Có bao nhiêu cách xếp 6 người thành một hàng dọc
Xếp 6 người thành một hàng dọc có: 6! = 720 cách.
Có bao nhiêu cách xếp 6 người thành một hàng dọc
Xếp 6 người thành một hàng dọc có: 6! = 720 cách.
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
Gọi số cần tìm có dạng . Vì
chia hết cho 5 suy ra
.
TH1. Với suy ra có
số cần tìm.
TH2. Với , suy ra có
số cần tìm.
Vậy có tất cả 444 số cần tìm.
Trong một cuốc thi hùng biện, ban tổ chức đã công bố danh sách các chủ đề cho thí sinh gồm 8 chủ đề về lịch sử, 7 chủ đề môi trường, 10 chủ đề về con người và 6 chủ đề về văn hóa. Mỗi thí sinh tham gia thi chỉ được thi với 1 chủ đề. Hỏi mỗi thí sinh có bao nhiêu khả năng lựa chọn chủ đề?
Số cách chọn chủ đề thi của mỗi thí sinh là: 8 + 7 + 10 + 6 = 31.
Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho
mà mỗi số
chữ số và trong đó có ít nhất hai chữ số
.
Đặt là các số tự nhiên thỏa yêu cầu bài toán.
{ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}
Với mỗi số thuộc A có chữ số
thì ta có thể bổ sung thêm
số
vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng
mà trong
không có chữ số 9}
mà trong
có đúng 1 chữ số 9}
Ta thấy tập A có
phần tử
Tính số phần tử của
Với và
với
. Từ đó ta suy ra
có
phần tử.
Tính số phần tử của
Để lập số của thuộc tập ta thực hiện liên tiếp hai bước sau:
Bước 1: Lập một dãy gồm chữ số thuộc tập
và tổng các chữ số chia hết cho 9. Số các dãy là
.
Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9.
Do đó có
phần tử.
Vậy số các số cần lập là:
.
Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?
Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là .
Trường hợp này có 2!.6 số.
Chữ số cuối bằng 2 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 4 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 8 ta có các bộ , hoán vị được
số.
Kết hợp lại ta có 35 số.
Hệ số của
trong khai triển
là:
Ta có: .
Hệ số của là 10.
Cho tập hợp
. Có bao nhiêu số tự nhiên gồm ba chữ số được lập từ B sao cho chữ số đằng sau luôn lớn hơn chữ số đẳng trước nó?
Gọi số tự nhiên có ba chữ số cần tìm có dạng
TH1: có
số thỏa mãn.
TH2: có
số thỏa mãn.
TH3: có
số thỏa mãn.
TH4: có
số thỏa mãn.
Vậy số các số được tạo thành là: số.
Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?
Chọn 1 kiểu mặt từ 3 kiểu mặt có 3 cách.
Chọn 1 kiểu dây từ 4 kiểu dây có 4 cách.
Vậy theo quy tắc nhân có 12 cách chọn 1 chiếc đồng hồ gồm một mặt và một dây.
Tìm hệ số
của số hạng chứa
trong khai triển
.
Ta có:
Ta có: , suy ra
Vậy hệ số của số hạng chứa
trong khai triển
là
Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn và sách Toán nằm ở giữa?
Chọn vị trí cho bộ sách Toán có 2 cách
Sắp xếp 3 bộ sách còn lại có 3! cách
Sắp xếp 3 quyển sách Toán có 3! cách
Sắp xếp 2 quyển sách Hóa có 2! cách
Sắp xếp 4 quyển sách Lý có 4! Cách
Sắp xếp 5 quyển sách Sinh có 5! Cách.
Vậy số cách sắp xếp số sách trên kệ theo từng môn và sách Toán nằm giữa là: cách.
Tìm hệ số không chứa
trong khai triển
, biết
là sô nguyên dương thỏa mãn
.
.
.
Số hạng không chứa ứng với
là
.
Biết hệ số của
trong khai triển nhị thức Newton của
là
. Xác định giá trị
?
Số hạng thứ trong khai triển
là:
với
và
Số hạng chứa ứng với
Ta có:
Vậy .
Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?
Công thức sai là: .
Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?
Mỗi cách phân công bạn An, Bình, Công vào
chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của
phần tử. Vậy có
cách.
Trong khai triển nhị thức Newton của
, số hạng thứ hai theo số mũ tăng dần của biến
là:
Ta có:
Có bao nhiêu số tự nhiên gồm 3 chữ số?
Gọi số thỏa mãn đề bài có dạng .
Vị trí A: có 9 cách chọn từ 1 đến 9 (bỏ số 0).
Vị trí B: có 10 cách chọn từ 0 đến 9.
Vị trí C: có 10 cách chọn từ 0 đến 9.
Áp dụng quy tắc nhân, có 9.10.10 = 900 (số).
Cho tập hợp số:
.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.
Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là
,
,
,
,
,
.
Vậy số các số cần lập là: số.
Cho 6 chữ số 2, 3, 4, 5, 6, 7. Có bao nhiêu số có 3 chữ số được lập từ 6 chữ số đó?
Trong 6 chữ số đã cho không có chữ số 0, số có 3 chữ số không yêu cầu khác nhau nên mỗi chữ số đều có 6 cách chọn, do đó số các số thỏa mãn 63 = 216.
Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.
Trường hợp 1: An và Bình không có mặt trong tổ công tác:
Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có cách.
Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:
Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có cách
Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có cách.
Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng
Như vậy có tất cả số cách là: cách
Một tập hợp M gồm 20 phần tử. Hỏi M có bao nhiêu tập con khác rỗng mà có số phần tử chẵn?
Tổng số các tập con của tập M là:
Trong đó số tập con khác rỗng và có số phần tử chẵn là:
Lại có:
Và
Do đó: