Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 2: Thông hiểu

    Hệ số của x^{3} trong khai triển 3x^{3} + (1 + x)^{5} bằng:

    Ta có:

    {(1 + x)^5} = \sumolimits_{k = 0}^5 {C_5^k{{.1}^{5 - k}}.{x^k}}

    Hệ số của x3 trong khai triển {(1 + x)^5} là: C_5^3{.1^{5 - 3}} = 10

    => Hệ số của x^{3} trong khai triển 3x^{3} + (1 + x)^{5} bằng: 3 + 10 = 13

  • Câu 3: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có ít nhất 1 nam?

    Chọn ban điều hành gồm 3 học sinh không có học sinh nam nào có C_{15}^{3} = 455 cách

    Số cách chọn ban điều hành gồm 3 học sinh có ít nhất 1 nam có: 9425 cách.

  • Câu 4: Nhận biết

    Từ các số 1, 2, 3, 4, 5. Hỏi có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau đôi một?

    Mỗi cách lập số tự nhiên có 5 chữ số khác nhau đôi một hoán vị của 5 phần tử.

    Vậy có 5! = 120số cần tìm.

  • Câu 5: Nhận biết

    Trong khai triển nhị thức Newton (3x - 2)^{5}, hệ số của số hạng chứa x^{3} bằng:

    Hệ số của số hạng chứa x^{3} trong khai triển (3x - 2)^{5} là: C_{5}^{3}.3^{3}.( - 2)^{2} =
1080.

  • Câu 6: Thông hiểu

    Hệ số lớn nhất trong khai triển \left( \frac{1}{4} + \frac{3}{4}x
ight)^{4}là:

    Ta có \left( \frac{1}{4} + \frac{3}{4}x
ight)^{4} = \sum_{k = 0}^{4}{C_{4}^{k}.\left( \frac{1}{4} ight)^{4 -
k}.\left( \frac{3}{4} ight)^{k}}

    = \frac{1}{256} + \frac{3}{64}x +
\frac{27}{128}x^{2} + \frac{27}{64}x^{3} +
\frac{81}{256}x^{4}

    Vậy hệ số lớn nhất trong khai triển là \frac{27}{64}.

  • Câu 7: Nhận biết

    Tìm hệ số của x^{7} trong khai triển (1 + x)^{10}.

    Số hạng tổng quát là: T_{k + 1} =
C_{10}^{k}.x^{k}.

    Số hạng chứa x^{7} trong khai triển (1 + x)^{10} là: T_{8} = C_{10}^{8}.x^{7} nên hệ số là 45.

  • Câu 8: Nhận biết

    Tìm số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có khai triển: \left( x +
\frac{1}{x^{2}} ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
k}\left( x^{- 2} ight)^{k}} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
3k}}.

    Số hạng tổng quát trong khai triển: C_{40}^{k}x^{40 - 3k}

    Số hạng chứa x^{31} ứng với: 40 - 3k = 31 \Leftrightarrow k =
3

    Vậy số hạng chứa x^{31} là: C_{40}^{3}x^{31}.

  • Câu 9: Thông hiểu

    Tổng tất cả các nghiệm của phương trình P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight) bằng:

    Điều kiện xác định: x\mathbb{\in N};x
\geq 2

    Ta có:

    P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight)

    \Leftrightarrow x!.\frac{x!}{(x - 2)!} +
72 = 6\left\lbrack 2x! + \frac{x!}{(x - 2)!} ightbrack

    \Leftrightarrow x!.x(x - 1) + 72 =
6\left\lbrack 2.x! + 2(x - 1) ightbrack

    \Leftrightarrow x(x - 1)(x! - 6) + 12(6
- x!) = 0

    \Leftrightarrow (x! - 6)\left\lbrack x(x
- 1) - 12 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x! - 6 = 0 \\
x^{2} - x - 12 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3(tm) \\
\left\lbrack \begin{matrix}
x = - 3(ktm) \\
x = 4(tm) \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vật tổng các nghiệm phương trình là: T =
3 + 4 = 7

  • Câu 10: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 11: Vận dụng

    Trong khai triển (1 - 2x)^{20} = a_{0} + a_{1}x + a_{2}x^{2} + \
...\  + a_{20}x^{20}. Tính giá trị a_{0} - a_{1} + a_{2}

    Ta có (1 - 2x)^{20} = \sum_{k =
0}^{20}C_{20}^{k}( - 2)^{k}x^{k}, (k \in Z) \Rightarrow a_{0} = C_{20}^{0}, a_{1} = - 2.C_{20}^{1}, a_{2} = ( - 2)^{2}C_{20}^{2} =
4C_{20}^{2}.

    Vậy a_{0} - a_{1} + a_{2} = C_{20}^{0} +
2C_{20}^{1} + 4C_{20}^{2} = 801.

  • Câu 12: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 5 chữ số đôi một khác nhau và tận cùng bằng một chữ số khác 3.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa yêu cầu bài toán.

    Chọn a_{5} \in X\backslash\left\{ 3
ight\} có: 8 cách.

    Chọn a_{1} \in X\backslash\left\{ a_{5}
ight\} có: 8 cách.

    Chọn a_{2} \in X\backslash\left\{
a_{1};a_{5} ight\} có: 7 cách.

    Chọn a_{3} \in X\backslash\left\{
a_{1};a_{5};a_{2} ight\} có: 6 cách.

    Chọn a_{4} \in X\backslash\left\{
a_{1};a_{5};a_{2};a_{3} ight\} có: 5 cách.

    Theo quy tắc nhân có: 8.8.7.6.5 =
13440 số.

  • Câu 13: Nhận biết

    Có bao nhiêu số tự nhiên có hai chữ số mà cả hai chữ số đó đều lẻ?

    - Gọi số tự nhiên có hai chữ số cần lập thỏa mãn yêu cầu bài toán là \overline{ab} (a, b ∈ {1;3;5;7;9})

    + a: có 5 cách chọn

    + b: có 5 cách chọn.

    Dó đó có: 5 x 5 = 25 cách lập số có 2 chữ số mà cả hai chữ số đều lẻ.

  • Câu 14: Nhận biết

    Cho tập A gồm 12 phần tử. Số tập con có 4 phần tử của tập A là:

    Theo định nghĩa tổ hợp. “ Giả sử tập An phần tử (n
\geq 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho”.

    Do đó theo yêu cầu bài toán số tập con có 4 phần tử của tập A là C_{12}^{4}.

  • Câu 15: Thông hiểu

    Có 3 người đàn ông, 2 người đàn bà và 1 đứa trẻ được xếp ngồi vào 6 cái ghế xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho đứa trẻ ngồi giữa hai người đàn bà?

    Ta đánh số thứ tự cho 6 chiếc ghế từ số 1 đến số 6

    Ta thực hiện việc xếp 6 người vào 6 chiếc ghế sao cho đứa trẻ ngồi giữa hai người đàn bà như sau:

    Xếp đứa trẻ ngồi vào 1 trong các ghế có số thứ tự từ 2 đến 5 có 4 cách.

    Xếp hai người đàn bà vào 2 ghế bên cạnh đứa trẻ có 2 cách.

    Xếp 3 người đàn ông vào 3 ghế còn lại: có 3! cách.

    Áp dụng quy tắc nhân, có tất cả: 4.2.6 =
48 cách.

  • Câu 16: Vận dụng

    Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chia hết cho 5?

    x chia hết cho 5 nên d chỉ có thể là 5 \Rightarrow có 1 cách chọn d.

    Có 6 cách , 5 cách chọn b và 4 cách chọn c.

    Vậy có 1.6.5.4 = 120 số thỏa yêu cầu bài toán.

  • Câu 17: Nhận biết

    Một người có 7 áo trong đó có 3 áo trắng và 5 cà vạt trong đó có 2 cà vạt vàng. Hỏi người đó có bao nhiêu cách chọn bộ áo và cà vạt nếu chọn áo nào cũng được và cà vạt nào cũng được?

    Số cách chọn 1 một bộ áo và cà vạt là: 5.7 = 35

  • Câu 18: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 3 chữ số lẻ?

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Vị trí A: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.

    Vị trí B: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.

    Vị trí C: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.

    Áp dụng quy tắc nhân, có 5.5.5 = 125 (số).

  • Câu 19: Vận dụng

    Cho tập A =
\left\{ 0,1,2,3,4,5,6 ight\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.

    Gọi x = \overline{abcde} là số cần lập, e \in \left\{ 0,5 ight\},a eq
0

    \bullet e = 0 \Rightarrow e có 1 cách chọn, cách chọn a,b,c,d:6.5.4.3

    Trường hợp này có 360 số

    e = 5 \Rightarrow e có một cách chọn, số cách chọn a,b,c,d:5.5.4.3 =
300

    Trường hợp này có 300 số.

    Vậy có 660 số thỏa yêu cầu bài toán.

  • Câu 20: Nhận biết

    Bạn Anh muốn qua nhà bạn Bình để rủ Bình đến nhà bạn Châu chơi. Từ nhà Anh đến nhà Bình có 3con đường. Từ nhà Bình đến nhà Châu có 5con đường. Hỏi bạn Anh có bao nhiêu cách chọn đường đi từ nhà mình đến nhà bạn Châu.

    Từ nhà Anh đến nhà Bình có 3 cách chọn 1 con đường.

    Từ nhà bạn Bình đến nhà Châu có 5 cách chọn 1 con đường.

    Theo quy tắc nhân, số cách chọn đường đi từ nhà Anh đến nhà Châu là 5.3 = 15.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo