Xét vị trí tương đối của hai đường thẳng
và
.
Xét vị trí tương đối của hai đường thẳng
và
.
Cho parabol (P) có đường chuẩn là đường thẳng
. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:
Phương trình đường chuẩn
=>
=>
Từ đó ta thu được phương trình parabol
Tiêu điểm F của (P) là
Giả sử điểm là điểm thuộc (P).
=>
Với và
ta có:
Với
Vậy tọa độ điểm M là:
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
và
. Chiều cao của tam giác kẻ từ đỉnh
bằng:
Đường thẳng nào là đường chuẩn của parabol
.
Ta có: .
Đường chuẩn: .
Tọa độ tâm
và bán kính
của đường tròn
là:
Ta có:
Viết phương trình tổng quát của đường thẳng
đi qua giao điểm của hai đường thẳng
,
và vuông góc với đường thẳng
.
Ta có
Vậy
Cho hai đường thẳng
và
. Khi đó hai đường thẳng này:
Ta có:
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Elip
có độ dài tiêu cự bằng:
Ta có: .
Do đó độ dài tiêu cự .
Biết đường tròn
có tâm
tiếp xúc với đường thẳng
. Tính bán kính đường tròn
?
Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng (d):
Suy ra .
Cho hai điểm
. Vectơ pháp tuyến của đường thẳng
là:
Một vectơ chỉ phương của PQ là:
Vậy vectơ pháp tuyến của PQ là: .
Cho đường thẳng
và đường tròn
. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng
và đường tròn
?
Ta có:
Lại có khoảng cách từ tâm I đến đường thẳng d là:
Vậy đường thẳng cắt đường tròn
là khẳng định đúng.
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng song song.
Cho phương trình Elip
. Tọa độ đỉnh
và
của Elip đó là:
Ta có: => a = 4; b = 2
=> Tọa độ các đỉnh của elip là:
Cho tọa độ hai điểm
. Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm
?
Gọi phương trình chính tắc của elip là:
Do elip đi qua hai điểm nên ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là:
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn đi qua ba điểm đã cho là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Với giá trị nào của
thì hai đường thẳng
và
cắt nhau?
Chọn .
Trên mặt phẳng tọa độ
cho tọa độ hai điểm
. Tọa độ trung điểm
của
là:
Tọa độ trung điểm I của MN là:
Vậy tọa độ trung điểm của MN là: .
Xác định phương trình đường tròn
có tâm nằm trên đường thẳng
và tiếp xúc với hai đường thẳng có phương trình
và
?
Vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi . Mặt khác đường tròn tiếp xúc với hai đường thẳng
và
nên khoảng cách từ tâm I đến hai đường thẳng bằng bán kính.
Với thì
khi đó phương trình đường tròn là:
Với thì
khi đó phương trình đường tròn là:
.
Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với đường phân giác của góc phần tư thứ nhất.
Góc phần tư (I) :