Gọi
là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Gọi
là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Đường thẳng nào song song với đường thẳng
?
Đường thẳng song song với đường thẳng là:
.
Cho phương trình
(1). Điều kiện để (1) là phương trình đường tròn là:
Điều kiện để phương trình là phương trình đường tròn là:
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Viết lại phương trình đường tròn như sau:
Tập hợp các điểm cách đường thẳng
một khoảng bằng
là hai đường thẳng có phương trình nào sau đây?
Cho hai điểm A(–2; 3) và B(4; –1). Phương trình đường trung trực của đoạn thẳng AB là:
Gọi d là đường trung trực của đoạn thẳng AB.
Gọi M là trung điểm của AB với A(–2; 3) và B(4; –1).
Ta suy ra
Khi đó ta có M(1; 1).
Với A(–2; 3) và B(4; –1) ta có:
Đường thẳng d là đường trung trực của AB nên đường thẳng d đi qua trung điểm M(1; 1) của AB và nhận làm vectơ pháp tuyến.
Suy ra phương trình tổng quát của d là:
Cho elip có phương trình chính tắc
. Tính tâm sai của elip.
Ta có
Tâm sai của elip là .
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn nội tiếp tam giác
là:
Có , tam giác
cân tại
.
Gọi là trung điểm của
. Phương trình
là:
.
Phương trình , phương trình
:
Gọi là tâm đường tròn nội tiếp tam giác
. Ta có:
Thay tọa độ của và
vào phương trình
và xét tích của chúng, ta được:
nên phương trình
là
.
Tọa độ của là nghiệm của hệ
.
Vậy
.
Phương trình đường tròn nội tiếp tam giác là
.
Cho Elip
và một điểm
nằm trên
Giải sử điểm
có hoành độ bằng 1. Hãy tính khoảng cách từ M đến hai tiêu điểm của (E).
Giả sử phương trình Ta có :
Gọi lần lượt là hai tiêu điểm của Elip
,
, ta có :
.
Cho đường tròn
và đường thẳng
. Tìm giá trị của tham số m để
không cắt
?
Đường tròn (C) có tâm I(1; 2) và
Để không cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng là:
.
Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?
Phương trình tham số của đường thẳng là:
Tìm m để góc tạo bởi hai đường thẳng
và
một góc bằng 30°.
Ta có:
Tìm phương trình chính tắc của Parabol
biết khoảng cách từ tiêu điểm
đến đường thẳng
là
.
Ta có tọa độ tiêu điểm .
Khoảng cách từ đến đường thẳng
là
nên:
.
Vậy phương trình của là:
hoặc
.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Với
, tâm sai của hypebol là
.
Với giá trị nào của
thì hai đường thẳng
và
cắt nhau?
Ta có:
Điểm nào sau đây không thuộc đường thẳng
?
Gọi
Chọn .
Cho phương trình Hypebol
. Độ dài trục thực của Hypebol đó là
Ta có: ta có: a = 4; b = 3
=> Độ dài trục thực của Hypebol đó là 2a = 8
Đường tròn
đi qua hai điểm
,
và có tâm
thuộc trục tung có phương trình là:
.
Vậy đường tròn cần tìm là:
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có phương trình cạnh
là
, phương trình cạnh
là
. Biết trọng tâm của tam giác là điểm
và phương trình đường thẳng
có dạng
. Tính giá trị biểu thức
.
Tọa độ điểm A là nghiệm của hệ phương trình
Ta có
Gọi là trung điểm của BC thì
nên
Mặt khác
Suy ra một vectơ pháp tuyến của BC là
Suy ra phương trình đường thẳng BC là
Suy ra