Tìm hệ số không chứa
trong khai triển
, biết
là sô nguyên dương thỏa mãn
.
.
.
Số hạng không chứa ứng với
là
.
Tìm hệ số không chứa
trong khai triển
, biết
là sô nguyên dương thỏa mãn
.
.
.
Số hạng không chứa ứng với
là
.
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Cho hai dãy ghế được xếp như sau.

Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?
Xếp 4 bạn nam vào một dãy có (cách xếp).
Xếp 4 bạn nữ vào một dãy có (cách xếp).
Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.
Số cách xếp theo yêu cầu là. (cách xếp).
Hệ số của
trong khai triển
là:
Ta có số hạng tổng quát:
Số hạng chứa nên
Vậy hệ số của trong khai triển đã cho là:
.
Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.
TH1. Có đúng 1 học sinh khối 10: (cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)
TH2. Có đúng 2 học sinh khối 10: (cách).
Có
cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Nếu chữ số hàng chục là thì số có chữ số hàng đơn vị là
thì số các chữ số nhỏ hơn
năm ở hàng đơn vị cũng bằng
. Do chữ số hang chục lớn hơn bằng
còn chữ số hang đơn vị thi
.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:
.
Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?
Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá
C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. .
Vậy số cách xếp cần tìm. 8!.7.2! = 564480.
Số các số có
chữ số khác nhau không bắt đầu bởi
được lập từ
là:
Lập số tự nhiên có chữ số khác nhau, ta tìm được:
số.
Lập số tự nhiên có chữ số khác nhau nhưng bắt đầu bằng
, ta tìm được:
số.
Vậy số các số có chữ số khác nhau không bắt đầu bởi
là
số.
Có bao nhiêu cách xếp 5 bạn A, B, C, D, E vào một băng ghế dài sao cho C luôn ở chính giữa.
Giả sử 5 bạn ngồi vào 5 vị trí được đánh số 1, 2, 3, 4, 5.
Xếp bạn C vào vị trí số 3: có 1 cách.
Xếp 1 bạn trong 4 bạn còn lại vào vị trí 1: có 4 cách.
Xếp 1 bạn trong 3 bạn còn lại vào vị trí 2: có 3 cách.
Xếp 1 bạn trong 2 bạn còn lại vào vị trí 3: có 2 cách.
Xếp bạn còn lại vào vị trí 5: có 1 cách.
Áp dụng quy tắc nhân, có 1.4.3.2 = 24 cách xếp 5 bạn vào ghế băng dài sao cho C luôn ở chính giữa.
Cho số tự nhiên n thỏa mãn
. Giá trị của biểu thức
là
Ta có:
Thay n = 12 vào biểu thức ta được:
Trong balo của học sinh A có 8 bút chì khác, 6 bút bi và 10 quyển vở. Số cách chọn một đồ vật trong balo là:
Áp dụng quy tắc cộng, số cách chọn một đồ vật trong balo là: 8 + 6 + 10 = 24 cách.
Biết
là số nguyên dương thỏa mãn
, số hạng chứa
trong khai triển
là:
Ta có:
(vì
là số nguyên dương).
Số hạng tổng quát trong khai triển là:
.
Cho .
Vậy số hạng chứa trong khai triển
là
.
Từ 6 chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và chia hết cho 3?
Gọi số tự nhiên có 4 chữ số là
Bộ bốn chữ số có tổng chia hết cho 3 là:
Trường hợp 1:
Chọn a: 3 cách (vì a ≠ 0).
Chọn b, c, d: cách chọn.
Khi đó: 3.6=18 (cách).
Trường hợp 2:
Chọn :
Vậy 6 + 24 = 30 (số)
Hệ số của
trong khai triển
là:
Theo giả thiết: .
Vậy hệ số của là
.
Cho các số
. Số các số tự nhiên gồm
chữ số lấy từ
chữ số trên sao cho chữ số đầu tiên bằng
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?
Học sinh nam có 280 cách chọn
Học sinh nữ có 325 cách chọn
Chọn một học sinh khối 11 đi dự dạ hội của học sinh thành phố thì có cách.
Từ các chữ số 6; 7; 8; 9. có thể lập được bao nhiêu chữ số tự nhiên có 3 chữ số.
Gọi số cần lập có dạng .
A: có 4 cách chọn.
B: có 4 cách chọn.
C: có 4 cách chọn.
Vậy có 4.4.4 = 64 (số) tự nhiên có 3 chữ số.
Cho
là số tự nhiên thỏa mãn
. Biết số hạng thứ
trong khai triển Newton của
có giá trị bằng
. Tìm giá trị của
.
Ta có:
.
Ta được nhị thức .
Số hạng thứ ba của khai triển là .
Theo giả thiết ta có:
.
Một hộp có 3 viên bi trắng, 2 viên bi đen và 2 viên bi vàng. Hỏi có bao nhiêu cách lấy ngẫu nhiên 2 viên bi từ hộp đó.
Chọn 2 viên từ hộp 7 viên có: (cách).
Tìm hệ số của số hạng chứa
trong khai triển nhị thức
, (biết
).
Số hạng tổng quát trong khai triển nhị thức .
.
chứa
.
Vậy hệ số của số hạng chứa trong khai triển nhị thức
bằng:
.