Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:x - 2y + 3 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng d?

    Ta có: Vectơ pháp tuyến của đường thẳng \Delta là: \overrightarrow{n}(1; - 2).

  • Câu 2: Thông hiểu

    Biết parabol (P) có phương trình đường chuẩn là \Delta:x + 2 = 0. Phương trình chính tắc của (P) là:

    Gọi phương trình chính tắc của Parabol là: (P):y^{2} = 2px

    Parabol có phương trình đường chuẩn là: \Delta:x + 2 = 0 nên \frac{p}{2} = 2 \Rightarrow p = 4

    Suy ra phương trình chính tắc của parabol là: y^{2} = 8x.

  • Câu 3: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;2), B(0;3)C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

    \left\{ \begin{matrix}
A(1;2) \\
B(0;3),\ \ C(4;0) ightarrow BC:3x + 4y - 12 = 0 \\
\end{matrix} ight.

    ightarrow h_{A} = d(A;BC) = \frac{|3 +
8 - 12|}{\sqrt{9 + 16}} = \frac{1}{5}.

  • Câu 5: Thông hiểu

    Phương trình chính tắc của Elip có đỉnh ( - 3;\ 0) và một tiêu điểm là (1;\ 0)

    Elip có đỉnh ( - 3;\ 0) \Rightarrow a =
3 và một tiêu điểm (1;\ 0)
\Rightarrow c = 1.

    Ta có c^{2} = a^{2} - b^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 9 - 1 = 8.

    Vậy phương trình (E):\frac{x^{2}}{9} +
\frac{y^{2}}{8} = 1.

  • Câu 6: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.d_{2}:5x
+ 2y - 14 = 0.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow A(4;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 5) \\
d_{2}:5x + 2y - 14 = 0 ightarrow \ \ {\overrightarrow{n}}_{2} = (5;2)
ightarrow {\overrightarrow{u}}_{2} = (2; - 5) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
{\overrightarrow{u}}_{1} = {\overrightarrow{u}}_{2} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.Chọn

  • Câu 7: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x - 1)^{2} + (y + 3)^{2} = 16 là:

    (C):(x - 1)^{2} + (y + 3)^{2} =
16\overset{}{ightarrow}I(1; - 3),\ \ R = \sqrt{16} = 4.

  • Câu 8: Nhận biết

    Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:

     Ta có: {d_{(M,\Delta )}} = \frac{{\left| {3. - 1 - 4.1 - 3} ight|}}{{\sqrt {{3^2} + {{( - 4)}^2}} }} = 2.

  • Câu 9: Vận dụng

    Viết phương trình chính tắc của elip biết nó đi qua điểm A\left( 2;\sqrt{3} ight) và tỉ số của độ dài trục lớn với tiêu cự bằng \frac{2}{\sqrt{3}}.

    Gọi phương trình chính tắc của Elip là (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1, với a > b >
0.

    \bullet Elip đi qua điểm A\left( 2;\sqrt{3} ight) suy ra \frac{2^{2}}{a^{2}} + \frac{\left( \sqrt{3}
ight)^{2}}{b^{2}} = 1 \Leftrightarrow \frac{4}{a^{2}} +
\frac{3}{b^{2}} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1).

    \bullet Tỉ số của độ dài trục lớn với tiêu cự bằng \frac{2}{\sqrt{3}} suy ra \frac{2a}{2c} = \frac{2}{\sqrt{3}} \Leftrightarrow
c^{2} = \frac{3}{4}a^{2}.

    Kết hợp với điều kiện b^{2} = a^{2} -
c^{2}, ta được b^{2} = a^{2} -
\frac{3}{4}a^{2} = \frac{a^{2}}{4} \Leftrightarrow a^{2} = 4b^{2}\ \ \ \
\ \ \ \ \ \ (2).

    Từ (1),\ \ (2) suy ra \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{3}{b^{2}} = 1 \\
a^{2} = 4b^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{4}{4b^{2}} + \frac{3}{b^{2}} = 1 \\
a^{2} = 4b^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{4}{b^{2}} = 1 \\
a^{2} = 4b^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 4 \\
\end{matrix} ight.\ .

    Vậy phương trình cần tìm là (E):\frac{x^{2}}{16} + \frac{y^{2}}{4} =
1.

  • Câu 10: Vận dụng

    Cho đường thẳng (\Delta):x + (a - 1)y - a = 0 và đường tròn (C):x^{2} + y^{2} - 2x + 4y + 2 =
0. Tìm điều kiện của tham số a để (d) tiếp xúc với (C)?

    Đường tròn (C) có tâm I(1; - 2) và bán kính R = \sqrt{1^{2} + 2^{2} - 2} =
\sqrt{3}

    Để đường thẳng (\Delta)là tiếp tuyến của đường tròn (C) thì

    d(I;\Delta) = R \Leftrightarrow
\frac{\left| 1 - 2(a - 1) - a ight|}{\sqrt{1 + (a - 1)^{2}}} =
\sqrt{3}

    \Leftrightarrow \frac{|3 -
3a|}{\sqrt{a^{2} - 2a + 2}} = \sqrt{3}

    \Leftrightarrow |3 - 3a| =
\sqrt{3}.\sqrt{a^{2} - 2a + 2}

    \Leftrightarrow (3 - 3a)^{2} = 3a^{2} -
6a + 6

    \Leftrightarrow 2a^{2} - 4a + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = 1 + \dfrac{1}{\sqrt{2}} \\a = 1 - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Vậy a = 1 \pm \frac{1}{\sqrt{2}} thỏa mãn yêu cầu bài toán.

  • Câu 11: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn có phương trình: (x – 1)^{2} + (y – 10)^{2} = 81 lần lượt là:

     Tâm I(1;10), bán kính R=9.

  • Câu 12: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?

    Phương trình Parabol có dạng y^{2} =
2px

    Vậy phương trình cần tìm là y^{2} =
2x.

  • Câu 13: Thông hiểu

    Cho phương trình x^{2} + y^{2} - 2mx - 4(m - 2)y + 6 - m =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} - 2mx - 4(m - 2)y +
6 - m = 0

    ightarrow \left\{ \begin{matrix}
a = m \\
b = 2(m - 2) \\
c = 6 - m \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 1 \\
m > 2 \\
\end{matrix} ight.\ .

  • Câu 14: Vận dụng

    Cho đường thẳng d_{1}:2x + 3y + m^{2} - 1 = 0d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.. Tính cosin góc tạo bởi giữa hai đường thẳng trên.

    . \left\{ \begin{matrix}
d_{1}:2x + 3y + m^{2} - 1 = 0 ightarrow {\overrightarrow{n}}_{1} =
(2;3) \\
d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3; - 1)
\\
\end{matrix} ight. \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{|6 - 3|}{\sqrt{4 + 9}.\sqrt{9 +
1}} = \frac{3}{\sqrt{130}}.

  • Câu 15: Nhận biết

    Tìm phương trình chính tắc của parabol (P) biết (P) có tiêu điểm là F(0\ ;\ 5).

    Gọi phương trình chính tắc của (P) là: y^{2}= 2px.

    Do tọa độ tiêu điểm F(0\ ;\ 5) nên \frac{p}{2} = 5 \Leftrightarrow p =10.

    Vậy phương trình của (P) là: y^{2} = 20x.

  • Câu 16: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d_{1}:3x - 4y - 3 = 0d_{2}:12x + 5y - 12 = 0. Phương trình đường phân giác góc nhọn tạo bởi hai đường thẳng d_{1}d_{2} là:

    Các đường phân giác của các góc tạo bởi d_{1}:3x - 4y - 3 = 0d_{2}:12x + 5y - 12 = 0 là:

    \frac{|3x - 4y - 3|}{5} = \frac{|12x +
5y - 12|}{13} \Leftrightarrow \left\lbrack \begin{matrix}
3x + 11y - 3 = 0 \\
11x - 3y - 11 = 0 \\
\end{matrix} ight.\ .

    Gọi I = d_{1} \cap d_{2} ightarrow
I(1;0);\ \ d:3x + 11y - 3 = 0 ightarrow M( - 10;3) \in d,

    Gọi H là hình chiếu của M lên d_{1}.

    Ta có: IM = \sqrt{130},\ \ MH = \frac{| -
30 - 12 - 3|}{5} = 9, suy ra

    \sin\widehat{MIH} = \frac{MH}{IM} =
\frac{9}{\sqrt{130}} ightarrow \widehat{MIH} > 52^{\circ}
ightarrow 2\widehat{MIH} > 90^{\circ}.

    Suy ra d:3x + 11y - 3 = 0 là đường phân giác góc tù, suy ra đường phân giác góc nhọn là 11x - 3y - 11 = 0.

  • Câu 17: Thông hiểu

    Phương trình tham số của đường thẳng (d) đi qua hai điểm A(1; - 2)B(4;3) là:

    Phương trình tham số của đường thẳng AB đi qua điểm A(1; - 2) và nhận \overrightarrow{AB} = (3;5) làm vectơ chỉ phương.

    Vậy phương trình cần tìm là: \left\{
\begin{matrix}
x = 1 + 3t \\
y = - 2 + 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 18: Thông hiểu

    Đường tròn (C) đi qua hai điểm A( - 1;2),B( - 2;3) và có tâm I thuộc đường thẳng \Delta:3x - y + 10 = 0. Phương trình của đường tròn (C) là:

    Ta có: I \in \Delta ightarrow I(a;3a +
10) ightarrow IA = IB = R

    \Leftrightarrow R^{2} = (a + 1)^{2} +
(3a + 8)^{2} = (a + 2)^{2} + (3a + 7)^{2}

    \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
I( - 3;1) \\
R^{2} = 5 \\
\end{matrix} ight.\ .

    Vậy đường tròn cần tìm là: (x + 3)^{2} +
(y - 1)^{2} = 5.

  • Câu 19: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng \Delta:ax + by + c = 0 và hai điểm M\left( x_{m}\ ;\ y_{m} ight), N\left( x_{n};y_{n} ight) không thuộc \Delta. Chọn khẳng định đúng trong các khẳng định sau:

    M,\ N cùng phía so với \Delta thì \left( ax_{m} + by_{m} + c ight)\left( ax_{n} + by_{n} + c ight) luôn cùng dấu.

    Chọn M,\ N cùng phía so với \Delta khi \left( ax_{m} + by_{m} + c ight).\left( ax_{n} +
by_{n} + c ight)\  > \ 0.

  • Câu 20: Nhận biết

    Cho phương trình ax + by + c = 0\ \ \ (*) với a^{2} + b^{2} > 0. Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai là: “Điểm M\left( x_{0};y_{0}
ight) thuộc đường thẳng (*) khi và chỉ khi ax_{0} + by_{0} + c eq 0.”

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo