Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xác định số hạng không chứa x trong khai triển nhị thức Newton \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0). Biết rằng C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} + ... +
3^{n}.C_{n}^{n} = 256.

    Ta có:

    C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} +
... + 3^{n}.C_{n}^{n} = 256

    \Leftrightarrow (1 + 3)^{n} = 256
\Leftrightarrow 4^{n} = 256 \Leftrightarrow n = 4

    Xét khai triển \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0)

    Số hạng tổng quát C_{4}^{k}.\left( x^{2}
ight)^{4 - k}.\left( \frac{1}{x^{2}} ight)^{k} = C_{4}^{k}.x^{8 -
4k}

    Số hạng không chứa x ứng với 8 - 4k = 0
\Leftrightarrow k = 2

    Suy ra số hạng không chứa x là C_{4}^{2}
= 6.

  • Câu 2: Nhận biết

    Trong khai triển nhị thức Newton (3x - 2)^{5}, hệ số của số hạng chứa x^{3} bằng:

    Hệ số của số hạng chứa x^{3} trong khai triển (3x - 2)^{5} là: C_{5}^{3}.3^{3}.( - 2)^{2} =
1080.

  • Câu 3: Vận dụng

    Tìm n thuộc tập hợp số tự nhiên, biết rằng 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n (C_{n}^{k} là số tổ hợp chập k của n phần tử).

    Trước hết ta chứng minh công thức \frac{k}{n}C_{n}^{k} = C_{n - 1}^{k - 1} với 1 \leq k \leq nn \geq 2.

    Thật vậy, \frac{k}{n}C_{n}^{k} =
\frac{k}{n}.\frac{n!}{k!(n - k)!} = \frac{(n - 1)!}{(k - 1)!(n - k)!} =
C_{n - 1}^{k - 1}.(đpcm)

    Áp dụng công thức trên ta có

    1.C_{n}^{1} + 2.C_{n}^{2} + 3.C_{n}^{3}
+ ... + n.C_{n}^{n} = n\left( \frac{1}{n}.C_{n}^{1} +
\frac{2}{n}.C_{n}^{2} + \frac{3}{n}.C_{n}^{3} + ... +
\frac{n}{n}.C_{n}^{n} ight)

    = n\left( C_{n - 1}^{0} + C_{n - 1}^{1}
+ C_{n - 1}^{2} + ... + C_{n - 1}^{n - 1} ight) = n2^{n -
1}

    Theo đề 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n \Leftrightarrow n2^{n - 1} = 256n
\Leftrightarrow 2^{n - 1} = 256 \Leftrightarrow n = 9..

  • Câu 4: Thông hiểu

    Tính tổng S =
C_{5}^{0} + C_{5}^{1} + C_{5}^{2} + C_{5}^{3} + C_{5}^{4} +
C_{5}^{5}?

    Xét khai triển (1 + x)^{5} =
C_{5}^{0}.x^{5} + C_{5}^{1}.x^{4} + C_{5}^{2}.x^{3} + C_{5}^{3}.x^{2} +
C_{5}^{4}.x + C_{5}^{5}

    Chọn x = 1 ta được:

    (1 + 1)^{5} = C_{5}^{0}.1^{5} +
C_{5}^{1}.1^{4} + C_{5}^{2}.1^{3} + C_{5}^{3}.1^{2} + C_{5}^{4}.1 +
C_{5}^{5}

    = C_{5}^{0} + C_{5}^{1} + C_{5}^{2} +
C_{5}^{3} + C_{5}^{4} + C_{5}^{5} = S

    \Rightarrow S = 2^{5}

  • Câu 5: Thông hiểu

    Có bao nhiêu giá trị của n thỏa mãn phương trình \frac{10P_{n - 1}}{P_{n + 1}} - 4 =
\frac{2}{n + 1}?

    Điều kiện n\mathbb{\in N};n \geq
1

    Ta có:

    \frac{10P_{n - 1}}{P_{n + 1}} - 4 =
\frac{2}{n + 1}

    \Leftrightarrow \frac{10(n - 1)(n -
2)...2.1}{(n + 1)n(n - 1)(n - 2)...2.1} - 4 = \frac{2}{n +
1}

    \Leftrightarrow \frac{10}{(n + 1).n} - 4
= \frac{2}{n + 1}

    \Leftrightarrow 10 - 4(n + 1).n - 2n =
0

    \Leftrightarrow - 4n^{2} - 6n + 10 = 0\Leftrightarrow \left\lbrack \begin{matrix}n = 1(tm) \ = - \dfrac{5}{2}(ktm) \\\end{matrix} ight.

    Vậy phương trình chỉ có một giá trị của n thỏa mãn điều kiện bài toán.

  • Câu 6: Nhận biết

    Quân đến nhà Hoàng để cùng Hoàng đến nhà An. Từ nhà Quân đến nhà Hoàng có 4 con đường đi, từ nhà Hoàng đến nhà An có 6 con đường đi. Hỏi Quân có bao nhiêu cách chọn con đường đi từ nhà đến nhà An?

    Giai đoạn 1: Quân đi từ nhà đến nhà Hoàng có 4 cách.

    Giai đoạn 2: Quân đi từ nhà Bình đến nhà An có 6 cách.

    Vậy số cách Quân lựa chọn con đường đi từ nhà đến nhà An là: 6.4 = 24 cách

  • Câu 7: Nhận biết

    3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau?

    Số cách xếp 3 viên bi đen khác nhau thành một dãy bằng. 3!.

    Số cách xếp 4 viên bi đỏ khác nhau thành một dãy bằng. 4!.

    Số cách xếp 5 viên bi đen khác nhau thành một dãy bằng. 5!.

    Số cách xếp 3 nhóm bi thành một dãy bằng. 3!.

    Vậy số cách xếp thỏa yêu cầu đề bài bằng 3!.4!.5!.3! = 103680 cách.

  • Câu 8: Vận dụng

    Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.

    Vì chữ số đứng đầu chẵn nên a_{1}4 cách chọn, chữ số đứng cuối lẻ nên a_{8} có 4 cách chọn. Các số còn lại có 6.5.4.3.2.1 cách chọn

    Vậy có 4^{2}.6.5.4.3.2.1 = 11520 số thỏa yêu cầu bài toán.

  • Câu 9: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 4 chữ số đôi một khác nhau và bắt đầu bằng 56 hoặc 65.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}} là số thỏa yêu cầu bài toán.

    Chọn \overline{a_{1}a_{2}} \in \left\{
56;65 ight\} có: 2 cách.

    Chọn a_{3} \in X\backslash\left\{
a_{1};a_{2} ight\} có: 7 cách.

    Chọn a_{4} \in X\backslash\left\{
a_{1};a_{2};a_{3} ight\} có: 6 cách.

    Theo quy tắc nhân có: 2.7.6 = 84 số.

  • Câu 10: Vận dụng

    Quan sát mạch điện như sau:

    Mạch điện có 6 công tắc khác nhau, trong đó mỗi công tắc có 2 trạng thái đóng và mở. Hỏi có bao nhiêu cách đóng mở 6 công tắc để mạch điện thông mạch từ E đến F?

    Cả 3 công tắc của nhánh trên đóng còn 1 trong 3 công tắc của nhánh dưới mở có: C_{3}^{1} = 3

    Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có: C_{3}^{2} = 3

    Cả 3 công tắc của nhánh trên đóng còn 3 công tắc của nhánh dưới mở có: C_{3}^{3} = 1

    Cả 3 công tắc của nhánh dưới đóng còn 1 trong 3 công tắc của nhánh trên mở có: Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có: C_{3}^{1} = 3

    Cả 3 công tắc của nhánh dưới đóng còn 3 công tắc nhánh trên mở có: C_{3}^{3} = 1

    Cả 3 công tắc của nhánh trên đóng và cả 3 công tắc nhánh dưới đóng có: 1

    Vậy có tất cả 15 cách.

  • Câu 11: Vận dụng

    Cho tập A =
\left\{ 0,1,2,3,4,5,6 ight\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.

    Gọi x = \overline{abcde} là số cần lập, e \in \left\{ 0,5 ight\},a eq
0

    \bullet e = 0 \Rightarrow e có 1 cách chọn, cách chọn a,b,c,d:6.5.4.3

    Trường hợp này có 360 số

    e = 5 \Rightarrow e có một cách chọn, số cách chọn a,b,c,d:5.5.4.3 =
300

    Trường hợp này có 300 số.

    Vậy có 660 số thỏa yêu cầu bài toán.

  • Câu 12: Nhận biết

    Biết rằng khai triển nhị thức Newton (x + 2)^{n};\left( n\mathbb{\in N}
ight) có tất cả 6 số hạng. Hãy xác định n?

    Vì trong khai triển nhị thức Newton (x +
2)^{n};\left( n\mathbb{\in N} ight) đã cho có tất cả 6 số hạng nên n + 1 = 6 \Rightarrow n =
5

    Vậy n = 5 là giá trị cần tìm.

  • Câu 13: Nhận biết

    Một hộp có 5 bi đỏ và 4 bi vàng. Số cách lấy ra hai viên bi từ hộp là:

     Số cách lấy 2 viên bi từ 9 viên bi là: C_9^2=36 (cách).

  • Câu 14: Thông hiểu

    Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?

    Gọi số cần tìm có dạng \overline{abc};\left( a,b \in \left\{ 1;2;5;7;8
ight\},c \in \left\{ 2;8 ight\} ight)

    Trường hợp 1: a = 2;b = 7;c = 8. Có 1 số thỏa mãn yêu cầu bài toán.

    Trường hợp2: a = 2;b < 7;c =
8

    a có 1 cách chọn.

    c có 1 cách chọn.

    b có 2 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.1.2 =
2 (số).

    Trường hợp 3: a < 2;c \in \left\{ 2;8
ight\}

    a có 1 cách chọn.

    c có 2 cách chọn.

    b có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.2.3 =
6 (số).

    Vậy có: 1 + 2 + 6 = 9 (số).

  • Câu 15: Nhận biết

    Cho biểu thức (m
+ n)^{5}, khi khai triển nhị thức đã cho ta được bao nhiêu số hạng?

    Trong khai triển nhị thức Newton (m +
n)^{5}5 + 1 = 6 số hạng.

  • Câu 16: Vận dụng

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 17: Thông hiểu

    Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:

    Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.

    Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.

    Vì vậy số hoán vị 6 đối tượng là 6!.

    Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.

    Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!

    Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.

  • Câu 18: Nhận biết

    Cho hai dãy ghế được xếp như sau.

    Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?

    Xếp 4 bạn nam vào một dãy có 4! (cách xếp).

    Xếp 4 bạn nữ vào một dãy có 4! (cách xếp).

    Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.

    Số cách xếp theo yêu cầu là. 4!.4!.2^{4} (cách xếp).

  • Câu 19: Nhận biết

    Ngân hàng câu hỏi kiểm tra Toán lớp 11A gồm 35 câu hỏi đại số và 15 câu hỏi hình học. Học sinh được chọn một câu hỏi để trả lời. Khi đó số khả năng có thể xảy ra bằng:

    Áp dụng quy tắc cộng ta có số khả năng có thể xảy ra là: 35 + 15 = 50 khả năng.

  • Câu 20: Nhận biết

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    Đáp án là:

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    2^{10} = 1024 dãy nhị phân 10 bit.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo