Viết khai triển theo công thức nhị thức Niu-tơn .
Ta có:
Hay .
Viết khai triển theo công thức nhị thức Niu-tơn .
Ta có:
Hay .
Cho tập hợp . Có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau từ các chữ số thuộc tập hợp
?
Gọi số tự nhiên có ba chữ số là:
TH1: c = 0
Chữ số a có 6 cách chọn.
Với mỗi cách chọn a có 5 cách chọn chữ số b
=> Số các số tạo thành là: 1 . 5 . 6 = 30 (số)
TH2: => Chữ số c có 3 cách chọn.
Chữ số a có 5 cách chọn, với mỗi cách chọn a ta có 5 cách chọn b.
=> Số các số tạo thành là: 3 . 5 . 5 = 75 (số)
Vậy có tất cả 30 + 75 = 105 (số) thỏa mãn yêu cầu đề bài.
: Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn?
Có 4 bộ sách được sắp 4 vị trí có 4! cách
Sắp xếp 3 quyển sách Toán có 3! cách
Sắp xếp 2 sách Hóa có 2! cách
Sắp xếp 4 quyển sách Lý có 4! cách
Sắp xếp 5 quyển sách Sinh có 5! cách
Vậy số cách sắp xếp số sách trên kệ theo từng môn là: cách.
Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?
Chọn 4 Toán, 2 Văn, 2 Lí có cách.
Chọn 4 Toán, 1 Văn, 3 Lí có cách.
Chọn 5 Toán, 2 Văn, 1 Lí có cách.
Chọn 5 Toán, 1 Văn, 2 Lí có cách.
Chọn 6 Toán, 1 Văn, 1 Lí có cách.
Tổng lại ta được 181440 cách thỏa mãn.
Khai triển biểu thức ta được:
Ta có:
Từ tập hợp các chữ số có thể lập được bao nhiêu số lẻ có bốn chữ số khác nhau?
Gọi số tự nhiên có bốn chữ số cần tìm có dạng
Ta có: là số lẻ nên
là số lẻ. => Số cách chọn d có 3 cách.
Tiếp theo chọn a có 5 cách chọn
Sau đó chọn b có 4 cách chọn
Cuối cùng chọn c có 3 cách chọn
Vậy có thể lập được (số) thỏa mãn yêu cầu đề bài.
Một người vào một cửa hàng ăn, người đó chọn thực đơn 1 món ăn trong 5 món khác nhau, 1 loại quả tráng miệng trong 5 loại quả tráng miệng khác nhau, 1 loại đồ uống trong 3 loại đồ uống khác nhau. Có bao nhiêu cách chọn một thực đơn?
Người đó chọn 1 món ăn trong 5 món khác nhau có 5 cách.
Người đó chọn 1 loại quả tráng miệng trong 5 loại quả tráng miệng khác nhau có 5 cách.
Người đó chọn 1 loại đồ uống trong 3 loại đồ uống khác nhau có 3 cách.
Áp dụng quy tắc nhân ta có 5.5.3 = 75cách.
Tìm số hạng chứa trong khai triển
biết
.
Ta có:
Khai triển biểu thức như sau:
Số hạng chứa nghĩa là:
=> Số hạng cần tìm là
Có học sinh và
thầy giáo được xếp thành hàng ngang. Đếm số cách xếp sao cho hai thầy giáo không đứng cạnh nhau?
Xếp 8 người thành hàng ngang có cách.
Xếp 8 người thành hàng ngang sao cho 2 thầy giáo đứng cạnh nhau có cách.
Vậy số cách xếp cần tìm là. cách.
Một dạ tiệc có 10 nam và 6 nữ giỏi khiêu vũ. Người ta chọn 3 nam và 3 nữ để ghép thành 3 cặp. Hỏi có bao nhêu cách chọn?
Chọn 3 nam trong 10 nam có cách.
Chọn 3 nữ trong 6 nữ có cách.
Ghép 3 nam và 3 nữ để thành 3 cặp có 3! cách.
Theo quy tắc nhân có: cách chọn.
Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách. Khi đó công việc có thể thực hiện bằng:
Khi đó công việc có thể được thực hiện bằng (cách).
Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?
Đối với bài toán ta xét 2 trường hợp.
+) Đầu hàng và cuối hàng đều là gói bim bim. Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là. (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau). Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là.
+) Đầu hàng và cuối hàng đều là cốc mì ăn liền. Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là. . Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là.
Số cách xếp tất cả là.
.
Cho biểu thức , khi khai triển nhị thức đã cho ta được bao nhiêu số hạng?
Trong khai triển nhị thức Newton có
số hạng.
Tìm số hạng chứa trong khai triển
. Cho biết
là số nguyên dương thỏa mãn hệ thức
.
Từ giả thiết ta suy ra .
Mặt khác: nên ta có:
Suy ra: .
Số hạng tổng quát trong khai triển là:
.
Hệ số của là
với
thỏa mãn:
.
Vậy hệ số của là
.
Cho chữ số
số các số tự nhiên chẵn có
chữ số lập thành từ
chữ số đó:
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.
Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp và nhỏ hơn
?
Gọi số tự nhiên có bốn chữ số
Do và
nên
TH1:
Chọn ba số trong dãy xếp vào ba vị trí
ta có:
cách.
=> Trong trường hợp này có số được tạo thành.
TH2:
=> Trong trường hợp này có số được tạo thành.
Vậy có tất cả 210 + 5 = 215 số được tạo thành thỏa mãn yêu cầu đề bài.
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Tổng hệ số của và
trong khai triển
là:
Ta có: .
Tổng hệ số của và
bằng
.
Cho tập hợp có
phần tử. Số tập con gồm hai phần từ của
là:
Mỗi cách lấy ra phần tử trong
phần tử của
để tạo thành tập con gồm
phần tử là một tổ hợp chập
của
phần tử
Số tập con của
gồm
phần tử là
.
Một người vào cửa hàng ăn, người đó chọn thực đơn. Trong đó gồm món ăn trong
món ăn,
loại quả tráng miệng trong
loại quả tráng miệng và
loại nước uống trong
loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?
Chọn một món ăn có 5 cách.
Chọn một loại quả tráng miệng có 4 cách.
Chọn một loại nước uống có 3 cách.
Áp dụng quy tắc nhân, có 5.4.3 = 60 cách chọn thực đơn.