Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Có bao nhiêu số hạng trong khai triển nhị thức (2x - 3)^{2018}?

    Trong khai triển nhị thức (a +
b)^{n} thì số các số hạng là n +
1 nên trong khai triển (2x -
3)^{2018}2019 số hạng.

  • Câu 2: Nhận biết

    Tính số cách sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.

    Sắp xếp 4 nữ sinh vào 4 ghế. 4! cách.

    Xem 4 nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với 6 nam sinh. có 7! cách

    vậy có 7! \times 4! cách sắp xếp.

  • Câu 3: Thông hiểu

    Cho hai đường thẳng (d) gồm 5 điểm phân biệt và (d') gồm 7 điểm phân biệt. Biết rằng (d)//(d'). Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?

    Một tam giác được hình thành bởi ba điểm không thẳng hàng.

    TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)

    Số tam giác được tạo thành là: C_{5}^{1}.C_{7}^{2} (tam giác)

    TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)

    Số tam giác được tạo thành là: C_{5}^{2}.C_{7}^{1} (tam giác)

    Vậy số tam giác được tạo thành là C_{5}^{1}.C_{7}^{2} + C_{5}^{2}.C_{7}^{1} =
175.

  • Câu 4: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

  • Câu 5: Nhận biết

    Có bao nhiêu số hạng trong khai triển (6x + 4)^{4}?

    Trong khai triển nhị thức (6x +
4)^{4}n = 4 nên có 5 số hạng.

  • Câu 6: Vận dụng

    Cho khai triển (1 - 2x)^{n} = a_{0} + a_{1}x + a_{2}x^{2} + ... +
a_{n}x^{n}. Tìm hệ số a_{5} biết rằng a_{0} + a_{1} + a_{2} = 71.

    Ta có (1 - 2x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}( - 2x)^{k}}. Vậy a_{0} = 1; a_{1} = - 2C_{n}^{1}; a_{2} = 4C_{n}^{2}.

    Theo bài ra a_{0} + a_{1} + a_{2} =
71 nên ta có:

    1 - 2C_{n}^{1} + 4C_{n}^{2} = 71
\Leftrightarrow 1 - 2\frac{n!}{1!(n - 1)!} + 4\frac{n!}{2!(n - 2)!} = 71
\Leftrightarrow 1 - 2n + 2n(n - 1) = 71 \Leftrightarrow 2n^{2} - 4n - 70
= 0 \Leftrightarrow n^{2} - 2n - 35 = 0 \Leftrightarrow n = 7 (thỏa mãn) hoặc n = - 5 (loại).

    Từ đó ta có a_{5} = C_{7}^{5}( - 2)^{5} =
- 672.

  • Câu 7: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn A;C ngồi ở hai đầu ghế là:

    Vì A; E ngồi ở hai đầu ghế nên ta có 3!.2! = 12 cách sắp xếp A;B;C;D;E

  • Câu 8: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 9: Thông hiểu

    Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số được xếp tùy ý?

    Lập một số có 9 chữ số thỏa mãn yêu cầu, thực chất là việc xếp các số 2, 3, 4, 5 vào 4 vị trí tùy ý trong 9 vị trí (5 vị trí còn lại là dành cho chữ số 1 lặp lại 5 lần)

    ⇒ Vậy có tất cả: A_{9}^{4} =
3024 (số)

  • Câu 10: Nhận biết

    Một lớp học có 15 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là

    Số cách chọn một bạn nam là 15 cách.

    Số cách chọn một bạn nữ là 10 cách.

    Theo quy tắc nhân ta có số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là 15.10 = 150 cách.

  • Câu 11: Nhận biết

    Có bao nhiêu cách chọn một học sinh từ nhóm gồm 15 học sinh nam và 20 học sinh nữ?

    Số cách chọn một học sinh trong nhóm học sinh là: 15 + 20 = 35 cách.

  • Câu 12: Thông hiểu

    Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:

    Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.

    Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.

    Vì vậy số hoán vị 6 đối tượng là 6!.

    Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.

    Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!

    Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.

  • Câu 13: Nhận biết

    Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?

    Số cách chọn một quyển sách là 8 cách.

    Số cách chọn một cái bút là 10 cách. 

    => Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách. 

  • Câu 14: Thông hiểu

    Cho đa giác n cạnh. Tìm n để đa giác có số đường chéo gấp đôi số cạnh.

    Đa giác n cạnh có n đỉnh.

    Mỗi đỉnh nối với n - 3 đỉnh khác để tạo ra đường chéo

    Do đó n đỉnh sẽ có n(n -
3)đường

    Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là: \frac{n(n - 3)}{2}

    Theo bài ra ta có: \frac{n(n - 3)}{2} =
2n \Leftrightarrow n^{2} - 7n = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 0(ktm) \\
n = 7(tm) \\
\end{matrix} ight.

    Vậy n = 7.

  • Câu 15: Nhận biết

    Có bao nhiêu cách xếp 6 người thành một hàng dọc

     Xếp 6 người thành một hàng dọc có: 6! = 720 cách.

  • Câu 16: Thông hiểu

    Tính giá trị biểu thức: A = C_{2016}^{1} + C_{2016}^{2} + C_{2016}^{3} +
... + C_{2016}^{2016}.

    Xét khai triển (x + 1)^{2016} =
C_{2016}^{0}x^{2016} + C_{2016}^{1}.x^{2015} + ... +
C_{2016}^{2016}

    Thay x = 1 ta được:

    (1 + 1)^{2016} = C_{2016}^{0}.1^{2016} +
C_{2016}^{1}.1^{2015} + ... + C_{2016}^{2016}

    = C_{2016}^{0} + C_{2016}^{1} + ... +
C_{2016}^{2016} = 1 + A

    \Leftrightarrow 1 + A =
2^{2016}

    \Leftrightarrow A = 2^{2016} -
1

  • Câu 17: Thông hiểu

    Tính giá trị biểu thức S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    Áp dụng công thức (a + b)^{n} cho a = 2,b = 1,n = 5 ta có:

    S = 2^{5}C_{5}^{0} + 2^{4}C_{5}^{1} +
2^{3}C_{5}^{2} + 2.C_{5}^{4} + C_{5}^{5}

    S = (2 + 1)^{5} = 243

  • Câu 18: Thông hiểu

    Có nhiều nhất bao nhiêu biển đăng ký xe máy nếu mỗi biển chứa một dãy gồm một chữ cái, tiếp đến một chữ số khác 0 và cuối cùng là 5 chữ số.

    Đáp án: 23400000

    Đáp án là:

    Có nhiều nhất bao nhiêu biển đăng ký xe máy nếu mỗi biển chứa một dãy gồm một chữ cái, tiếp đến một chữ số khác 0 và cuối cùng là 5 chữ số.

    Đáp án: 23400000

    Bước 1: Chọn 1 chữ cái trong 26 chữ cái có 26 cách.

    Bước 2 chọn 1 chữ số khác 0 từ 9 chữ số.

    ⇒ Cuối cùng 5 chữ số còn lại mỗi số có 10 cách chọn.

    ⇒ Số các biển số xe thỏa mãn là: 26.9.10.10.10.10.10 = 23400000 biển.

  • Câu 19: Vận dụng

    Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.

    Vì chữ số đứng đầu chẵn nên a_{1}4 cách chọn, chữ số đứng cuối lẻ nên a_{8} có 4 cách chọn. Các số còn lại có 6.5.4.3.2.1 cách chọn

    Vậy có 4^{2}.6.5.4.3.2.1 = 11520 số thỏa yêu cầu bài toán.

  • Câu 20: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo