Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (1; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight.\  ightarrow B(2; - 8) \in d_{2},\ \
{\overrightarrow{u}}_{2} = ( - 2;4) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{1}{- 2} = \frac{- 2}{4} \\
B \in d_{1} \leftrightarrow t = 3 \\
\end{matrix} ight.\  ightarrow d_{1} \equiv d_{2}.

  • Câu 2: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:3mx + 2y + 6 = 0d_{2}:\left( m^{2} + 2 ight)x + 2my + 6 =
0 cắt nhau?

    Ta có: \left\{ \begin{matrix}
d_{1}:3mx + 2y + 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3m;2) \\
d_{2}:\left( m^{2} + 2 ight)x + 2my + 6 = 0 ightarrow
{\overrightarrow{n}}_{2} = \left( m^{2} + 2;2m ight) \\
\end{matrix} ight.

    ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}:y + 3 = 0 \\d_{2}:x + y + 3 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ (TM) \\meq 0\overset{d_{1} \cap d_{2} = M}{ightarrow}\frac{m^{2} +2}{3m}\frac{2m}{2} \Leftrightarrow m \pm 1 \\\end{matrix} ight.\ .

  • Câu 3: Nhận biết

    Phương trình chính tắc của đường tròn tâm I(0; - 1) và bán kính R = 5 là:

    Phương trình đường tròn có dạng (x -
a)^{2} + (y - b)^{2} = R^{2}

    Vì phương trình đường tròn cần tìm có tâm I(0; - 1) và bán kính R = 5 nên phương trình cần tìm là: x^{2} + (y + 1)^{2} = 25

  • Câu 4: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{a} = 2\overrightarrow{i} +
3\overrightarrow{j} là:

    Tọa độ vectơ \overrightarrow{a} =
(2;3).

  • Câu 5: Thông hiểu

    Xác định góc giữa hai đường thẳng (a):\sqrt{3}x - y + 7 = 0(b):x - \sqrt{3}y - 1 = 0?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{a}} = \left( \sqrt{3};1 ight) \\
\overrightarrow{n_{b}} = \left( 1; - \sqrt{3} ight) \\
\end{matrix} ight.

    \cos(a;b) = \frac{\left|
\overrightarrow{n_{a}}.\overrightarrow{n_{b}} ight|}{\left|
\overrightarrow{n_{a}} ight|.\left| \overrightarrow{n_{b}} ight|} =
\frac{\sqrt{3}}{2}

    \Rightarrow (a;b) = 30^{0}

  • Câu 6: Thông hiểu

    Elip có một tiêu điểm F( - 2;0) và tích độ dài trục lớn với trục bé bằng 12\sqrt{5}. Phương trình chính tắc của elip là:

    Gọi (E) có dạng \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Theo giả thiết ta có: \left\{
\begin{matrix}
ab = 3\sqrt{5} \\
a^{2} - b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight..

    Vậy (E) cần tìm là \frac{x^{2}}{9} +
\frac{y^{2}}{5} = 1.

  • Câu 7: Thông hiểu

    Đường tròn (C) có tâm I(2; - 3) và tiếp xúc với trục Oy có phương trình là:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = d\lbrack I;Oybrack = 2 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y + 3)^{2} =
4.

  • Câu 8: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:7x + 2y - 1 = 0\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\ .

    \left. \ \begin{matrix}
\Delta_{1}:7x + 2y - 1 = 0 ightarrow {\overrightarrow{n}}_{1} = (7;2)
\\
\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (1; -
5) ightarrow {\overrightarrow{n}}_{2} = (5;1) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{7}{5}\boxed{=}\frac{2}{1} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\  ightarrow \Delta_{1},\ \ \Delta_{2} cắt nhau nhưng không vuông góc.

  • Câu 9: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?

    Phương trình tham số của đường thẳng là: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 4 - 3t \\
\end{matrix} ight.

  • Câu 10: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai điểm P( - 3;3),Q( - 1;5). Viết phương trình đường trung trực của đoạn thẳng PQ?

    Gọi I là trung điểm của PQ, khi đó I(-2;4)

    Đường trung trực của PQ đi qua điểm I và nhận \overrightarrow{v} = (2;2) làm vectơ pháp tuyến.

    Phương trình đường trung trực của PQ là:

    2(x + 2) + 2(y - 4) = 0

    \Leftrightarrow x + y - 2 =
0

    Vậy đường thẳng cần tìm là: x + y - 2 = 0.

  • Câu 11: Thông hiểu

    Trong các phương trình sau, phương trình nào không phải là phương trình của đường tròn?

    Xét đáp án x^{2} + y^{2} - x + y + 4 = 0
ightarrow a = \frac{1}{2},\ b = - \frac{1}{2},\ c = 4

    ightarrow a^{2} + b^{2} - c < 0
ightarrowChọn đáp án này.

    Các đáp án còn lại các hệ số a,\ \ b,\ \
c thỏa mãn a^{2} + b^{2} - c >
0.

  • Câu 12: Thông hiểu

    Tìm phương trình chính tắc của Parabol (P) biết khoảng cách từ tiêu điểm F đến đường thẳng \Delta:x + y - 12 = 02\sqrt{2}.

    Ta có tọa độ tiêu điểm F\left(
\frac{p}{2}\ ;\ 0 ight).

    Khoảng cách từ F đến đường thẳng \Delta:x + y - 12 = 02\sqrt{2} nên:

    d_{(F;\Delta)} = \frac{\left| \frac{p}{2}
- 12 ight|}{\sqrt{2}} = 2\sqrt{2} \Leftrightarrow \left\lbrack
\begin{matrix}
p = 32 \\
p = 64 \\
\end{matrix} ight..

    Vậy phương trình của (P) là: y^{2} = 32x hoặc y^{2} = 64x.

  • Câu 13: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d_{1}:3x - 4y - 3 = 0d_{2}:12x + 5y - 12 = 0. Phương trình đường phân giác góc nhọn tạo bởi hai đường thẳng d_{1}d_{2} là:

    Các đường phân giác của các góc tạo bởi d_{1}:3x - 4y - 3 = 0d_{2}:12x + 5y - 12 = 0 là:

    \frac{|3x - 4y - 3|}{5} = \frac{|12x +
5y - 12|}{13} \Leftrightarrow \left\lbrack \begin{matrix}
3x + 11y - 3 = 0 \\
11x - 3y - 11 = 0 \\
\end{matrix} ight.\ .

    Gọi I = d_{1} \cap d_{2} ightarrow
I(1;0);\ \ d:3x + 11y - 3 = 0 ightarrow M( - 10;3) \in d,

    Gọi H là hình chiếu của M lên d_{1}.

    Ta có: IM = \sqrt{130},\ \ MH = \frac{| -
30 - 12 - 3|}{5} = 9, suy ra

    \sin\widehat{MIH} = \frac{MH}{IM} =
\frac{9}{\sqrt{130}} ightarrow \widehat{MIH} > 52^{\circ}
ightarrow 2\widehat{MIH} > 90^{\circ}.

    Suy ra d:3x + 11y - 3 = 0 là đường phân giác góc tù, suy ra đường phân giác góc nhọn là 11x - 3y - 11 = 0.

  • Câu 14: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

  • Câu 15: Vận dụng

    Có bao nhiêu đường thẳng đi qua gốc tọa độ O và tiếp xúc với đường tròn (C):x^{2} + y^{2} - 2x + 4y - 11 = 0?

    Đường tròn (C) có tâm I(1; - 2),\ R = 4
ightarrow OI = \sqrt{5} < R ightarrowkhông có tiếp tuyến nào của đường tròn kẻ từ O.

  • Câu 16: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1. Khi đó độ dài trục lớn và trục nhỏ của elip lần lượt là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
\end{matrix} ight.

    Độ dài trục lớn AA_{1} = 2a =
6

    Độ dài trục bé BB_{1} = 2b =
4

    Vậy độ dài trục lớn và trục nhỏ của elip lần lượt là: 6;4

  • Câu 17: Thông hiểu

    Cho  có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

    Ta có: BH \bot AC \Rightarrow \left( {AC} ight):x + y + c = 0

    C\left( { - 1;2} ight) \in \left( {AC} ight)

    \begin{matrix}    \Rightarrow  - 1 + 2 + c = 0 \hfill \\   \Rightarrow c =  - 1 \hfill \\ \end{matrix}

    Vậy (AC):x+y−1=0

    A=AN∩AC => A là nghiệm của hệ phương trình

    \left\{ {\begin{array}{*{20}{l}}  {x + y - 1 = 0} \\   {2x - y + 5 = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {x = \dfrac{{ - 4}}{3}} \\   {y = \dfrac{7}{3}} \end{array}} ight. \Rightarrow A\left( {\dfrac{{ - 4}}{3};\dfrac{7}{3}} ight)

  • Câu 18: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?

    Loại đáp án 5x^{2} + 4y^{2} + x - 4y + 1
= 0. vì không có dạng x^{2} + y^{2}
- 2ax - 2by + c = 0.

    Xét đáp án

    x^{2} + y^{2} + 2x - 4y + 9 = \ 0
ightarrow a = - 1,\ b = 2,\ c = - 9 ightarrow a^{2} + b^{2} - c <
0 ightarrowloại.

    Xét đáp án

    x^{2} + y^{2} - 6x + 4y + 13 = 0
ightarrow a = 3,\ b = - 2,\ c = 13 ightarrow a^{2} + b^{2} - c <
0 ightarrowloại.

    Xét đáp án

    2x^{2} + 2y^{2} - 8x - 4y - 6 = 0
\Leftrightarrow x^{2} + y^{2} - 4x - 2y - 3 = 0 ightarrow \left\{
\begin{matrix}
a = 2 \\
b = 1 \\
c = - 3 \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c >
0.

    Chọn đáp án này.

  • Câu 19: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1. Tính tâm sai của elip.

    Ta có a^{2} = 4 \Rightarrow a = 2;b^{2} =
1 \Rightarrow b = 1;c^{2} = a^{2} - b^{2} = 3 \Rightarrow c =
\sqrt{3}

    Tâm sai của elip là e = \frac{c}{a} =
\frac{\sqrt{3}}{2}.

  • Câu 20: Vận dụng

    Dây cung của elip (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 (0 < b < a) vuông góc với trục lớn tại tiêu điểm có độ dài bằng:

    Hai tiêu điểm có tọa độ lần lượt là F_{1}( - \ c;\ 0),\ \ F_{2}(c;\ 0).

    Đường thẳng chứa dây cung vuông góc với trục lớn (trục hoành ) tại tiêu điểm F có phương trình là \Delta:x = c.

    Suy ra \Delta \cap (E) \Leftrightarrow
\left\{ \begin{matrix}
\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \\
x = c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
\frac{c^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
y^{2} = \frac{b^{2}\left( a^{2} - c^{2} ight)}{a^{2}} =
\frac{b^{4}}{a^{2}} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
y = \pm \frac{b^{2}}{a} \\
\end{matrix} ight.

    Vậy tọa độ giao điểm của \Delta(E)M\left( c;\ \frac{b^{2}}{a} ight),\ \ N\left(
c;\  - \frac{b^{2}}{a} ight) \Rightarrow MN =
\frac{2b^{2}}{a}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo