Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:

     \overrightarrow u  = (0;6) \Rightarrow \overrightarrow n  = (6;0) \Rightarrow \overrightarrow n  = (1;0).

    Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: x-2=0.

  • Câu 2: Nhận biết

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 3: Nhận biết

    Tính khoảng cách từ điểm M(2;4) đường thẳng (\Delta):3x + 4y + 3 = 0?

    Ta có khoảng cách từ điểm M đến đường thẳng (\Delta):3x + 4y + 3 = 0 là:

    d(M;\Delta) = \frac{|3.2 + 4.4 +
3|}{\sqrt{3^{2} + 4^{2}}} = 5

    Vậy khoảng cách cần tìm bằng 5.

  • Câu 4: Thông hiểu

    Elip có một tiêu điểm F( - 2;0) và tích độ dài trục lớn với trục bé bằng 12\sqrt{5}. Phương trình chính tắc của elip là:

    Gọi (E) có dạng \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Theo giả thiết ta có: \left\{
\begin{matrix}
ab = 3\sqrt{5} \\
a^{2} - b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight..

    Vậy (E) cần tìm là \frac{x^{2}}{9} +
\frac{y^{2}}{5} = 1.

  • Câu 5: Nhận biết

    Đường thẳng nào sau đây song song với đường thẳng 2x + 3y - 1 = 0 ?

    Xét đáp án: \left\{ \begin{matrix}d:2x + 3y - 1 = 0 \\d_{A}:2x + 3y + 1 = 0 \\\end{matrix} ight.\  ightarrow \frac{2}{2} =\frac{3}{3}eq \frac{- 1}{- 1} ightarrow d//d_{A}.Chọn đáp án này.

    Để ý rằng một đường thẳng song song với 2x + 3y - 1 = 0 sẽ có dạng 2x+3y+c=0{(c=-1)}. Do đó kiểm tra chỉ thấy có đáp án 2x + 3y + 1 = 0 thỏa mãn, các đáp án còn lại không thỏa mãn.

  • Câu 6: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

  • Câu 7: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:

     Ta có: I(4;-1) ,R=\sqrt{11}.

  • Câu 8: Thông hiểu

    Cho ba đường thẳng \left( d_{1} ight):3x + 2y - 5 = 0, \left( d_{2} ight): - 2x + 3y - 1 =
0\left( d_{3} ight):(m - 1)x
+ (2m - 3)y - 2 = 0 với m là tham số. Xác định giá trị của tham số m để ba đường thẳng \left( d_{1}
ight);\left( d_{2} ight);\left( d_{3} ight) đồng quy?

    Gọi A = d_{1} \cap d_{2}. Khi đó tọa độ điểm A là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
3x + 2y - 5 = 0 \\
- 2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.\  \Rightarrow A(1;1)

    Để ba đường thẳng đồng quy thì A \in
\left( d_{3} ight) hay

    (m - 1).1 + (2m - 3).1 - 2 =
0

    \Leftrightarrow m = 2

    Vậy m = 2 thì ba đường thẳng đã cho đồng quy.

  • Câu 9: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–5y = 0 là:

    (C):x^{2} + y^{2}–5y = 0 ightarrow
I\left( 0;\frac{5}{2} ight),\ R = \sqrt{0 + \frac{25}{4} - 0} =
\frac{5}{2}.

  • Câu 10: Vận dụng

    Trong mặt phẳng Oxy, hãy tìm phương trình chính tắc của elip (E). Biết rằng (E) đi qua M\left( \frac{3}{\sqrt{5}};\frac{4}{\sqrt{5}}
ight). Mặt khác, M nhìn hai tiêu điểm F_{1},\ F_{2} dưới một góc 90 độ.

    Gọi (E):\ \ \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Ta có: (E) đi qua M\left( \frac{3}{\sqrt{5}};\frac{4}{\sqrt{5}}
ight) nên: \frac{9}{5a^{2}} +
\frac{16}{5b^{2}} = 1 \Leftrightarrow \ \ 16a^{2} + 9b^{2} =
5a^{2}b^{2}. (1)

    M nhìn hai tiêu điểm F_{1},\ F_{2} dưới một góc vuông nên: OM = \frac{F_{1}F_{2}}{2} = c.

    \Leftrightarrow \ \ OM^{2} =
c^{2} \Leftrightarrow \ \
\frac{9}{5} + \frac{16}{5} = c^{2} \Leftrightarrow \ \ a^{2} - b^{2} = c^{2} =
5 \Leftrightarrow \ \ a^{2} = 5 +
b^{2} thế vào (1) ta được:

    16\left( 5 + b^{2} ight) + 9b^{2} =
5\left( 5 + b^{2} ight)b^{2} \Leftrightarrow \ \ b^{4} = 16 \Rightarrow \ \ b^{2} = 4 nên a^{2} = 9.

    Vậy: (E):\ \ \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1.

  • Câu 11: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Nếu c^{2} = a^{2} +
b^{2} thì (H) có các tiêu điểm là F_{1}(c;0), F_{2}( - c;0).

  • Câu 12: Thông hiểu

    Gọi \alpha là góc tạo bởi hai đường thẳng (\Delta):x + 3y - 2 = 0(\Delta'):x - 2y + 5 = 0. Khi đó độ lớn của \alpha bằng:

    Ta có:

    \cos\alpha = \frac{\left| 1.1 + 3.( - 2)
ight|}{\sqrt{1^{2} + 3^{2}}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Rightarrow \alpha = 45^{0}

    Vậy góc tạo bởi hai đường thẳng bằng 45^0.

  • Câu 13: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA( -
3;1),B(2;1),C( - 1;5). Phương trình tổng quát của đường trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I( -
2;3)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = ( - 4;4) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{u} = (1;1).

    Phương trình tổng quát của đường thẳng BI là:

    1(x - 2) + 1(y + 1) = 0

    \Leftrightarrow x + y - 1 =
0

  • Câu 14: Vận dụng

    Đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:2x + y - 3 = 0d_{2}:x - 2y + 1 = 0 đồng thời tạo với đường thẳng d_{3}:y - 1 = 0 một góc 45^{0} có phương trình:

    \left\{ \begin{matrix}
d_{1}:2x + y - 3 = 0 \\
d_{2}:x - 2y + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.

    ightarrow d_{1} \cap d_{2} = A(1;1) \in
\Delta.

    Ta có d_{3}:y - 1 = 0 ightarrow
{\overrightarrow{n}}_{3} = (0;1),gọi {\overrightarrow{n}}_{\Delta} = (a;b),\ \ \varphi
= \left( \Delta;d_{3} ight). Khi đó

    \frac{1}{\sqrt{2}} = \cos\varphi =
\frac{|b|}{\sqrt{a^{2} + b^{2}}.\sqrt{0 + 1}} \Leftrightarrow a^{2} +
b^{2} = 2b^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = b ightarrow a = b = 1 ightarrow \Delta:x + y - 2 = 0 \\
a = - b ightarrow a = 1,\ b = - 1 ightarrow \Delta:x - y = 0 \\
\end{matrix} ight.\ .

  • Câu 15: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường tròn (C):x^{2} + y^{2} - 2x - 2my + m^{2} - 24 =
0 có tâm I và đường thẳng \Delta:mx + 4y = 0 (với m là tham số). Biết đường thẳng \Delta cắt đường tròn (C) tại hai điểm A;B phân biệt sao cho diện tích tam giác IAB bằng 12. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Hình vẽ minh họa

    Đường tròn (C) có tâm I(1; m) và bán kính R = 5.

    Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và

    IH = d(I;\Delta) \Leftrightarrow
\frac{|m + 4m|}{\sqrt{m^{2} + 16}} = \frac{|5m|}{\sqrt{m^{2} +
16}}

    AH = \sqrt{IA^{2} - IH^{2}} = \sqrt{25 -
\frac{(5m)^{2}}{m^{2} + 16}} = \frac{20}{\sqrt{m^{2} + 16}}

    Theo bài ra ta có:

    S_{IAB} = 12 \Leftrightarrow 2S_{IAH} =
12

    \Leftrightarrow d(I;\Delta).AH =
12

    \Leftrightarrow 25|m| = 3\left( m^{2} +
16 ight)

    \Leftrightarrow \left\lbrack\begin{matrix}m = \pm 3 \\m = \pm \dfrac{16}{3} \\\end{matrix} ight.

    Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 16: Thông hiểu

    Trong mặt phẳng Oxy, cho Parabol (P): y^{2} =
8x có tiêu điểm F. Tìm trên (P) điểm M cách F một khoảng là 3.

    Giả sử M\left( x_{M}\ ;\ y_{M} ight)
\in (P). Suy ra {y_{M}}^{2} =
8x_{M}. (1)

    Từ phương trình y^{2} = 8x suy ra p = 4 nên F(2\ ;\ 0).

    Ta có: FM = \frac{p}{2} + x_{M}. Suy ra x_{M} = 1. Kết hợp (1) ta có: y_{M} = \pm 2\sqrt{2}.

    Vậy có hai điểm M\left( 1\ ;\ 2\sqrt{2}
ight) hoặc M\left( 1\ ;\  -
2\sqrt{2} ight)thỏa mãn.

  • Câu 17: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?

    Phương trình Elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} - b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1

  • Câu 18: Thông hiểu

    Phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y + 3)^{2} = 5 tại điểm N( - 3;1) là:

    Đường tròn (C) có tâm I(2; -
3)

    Phương trình tiếp tuyến của (C) tại điểm N( - 3;1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) =
0

    \Leftrightarrow x + 2y - 1 =
0

    Vậy phương trình tiếp tuyến của đường tròn tại N( - 3;1) là: x + 2y - 1 = 0

  • Câu 19: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(–1\ ;\ 3)B(3\ ;\ 1).

    \left\{ \begin{matrix}A( - 1;3) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 20: Thông hiểu

    Đường tròn (C) đi qua hai điểm A(1;1), B(5;3) và có tâm I thuộc trục hoành có phương trình là:

    I(a;0) ightarrow IA = IB = R
\Leftrightarrow R^{2} = (a - 1)^{2} + 1^{2} = (a - 5)^{2} +
3^{2}

    ightarrow \left\{ \begin{matrix}
a = 4 \\
I(4;0) \\
R^{2} = 10 \\
\end{matrix} ight..

    Vậy đường tròn cần tìm là: (x - 4)^{2} +
y^{2} = 10.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo