Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Viết phương trình đường tròn nội tiếp tam giác OAB, biết tọa độ A(8;0),B(0;6)?

    Ta có: OA = 8;OB = 6;AB = \sqrt{8^{2} +
6^{2}} = 10

    Mặt khác \frac{1}{2}OA.OB = p.r (vì cùng bằng diện tích tam giác ABO)

    Suy ra r = \frac{OA.OB}{OA + OB + AB} =
2

    Dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ (2;2)

    Vậy phương trình đường tròn nội tiếp tam giác OAB là: (x - 2)^{2} + (y - 2)^{2} = 4

  • Câu 2: Thông hiểu

    Tìm m để góc tạo bởi hai đường thẳng ∆1:\sqrt{3}x -y+7=0∆_2: mx + y + 1 = 0 một góc bằng 30°.

    Ta có:

    \begin{matrix}  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{\sqrt {3 + 1} .\sqrt {{m^2} + 1} }} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \cos {30^0} \hfill \\   \Leftrightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\   \Leftrightarrow \sqrt 3 \sqrt {{m^2} + 1}  = \left| {m\sqrt 3  - 1} ight| \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = {\left( {m\sqrt 3  - 1} ight)^2} \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = 3{m^2} - 2m\sqrt 3  + 1 \hfill \\   \Leftrightarrow 2m\sqrt 3  + 2 = 0 \hfill \\   \Leftrightarrow m =  - \dfrac{1}{{\sqrt 3 }} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Trong các phương trình sau, phương trình nào không phải là phương trình của đường tròn?

    Xét đáp án x^{2} + y^{2} - x + y + 4 = 0
ightarrow a = \frac{1}{2},\ b = - \frac{1}{2},\ c = 4

    ightarrow a^{2} + b^{2} - c < 0
ightarrowChọn đáp án này.

    Các đáp án còn lại các hệ số a,\ \ b,\ \
c thỏa mãn a^{2} + b^{2} - c >
0.

  • Câu 4: Vận dụng

    Cho hai đường thẳng d_{1}:3x + 4y + 12 = 0d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.. Tìm các giá trị của tham số a để d_{1}d_{2} hợp với nhau một góc bằng 45^{0}.

    Ta có:

    \left\{ \begin{matrix}
d_{1}:3x + 4y + 12 = 0 ightarrow {\overrightarrow{n}}_{1} = (3;4) \\
d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (2;a) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight) = 45^{\circ}}{ightarrow}\frac{1}{\sqrt{2}} = cos45^{\circ} =
\cos\varphi = \frac{|6 + 4a|}{\sqrt{25}.\sqrt{a^{2} + 4}}

    \Leftrightarrow 25\left( a^{2} + 4
ight) = 8\left( 4a^{2} + 12a + 9 ight)

    \Leftrightarrow 7a^{2} + 96a - 28 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - 14 \\
a = \frac{2}{7} \\
\end{matrix} ight.\ .

  • Câu 5: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - 4t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hãy chỉ ra vectơ chỉ phương của đường thẳng d?

    Vectơ chỉ phương của đường thẳng dlà: \overrightarrow{u_{d}} = ( - 4;3).

  • Câu 6: Nhận biết

    Đường thẳng nào sau đây có vô số điểm chung với đường thẳng \left\{ \begin{matrix}
x = t \\
y = - 1 \\
\end{matrix} ight.?

    Hai đường thẳng có hai điểm chung thì chúng trùng nhau. Như vậy bài toán trở thành tìm đường thẳng trùng với đường thẳng đã cho lúc đầu. Ta có

    d:\left\{ \begin{matrix}
x = t \\
y = - 1 \\
\end{matrix} ight.\ \overset{}{ightarrow}\left\{ \begin{matrix}
A(0; - 1) \in d \\
{\overrightarrow{u}}_{d} = (1;0) \\
\end{matrix} ight.\ \overset{}{ightarrow}kiểm tra đường thẳng nào chứa điểm A(0; - 1) và có VTCP cùng phương với {\overrightarrow{u}}_{d}\overset{}{ightarrow}Chọn đáp án \left\{ \begin{matrix}
x = - 1 + 2018t \\
y = - 1 \\
\end{matrix} ight.\ .

  • Câu 7: Thông hiểu

    Tìm tất cả các giá trị của m để hai đường thẳng \Delta_{1}:2x - 3my + 10 = 0\Delta_{2}:mx + 4y + 1 = 0 cắt nhau.

    \left\{ \begin{matrix}
\Delta_{1}:2x - 3my + 10 = 0 \\
\Delta_{2}:mx + 4y + 1 = 0 \\
\end{matrix} ight.

    ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}\Delta_{1}:x + 5 = 0 \\\Delta_{2}:4y + 1 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ \ (TM) \\meq\overset{\Delta_{1} \cap \Delta_{2} =M}{ightarrow}\frac{2}{m}eq\frac{- 3m}{4} \Leftrightarrow\forall meq 0 \\\end{matrix} ight.\ .Chọn đáp án này với mọi m.

  • Câu 8: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x-1)^{2}+(y+3)^{2}=25 là:

     Tâm I(1;-3), bán kính R=5.

  • Câu 10: Nhận biết

    Cho đường thẳng \Delta:x - 2y - 1 = 0. Đường thẳng nào sau đây vuông góc với đường thẳng \Delta?

    Đường thẳng d:4x + 2y + 3 = 0 vuông góc với đường thẳng \Delta\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}}
= 4.1 + 2( - 2) = 0.

  • Câu 11: Nhận biết

    Phương trình đường tròn (C):x^{2} + y^{2} + 2x - 6y - 15 = 0 có tâm và bán kính lần lượt là:

    Ta có: (C):x^{2} + y^{2} + 2x - 6y - 15 =
0

    \left\{ \begin{matrix}
- 2a = 2 \\
- 2b = - 6 \\
c = - 15 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
c = - 15 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} - c = 25 >
0

    Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là: I( - 1;3),R = 5

  • Câu 12: Vận dụng

    Cho đường thẳng d_{1}:2x + 3y + m^{2} - 1 = 0d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.. Tính cosin góc tạo bởi giữa hai đường thẳng trên.

    . \left\{ \begin{matrix}
d_{1}:2x + 3y + m^{2} - 1 = 0 ightarrow {\overrightarrow{n}}_{1} =
(2;3) \\
d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3; - 1)
\\
\end{matrix} ight. \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{|6 - 3|}{\sqrt{4 + 9}.\sqrt{9 +
1}} = \frac{3}{\sqrt{130}}.

  • Câu 13: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{25} + \frac{y^{2}}{9} =
1. Biết điểm M \in (E) sao cho \widehat{F_{1}MF_{2}} = 90^{0}. Hãy tính bán kính đường tròn nội tiếp tam giác MF_{1}F_{2}.

    Gọi M(x;y)\widehat{F_{1}MF_{2}} = 90^{0} \Rightarrow M{F_{1}}^{2} + M{F_{2}}^{2} =
F_{1}{F_{2}}^{2} \Leftrightarrow x^{2} + y^{2} = c^{2} = 16 (1)

    Do M \in (E) \Rightarrow \frac{x^{2}}{25}
+ \frac{y^{2}}{9} = 1(2)

    Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc x^{2} = \frac{175}{16};y^{2} = \frac{81}{16}
\Leftrightarrow x = \pm \frac{5\sqrt{7}}{4};y = \frac{9}{4}

    Ta có: nửa chu vi p = \frac{MF_{1} +
MF_{2} + F_{1}F_{2}}{2} = \frac{2a + 2c}{2} = a + c = 9

    Khoảng các từ M đến trục Ox:d(M;Ox) =
\left| y_{M} ight| = \frac{9}{4}

    S_{\Delta MF_{1}F_{2}} =
\frac{1}{2}d(M;Ox).F_{1}F_{2} = 9

    Bán kính đuờng tròn nội tiếp: r =
\frac{S}{p} = 1.

  • Câu 14: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):mx - (m - 1)y + 4 - m^{2} =
0\left( d_{2} ight):(m + 3)x
+ y - 3m - 1 = 0. Tìm giá trị của tham số m để hai đường thẳng hợp với nhau một góc bằng một góc vuông?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):mx - (m - 1)y + 4 - m^{2} = 0 là: \overrightarrow{n_{1}} = (m, - m + 1)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):(m + 3)x + y - 3m - 1 = 0 là: \overrightarrow{n_{2}} = (m + 1;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow m(m + 3) - m + 1 = 0

    \Leftrightarrow m = - 1

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 1.

  • Câu 15: Thông hiểu

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 16: Thông hiểu

    Phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y + 3)^{2} = 5 tại điểm N( - 3;1) là:

    Đường tròn (C) có tâm I(2; -
3)

    Phương trình tiếp tuyến của (C) tại điểm N( - 3;1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) =
0

    \Leftrightarrow x + 2y - 1 =
0

    Vậy phương trình tiếp tuyến của đường tròn tại N( - 3;1) là: x + 2y - 1 = 0

  • Câu 17: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?

    Phương trình Elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} - b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1

  • Câu 18: Nhận biết

    Cho parabol (P):y = 2x^{2} + x - 3. Giao điểm của (P) với trục hoành tại hai điểm A\left( x_{1};y_{1} ight),B\left(
x_{2};y_{2} ight). Khẳng định nào sau đây đúng?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    2x^{2} + x - 3 = 0

    Áp dụng định lí Vi – et ta có:

    x_{1} + x_{2} = - \frac{b}{a} = -
\frac{1}{2}

  • Câu 19: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?

     Vectơ chỉ phương của trục Ox là (1; 0).

  • Câu 20: Thông hiểu

    Cho phương trình Elip \frac{x^{2}}{16}+\frac{y^{2}}{4}=1. Tọa độ đỉnh A_1B_1 của Elip đó là:

    Ta có: \frac{x^{2}}{16}+\frac{y^{2}}{4}=1 => a = 4; b = 2

    => Tọa độ các đỉnh của elip là: {A_1}\left( { - 4;0} ight);{B_1}\left( {0; - 2} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo