Cho hình elip có phương trình
. Hình elip có độ dài tiêu cự bằng:
Ta có:
Độ dài tiêu cự là:
Cho hình elip có phương trình
. Hình elip có độ dài tiêu cự bằng:
Ta có:
Độ dài tiêu cự là:
Cho có
, đường cao
, đường phân giác trong
. Tọa độ điểm A là:
Ta có:
Mà
Vậy
Có => A là nghiệm của hệ phương trình
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Đường tròn
có dạng khai triển là:
Có bao nhiêu đường thẳng đi qua gốc tọa độ
và tiếp xúc với đường tròn
?
Đường tròn (C) có tâm không có tiếp tuyến nào của đường tròn kẻ từ O.
Đường trung trực của đoạn thẳng
với
,
có một vectơ pháp tuyến là:
Gọi là trung trực đoạn AB, ta có:
Cho hai đường thẳng
;
và điểm
. Phương trình đường tròn có tâm
, đi qua điểm
và tiếp xúc với
là:
Hình vẽ minh họa
Ta có I là tâm đường tròn và nên
Theo giả thiết bài toán ta có:
Suy ra và bán kính
Vậy phương trình đường tròn cần tìm là: .
Cho elip có phương trình chính tắc
. Khi đó độ dài trục lớn và trục nhỏ của elip lần lượt là:
Ta có:
Độ dài trục lớn
Độ dài trục bé
Vậy độ dài trục lớn và trục nhỏ của elip lần lượt là:
Tìm
để hai đường thẳng
và
trùng nhau?
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Cho phương trình
. Có bao nhiêu giá trị
nguyên dương không vượt quá 10 để
là phương trình của đường tròn?
Ta có:
Có 7 giá trị
.
Cho đường thẳng
và tọa độ điểm
. Tính
?
Ta có khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm
và có một đường chuẩn là
.
Gọi .
Ta có : Suy ra phương trình chính tắc của (H) là
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
không thuộc
. Chọn khẳng định đúng trong các khẳng định sau:
cùng phía so với
thì
và
luôn cùng dấu.
Chọn cùng phía so với
khi
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Phương trình chính tắc của Elip có độ dài trục lớn bằng
, độ dài trục nhỏ bằng
là:
+ Phương trình Elip dạng:
+ Do có độ dài trục lớn bằng .
+ Do có độ dài trục nhỏ bằng .
+ Suy ra phương trình là .
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và đoạn thẳng
có điểm chung.
Đoạn thẳng và
có điểm chung khi và chỉ khi hai điểm
nằm khác phía so với đường thẳng
. Ta có:
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng
và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Ta có: .
Do không thuộc hai đường thẳng
và
nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ
đến hai đường thẳng
.
Ta có:
Trong mặt phẳng với hệ tọa độ Oxy, cho elip
. Tiêu cự của (E) bằng
Phương trình chính tắc của elip có dạng: .
Do đó elip (E) có .
Tiêu cự của elip (E) bằng .