Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số?

    Cách 1: Số có 3 chữ số là từ 100 đến 999 nên có 999 - 100 + 1 = 900số.

    Cách 2:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a9 cách chọn

    b10 cách chọn

    c10 cách chọn

    Vậy có: 9.10.10 = 900 số.

  • Câu 2: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn C ngồi chính giữa là:

    Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp A;B;C;D;E

  • Câu 3: Thông hiểu

    Biến đổi biểu thức \left( 2 + \sqrt{3} ight)^{5} - \left( 2 -
\sqrt{3} ight)^{4} dưới dạng a +
b\sqrt{3};\left( a,b\mathbb{\in Z} ight). Tính giá trị biểu thức M = a - 2b + 500?

    Ta có:

    \left( 2 + \sqrt{3} ight)^{5} - \left(
2 - \sqrt{3} ight)^{4} = 265 - 265\sqrt{3}

    \Rightarrow \left\{ \begin{matrix}
a = 265 \\
b = 265 \\
\end{matrix} ight.\  \Rightarrow M = 235

  • Câu 4: Nhận biết

    Số các số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn là

    Giả sử số tự nhiên thỏa mãn yêu cầu bài toán là: \overline{ab}.

    - Chọn a có 4 cách: a ∈ {2;4;6;8}.

    - Chọn b có 5 cách: b ∈ {0;2;4;6;8}.

    Vậy có tất cả: 4.5 = 20 số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn.

  • Câu 5: Thông hiểu

    Một nhóm học sinh có 5 nam và 3 nữ. Hỏi có bao nhiêu cách sắp xếp các học sinh thành hàng dọc sao cho các bạn học sinh nam đứng liền nhau và các học sinh nữ đứng liền nhau?

    Để xếp 8 học sinh đã cho thành hàng dọc sao cho các học sinh nam đứng liền nhau và các học sinh nữ đứng liền nhau ta thực hiện các bước:

    Bước 1: Xếp vị trí cho nam và nữ: có 2 cách (5 nam đứng đầu hàng, 3 nữ đứng cuối hàng hoặc 5 nam đứng cuối hàng, 3 nữ đầu hàng).

    Bước 2: Xếp chỗ cho 5 nam vào 5 vị trí có 5! cách.

    Bước 3: Xếp chỗ cho 3 nữ vào 3 vị trí có 3! cách.

    Áp dụng quy tắc nhân ta có: 2.5!.3! =
1440 (cách).

  • Câu 6: Nhận biết

    Số hạng tử trong khai triển {(x - 2y)^4} bằng

    Số hạng tử trong khai triển {(x - 2y)^4} là: 4 + 1 = 5 hạng tử.

  • Câu 7: Thông hiểu

    Cho hai đường thẳng song song d và d’. Trên đường thẳng d lấy 10 điểm phân biệt, trên đường thẳng d’ lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 điểm vừa nói trên.

    Trường hợp 1: Lấy 2 điểm trên d và 1 điểm trên d’

    Trường hợp 2: Lấy 1 điểm trên d và 2 điểm trên d’.

    Số tam giác thỏa bài toán là: C_{10}^{2}.C_{15}^{1} + C_{10}^{1}.C_{15}^{2} =
1725 tam giác.

  • Câu 8: Thông hiểu

    Biết hệ số của x^{2} trong khai triển nhị thức Newton của (1 - 3x)^{n};\left( n\mathbb{\in N}
ight)135. Xác định giá trị n?

    Số hạng thứ k + 1 trong khai triển (1 - 3x)^{n} là:

    T_{k + 1} = C_{n}^{k}.( -
3)^{k}.x^{k} với 1 \leq k \leq
nn,k \in
\mathbb{N}^{*}

    Số hạng chứa x^{2} ứng với k = 2

    Ta có:

    C_{n}^{2}.( - 3)^{2} = 135
\Leftrightarrow C_{n}^{2} = 15

    \Leftrightarrow \frac{n!}{2!(n - 2)!} =
15 \Leftrightarrow n(n - 1) = 30

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = 6(TM) \\
n = - 5(L) \\
\end{matrix} ight.

    Vậy n = 6.

  • Câu 9: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 10: Thông hiểu

    Từ tập hợp các chữ số A = \left\{ 1,2,3,4,5,6 ight\} có thể lập được bao nhiêu số lẻ có bốn chữ số khác nhau?

    Gọi số tự nhiên có bốn chữ số cần tìm có dạng \overline{abcd};(a eq 0)

    Ta có: \overline{abcd} là số lẻ nên d là số lẻ. => Số cách chọn d có 3 cách.

    Tiếp theo chọn a có 5 cách chọn

    Sau đó chọn b có 4 cách chọn

    Cuối cùng chọn c có 3 cách chọn

    Vậy có thể lập được 3.5.4.3 =
180(số) thỏa mãn yêu cầu đề bài.

  • Câu 11: Thông hiểu

    Cho hai đường thẳng (d) gồm 5 điểm phân biệt và (d') gồm 7 điểm phân biệt. Biết rằng (d)//(d'). Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?

    Một tam giác được hình thành bởi ba điểm không thẳng hàng.

    TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)

    Số tam giác được tạo thành là: C_{5}^{1}.C_{7}^{2} (tam giác)

    TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)

    Số tam giác được tạo thành là: C_{5}^{2}.C_{7}^{1} (tam giác)

    Vậy số tam giác được tạo thành là C_{5}^{1}.C_{7}^{2} + C_{5}^{2}.C_{7}^{1} =
175.

  • Câu 12: Nhận biết

    Tìm hệ số của số hạng chứa x^{2} trong khai triển (x + 3)^{4}?

    Ta có: (x + 3)^{4} = x^{4} + 4x^{3}.3 +
6.x^{2}.3^{2} + 4.x.3^{3} + 3^{4}

    Hệ số chứa x^{2} trong khai triển là: 6.3^{2} = 54.

  • Câu 13: Nhận biết

    Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:

     Số tập con có 3 phần tử từ tập 5 phần tử là: C_5^3 = 10.

  • Câu 14: Vận dụng

    Với n là số nguyên dương thỏa mãn C_{n}^{1}+C_{n}^{2}=10 , hệ số của x^{5} trong khai triển của biểu thức bằng (x^{3}+\frac{2}{x})^{n}.

     Giải phương trình C_{n}^{1}+C_{n}^{2}=10

    Điều kiện n \ge2.

    Ta có: C_n^1 + C_n^2 = 10 \Leftrightarrow \frac{{n!}}{{1!(n - 1)!}} + \frac{{n!}}{{2!(n - 2)!}} = 10\Leftrightarrow n + \frac{1}{2}n(n - 1) = 10 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 4}\\{n =  - 5}\end{array}} ight..

    Vậy n=4.

    Ta có: (x^{3}+\frac{2}{x})^{4} =\frac{{{x^{16}} + 8{x^{12}} + 24{x^8} + 32{x^4} + 16}}{{{x^4}}}= {x^{12}} + 8{x^8} + 24{x^4} + 32 + \frac{{16}}{{{x^4}}}.

    Hệ số của x^5 trong khai triển bằng 0.

  • Câu 15: Nhận biết

    Giả sử bạn muốn màu áo sơ mi cỡ 39 hoặc 40. Áo cỡ 39 có 5 màu khác nhau, áo cỡ 40 có 4 màu khác nhau. Hỏi bạn có bao nhiêu sự lựa chọn (về màu và cỡ áo)?

    Áo cỡ 39 có 5 cách chọn

    Áo cỡ 40 có 4 cách chọn

    Vậy có tất cả 5 + 4 = 9cách chọn về màu và cỡ áo.

  • Câu 16: Nhận biết

    Kết quả của phép tính C_{6}^{2}-C_{6}^{3} là:

     Ta có: C_{6}^{2}-C_{6}^{3} =-5.

  • Câu 17: Vận dụng

    Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    +TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} +
C_{5}^{3}. Vậy số cách lập nhóm trong trường hợp này là. 2.\left( C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1}
+ C_{5}^{3} ight)

    +TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là C_{5}^{1}C_{6}^{1}
+ C_{5}^{2}. Vậy số cách lập nhóm trong trường hợp này là. C_{5}^{1}.C_{6}^{1} +
C_{5}^{2}.

    Vậy số cách lập cần tìm là. 2.\left(
C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} + C_{5}^{3} ight) +
C_{5}^{1}.C_{6}^{1} + C_{5}^{2} = 375.

  • Câu 18: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 19: Nhận biết

    Trong khai triển nhị thức (a + 2)^{n-5}(n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng:

     Khai triển bậc (n-5) có 6 số hạng. Suy ra (n-5) = 5. Vậy n = 10.

  • Câu 20: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a + b (cách) (theo quy tắc nhân)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo