Một vectơ chỉ phương của đường thẳng
là:
Đường thẳng có một vectơ chỉ phương là:
Một vectơ chỉ phương của đường thẳng
là:
Đường thẳng có một vectơ chỉ phương là:
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol
có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là
Cho tam giác
có phương trình các cạnh
lần lượt là
và trực tâm
. Phương trình tổng quát của cạnh
là:
Ta có: nên tọa độ điểm A là nghiệm hệ phương trình:
Ta có
Điểm
Ta có: nên tọa độ điểm B là nghiệm hệ phương trình:
Đường thẳng BC đi qua điểm B nhận làm vecto pháp tuyến có phương trình là:
Khoảng cách nhỏ nhất từ điểm
đến một điểm bất kì thuộc đường thẳng
bằng:
Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương ![]()
Đường thẳng có phương trình tham số có vectơ chỉ phương là
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Nếu thì
có các tiêu điểm là
,
.
Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với đường phân giác của góc phần tư thứ nhất.
Góc phần tư (I) :
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
và
. Chiều cao của tam giác kẻ từ đỉnh
bằng:
Tọa độ tâm
và bán kính
của đường tròn
là:
Cho đường thẳng
và đường tròn
. Tìm điều kiện của tham số a để
tiếp xúc với
?
Đường tròn (C) có tâm và bán kính
Để đường thẳng là tiếp tuyến của đường tròn
thì
Vậy thỏa mãn yêu cầu bài toán.
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Hypebol?
Phương trình Hypebol có dạng
Vậy phương trình cần tìm là .
Phương trình tham số của đường thẳng đi qua hai điểm
là:
Gọi d là đường thẳng qua C và nhận làm vectơ chỉ phương.
Khi đó phương trình tham số của đường thẳng d là: .
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Viết lại phương trình đường tròn như sau:
Cho tọa độ hai điểm
. Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm
?
Gọi phương trình chính tắc của elip là:
Do elip đi qua hai điểm nên ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là:
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn đi qua ba điểm đã cho là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Đường thẳng
đi qua giao điểm của hai đường thẳng
và
đồng thời tạo với đường thẳng
một góc
có phương trình:
Ta có gọi
. Khi đó
Trong mặt phẳng
, cho điểm
và đường thẳng
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Khoảng cách từ điểm P đến đường thẳng (d) là:
.
Tìm tọa độ tâm
của đường tròn đi qua ba điểm
,
,
.
Hãy xác định phương trình chính tắc của parabol
. Biết rằng
cắt đường thẳng
tại hai điểm
và
?
Phương trình chính tắc của (P) có dạng
Ta có đường thẳng d cắt (P) tại hai điểm
Ta có:
Với
Với
Vậy phương trình chính tắc của parabol cần tìm là: .
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
với
. Giả sử
là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?
Góc giữa hai đường thẳng và
xác định bởi công thức: