Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) tiếp xúc với đường tròn (O;1), cắt các trục Ox,Oy lần lượt tại các điểm A;B. Tam giác OAB có diện tích nhỏ nhất là:

    Hình vẽ minh họa

    Gọi A(a;0);(a eq 0) là giao điểm của đường thẳng (d)Ox

    B(0;b);(b eq 0) là giao điểm của đường thẳng (d)Oy

    Khi đó:

    OA = |a|;OB = |b|

    \Rightarrow S_{OAB} = \frac{1}{2}OA.OB =
\frac{1}{2}|ab|\ \ (*)

    Xét tam giác OAB vuông tại O ta có:

    \frac{1}{OA^{2}} + \frac{1}{OB^{2}} =
\frac{1}{OH^{2}}

    \Leftrightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} = 1 \Leftrightarrow a^{2} + b^{2} =
a^{2}b^{2}

    \Rightarrow a^{2}b^{2} = a^{2} + b^{2}
\geq 2|a|.|b|

    \Leftrightarrow |ab| \geq 2

    Từ (*) \Rightarrow S_{OAB} \geq
1

    Vậy giá trị nhỏ nhất của diện tích tam giác OAB bằng 1.

  • Câu 2: Vận dụng

    Cho đường thẳng d_{1}:2x + 3y + m^{2} - 1 = 0d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.. Tính cosin góc tạo bởi giữa hai đường thẳng trên.

    . \left\{ \begin{matrix}
d_{1}:2x + 3y + m^{2} - 1 = 0 ightarrow {\overrightarrow{n}}_{1} =
(2;3) \\
d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3; - 1)
\\
\end{matrix} ight. \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{|6 - 3|}{\sqrt{4 + 9}.\sqrt{9 +
1}} = \frac{3}{\sqrt{130}}.

  • Câu 3: Thông hiểu

    Phương trình tham số của đường thẳng đi qua hai điểm M( - 1;2),N(2;3) là:

    Vectơ chỉ phương: \overrightarrow{u} =
\overrightarrow{MN} = (3;1)

    Đường thẳng đi qua điểm N(2;3) và có vectơ chỉ phương \overrightarrow{u} =
(3;1) nên có phương trình tham số là: \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 4: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A( - 1;2),B(2; - 2),C(3;1). Biết rằng \overrightarrow{AD} =
\overrightarrow{BC}, khi đó tọa độ điểm D là:

    Giả sử tọa độ điểm D = (x;y)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AD} = (x + 1;y - 2) \\
\overrightarrow{BC} = (1;3) \\
\end{matrix} ight.

    \overrightarrow{AD} =
\overrightarrow{BC} nên \left\{
\begin{matrix}
x + 1 = 1 \\
y - 2 = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 5 \\
\end{matrix} ight.\  \Leftrightarrow D(0;5)

  • Câu 5: Vận dụng

    Elip (E) có độ dài trục lớn bằng 4\sqrt{2}, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của (E).

    Ta có A_{1}A_{2} = 4\sqrt{2}\overset{}{ightarrow}a =
2\sqrt{2}

    Và bốn điểm F_{1},B_{1},F_{2},B_{2} cùng nằm trên một đường tròn

    \overset{}{ightarrow}b =
c\overset{}{ightarrow}b^{2} = c^{2}

    \overset{}{ightarrow}b^{2} = a^{2} -
b^{2}\overset{}{ightarrow}b = \frac{a}{\sqrt{2}} = 2.

    Vậy độ dài trục nhỏ của (E)4.

  • Câu 6: Thông hiểu

    Đường tròn (C) có tâm I(2; - 3) và tiếp xúc với trục Oy có phương trình là:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = d\lbrack I;Oybrack = 2 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y + 3)^{2} =
4.

  • Câu 7: Vận dụng

    Tập hợp các điểm cách đường thẳng \Delta:3x - 4y + 2 = 0 một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?

    d\left( M(x;y);\Delta ight) = 2
\Leftrightarrow \frac{|3x - 4y + 2|}{5} = 2 \Leftrightarrow \left\lbrack
\begin{matrix}
3x - 4y + 12 = 0 \\
3x - 4y - 8 = 0 \\
\end{matrix} ight.\ .

  • Câu 8: Nhận biết

    Cho parabol (P):y = 2x^{2} + x - 3. Giao điểm của (P) với trục hoành tại hai điểm A\left( x_{1};y_{1} ight),B\left(
x_{2};y_{2} ight). Khẳng định nào sau đây đúng?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    2x^{2} + x - 3 = 0

    Áp dụng định lí Vi – et ta có:

    x_{1} + x_{2} = - \frac{b}{a} = -
\frac{1}{2}

  • Câu 9: Nhận biết

    Cho đường thẳng d_{1} có vectơ pháp tuyến là \overrightarrow{n_{1}} và đường thẳng d_{2} có vectơ pháp tuyến là \overrightarrow{n_{2}}. Gọi \beta là góc tạo bởi hai đường thẳng d_{1};d_{2}. Kết luận nào sau đây đúng?

    Góc tạo bởi hai đường thẳng đã cho được xác định bởi công thức \cos\beta = \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}}
ight|}.

  • Câu 10: Nhận biết

    Cho elip (E):4x^{2} + 5y^{2} = 20. Diện tích hình chữ nhật cơ sở của (E)

    (E):4x^{2} + 5y^{2} = 20 \Leftrightarrow
\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1

    Độ dài trục lớn: 2a =
2\sqrt{5}.

    Độ dài trục bé: 2b = 2.2 =
4.

    Diện tích hình chữ nhật cơ sở của (E) là: 2\sqrt{5}.4 = 8\sqrt{5}.

  • Câu 11: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?

     Vectơ chỉ phương của OM là \overrightarrow {OM}=(a;b).

  • Câu 12: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn có phương trình: {(x - 1)^2} + {(y - 10)^2} = 81 lần lượt là:

    Tâm và bán kính đường tròn lần lượt là: I(1; 10) và R = 9

  • Câu 13: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 14: Thông hiểu

    Một elip có diện tích hình chữ nhật cơ sở là 80, độ dài tiêu cự là 6. Tâm sai của elip đó là

    Diện tích hình chữ nhật cơ sở là 2a.2b =
80, suy ra a.b = 20\ \ \
(1).

    Lại có 2c = 6 \Rightarrow c = 3
\Rightarrow a^{2} - b^{2} = c^{2} = 9\ \ \ \ (2).

    Từ (1) \Rightarrow b =
\frac{20}{a}, thay vào (2) ta được:

    a^{2} - \frac{400}{a^{2}} = 9 \Rightarrow
a^{4} - 9a^{2} - 400 = 0 \Leftrightarrow a^{2} = 25 \Rightarrow a =
5.

    Do đó tâm sai e =
\frac{3}{5}.

  • Câu 15: Thông hiểu

    Cho bốn điểm A(4;
- 3), B(5;1), C(2;3)D(
- 2;\ 2). Xác định vị trí tương đối của hai đường thẳng ABCD.

    \left\{ \begin{matrix}{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (1;4) \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = ( - 4; - 1) \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\frac{1}{- 4}eq \frac{4}{- 1} \\{\overrightarrow{u}}_{AB} \cdot {\overrightarrow{u}}_{CD}eq 0 \\\end{matrix} ight.

    ightarrow AB,\ \ CD cắt nhau nhưng không vuông góc.

  • Câu 16: Thông hiểu

    Tính góc tạo bởi giữa hai đường thẳng d_{1}:2x + 2\sqrt{3}y + 5 = 0d_{2}:y - 6 = 0.

    Ta có

    \left\{ \begin{matrix}
d_{1}:2x + 2\sqrt{3}y + 5 = 0 ightarrow {\overrightarrow{n}}_{1} =
\left( 1;\sqrt{3} ight) \\
d_{2}:y - 6 = 0. ightarrow {\overrightarrow{n}}_{2} = (0;1) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{\left| \sqrt{3}
ight|}{\sqrt{1 + 3}.\sqrt{0 + 1}} = \frac{\sqrt{3}}{2} ightarrow
\varphi = 30^{\circ}.

  • Câu 17: Thông hiểu

    Tìm phương trình chính tắc của Elip có độ dài trục lớn bằng 4\sqrt{10} và đi qua điểm A(0;\ 6):

    Ta có phương trình chính tắc Elip (E) có dạng \frac{x^{2)}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a
> b > 0).

    Theo giả thiết ta có 2a =
4\sqrt{10} \Rightarrow a =
2\sqrt{10}.

    Mặt khác (E) đi qua A(0;\ 6) nên ta có \frac{6^{2}}{b^{2}} = 1 \Rightarrow b = 6.

    Vậy phương trình chính tắc của (E) là: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{40}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{36}}\mathbf{=}\mathbf{1}.

  • Câu 18: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?

    Xét phương trình dạng : x^{2} + y^{2} -
2ax - 2by + c = 0, lần lượt tính các hệ số a,\ b,\ c và kiểm tra điều kiện a^{2} + b^{2} - c > 0.

    x^{2} + y^{2} - 4x + 6y - 12 = 0
ightarrow a = 2,\ b = - 3,\ c = - 12 ightarrow a^{2} + b^{2} - c
> 0.

    Các phương trình 4x^{2} + y^{2} - 10x -
6y - 2 = 0,\ \ x^{2} + 2y^{2} - 4x - 8y + 1 = 0 không có dạng đã nêu loại các đáp án 4x^{2} + y^{2} - 10x
- 6y - 2 = 0x^{2} + 2y^{2} - 4x
- 8y + 1 = 0.

    Đáp án x^{2} + y^{2} - 2x - 8y + 20 =
0 không thỏa mãn điều kiện a^{2} +
b^{2} - c > 0.

  • Câu 19: Nhận biết

    Điểm nào dưới đây thuộc đường thẳng 2x - y + 1 = 0?

    Thay tọa độ các điểm vào đường thẳng 2x -
y + 1 = 0 ta thấy điểm thuộc đường thẳng đã cho là D(0;1).

  • Câu 20: Thông hiểu

    Tìm tọa độ tâm I của đường tròn đi qua ba điểm A(0;4), B(2;4), C(4;0).

    A,\ B,\ C \in (C):x^{2} + y^{2} + 2ax +
2by + c = 0

    \Leftrightarrow \left\{ \begin{matrix}
16 + 8b + c = 0 \\
20 + 4a + 8b + c = 0 \\
16 + 8a + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
c = - 8 \\
\end{matrix} ight.\  ightarrow I(1;1).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo