Tọa độ tâm
và bán kính
của đường tròn
là:
Tọa độ tâm
và bán kính
của đường tròn
là:
Cho elip
có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng
. Viết phương
trình của
?
Ta có:
Mà .
Vậy phương trình :
.
Phương trình tổng quát của đường thẳng đi qua hai điểm
và
là:
Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:
Gọi .
Vì .
Do đó .
Ta có: .
Một đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến.
Cho hai đường thẳng
và
. Tìm các giá trị của tham số
để
và
hợp với nhau một góc bằng ![]()
Ta có:
Tọa độ tâm
và bán kính
của đường tròn
là:
Trong mặt phẳng tọa độ
, đường tròn tâm
và tiếp xúc với đường thẳng
có phương trình là:
Đường tròn tâm I tiếp xúc với đường thẳng có bán kính R bằng khoảng cách từ điểm I đến đường thẳng
.
Suy ra
Vậy phương trình đường tròn tâm và tiếp xúc với đường thẳng
có phương trình là:
.
Cho bốn điểm
,
,
và
. Xác định vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Đường chuẩn của Parabol
là:
Từ phương trình Parabol ta có
Do đó phương trình đường chuẩn của Parabol là
Cho đường tròn
. Biết rằng khi giá trị
thay đổi, đường tròn
luôn đi qua điểm
cố định có hoành độ dương. Xác định giá trị của tham số m sao cho tiếp tuyến của đường tròn
tại
song song với
?
Gỉa sử đường tròn luôn đi qua điểm cố định khi m thay đổi. Khi đó:
với mọi m
với mọi m
Vậy ta có điểm
Đường tròn có tâm . VTPT của tiếp tuyến của đường tròn tại I là
Để tiếp tuyến tại I song song với đường thẳng nên tồn tại giá trị k sao cho:
Vậy giá trị m cần tìm là .
Một vectơ chỉ phương của đường thẳng
là:
Đường thẳng có một vectơ chỉ phương là:
Tìm m để đường thẳng
và
tạo với nhau một góc
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Với
, tâm sai của hypebol là
.
Nếu đường thẳng
đi qua gốc tọa độ và song song với đường thẳng
thì
có phương trình tổng quát là:
Một vectơ pháp tuyến của là:
Mặt khác đi qua gốc tọa độ hay đi qua điểm
Vậy phương trình đường thẳng là:
Vậy đáp án đúng là: .
Tính khoảng cách từ điểm
đến đường thẳng ![]()
Khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Tìm m để hai đường thẳng
và
vuông góc với nhau:
và ![]()
Ta có: .
Để hai đường thẳng vuông góc thì: . Phương tình này vô nghiệm nên không tồn tại
Cho hình elip có độ dài trục lớn và độ dài trục bé lần lượt là
. Vẽ một hình chữ nhật nội tiếp elip đã cho. Diện tích lớn nhất của hình chữ nhật là:
Hình vẽ minh họa
Phương trình chính tắc của elip có dạng .
Ta có:
Chọn là đỉnh hình chữ nhật và
. Ta có:
Diện tích hình chữ nhật là:
Trong mặt phẳng tọa độ
, cho đường thẳng
và tọa độ một điểm
. Ta kí hiệu khoảng cách từ điểm
đến đường thẳng
là
. Kết luận nào sau đây đúng?
Khoảng cách từ điểm A đến đường thẳng được tính bởi công thức:
Vậy kết luận đúng là: “”.
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?
Phương trình Elip có dạng
Vậy phương trình cần tìm là