Cho tập hợp
. Số tập con gồm 3 phần tử của
sao cho không có số
là:
Mỗi tập con gồm 3 phần tử của không có số
là tổ hợp chập 3 của 9 phần tử.
Số tập con gồm 3 phần tử của không có số
là.
.
Cho tập hợp
. Số tập con gồm 3 phần tử của
sao cho không có số
là:
Mỗi tập con gồm 3 phần tử của không có số
là tổ hợp chập 3 của 9 phần tử.
Số tập con gồm 3 phần tử của không có số
là.
.
Cho đa giác đều
nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong
của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong
đỉnh của đa giác. Tìm
.
Số tam giác có 3 đỉnh là 3 trong 2n điểm là
Ứng với 2 đường chéo đi qua tâm của đa giác đều cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm
Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.
Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là
Theo giả thiết ta có:
Vậy .
Tổng các hệ số trong khai triển nhị thức Newton của
bằng:
Ta có:
Cho ta được:
Vậy tổng hệ số trong khai triển đã cho bằng -1.
Cho
là số tự nhiên thỏa mãn
. Tìm hệ số của
trong khai triển
.
Ta có
.
Xét khai triển
Tìm hệ số của tìm
thỏa mãn
.
Vậy hệ số của trong khai triển
là
.
Số hạng không chứa
trong khai triển nhị thức
là:
Số hạng tổng quát trong khai triển nhị thức là:
Số hạng không chứa x khi và chỉ khi
Vậy số hạng không chứa x là: .
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.
Có bao nhiêu giá trị của n thỏa mãn phương trình
?
Điều kiện
Ta có:
Vậy phương trình chỉ có một giá trị của n thỏa mãn điều kiện bài toán.
Số các số tự nhiên gồm
chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Hệ số của
trong khai triển
bằng:
Ta có:
Hệ số của x3 trong khai triển là:
=> Hệ số của trong khai triển
bằng: 3 + 10 = 13
Cho các chữ số 2, 3, 4, 5, 6, 7, 8, 9 số các số tự nhiên chẵn có 3 chữ số lập thành từ các chữ số đã cho là
Số tự nhiên có ba chữ số có dạng
Do số tự nhiên được tạo thành là số chẵn =>
=> c có 4 cách chọn
a có 8 cách chọn
b có 8 cách chọn
=> Số các số được tạo thành là 4.8.8 = 256 số
Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.
Thực hiện khai triển nhị thức Newton
ta được kết quả là:
Ta có:
Cho hai đường thẳng song song d và d’. Trên đường thẳng d lấy 10 điểm phân biệt, trên đường thẳng d’ lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 điểm vừa nói trên.
Trường hợp 1: Lấy 2 điểm trên d và 1 điểm trên d’
Trường hợp 2: Lấy 1 điểm trên d và 2 điểm trên d’.
Số tam giác thỏa bài toán là: tam giác.
Trên bàn có 5 quyển sách Toán khác nhau và 7 quyển sách Hóa khác nhau. Số cách chọn 2 quyển sách gồm đủ 2 loại Toán và Hóa bằng:
Áp dụng quy tắc nhân ta có số cách chọn một quyển Toán và một quyển Hóa là: 5 . 7 = 35 cách chọn.
Có sáu quả cầu xanh đánh số từ 1 đến 6, năm quả cầu đỏ đánh số từ 1 đến 5 và bảy quả cầu vàng đánh số từ 1 đến 7. Hỏi có bao nhiêu cách lấy ra ba quả cầu vừa khác màu vừa khác số?
+) Chọn 1 quả màu đỏ có 5 cách.
+) Chọn 1 quả màu xanh khác số với quả màu đỏ có 5 cách.
+) Chọn 1 quả màu vàng khác số với quả màu đỏ và quả màu xanh có 5 cách.
Vậy số cách lấy ra 3 quả cầu vừa khác màu, vừa khác số là: 5.5.5 = 125.
Từ các chữ số
có thể lập được bao nhiêu số nguyên dương
và gồm các chữ số đôi một khác nhau.
Trường hợp 1: n gồm ba chữ số.
Gọi .
Để n > 800 và gồm các chữ số đôi một khác nhau thì
a có 2 lựa chọn là
b có 4 lựa chọn vì phải khác a
c có 3 lựa chọn vì phải khác a; b
Vậy có số.
Trường hợp 2: n gồm bốn chữ số. Thỏa mãn n > 800.
Để n gồm các chữ số đôi một khác nhau thì có thỏa mãn.
Trường hợp 3: n gồm năm chữ số. Thỏa mãn n > 800.
Để n gồm các chữ số đôi một khác nhau thì có thỏa mãn.
Vậy có số n thỏa mãn yêu cầu bài toán.
Cho tập
. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.
Gọi là số cần lập,
có 1 cách chọn, cách chọn
Trường hợp này có 360 số
có một cách chọn, số cách chọn
Trường hợp này có 300 số.
Vậy có số thỏa yêu cầu bài toán.
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:
Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là tổ hợp chập 3 của 7 phần từ.
=> Số tập hợp con là: tập hợp
Số cách chọn một học sinh trong nhóm gồm 5 nữ và 4 nam là:
Áp dụng quy tắc cộng ta có số cách chọn một học sinh là: 5 + 4 = 9 cách.
Phát biểu nào sau đây đúng?
Phát biểu đúng là: