Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được 2 con át?
Số cách lấy 5 con trong đó có 2 con át là: .
Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được 2 con át?
Số cách lấy 5 con trong đó có 2 con át là: .
Biểu thức
bằng:
Ta có:
Kết quả của phép tính
là:
Ta có: .
Bạn Công muốn mua một chiếc áo mới và một chiếc quần mới để đi dự sinh nhật bạn mình. Ở cửa hàng có 12 chiếc áo khác nhau, quần có 15 chiếc khác nhau. Hỏi có bao nhiêu cách chọn một bộ quần và áo?
Số cách bạn Công chọn một chiếc áo mới là: 12 cách.
Số cách bạn Công chọn một chiếc quần mới là: 15 cách.
Theo quy tắc nhân, bạn Công có 12.15 = 180 cách để chọn một bộ quần và áo.
Mỗi bảng số xe gắn máy ở thành phố X có cấu tạo như sau. Phần đầu gồm hai chữ cái trong bảng chữ cái, phần sau gồm 4 chữ số trong các chữ số:
. Ví dụ:
... Hỏi có bao nhiêu cách tạo bảng số xe theo cấu tạo trên? (Giả sử bảng chữ cái có tất cả 26 chữ cái)
Chọn hai chữ cái cho phần đầu có (mỗi chữ số có 26 cách chọn)
Còn 4 chữ số cho phần đuôi có (mỗi chữ số có 10 cách chọn)
Vậy có thể tạo được
Cho biểu thức
với
,
. Số hạng không chứa
trong khai triển Niu-tơn của
là:
Ta có .
Nên .
Số hạng tổng quát của khai triển là: .
Khi thì số hạng không chứa
là
.
Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của
?
Khi viết nhị thức dưới dạng khai triển
số hạng.
Từ các chữ số
,
,
,
,
,
có thể lập được bao nhiêu số tự nhiên gồm
chữ số đôi một khác nhau trong đó hai chữ số
và
không đứng cạnh nhau.
Số các số có chữ số được lập từ các chữ số
,
,
,
,
,
là
.
Số các số có chữ số và
đứng cạnh nhau:
.
Số các số có chữ số và
không đúng cạnh nhau là:
.
Có bao nhiêu số tự nhiên nhỏ hơn
chia hết cho
và
.
Số các số tự nhiên lớn nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ hơn chia hết cho
và
là
.
Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?
Đối với bài toán ta xét 2 trường hợp.
+) Đầu hàng và cuối hàng đều là gói bim bim. Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là. (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau). Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là.
+) Đầu hàng và cuối hàng đều là cốc mì ăn liền. Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là. . Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là.
Số cách xếp tất cả là.
.
Cho tập
. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?
Gọi số cần tìm là số dạng . Vì
chia hết cho 3 suy ra
.
Khi đó bộ .
Với bộ suy ra có
số cần tìm.
Tương tự với các bộ số còn lại.
Viết khai triển theo công thức nhị thức Niu-tơn
.
Ta có:
Hay .
Để giải một bài tập ta cần phải giải hai bài tập nhỏ. Bài tập 1 có 9 cách giải, bài tập 2 có 5 cách giải. Số các cách để giải hoàn thành bài tập trên là:
Sô cách giải bài toán 1 : 9 cách.
Số cách giải bài toán 2 : 5 cách.
Áp dụng quy tắc nhân: 9 × 5 = 45 cách.
Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.
Vì chữ số đứng đầu chẵn nên có
cách chọn, chữ số đứng cuối lẻ nên
có 4 cách chọn. Các số còn lại có
cách chọn
Vậy có số thỏa yêu cầu bài toán.
Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có
sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở
vị trí khác nhau. Yêu cầu mỗi vị trí có đúng
sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho
người đó?
Mỗi cách xếp sinh viên vào
vị trí thỏa đề là một hoán vị của
phần tử.
Suy ra số cách xếp là cách.
Từ 10 chữ số 0, 1, 2, 3, …, 9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các chữ số đó có mặt chữ số 0 và 1?
Gọi số cần lập có dạng
Bước 1: Xếp chữ số 0 vào trong 5 vị trí từ đến
, có 5 cách xếp.
Bước 2: Xếp chữ số 1 vào trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn), có 5 cách xếp.
Bước 3: Chọn 4 chữ số trong 8 chữ số {2, 3, 4, 5, 6, 7, 8, 9} để xếp vào 4 vị trí còn lại, có 8.7.6.5 cách.
⇒ Theo quy tắc nhân có số thỏa yêu cầu.
Tính tổng các hệ số trong khai triển
.
Xét khai triển
Tổng các hệ số trong khai triển là:
Cho ta có:
Có bao nhiêu số tự nhiên có hai chữ số mà cả hai chữ số đó đều lẻ?
- Gọi số tự nhiên có hai chữ số cần lập thỏa mãn yêu cầu bài toán là (a, b ∈ {1;3;5;7;9})
+ a: có 5 cách chọn
+ b: có 5 cách chọn.
Dó đó có: 5 x 5 = 25 cách lập số có 2 chữ số mà cả hai chữ số đều lẻ.
Trong khai triển
biết hệ số của
là
. Giá trị
có thể nhận là:
Ta có .
Biết hệ số của là
nên
.
Từ các chữ số
,
,
,
,
,
có thể lập được bao nhiêu số tự nhiên lẻ có
chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?
Gọi là số cần tìm
Ta có và
Với thì
hoặc
Với thì
hoặc
Với thì
hoặc
Mỗi trường hợp có số thỏa mãn yêu cầu
Vậy có tất cả số cần tìm.