Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: x – 2y + 2 = 0d_2: – 3x + 6y – 10 = 0.

     Vì \frac{1}{{ - 3}} = \frac{{ - 2}}{6} eq\frac2{-10} nên hai đường thẳng song song.

  • Câu 2: Thông hiểu

    Hyperbol 3x^{2}y^{2} = 12 có tâm sai là:

    Ta có : 3x^{2}y^{2} = 12 \Leftrightarrow
\frac{x^{2}}{4} - \frac{y^{2}}{12} = 1.

    \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 12 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2\sqrt{3} \\
c = 4 \\
\end{matrix} ight.\  \Rightarrow e = \frac{c}{a} = 2.

  • Câu 3: Nhận biết

    Cho đường tròn (C) có phương trình (x + 5)^{2} + (y – 2)^{2} = 25. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:

    Viết lại phương trình đường tròn như sau:

    \begin{matrix}  {(x + 5)^2} + {(y - 2)^2} = 25 \hfill \\   \Leftrightarrow {x^2} + 10x + 25 + {y^2} - 4y + 4 = 25 \hfill \\   \Leftrightarrow {x^2} + {y^2} + 10x - 4y + 4 = 0 \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Cho phương trình x^{2} + y^{2} - 2mx - 4(m - 2)y + 6 - m =
0. Tìm điều kiện của tham số m để phương trình đã cho là phương trình đường tròn?

    Để phương trình đã cho là phương trình đường tròn thì:

    m^{2} + 4(m - 2)^{2} - 6 + m >
0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m > 2 \\
m < 1 \\
\end{matrix} ight.

    Vậy đáp án chính xác là: \left\lbrack
\begin{matrix}
m > 2 \\
m < 1 \\
\end{matrix} ight..

  • Câu 5: Thông hiểu

    Tìm phương trình chính tắc của elip có tiêu cự bằng 6 và trục lớn bằng 10.

    Phương trình chính tắc của elip: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{a}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{b}^{\mathbf{2}}}\mathbf{=}\mathbf{1.}

    Độ dài trục lớn 2a = 10 \Leftrightarrow a
= 5.

    Tiêu cự 2c = 6 \Leftrightarrow c =
3.

    Ta có: a^{2} = b^{2} + c^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 16

    Vậy phương trình chính tắc của elip là \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{25}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{16}}\mathbf{=}\mathbf{1.}.

  • Câu 6: Thông hiểu

    Khoảng cách từ giao điểm của hai đường thẳng x - 3y + 4 = 02x + 3y - 1 = 0 đến đường thẳng \Delta:3x + y + 4 = 0 bằng:

    \left\{ \begin{matrix}
x - 3y + 4 = 0 \\
2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 1 \\
\end{matrix} ight.\  ightarrow A( - 1;1)

    ightarrow d(A;\Delta) = \frac{| - 3 +
1 + 4|}{\sqrt{9 + 1}} = \frac{2}{\sqrt{10}}.

  • Câu 7: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2),B( - 2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    Ta có: d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} \Rightarrow d:3x + y - 7 = 0 ight..

    Để A, B nằm cùng phía đối với d thì:

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{A} + y_{A} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) >
0

    \Leftrightarrow m - 13 < 0
\Leftrightarrow m < 13.

  • Câu 8: Vận dụng

    Cho phương trình đường thẳng (d):\left\{ \begin{matrix}
x = t \\
y = 5 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và tọa độ điểm A(1;2). Xác định tọa độ điểm A' đối xứng với điểm A qua đường thẳng (d)?

    Gọi H là chân đường cao kẻ từ điểm A đến đường thẳng (d) suy ra H(h; 5-2h)

    Ta có: \overrightarrow{u_{d}} = (1; -
2);\overrightarrow{AH} = (h - 1;3 - 2h)

    AH\bot(d) \Leftrightarrow
\overrightarrow{u_{d}}.\overrightarrow{AH} = 0

    \Leftrightarrow (h - 1) - 2(3 - 2h) = 0
\Leftrightarrow h = \frac{7}{5} \Rightarrow H\left(
\frac{7}{5};\frac{11}{5} ight)

    A’ là điểm đối xứng của A qua đường thẳng (d).

    Suy ra H là trung điểm của AA’.

    Suy ra tọa độ điểm A’ là: \left\{\begin{matrix}x_{A'} = 2x_{H} - x_{A} = 2.\dfrac{7}{5} - 1 = \dfrac{9}{5} \\y_{A'} = 2y_{H} - y_{A} = 2.\dfrac{11}{5} - 2 = \dfrac{12}{5} \\\end{matrix} ight.

    Vậy tọa độ điểm A'\left(
\frac{9}{5};\frac{12}{5} ight)

  • Câu 9: Thông hiểu

    Cho phương trình {x^2} + {y^2} - 2mx - 4(m - 2)y + 6 - m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:

    Từ phương trình đường tròn ta có:

    I\left( {m;2m - 4} ight)

    Điều kiện để phương trình đã cho là phương trình đường tròn là:

    \begin{matrix}  {m^2} + 4{\left( {m - 2} ight)^2} - 6 + m > 0 \hfill \\   \Leftrightarrow {m^2} + 4{m^2} - 16m + 16 - 6 + m > 0 \hfill \\   \Leftrightarrow 5{m^2} - 15m + 10 > 0 \hfill \\   \Leftrightarrow m \in ( - \infty ;1) \cup (2; + \infty ) \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(3;2)¸ P(4;0)Q(0; - 2). Đường thẳng đi qua điểm A và song song với PQ có phương trình tham số là:

    Gọi d là đường thẳng qua A và song song với PQ.

    Ta có: \left\{ \begin{matrix}
A(3;2) \in d \\
{\overrightarrow{u}}_{d} = \overrightarrow{PQ} = ( - 4; - 2) = - 2(2;1)
\\
\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}
x = 3 + 2t \\
y = 2 + t \\
\end{matrix} ight.

    \overset{t = - 2}{ightarrow}M( - 1;0)
\in d ightarrow d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 11: Nhận biết

    Một đường thẳng có bao nhiêu vectơ pháp tuyến?

     Một đường thẳng có vô số vectơ pháp tuyến.

  • Câu 12: Nhận biết

    Đường thẳng d đi qua điểm A( - 4;5) và có vectơ pháp tuyến \overrightarrow{n} = (3;2) có phương trình tham số là:

    \left\{ \begin{matrix}A( - 4;5) \in d \\{\overrightarrow{n}}_{d} = (3;2) ightarrow {\overrightarrow{u}}_{d} =( - 2;3) \\\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}x = - 4 - 2t \\y = 5 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 13: Vận dụng

    Cho elip (E):\frac{x^{2}}{100} + \frac{y^{2}}{36} =
1. Qua một tiêu điểm của (E) dựng đường thẳng song song với trục Oy và cắt (E) tại hai điểm MN. Độ dài MN bằng bao nhiêu?

    Xét (E):\frac{x^{2}}{100} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a^{2} = 100 \\
b^{2} = 36 \\
\end{matrix} ight.\  \Leftrightarrow c^{2} = a^{2} - b^{2} = 100 - 36
= 64.

    Khi đó, Elip có tiêu điểm là F_{1}( - \
8;0) \Rightarrow đường thẳng d//Oy và đi qua F_{1}x =
- \ 8.

    Giao điểm của d(E) là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x = - \ 8 \\
\frac{x^{2}}{100} + \frac{y^{2}}{36} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \ 8 \\
y = \pm \ \frac{24}{5} \\
\end{matrix} ight.\ .

    Vậy tọa độ hai điểm M\left( - \
8;\frac{24}{5} ight),\ \ N\left( - \ 8; - \ \frac{24}{5} ight)
\Rightarrow MN = \frac{48}{5}.

  • Câu 14: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y - 1)^{2} = 25, biết tiếp tuyến song song với đường thẳng d:4x + 3y + 14 = 0.

    Đường tròn (C) có tâm I(2;1),\ R =
5 và tiếp tuyến có dạng

    \Delta:4x + 3y + c = 0\ \ \left(ceq14 ight).

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c + 11|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
c = 14\ (l) \\
c = - 36 \\
\end{matrix} ight.\ .

  • Câu 15: Vận dụng

    Cho ba đường thẳng d_{1}:3x–2y + 5 = 0, d_{2}:2x + 4y–7 = 0, d_{3}:3x + 4y–1 = 0. Phương trình đường thẳng d đi qua giao điểm của d_{1}d_{2}, và song song với d_{3} là:

    \left\{ \begin{matrix}d_{1}:3x-2y + 5 = 0 \\d_{2}:2x + 4y-7 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{3}{8} \\y = \dfrac{31}{16} \\\end{matrix} ight.

    ightarrow d_{1} \cap d_{2} = A\left( -
\frac{3}{8};\frac{31}{16} ight).

    Ta có:

    \left\{ \begin{matrix}A \in d \\d||d_{3}:3x + 4y–1 = 0 \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}A \in d \\d:3x + 4y + c = 0\ \ \left( ceq - 1 ight) \\\end{matrix} ight.

    ightarrow - \frac{9}{8} + \frac{31}{4}
+ c = 0 \Leftrightarrow c = - \frac{53}{8}.

    Vậy d:3x + 4y–\frac{53}{8} = 0
\Leftrightarrow d_{3}:24x + 32y - 53 = 0.

  • Câu 16: Nhận biết

    Cho Parabol (P) có phương trình y^{2} = 4x. Tìm đường chuẩn của (P).

    Từ phương trình của (P), ta có: 2p = 4 nên p = 2.

    Suy ra (P) có tiêu điểm là F(1\ ;\ 0) và đường chuẩn là x + 1 = 0.

  • Câu 17: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?

    Phương trình Elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} - b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1

  • Câu 18: Nhận biết

    Đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0 có tâm I và bán kính R lần lượt là:

    Ta có:\begin{matrix}
(C):x^{2} + y^{2} - 6x + 2y + 6 = 0 ightarrow a = \frac{- 6}{- 2} =
3,\ \ b = \frac{2}{- 2} = - 1,\ \ c = 6 \\
ightarrow I(3; - 1),\ R = \sqrt{3^{2} + ( - 1)^{2} - 6} = 2.\  \\
\end{matrix}

  • Câu 19: Thông hiểu

    Gọi \alpha là góc tạo bởi hai đường thẳng (\Delta):x + 3y - 2 = 0(\Delta'):x - 2y + 5 = 0. Khi đó độ lớn của \alpha bằng:

    Ta có:

    \cos\alpha = \frac{\left| 1.1 + 3.( - 2)
ight|}{\sqrt{1^{2} + 3^{2}}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Rightarrow \alpha = 45^{0}

    Vậy góc tạo bởi hai đường thẳng bằng 45^0.

  • Câu 20: Nhận biết

    Cho đường thẳng \Delta:x - 2y - 1 = 0. Đường thẳng nào sau đây vuông góc với đường thẳng \Delta?

    Đường thẳng d:4x + 2y + 3 = 0 vuông góc với đường thẳng \Delta\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}}
= 4.1 + 2( - 2) = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo