Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho kiểu gen AaBb. Giả sử quá trình giảm phân tạo giao tử bình thường và không xảy ra đột biến. Sơ đồ hình cây biểu thị sự hình thành giao tử được biểu diễn như hình bên.

    Số loại giao tử của kiểu gen AaBb

    Từ sơ đồ cây, số loại giao tử của kiểu gen AaBb là:

    Từ sơ đồ cây, ta thấy có 4 kết quả có thể xảy ra.

    => Số loại giao tử của kiểu gen AaBb là 4.

  • Câu 2: Thông hiểu

    Cho hai đường thẳng song song d và d’. Trên đường thẳng d lấy 10 điểm phân biệt, trên đường thẳng d’ lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 điểm vừa nói trên.

    Trường hợp 1: Lấy 2 điểm trên d và 1 điểm trên d’

    Trường hợp 2: Lấy 1 điểm trên d và 2 điểm trên d’.

    Số tam giác thỏa bài toán là: C_{10}^{2}.C_{15}^{1} + C_{10}^{1}.C_{15}^{2} =
1725 tam giác.

  • Câu 3: Nhận biết

    Tìm hệ số của số hạng chứa x^{10} trong khai triển của biểu thức \left( 3x^{3} - \frac{2}{x^{2}}
ight)^{5}.

    Ta có \left( 3x^{3} - \frac{2}{x^{2}}
ight)^{5} = \sum_{k = 0}^{5}{( - 1)^{k}.C_{5}^{k}.\left( 3x^{3}
ight)^{5 - k}.\left( \frac{2}{x^{2}} ight)^{k}} = \sum_{k = 0}^{5}{(
- 1)^{k}.C_{5}^{k}.3^{5 - k}.2^{k}}x^{15 - 5k}.

    Số hạng chứa x^{10} ứng với 15 - 5k = 10 \Leftrightarrow k =
1.

    Hệ số của số hạng chứa x^{10}( - 1)^{1}C_{5}^{1}.3^{4}.2^{1} = -
810.

  • Câu 4: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0,2,4,6,8 với điều các chữ số đó không lặp lại?

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a4 cách chọn

    b4 cách chọn

    c3 cách chọn

    Vậy có: 4.4.3 = 48 số.

  • Câu 5: Nhận biết

    Có tất cả bao nhiêu cách xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách?

    Mỗi cách sắp xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của 6 phần tử. Vậy số cách sáp xếp là 6!.

  • Câu 6: Thông hiểu

    Trong một hộp chứa 5 viên bi màu trắng đánh số từ 1 đến 5, 7 viên bi xanh đánh số từ 1 đến 7 và 9 viên bi vàng đánh số từ 1 đến 9. Chọn ngẫu nhiên hai viên bi. Số cách chọn được hai viên bi khác màu là:

    Chọn được 1 viên bi trắng + 1 viên bi xanh ta có: 5.7 = 35 cách chọn.

    Chọn được 1 viên bi trắng + 1 viên bi vàng ta có: 5.9 = 45 cách chọn.

    Chọn được 1 viên bi xanh + 1 viên bi vàng ta có: 7.9 = 63 cách chọn.

    Vậy số cách chọn được hai viên bi khác màu là 35 + 45 + 63 = 143 cách chọn.

  • Câu 7: Nhận biết

    Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?

     Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).

  • Câu 8: Thông hiểu

    Cho tập hợp M =
\left\{ 0;1;3;4;5;6;8 ight\}. Có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau từ các chữ số thuộc tập hợp M?

    Gọi số tự nhiên có ba chữ số là: \overline{abc};(a eq 0)

    TH1: c = 0

    Chữ số a có 6 cách chọn.

    Với mỗi cách chọn a có 5 cách chọn chữ số b

    => Số các số tạo thành là: 1 . 5 . 6 = 30 (số)

    TH2: c \in \left\{ 4;6;8
ight\} => Chữ số c có 3 cách chọn.

    Chữ số a có 5 cách chọn, với mỗi cách chọn a ta có 5 cách chọn b.

    => Số các số tạo thành là: 3 . 5 . 5 = 75 (số)

    Vậy có tất cả 30 + 75 = 105 (số) thỏa mãn yêu cầu đề bài.

  • Câu 9: Nhận biết

    Có bao nhiêu số hạng trong khai triển (6x + 4)^{4}?

    Trong khai triển nhị thức (6x +
4)^{4}n = 4 nên có 5 số hạng.

  • Câu 10: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

  • Câu 11: Nhận biết

    Tìm số hạng chứa x^{7} trong khai triển \left( x - \frac{1}{x} ight)^{13}.

    Ta có công thức của số hạng tổng quát:

    T_{k + 1} = C_{13}^{k}x^{13 - k}.\left(
- \frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - k}( - 1)^{k}x^{- k} =
C_{13}^{k}.( - 1)^{k}x^{13 - 2k}

    Số hạng chứa x^{7}khi và chỉ khi 13 - 2k = 7 \Leftrightarrow k =
3.

    Vậy số hạng chứa x^{7} trong khai triển là -
C_{13}^{3}x^{7}.

  • Câu 12: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 13: Nhận biết

    Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?

    Mỗi cách phân công \mathbf{3} bạn An, Bình, Công vào 3 chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của 3 phần tử. Vậy có 3!\ \  = \ \ 6 cách.

  • Câu 14: Thông hiểu

    Biết hệ số của x^{3} trong khai triển của {(1 - 3x)^n} là – 270. Giá trị của n là

    Khai triển biểu thức như sau:

    \begin{matrix}  {(1 - 3x)^n} = \sumolimits_{k = 0}^n {C_n^k.{{\left( 1 ight)}^{n - k}}.{{\left( { - 3x} ight)}^k}}  \hfill \\   = \sumolimits_{k = 0}^n {C_n^k.{{\left( { - 3} ight)}^k}.{x^k}}  \hfill \\ \end{matrix}

    Hệ số của x3 trong khai triển bằng -270

    => C_n^3.{\left( { - 3} ight)^3} =  - 270 \Rightarrow n = 5

  • Câu 15: Thông hiểu

    Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách chọn 2 người sao cho luôn có 2 màu áo khác nhau.

     Trường hợp 1: 1 áo vàng + 1 áo đỏ

    Có: C_3^1.C_4^1 = 12 (cách).

    Trường hợp 2: 1 áo đỏ + 1 áo xanh

    Có: C_4^1.C_5^1 = 20 (cách).

    Trường hợp 3: 1 áo xanh + 1 áo vàng

    Có: C_5^1.C_3^1 = 15 (cách)

    Vậy có 12+20+15=47 (cách).

  • Câu 16: Nhận biết

    Một người có 7 áo trong đó có 3 áo trắng và 5 cà vạt trong đó có 2 cà vạt vàng. Hỏi người đó có bao nhiêu cách chọn bộ áo và cà vạt nếu chọn áo nào cũng được và cà vạt nào cũng được?

    Số cách chọn 1 một bộ áo và cà vạt là: 5.7 = 35

  • Câu 17: Vận dụng

    Tìm n thuộc tập hợp số tự nhiên, biết rằng 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n (C_{n}^{k} là số tổ hợp chập k của n phần tử).

    Trước hết ta chứng minh công thức \frac{k}{n}C_{n}^{k} = C_{n - 1}^{k - 1} với 1 \leq k \leq nn \geq 2.

    Thật vậy, \frac{k}{n}C_{n}^{k} =
\frac{k}{n}.\frac{n!}{k!(n - k)!} = \frac{(n - 1)!}{(k - 1)!(n - k)!} =
C_{n - 1}^{k - 1}.(đpcm)

    Áp dụng công thức trên ta có

    1.C_{n}^{1} + 2.C_{n}^{2} + 3.C_{n}^{3}
+ ... + n.C_{n}^{n} = n\left( \frac{1}{n}.C_{n}^{1} +
\frac{2}{n}.C_{n}^{2} + \frac{3}{n}.C_{n}^{3} + ... +
\frac{n}{n}.C_{n}^{n} ight)

    = n\left( C_{n - 1}^{0} + C_{n - 1}^{1}
+ C_{n - 1}^{2} + ... + C_{n - 1}^{n - 1} ight) = n2^{n -
1}

    Theo đề 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n \Leftrightarrow n2^{n - 1} = 256n
\Leftrightarrow 2^{n - 1} = 256 \Leftrightarrow n = 9..

  • Câu 18: Vận dụng

    Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số 2011 chữ số và trong đó có ít nhất hai chữ số 9.

    Đặt X là các số tự nhiên thỏa yêu cầu bài toán.

    A ={ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}

    Với mỗi số thuộc A có m chữ số (m \leq 2008) thì ta có thể bổ sung thêm 2011 - m số 0 vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng \overline{a_{1}a_{2}...a_{2011}};\ a_{i} \in
\left\{ 0,1,2,3,...,9 ight\}

    A_{0} = \left\{ a \in A| ight.mà trong a không có chữ số 9}

    A_{1} = \left\{ a \in A| ight. mà trong a có đúng 1 chữ số 9}

    \bullet Ta thấy tập A có 1 + \frac{9^{2011} - 1}{9} phần tử

    \bullet Tính số phần tử của A_{0}

    Với x \in A_{0} \Rightarrow x =
\overline{a_{1}...a_{2011}};a_{i} \in \left\{ 0,1,2,...,8 ight\}\ i =
\overline{1,2010}a_{2011} = 9 -
r với r \in \lbrack 1;9brack,r
\equiv \sum_{i = 1}^{2010}a_{i}. Từ đó ta suy ra A_{0}9^{2010} phần tử.

    \bullet Tính số phần tử của A_{1}

    Để lập số của thuộc tập A_{1} ta thực hiện liên tiếp hai bước sau:

    Bước 1: Lập một dãy gồm 2010 chữ số thuộc tập \left\{ 0,1,2...,8
ight\} và tổng các chữ số chia hết cho 9. Số các dãy là 9^{2009}.

    Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9.

    Do đó A_{1}2010.9^{2009} phần tử.

    Vậy số các số cần lập là:

    1 + \frac{9^{2011} - 1}{9} - 9^{2010} -
2010.9^{2009} = \frac{9^{2011} - 2019.9^{2010} + 8}{9}.

  • Câu 19: Nhận biết

    Trên bàn có 5 quyển sách Toán khác nhau và 7 quyển sách Hóa khác nhau. Số cách chọn 2 quyển sách gồm đủ 2 loại Toán và Hóa bằng:

    Áp dụng quy tắc nhân ta có số cách chọn một quyển Toán và một quyển Hóa là: 5 . 7 = 35 cách chọn.

  • Câu 20: Thông hiểu

    Biến đổi biểu thức \left( 2 + \sqrt{3} ight)^{5} - \left( 2 -
\sqrt{3} ight)^{4} dưới dạng a +
b\sqrt{3};\left( a,b\mathbb{\in Z} ight). Tính giá trị biểu thức M = a - 2b + 500?

    Ta có:

    \left( 2 + \sqrt{3} ight)^{5} - \left(
2 - \sqrt{3} ight)^{4} = 265 - 265\sqrt{3}

    \Rightarrow \left\{ \begin{matrix}
a = 265 \\
b = 265 \\
\end{matrix} ight.\  \Rightarrow M = 235

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo