dạng chính tắc của hypebol là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1.

  • Câu 5: Thông hiểu

    Cho bốn điểm A(4;
- 3), B(5;1), C(2;3)D(
- 2;\ 2). Xác định vị trí tương đối của hai đường thẳng ABCD.

    \left\{ \begin{matrix}{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (1;4) \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = ( - 4; - 1) \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\frac{1}{- 4}eq \frac{4}{- 1} \\{\overrightarrow{u}}_{AB} \cdot {\overrightarrow{u}}_{CD}eq 0 \\\end{matrix} ight.

    ightarrow AB,\ \ CD cắt nhau nhưng không vuông góc.

  • Câu 6: Nhận biết

    Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:

     Ta có: {d_{(M,\Delta )}} = \frac{{\left| {3. - 1 - 4.1 - 3} ight|}}{{\sqrt {{3^2} + {{( - 4)}^2}} }} = 2.

  • Câu 7: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có điểm A( - 4;8). Gọi B' đối xứng với điểm B qua C, điểm I(5;
- 4) là hình chiếu vuông góc của B lên đường thẳng B'D. Biết rằng tọa độ điểm C(a;b) thuộc đường thẳng (d):2x + y + 5 = 0. Khi đó:

    Ta có: ADB’C là hình bình hành => AC // B’D

    BI\bot B'D \Rightarrow AC\bot
BI

    Tam giác BB’I vuông cân tại I => BC = CI

    => ACID là hình thang cân => \Delta
ADC = \Delta CIA \Rightarrow AI\bot CI

    => CI đi qua điểm I(5; - 4) và có vecto pháp tuyến \frac{1}{3}\overrightarrow{AI} = \frac{1}{3}(9; -
12) = (3; - 4)

    Phương trình CI: 3x - 4y - 31 =
0

    \Rightarrow C = d \cap CI \Rightarrow
C(1; - 7) \Rightarrow a - b = 8

  • Câu 8: Nhận biết

    Cho đường thẳng (\Delta):3x + 4y - 4 = 0 và tọa độ điểm C(1; - 1). Tính d(C;\Delta)?

    Ta có khoảng cách từ điểm C đến đường thẳng (\Delta):3x + 4y - 4 = 0 là:

    d(C;\Delta) = \frac{\left| 3.1 + 4.( -
1) - 4 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{5}{5} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 10: Vận dụng

    Cho hypebol (H): \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 và đường thẳng \Delta: x+y=3. Tích các khoảng cách từ hai tiêu điểm của (H) đến \Delta bằng giá trị nào sau đây?

     Ta có: a=4,b=3 \Rightarrow c=\sqrt{a^2+b^2}=5. Suy ra 2 tiêu điểm F_1(-5;0),F_2(5;0).

    Khoảng cách từ F_2F_1 đến đường thẳng \Delta :x+y-3=0:

    d({F_2},\Delta ) = \frac{{\left| {5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2

    d({F_1},\Delta ) = \frac{{\left| { - 5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2

    Do đó \sqrt2 . 4\sqrt2=8.

  • Câu 11: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;5), B( -
4; - 5)C(4; - 1). Phương trình đường phân giác ngoài của góc A là:

    \left\{ \begin{matrix}
A(1;5),\ B( - 4; - 5) ightarrow AB:2x - y + 3 = 0 \\
A(1;5),\ C(4; - 1) ightarrow AC:2x + y - 7 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \frac{|2x - y + 3|}{\sqrt{5}} =
\frac{|2x + y - 7|}{\sqrt{5}} \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 ightarrow f(x;y) = x - 1 \\
y - 5 = 0 \\
\end{matrix} ight.

    ightarrow \left\{ \begin{matrix}
f\left( B( - 4; - 5) ight) = - 5 < 0 \\
f\left( C(4; - 1) ight) = 3 > 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc Ay - 5 =
0.

  • Câu 12: Thông hiểu

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

  • Câu 13: Nhận biết

    Cho elip (E):4x^{2} + 5y^{2} = 20. Diện tích hình chữ nhật cơ sở của (E)

    (E):4x^{2} + 5y^{2} = 20 \Leftrightarrow
\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1

    Độ dài trục lớn: 2a =
2\sqrt{5}.

    Độ dài trục bé: 2b = 2.2 =
4.

    Diện tích hình chữ nhật cơ sở của (E) là: 2\sqrt{5}.4 = 8\sqrt{5}.

  • Câu 14: Thông hiểu

    Phương trình đường tròn có tâm thuộc đường thẳng \Delta:x - 2y = 0, tiếp xúc với đường thẳng \Delta':2x - y + 2 = 0 đồng thời đường tròn đi qua điểm M(1;3) là:

    Gọi tâm của đường tròn cần tìm là I(2t;t)
\in \Delta:x - 2y = 0

    Theo giả thiết, ta có:

    MI = d\left( I;\Delta^{'} ight)
\Leftrightarrow \sqrt{(2t - 1)^{2} + (t - 3)^{2}} = \frac{|2.2t - t +
2|}{\sqrt{5}}

    \Leftrightarrow \sqrt{5t^{2} - 10t + 10}= \dfrac{|3t + 2|}{\sqrt{5}}

    \Leftrightarrow 8t^{2} - 31t + 23 = 0\Leftrightarrow \left\lbrack \begin{matrix}t = 1 \\t = \dfrac{23}{8} \\\end{matrix} ight.

    Với t = 1 thì đường tròn cần tìm có tâm I(2;1), bán kính R = IM = \sqrt{5}, và có phương trình là: (x - 2)^{2} + (y - 1)^{2} = 5

    Với t = \frac{23}{8} thì đường tròn cần tìm có tâm I\left(
\frac{23}{4};\frac{23}{8} ight), bán kính R = IM = \frac{17\sqrt{5}}{8}, và có phương trình là: \left( x - \frac{23}{4}
ight)^{2} + \left( y - \frac{23}{8} ight)^{2} =
\frac{1445}{64}

    Vậy có hai đường tròn thỏa mãn yêu cầu bài toán là:

    (x - 2)^{2} + (y - 1)^{2} = 5\ và\ \left(
x - \frac{23}{4} ight)^{2} + \left( y - \frac{23}{8} ight)^{2} =
\frac{1445}{64}.

  • Câu 15: Nhận biết

    Phương trình đường tròn (C) có tâm I(
- 1;2) và bán kinh R = 6 là:

    Ta có: (C):\left\{ \begin{matrix}
I( - 1;2) \\
R = 6 \\
\end{matrix} ight.\  \Rightarrow (C):(x + 1)^{2} + (y - 2)^{2} =
36

  • Câu 16: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:3mx + 2y - 6 = 0d_{2}:\left( m^{2} + 2 ight)x + 2my - 3 =
0 song song?

    Ta có: \ \left\{ \begin{matrix}
d_{1}:3mx + 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3m;2) \\
d_{2}:\left( m^{2} + 2 ight)x + 2my - 3 = 0 ightarrow
{\overrightarrow{n}}_{2} = \left( m^{2} + 2;2m ight) \\
\end{matrix} ight.

    \begin{matrix}\\ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}:y - 3 = 0 \\d_{2}:2x + 2y - 3 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ (không\ TM) \\meq0\overset{d_{1}||d_{2}}{ightarrow}\frac{m^{2} + 2}{3m} =\frac{2m}{2}eq\frac{- 3}{- 6} \Leftrightarrow m = \pm 1 \\\end{matrix} ight.\ .\ \  \\\end{matrix}

    Chọn m = 1;\ \ m = - 1.

  • Câu 17: Vận dụng

    Cho đường tròn \left( C_{m} ight):x^{2} + y^{2} + 2(m - 1)x -
2my - 4 = 0. Biết rằng khi giá trị m thay đổi, đường tròn \left( C_{m} ight) luôn đi qua điểm I cố định có hoành độ dương. Xác định giá trị của tham số m sao cho tiếp tuyến của đường tròn \left( C_{m} ight) tại I song song với (d):x - 2y - 1 = 0?

    Gỉa sử đường tròn luôn đi qua điểm I\left( x_{0};y_{0} ight) cố định khi m thay đổi. Khi đó:

    {x_{0}}^{2} + {y_{0}}^{2} + 2(m - 1)x_{0}
- 2my_{0} - 4 = 0 với mọi m

    \Leftrightarrow m\left( 2x_{0} - 2y_{0}
ight) + {x_{0}}^{2} + {y_{0}}^{2} - 2x_{0} - 4 = 0 với mọi m

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x_{0} - 2y_{0} = 0 \\
{x_{0}}^{2} + {y_{0}}^{2} - 2x_{0} - 4 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = y_{0} \\
2{x_{0}}^{2} - 2x_{0} - 4 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = y_{0} = - 1 \\
x_{0} = y_{0} = 2 \\
\end{matrix} ight.

    Vậy ta có điểm I(2;2)

    Đường tròn có tâm J(1 - m;m). VTPT của tiếp tuyến của đường tròn tại I là \overrightarrow{IJ} = ( - m - 1;m -
2)

    Để tiếp tuyến tại I song song với đường thẳng (d) nên tồn tại giá trị k sao cho:

    \overrightarrow{IJ} = k(1; - 2)
\Leftrightarrow \left\{ \begin{matrix}
- m - 1 = k \\
m - 2 = - 2k \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m = - 4 \\
k = 3 \\
\end{matrix} ight.

    Vậy giá trị m cần tìm là m = -
4.

  • Câu 18: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + (y + 4)^{2} = 5 là:

    (C):x^{2} + (y + 4)^{2} =
5\overset{}{ightarrow}I(0; - 4),\ R = \sqrt{5}.

  • Câu 19: Nhận biết

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

  • Câu 20: Thông hiểu

    Cho đường thẳng (d):3x - 4y + 2 = 0 và đường tròn (C):x^{2} + (y + 4)^{2} = 25. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng (d) và đường tròn (C)?

    Ta có: (C):x^{2} + (y + 4)^{2} = 25
\Rightarrow \left\{ \begin{matrix}
I(0; - 4) \\
R = 5 \\
\end{matrix} ight.

    Lại có khoảng cách từ tâm I đến đường thẳng d là:

    d\left( I;(d) ight) = \frac{\left| 3.0
- 4.( - 4) + 2 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{18}{5} <
R

    Vậy đường thẳng (d) cắt đường tròn (C) là khẳng định đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo