Khai triển biểu thức
ta thu được kết quả:
Ta có:
Khai triển biểu thức
ta thu được kết quả:
Ta có:
Trong khai triển nhị thức
hệ số của
là
. Giá trị của n là
Khai triển biểu thức như sau:
Theo bài ra ta có:
Hệ số của là
khi đó: k = 1
Cho tập
. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?
Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ
TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có:
TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có:
TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có:
Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: (số).
Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?
Từ nhà Nam đến nhà Hải có 4 con đường.
Từ nhà Hải đến nhà Cường có 6 con đường.
Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).
Phát biểu nào sau đây đúng?
Phát biểu đúng là:
Tính số cách sắp xếp
nam sinh và
nữ sinh vào một dãy ghế hàng ngang có
chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.
Sắp xếp nữ sinh vào
ghế.
cách.
Xem nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với
nam sinh. có
cách
vậy có cách sắp xếp.
Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
Số cách chọn 2 nam đứng ở đầu và cuối là. . Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là
. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là.
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. .
Tìm số hạng chứa
trong khai triển
. Cho biết
là số nguyên dương thỏa mãn hệ thức
.
Từ giả thiết ta suy ra .
Mặt khác: nên ta có:
Suy ra: .
Số hạng tổng quát trong khai triển là:
.
Hệ số của là
với
thỏa mãn:
.
Vậy hệ số của là
.
Có 3 học sinh nam và 7 học sinh nữ. Hỏi có bao nhiêu cách chọn 3 bạn gồm cả nam và nữ đi trực nhật.
Trường hợp 1: 2 nam + 1 nữ
Có cách.
Trường hợp 2: 1 nam + 2 nữ
Có cách.
Vậy có cách.
Tìm số hạng không chứa
trong khai triển
.
Công thức số hạng thứ của khai triển
là:
.
Số hạng không chứa ứng với
(thỏa mãn).
Suy ra .
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi chính giữa là:
Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp
Một nhóm học sinh gồm 7 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 1 bạn nam và 1 bạn nữ để trực nhật lớp. Hỏi có bao nhiêu cách chọn?
Số cách chọn một bạn nam là: cách
Số cách chọn một bạn nữ là: cách
Vậy số cách chọn 1 nam, 1 nữ đi trực nhật lớp là: cách chọn.
Cho các số
,
,
,
. Hỏi lập được bao nhiêu số tự nhiên có
chữ số với các số khác nhau lập từ các số đã cho?
Số các số tự nhiên có chữ số với các số khác nhau lập từ các số đã cho là:
số.
Tìm số hạng chứa
trong khai triển
.
Số hạng thứ trong khai triển là:
.
Số hạng chứa có giá trị
thỏa mãn:
.
Vậy số hạng chứa trong khai triển là:
.
Cho hai số tự nhiên
sao cho
. Chọn khẳng định đúng sau đây?
Khẳng định đúng là: .
Cho tập hợp số:
.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.
Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là
,
,
,
,
,
.
Vậy số các số cần lập là: số.
Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.
Vì chữ số đứng đầu chẵn nên có
cách chọn, chữ số đứng cuối lẻ nên
có 4 cách chọn. Các số còn lại có
cách chọn
Vậy có số thỏa yêu cầu bài toán.
Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?
Học sinh nam có 280 cách chọn
Học sinh nữ có 325 cách chọn
Chọn một học sinh khối 11 đi dự dạ hội của học sinh thành phố thì có cách.
Có bao nhiêu vectơ khác vectơ được tạo thành từ 10 điểm phân biệt khác nhau?
Ta có vecto tạo thành từ hai điểm A, B ta được vecto và
.
Chọn hai điểm bất kì trong 10 điểm phân biệt là tổ hợp chập 2 của 10 phần tử.
=> Số vectơ khác vectơ được tạo thành từ 10 điểm phân biệt khác nhau là: vecto.
Cho tập hợp các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau là:
Mỗi số tự nhiên có 3 chữ số khác nhau được lập từ tập hợp B là chỉnh hợp chập 3 của 5 nghĩa.
Suy ra có thể lập được số thỏa mãn yêu cầu đề bài.