Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Thầy giáo chủ nhiệm có 10 quyển sách khác nhau và 8 quyển vở khác nhau. Thầy chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi. Hỏi có bao nhiêu cách chọn khác nhau?

    Chọn một quyển sách có 10 cách chọn.

    Chọn một quyển vở có 8 cách chọn.

    Áp dụng quy tắc cộng có 18 cách chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi.

  • Câu 2: Nhận biết

    Số các hoán vị của n phần tử là:

     Số các hoán vị của n phần tử là: n!.

  • Câu 3: Nhận biết

    Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của (3 -
2x)^{5}?

    Khi viết nhị thức (3 - 2x)^{5} dưới dạng khai triển 5 + 1 = 6 số hạng.

  • Câu 4: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?

    Giả sử số đó là \overline{a_{1}a_{2}a_{3}}

    Trường hợp 1. a_{3} = 0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.

    Trường hợp 2. a_{3} = 5. Với a_{1} = 2 chọn a_{2} có 6 cách nên có 6 số thỏa mãn. Với a_{1} eq 2 chọn a_{1} có 5 cách chọn, và tất nhiên a_{2} = 2 nên có 5 số thỏa mãn. Do đó có 12 + 6 + 5 = 23 số thỏa mãn.

  • Câu 5: Vận dụng

    Cho biểu thức P
= \left( \frac{x + 1}{\sqrt[3]{x^{2}} - \sqrt[3]{x} + 1} - \frac{x -
1}{x - \sqrt{x}} ight)^{10} với x
> 0, x eq 1. Số hạng không chứa x trong khai triển Niu-tơn của P là:

    Ta có \frac{x + 1}{\sqrt[3]{x^{2}} -
\sqrt[3]{x} + 1} - \frac{x - 1}{x - \sqrt{x}} = \sqrt[3]{x} + 1 -
\frac{\sqrt{x} + 1}{\sqrt{x}} = \sqrt[3]{x} -
\frac{1}{\sqrt{x}}.

    Nên P = \left( \frac{x +
1}{\sqrt[3]{x^{2}} - \sqrt[3]{x} + 1} - \frac{x - 1}{x - \sqrt{x}}
ight)^{10} = \left( \sqrt[3]{x} - \frac{1}{\sqrt{x}}
ight)^{10}.

    Số hạng tổng quát của khai triển là: C_{10}^{k}x^{\frac{10 - k}{3}}.\left( \frac{-
1}{\sqrt{x}} ight)^{k} = ( - 1)^{k}C_{10}^{k}x^{\frac{20 -
5k}{6}}.

    Khi k = 4 thì số hạng không chứa x(
- 1)^{4}C_{10}^{4} = 210.

  • Câu 6: Nhận biết

    Biết rằng khai triển nhị thức Newton (x + 2)^{n};\left( n\mathbb{\in N}
ight) có tất cả 6 số hạng. Hãy xác định n?

    Vì trong khai triển nhị thức Newton (x +
2)^{n};\left( n\mathbb{\in N} ight) đã cho có tất cả 6 số hạng nên n + 1 = 6 \Rightarrow n =
5

    Vậy n = 5 là giá trị cần tìm.

  • Câu 7: Thông hiểu

    Cho tập hợp E ={0; 1; 2; 3; 4; 5; 6; 7}. Có thể lập bao nhiêu số gồm 5 chữ số khác nhau đôi một lấy từ E trong đó một trong ba chữ số đầu tiên bằng 1?

    Gọi số cần tìm là \overline{abcde}

    Trường hợp 1: a = 1.

    Chọn b: 7 cách.

    Chọn c: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo Quy tắc nhân có: 7.6.5.4 840 = số.

    Trường hợp 2: b =1.

    Chọn a: 6 cách.

    Chọn c: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo quy tắc nhân có: 6.6.5.4 720 = số.

    Trường hợp 3: c =1.

    Chọn a: 6 cách.

    Chọn b: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo quy tắc nhân có: 6.6.5.4 =720 số.

    ⇒ Theo quy tắc cộng có tất cả 840 + 720 +720 = 2280 số

  • Câu 8: Thông hiểu

    Cho tập hợp các chữ số tự nhiên A = \left\{ 0,1,2,3,4,5,6 ight\}. Có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau và chia hết cho 5?

    Gọi số tự nhiên có 4 chữ số là: \overline{abcd};(a eq 0).

    Tổng quát:

    Số cách chọn d là 2 cách chọn.

    Số cách chọn a là 6 cách chọn.

    Số cách chọn b là 5 cách chọn.

    Số cách chọn c là 4 cách chọn.

    Áp dụng quy tắc nhân ta có: 2.6.5.4 =
240 số

    Vi phạm:

    a = 0 có 1 cách chọn.

    d = 5 có 1 cách chọn.

    b có 5 cách chọn.

    c có 4 cách chọn.

    Áp dụng quy tắc nhân: 1.1.5.4 =
20 số

    Số các số cần tìm là: 240 - 20 =
220 số.

  • Câu 9: Vận dụng

    Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8.

    Gọi x = \overline{abcd};\ a,b,c,d \in
\left\{ 0,1,2,4,5,6,8 ight\}.

    Cách 1: Tính trực tiếp

    x là số chẵn nên d \in \left\{ 0,2,4,6,8 ight\}.

    TH 1: d = 0 \Rightarrow có 1 cách chọn d.

    Với mỗi cách chọn d ta có 6 cách chọn a \in \left\{ 1,2,4,5,6,8
ight\}

    Với mỗi cách chọn a,d ta có 5 cách chọn b \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a ight\}

    Với mỗi cách chọn a,b,d ta có 4 cách chọn c \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a,b ight\}

    Suy ra trong trường hợp này có 1.6.5.4 =
120 số.

    TH 2: d eq 0 \Rightarrow d \in \left\{
2,4,6,8 ight\} \Rightarrow có 4 cách chọn d

    Với mỗi cách chọn d, do a eq 0 nên ta có 5 cách chọn

    a \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ d ight\}.

    Với mỗi cách chọn a,d ta có 5 cách chọn b \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a ight\}

    Với mỗi cách chọn a,b,d ta có 4 cách chọn c \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a,b ight\}

    Suy ra trong trường hợp này có 4.5.5.4 =
400 số.

    Vậy có tất cả 120 + 400 = 520 số cần lập.

  • Câu 10: Vận dụng

    Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    +TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} +
C_{5}^{3}. Vậy số cách lập nhóm trong trường hợp này là. 2.\left( C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1}
+ C_{5}^{3} ight)

    +TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là C_{5}^{1}C_{6}^{1}
+ C_{5}^{2}. Vậy số cách lập nhóm trong trường hợp này là. C_{5}^{1}.C_{6}^{1} +
C_{5}^{2}.

    Vậy số cách lập cần tìm là. 2.\left(
C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} + C_{5}^{3} ight) +
C_{5}^{1}.C_{6}^{1} + C_{5}^{2} = 375.

  • Câu 11: Thông hiểu

    Biết n là số nguyên dương thỏa mãn C_{n}^{n - 1} +
C_{n}^{n - 2} = 78, số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n} là:

    Ta có: C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow \frac{n!}{(n - 1)!.1!} + \frac{n!}{(n - 2)!.2!} = 78
\Leftrightarrow n + \frac{(n - 1)n}{2} = 78

    \Leftrightarrow n^{2} + n - 156 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 12 \\
n = - 13 \\
\end{matrix} ight.\  \Leftrightarrow n = 12 (vì n là số nguyên dương).

    Số hạng tổng quát trong khai triển \left(
x^{3} - \frac{2}{x} ight)^{12}là: ( - 1)^{k}C_{12}^{k}\left( x^{3} ight)^{12 -
k}\left( \frac{2}{x} ight)^{k} = ( - 1)^{k}C_{12}^{k}.2^{k}.x^{36 -
4k}.

    Cho 36 - 4k = 8 \Leftrightarrow k =
7.

    Vậy số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x}
ight)^{12}-
C_{12}^{7}.2^{7}.x^{8} = - 101376x^{8}.

  • Câu 12: Thông hiểu

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng:

    Điều kiện n \geq 2,n\mathbb{\in
N}

    Ta có:

    A_{n}^{2} - 3C_{n}^{2} = 15 -
5n

    \Leftrightarrow \frac{n!}{(n - 2)!} -
3.\frac{n!}{2!(n - 2)!} = 15 - 5n

    \Leftrightarrow n(n - 1) - \frac{3n(n -
1)}{2} = 15 - 5n

    \Leftrightarrow - n^{2} + 11n - 30 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 5 \\
n = 6 \\
\end{matrix} ight.\ (tm)

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng 11.

  • Câu 13: Thông hiểu

    Cho đa giác n cạnh. Tìm n để đa giác có số đường chéo gấp đôi số cạnh.

    Đa giác n cạnh có n đỉnh.

    Mỗi đỉnh nối với n - 3 đỉnh khác để tạo ra đường chéo

    Do đó n đỉnh sẽ có n(n -
3)đường

    Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là: \frac{n(n - 3)}{2}

    Theo bài ra ta có: \frac{n(n - 3)}{2} =
2n \Leftrightarrow n^{2} - 7n = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 0(ktm) \\
n = 7(tm) \\
\end{matrix} ight.

    Vậy n = 7.

  • Câu 14: Nhận biết

    Chọn đáp án đúng khi khai triển nhị thức (3x - 2y)^{4}?

    Ta có:

    (3x - 2y)^{4} = \sum_{k =
0}^{4}{C_{4}^{k}.(3x)^{4 - k}.( - 2y)^{k}}

    = 81x^{4} - 216x^{3}y + 216x^{2}y^{2} -
96xy^{3} + 16y^{4}

  • Câu 15: Nhận biết

    Cho tập hợp M30 phần tử. Số tập con gồm 5 phần tử của M là:

    Số tập con gồm 5 phần tử của M chính là số tổ hợp chập 5 của 30 phần tử, nghĩa là bằng C_{30}^{5}.

  • Câu 16: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a + b (cách) (theo quy tắc nhân)

  • Câu 17: Nhận biết

    An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?

    Từ nhà An đến nhà Bình có 4 cách chọn đường.

    Từ nhà Bình đến nhà Cường có 6 cách chọn đường.

    Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).

  • Câu 18: Vận dụng

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

    Nếu chữ số hàng chục là n thì số có chữ số hàng đơn vị là n - 1 thì số các chữ số nhỏ hơn n năm ở hàng đơn vị cũng bằng n. Do chữ số hang chục lớn hơn bằng 1 còn chữ số hang đơn vị thi \geq.

    Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:

    1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =
45.

  • Câu 19: Thông hiểu

    Trong khai triển nhị thức (2x^{2}+\frac{1}{x})^{n} hệ số của x^{3}2^{2}C_{n}^{1}. Giá trị của n là

    Khai triển biểu thức như sau:

    \begin{matrix}  {\left( {2{x^2} + \dfrac{1}{x}} ight)^n} = \sum\limits_{k = 0}^n {C_n^k.{{\left( {2{x^2}} ight)}^{n - k}}.{{\left( {\dfrac{1}{x}} ight)}^k}}  \hfill \\   = \sum\limits_{k = 0}^n {C_n^k{{.2}^{n - k}}.{x^{2\left( {n - k} ight) - k}}}  \hfill \\   = \sum\limits_{k = 0}^n {C_n^k{{.2}^{n - k}}.{x^{2n - 3k}}}  \hfill \\ \end{matrix}

    Theo bài ra ta có:

    Hệ số của x^{3}2^{2}C_{n}^{1} khi đó: k = 1

    n - k = 3 \Rightarrow n = 3

  • Câu 20: Nhận biết

    Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ luôn luôn ngồi kề nhau?

    Coi 2 nữ là một phần tử A

    Xếp phần tử A và 3 nam vào dãy có 4! cách.

    Hoán đổi vị trí 2 nữ trong phần tử A có 2! cách.

    Do đó có 4!.2! = 48 cách.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo