Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho parabol (P) có phương trình chính tắc là y^{2}=2px, với p > 0. Khi đó khẳng định nào sau đây sai?

    Đáp án sai: Trục đối xứng của parabol là trục Oy. Đáp án đúng là trục Ox mới là trục đối xứng.

  • Câu 3: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d_{1}:5x + 3y - 3 = 0d_{2}:5x + 3y + 7 = 0 song song nhau. Đường thẳng vừa song song và cách đều với d_{1},\ d_{2} là:

    d\left( M(x;y);d_{1} ight) = d\left(M(x;y);d_{2} ight)

    \Leftrightarrow \frac{|5x + 3y - 3|}{\sqrt{34}} =\frac{|5x + 3y + 7|}{\sqrt{34}} \Leftrightarrow 5x + 3y + 2 =0.

  • Câu 4: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?

    Điều kiện để phương trình {x^2} + {y^2} + 2ax + 2by + c = 0 là phương trình của một đường tròn là: {a^2} + {b^2} - c > 0

    Kiểm tra các đáp án ta được kết quả đúng là: x^{2} + y^{2} – 4x + 6y – 12 = 0.

  • Câu 5: Thông hiểu

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

  • Câu 7: Vận dụng

    Cho elip (E):\frac{x^{2}}{100} + \frac{y^{2}}{36} =
1. Qua một tiêu điểm của (E) dựng đường thẳng song song với trục Oy và cắt (E) tại hai điểm MN. Độ dài MN bằng bao nhiêu?

    Xét (E):\frac{x^{2}}{100} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a^{2} = 100 \\
b^{2} = 36 \\
\end{matrix} ight.\  \Leftrightarrow c^{2} = a^{2} - b^{2} = 100 - 36
= 64.

    Khi đó, Elip có tiêu điểm là F_{1}( - \
8;0) \Rightarrow đường thẳng d//Oy và đi qua F_{1}x =
- \ 8.

    Giao điểm của d(E) là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x = - \ 8 \\
\frac{x^{2}}{100} + \frac{y^{2}}{36} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \ 8 \\
y = \pm \ \frac{24}{5} \\
\end{matrix} ight.\ .

    Vậy tọa độ hai điểm M\left( - \
8;\frac{24}{5} ight),\ \ N\left( - \ 8; - \ \frac{24}{5} ight)
\Rightarrow MN = \frac{48}{5}.

  • Câu 8: Thông hiểu

    Cho hai đường thẳng \left( d_{1} ight):x + 3y + 8 = 0; \left( d_{2} ight):3x - 4y + 10 =
0 và điểm A( - 2;1). Phương trình đường tròn có tâm I \in \left(
d_{1} ight), đi qua điểm A và tiếp xúc với \left( d_{2} ight) là:

    Hình vẽ minh họa

    Ta có I là tâm đường tròn và I \in \left(
d_{1} ight) nên I( - 3t -
8;t)

    Theo giả thiết bài toán ta có:

    d\left( I;\left( d_{2} ight) ight) =
IA

    \Leftrightarrow \frac{\left| 3( - 3t -
8) - 4t + 10 ight|}{\sqrt{3^{2} + 4^{2}}} = \sqrt{( - 3t - 8 + 2)^{2}
+ (t - 1)^{2}}

    \Leftrightarrow t = - 3

    Suy ra I(1; - 3) và bán kính R = IA = 5

    Vậy phương trình đường tròn cần tìm là: (C):(x - 1)^{2} + (y + 3)^{2} = 25.

  • Câu 9: Vận dụng

    Tìm m để hai đường thẳng d_{1}:3x + 4y + 10 =
0d_{2}:(2m - 1)x + m^{2}y + 10
= 0 trùng nhau?

    \left\{ \begin{matrix}
d_{2}:(2m - 1)x + m^{2}y + 10 = 0 \\
d_{1}:3x + 4y + 10 = 0 \\
\end{matrix} ight.

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\frac{2m - 1}{3} = \frac{m^{2}}{4} =
\frac{10}{10}

    \Leftrightarrow \left\{ \begin{matrix}
2m - 1 = 3 \\
m^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 10: Thông hiểu

    Tìm điều kiện của tham số m để hai đường thẳng \left( d_{1} ight):mx + y - m - 1 =
0\left( d_{2} ight):x + my =
2 cắt nhau?

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) cắt nhau khi và chỉ khi:

    \frac{m}{1} eq \frac{1}{m}
\Leftrightarrow m^{2} eq 1 \Leftrightarrow m eq \pm 1

    Vậy hai đường thẳng cắt nhau khi và chỉ khi m eq \pm 1.

  • Câu 11: Thông hiểu

    Tâm sai của Hyperbol \frac{x^{2}}{5} - \frac{y^{2}}{4} = 1 bằng:

    Ta có : \left\{ \begin{matrix}
a^{2} = 5 \\
b^{2} = 4 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = \sqrt{5} \\
b = 2 \\
c = 3 \\
\end{matrix} ight.\  \Rightarrow e = \frac{c}{a} =
\frac{3}{\sqrt{5}}.

  • Câu 12: Nhận biết

    Đường tròn (C):(x - 1)^{2} + (y + 2)^{2} = 25 có dạng khai triển là:

    (C):(x - 1)^{2} + (y + 2)^{2} = 25
\Leftrightarrow x^{2} + y^{2} - 2x + 4y - 20 = 0.

  • Câu 13: Nhận biết

    Trong mặt phẳng tọa độ Oxy, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?

    Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.

  • Câu 14: Thông hiểu

    Tìm giá trị của tham số m sao cho đường thẳng (\Delta):(m - 1)y + mx - 2 =
0 là tiếp tuyến của đường tròn (C):x^{2} + y^{2} - 6x + 5 = 0.

    Đường tròn (C) có tâm I(3; 0) và bán kính R = 2

    Để (\Delta) là tiếp tuyến của đường tròn (C) thì ta phải có:

    d(I;\Delta) = \frac{|3m - 2|}{\sqrt{(m -
1)^{2} + m^{2}}} = 2

    \Leftrightarrow 4\left( 2m^{2} - 2m + 1
ight) = 9m^{2} - 12m + 4

    \Leftrightarrow m^{2} - 4m = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 4 \\
\end{matrix} ight.

  • Câu 15: Nhận biết

    Cho hai đường thẳng \Delta_1\Delta_2 có phương trình lần lượt là ax + by + c = 0dx + ey + f = 0. Xét hệ \left\{\begin{matrix}ax+by+c=0\\ dx+ey+f=0\end{matrix}ight.. Khi đó hai đường cắt nhau khi và chỉ khi:

     Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.

  • Câu 16: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):x + y - 1 = 0(\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    (\Delta):x + y - 1 = 0 có vectơ pháp tuyến là \overrightarrow{n_{\Delta}} =
(1;1)

    (\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương là \overrightarrow{u_{\Delta'}} = (2; -
1) nên (\Delta') có vectơ pháp tuyến là \overrightarrow{n_{\Delta'}} =
(1;2)

    \frac{1}{1} eq \frac{1}{2} nên (\Delta) cắt (\Delta').

  • Câu 17: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:7x + 2y - 1 = 0\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\ .

    \left. \ \begin{matrix}
\Delta_{1}:7x + 2y - 1 = 0 ightarrow {\overrightarrow{n}}_{1} = (7;2)
\\
\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (1; -
5) ightarrow {\overrightarrow{n}}_{2} = (5;1) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{7}{5}\boxed{=}\frac{2}{1} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\  ightarrow \Delta_{1},\ \ \Delta_{2} cắt nhau nhưng không vuông góc.

  • Câu 18: Vận dụng

    Trong mặt phẳng hệ tọa độ Oxy, cho đường tròn (C):x^{2} + y^{2} + 2x - 6y + 5 = 0. Viết phương trình tiếp tuyến của đường tròn (C), biết rằng tiếp tuyến đó song song với đường thẳng \Delta:x + 2y - 15 =
0?

    Ta có: Phương trình đường tròn có tâm I(
- 1;3) và bán kính R = \sqrt{1 + 9
- 5} = \sqrt{5}

    Gọi d là đường thẳng song song với đường thẳng \Delta:x + 2y - 15 = 0 khi đó:

    d:x + 2y - m = 0;(m eq
15)

    Đường thẳng d là tiếp tuyến của đường tròn khi và chỉ khi

    d(I;d) = R \Leftrightarrow \frac{| - 1 +
6 - m|}{\sqrt{1 + 4}} = \sqrt{5}

    \Leftrightarrow |m - 5| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
m - 5 = 5 \\
m - 5 = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 10 \\
m = 0 \\
\end{matrix} ight.

    Vậy có hai tiếp tuyến của đường tròn thỏa mãn yêu cầu bài toán là: x + 2y = 0;x + 2y - 10 = 0

  • Câu 19: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(–1\ ;\ 3)D(3\ ;\ 1).

    Ta có:

    \left\{ \begin{matrix}C( - 1;3) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 20: Nhận biết

    Cho Parabol (P) có phương trình y^{2} = 4x. Tìm đường chuẩn của (P).

    Từ phương trình của (P), ta có: 2p = 4 nên p = 2.

    Suy ra (P) có tiêu điểm là F(1\ ;\ 0) và đường chuẩn là x + 1 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo