Phương trình tiếp tuyến
của đường tròn
tại điểm
là:
Đường tròn (C) có tâm nên tiếp tuyến tại M có VTPT là
nên có phương trình là:
Phương trình tiếp tuyến
của đường tròn
tại điểm
là:
Đường tròn (C) có tâm nên tiếp tuyến tại M có VTPT là
nên có phương trình là:
Phương trình tổng quát của đường thẳng
đi qua
và song song với đường thẳng
là:
Vậy
Đường thẳng nào sau đây vuông góc với đường thẳng
?
Kí hiệu
(i) Xét đáp án nên chọn đáp án này.
(ii) Tương tự kiểm tra và loại các đáp án còn lại.
Cho đường thẳng
. Đường thẳng nào sau đây vuông góc với đường thẳng
?
Đường thẳng vuông góc với đường thẳng
vì
.
Cho hai đường thẳng
và
. Khi đó hai đường thẳng này:
Ta có:
Trong mặt phẳng với hệ tọa độ
, có tất cả bao nhiêu đường thẳng đi qua điểm
đồng thời tạo với trục hoành một góc ![]()
Cho đường thẳng và một điểm
Khi đó.
(i) Có duy nhất một đường thẳng đi qua song song hoặc trùng hoặc vuông góc với
(ii) Có đúng hai đường thẳng đi qua và tạo với
một góc
Chọn phương án .
Tìm phương trình chính tắc của Hyperbol
mà hình chữ nhật cơ sở có một đỉnh là ![]()
Gọi . Tọa độ đỉnh của hình chữ nhật cơ sở là
,
,
,
.
Hình chữ nhật cơ sở của có một đỉnh là
, suy ra
. Phương trình chính tắc của
là
Cho đường tròn
và đường thẳng
. Tìm giá trị của tham số m để
cắt
?
Đường tròn (C) có tâm I(m; -2) và R = 3
Để cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Cho hai đường tròn
và
. Tìm giá trị tham số m để hai đường tròn tiếp xúc nhau?
Dễ thấy đường tròn (C) có tâm O(0; 0) và bán kính R = 1
Đường tròn (C’) có tâm I(m + 1; -2m) và bán kính
Ta thấy:
điểm O nằm trong đường tròn tâm I suy ra (C) và (C’) chỉ có thể tiếp xúc trong với nhau.
Điều kiện để hai đường tròn tiếp xúc trong là:
Vậy có hai giá trị m thỏa mãn điều kiện là: hoặc
.
VD
1
Cho hypebol (H):
. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:
Ta có:
Ta có: a = 6; b =3
=> Độ dài trục ảo là 6, độ dài trục thực là 12
=> Tỉ số giữa độ dài trục ảo và độ dài trục thực là:
Trong mặt phẳng hệ trục tọa độ
cho các tọa độ các điểm
và
. Xác định tọa độ điểm
sao cho
là trọng tâm tam giác
?
Xét tam giác ABD có G là trọng tâm khi đó ta có:
Vậy tọa độ điểm .
Đường thẳng
cắt elip
tại hai điểm phân biệt
và
. Hãy tính độ dài đoạn thẳng
.
Tọa độ giao điểm của đường thẳng và
là nghiệm của hệ
Vậy tọa độ giao điểm là
Đường tròn
có dạng khai triển là:
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đã cho tâm và bán kính lần lượt là: .
Cho elip
. Diện tích hình chữ nhật cơ sở của
là
Độ dài trục lớn: .
Độ dài trục bé: .
Diện tích hình chữ nhật cơ sở của là:
.
Đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Elip
có độ dài trục bé bằng:
Ta có: .
Độ dài trục bé .
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Khi đó điều kiện bài toán trở thành
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
và
. Chiều cao của tam giác kẻ từ đỉnh
bằng:
Cho đường thẳng
và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .