Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương \overrightarrow{u}=(1;3)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 3t + 2 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;3} ight)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 2t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 2 \hfill \\  y = t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;1} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 3 \hfill \\  y = 2t + 1 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

  • Câu 2: Thông hiểu

    Phương trình của đường thẳng (d) song song với (d’): 6x + 8y – 1 = 0 và cách (d’) một đoạn bằng 2 là:

    (d’) có vectơ pháp tuyến là \overrightarrow {n'}  = \left( {6;8} ight)

    Vì (d) // (d’) nên (d) cũng nhận \overrightarrow {n'}  = \left( {6;8} ight) làm vectơ pháp tuyến.

    Do đó phương trình (d) có dạng: 6x + 8y + c = 0\left( {c e -1} ight)

    Chọn A\left( {\frac{{ - 5}}{2};2} ight) \in \left( {d'} ight)

    (d) // (d’) nên khoảng cách giữa (d) và (d’) chính là d(A, (d)).

    Do đó d(A, (D)) = 2

    ⇔ |c + 1| = 20

    ⇔ c + 1 = 20 hoặc c + 1 = –20

    ⇔ c = 19 (nhận vì 19 ≠ –1) hoặc c = –21 (nhận vì –21 ≠ –1).

    Vậy có hai đường thẳng (d) thỏa mãn yêu cầu bài toán có phương trình là:

    6x + 8y + 19 = 06x + 8y – 21 = 0.

  • Câu 3: Vận dụng

    Đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:2x + y - 3 = 0d_{2}:x - 2y + 1 = 0 đồng thời tạo với đường thẳng d_{3}:y - 1 = 0 một góc 45^{0} có phương trình:

    \left\{ \begin{matrix}
d_{1}:2x + y - 3 = 0 \\
d_{2}:x - 2y + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.

    ightarrow d_{1} \cap d_{2} = A(1;1) \in
\Delta.

    Ta có d_{3}:y - 1 = 0 ightarrow
{\overrightarrow{n}}_{3} = (0;1),gọi {\overrightarrow{n}}_{\Delta} = (a;b),\ \ \varphi
= \left( \Delta;d_{3} ight). Khi đó

    \frac{1}{\sqrt{2}} = \cos\varphi =
\frac{|b|}{\sqrt{a^{2} + b^{2}}.\sqrt{0 + 1}} \Leftrightarrow a^{2} +
b^{2} = 2b^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = b ightarrow a = b = 1 ightarrow \Delta:x + y - 2 = 0 \\
a = - b ightarrow a = 1,\ b = - 1 ightarrow \Delta:x - y = 0 \\
\end{matrix} ight.\ .

  • Câu 4: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A( - 1;1),B(3;1),C(1;3). Phương trình đường tròn đi qua ba điểm đã cho là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A( -
1;1),B(3;1),C(1;3) nên ta có hệ phương trình:

    \left\{ \begin{matrix}
1 + 1 + 2a - 2b + c = 0 \\
9 + 1 - 6a - 2b + c = 0 \\
1 + 9 - 2a - 6b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c = - 2 \\
- 6a - 2b + c = - 10 \\
- 2a - 6b + c = - 10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = - 2 \\
\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):x^{2} + y^{2} - 2x - 2y - 2 = 0.

  • Câu 5: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):x + y - 1 = 0(\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    (\Delta):x + y - 1 = 0 có vectơ pháp tuyến là \overrightarrow{n_{\Delta}} =
(1;1)

    (\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương là \overrightarrow{u_{\Delta'}} = (2; -
1) nên (\Delta') có vectơ pháp tuyến là \overrightarrow{n_{\Delta'}} =
(1;2)

    \frac{1}{1} eq \frac{1}{2} nên (\Delta) cắt (\Delta').

  • Câu 6: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:x+\sqrt{3}y+6=0d_2: x+1 = 0.

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {1.1 + \sqrt 3 .0} ight|}}{{\sqrt {{1^2} + {{\sqrt 3 }^2}} .\sqrt {{1^2} + {0^2}} }} = \frac 12. Suy ra góc giữa hai đường thẳng bằng 60^{\circ}.

  • Câu 7: Thông hiểu

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

  • Câu 8: Vận dụng

    Đường tròn (C) có tâm (1) thuộc đường thẳng \Delta:x = 5 và tiếp xúc với hai đường thẳng d_{1}:3x–y + 3 = 0,d_{2}:x–3y + 9 =
0 có phương trình là:

    Ta có:

    \begin{matrix}
I \in \Delta ightarrow I(5;a) ightarrow R = d\left\lbrack I;d_{1}
ightbrack = d\left\lbrack I;d_{2} ightbrack = \frac{|18 -
a|}{\sqrt{10}} = \frac{|14 - 3a|}{\sqrt{10}} \\
\Leftrightarrow \left\lbrack \begin{matrix}
a = 8 ightarrow I(5;8),\ R = \sqrt{10} \\
a = - 2 ightarrow I(5; - 2),\ R = 2\sqrt{10} \\
\end{matrix} ight.\ . \\
\end{matrix}

    Vậy phương trình các đường tròn:

    (x - 5)^{2} + (y - 8)^{2} = 10 hoặc (x - 5)^{2} + (y + 2)^{2} =
40.

  • Câu 9: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):3x + y - 6 = 0 và đường thẳng \Delta:\left\{ \begin{matrix}
x = - t \\
y = 5 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Xác định số đo góc giữa hai đường thẳng đã cho?

    Vectơ pháp tuyến của đường thẳng d và \Delta lần lượt là \overrightarrow{n_{d}} =
(3;1);\overrightarrow{n_{\Delta}} = (2; - 1).

    Khi đó góc giữa hai đường thẳng là:

    \cos(d;\Delta) = \frac{\left|
\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}} ight|}{\left|
\overrightarrow{n_{d}} ight|.\left| \overrightarrow{n_{\Delta}}
ight|} = \frac{|3.2 - 1.1|}{\sqrt{3^{2} + 1^{2}}.\sqrt{2^{2} + ( -
1)^{2}}} = \frac{\sqrt{2}}{2}

    \Rightarrow (d;\Delta) =
45^{0}

    Vậy góc giữa hai đường thẳng là 45^{0}.

  • Câu 10: Nhận biết

    Điểm nào sau đây thuộc đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight. ?

    M(2;–1)\overset{x = 2,\ y = - 1
ightarrow d}{ightarrow}\left\{ \begin{matrix}
2 = 1 + 2t \\
- 1 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
t = 4 \\
\end{matrix} ight.\ \ \ (VN) ightarrow M\boxed{\in}d.

    N(–7;0)\overset{x = - 7,\ y = 0
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 7 = 1 + 2t \\
0 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = - 4 \\
t = 3 \\
\end{matrix} ight.\ \ (VN) ightarrow N\boxed{\in}d.

    P(3;5)\overset{x = 3,\ y = 5 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
3 = 1 + 2t \\
5 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 1 \\
t = - 2 \\
\end{matrix} ight.\ \ (VN) ightarrow P\boxed{\in}d.

    Q(3;\ 2)\overset{x = 3,\ y = 2 \in
d}{ightarrow}\left\{ \begin{matrix}
3 = 1 + 2t \\
2 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow Q \in
d.Chọn Q(3;\ 2).

  • Câu 11: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, có tất cả bao nhiêu đường thẳng đi qua điểm M(2\ ;\ 0) đồng thời tạo với trục hoành một góc 45{^\circ}?

    Cho đường thẳng d và một điểm M. Khi đó.

    (i) Có duy nhất một đường thẳng đi qua M song song hoặc trùng hoặc vuông góc với d.

    (ii) Có đúng hai đường thẳng đi qua M và tạo với d một góc 0^{\circ} < \alpha <
90^{\circ}.

    Chọn phương án 2.

  • Câu 12: Vận dụng

    Cho parabol (P) có đường chuẩn là đường thẳng ∆: x + 5 = 0. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:

    Phương trình đường chuẩn ∆: x + 5 = 0

    => \frac{p}{2} = 5

    => p = 10

    Từ đó ta thu được phương trình parabol (P): y^2 = 20x.

    Tiêu điểm F của (P) là F(5; 0).

    Giả sử điểm M(x_M; y_M) là điểm thuộc (P).

    => y^2_M=20x_M

    Với F(5; 0)M(x_M; y_M) ta có:

    \begin{matrix}  \overrightarrow {FM}  = \left( {{x_M} - 5;{y_M}} ight) \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{{\left( {{x_M} - 5} ight)}^2} + {y_M}^2}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{x_M}^2 - 10{x_M} + 25 + 20{x_M}}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{x_M}^2 + 10{x_M} + 25}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{{\left( {{x_M} + 5} ight)}^2}}  = {x_M} + 5 \hfill \\  FM = 6 \Rightarrow {x_M} + 5 = 6 \Rightarrow {x_M} = 1 \hfill \\ \end{matrix}

    Với {x_M} = 1 \Rightarrow {y_M}^2 = 20.1 = 20

    Vậy tọa độ điểm M là: M(1;-2\sqrt{5}),M(1;-2\sqrt{5})

  • Câu 13: Nhận biết

    Cho Parabol (P) có phương trình y^{2} = 4x. Tìm đường chuẩn của (P).

    Từ phương trình của (P), ta có: 2p = 4 nên p = 2.

    Suy ra (P) có tiêu điểm là F(1\ ;\ 0) và đường chuẩn là x + 1 = 0.

  • Câu 14: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 15: Nhận biết

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 16: Thông hiểu

    Trong hệ trục tọa độ Oxy cho hai điểm A(3; - 1),B( - 6;2). Chọn đáp án không phải là phương trình tham số của đường thẳng AB.

    Đường thẳng AB có một vectơ chỉ phương là \overrightarrow{AB} = ( - 9;3) suy ra vectơ chỉ phương \overrightarrow{u} = ( -
3;1)

    Phương trình \left\{ \begin{matrix}
x = 3 + 3t \\
y = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) không thỏa mãn vì có vectơ chỉ phương \overrightarrow{v} = (3;1) không cùng phương với \overrightarrow{u} = ( -
3;1).

  • Câu 17: Nhận biết

    Một đường thẳng có bao nhiêu vectơ pháp tuyến?

     Một đường thẳng có vô số vectơ pháp tuyến.

  • Câu 18: Thông hiểu

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 19: Thông hiểu

    Đường tròn (C) đi qua hai điểm A(1;1), B(5;3) và có tâm I thuộc trục hoành có phương trình là:

    I(a;0) ightarrow IA = IB = R
\Leftrightarrow R^{2} = (a - 1)^{2} + 1^{2} = (a - 5)^{2} +
3^{2}

    ightarrow \left\{ \begin{matrix}
a = 4 \\
I(4;0) \\
R^{2} = 10 \\
\end{matrix} ight..

    Vậy đường tròn cần tìm là: (x - 4)^{2} +
y^{2} = 10.

  • Câu 20: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–5y = 0 là:

    (C):x^{2} + y^{2}–5y = 0 ightarrow
I\left( 0;\frac{5}{2} ight),\ R = \sqrt{0 + \frac{25}{4} - 0} =
\frac{5}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo