Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:

     Số tập con có 3 phần tử từ tập 5 phần tử là: C_5^3 = 10.

  • Câu 2: Vận dụng

    Hệ số của x^{5} trong khai triển thành đa thức của (2 - 3x)^{2n} bằng bao nhiêu? Cho biết n là số tự nhiên thỏa mãn: C_{2n + 1}^{0} + C_{2n +
1}^{2} + C_{2n + 1}^{4} + ... + C_{2n + 1}^{2n} = 1024.

    Ta có (x + 1)^{2n + 1} = C_{2n +
1}^{0}.x^{2n + 1} + C_{2n + 1}^{1}.x^{2n} + ... + C_{2n + 1}^{2n}.x +
C_{2n + 1}^{2n + 1} (1)

    Thay x = 1 vào (1): 2^{2n +
1} = C_{2n + 1}^{0} + C_{2n + 1}^{1} + ... + C_{2n + 1}^{2n} + C_{2n +
1}^{2n + 1} (2)

    Thay x = - 1 vào (1): 0 = -
C_{2n + 1}^{0} + C_{2n + 1}^{1} - ... - C_{2n + 1}^{2n} + C_{2n + 1}^{2n
+ 1} (3)

    Phương trình (2) trừ (3) theo vế: 2^{2n + 1} = 2\left( C_{2n + 1}^{0} + C_{2n +
1}^{2} + ... + C_{2n + 1}^{2n} ight).

    Theo đề ta có 2^{2n + 1} = 2.1024
\Leftrightarrow n = 5

    Số hạng tổng quát của khai triển (2 -
3x)^{10}:

    T_{k + 1} = C_{10}^{k}.2^{10 - k}.( -
3x)^{k} = C_{10}^{k}.2^{10 - k}.( - 3)^{k}.x^{k}

    Theo giả thiết ta có k = 5.

    Vậy hệ số cần tìm C_{10}^{5}.2^{5}.( -
3)^{5} = - 1959552.

  • Câu 3: Thông hiểu

    Từ khai triển biểu thức (x + 1)^{10} thành đa thức. Tổng các hệ số của đa thức là:

    Xét khai triển f(x) = (x + 1)^{10} =
\sum_{k = 0}^{10}C_{10}^{k}.x^{k}.

    Gọi S là tổng các hệ số trong khai triển thì ta có S = f(1) = (1 + 1)^{10}
= 2^{10} = 1024.

  • Câu 4: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a + b (cách) (theo quy tắc nhân)

  • Câu 5: Thông hiểu

    Có bao nhiêu số tự nhiên chia hết cho 2 và gồm 4 chữ số?

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Trường hợp 1: C bằng 0. Suy ra có 1 cách chọn.

    Vị trí A: có 9 cách chọn, khác số 0.

    Vị trí B: có 10 cách chọn.

    Suy ra có: 1.9.10 = 90 (số).

    Trường hợp 2: C khác 0. Suy ra C có 4 cách chọn (2, 4, 6, 8).

    Vị trí A: có 9 cách chọn, khác số 0.

    Ví trí B: Có 10 cách chọn.

    Suy ra có: 4.9.10 = 360 (số).

    Vậy, áp dụng quy tắc cộng, có 90 + 360 = 450 (số).

  • Câu 6: Nhận biết

    Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:

     Số các chỉnh hợp chập k của n phần tử là A_n^k=n(n - 1)(n - 2)...(n - k + 1).

  • Câu 7: Nhận biết

    Tìm số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có khai triển: \left( x +
\frac{1}{x^{2}} ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
k}\left( x^{- 2} ight)^{k}} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
3k}}.

    Số hạng tổng quát trong khai triển: C_{40}^{k}x^{40 - 3k}

    Số hạng chứa x^{31} ứng với: 40 - 3k = 31 \Leftrightarrow k =
3

    Vậy số hạng chứa x^{31} là: C_{40}^{3}x^{31}.

  • Câu 8: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0,2,4,6,8 với điều các chữ số đó không lặp lại?

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a4 cách chọn

    b4 cách chọn

    c3 cách chọn

    Vậy có: 4.4.3 = 48 số.

  • Câu 9: Vận dụng

    Cho tập hợp số: A = \left\{ 0,1,2,3,4,5,6 ight\}.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

    Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \{ 0,1,2,3\}, \{ 0,1,2,6\}, \{ 0,2,3,4\}, \{ 0,3,4,5\}, \{ 1,2,4,5\}, \{ 1,2,3,6\}, \left\{ 1,3,5,6 ight\}.

    Vậy số các số cần lập là: 4(4! - 3!) +
3.4! = 144 số.

  • Câu 10: Thông hiểu

    Có bao nhiêu cách xếp 5 bạn A, B, C, D, E vào một băng ghế dài sao cho C luôn ở chính giữa.

    Giả sử 5 bạn ngồi vào 5 vị trí được đánh số 1, 2, 3, 4, 5.

    Xếp bạn C vào vị trí số 3: có 1 cách.

    Xếp 1 bạn trong 4 bạn còn lại vào vị trí 1: có 4 cách.

    Xếp 1 bạn trong 3 bạn còn lại vào vị trí 2: có 3 cách.

    Xếp 1 bạn trong 2 bạn còn lại vào vị trí 3: có 2 cách.

    Xếp bạn còn lại vào vị trí 5: có 1 cách.

    Áp dụng quy tắc nhân, có 1.4.3.2 = 24 cách xếp 5 bạn vào ghế băng dài sao cho C luôn ở chính giữa.

  • Câu 11: Nhận biết

    Tìm hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}, (biết x eq 0).

    Số hạng tổng quát trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}.

    T_{k + 1} = C_{13}^{k}x^{13 - k}\left(
\frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - 2k}.

    T_{k + 1} chứa x^{7} \Leftrightarrow 13 - 2k = 7 \Leftrightarrow
k = 3.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x +
\frac{1}{x} ight)^{13} bằng: C_{13}^{3} = 286.

  • Câu 12: Nhận biết

    Một đoàn tàu có bốn toa đỗ ở ga. Có bốn hành khách bước lên tàu. Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là:

    Mỗi hành khách có 4 cách chọn toa.

    Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là: 4.4.4.4 = 44 = 256.

  • Câu 13: Vận dụng

    Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcd} chia hết cho 6 suy ra \left\{ \begin{matrix}
e = \left\{ 0;2 ight\} \\
(a + b + c + d + e) \vdots 3 \\
\end{matrix} ight.

    TH1. Với e = 0 suy ra a + b + c + d \vdots 3, do đó gồm các bộ (1;2;5;7) suy ra có 24 số.

    TH2. Với e = 2 suy ra a + b + c + d + 2 \vdots 3, do đó gồm các bộ (0;1;5;7), (1;5;7;9) suy ra có 42 số.

    Vậy có tất cả 24 + 42 = 66 số cần tìm.

  • Câu 14: Thông hiểu

    Một nhóm học sinh gồm 6 nam và 4 nữ. Cần chọn ra một nhóm 5 người gồm cả nam và nữ đi trực nhật. Hỏi có bao nhiêu cách chọn nếu số bạn nữ luôn nhiều hơn số bạn nam.

    Trường hợp 1: 4 nữ, 1 nam

    Chọn 4 nữ từ 4 nữ và 1 nam từ 6 nam, có: C_4^4.C_6^1 = 6 (cách).

    Trường hợp 2: 3 nữ, 2 nam, có: C_4^3.C_6^2 = 60 (cách).

    Vậy có 6+60=66 (cách).

  • Câu 15: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12

    Trường hợp 1: Các bạn nam gồi ghế ghi số chẵn ở dãy A và số lẻ ở dãy B.

    Các bạn nữ ngồi ở ghế ghi số lẻ của dãy A và số chẵn ở dãy B có: 6!.6! cách.

    Trường hợp 2: Ngược lại có 6!.6! cách.

    Vậy số cách xếp là: 2.6!.6! =
1036800 cách.

  • Câu 16: Nhận biết

    Từ thành phố A đến thành phố B có 2 con đường, từ thành phố B đến thành phố C có 3 con đường. Hỏi có bao nhiêu cách đi từ A đến C sao cho bắt buộc phải đi qua B.

     Đi từ A đến B: 2 cách.

    Đi từ B đến C: 3 cách.

    Vậy đi từ A đến C (qua B) có: 2.3 = 6 cách.

  • Câu 17: Nhận biết

    Cho tập hợp M =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Số tập con gồm 3 phần tử của M sao cho không có số 0 là:

    Mỗi tập con gồm 3 phần tử của M không có số 0 là tổ hợp chập 3 của 9 phần tử.

    Số tập con gồm 3 phần tử của M không có số 0 là. C_{9}^{3}.

  • Câu 18: Nhận biết

    Khai triển nhị thức Niu-tơn của (3 - 2x)^{2019} có bao nhiêu số hạng?

    Ta có: Khai triển nhị thức Niu-tơn (a +
b)^{n}n + 1 số hạng.

    Vậy trong khai triển nhị thức Niu-tơn của (3 - 2x)^{2019}2020 số hạng.

  • Câu 19: Vận dụng

    Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    +TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} +
C_{5}^{3}. Vậy số cách lập nhóm trong trường hợp này là. 2.\left( C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1}
+ C_{5}^{3} ight)

    +TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là C_{5}^{1}C_{6}^{1}
+ C_{5}^{2}. Vậy số cách lập nhóm trong trường hợp này là. C_{5}^{1}.C_{6}^{1} +
C_{5}^{2}.

    Vậy số cách lập cần tìm là. 2.\left(
C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} + C_{5}^{3} ight) +
C_{5}^{1}.C_{6}^{1} + C_{5}^{2} = 375.

  • Câu 20: Thông hiểu

    Xác định số hạng không chứa x trong khai triển nhị thức Newton \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0). Biết rằng C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} + ... +
3^{n}.C_{n}^{n} = 256.

    Ta có:

    C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} +
... + 3^{n}.C_{n}^{n} = 256

    \Leftrightarrow (1 + 3)^{n} = 256
\Leftrightarrow 4^{n} = 256 \Leftrightarrow n = 4

    Xét khai triển \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0)

    Số hạng tổng quát C_{4}^{k}.\left( x^{2}
ight)^{4 - k}.\left( \frac{1}{x^{2}} ight)^{k} = C_{4}^{k}.x^{8 -
4k}

    Số hạng không chứa x ứng với 8 - 4k = 0
\Leftrightarrow k = 2

    Suy ra số hạng không chứa x là C_{4}^{2}
= 6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo