Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho một hypebol (E):\frac{x^{2}}{144} - \frac{y^{2}}{25} =
1 có hai tiêu điểm là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 144 \\
b^{2} = 25 \\
c^{2} = a^{2} + b^{2} = 169 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 12 \\
b = 5 \\
c = 13 \\
\end{matrix} ight.

    Vậy hai tiêu điểm cần tìm là: F_{1}( -
13;0),F_{2}(13;0).

  • Câu 2: Nhận biết

    Cho phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 (1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 là phương trình đường tròn là:

    {a^2} + {b^2} - c > 0

  • Câu 3: Thông hiểu

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 4: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng (d):2x + y - 4 = 0(d'):2x + y + 7 = 0?

    Ta có: \frac{a}{a'} =
\frac{b}{b'} eq \frac{c}{c'} suy ra hai đường thẳng (d) và (d’) song song với nhau.

  • Câu 5: Nhận biết

    Một vectơ chỉ phương của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) là:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là: \overrightarrow{u_{\Delta}} = (2; -
3)

  • Câu 6: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):x^{2} + y^{2} + 4x - 2y - 8 =
0, biết tiếp tuyến vuông góc với đường thẳng d:2x - 3y + 2018 = 0.

    Đường tròn (C) có tâm I( - 2;1),\ R =
\sqrt{13} và tiếp tuyến có dạng

    \Delta:3x + 2y + c = 0.

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c - 4|}{\sqrt{13}} = \sqrt{13} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 17 \\
c = - 9 \\
\end{matrix} ight.\ .

  • Câu 7: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 8: Thông hiểu

    Phương tròn đường tròn đi qua ba điểm M( - 2;4),N(5;5),P(6; - 2) là:

    Gọi I(x;y) và R lần lượt là tâm và bán kính đường tròn cần tìm. Ta suy ra:

    IM = IN = IP \Leftrightarrow \left\{
\begin{matrix}
IM^{2} = IN^{2} \\
IM^{2} = IP^{2} \\
\end{matrix} ight. nên ta có hệ phương trình:

    \left\{ \begin{matrix}
(x + 2)^{2} + (y - 4)^{2} = (x - 5)^{2} + (y - 5)^{2} \\
(x + 2)^{2} + (y - 4)^{2} = (x - 6)^{2} + (y + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow I(2;1) \Rightarrow R =
5

    Vậy phương trình cầm tìm là: (x - 2)^{2}
+ (y - 1)^{2} = 25

    Hay x^{2} + y^{2} - 4x - 2y - 20 =
0

  • Câu 9: Vận dụng

    Tìm a để hai đường thẳng d_{1}:2x–4y + 1 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight. vuông góc với nhau?

    Ta có:

    \left\{ \begin{matrix}
d_{1}:2x–4y + 1 = 0 \\
d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight.\  \\
\end{matrix} ight. \overset{}{ightarrow}\left\{ \begin{matrix}
{\overrightarrow{n}}_{1} = (1; - 2) \\
{\overrightarrow{n}}_{2} = (a + 1;a) \\
\end{matrix} ight.\ \overset{d_{1}\bot
d_{2}}{ightarrow}{\overrightarrow{n}}_{1} \cdot
{\overrightarrow{n}}_{2} = 0 \Leftrightarrow a + 1 - 2a = 0 \Leftrightarrow a =
1.

  • Câu 10: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;5), B( -
4; - 5)C(4; - 1). Phương trình đường phân giác ngoài của góc A là:

    \left\{ \begin{matrix}
A(1;5),\ B( - 4; - 5) ightarrow AB:2x - y + 3 = 0 \\
A(1;5),\ C(4; - 1) ightarrow AC:2x + y - 7 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \frac{|2x - y + 3|}{\sqrt{5}} =
\frac{|2x + y - 7|}{\sqrt{5}} \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 ightarrow f(x;y) = x - 1 \\
y - 5 = 0 \\
\end{matrix} ight.

    ightarrow \left\{ \begin{matrix}
f\left( B( - 4; - 5) ight) = - 5 < 0 \\
f\left( C(4; - 1) ight) = 3 > 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc Ay - 5 =
0.

  • Câu 11: Nhận biết

    Xét vị trí tương đối của hai đường thẳng \left( d_{1} ight):2x - 3y + 1 =
0\left( d_{2} ight): - 4x +
6y - 1 = 0?

    Ta có: \frac{2}{- 4} = \frac{- 3}{6} eq
\frac{1}{- 1}

    Vậy hai đường thẳng đã cho song song với nhau.

  • Câu 12: Nhận biết

    Đường Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} =
1a^{2} = 16, b^{2} = 7 suy ra c^{2} = a^{2} - b^{2} = 16 - 7 = 9 \Leftrightarrow
c = 3.

    Vậy tiêu cự 2c = 2.3 = 6.

  • Câu 13: Thông hiểu

    Cho elip (E) có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng 6. Viết phương

    trình của (E)?

    Ta có: a = 2b,2c = 6 \Rightarrow c =
3.

    a^{2} - b^{2} = c^{2} \Rightarrow
4b^{2} - b^{2} = 9 \Rightarrow \left\{ \begin{matrix}
b^{2} = 3 \\
a^{2} = 12 \\
\end{matrix} ight..

    Vậy phương trình (E): \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{12}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{3}}\mathbf{=}\mathbf{1}.

  • Câu 14: Thông hiểu

    Tính góc giữa hai đường thẳng \left( d_{1} ight):2x - y - 10 = 0\left( d_{2} ight):x - 3y + 9 =
0

    Ta có:

    Vectơ pháp tuyến của hai đường thẳng lần lượt là \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 1) \\
\overrightarrow{n_{2}} = (1; - 3) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 2.1 + ( - 1).( - 3) = 5
\\
\left| \overrightarrow{n_{1}} ight| = \sqrt{2^{2} + ( - 1)^{2}} =
\sqrt{5} \\
\left| \overrightarrow{n_{2}} ight| = \sqrt{1^{2} + ( - 3)^{2}} =
\sqrt{10} \\
\end{matrix} ight.

    Suy ra \cos\left( d_{1};d_{2} ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{\sqrt{2}}{2}

    \Rightarrow \widehat{\left( d_{1};d_{2}
ight)} = 45^{0}

  • Câu 15: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 = 0 có phương trình tổng quát là:

    Đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 =
0 có nhận vectơ \overrightarrow{n}(4;2) làm vectơ pháp tuyến có phương trình tổng quát:

    4(x - 1) + 2(y - 2) = 0

    \Leftrightarrow 2x + y - 4 =
0

    Vậy phương trình tổng quát của đường thẳng là: 2x + y - 4 =
0.

  • Câu 17: Vận dụng

    Một tòa tháp có mặt cắt hình hypebol có phương trình \frac{x^{2}}{36}-\frac{y^{2}}{49}=1. Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:

    Gọi r là bán kính đáy của tháp (r > 0)

    Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.

    Chọn điểm M(r; –25) nằm trên hypebol nên ta có:

    \begin{matrix}  \dfrac{{{r^2}}}{{36}} - \dfrac{{{{\left( { - 25} ight)}^2}}}{{49}} = 1 \hfill \\   \Leftrightarrow \dfrac{{{r^2}}}{{36}} = 1 + \dfrac{{{{\left( { - 25} ight)}^2}}}{{49}} = \dfrac{{674}}{{49}} \hfill \\   \Leftrightarrow {r^2} = \dfrac{{674}}{{49}}.36 = \dfrac{{24264}}{{49}} \hfill \\   \Rightarrow r \approx 22,25\left( m ight) \hfill \\ \end{matrix}

    Vậy Bán kính đáy của tháp khoảng 22,25m.

  • Câu 18: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;2), B(0;3)C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

    \left\{ \begin{matrix}
A(1;2) \\
B(0;3),\ \ C(4;0) ightarrow BC:3x + 4y - 12 = 0 \\
\end{matrix} ight.

    ightarrow h_{A} = d(A;BC) = \frac{|3 +
8 - 12|}{\sqrt{9 + 16}} = \frac{1}{5}.

  • Câu 19: Thông hiểu

    Cho phương trình {x^2} + {y^2} - 2mx - 4(m - 2)y + 6 - m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:

    Từ phương trình đường tròn ta có:

    I\left( {m;2m - 4} ight)

    Điều kiện để phương trình đã cho là phương trình đường tròn là:

    \begin{matrix}  {m^2} + 4{\left( {m - 2} ight)^2} - 6 + m > 0 \hfill \\   \Leftrightarrow {m^2} + 4{m^2} - 16m + 16 - 6 + m > 0 \hfill \\   \Leftrightarrow 5{m^2} - 15m + 10 > 0 \hfill \\   \Leftrightarrow m \in ( - \infty ;1) \cup (2; + \infty ) \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo