Đường tròn
có dạng tổng quát là:
Đường tròn
có dạng tổng quát là:
Cho hai đường thẳng
và
với m là tham số. Tìm giá trị của tham số m để hai đường thẳng tạo với nhau một góc bằng nửa góc vuông?
VTPT của hai đường thẳng lần lượt là
Để hai đường thẳng tạo với nhau một góc bằng thì
Vậy .
Cho elip
. Qua một tiêu điểm của
dựng đường thẳng song song với trục
và cắt
tại hai điểm
và
. Độ dài
bằng bao nhiêu?
Xét
Khi đó, Elip có tiêu điểm là đường thẳng
//
và đi qua
là
Giao điểm của và
là nghiệm của hệ phương trình
Vậy tọa độ hai điểm .
Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?
Phương trình tổng quát của đường thẳng là: .
Trong mặt phẳng với hệ tọa độ
, cho hai điểm
và đường thẳng
. Tìm tọa độ giao điểm của đường thẳng
và
.
Cho đường thẳng
và
. Tính cosin góc tạo bởi giữa hai đường thẳng trên.
.
Viết phương trình đường tròn
có tâm
và tiếp xúc với đường thẳng
?
Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng nên
Vậy phương trình đường tròn cần tìm là: .
Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi
là các tiêu điểm của elip. Khi đó độ dài
bằng:
Ta có độ dài trục lớn bằng 4 m.
=> 2a = 4 => a = 2.
Lại có độ dài trục nhỏ bằng 2m.
=> 2b = 2=> b = 1
Ta có
=>
Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.
Elip có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị
.
Elip có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị
.
Ta có
Phương trình chính tắc của Elip là .
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
và
. Chiều cao của tam giác kẻ từ đỉnh
bằng:
Cho hai đường thẳng
và
với
. Nếu
vô nghiệm thì vị trí tương đối của hai đường thẳng là:
Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình .
Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.
Tìm phương trình chính tắc của parabol
biết
có tiêu điểm là
.
Gọi phương trình chính tắc của là:
.
Do tọa độ tiêu điểm nên
.
Vậy phương trình của là:
.
Khái niệm nào sau đây định nghĩa về hypebol?
Cho cố định với
. Hypebol
là tập hợp điểm
sao cho
với
là một số không đổi và
.
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại đáp án vì không có dạng
Xét đáp án
loại.
Xét đáp án
loại.
Xét đáp án
Chọn đáp án này.
Đường tròn
đi qua điểm
và tiếp xúc với hai trục tọa độ
có phương trình là:
Vì thuộc góc phần tư (I) nên
Khi đó:
Cho tọa độ hai điểm
. Phương trình đường tròn ngoại tiếp tam giác
là:
Ta có tam giác OAB vuông tại O nên tâm I của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền AB suy ra I(4; 3) và bán kính
Vậy phương trình đường tròn ngoại tiếp tam giác OAB là:
Phương trình tổng quát của đường thẳng
đi qua
và song song với đường thẳng
là:
Vậy
Cho đường thẳng
. Điểm nào dưới đây thuộc đường thẳng đã cho?
Thay vào đường thẳng
suy ra
Vậy điểm thuộc đường thẳng
.
Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?
Với A(4; 0), B(0; 5) ta có:
Đường thẳng AB là đường thẳng đi qua hai điểm A và B, do đó nhận làm vectơ chỉ phương.
Khi đó đường thẳng AB nhận làm vectơ pháp tuyến.
Đường thẳng AB đi qua điểm A(4; 0), có vectơ pháp tuyến nên có phương trình tổng quát là:
Do đó phương trình ở phương án không phải phương trình AB.
Đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) nên có phương trình đoạn chắn của là:
Do đó phương án đúng.
Phương trình đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) là:
Do đó phương án đúng.
Đường thẳng AB đi qua điểm A(4; 0), có vectơ chỉ phương nên có phương trình tham số là:
(t ∈ R)
Do đó phương án (t ∈ R) đúng.
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
và
song song với nhau.