Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Nếu thì
có các tiêu điểm là
,
.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Nếu thì
có các tiêu điểm là
,
.
Đường thẳng
đi qua giao điểm của hai đường thẳng
và
đồng thời tạo với đường thẳng
một góc
có phương trình:
Ta có gọi
. Khi đó
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).
Vectơ chỉ phương của đường thẳng AB là (2; 1).
Xác định tâm và bán kính đường tròn
.
Ta có:
Suy ra
Vậy đường tròn có tâm và bán kính lần lượt là: .
Cho đường tròn
và đường thẳng
. Tìm phương trình tiếp tuyến của
song song với đường thẳng
?
Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng song song với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của song song với
là:
hoặc
.
Đường tròn có tâm
, bán kính
có phương trình là:
Trong mặt phẳng với hệ tọa độ
, cho hai điểm
và đường thẳng
. Tìm tọa độ giao điểm của đường thẳng
và
.
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
Cho parabol (P) có đường chuẩn là đường thẳng
. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:
Phương trình đường chuẩn
=>
=>
Từ đó ta thu được phương trình parabol
Tiêu điểm F của (P) là
Giả sử điểm là điểm thuộc (P).
=>
Với và
ta có:
Với
Vậy tọa độ điểm M là:
Đường thẳng
đi qua điểm
và vuông góc với đường thẳng
có phương trình tham số là:
Đường tròn
có tâm
thuộc đường thẳng
, bán kính
và tiếp xúc với đường thẳng
. Biết tâm
có hoành độ dương. Phương trình của đường tròn
là:
.
Vậy phương trình đường tròn là:
Một đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.
Dạng chính tắc của hypebol là
Dạng chính tắc của hypebol là .
Cho tam giác
có phương trình các cạnh
lần lượt là
và trực tâm
. Phương trình tổng quát của cạnh
là:
Ta có: nên tọa độ điểm A là nghiệm hệ phương trình:
Ta có
Điểm
Ta có: nên tọa độ điểm B là nghiệm hệ phương trình:
Đường thẳng BC đi qua điểm B nhận làm vecto pháp tuyến có phương trình là:
Đường thẳng
không đi qua điểm nào sau đây ?
Gọi .
Đặt Chọn
.
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn có bán kính bằng
.
Khoảng cách từ điểm
đến đường thẳng
bằng:
Áp dụng công thức tính khoảng cách từ một điểm đến một đường thẳng ta có:
Vậy khoảng cách từ điểm A đến đường thẳng đã cho bằng 1.
Phương trình chính tắc của Elip có đỉnh
và một tiêu điểm là
là
Elip có đỉnh và một tiêu điểm
.
Ta có .
Vậy phương trình .
Tìm phương trình chính tắc của elip có tiêu cự bằng
và trục lớn bằng
.
Phương trình chính tắc của elip:
Độ dài trục lớn .
Tiêu cự .
Ta có:
Vậy phương trình chính tắc của elip là .