Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Chọn mệnh đề sai? Đường thẳng (\Delta) được xác định khi biết

    Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”

  • Câu 2: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;3), B( -
2;4)C( - 1;5). Đường thẳng d:2x - 3y + 6 = 0 cắt cạnh nào của tam giác đã cho?

    Đặt f(x;y) = 2x - 3y +
6\overset{}{ightarrow}\left\{ \begin{matrix}
f\left( A(1;3) ight) = - 1 < 0 \\
f\left( B( - 2;4) ight) = - 10 < 0 \\
f\left( C( - 1;5) ight) = - 11 < 0 \\
\end{matrix} ight.\ \ \ \ \overset{}{ightarrow} d không cắt cạnh nào của tam giác ABC.

  • Câu 3: Thông hiểu

    Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi F_1, F_2 là các tiêu điểm của elip. Khi đó độ dài F_1F_2 bằng:

    Ta có độ dài trục lớn bằng 4 m. 

    => 2a = 4 => a = 2.

    Lại có độ dài trục nhỏ bằng 2m. 

    => 2b = 2=> b = 1

    Ta có c = \sqrt {{a^2} - {b^2}}  = \sqrt 3

    => {F_1}{F_2} = 2c = 2\sqrt 3

  • Câu 4: Thông hiểu

    Cho bốn điểm A(4;
- 3), B(5;1), C(2;3)D(
- 2;\ 2). Xác định vị trí tương đối của hai đường thẳng ABCD.

    \left\{ \begin{matrix}{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (1;4) \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = ( - 4; - 1) \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\frac{1}{- 4}eq \frac{4}{- 1} \\{\overrightarrow{u}}_{AB} \cdot {\overrightarrow{u}}_{CD}eq 0 \\\end{matrix} ight.

    ightarrow AB,\ \ CD cắt nhau nhưng không vuông góc.

  • Câu 5: Vận dụng

    Hãy viết phương trình chính tắc của elip nếu nó đi qua điểm N\left( 2; - \frac{5}{3}
ight) và tỉ số của tiêu cự với độ dài trục lớn bằng \frac{2}{3}.

    Gọi phương trình chính tắc của Elip là (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1, với a > b >
0.

    \bullet Elip đi qua điểm N\left( 2; - \frac{5}{3} ight) suy ra \frac{2^{2}}{a^{2}} + \frac{\left( -
\frac{5}{3} ight)^{2}}{b^{2}} = 1 \Leftrightarrow \frac{4}{a^{2}} +
\frac{25}{9b^{2}} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1).

    \bullet Tỉ số của tiêu cực với độ dài trục lớn bằng \frac{2}{3} suy ra \frac{2c}{2a} = \frac{2}{3}
\Leftrightarrow \frac{c}{a} = \frac{2}{3} \Leftrightarrow c^{2} =
\frac{4}{9}a^{2}.

    Kết hợp với điều kiện b^{2} = a^{2} -
c^{2}, ta được b^{2} = a^{2} -
\frac{4}{9}a^{2} = \frac{5}{9}a^{2} \Leftrightarrow 9b^{2} = 5a^{2}\ \ \
\ \ \ \ \ \ \ (2).

    Từ (1),\ \ (2) suy ra \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{25}{9b^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{25}{5a^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{9}{a^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight.\ .

    Vậy phương trình cần tìm là (E):\frac{x^{2}}{9} + \frac{y^{2}}{5} =
1.

  • Câu 6: Vận dụng

    Đâu là đường thẳng không có điểm chung với đường thẳng x - 3y + 4 = 0?

    Kí hiệu d:x - 3y + 4 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1; - 3).

    (i) Xét đáp án: d_{1}:\left\{
\begin{matrix}
x = 1 + t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (1;3)
ightarrow {\overrightarrow{n}}_{1},\ \ \overrightarrow{n} không cùng phương nên loại.

    (ii) Xét đáp án: d_{2}:\left\{
\begin{matrix}
x = 1 - t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3;1)
ightarrow {\overrightarrow{n}}_{2},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iii) Xét đáp án: d_{3}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{3} = (1;3)
ightarrow {\overrightarrow{n}}_{3},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iv) Xét đáp án: d_{4}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M(1;2) \in d_{4} \\
{\overrightarrow{n}}_{4} = (1; - 3) \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
{\overrightarrow{n}}_{4} = \overrightarrow{n} \\
M\boxed{\in}d \\
\end{matrix} ight.\  ightarrow d||d_{4}. (Chọn)

  • Câu 7: Nhận biết

    Đường thẳng nào sau đây song song với đường thẳng (d):2x + 3y - 1 = 0?

    Đường thẳng (d):2x + 3y - 1 = 0 song song với đường thẳng 2x + 3y + 5 =
0\frac{2}{2} = \frac{3}{3} eq
\frac{- 1}{5}.

  • Câu 8: Thông hiểu

    Cho tọa độ hai điểm A(8;0),B(0;6). Phương trình đường tròn ngoại tiếp tam giác OAB là:

    Ta có tam giác OAB vuông tại O nên tâm I của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền AB suy ra I(4; 3) và bán kính R = IA = \sqrt{(8 - 4)^{2} + (0 - 3)^{2}} =
5

    Vậy phương trình đường tròn ngoại tiếp tam giác OAB là: (x - 4)^{2} + (y - 3)^{2} = 25

  • Câu 9: Nhận biết

    Cho phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 (1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 là phương trình đường tròn là:

    {a^2} + {b^2} - c > 0

  • Câu 10: Thông hiểu

    Tìm m để góc tạo bởi hai đường thẳng ∆1:\sqrt{3}x -y+7=0∆_2: mx + y + 1 = 0 một góc bằng 30°.

    Ta có:

    \begin{matrix}  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{\sqrt {3 + 1} .\sqrt {{m^2} + 1} }} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \cos {30^0} \hfill \\   \Leftrightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\   \Leftrightarrow \sqrt 3 \sqrt {{m^2} + 1}  = \left| {m\sqrt 3  - 1} ight| \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = {\left( {m\sqrt 3  - 1} ight)^2} \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = 3{m^2} - 2m\sqrt 3  + 1 \hfill \\   \Leftrightarrow 2m\sqrt 3  + 2 = 0 \hfill \\   \Leftrightarrow m =  - \dfrac{1}{{\sqrt 3 }} \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Cho hình elip có phương trình \frac{x^{2}}{64} + \frac{y^{2}}{36} = 1. Hình elip có tiêu cự trục lớn bằng:

    Ta có: \frac{x^{2}}{64} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a = 8 \\
b = 6 \\
\end{matrix} ight.

    Độ dài trục lớn là: 2a = 2.8 =
16

  • Câu 12: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):x^{2} + y^{2} - 4x - 4y + 4 =
0, biết tiếp tuyến vuông góc với trục hoành.

    Đường tròn (C) có tâm I(2;2),\ R =
2 và tiếp tuyến có dạng \Delta:x +
c = 0\ .

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow |c + 2| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
c = 0 \\
c = - 4 \\
\end{matrix} ight.\ .

  • Câu 13: Thông hiểu

    Tìm giá trị của x để hai vectơ \overrightarrow{a} = (3;x)\overrightarrow{b} = (5; - 3) có giá vuông góc với nhau?

    Vì hai vectơ \overrightarrow{a}\overrightarrow{b} có giá vuông góc với nhau nên ta có:

    \overrightarrow{a}.\overrightarrow{b} =
0 \Leftrightarrow 3.5 + x.( - 3) = 0 \Leftrightarrow x = 5

    Vậy hai vectơ đã cho có giá vuông góc với nhau khi x = 5.

  • Câu 14: Nhận biết

    Cho đường thẳng (\Delta):3x + 4y - 4 = 0 và tọa độ điểm C(1; - 1). Tính d(C;\Delta)?

    Ta có khoảng cách từ điểm C đến đường thẳng (\Delta):3x + 4y - 4 = 0 là:

    d(C;\Delta) = \frac{\left| 3.1 + 4.( -
1) - 4 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{5}{5} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 15: Thông hiểu

    Tìm giá trị của tham số m sao cho đường thẳng (\Delta):(m - 1)y + mx - 2 =
0 là tiếp tuyến của đường tròn (C):x^{2} + y^{2} - 6x + 5 = 0.

    Đường tròn (C) có tâm I(3; 0) và bán kính R = 2

    Để (\Delta) là tiếp tuyến của đường tròn (C) thì ta phải có:

    d(I;\Delta) = \frac{|3m - 2|}{\sqrt{(m -
1)^{2} + m^{2}}} = 2

    \Leftrightarrow 4\left( 2m^{2} - 2m + 1
ight) = 9m^{2} - 12m + 4

    \Leftrightarrow m^{2} - 4m = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 4 \\
\end{matrix} ight.

  • Câu 16: Thông hiểu

    Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm F_{1}\left(
- \sqrt{3};0 ight) và đi qua điểm D\left( 1;\frac{\sqrt{3}}{2} ight)?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;\left( a > b > 0,c^{2} = a^{2} - b^{2} ight)

    Ta có:

    c^{2} = a^{2} - b^{2} \Rightarrow c =
\sqrt{a^{2} - b^{2}} = \sqrt{3}

    Khi đó ta có: a^{2} - b^{2} = 3\ \
(*)

    Do elip đi qua điểm D\left(
1;\frac{\sqrt{3}}{2} ight)

    \Rightarrow \frac{1}{a^{2}} +
\frac{3}{4b^{2}} = 1 \Rightarrow 4b^{2} + 3a^{2} = 4a^{2}b^{2}\ \
(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}
a^{2} - b^{2} = 3 \\
4b^{2} + 3a^{2} = 4a^{2}b^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 3.\left( 3 + b^{2} ight) = 4.\left( 3 + b^{2} ight).b^{2}
\\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 5b^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{4} + \frac{y^{2}}{1} =
1.

  • Câu 17: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:3mx + 2y - 6 = 0d_{2}:\left( m^{2} + 2 ight)x + 2my - 3 =
0 song song?

    Ta có: \ \left\{ \begin{matrix}
d_{1}:3mx + 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3m;2) \\
d_{2}:\left( m^{2} + 2 ight)x + 2my - 3 = 0 ightarrow
{\overrightarrow{n}}_{2} = \left( m^{2} + 2;2m ight) \\
\end{matrix} ight.

    \begin{matrix}\\ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}:y - 3 = 0 \\d_{2}:2x + 2y - 3 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ (không\ TM) \\meq0\overset{d_{1}||d_{2}}{ightarrow}\frac{m^{2} + 2}{3m} =\frac{2m}{2}eq\frac{- 3}{- 6} \Leftrightarrow m = \pm 1 \\\end{matrix} ight.\ .\ \  \\\end{matrix}

    Chọn m = 1;\ \ m = - 1.

  • Câu 18: Nhận biết

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 19: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây sai?

    Với c^{2} = a^{2} + b^{2} (c > 0), tâm sai của hypebol là e = \frac{a}{c}.

  • Câu 20: Nhận biết

    Đường tròn (C):(x - 1)^{2} + (y + 2)^{2} = 25 có dạng khai triển là:

    (C):(x - 1)^{2} + (y + 2)^{2} = 25
\Leftrightarrow x^{2} + y^{2} - 2x + 4y - 20 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo