Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Ta có
Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Ta có
Trong mặt phẳng với hệ tọa độ Oxy, cho elip
. Tiêu cự của (E) bằng
Phương trình chính tắc của elip có dạng: .
Do đó elip (E) có .
Tiêu cự của elip (E) bằng .
Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương ![]()
Đường thẳng có phương trình tham số có vectơ chỉ phương là
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Tìm phương trình chính tắc của elip có tiêu cự bằng
và trục lớn bằng
.
Phương trình chính tắc của elip:
Độ dài trục lớn .
Tiêu cự .
Ta có:
Vậy phương trình chính tắc của elip là .
Tìm phương trình chính tắc của Hyperbol
mà hình chữ nhật cơ sở có một đỉnh là ![]()
Gọi . Tọa độ đỉnh của hình chữ nhật cơ sở là
,
,
,
.
Hình chữ nhật cơ sở của có một đỉnh là
, suy ra
. Phương trình chính tắc của
là
Trong mặt phẳng
, phương trình nào sau đây là phương trình chính tắc của một elip?
Phương trình chính tắc của elip có dạng nên chọn phương án
.
Gọi
là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
cắt
.
Vậy khẳng định đúng là: “ cắt
”.
Xác định giá trị của tham số m để hai đường thẳng
và
song song với nhau?
Điều kiện để là:
Với
Ta có:
Với ta có:
(đúng)
Với ta có:
(đúng)
Vậy thỏa mãn yêu cầu đề bài.
Viết phương trình tiếp tuyến
của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:
Gọi .
Vì .
Do đó .
Ta có: .
Chọn mệnh đề sai? Đường thẳng
được xác định khi biết
Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”
Trong mặt phẳng với hệ tọa độ
, cho elip
. Biết điểm
sao cho
Hãy tính bán kính đường tròn nội tiếp tam giác ![]()
Gọi vì
(1)
Do (2)
Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc
Ta có: nửa chu vi
Khoảng các từ M đến trục Ox:
Bán kính đuờng tròn nội tiếp: .
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng song song.
Xác định phương trình đường tròn
tâm
. Biết
cắt đường thẳng
tại hai điểm
sao cho
.
Gọi h là khoảng cách từ điểm I đến đường thẳng . Ta có:
Gọi R là bán kính đường tròn, từ giả thiết suy ra:
Vậy phương trình đường tròn cần tìm là: .
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đã cho tâm và bán kính lần lượt là: .
Trong mặt phẳng tọa độ Oxy, đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tổng quát là:
Ta có: đường thẳng nhận
làm vectơ pháp tuyến, mặt khác
đi qua điểm
nên
có phương trình tổng quát là:
Phương trình tham số của đường thẳng đi qua hai điểm
là:
Gọi d là đường thẳng qua C và nhận làm vectơ chỉ phương.
Khi đó phương trình tham số của đường thẳng d là: .
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Ta có:
Vậy phương trình đường tròn cần tìm là: .
Trong mặt phẳng tọa độ
, cho đường tròn
. Viết phương trình tiếp tuyến của đường tròn đã cho, biết hệ số góc của tiếp tuyền bằng
.
Đường tròn (C) có tâm và bán kính
Tiếp tuyến d có hệ số góc nên có dạng
Vì d là tiếp tuyến của nên
Với thì phương trình d là:
Với thì phương trình d là:
Vậy các phương trình tiếp tuyến cần tìm là: .