Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n không chia hết cho 10?

    Gọi tập X = \left\{ 0;1;2;3;4;5;6;7;8;9
ight\}n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa mãn yêu cầu:

    Chọn a_{1} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Chọn a_{2} \in X có: 10 cách.

    Chọn a_{3} \in X có: 10 cách.

    Chọn a_{4} \in X có: 10 cách.

    Chọn a_{5} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Theo quy tắc nhân có: 9.10.10.10.9 =
81000 số.

  • Câu 2: Nhận biết

    Khai triển nhị thức (2x + 3)^{4} ta được kết quả là:

     Ta có: (2x + 3)^{4} =16x^{4} + 96x^{3} + 216x^{2} + 216x + 81.

  • Câu 3: Nhận biết

    Khối lớp 11 có 300 học sinh nam và 250 học sinh nữ. Nhà trường cần chọn hai học sinh làm đại diện cho khối 11 trong đó có 1 học sinh nam và 1 học sinh nữ. Số cách chọn là:

    Áp dụng quy tắc nhân ta có số cách chọn 1 học sinh nam và 1 học sinh nữ là:

    300.250 = 75000 cách chọn.

  • Câu 4: Nhận biết

    3 cây bút đỏ, 4 cây bút xanh trong một hộp bút. Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?

    Số cách lấy ra 1 cây bút là màu đỏ có 3 cách.

    Số cách lấy ra 1 cây bút là màu xanh có 4 cách.

    Theo quy tắc cộng, số cách lấy ra 1 cây bút từ hộp bút là: 3 + 4 = 7 cách.

    Vậy có 7 cách lấy 1 cây bút từ hộp bút.

  • Câu 5: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số?

    Cách 1: Số có 3 chữ số là từ 100 đến 999 nên có 999 - 100 + 1 = 900số.

    Cách 2:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a9 cách chọn

    b10 cách chọn

    c10 cách chọn

    Vậy có: 9.10.10 = 900 số.

  • Câu 6: Vận dụng

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 7: Nhận biết

    Cho khai triển \left( x + \frac{2}{\sqrt{x}}
ight)^{6}với x > 0. Tìm hệ số của số hạng chứa x^{3} trong khai triển trên.

    Ta có: \left( x + \frac{2}{\sqrt{x}}
ight)^{6} = \sum_{k = 0}^{6}{C_{6}^{k}x^{6 - k}\left(
\frac{2}{\sqrt{x}} ight)^{k} = \sum_{k = 0}^{6}{2^{k}C_{6}^{k}x^{6 -
\frac{3k}{2}}}}.

    Số hạng chứa x^{3} ứng với \mathbf{6}\mathbf{-}\frac{\mathbf{3}\mathbf{k}}{\mathbf{2}}\mathbf{=}\mathbf{3}\mathbf{\Rightarrow
k =}\mathbf{2}. Vậy hệ số của số hạng chứa x^{3} bằng 2^{2}.C_{6}^{2} = 60.

  • Câu 8: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a + b (cách) (theo quy tắc nhân)

  • Câu 9: Nhận biết

    Từ các chữ số 1, 2, 3, 4, 5. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Mỗi số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5 là một hoán vị của 5 phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là P_{5} = 5! =
120 (số).

  • Câu 10: Vận dụng

    Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.

    Vì chữ số đứng đầu chẵn nên a_{1}4 cách chọn, chữ số đứng cuối lẻ nên a_{8} có 4 cách chọn. Các số còn lại có 6.5.4.3.2.1 cách chọn

    Vậy có 4^{2}.6.5.4.3.2.1 = 11520 số thỏa yêu cầu bài toán.

  • Câu 11: Vận dụng

    Tìm số hạng không chứa x trong khai triển nhị thức Newton của \left( 2x^{2} - \frac{3}{x}
ight)^{n} (x eq 0). Cho biết 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + nC_{n}^{n} = 256n (C_{n}^{k} là số tổ hợp chập k của n phần tử).

    Xét khai triển (1 + x)^{n} = C_{n}^{0} +
C_{n}^{1}x + C_{n}^{2}x^{2} + C_{n}^{3}x^{3} + ... +
C_{n}^{n}x^{n} (1)

    Đạo hàm hai vế của (1) ta được: n(1 + x)^{n - 1} = C_{n}^{1} + 2C_{n}^{2}x +
3C_{n}^{3}x^{2} + ... + nC_{n}^{n}x^{n - 1} (2)

    Trong công thức (2) ta cho x = 1 ta được:

    n2^{n - 1} = C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + nC_{n}^{n} \Leftrightarrow n.2^{n - 1} = 256n \Leftrightarrow 2^{n - 1} = 256 \Leftrightarrow n = 9.

    Khi đó, \left( 2x^{2} - \frac{3}{x}
ight)^{n} = \left( 2x^{2} - \frac{3}{x} ight)^{9} = \sum_{n =
0}^{9}{C_{9}^{k}( - 3)^{k}2^{9 - k}.x^{18 - 3k}}.

    Do đó số hạng không chứa x trong khai triển \left( 2x^{2} - \frac{3}{x}
ight)^{9} nếu 18 - 3k =
0 hay k = 6.

    Suy ra số hạng cần tìm là C_{9}^{6}( -
3)^{6}2^{3} = 489888.

  • Câu 12: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 13: Thông hiểu

    Tổng hệ số của x^{3}x^{2} trong khai triển (1 + 2x)^{4} là:

     Ta có: (1+2x)^4=16{x^4} + 32{x^3} + 24{x^2} + 8x + 1.

    Tổng hệ số của x^3x^2 bằng 32+24=56.

  • Câu 14: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 15: Nhận biết

    6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Đếm số cách xếp sao cho hai thầy giáo không đứng cạnh nhau?

    Xếp 8 người thành hàng ngang có P_{8} cách.

    Xếp 8 người thành hàng ngang sao cho 2 thầy giáo đứng cạnh nhau có 7.2!.6! cách.

    Vậy số cách xếp cần tìm là. P_{8} -
7.2!.6! = 30240 cách.

  • Câu 16: Thông hiểu

    Giá trị của n bằng bao nhiêu, biết \frac{5}{C_{5}^{n}}-\frac{2}{C_{6}^{n}}=\frac{14}{C_{7}^{n}}

     Điều kiện: n \le 5.

    Thay n=3 vào phương trình, ta được \frac{5}{C_{5}^{3}}-\frac{2}{C_{6}^{3}}=\frac{14}{C_{7}^{3}}\Leftrightarrow \frac{2}{5} = \frac{2}{5} (đúng). Do đó n=3 là nghiệm của phương trình.

  • Câu 17: Nhận biết

    Cho biểu thức (m
+ n)^{5}, khi khai triển nhị thức đã cho ta được bao nhiêu số hạng?

    Trong khai triển nhị thức Newton (m +
n)^{5}5 + 1 = 6 số hạng.

  • Câu 18: Thông hiểu

    Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện C_{m}^{2}=153 và C_{m}^{n}=C_{m}^{n+2}. Khi đó m + n bằng

    Điều kiện: m,n \in \mathbb{N},m \geqslant 2,0 \leqslant n < m

    Ta có: C_m^n = C_m^{m - n}  

    \begin{matrix}  C_m^n = C_m^{n + 2} \hfill \\   \Leftrightarrow C_m^{m - n} = C_m^{n + 2} \hfill \\   \Rightarrow m - n = n + 2 \hfill \\   \Rightarrow n = \dfrac{{m - 2}}{2} \hfill \\ \end{matrix}

    Mặt khác ta có:

     \begin{matrix}  C_m^2 = 153 \hfill \\   \Leftrightarrow \dfrac{{m\left( {m - 1} ight)\left( {m - 2} ight)!}}{{2!\left( {m - 2} ight)!}} = 153 \hfill \\   \Leftrightarrow m\left( {m - 1} ight) = 306 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 18\left( {tm} ight)} \\   {m =  - 17\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => n=8

    vậy tổng m và n là: 18 + 8 = 26.

     

  • Câu 19: Thông hiểu

    Biết hệ số của số hạng chứa x^{2} trong khai triển (1 + 4x)^{n}3040. Số tự nhiên n bằng bao nhiêu?

    Ta có: (1 + 4x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}(4x)^{k}} = \sum_{k =
0}^{n}{C_{n}^{k}4^{k}x^{k}}.

    Hệ số của số hạng chứa x^{2} là: C_{n}^{2}4^{2}.

    Giả thiết suy ra C_{n}^{2}4^{2} = 3040\Leftrightarrow C_{n}^{2} = 190 \Leftrightarrow \frac{n(n - 1)}{2} = 190\Leftrightarrow n^{2} - n - 380 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}n = 20\ \ (t/m) \ = - 19\ (loai) \\\end{matrix} ight.

  • Câu 20: Thông hiểu

    Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số 1 xếp kề nhau?

    Gọi 11111 là số a.

    Vậy ta cần sắp các số a, 2, 3, 4, 5.

    ⇒ Số cách sắp xếp số thỏa mãn là: 1.2.3.4.5 = 120 (số).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo