Cho tập
. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.
Vì lẻ và không chia hết cho 5 nên
có 3 cách chọn
Số các chọn các chữ số còn lại là:
Vậy số thỏa yêu cầu bài toán.
Cho tập
. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.
Vì lẻ và không chia hết cho 5 nên
có 3 cách chọn
Số các chọn các chữ số còn lại là:
Vậy số thỏa yêu cầu bài toán.
Cho
. Từ tập hợp này lập được bao nhiêu số tự nhiên có
chữ số đôi một khác nhau?
Mỗi số tự nhiên tự nhiên có chữ số khác nhau được lập từ tập
là hoán vị của
phần tử.
Vậy có số cần tìm.
Tìm hệ số của số hạng chứa
trong khai triển
, biết rằng
là số tổ hợp chập
của
phần tử).
Xét phương trình
Điều kiện:
Với ta có:
Số hạng tổng quát của khai triển là
Cho hệ số của số hạng chứa
trong khai triển là
.
Tổng các hệ số trong khai triển nhị thức Newton của
bằng:
Ta có:
Cho ta được:
Vậy tổng hệ số trong khai triển đã cho bằng -1.
Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?
Số cách chọn một quyển sách là 8 cách.
Số cách chọn một cái bút là 10 cách.
=> Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách.
Biết hệ số của
trong khai triển nhị thức Newton của
là
. Xác định giá trị
?
Số hạng thứ trong khai triển
là:
với
và
Số hạng chứa ứng với
Ta có:
Vậy .
Khai triển nhị thức Newton
ta được kết quả là:
Ta có:
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Hệ số
trong khai triển nhị thức
bằng:
Hệ số của trong khai triển
là:
.
Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách chọn 2 người sao cho luôn có 2 màu áo khác nhau.
Trường hợp 1: 1 áo vàng + 1 áo đỏ
Có: (cách).
Trường hợp 2: 1 áo đỏ + 1 áo xanh
Có: (cách).
Trường hợp 3: 1 áo xanh + 1 áo vàng
Có: (cách)
Vậy có (cách).
Một tổ gồm n học sinh, biết rằng có 210 cách chọn 3 học sinh trong tổ để làm ba việc khác nhau. Số n thỏa mãn hệ thức nào dưới đây?
Chọn một học sinh để làm việc thứ nhất, có n cách chọn.
Chọn một học sinh để làm việc thứ hai có n − 1 cách chọn.
Chọn một học sinh để làm việc thứ ba có n − 2 cách chọn.
Do đó có n(n−1)(n−2) = 210 cách chọn.
Cho tập hợp các chữ số tự nhiên
. Có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau và chia hết cho 5?
Gọi số tự nhiên có 4 chữ số là: .
Tổng quát:
Số cách chọn là 2 cách chọn.
Số cách chọn a là 6 cách chọn.
Số cách chọn b là 5 cách chọn.
Số cách chọn c là 4 cách chọn.
Áp dụng quy tắc nhân ta có: số
Vi phạm:
a = 0 có 1 cách chọn.
d = 5 có 1 cách chọn.
b có 5 cách chọn.
c có 4 cách chọn.
Áp dụng quy tắc nhân: số
Số các số cần tìm là: số.
Cho tập
. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Viết khai triển theo công thức nhị thức Niu-tơn
.
Ta có:
Hay .
Cho tập hợp
gồm
phần tử. Số các tổ hợp chập
của
phần tử từ tập hợp
(với
) được xác định bởi công thức là:
Số các tổ hợp chập của
phần tử từ tập hợp
(với
) được xác định bởi công thức là:
.
Cho tập
. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?
Gọi số cần tìm là số dạng . Vì
chia hết cho 3 suy ra
.
Khi đó bộ .
Với bộ suy ra có
số cần tìm.
Tương tự với các bộ số còn lại.
Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?
Gọi số cần tìm có dạng
Trường hợp 1: . Có 1 số thỏa mãn yêu cầu bài toán.
Trường hợp 2:
a có 1 cách chọn.
b có 2 cách chọn.
c có 3 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Trường hợp 3:
a có 1 cách chọn.
b có 1 cách chọn.
c có 2 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
Trường hợp 4: a < 2.
a có 1 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
⇒ Theo quy tắc nhân ta có: (số).
⇒ Vậy có (số).
Cho tập hợp số:
.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.
Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là
,
,
,
,
,
.
Vậy số các số cần lập là: số.
Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.
Trường hợp 1: An và Bình không có mặt trong tổ công tác:
Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có cách.
Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:
Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có cách
Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có cách.
Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng
Như vậy có tất cả số cách là: cách
Từ các chữ số
,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm
chữ số đôi một khác nhau?
Mỗi số tự nhiên gồm chữ số khác nhau được lập từ các số
,
,
,
,
là một hoán vị của
phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là
(số).