Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Kết quả của phép tính C_{6}^{2}-C_{6}^{3} là:

     Ta có: C_{6}^{2}-C_{6}^{3} =-5.

  • Câu 2: Nhận biết

    Trên bàn có 5 quyển sách Toán khác nhau và 7 quyển sách Hóa khác nhau. Số cách chọn 2 quyển sách gồm đủ 2 loại Toán và Hóa bằng:

    Áp dụng quy tắc nhân ta có số cách chọn một quyển Toán và một quyển Hóa là: 5 . 7 = 35 cách chọn.

  • Câu 3: Thông hiểu

    Cho tập hợp các chữ số B = \left\{ 1,2,3,4,5 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau là:

    Mỗi số tự nhiên có 3 chữ số khác nhau được lập từ tập hợp B là chỉnh hợp chập 3 của 5 nghĩa.

    Suy ra có thể lập được A_{5}^{3} số thỏa mãn yêu cầu đề bài.

  • Câu 4: Nhận biết

    Tìm hệ số của số hạng chứa x^{2} trong khai triển (x + 3)^{4}?

    Ta có: (x + 3)^{4} = x^{4} + 4x^{3}.3 +
6.x^{2}.3^{2} + 4.x.3^{3} + 3^{4}

    Hệ số chứa x^{2} trong khai triển là: 6.3^{2} = 54.

  • Câu 5: Thông hiểu

    Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.

    Điều kiện: n \ge 3

    Số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A là tổ hợp chập 3 của n phần tử 

    => Số tam giác là: C_n^3 (tam giác)

    Số đoạn thẳng được nối từ 2 điểm thuộc A là tổ hợp chập n phần tử

    => Số đoạn thẳng là: C_n^2

    Theo bài ra ta có: 

    Số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A.

    \begin{matrix}   \Rightarrow C_n^3 = 2C_n^2 \hfill \\   \Leftrightarrow \dfrac{{n!}}{{3!\left( {n - 3} ight)!}} = 2\dfrac{{n!}}{{2!\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)\left( {n - 3} ight)!}}{{6\left( {n - 3} ight)!}} = \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)!}}{{\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow n\left( {n - 1} ight)\left( {n - 2} ight) = 6n\left( {n - 1} ight) \hfill \\   \Leftrightarrow \left[ \begin{gathered}  n\left( {n - 1} ight) = 0 \hfill \\  n - 2 = 6 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  n = 0\left( {ktm} ight) \hfill \\  n = 1\left( {ktm} ight) \hfill \\  n = 8\left( {tm} ight) \hfill \\ \end{gathered}  ight. \hfill \\   \hfill \\ \end{matrix}

    Vậy n = 8.

  • Câu 6: Thông hiểu

    Trong khai triển nhị thức (a + 2)^{2n+1} (n \in ℕ). Có tất cả 6 số hạng. Vậy n bằng:

    Khai triển có 6 hạng tử

    => \left( {2n + 1} ight) + 1 = 6 \Rightarrow n = 2

  • Câu 7: Nhận biết

    Ngân hàng câu hỏi kiểm tra Toán lớp 11A gồm 35 câu hỏi đại số và 15 câu hỏi hình học. Học sinh được chọn một câu hỏi để trả lời. Khi đó số khả năng có thể xảy ra bằng:

    Áp dụng quy tắc cộng ta có số khả năng có thể xảy ra là: 35 + 15 = 50 khả năng.

  • Câu 8: Nhận biết

    Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:

     Số các chỉnh hợp chập k của n phần tử là A_n^k=n(n - 1)(n - 2)...(n - k + 1).

  • Câu 9: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 10: Vận dụng

    Với n là số nguyên dương thỏa mãn C_{n}^{1}+C_{n}^{2}=10 , hệ số của x^{5} trong khai triển của biểu thức bằng (x^{3}+\frac{2}{x})^{n}.

     Giải phương trình C_{n}^{1}+C_{n}^{2}=10

    Điều kiện n \ge2.

    Ta có: C_n^1 + C_n^2 = 10 \Leftrightarrow \frac{{n!}}{{1!(n - 1)!}} + \frac{{n!}}{{2!(n - 2)!}} = 10\Leftrightarrow n + \frac{1}{2}n(n - 1) = 10 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 4}\\{n =  - 5}\end{array}} ight..

    Vậy n=4.

    Ta có: (x^{3}+\frac{2}{x})^{4} =\frac{{{x^{16}} + 8{x^{12}} + 24{x^8} + 32{x^4} + 16}}{{{x^4}}}= {x^{12}} + 8{x^8} + 24{x^4} + 32 + \frac{{16}}{{{x^4}}}.

    Hệ số của x^5 trong khai triển bằng 0.

  • Câu 11: Nhận biết

    Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?

     Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).

  • Câu 12: Thông hiểu

    Tổng hệ số của x^{3}x^{2} trong khai triển (1 + 2x)^{4} là:

     Ta có: (1+2x)^4=16{x^4} + 32{x^3} + 24{x^2} + 8x + 1.

    Tổng hệ số của x^3x^2 bằng 32+24=56.

  • Câu 13: Nhận biết

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.

    Số các số tự nhiên lớn nhất nhỏ hơn 100 chia hết cho 2 và 3 là 96.

    Số các số tự nhiên nhỏ nhất nhỏ hơn 100 chia hết cho 2 và 3 là 0.

    Số các số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3 là \frac{96 - 0}{6} + 1 = 17.

  • Câu 14: Thông hiểu

    Từ các chữ số 0, 2, 3, 5, 6, 8 có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau trong đó hai chữ số 05 không đứng cạnh nhau.

    Số các số có 6 chữ số được lập từ các chữ số 0, 2, 3, 5, 6, 86! - 5!.

    Số các số có chữ số 05 đứng cạnh nhau: 2.5! - 4!.

    Số các số có chữ số 05 không đúng cạnh nhau là: 6! - 5! - (2.5! - 4!) = 384.

  • Câu 15: Vận dụng

    Cho tập A =
\left\{ 1;2;3;4;5;6;7;8;9 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?

    Gọi \overline{125ab} là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.

    Suy ra b có 3 cách chọn, a có 5 cách chọn \Rightarrow3 \times 5 = 15 số.

    Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A4 \times 8 \times 7 \times 6
\times 5 = 6720 số.

    Suy ra có tất cả 6720 - 15 =
6705 số cần tìm.

  • Câu 16: Thông hiểu

    Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số vé gồm 5 chữ số khác nhau?

    Gọi số in trên vé có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}}

    Số cách chọn a_{1} là 10 (a_{1} có thể là 0).

    Số cách chọn a_{2} là 9.

    Số cách chọn a_{3} là 8.

    Số cách chọn a_{4} là 7.

    Số cách chọn a_{5} là 6.

    Vậy có 10.9.8.7.6 = 30240 cách

  • Câu 17: Vận dụng

    Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).

    Thứ 2: có 12 cách chọn bạn đi thăm

    Thứ 3: có 12 cách chọn bạn đi thăm

    Thứ 4: có 12 cách chọn bạn đi thăm

    Thứ 5: có 12 cách chọn bạn đi thăm

    Thứ 6: có 12 cách chọn bạn đi thăm

    Thứ 7: có 12 cách chọn bạn đi thăm

    Chủ nhật: có 12 cách chọn bạn đi thăm

    Vậy theo quy tắc nhân, có 12^{7} =
35831808 (kế hoạch).

  • Câu 18: Nhận biết

    Tìm hệ số của số hạng chứa x^{3} trong khai triển nhị thức Newton \left( \frac{2}{3}x + \frac{1}{4}
ight)^{5}?

    Ta có:

    \left( \frac{2}{3}x + \frac{1}{4}
ight)^{5} = \frac{32}{243}x^{5} + \frac{20}{81}x^{4} +
\frac{5}{27}x^{3} + \frac{5}{72}x^{2} + \frac{3}{384}x +
\frac{1}{1024}

    Vậy hệ số của số hạng chứa x^{3} trong khai triển nhị thức là: \frac{5}{27}.

  • Câu 19: Vận dụng

    Tính tổng các chữ số gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5?

    Có 120 số có 5 chữ số được lập từ 5 chữ số đã cho.

    Bây giờ ta xét vị trí của một chữ số trong 5 số 1, 2, 3, 4, 5 chẳng hạn ta xét số 1. Số 1 có thể xếp ở 5 vị trí khác nhau, mỗi vị trí có 4!=24 số nên khi ta nhóm các các vị trí này lại có tổng là : 24\left( 10^{4} + 10^{3} + 10^{2} + 10 + 1 ight)
= 24.11111.

    Vậy tổng các số có 5 chữ số là : 24.11111(1 + 2 + 3 + 4 + 5) =
3999960.

  • Câu 20: Nhận biết

    Biết rằng khai triển nhị thức Newton (x + 2)^{n};\left( n\mathbb{\in N}
ight) có tất cả 6 số hạng. Hãy xác định n?

    Vì trong khai triển nhị thức Newton (x +
2)^{n};\left( n\mathbb{\in N} ight) đã cho có tất cả 6 số hạng nên n + 1 = 6 \Rightarrow n =
5

    Vậy n = 5 là giá trị cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo