Tìm hệ số của số hạng chứa
trong khai triển nhị thức
, (biết
).
Số hạng tổng quát trong khai triển nhị thức .
.
chứa
.
Vậy hệ số của số hạng chứa trong khai triển nhị thức
bằng:
.
Tìm hệ số của số hạng chứa
trong khai triển nhị thức
, (biết
).
Số hạng tổng quát trong khai triển nhị thức .
.
chứa
.
Vậy hệ số của số hạng chứa trong khai triển nhị thức
bằng:
.
Số các số tự nhiên gồm
chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Một bài thi trắc nghiệm khách quan gồm 8 câu hỏi. Mỗi câu hỏi gồm 4 đáp án trả lời. Hỏi bài thi đó có tất cả bao nhiêu đáp án?
Mỗi câu hỏi gồm 4 đáp án, có 8 câu hỏi nên có: (đáp án). (quy tắc nhân)
Cho tập hợp
, lấy ngẫu nhiên 1 chữ số. Các kết quả thuận lợi cho C “biến cố lấy được chữ số lẻ” là:
Các kết quả thuận lợi cho biến cố lấy được chữ số lẻ là:
Cho tập
. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?
Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ
TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có:
TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có:
TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có:
Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: (số).
Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu?
Tổng số quả cầu trong hộp là 5 + 6 = 11
Mỗi cách lấy ngẫu nhiên 3 quả cầu trong 11 quả cầu trong hộp là tổ hợp chập 3 của 11 phần tử
Vậy số cách thỏa mãn yêu cầu bài toán là (cách).
Cho khai triển
. Giá trị của
bằng:
.
Thay vào
ta có:
.
Hệ số của
trong khai triển
là:
Theo giả thiết: .
Vậy hệ số của là
.
Giá trị của
bằng:
Ta có:
Biết rằng
. Chọn kết luận đúng?
Thay vào
ta được:
Hệ số của
trong khai triển
là:
Ta có: .
Hệ số của là 10.
Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.
TH1. Có đúng 1 học sinh khối 10: (cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)
TH2. Có đúng 2 học sinh khối 10: (cách).
Có
cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.
Có bao nhiêu vectơ khác vectơ được tạo thành từ 10 điểm phân biệt khác nhau?
Ta có vecto tạo thành từ hai điểm A, B ta được vecto và
.
Chọn hai điểm bất kì trong 10 điểm phân biệt là tổ hợp chập 2 của 10 phần tử.
=> Số vectơ khác vectơ được tạo thành từ 10 điểm phân biệt khác nhau là: vecto.
Giả sử bạn muốn màu áo sơ mi cỡ 39 hoặc 40. Áo cỡ 39 có 5 màu khác nhau, áo cỡ 40 có 4 màu khác nhau. Hỏi bạn có bao nhiêu sự lựa chọn (về màu và cỡ áo)?
Áo cỡ 39 có 5 cách chọn
Áo cỡ 40 có 4 cách chọn
Vậy có tất cả cách chọn về màu và cỡ áo.
Từ tập hợp các chữ số
có thể lập được bao nhiêu số tự nhiên có hai chữ số khác nhau?
Gọi số tự nhiên có hai chữ số
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Vậy số các số tự nhiên có thể tạo thành từ tập hợp các chữ số đã cho là số.
Cho khai triển
. Tìm hệ số
biết rằng ![]()
Ta có . Vậy
;
;
.
Theo bài ra nên ta có:
(thỏa mãn) hoặc
(loại).
Từ đó ta có .
Lớp 10A có 20 học sinh nam và 15 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra hai học sinh một nam, một nữ để thi đấu cầu lông đôi nam nữ.
Chọn 1 nam có: 20 cách
Chọn 1 nữ có: 15 cách
Vậy số cách chọn 1 nam và 1 nữ là: 20.15 = 300 (cách).
Số cách xếp 5 học sinh ngồi vào một bàn dài là:
Ta có số cách xếp 5 học sinh vào một bàn dài là số các hoán vị của học sinh đó. Vậy kết quả là:
.
Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.
Vì chữ số đứng đầu chẵn nên có
cách chọn, chữ số đứng cuối lẻ nên
có 4 cách chọn. Các số còn lại có
cách chọn
Vậy có số thỏa yêu cầu bài toán.
Giá trị của n bằng bao nhiêu, biết ![]()
Điều kiện: .
Thay vào phương trình, ta được
(đúng). Do đó
là nghiệm của phương trình.