Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

  • Câu 2: Vận dụng

    Elip (E) có độ dài trục lớn bằng 4\sqrt{2}, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của (E).

    Ta có A_{1}A_{2} = 4\sqrt{2}\overset{}{ightarrow}a =
2\sqrt{2}

    Và bốn điểm F_{1},B_{1},F_{2},B_{2} cùng nằm trên một đường tròn

    \overset{}{ightarrow}b =
c\overset{}{ightarrow}b^{2} = c^{2}

    \overset{}{ightarrow}b^{2} = a^{2} -
b^{2}\overset{}{ightarrow}b = \frac{a}{\sqrt{2}} = 2.

    Vậy độ dài trục nhỏ của (E)4.

  • Câu 3: Vận dụng

    Trong mặt phẳng Oxy cho các điểm A(6;2),B( - 2;8),C( - 2; - 4). Phương trình đường tròn nội tiếp tam giác ABC là:

    AB = \sqrt{(6 + 2)^{2} + (2 - 8)^{2}}
= 10,AC = \sqrt{(6 + 2)^{2} + (2 + 4)^{2}} = 10, tam giác ABC cân tại A.

    Gọi M = ( - 2;2) là trung điểm của BC. Phương trình AM là: y =
2.

    Phương trình BC:x = - 2, phương trình AB :

    \frac{x - 6}{6 + 2} = \frac{y - 2}{2 -
8} \Leftrightarrow 3x + 4y - 26 = 0

    Gọi I = (x,y) là tâm đường tròn nội tiếp tam giác ABC. Ta có:

    \left. \ d(I,BC) = d(I,AB)\Leftrightarrow \frac{|x + 2|}{\sqrt{1^{2} + 0^{2}}} = \frac{|3x + 4y -26|}{\sqrt{3^{2} + 4^{2}}}  ight.

    \Leftrightarrow |3x + 4y - 26| = 5|x + 2|

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {4x + 2y - 8 = 0} \\ 
  {x - 2y + 18 = 0} 
\end{array}} ight.

    Thay tọa độ của AC vào phương trình 4x + 2y - 8 = 0 và xét tích của chúng, ta được:

    (4.6 + 2.2 - 8)(4.( - 2) + 2.( - 4) - 8)
< 0 nên phương trình BI4x + 2y - 8 = 0.
    Tọa độ của I là nghiệm của hệ \left\{ \begin{matrix}
y = 2 \\
4x + 2y - 8 = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
\end{matrix} ight.\  ight..

    Vậy I = (1;2)

    \Rightarrow IM = \sqrt{(1 + 2)^{2} + (2 - 2)^{2}} =3.

    Phương trình đường tròn nội tiếp tam giác ABC(x -
1)^{2} + (y - 2)^{2} = 9.

     

  • Câu 4: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} + 5x + 7y - 3 = 0. Tính khoảng cách từ tâm của (C) đến trục Ox.

    (C):x^{2} + y^{2} + 5x + 7y - 3 = 0
ightarrow I\left( - \frac{5}{2}; - \frac{7}{2} ight)

    ightarrow d\lbrack I;Oxbrack = \left|
- \frac{7}{2} ight| = \frac{7}{2}.

  • Câu 5: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(2;4), B(5;0)C(2;1). Trung tuyến BM của tam giác đi qua điểm N có hoành độ bằng 20 thì tung độ của điểm N bằng bao nhiêu?

    \left\{ \begin{matrix}
A(2;4) \\
C(2;1) \\
\end{matrix} ight.\ \overset{ightarrow}{}M\left( 2;\frac{5}{2}
ight) ightarrow \overrightarrow{MB} = \left( 3; - \frac{5}{2}
ight) = \frac{1}{2}(6; - 5)

    \overset{ightarrow}{}MB:\left\{
\begin{matrix}
x = 5 + 6t \\
y = - 5t \\
\end{matrix} ight.\ .

    Ta có: N\left( 20;y_{N} ight) \in
BM\overset{ightarrow}{}\left\{ \begin{matrix}
20 = 5 + 6t \\
y_{N} = - 5t \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
t = \frac{5}{2} \\
y_{N} = - \frac{25}{2} \\
\end{matrix} ight.\ \overset{ightarrow}{}

    Chọn - \frac{25}{2}.

  • Câu 6: Thông hiểu

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

  • Câu 7: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Hypebol?

    Phương trình Hypebol có dạng \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} + b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} - \frac{y^{2}}{4} =
1.

  • Câu 8: Thông hiểu

    Cho phương trình x^{2} + y^{2} - 2mx - 4(m - 2)y + 6 - m =
0. Tìm điều kiện của tham số m để phương trình đã cho là phương trình đường tròn?

    Để phương trình đã cho là phương trình đường tròn thì:

    m^{2} + 4(m - 2)^{2} - 6 + m >
0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m > 2 \\
m < 1 \\
\end{matrix} ight.

    Vậy đáp án chính xác là: \left\lbrack
\begin{matrix}
m > 2 \\
m < 1 \\
\end{matrix} ight..

  • Câu 9: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:3mx + 2y + 6 = 0d_{2}:\left( m^{2} + 2 ight)x + 2my + 6 =
0 cắt nhau?

    Ta có: \left\{ \begin{matrix}
d_{1}:3mx + 2y + 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3m;2) \\
d_{2}:\left( m^{2} + 2 ight)x + 2my + 6 = 0 ightarrow
{\overrightarrow{n}}_{2} = \left( m^{2} + 2;2m ight) \\
\end{matrix} ight.

    ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}:y + 3 = 0 \\d_{2}:x + y + 3 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ (TM) \\meq 0\overset{d_{1} \cap d_{2} = M}{ightarrow}\frac{m^{2} +2}{3m}\frac{2m}{2} \Leftrightarrow m \pm 1 \\\end{matrix} ight.\ .

  • Câu 10: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x + y + 4 - m = 0d_{2}:(m + 3)x + y + 2m - 1 = 0 song song?

    Với m = 4\overset{}{ightarrow}\left\{\begin{matrix}d_{1}:2x + y = 0 \\d_{2}:7x + y + 7 = 0 \\\end{matrix} ight.\ \overset{}{ightarrow}d_{1} \cap d_{2}eq \varnothing\overset{}{ightarrow} loại m = 4.

    Với meq 4 thì

    \left\{ \begin{matrix}d_{1}:2x + y + 4 - m = 0 \\d_{2}:(m + 3)x + y - 2m - 1 = 0 \\\end{matrix} ight.\ \overset{d_{1}||d_{2}}{ightarrow}\frac{m + 3}{2}= \frac{1}{1}eq \frac{- 2m - 1}{4 - m}

    \Leftrightarrow \left\{ \begin{matrix}m = - 1 \\meq  - 5 \\\end{matrix} ight.\  \Leftrightarrow m = - 1.

  • Câu 11: Nhận biết

    Cho phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 (1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 là phương trình đường tròn là:

    {a^2} + {b^2} - c > 0

  • Câu 12: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(1;2),B(2; - 1),C(0;1). Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I\left( \frac{1}{2};\frac{3}{2}
ight)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = \left( -
\frac{3}{2};\frac{5}{2} ight) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{n} =
(5;3).

    Phương trình tổng quát của đường thẳng BI là:

    5(x - 2) + 3(y + 1) = 0

    \Leftrightarrow 5x + 3y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng cần tìm là 5x + 3y - 7 =
0.

  • Câu 13: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{a} = 2\overrightarrow{i} +
3\overrightarrow{j} là:

    Tọa độ vectơ \overrightarrow{a} =
(2;3).

  • Câu 14: Nhận biết

    Cho hai đường thẳng (\Delta):x - 2y + 1 = 0(\Delta'):x - 3y + 8 = 0. Khẳng định nào sau đây đúng?

    Ta có: \frac{1}{1} eq \frac{- 2}{-
3} suy ra (\Delta) cắt (\Delta').

    Vậy khẳng định đúng là: “(\Delta) cắt (\Delta')”.

  • Câu 15: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn có phương trình: (x – 1)^{2} + (y – 10)^{2} = 81 lần lượt là:

     Tâm I(1;10), bán kính R=9.

  • Câu 17: Vận dụng

    Xác định giá trị của tham số m để hai đường thẳng \left( \Delta_{1} ight):mx - y + 1 =
0\left( \Delta_{2} ight):(m -
4)x + (2m - 3)y + m = 0 song song với nhau?

    Điều kiện để \left( \Delta_{1}
ight)//\left( \Delta_{2} ight) là: \frac{m}{m - 4} = \frac{- 1}{2m - 3} eq
\frac{1}{m}(*)

    Với m eq 0,m eq 4,m eq
\frac{3}{2}

    Ta có:

    \frac{m}{m - 4} = \frac{- 1}{2m -
3}

    \Leftrightarrow 2m^{2} - 2m - 4 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight.

    Với m = - 1 ta có: (*) \Leftrightarrow \frac{- 1}{- 5} = \frac{- 1}{-
5} eq \frac{1}{- 1}(đúng)

    Với m = 2 ta có: (*) \Leftrightarrow \frac{2}{- 2} = \frac{- 1}{1}
eq \frac{1}{2}(đúng)

    Vậy \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight. thỏa mãn yêu cầu đề bài.

  • Câu 18: Thông hiểu

    Tìm phương trình chính tắc của elip nếu trục lớn gấp đôi trục bé và có tiêu cự bằng 4\sqrt{3}.

    Elip (E) có trục lớn gấp đôi trục bé \Rightarrow A_{1}A_{2} = 2B_{1}B_{2}
\Leftrightarrow 2a = 2.2b \Leftrightarrow a = 2b.

    Elip (E) có tiêu cự bằng 4\sqrt{3}\overset{}{ightarrow}2c = 4\sqrt{3}
\Rightarrow c = 2\sqrt{3}.

    Ta có a^{2} = b^{2} + c^{2}
\Leftrightarrow (2b)^{2} = b^{2} + \left( 2\sqrt{3} ight)^{2}
\Rightarrow b = 2. Khi đó, a = 2b =
4.

    Phương trình chính tắc của Elip là (E):\frac{x^{2}}{16} + \frac{y^{2}}{4} =
1.

  • Câu 19: Nhận biết

    Đường thẳng d:51x - 30y + 11 = 0 đi qua điểm nào sau đây?

    Đặt f(x;y) = 51x - 30y +
11\overset{}{ightarrow}\left\{ \begin{matrix}
f(M) = f\left( - 1; - \frac{4}{3} ight) = 0 ightarrow M \in d \\
f(N) = f\left( - 1;\frac{4}{3} ight) = - 80\boxed{=}0 ightarrow
N\boxed{\in}d \\
f(P)\boxed{=}0 \\
f(Q)\boxed{=}0 \\
\end{matrix} ight.\ .

    Chọn M\left( - 1; - \frac{4}{3}
ight).

  • Câu 20: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1. Khi đó độ dài trục lớn và trục nhỏ của elip lần lượt là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
\end{matrix} ight.

    Độ dài trục lớn AA_{1} = 2a =
6

    Độ dài trục bé BB_{1} = 2b =
4

    Vậy độ dài trục lớn và trục nhỏ của elip lần lượt là: 6;4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo