Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong khai triển nhị thức (2x^{2}+\frac{1}{x})^{n} hệ số của x^{3}2^{2}C_{n}^{1}. Giá trị của n là

    Khai triển biểu thức như sau:

    \begin{matrix}  {\left( {2{x^2} + \dfrac{1}{x}} ight)^n} = \sum\limits_{k = 0}^n {C_n^k.{{\left( {2{x^2}} ight)}^{n - k}}.{{\left( {\dfrac{1}{x}} ight)}^k}}  \hfill \\   = \sum\limits_{k = 0}^n {C_n^k{{.2}^{n - k}}.{x^{2\left( {n - k} ight) - k}}}  \hfill \\   = \sum\limits_{k = 0}^n {C_n^k{{.2}^{n - k}}.{x^{2n - 3k}}}  \hfill \\ \end{matrix}

    Theo bài ra ta có:

    Hệ số của x^{3}2^{2}C_{n}^{1} khi đó: k = 1

    n - k = 3 \Rightarrow n = 3

  • Câu 2: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12

    Chọn một bạn để xếp vào vị trí ghế số 1 có 12 cách.

    Chọn một bạn để xếp vào vị trí ghế số 7 để khác giới với bạn vị trí ghế số 1 có 6 cách.

    Chọn một bạn để xếp vào vị trí ghế số 2 có 10 cách.

    Chọn một bạn để xếp vào vị trí ghế số 8 để khác giới với bạn vị trí ghế số 1 có 5 cách.

    Cứ tuân theo cách xếp như vậy, ta có số cách xếp là: 12.10.8.6.4.2.6.5.4.3.2 = 33177600

  • Câu 3: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có ít nhất 1 nam?

    Chọn ban điều hành gồm 3 học sinh không có học sinh nam nào có C_{15}^{3} = 455 cách

    Số cách chọn ban điều hành gồm 3 học sinh có ít nhất 1 nam có: 9425 cách.

  • Câu 4: Nhận biết

    Trong menu của một nhà hàng gồm 5 món mặn, 5 món tráng miệng và 3 loại nước uống. Thực khách đến ăn sẽ được lên thực đơn gồm 1 món mặn, 1 món tráng miệng và 1 loại nước uống. Số thực đơn có thể có là:

    Chọn món mặn có 5 cách chọn.

    Số cách chọn món tráng miệng là 5 cách.

    Số cách chọn một loại nước uống là 3 cách.

    Theo quy tắc nhân ta có: 5.5.3 = 75 (cách).

  • Câu 5: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn C ngồi chính giữa là:

    Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp A;B;C;D;E

  • Câu 6: Thông hiểu

    Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?

    Gọi số cần tìm có dạng \overline{abc};\left( a,b,c \in \left\{ 1;2;5;7;8
ight\} ight)

    Trường hợp 1: a = 2;b = 7;c = 8. Có 1 số thỏa mãn yêu cầu bài toán.

    Trường hợp 2: a = 2;b < 7

    a có 1 cách chọn.

    b có 2 cách chọn.

    c có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.2.3 =
6 (số).

    Trường hợp 3: a = 2;b = 7;c <
8

    a có 1 cách chọn.

    b có 1 cách chọn.

    c có 2 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.1.2 =
2 (số).

    Trường hợp 4: a < 2.

    a có 1 cách chọn.

    b có 4 cách chọn.

    c có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.3.4 =
12 (số).

    ⇒ Vậy có 1 + 6 + 2 + 12 = 21 (số).

  • Câu 7: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a.b (cách).

  • Câu 8: Thông hiểu

    Có bao nhiêu cách xếp 8 người vào một bàn tròn?

    Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! cách xếp.

    Vậy có 1.7! = 5040 cách xếp

  • Câu 9: Nhận biết

    Tìm hệ số h của số hạng chứa x^{5} trong khai triển \left( x^{2} + \frac{2}{x}
ight)^{7}.

    Ta có: \left( x^{2} + \frac{2}{x}
ight)^{7} = {\sum_{k = 0}^{7}{C_{7}^{k}\left( x^{2} ight)^{k}\left(
\frac{2}{x} ight)}}^{7 - k} = \sum_{k = 0}^{7}{C_{7}^{k}.2^{7 -
k}.x^{3k - 7}}

    Ta có: 3k - 7 = 5, suy ra k = 4.

    Vậy hệ số h của số hạng chứa x^{5} trong khai triển\left( x^{2} + \frac{2}{x} ight)^{7}h = C_{7}^{4}.2^{3} = 280.

  • Câu 10: Vận dụng

    Tìm hệ số của số hạng chứa x^{6} trong khai triển \left( 2x^{2} - \frac{3}{x} ight)^{n}(x eq
0), biết rằng \frac{2}{C_{n}^{2}} +
\frac{14}{3C_{n}^{3}} = \frac{1}{n} \left( C_{n}^{k} ight. là số tổ hợp chập k của n phần tử).

    Xét phương trình \frac{2}{C_{n}^{2}} +
\frac{14}{3C_{n}^{3}} = \frac{1}{n} (1)

    Điều kiện: n \geq 3,\ n\mathbb{\in
N}

    (1) \Leftrightarrow \frac{2.(n -
2)!.2!}{n!} + \frac{14(n - 3)!.3!}{3.n!} = \frac{1}{n} \Leftrightarrow
\frac{4}{n(n - 1)} + \frac{28}{n(n - 1)(n - 2)} =
\frac{1}{n}

    \Leftrightarrow \frac{4}{n - 1} +\frac{28}{(n - 1)(n - 2)} = 1 \Leftrightarrow 4(n - 2) + 28 = (n - 1)(n- 2)

    \Leftrightarrow n^{2} - 7n - 18 = 0 \Leftrightarrow \left\lbrack\begin{matrix}n = 9 \ = - 2\ (l) \\\end{matrix} ight.

    Với n = 9 ta có: \left( 2x^{2} - \frac{3}{x} ight)^{9} = \sum_{k
= 0}^{9}{C_{9}^{k}.}\left( 2x^{2} ight)^{9 - k}.\left( - \frac{3}{x}
ight)^{k} = \sum_{k = 0}^{9}{C_{9}^{k}.}2^{9 - k}.( - 3)^{k}.x^{18 -
3k}

    Số hạng tổng quát của khai triển là C_{9}^{k}.2^{9 - k}.( - 3)^{k}.x^{18 -
3k}

    Cho 18 - 3k = 6 \Rightarrow k = 4
\Rightarrow hệ số của số hạng chứa x^{6} trong khai triển là C_{9}^{4}.2^{5}.( - 3)^{4} = 326592.

  • Câu 11: Thông hiểu

    Tìm số hạng không chứa x trong khai triển \left( x^{3} - \frac{1}{x}
ight)^{12}.

    Công thức số hạng thứ (k + 1) của khai triển \left( x^{3} - \frac{1}{x}
ight)^{12}là:

    T_{k} = C_{12}^{k}( - 1)^{k}\left( x^{3}
ight)^{12 - k}.\frac{1}{x^{k}} = C_{12}^{k}( - 1)^{k}{x^{3}}^{6 -
4k},0 \leq k \leq 12,k \in \mathbb{N}.

    Số hạng không chứa x ứng với 36 - 4k = 0 \Leftrightarrow k = 9 (thỏa mãn).

    Suy ra T_{7} = C_{12}^{9}( - 1)^{9} = -
220.

  • Câu 12: Nhận biết

    Trong khai triển nhị thức Newton của (1 + 3x)^{4}, số hạng thứ hai theo số mũ tăng dần của biến x là:

    Ta có:

    (1 + 3x)^{4} = C_{4}^{0} + C_{4}^{1}.3x
+ C_{4}^{2}.9x^{2} + ...

    C_{4}^{1}.3x = 12x

  • Câu 13: Nhận biết

    6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Đếm số cách xếp sao cho hai thầy giáo không đứng cạnh nhau?

    Xếp 8 người thành hàng ngang có P_{8} cách.

    Xếp 8 người thành hàng ngang sao cho 2 thầy giáo đứng cạnh nhau có 7.2!.6! cách.

    Vậy số cách xếp cần tìm là. P_{8} -
7.2!.6! = 30240 cách.

  • Câu 14: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5 ight\}. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 2 suy ra e = \left\{ 0;2;4 ight\}.

    TH1. Với e = 0, khi đó 5 \times 4 \times 3 \times 2 =
120 số.

    TH2. Với e = \left\{ 2;4
ight\}, khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn

    d.

    Suy ra có 4 \times 4 \times 3 \times 2
\times 2 = 192 số. Vậy có tất cả 120 + 192 = 312 số cần tìm.

  • Câu 15: Vận dụng

    Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)

    Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là A_{5}^{2}. Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là. 3!.A_{5}^{2}.4! =
2880.

  • Câu 16: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 17: Nhận biết

    Một đoàn tàu có bốn toa đỗ ở ga. Có bốn hành khách bước lên tàu. Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là:

    Mỗi hành khách có 4 cách chọn toa.

    Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là: 4.4.4.4 = 44 = 256.

  • Câu 18: Vận dụng

    Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần?

    Với một cách chọn 9 chữ số từ tập \left\{ 0,1,2,3,4,5,6,7,8,9
ight\} ta có duy nhất một cách xếp chúng theo thứ tự giảm dần.

    Ta có 10 cách chọn 9 chữ số từ tập \left\{ 0,1,2,3,4,5,6,7,8,9 ight\}.

    Do đó có 10 số tự nhiên cần tìm.

  • Câu 19: Nhận biết

    Hệ số của số hạng chứa x^{6}trong khai triển Newton \left( x - \frac{2}{x^{2}}
ight)^{15}là:

    \left( x - \frac{2}{x^{2}} ight)^{15}
= \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}\left( - \frac{2}{x^{2}}
ight)^{k}} = \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}( - 2)^{k}\left(
x^{- 2} ight)^{k} =}\sum_{k = 0}^{15}{C_{15}^{k}( - 2)^{k}x^{15 -
3k}}

    Số hạng tổng quát của khái triển T_{k +
1} = C_{15}^{k}( - 2)^{k}x^{15 - 3k}

    Số của số hạng chứa x^{6}: 15 - 3k = 6 \Leftrightarrow k = 3. Hệ số của số hạng chứa x^{6}C_{15}^{k}( - 2)^{k} =
C_{15}^{3}( - 2)^{3} = - 3640.

  • Câu 20: Thông hiểu

    Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn?

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 4 cách chọn (2,4,6,8)

    B: có 5 cách chọn (0,2,4,6,8)

    C: có 5 cách chọn (0,2,4,6,8)

    Vậy có 4.5.5 = 100 (số) có 3 chữ số và cả 3 chữ số đều chẵn.

     

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo