Có bao nhiêu số hạng trong khai triển nhị thức
?
Trong khai triển nhị thức thì số các số hạng là
nên trong khai triển
có
số hạng.
Có bao nhiêu số hạng trong khai triển nhị thức
?
Trong khai triển nhị thức thì số các số hạng là
nên trong khai triển
có
số hạng.
Tính số cách sắp xếp
nam sinh và
nữ sinh vào một dãy ghế hàng ngang có
chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.
Sắp xếp nữ sinh vào
ghế.
cách.
Xem nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với
nam sinh. có
cách
vậy có cách sắp xếp.
Cho hai đường thẳng
gồm
điểm phân biệt và
gồm
điểm phân biệt. Biết rằng
. Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?
Một tam giác được hình thành bởi ba điểm không thẳng hàng.
TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
Vậy số tam giác được tạo thành là .
Cho tập
. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?
Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ
TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có:
TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có:
TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có:
Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: (số).
Có bao nhiêu số hạng trong khai triển
?
Trong khai triển nhị thức có
nên có 5 số hạng.
Cho khai triển
. Tìm hệ số
biết rằng ![]()
Ta có . Vậy
;
;
.
Theo bài ra nên ta có:
(thỏa mãn) hoặc
(loại).
Từ đó ta có .
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi ở hai đầu ghế là:
Vì A; E ngồi ở hai đầu ghế nên ta có 3!.2! = 12 cách sắp xếp
Cho tập
. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?
Gọi số cần tìm là số dạng . Vì
chia hết cho 3 suy ra
.
Khi đó bộ .
Với bộ suy ra có
số cần tìm.
Tương tự với các bộ số còn lại.
Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số được xếp tùy ý?
Lập một số có 9 chữ số thỏa mãn yêu cầu, thực chất là việc xếp các số 2, 3, 4, 5 vào 4 vị trí tùy ý trong 9 vị trí (5 vị trí còn lại là dành cho chữ số 1 lặp lại 5 lần)
⇒ Vậy có tất cả: (số)
Một lớp học có 15 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là
Số cách chọn một bạn nam là 15 cách.
Số cách chọn một bạn nữ là 10 cách.
Theo quy tắc nhân ta có số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là 15.10 = 150 cách.
Có bao nhiêu cách chọn một học sinh từ nhóm gồm 15 học sinh nam và 20 học sinh nữ?
Số cách chọn một học sinh trong nhóm học sinh là: 15 + 20 = 35 cách.
Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:
Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.
Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.
Vì vậy số hoán vị 6 đối tượng là 6!.
Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.
Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!
Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.
Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?
Số cách chọn một quyển sách là 8 cách.
Số cách chọn một cái bút là 10 cách.
=> Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách.
Cho đa giác n cạnh. Tìm n để đa giác có số đường chéo gấp đôi số cạnh.
Đa giác n cạnh có n đỉnh.
Mỗi đỉnh nối với đỉnh khác để tạo ra đường chéo
Do đó n đỉnh sẽ có đường
Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là:
Theo bài ra ta có:
Vậy .
Có bao nhiêu cách xếp 6 người thành một hàng dọc
Xếp 6 người thành một hàng dọc có: 6! = 720 cách.
Tính giá trị biểu thức:
.
Xét khai triển
Thay ta được:
Tính giá trị biểu thức ![]()
Áp dụng công thức cho
ta có:
Có nhiều nhất bao nhiêu biển đăng ký xe máy nếu mỗi biển chứa một dãy gồm một chữ cái, tiếp đến một chữ số khác 0 và cuối cùng là 5 chữ số.
Đáp án: 23400000
Có nhiều nhất bao nhiêu biển đăng ký xe máy nếu mỗi biển chứa một dãy gồm một chữ cái, tiếp đến một chữ số khác 0 và cuối cùng là 5 chữ số.
Đáp án: 23400000
Bước 1: Chọn 1 chữ cái trong 26 chữ cái có 26 cách.
Bước 2 chọn 1 chữ số khác 0 từ 9 chữ số.
⇒ Cuối cùng 5 chữ số còn lại mỗi số có 10 cách chọn.
⇒ Số các biển số xe thỏa mãn là: 26.9.10.10.10.10.10 = 23400000 biển.
Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.
Vì chữ số đứng đầu chẵn nên có
cách chọn, chữ số đứng cuối lẻ nên
có 4 cách chọn. Các số còn lại có
cách chọn
Vậy có số thỏa yêu cầu bài toán.
Viết khai triển theo công thức nhị thức Niu-tơn
.
Ta có:
Hay .