Cho tập hợp các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau là:
Mỗi số tự nhiên có 3 chữ số khác nhau được lập từ tập hợp B là chỉnh hợp chập 3 của 5 nghĩa.
Suy ra có thể lập được số thỏa mãn yêu cầu đề bài.
Cho tập hợp các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau là:
Mỗi số tự nhiên có 3 chữ số khác nhau được lập từ tập hợp B là chỉnh hợp chập 3 của 5 nghĩa.
Suy ra có thể lập được số thỏa mãn yêu cầu đề bài.
Có bao nhiêu số tự nhiên nhỏ hơn
chia hết cho
và
.
Số các số tự nhiên lớn nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ hơn chia hết cho
và
là
.
Biết hệ số của
trong khai triển nhị thức Newton của
là
. Xác định giá trị
?
Số hạng thứ trong khai triển
là:
với
và
Số hạng chứa ứng với
Ta có:
Vậy .
Số các số tự nhiên gồm
chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Một người vào cửa hàng ăn, người đó chọn thực đơn. Trong đó gồm
món ăn trong
món ăn,
loại quả tráng miệng trong
loại quả tráng miệng và
loại nước uống trong
loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?
Chọn một món ăn có 5 cách.
Chọn một loại quả tráng miệng có 4 cách.
Chọn một loại nước uống có 3 cách.
Áp dụng quy tắc nhân, có 5.4.3 = 60 cách chọn thực đơn.
Tìm số hạng chứa
trong khai triển
. Cho biết
là số nguyên dương thỏa mãn hệ thức
.
Từ giả thiết ta suy ra .
Mặt khác: nên ta có:
Suy ra: .
Số hạng tổng quát trong khai triển là:
.
Hệ số của là
với
thỏa mãn:
.
Vậy hệ số của là
.
Số số hạng trong khai triển
là:
Số số hạng trong khai triển là: .
Từ khai triển biểu thức
thành đa thức. Tổng các hệ số của đa thức là:
Xét khai triển .
Gọi là tổng các hệ số trong khai triển thì ta có
.
Khai triển biểu thức
ta thu được kết quả là:
Ta có: .
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?
Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi riêng dãy?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Trường hợp 1: Các bạn nam ngồi dãy A, các bạn nữ ngồi dãy B
Số cách xếp là: cách.
Trường hợp 2: Các bạn nữ ngồi dãy A, các bạn nam ngồi dãy B
Số cách xếp là: cách.
Vậy số cách xếp là: cách.
Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ ngồi ở đầu và cuối dãy ghế?
2 nữ ngồi ở đầu và cuối dãy ghế có 2! cách.
3 nam ngồi ở 3 ghế giữa có 3! cách.
Vậy có cách xếp.
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
Gọi số cần tìm có dạng . Vì
chia hết cho 5 suy ra
.
TH1. Với suy ra có
số cần tìm.
TH2. Với , suy ra có
số cần tìm.
Vậy có tất cả 444 số cần tìm.
Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?
TH1: Chọn 7 người 18 người không là cặp vợ chồng:
TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng:
TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng:
Vậy số cách chọn thỏa mãn là: cách
Cho tập hợp
có
phần tử. Số tập con gồm
phần tử của
là:
Số tập con gồm phần tử của
chính là số tổ hợp chập
của
phần tử, nghĩa là bằng
.
Một tổ có
học sinh nữ và
học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên hai học sinh của tổ đó đi trực nhật biết cần có cả nam và nữ.
Chọn một học sinh nữ có 5 cách.
Chọn một học sinh nam có 6 cách.
Áp dụng quy tắc nhân, có 5.6 = 30 cách chọn hai học sinh có cả nam và nữ.
Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.
TH1. Có đúng 1 học sinh khối 10: (cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)
TH2. Có đúng 2 học sinh khối 10: (cách).
Có
cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.
Cho tập hợp
có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp
?
Mỗi tập con có 8 phần tử của tập hợp là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp
là.
.
Từ tập hợp các chữ số
có thể lập được bao nhiêu số lẻ có ba chữ số đôi một khác nhau và luôn có mặt số 2?
Gọi số cần tìm có dạng
Vì số cần tìm là số lẻ nên => Có 4 cách chọn
Xếp chữ số 2 vào hai vị trí còn lại => Có 2 cách sắp xếp.
Chọn chữ số còn lại từ => Có 5 cách chọn.
Vậy có thể lập được (số) thỏa mãn yêu cầu đề bài.
Tìm hệ số của số hạng chứa
trong khai triển nhị thức Newton
?
Ta có:
Vậy hệ số của số hạng chứa trong khai triển nhị thức là:
.