Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biết điểm M \in
(H):\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1. Giả sử x_{M} = 8 thì khoảng cách từ điểm M đến các tiêu điểm của (H) bằng bao nhiêu?

    Ta có: M \in (H)x_{M} = 8

    \Rightarrow \frac{8^{2}}{16} -
\frac{{y_{M}}^{2}}{9} = 1 \Rightarrow y_{M} = \pm 3\sqrt{3}

    Có hai điểm M thỏa mãn là: M_{1}\left(
8;3\sqrt{3} ight),M_{2}\left( 8; - 3\sqrt{3} ight)

    Tiêu điểm của (H) là: F_{1}( - 5;0),F_{2}(0;5)

    \Rightarrow \left\{ \begin{matrix}
M_{1}F_{1} = M_{2}F_{1} = 14 \\
M_{1}F_{2} = M_{2}F_{2} = 6 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: 614.

  • Câu 2: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây sai?

    Với c^{2} = a^{2} + b^{2} (c > 0), tâm sai của hypebol là e = \frac{a}{c}.

  • Câu 3: Nhận biết

    Đường thẳng nào song song với đường thẳng \Delta:2x - y - 1 = 0?

    Đường thẳng song song với đường thẳng \Delta:2x - y - 1 = 0 là: 4x - 2y - 1 = 0.

  • Câu 4: Thông hiểu

    Đường tròn (C) có tâm I(2; - 3) và tiếp xúc với trục Oy có phương trình là:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = d\lbrack I;Oybrack = 2 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y + 3)^{2} =
4.

  • Câu 5: Vận dụng

    Cho hình elip có độ dài trục lớn và độ dài trục bé lần lượt là 120cm;90cm. Vẽ một hình chữ nhật nội tiếp elip đã cho. Diện tích lớn nhất của hình chữ nhật là:

    Hình vẽ minh họa

    Phương trình chính tắc của elip có dạng (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1.

    Ta có: \left\{ \begin{matrix}
2a = 120 \Rightarrow a = 60 \\
2b = 90 \Rightarrow b = 45 \\
\end{matrix} ight.

    \Rightarrow (E):\frac{x^{2}}{3600} +
\frac{y^{2}}{2025} = 1

    Chọn D\left( x_{0};y_{0} ight) là đỉnh hình chữ nhật và x_{0} > 0;y_{0}
> 0. Ta có:

    \frac{{x_{0}}^{2}}{3600} +
\frac{{y_{0}}^{2}}{2025} = 1

    Diện tích hình chữ nhật là:

    S = 4x_{0}y_{0} =
1350.\frac{x_{0}}{60}.\frac{y_{0}}{45} \leq 1350.\left( \frac{x^{2}}{3600} +
\frac{y^{2}}{2025} ight) = 1350\left( cm^{2} ight)

  • Câu 6: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2), B( -
2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:3x + y - 7 = 0. Khi đó điều kiện bài toán trở thành

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{B} + y_{B} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) > 0
\Leftrightarrow m < 13.

  • Câu 7: Thông hiểu

    Cho phương trình {x^2} + {y^2} - 2mx - 4(m - 2)y + 6 - m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:

    Từ phương trình đường tròn ta có:

    I\left( {m;2m - 4} ight)

    Điều kiện để phương trình đã cho là phương trình đường tròn là:

    \begin{matrix}  {m^2} + 4{\left( {m - 2} ight)^2} - 6 + m > 0 \hfill \\   \Leftrightarrow {m^2} + 4{m^2} - 16m + 16 - 6 + m > 0 \hfill \\   \Leftrightarrow 5{m^2} - 15m + 10 > 0 \hfill \\   \Leftrightarrow m \in ( - \infty ;1) \cup (2; + \infty ) \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Đường tròn (C) đi qua hai điểm 4x^{2} + y^{2} - 10x - 6y - 2 = 0. và tiếp xúc với đường thẳng \Delta:3x + y - 3 =
0. Viết phương trình đường tròn (C), biết tâm của (C) có tọa độ là những số nguyên.

    AB:x - y + 1 = 0, đoạn AB có trung điểm M(2;3) ightarrowtrung trực của đoạn AB là d:x + y - 5 = 0
ightarrow I(a;5 - a),\ \ a\mathbb{\in Z}.

    Ta có: R = IA = d\lbrack I;\Deltabrack
= \sqrt{(a - 1)^{2} + (a - 3)^{2}} = \frac{|2a +
2|}{\sqrt{10}}

    \Leftrightarrow a = 4 ightarrow
I(4;1),\ R = \sqrt{10}.

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y - 1)^{2} = 10 \Leftrightarrow x^{2} + y^{2} - 8x - 2y + 7 =
0.

  • Câu 9: Nhận biết

    Cho elip (E) có phương trình 16x^{2} + 25y^{2} = 400. Khẳng định nào sai trong các khẳng định sau?

    (E): 16x^{2} + 25y^{2} = 400 \Leftrightarrow
\frac{x^{2}}{25} + \frac{y^{2}}{16} = 1.

    Elip (E)a = 5, b =
4, c = \sqrt{a^{2} - b^{2}} =
\sqrt{5^{2} - 4^{2}} = 3.

    Tiêu cự của elip (E)2c = 6 nên khẳng định “(E) có tiêu cự bằng 3” là khẳng định sai.

  • Câu 10: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 11: Thông hiểu

    Đường thẳng d đi qua điểm A( - 2;1) và vuông góc với đường thẳng \Delta:\left\{ \begin{matrix}x = 1 - 3t \\y = - 2 + 5t \\\end{matrix} ight. có phương trình tham số là:

    Ta có:

    \left\{ \begin{matrix}A( - 2;1) \in d \\{\overrightarrow{u}}_{\Delta} = ( - 3;5) \\d\bot\Delta \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}A( - 2;1) \in d \\{\overrightarrow{n}}_{d} = ( - 3;5) ightarrow {\overrightarrow{u}}_{d}= (5;3) \\\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}x = - 2 + 5t \\y = 1 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 12: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 = 0 có phương trình tổng quát là:

    Đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 =
0 có nhận vectơ \overrightarrow{n}(4;2) làm vectơ pháp tuyến có phương trình tổng quát:

    4(x - 1) + 2(y - 2) = 0

    \Leftrightarrow 2x + y - 4 =
0

    Vậy phương trình tổng quát của đường thẳng là: 2x + y - 4 =
0.

  • Câu 13: Nhận biết

    Đường tròn (C):(x - 1)^{2} + (y + 2)^{2} = 25 có dạng khai triển là:

    (C):(x - 1)^{2} + (y + 2)^{2} = 25
\Leftrightarrow x^{2} + y^{2} - 2x + 4y - 20 = 0.

  • Câu 14: Thông hiểu

    Cho đường thẳng \left( d_{1} ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. và đường thẳng \left( d_{2} ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight.. Tính góc hợp bởi hai đường thẳng?

    Vectơ chỉ phương của \left( d_{1}
ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{1}}} = ( - 6;5)

    Vectơ chỉ phương của \left( d_{2}
ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{2}}} = (5;6)

    Ta có: \overrightarrow{u_{d_{1}}}.\overrightarrow{u_{d_{2}}}
= 0 \Rightarrow d_{1}\bot d_{2}

    Vậy góc hợp bởi hai đường thẳng đã cho bằng 90^{0}.

  • Câu 15: Thông hiểu

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Đáp án là:

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Ta có: \overrightarrow{n_{d_{1}}} = (4; -
3);\overrightarrow{n_{d_{2}}} = (3;4).

    Do A không thuộc hai đường thẳng d_{1};d_{2}d_{1}\bot d_{2} nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng d_{1};d_{2}.

    Ta có:

    d\left( A;d_{1} ight) = \frac{|4.2 -
3.1 + 5|}{\sqrt{4^{2} + 3^{2}}} = 2.

    d\left( A;d_{2} ight) = \frac{|3.2 +
4.1 - 5|}{\sqrt{3^{2} + 4^{2}}} = 1.

    \Rightarrow S = d\left( A;d_{1}
ight).d\left( A;d_{2} ight) = 2.1 = 2

  • Câu 16: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hệ số góc k của đường thẳng \Delta là:

    Ta có:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương \overrightarrow{u}(1;3) nên có hệ số góc k = \frac{3}{1} =
3.

    Vậy hệ số góc của đường thẳng là k=3.

  • Câu 17: Vận dụng

    Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:

     Gọi M(a;b)

    M \in \Delta \Rightarrow a+b-1=0 \Rightarrow a=1-b

    Do đó M(1-b;b).

    Ta có: MN=5 \Leftrightarrow\sqrt {{{( - 1 - 1 + b)}^2} + {{(3 - b)}^2}}  = 5\Rightarrow b =  - 1 \Rightarrow a = 2.

  • Câu 18: Thông hiểu

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

  • Câu 19: Nhận biết

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 20: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.\  ightarrow \ {\overrightarrow{u}}_{1} = (3; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (2;3)
\\
\end{matrix} ight\} ightarrow {\overrightarrow{u}}_{1} \cdot
{\overrightarrow{u}}_{2} = 0 ightarrow d_{1}\bot\ \ d_{2}. Chọn

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo