Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x - \frac{2}{x\sqrt{x}}
ight)^{12} (với x >
0) là:

    Số hạng tổng quát của khai triển \left( x
- \frac{2}{x\sqrt{x}} ight)^{12} (với x > 0) là:

    T_{k + 1} = C_{12}^{k}.x^{12 - k}.\left(
- \frac{2}{x\sqrt{x}} ight)^{k} = ( - 2)^{k}.C_{12}^{k}.x^{12 -
k}.x^{- \frac{3k}{2}} = ( - 2)^{k}.C_{12}^{k}.x^{12 -
\frac{5k}{2}}.

    Số hạng trên chứa x^{7} suy ra 12 - \frac{5k}{2} = 7 \Leftrightarrow k =
2.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển trên là = ( -
2)^{2}.C_{12}^{2} = 264.

  • Câu 2: Thông hiểu

    Cho biết hệ số của x^{2} trong khai triển (1 + 2x)^{n} bằng 180. Tìm n.

    Ta có (1 + 2x)^{n} = C_{n}^{0} +
C_{n}^{1}.2x + C_{n}^{2}.(2x)^{2} + ... +
C_{n}^{n}(2x)^{n}.

    Hệ số của x^{2} bằng 180 \Leftrightarrow 4.C_{n}^{2} = 180
\Leftrightarrow 4\frac{n!}{2!(n - 2)!} = 180 \Leftrightarrow n(n - 1) =
90

    \Leftrightarrow n^{2} - n - 90 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = - 9(l) \\
n = 10 \\
\end{matrix} ight..

    Vậy n = 10.

  • Câu 3: Nhận biết

    Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là

    Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: A_{12}^{3} = 1320 cách.

  • Câu 4: Nhận biết

    Tìm số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có khai triển: \left( x +
\frac{1}{x^{2}} ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
k}\left( x^{- 2} ight)^{k}} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
3k}}.

    Số hạng tổng quát trong khai triển: C_{40}^{k}x^{40 - 3k}

    Số hạng chứa x^{31} ứng với: 40 - 3k = 31 \Leftrightarrow k =
3

    Vậy số hạng chứa x^{31} là: C_{40}^{3}x^{31}.

  • Câu 5: Vận dụng

    Với số nguyên dương n, gọi a_{3n - 3} là hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} + 1 ight)^{n}(x +
2)^{n}. Tìm n để a_{3n - 3} = 26n.

    Ta có:

    \left( x^{2} + 1 ight)^{n} =
C_{n}^{0}x^{2n} + C_{n}^{1}x^{2n - 2} + C_{n}^{2}x^{2n - 4} + \ldots +
C_{n}^{n}

    (x + 2)^{n} = C_{n}^{0}x^{n} +
2C_{n}^{1}x^{n - 1} + 2^{2}C_{n}^{2}x^{n - 2} + \ldots +
2^{n}C_{n}^{n}

    Ta thấy n = 1,n = 2 không thoả mãn điều kiện bài toán.

    Với n \geq 3 ta có: x^{3n - 3} = x^{2n}.x^{n - 3} = x^{2n - 2}.x^{n -
1}

    Do đó hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} +
1 ight)^{n}(x + 2)^{n}.

    a_{3n - 3} = 2^{3}.C_{n}^{0}.C_{n}^{3} +
2.C_{n}^{1}.C_{n}^{1}.

    \Rightarrow a_{3n - 3} = 26n
\Leftrightarrow \frac{2n\left( 2n^{2} - 3n + 4 ight)}{3} =
26n

    \Leftrightarrow \left\lbrack\begin{matrix}n = 0\ \ (L) \ = - \dfrac{7}{2}\ \ (L). \ = 5\ \ (t/m) \\\end{matrix} ight.

    Vậy n = 5 là giá trị cần tìm.

  • Câu 6: Nhận biết

    Một trường THPT được cử một học sinh đi dự trại hè toàn quốc. Nhà trường quyết định chọn một học sinh tiên tiến trong lớp 11A hoặc lớp 12B. Hỏi nhà trường có bao nhiêu cách chọn, biết rằng lớp 11A có 31 học sinh tiên tiến và lớp 12B có 22 học sinh tiên tiến?

    Để chọn được một học sinh đi dự ta có 2 trường hợp:

    Trường hợp 1: Học sinh ở lớp 11A: có 31 cách

    Trường hợp 2: Học sinh ở lớp 12B: có 22 cách

    Vậy có 31 + 22 = 53 cách.

  • Câu 7: Thông hiểu

    Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số vé gồm 5 chữ số khác nhau?

    Gọi số in trên vé có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}}

    Số cách chọn a_{1} là 10 (a_{1} có thể là 0).

    Số cách chọn a_{2} là 9.

    Số cách chọn a_{3} là 8.

    Số cách chọn a_{4} là 7.

    Số cách chọn a_{5} là 6.

    Vậy có 10.9.8.7.6 = 30240 cách

  • Câu 8: Nhận biết

    Tính số cách sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.

    Sắp xếp 4 nữ sinh vào 4 ghế. 4! cách.

    Xem 4 nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với 6 nam sinh. có 7! cách

    vậy có 7! \times 4! cách sắp xếp.

  • Câu 9: Nhận biết

    Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:

    Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.

  • Câu 10: Vận dụng

    Cho tập A =
\left\{ 1,2,3,4,5,6,7,8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

    x lẻ và không chia hết cho 5 nên d \in \left\{ 1,3,7 ight\} \Rightarrow
d có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 11: Thông hiểu

    Từ tập hợp các chữ số A = \left\{ 1,3,4,5,6,8,9 ight\} có thể lập được bao nhiêu số có ba chữ số đôi một khác nhau và luôn có mặt số 1?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc}

    TH1: \overline{1bc}. Chọn b, c có 5.6 = 30 cách.

    TH2: \overline{a1c}. Chọn b, c có 5.6 = 30 cách.

    TH3: \overline{ab1}. Chọn b, c có 5.6 = 30 cách.

    Vậy có thể lập được 30 + 30 + 30 =
90(số) thỏa mãn yêu cầu đề bài.

  • Câu 12: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 13: Thông hiểu

    Số các số có 6 chữ số khác nhau không bắt đầu bởi 12 được lập từ 1;\ \ 2;\ \ 3;\ \ 4;\ \ 5;\ \ 6 là:

    Lập số tự nhiên có 6 chữ số khác nhau, ta tìm được: 6! số.

    Lập số tự nhiên có 6 chữ số khác nhau nhưng bắt đầu bằng 12, ta tìm được: 4! số.

    Vậy số các số có 6 chữ số khác nhau không bắt đầu bởi 126! - 4! = 696 số.

  • Câu 14: Vận dụng

    Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?

    Gọi số in trên vé có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}}

    Số cách chọn a_{1} là 10 (a_{1} có thể là 0).

    Số cách chọn a_{2} là 9.

    Số cách chọn a_{3} là 8.

    Số cách chọn a_{4} là 7.

    Số cách chọn a_{5} là 6.

    Do đó có 10.9.8.7.6 = 23460 (số).

  • Câu 15: Nhận biết

    Biểu thức C_{4}^{0}x^{4}+C_{4}^{1}x^{3}y+C_{4}^{2}x^{2}y^{2}+C_{4}^{3}xy^{3}+C_{4}^{4}y^{4} bằng:

    Ta có:

    C_{4}^{0}x^{4}+C_{4}^{1}x^{3}y+C_{4}^{2}x^{2}y^{2}+C_{4}^{3}xy^{3}+C_{4}^{4}y^{4} =(x + y)^{4}

  • Câu 16: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển (3x + 2)^{4}?

    Số hạng tổng quát theo thứ tự giảm dần số mũ x là:

    C_{4}^{k}(3x)^{4 - k}.2^{k} =
C_{4}^{k}.3^{4 - k}.2^{k}.x^{4 - k}

    Số hạng chứa x^{3} ứng với 4 - k = 3 \Rightarrow k = 1

    Số hạng cần tìm là C_{4}^{1}.3^{4 -
1}.2.x^{4 - 1} = 216x^{3}.

  • Câu 17: Nhận biết

    Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn hai học sinh trong đó có một nam và một nữ đi dự trại hè của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?

    Học sinh nam có 280 cách chọn

    Học sinh nữ có 325 cách chọn

    Chọn hai học sinh trong đó có một nam và một nữ đi dự trại hè là: 280.325 = 91000

  • Câu 18: Vận dụng

    Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 5 suy ra e = \left\{ 0;5 ight\}.

    TH1. Với e = 0 suy ra có 4 \times 5 \times 4 \times 3 = 240 số cần tìm.

    TH2. Với e = 5, suy ra có 5 \times 4 \times 3 + 3 \times 4 \times 4 \times 3
= 204 số cần tìm.

    Vậy có tất cả 444 số cần tìm.

  • Câu 19: Thông hiểu

    Xếp 6 chữ số 1, 1, 2, 2, 3, 4 thành hàng ngang sao cho hai chữ số giống nhau thì không xếp cạnh nhau. Hỏi có bao nhiêu cách sắp xếp như vậy?

    Số cách xếp sáu chữ số thành hàng một cách tùy ý là \frac{6!}{2!.2!} = 180.

    *) Tìm số cách xếp sáu chữ số sao cho có hai chữ số giống nhau đứng cạnh nhau

    +) TH1: Số cách xếp sao cho có hai chữ số 1 đứng cạnh nhau 5.\frac{4!}{2!} = 60.

    +) TH2: Số cách xếp sao cho có hai chữ số 2 đứng cạnh nhau 5.\frac{4!}{2!} = 60.

    +) TH3: Số cách xếp sao cho có hai chữ số 1 đứng cạnh nhau và hai chữ số 2 đứng cạnh nhau

    -) Nếu hai chữ số 1 ở vị trí (1;2)(5;6) ta có số cách xếp là 2.3.2 = 12.

    -) Nếu hai chữ số 1 ở ba vị trí còn lại thì số các xếp là 3.2.2 =12.

    Vậy số cách xếp hai chữ số giống nhau đứng cạnh nhau là 60 + 60 - 12 - 12 = 96.

    \Rightarrow Số cách xếp không có hai chữ số giống nhau nào đứng cạnh nhau là 180 - 96 = 84.

  • Câu 20: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo