Một vectơ pháp tuyến của đường thẳng
là:
Một vectơ pháp tuyến của đường thẳng là
.
Một vectơ pháp tuyến của đường thẳng
là:
Một vectơ pháp tuyến của đường thẳng là
.
Tính góc giữa hai đường thẳng
và ![]()
Ta có:
Vectơ pháp tuyến của hai đường thẳng lần lượt là
Suy ra
Suy ra
Đường trung trực của đoạn thẳng
với
,
có một vectơ pháp tuyến là:
Gọi là trung trực đoạn AB, ta có:
Cho phương trình đường tròn
. Viết phương trình tiếp tuyến của đường tròn
biết rằng tiếp tuyến vuông góc với đường thẳng
?
Đường tròn (C) có tâm
Vì vuông góc với đường thẳng
nên phương trình
có dạng
Vì là tiếp tuyến của (C) nên ta có:
Với thì phương trình
là
Với thì phương trình
là
Cho phương trình Elip
. Tọa độ đỉnh
và
của Elip đó là:
Ta có: => a = 4; b = 2
=> Tọa độ các đỉnh của elip là:
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Phương trình đường phân giác trong của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Cho
. Một đường thẳng đi qua điểm
và song song với trục hoành cắt
tại hai điểm phân biệt
và
. Độ dài
bằng bao nhiêu?
Phương trình đường thẳng đi qua điểm
và song song trục hoành có phương trình là
Ta có
Vậy độ dài đoạn thẳng
Nhận xét nào đúng về vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Suy ra và
không cùng phương và
Suy ra hai đường thẳng cắt nhau và không vuông góc.
Cho elip
. Diện tích hình chữ nhật cơ sở của
là
Độ dài trục lớn: .
Độ dài trục bé: .
Diện tích hình chữ nhật cơ sở của là:
.
Phương trình của đường thẳng (d) song song với (d’): 6x + 8y – 1 = 0 và cách (d’) một đoạn bằng 2 là:
(d’) có vectơ pháp tuyến là
Vì (d) // (d’) nên (d) cũng nhận làm vectơ pháp tuyến.
Do đó phương trình (d) có dạng:
Chọn
Vì nên khoảng cách giữa (d) và (d’) chính là
.
Do đó
hoặc
(nhận vì 19 ≠ –1) hoặc c = –21 (nhận vì –21 ≠ –1).
Vậy có hai đường thẳng (d) thỏa mãn yêu cầu bài toán có phương trình là:
và
.
Cho elip đi qua điểm
và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:
Phương trình chính tắc của elip có dạng
Theo bài ra ta có hệ phương trình:
Vậy phương trình chính tắc của elip là: .
Xác định góc giữa hai đường thẳng
và
?
Ta có:
Đường tròn (C):
có đường kính bằng bao nhiêu?
Tâm . Do đó
.
Do đó đường kính bằng .
Cho phương trình đường thẳng
và tọa độ điểm
. Xác định tọa độ điểm
đối xứng với điểm
qua đường thẳng
?
Gọi H là chân đường cao kẻ từ điểm A đến đường thẳng (d) suy ra H(h; 5-2h)
Ta có:
Vì
A’ là điểm đối xứng của A qua đường thẳng (d).
Suy ra H là trung điểm của AA’.
Suy ra tọa độ điểm A’ là:
Vậy tọa độ điểm
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng song song.
Trong mặt phẳng tọa độ Oxy cho đường thẳng
tiếp xúc với đường tròn
, cắt các trục
lần lượt tại các điểm
. Tam giác
có diện tích nhỏ nhất là:
Hình vẽ minh họa
Gọi là giao điểm của đường thẳng
và
là giao điểm của đường thẳng
và
Khi đó:
Xét tam giác OAB vuông tại O ta có:
Từ (*)
Vậy giá trị nhỏ nhất của diện tích tam giác OAB bằng 1.
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng
và hai điểm
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Ta có: .
Để A, B nằm cùng phía đối với thì:
Tọa độ tâm
và bán kính
của đường tròn
là:
Ta có:
Cho elip
có phương trình
. Khẳng định nào sai trong các khẳng định sau?
:
.
Elip có
,
,
.
Tiêu cự của elip là
nên khẳng định “
có tiêu cự bằng 3” là khẳng định sai.
Cho đường tròn
và đường thẳng
. Tìm phương trình tiếp tuyến của
song song với đường thẳng
?
Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng song song với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của song song với
là:
hoặc
.