Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Tìm
để hai đường thẳng
và
cắt nhau.
Đường tròn
có tâm
và tiếp xúc với trục
có phương trình là:
Với giá trị nào của tham số
thì đường thẳng
vuông góc với đường thẳng
?
Ta có tọa độ vectơ pháp tuyến của là:
Tọa độ vectơ pháp tuyến của là:
Để thì
Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.
Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng cắt nhau.
Viết phương trình tiếp tuyến
của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Tìm giá trị tham số m để đường thẳng
song song với đường thẳng
?
Để hai đường thẳng đã cho song song với nhau thì
Vậy m = -1 thì hai đường thẳng song song với nhau.
Tìm m để hai đường thẳng
và
vuông góc với nhau:
và ![]()
Ta có: .
Để hai đường thẳng vuông góc thì: . Phương tình này vô nghiệm nên không tồn tại
Trong mặt phẳng với hệ tọa độ
, cho hai đường thẳng
và
. Phương trình đường phân giác góc nhọn tạo bởi hai đường thẳng
và
là:
Các đường phân giác của các góc tạo bởi và
là:
Gọi
Gọi là hình chiếu của
lên
Ta có: suy ra
Suy ra là đường phân giác góc tù, suy ra đường phân giác góc nhọn là
.
Cho hai điểm A(–2; 3) và B(4; –1). Phương trình đường trung trực của đoạn thẳng AB là:
Gọi d là đường trung trực của đoạn thẳng AB.
Gọi M là trung điểm của AB với A(–2; 3) và B(4; –1).
Ta suy ra
Khi đó ta có M(1; 1).
Với A(–2; 3) và B(4; –1) ta có:
Đường thẳng d là đường trung trực của AB nên đường thẳng d đi qua trung điểm M(1; 1) của AB và nhận làm vectơ pháp tuyến.
Suy ra phương trình tổng quát của d là:
Đường thẳng nào dưới đây là đường chuẩn của Hypebol
?
Ta có : .
Tâm sai . Đường chuẩn :
và
Tọa độ tâm
và bán kính
của đường tròn
là:
Trong hệ trục
cho Elip
có các tiêu điểm
và một điểm
nằm trên
. Biết rằng chu vi của tam giác
bằng 18. Xác định tâm sai e của ![]()
Ta có .
Tâm sai .
Trong hệ trục tọa độ Oxy, cho đường thẳng
. Một vectơ chỉ phương của
là:
Một vectơ chỉ phương của là
hay
.
Cho parabol
. Giao điểm của
với trục hoành tại hai điểm
. Khẳng định nào sau đây đúng?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Áp dụng định lí Vi – et ta có:
Cho Elip
đi qua điểm
và có tâm sai
. Tiêu cự của
là
Gọi phương trình chính tắc của là
với
.
Vì đi qua điểm
nên
.
Lại có .
Tọa độ tâm
và bán kính
của đường tròn
là:
Trong mặt phẳng với hệ tọa độ
, cho elip
(với
). Biết
là hai tiêu điểm. Cho điểm M di động trên
. Chọn khẳng định đúng?
Ta có:
.
Vì nên
.