Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(4; 1) là:

     Ta có: a=2b.

    Phương trình chính tắc: \frac{{{x^2}}}{{{{(2b)}^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.

    M(4;1) thuộc hypebol nên: 

    \frac{{{4^2}}}{{{{(2b)}^2}}} - \frac{{{1^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{16}}{{4{b^2}}} - \frac{1}{{{b^2}}} = 1\Leftrightarrow \frac{{12}}{{4{b^2}}} = 1 \Leftrightarrow b =  \pm \sqrt 3  \Rightarrow a =  \pm 2\sqrt 3.

    Do đó, phương trình chính tắc: \frac{x^{2}}{12}-\frac{y^{2}}{3}=1.

  • Câu 2: Nhận biết

    Đường tròn có tâm I(1;2), bán kính R = 3 có phương trình là:

    (C):\left\{ \begin{matrix}
I(1;2) \\
R = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 1)^{2} + (y - 2)^{2} = 9
\Leftrightarrow x^{2} + y^{2} - 2x - 4y - 4 = 0.

  • Câu 3: Thông hiểu

    Tính góc giữa hai đường thẳng \left( d_{1} ight):2x - y - 10 = 0\left( d_{2} ight):x - 3y + 9 =
0

    Ta có:

    Vectơ pháp tuyến của hai đường thẳng lần lượt là \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 1) \\
\overrightarrow{n_{2}} = (1; - 3) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 2.1 + ( - 1).( - 3) = 5
\\
\left| \overrightarrow{n_{1}} ight| = \sqrt{2^{2} + ( - 1)^{2}} =
\sqrt{5} \\
\left| \overrightarrow{n_{2}} ight| = \sqrt{1^{2} + ( - 3)^{2}} =
\sqrt{10} \\
\end{matrix} ight.

    Suy ra \cos\left( d_{1};d_{2} ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{\sqrt{2}}{2}

    \Rightarrow \widehat{\left( d_{1};d_{2}
ight)} = 45^{0}

  • Câu 4: Vận dụng

    Viết phương trình tiếp tuyến \Delta của đường tròn (C):x^{2} + y^{2} - 4x - 4y + 4 = 0, biết tiếp tuyến đi qua điểm B(4;6).

    Đường tròn (C) có tâm I(2;2),\ R =
2 và tiếp tuyến có dạng

    \Delta:ax + by - 4a - 6b = 0\ \ \left(a^{2} + b^{2}eq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|2a + 4b|}{\sqrt{a^{2} + b^{2}}} = 2
\Leftrightarrow b(3b + 4a) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
b = 0 ightarrow a = 1,\ b = 0 \\
3b = - 4a ightarrow a = 3,\ b = - 4 \\
\end{matrix} ight.\ .

  • Câu 5: Vận dụng

    Biết rằng có đúng hai giá trị của tham số k để đường thẳng d:y = kx tạo với đường thẳng \Delta:y = x một góc 60^{0}. Tổng hai giá trị của k bằng:

    \begin{matrix}
\left\{ \begin{matrix}
d:y = kx ightarrow {\overrightarrow{n}}_{d} = (k; - 1) \\
\Delta:y = x ightarrow {\overrightarrow{n}}_{\Delta} = (1; - 1) \\
\end{matrix} ight.\ \overset{}{ightarrow}\frac{1}{2} = cos60^{\circ}
= \frac{|k + 1|}{\sqrt{k^{2} + 1}.\sqrt{2}} \\
\\
\end{matrix}

    \Leftrightarrow k^{2} + 1 = 2k^{2} + 4k
+ 2

    \Leftrightarrow k^{2} + 4k + 1 =
0\overset{sol:\ k = k_{1},\ \ k = k_{2}}{ightarrow}k_{1} + k_{2} = -
4.

  • Câu 6: Thông hiểu

    Phương trình tổng quát của đường thẳng \Delta đi qua điểm A(5;4) và có vectơ pháp tuyến \overrightarrow{n}(11; - 12) là:

    Đường thẳng \Delta đi qua điểm A(5;4) và nhận \overrightarrow{n}(11; - 12) là vectơ pháp tuyến có phương trình tổng quát là:

    11(x - 5) - 12(y - 4) = 0

    \Leftrightarrow 11x - 12y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng là 11x - 12y - 7 =
0.

  • Câu 7: Nhận biết

    Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?

    Phương trình tổng quát của đường thẳng là: x = 2y.

  • Câu 8: Vận dụng

    Cho hypebol (H): \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 và đường thẳng \Delta: x+y=3. Tích các khoảng cách từ hai tiêu điểm của (H) đến \Delta bằng giá trị nào sau đây?

     Ta có: a=4,b=3 \Rightarrow c=\sqrt{a^2+b^2}=5. Suy ra 2 tiêu điểm F_1(-5;0),F_2(5;0).

    Khoảng cách từ F_2F_1 đến đường thẳng \Delta :x+y-3=0:

    d({F_2},\Delta ) = \frac{{\left| {5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2

    d({F_1},\Delta ) = \frac{{\left| { - 5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2

    Do đó \sqrt2 . 4\sqrt2=8.

  • Câu 9: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 10: Nhận biết

    Cho hai đường thẳng \Delta_1\Delta_2 có phương trình lần lượt là ax + by + c = 0dx + ey + f = 0. Xét hệ \left\{\begin{matrix}ax+by+c=0\\ dx+ey+f=0\end{matrix}ight.. Khi đó hai đường cắt nhau khi và chỉ khi:

     Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.

  • Câu 11: Nhận biết

    Đường thẳng d đi qua điểm A( - 4;5) và có vectơ pháp tuyến \overrightarrow{n} = (3;2) có phương trình tham số là:

    \left\{ \begin{matrix}A( - 4;5) \in d \\{\overrightarrow{n}}_{d} = (3;2) ightarrow {\overrightarrow{u}}_{d} =( - 2;3) \\\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}x = - 4 - 2t \\y = 5 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 12: Nhận biết

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 13: Nhận biết

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 14: Thông hiểu

    Trong mặt phẳng Oxy, điểm M nằm trên đường tròn (x + 3)^{2} + (y - 4)^{2} =
4 sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm M là:

    Đường tròn (x + 3)^{2} + (y - 4)^{2} =
4 có tâm I( - 3;4) và bán kính R = 2.

    Phương trình đường thẳng OI đi qua O(0;0) và nhận \overrightarrow{OI} = ( - 3;4) làm VTCP là: \left\{ \begin{matrix}
x = - 3t \\
y = 4t \\
\end{matrix}\ \ \ \ (t\mathbb{\in R}) ight..

    Ta có: OM \leq |OI - R| = 3

    Để OM ngắn nhất \Leftrightarrow OM =
3

    Dấu bằng xảy ra \Leftrightarrow
\overrightarrow{OM} = \frac{3}{5}\overrightarrow{OI} \Leftrightarrow
M\left( - \frac{9}{5};\frac{12}{5} ight).

  • Câu 15: Thông hiểu

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

  • Câu 16: Thông hiểu

    Gọi \alpha là góc tạo bởi hai đường thẳng (\Delta):x + 3y - 2 = 0(\Delta'):x - 2y + 5 = 0. Khi đó độ lớn của \alpha bằng:

    Ta có:

    \cos\alpha = \frac{\left| 1.1 + 3.( - 2)
ight|}{\sqrt{1^{2} + 3^{2}}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Rightarrow \alpha = 45^{0}

    Vậy góc tạo bởi hai đường thẳng bằng 45^0.

  • Câu 17: Nhận biết

    Cho Parabol (P) có phương trình y^{2} = 4x. Tìm đường chuẩn của (P).

    Từ phương trình của (P), ta có: 2p = 4 nên p = 2.

    Suy ra (P) có tiêu điểm là F(1\ ;\ 0) và đường chuẩn là x + 1 = 0.

  • Câu 18: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):a_{1}x + b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 với {a_{1}}^{2} + {b_{1}}^{2} > 0;{a_{2}}^{2}
+ {b_{2}}^{2} > 0. Giả sử \alpha là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?

    Góc giữa hai đường thẳng (\Delta):a_{1}x
+ b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 xác định bởi công thức:

    \cos\alpha = \frac{\left| a_{1}a_{2} +
b_{1}b_{2} ight|}{\sqrt{{a_{1}}^{2} + {b_{1}}^{2}}.\sqrt{{a_{2}}^{2} +
{b_{2}}^{2}}}

  • Câu 19: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;2),B(4;1) và đường thẳng (d):2x - y - 5 = 0. Khi đó, phương trình đường tròn (C) có tâm I \in (d) và đi qua hai điểm A;B là:

    Hình vẽ minh họa

    Ta có: Gọi I là tâm của đường tròn (C). Vì I \in (d) nên I(t;2t - 5)

    Hai điểm A, B cùng thuộc đường tròn (C) nên

    IA = IB

    \Leftrightarrow (1 - t)^{2} + (7 -
2t)^{2} = (4 - t)^{2} + (6 - 2t)^{2}

    \Leftrightarrow t = 1

    Suy ra I(1; - 3);R = IA = 5

    Vậy phương trình đường tròn cần tìm là: (x - 1)^{2} + (y + 3)^{2} = 25

  • Câu 20: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2),B( - 2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    Ta có: d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} \Rightarrow d:3x + y - 7 = 0 ight..

    Để A, B nằm cùng phía đối với d thì:

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{A} + y_{A} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) >
0

    \Leftrightarrow m - 13 < 0
\Leftrightarrow m < 13.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo