Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcd} chia hết cho 6 suy ra \left\{ \begin{matrix}
e = \left\{ 0;2 ight\} \\
(a + b + c + d + e) \vdots 3 \\
\end{matrix} ight.

    TH1. Với e = 0 suy ra a + b + c + d \vdots 3, do đó gồm các bộ (1;2;5;7) suy ra có 24 số.

    TH2. Với e = 2 suy ra a + b + c + d + 2 \vdots 3, do đó gồm các bộ (0;1;5;7), (1;5;7;9) suy ra có 42 số.

    Vậy có tất cả 24 + 42 = 66 số cần tìm.

  • Câu 2: Thông hiểu

    Từ 6 chữ số 0;1;2;3;4;5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau sao cho chữ số 2 vs 3 đứng cạnh nhau.

    Gọi số cần tìm có dạng \overline{abcdef};(a eq 0) với a,b,c \in \left\{ 2;4;6;8 ight\}.

    Vì 2 và 3 đứng cạnh nhau ta gộp 2 và 3 thành 1 số \overline{23} hoặc \overline{32} thành 1 vị trí

    Do đó ta còn lại 5 vị trí \overline{abcde}

    Từ 5 chữ số trên ta lập được 5! số khác nhau có dạng \overline{abcde}

    Cho a = 0 ta lập được 4! các số dạng \overline{0bcde}

    Nên sẽ có 5! – 4! = 96 số có 5 chữ số khác nhau.

    Mặt khác ta gộp 2 và 3 thành 1 số \overline{23} hoặc \overline{32} thành 1 vị trí nên ta sẽ có số các số cần tìm là: 96.2 = 192 số thỏa mãn đề bài.

  • Câu 3: Nhận biết

    Khai triển nhị thức (2x + 3)^{4} ta được kết quả là:

     Ta có: (2x + 3)^{4} =16x^{4} + 96x^{3} + 216x^{2} + 216x + 81.

  • Câu 4: Thông hiểu

    Mỗi bảng số xe gắn máy ở thành phố X có cấu tạo như sau. Phần đầu gồm hai chữ cái trong bảng chữ cái, phần sau gồm 4 chữ số trong các chữ số: 0,1,2,3,4,5,6,7,8,9. Ví dụ: SA0979;EY3535; ... Hỏi có bao nhiêu cách tạo bảng số xe theo cấu tạo trên? (Giả sử bảng chữ cái có tất cả 26 chữ cái)

    Chọn hai chữ cái cho phần đầu có 26^{2} (mỗi chữ số có 26 cách chọn)

    Còn 4 chữ số cho phần đuôi có 10^{4} (mỗi chữ số có 10 cách chọn)

    Vậy có thể tạo được 26^{2}.10^{4} =
6760000

  • Câu 5: Vận dụng

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit trong đó có ít nhất ba kí tự 0 và ít nhất ba kí tự 1?

    Trường hợp 1: dãy nhị phân có ba kí tự 0 và bảy kí tự 1.

    Khi đó có \frac{10!}{3!.7!} =
120 dãy nhị phân 10 bit.

    Trường hợp 2: dãy nhị phân có bốn kí tự 0 và sáu kí tự 1.

    Khi đó có \frac{10!}{4!.6!} =
210 dãy nhị phân 10 bit.

    Trường hợp 3: dãy nhị phân có năm kí tự 0 và năm kí tự 1.

    Khi đó có \frac{10!}{5!.5!} =
252 dãy nhị phân 10 bit.

    Trường hợp 4: dãy nhị phân có sáu kí tự 0 và bốn kí tự 1.

    Khi đó có \frac{10!}{4!.6!} =
210 dãy nhị phân 10 bit.

    Trường hợp 5: dãy nhị phân có bảy kí tự 0 và ba kí tự 1.

    Khi đó có \frac{10!}{3!.7!} =
120 dãy nhị phân 10 bit.

    Vậy có 120 + 210 + 252 + 210 + 120 =
912 dãy nhị phân 10 bit thỏa mãn yêu cầu bài toán.

  • Câu 6: Nhận biết

    Cho biểu thức (m
+ n)^{5}, khi khai triển nhị thức đã cho ta được bao nhiêu số hạng?

    Trong khai triển nhị thức Newton (m +
n)^{5}5 + 1 = 6 số hạng.

  • Câu 7: Thông hiểu

    Trong khai triển \left( 3x^{2} + \frac{1}{x}
ight)^{n}biết hệ số của x^{3}3^{4}C_{n}^{5}. Giá trị n có thể nhận là:

    Ta có \left( 3x^{2} + \frac{1}{x}
ight)^{n} = \sum_{k = 0}^{n}{C_{n}^{k}\left( 3x^{2} ight)^{n -
k}\left( \frac{1}{x} ight)^{k}} = \sum_{k = 0}^{n}{C_{n}^{k}3^{n -
k}x^{2n - 3k}}.

    Biết hệ số của x^{3}3^{4}C_{n}^{5} nên \left\{ \begin{matrix}
2n - 3k = 3 \\
n - k = 4 \\
k = 5 \\
0 \leq k \leq n,(k,n \in N) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 5 \\
n = 9 \\
\end{matrix} ight..

  • Câu 8: Vận dụng

    Tìm n thuộc tập hợp số tự nhiên, biết rằng 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n (C_{n}^{k} là số tổ hợp chập k của n phần tử).

    Trước hết ta chứng minh công thức \frac{k}{n}C_{n}^{k} = C_{n - 1}^{k - 1} với 1 \leq k \leq nn \geq 2.

    Thật vậy, \frac{k}{n}C_{n}^{k} =
\frac{k}{n}.\frac{n!}{k!(n - k)!} = \frac{(n - 1)!}{(k - 1)!(n - k)!} =
C_{n - 1}^{k - 1}.(đpcm)

    Áp dụng công thức trên ta có

    1.C_{n}^{1} + 2.C_{n}^{2} + 3.C_{n}^{3}
+ ... + n.C_{n}^{n} = n\left( \frac{1}{n}.C_{n}^{1} +
\frac{2}{n}.C_{n}^{2} + \frac{3}{n}.C_{n}^{3} + ... +
\frac{n}{n}.C_{n}^{n} ight)

    = n\left( C_{n - 1}^{0} + C_{n - 1}^{1}
+ C_{n - 1}^{2} + ... + C_{n - 1}^{n - 1} ight) = n2^{n -
1}

    Theo đề 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n \Leftrightarrow n2^{n - 1} = 256n
\Leftrightarrow 2^{n - 1} = 256 \Leftrightarrow n = 9..

  • Câu 9: Vận dụng

    Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Số cách chọn 2 nam đứng ở đầu và cuối là. A_{7}^{2}. Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là A_{6}^{5}. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là. 5!.A_{6}^{5}

    Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. A_{7}^{2}.5!.A_{6}^{5} =
3628800.

  • Câu 10: Vận dụng

    Cho tập hợp số: A = \left\{ 0,1,2,3,4,5,6 ight\}.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

    Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \{ 0,1,2,3\}, \{ 0,1,2,6\}, \{ 0,2,3,4\}, \{ 0,3,4,5\}, \{ 1,2,4,5\}, \{ 1,2,3,6\}, \left\{ 1,3,5,6 ight\}.

    Vậy số các số cần lập là: 4(4! - 3!) +
3.4! = 144 số.

  • Câu 11: Thông hiểu

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n là số lẻ gồm năm chữ số, trong đó các chữ số cách đều chữ số chính giữa thì giống nhau.

    Vì n là số gồm năm chữ số, trong đó các chữ số cách đều chữ số chính giữa thì giống nhau.

    Gọi n có dạng \overline{abcba} để n là số lẻ ta có

    a có 3 lựa chọn là {1; 5; 9}

    b có 5 lựa chọn.

    c có 5 lựa chọn.

    Vậy có 5.5.3 = 75 số n thỏa mãn yêu cầu bài toán.

  • Câu 12: Nhận biết

    An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con

    đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn

    đường đi đến nhà Cường cùng Bình (như hình vẽ dưới đây và không có con đường nào khác)?

    Chọn đường đi từ nhà An đến nhà Bình có 4 cách chọn.

    Chọn đường đi từ nhà Bình đến nhà Cường có 6 cách chọn.

    Vậy theo quy tắc nhân có 4.6 = 24 cách cho An chọn đường đi đến nhà Cường cùng Bình.

  • Câu 13: Thông hiểu

    Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn và sách Toán nằm ở giữa?

    Chọn vị trí cho bộ sách Toán có 2 cách

    Sắp xếp 3 bộ sách còn lại có 3! cách

    Sắp xếp 3 quyển sách Toán có 3! cách

    Sắp xếp 2 quyển sách Hóa có 2! cách

    Sắp xếp 4 quyển sách Lý có 4! Cách

    Sắp xếp 5 quyển sách Sinh có 5! Cách.

    Vậy số cách sắp xếp số sách trên kệ theo từng môn và sách Toán nằm giữa là: 2.3!.3!.2!.4!.5! = 414720 cách.

  • Câu 14: Nhận biết

    Một người vào cửa hàng ăn, người đó chọn thực đơn. Trong đó gồm 1 món ăn trong 5 món ăn, 1 loại quả tráng miệng trong 4 loại quả tráng miệng và 1 loại nước uống trong 3 loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?

    Chọn một món ăn có 5 cách.

    Chọn một loại quả tráng miệng có 4 cách.

    Chọn một loại nước uống có 3 cách.

    Áp dụng quy tắc nhân, có 5.4.3 = 60 cách chọn thực đơn.

  • Câu 15: Nhận biết

    Khai triển nhị thức Niu-tơn của (3 - 2x)^{2019} có bao nhiêu số hạng?

    Ta có: Khai triển nhị thức Niu-tơn (a +
b)^{n}n + 1 số hạng.

    Vậy trong khai triển nhị thức Niu-tơn của (3 - 2x)^{2019}2020 số hạng.

  • Câu 16: Nhận biết

    Cho tập hợp M =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Số tập con gồm 3 phần tử của M sao cho không có số 0 là:

    Mỗi tập con gồm 3 phần tử của M không có số 0 là tổ hợp chập 3 của 9 phần tử.

    Số tập con gồm 3 phần tử của M không có số 0 là. C_{9}^{3}.

  • Câu 17: Nhận biết

    Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?

    Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là C_{8}^{3}

    Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!

    Vậy số cách trao các huy chương này là C_{8}^{3}.3! = 336

  • Câu 18: Nhận biết

    Một lớp học có 15 bạn nam và 10 bạn nữ. Số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là

    Số cách chọn một bạn nam là 15 cách.

    Số cách chọn một bạn nữ là 10 cách.

    Theo quy tắc nhân ta có số cách chọn hai bạn trực nhật sao cho có cả nam và nữ là 15.10 = 150 cách.

  • Câu 19: Thông hiểu

    Tìm hệ số của x^{5} trong khai triển (1 + 3x)^{2n} biết A_{n}^{3} + 2A_{n}^{2} = 100.

    Ta có: A_{n}^{3} + 2A_{n}^{2} = 100
\Leftrightarrow \frac{n!}{(n - 3)!} + 2\frac{n!}{(n - 2)!} = 100
\Leftrightarrow n(n - 1)(n - 2) + 2n(n - 1) = 100

    \Leftrightarrow n^{3} - n^{2} - 100 = 0
\Leftrightarrow n = 5.

    Ta có: (1 + 3x)^{2n} = (1 + 3x)^{10} =
\sum_{k = 0}^{10}{C_{10}^{k}(3x)^{k}}.

    Hệ số x^{5} sẽ là C_{10}^{5}3^{5} = 61236.

  • Câu 20: Nhận biết

    Có 1 con mèo vàng, 1 con mèo đen, 1 con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào 6 cái ghế sao cho mỗi ghế chỉ có một con mèo. Đếm số cách xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau.

    Số cách xếp con mèo vàng và con mèo đen ở cạnh nhau là 2.

    Xem nhóm con mèo vàng và đen này là một phần tử, cùng với 1 con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím, ta được 5 phần tử. Xếp 5 phần tử này là. 5!

    Vậy có 2.5! = 240.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo