Từ các chữ số 1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau.
Gọi số cần lập có dạng .
A: có 5 cách chọn.
B: có 4 cách chọn.
C: có 3 cách chọn.
Vậy có 5.4.3 = 60 (số) có 3 chữ số đôi một khác nhau.
Từ các chữ số 1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau.
Gọi số cần lập có dạng .
A: có 5 cách chọn.
B: có 4 cách chọn.
C: có 3 cách chọn.
Vậy có 5.4.3 = 60 (số) có 3 chữ số đôi một khác nhau.
Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?
TH1: Chọn 7 người 18 người không là cặp vợ chồng:
TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng:
TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng:
Vậy số cách chọn thỏa mãn là: cách
Cho hai dãy ghế được xếp như sau.

Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?
Xếp 4 bạn nam vào một dãy có (cách xếp).
Xếp 4 bạn nữ vào một dãy có (cách xếp).
Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.
Số cách xếp theo yêu cầu là. (cách xếp).
Tìm hệ số của
trong khai triển nhị thức Newton của
?
Số hạng tổng quát là:
Hệ số của tìm được khi
Vậy hệ số của trong khai triển là
.
Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?
Chọn 4 Toán, 2 Văn, 2 Lí có cách.
Chọn 4 Toán, 1 Văn, 3 Lí có cách.
Chọn 5 Toán, 2 Văn, 1 Lí có cách.
Chọn 5 Toán, 1 Văn, 2 Lí có cách.
Chọn 6 Toán, 1 Văn, 1 Lí có cách.
Tổng lại ta được 181440 cách thỏa mãn.
Cho biểu thức
, khi khai triển nhị thức đã cho ta được bao nhiêu số hạng?
Trong khai triển nhị thức Newton có
số hạng.
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi xen kẽ nhau trong từng dãy?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Chọn 3 bạn nam, 3 bạn nữ để xếp vào dãy A có
Trong dãy đó xếp sao cho nam và nữ ngồi xen kẽ nhau có: cách.
Xếp 3 nam, 3 nữ còn lại vào dãy B sao cho nam và nữ ngồi xen kẽ nhau có cách.
Vậy số cách xếp là: cách.
Với
là số nguyên dương thỏa mãn
, hệ số của
trong khai triển của biểu thức bằng
.
Giải phương trình .
Điều kiện .
Ta có: .
Vậy .
Ta có: .
Hệ số của trong khai triển bằng 0.
Sắp xếp 5 bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Đếm số cách sắp xếp thỏa mãn bạn An và bạn Dũng không ngồi cạnh nhau?
+) Xếp bạn vào
chỗ ngồi có
cách.
+) Xếp An và Dũng ngồi cạnh nhau có cách. Xem An và Dũng là
phần tử cùng với
bạn còn lại là
phần tử xếp vào
chỗ. Suy ra số cách xếp
bạn sao cho An và Dũng luôn ngồi cạnh nhau là.
cách.
Vậy số cách xếp bạn vào
ghế sao cho An và Dũng không ngồi cạnh nhau là.
.
Lớp 11A có 20 học sinh nam và 15 học sinh nữ. Giáo viên chủ nhiệm muốn chọn một nhóm học sinh đại diện gồm 3 học sinh nam và 2 học sinh nữ. Hỏi có bao nhiêu cách chọn nhóm học sinh đại diện?
Số cách chọn 3 học sinh nam là cách.
Số cách chọn 2 học sinh nữ là: cách.
Vậy số cách chọn nhóm học sinh đại diện là: cách.
Khai triển biểu thức
ta thu được kết quả:
Ta có:
Cho tập
. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5?
Vì x lẻ và không chia hết cho 5 nên => Có 3 cách chọn
Số các chọn các chữ số còn lại là:
Vậy 15120 số thỏa yêu cầu bài toán.
Một lớp có 15 nam và 20 nữ. Hỏi có bao nhiêu cách chọn 1 bạn đi trực nhật.
Trường hợp 1: Chọn 1 nam. Có 15 cách.
Trường hợp 2: Chọn 1 nữ. Có 20 cách.
Vậy có 15+20 = 35 cách.
Trong khai triển nhị thức
hệ số của
là
. Giá trị của n là
Khai triển biểu thức như sau:
Theo bài ra ta có:
Hệ số của là
khi đó: k = 1
Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?
Gọi số in trên vé có dạng
Số cách chọn là 10 (
có thể là 0).
Số cách chọn là 9.
Số cách chọn là 8.
Số cách chọn là 7.
Số cách chọn là 6.
Do đó có 10.9.8.7.6 = 23460 (số).
Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:
Khi đó công việc có thể được thực hiện bằng (cách) (theo quy tắc nhân)
Đếm số tập con gồm
phần tử được lấy ra từ tập
?
Mỗi tập con tập gồm phần tử được lấy ra từ tập
có
phần tử là một tổ hợp chập
của
phần tử.
Vậy số tập con gồm phần tử của
là
tập con.
Từ khai triển biểu thức
thành đa thức. Tổng các hệ số của đa thức là:
Xét khai triển .
Gọi là tổng các hệ số trong khai triển thì ta có
.
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Nếu chữ số hàng chục là thì số có chữ số hàng đơn vị là
thì số các chữ số nhỏ hơn
năm ở hàng đơn vị cũng bằng
. Do chữ số hang chục lớn hơn bằng
còn chữ số hang đơn vị thi
.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:
.