Tìm hệ số của số hạng chứa
trong khai triển nhị thức Newton
?
Ta có:
Vậy hệ số của số hạng chứa trong khai triển nhị thức là:
.
Tìm hệ số của số hạng chứa
trong khai triển nhị thức Newton
?
Ta có:
Vậy hệ số của số hạng chứa trong khai triển nhị thức là:
.
Một đoàn tàu có bốn toa đỗ ở ga. Có bốn hành khách bước lên tàu. Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là:
Mỗi hành khách có 4 cách chọn toa.
⇒ Số trường hợp có thể xảy ra về cách chọn toa của bốn khách là: 4.4.4.4 = 44 = 256.
Tìm số hạng chứa
trong khai triển
.
Ta có khai triển: .
Số hạng tổng quát trong khai triển:
Số hạng chứa ứng với:
Vậy số hạng chứa là:
.
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?
Từ nhà An đến nhà Bình có 4 cách chọn đường.
Từ nhà Bình đến nhà Cường có 6 cách chọn đường.
Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).
Từ tập A = {1; 2; 3; 4; 5; 6} có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và số đó không lớn hơn 456?
Ta có: là số cần tìm.
Trường hợp 1:
Chọn a ∈ {1; 2; 3}: 3 cách.
Chọn : 5 cách.
Chọn : 4 cách.
⇒ Có số.
Trường hợp 2:
Chọn a = 4: 1 cách.
Chọn b ∈ {1; 2; 3}: 3 cách.
Chọn : 4 cách.
⇒ Có: 1.3.4 = 12 số.
Trường hợp 3:
Chọn a = 4: 1 cách.
Chọn b = 5: 1 cách.
Chọn : 4 cách.
⇒ Có: 1.1.4 = 4 số.
Từ (1); (2); (3) có số thoả yêu cầu bài toán.
Có bao nhiêu số tự nhiên nhỏ hơn
chia hết cho
và
.
Số các số tự nhiên lớn nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ hơn chia hết cho
và
là
.
Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?
Công thức sai là: .
Có bao nhiêu số nguyên dương n gồm 5 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó n không chia hết cho 10?
Gọi tập và
là số thỏa mãn yêu cầu:
Chọn có: 9 cách.
Chọn có: 10 cách.
Chọn có: 10 cách.
Chọn có: 10 cách.
Chọn có: 9 cách.
Theo quy tắc nhân có: số.
Tìm hệ số của số hạng chứa
trong khai triển
?
Ta có:
Hệ số chứa trong khai triển là:
.
Tìm hệ số của
trong khai triển
biết
là :
Điều kiện:
Ta có :
.
Xét khai triển
.
Để số hạng chứa thì
.
Vậy hệ số chứa trong khai triển trên là
.
Số các số có
chữ số khác nhau không bắt đầu bởi
được lập từ
là:
Lập số tự nhiên có chữ số khác nhau, ta tìm được:
số.
Lập số tự nhiên có chữ số khác nhau nhưng bắt đầu bằng
, ta tìm được:
số.
Vậy số các số có chữ số khác nhau không bắt đầu bởi
là
số.
Khai triển nhị thức
ta được kết quả là:
Khai triển nhị thức ta có:
Cho tập
. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?
Gọi số cần tìm là số dạng . Vì
chia hết cho 3 suy ra
.
Khi đó bộ .
Với bộ suy ra có
số cần tìm.
Tương tự với các bộ số còn lại.
Cho biết hệ số của
trong khai triển
bằng
. Tìm
.
Ta có .
Hệ số của bằng
.
Vậy .
Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?
Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là .
Trường hợp này có 2!.6 số.
Chữ số cuối bằng 2 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 4 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 8 ta có các bộ , hoán vị được
số.
Kết hợp lại ta có 35 số.
Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.
Số các số tự nhiên lớn nhất nhỏ hơn 100 chia hết cho 2 và 3 là 96.
Số các số tự nhiên nhỏ nhất nhỏ hơn 100 chia hết cho 2 và 3 là 0.
Số các số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3 là .
Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần?
Với một cách chọn chữ số từ tập
ta có duy nhất một cách xếp chúng theo thứ tự giảm dần.
Ta có cách chọn
chữ số từ tập
.
Do đó có số tự nhiên cần tìm.
Xếp
chữ số
,
,
,
,
,
thành hàng ngang sao cho hai chữ số giống nhau thì không xếp cạnh nhau. Hỏi có bao nhiêu cách sắp xếp như vậy?
Số cách xếp sáu chữ số thành hàng một cách tùy ý là .
*) Tìm số cách xếp sáu chữ số sao cho có hai chữ số giống nhau đứng cạnh nhau
+) TH1: Số cách xếp sao cho có hai chữ số đứng cạnh nhau
.
+) TH2: Số cách xếp sao cho có hai chữ số đứng cạnh nhau
.
+) TH3: Số cách xếp sao cho có hai chữ số đứng cạnh nhau và hai chữ số
đứng cạnh nhau
-) Nếu hai chữ số ở vị trí
và
ta có số cách xếp là
.
-) Nếu hai chữ số ở ba vị trí còn lại thì số các xếp là
.
Vậy số cách xếp hai chữ số giống nhau đứng cạnh nhau là .
Số cách xếp không có hai chữ số giống nhau nào đứng cạnh nhau là
.
Cho tập
gồm
phần tử. Số tập con có
phần tử của tập A là:
Theo định nghĩa tổ hợp. “ Giả sử tập có
phần tử
. Mỗi tập con gồm
phần tử của
được gọi là một tổ hợp chập
của
phần tử đã cho”.
Do đó theo yêu cầu bài toán số tập con có phần tử của tập A là
.
Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?
Mỗi cách phân công bạn An, Bình, Công vào
chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của
phần tử. Vậy có
cách.