Số các số tự nhiên gồm
chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Số các số tự nhiên gồm
chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Cho các số 1, 2, 4, 5, 7. Có bao nhiêu cách chọn ra một số chẵn gồm ba chữ số khác nhau từ 5 chữ số đã cho?
Gọi số cần tìm là .
+ Chọn c: có 2 cách.
+ Chọn a: có 4 cách.
+ Chọn b: có 3 cách.
Áp dụng quy tắc nhân ta có 2.4.3 = 24 số.
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con
đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn
đường đi đến nhà Cường cùng Bình (như hình vẽ dưới đây và không có con đường nào khác)?

Chọn đường đi từ nhà An đến nhà Bình có 4 cách chọn.
Chọn đường đi từ nhà Bình đến nhà Cường có 6 cách chọn.
Vậy theo quy tắc nhân có 4.6 = 24 cách cho An chọn đường đi đến nhà Cường cùng Bình.
Một tập hợp M gồm 20 phần tử. Hỏi M có bao nhiêu tập con khác rỗng mà có số phần tử chẵn?
Tổng số các tập con của tập M là:
Trong đó số tập con khác rỗng và có số phần tử chẵn là:
Lại có:
Và
Do đó:
Hệ số của
trong khai triển
bằng:
Ta có:
Hệ số của x3 trong khai triển là:
=> Hệ số của trong khai triển
bằng: 3 + 10 = 13
Tìm số hạng chứa
trong khai triển
.
Ta có công thức của số hạng tổng quát:
Số hạng chứa khi và chỉ khi
.
Vậy số hạng chứa trong khai triển là
.
Một lớp có 34 học sinh. Hỏi có bao nhiêu cách chọn 3 học sinh để làm lớp trưởng, lớp phó, bí thư?
Chọn 3 học sinh từ 34 học sinh rồi xếp vào 3 vai trò lớp trưởng, lớp phó, bí thư có cách.
Có 3 người đàn ông, 2 người đàn bà và 1 đứa trẻ được xếp ngồi vào 6 cái ghế xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho đứa trẻ ngồi giữa hai người đàn bà?
Ta đánh số thứ tự cho 6 chiếc ghế từ số 1 đến số 6
Ta thực hiện việc xếp 6 người vào 6 chiếc ghế sao cho đứa trẻ ngồi giữa hai người đàn bà như sau:
Xếp đứa trẻ ngồi vào 1 trong các ghế có số thứ tự từ 2 đến 5 có 4 cách.
Xếp hai người đàn bà vào 2 ghế bên cạnh đứa trẻ có 2 cách.
Xếp 3 người đàn ông vào 3 ghế còn lại: có 3! cách.
Áp dụng quy tắc nhân, có tất cả: cách.
Trong khai triển
biết hệ số của
là
. Giá trị
có thể nhận là:
Ta có .
Biết hệ số của là
nên
.
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có 1 nam và 2 nữ?
Chọn ban điều hành gồm 3 học sinh gồm 1 nam và 2 nữ có cách.
Một nhóm học sinh có 5 nam và 3 nữ. Hỏi có bao nhiêu cách sắp xếp các học sinh thành hàng dọc sao cho các bạn nam phải đứng liền nhau?
Để xếp 8 học sinh đã cho thành hàng dọc sao cho các học sinh nam đứng liền nhau ta coi 5 nam là một đối tượng, đối tượng này cộng với 3 học sinh nữ thành 4 đối tượng xếp thành hàng dọc; ta thực hiện hai bước:
Bước 1: Xếp vị trí cho 4 đối tượng có 4! cách
Bước 2: Xếp chỗ cho 5 nam vào 5 vị trí có 5! cách.
Áp dụng quy tắc nhân ta có: cách.
Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.
Số các số tự nhiên lớn nhất nhỏ hơn 100 chia hết cho 2 và 3 là 96.
Số các số tự nhiên nhỏ nhất nhỏ hơn 100 chia hết cho 2 và 3 là 0.
Số các số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3 là .
Có bao nhiêu số tự nhiên gồm
chữ số lớn hơn
và đôi một khác nhau?
Gọi số tự nhiên cần tìm có dạng .
Khi đó: có 5 cách chọn,
có 4 cách chọn,
có 3 cách chọn,
có 2 cách chọn,
có 1 cách chọn.
Nên có tất cảsố.
Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ?
Mỗi cách xếp 10 học sinh thành một hàng ngang là một hoán vị của tập hợp có 10 phần tử.
Suy ra số cách sắp xếp là .
Tìm số hạng chứa
trong khai triển
.
Ta có khai triển: .
Số hạng tổng quát trong khai triển:
Số hạng chứa ứng với:
Vậy số hạng chứa là:
.
Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
Số cách chọn 2 nam đứng ở đầu và cuối là. . Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là
. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là.
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. .
Cho tập hợp các chữ số
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau là:
Mỗi số tự nhiên có 3 chữ số khác nhau được lập từ tập hợp B là chỉnh hợp chập 3 của 5 nghĩa.
Suy ra có thể lập được số thỏa mãn yêu cầu đề bài.
Phát biểu nào sau đây đúng?
Phát biểu đúng là:
Cho tập
. Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?
Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra có 3 cách chọn, a có 5 cách chọn
có
số.
Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A là số.
Suy ra có tất cả số cần tìm.
Cho tập
. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5?
Vì x lẻ và không chia hết cho 5 nên => Có 3 cách chọn
Số các chọn các chữ số còn lại là:
Vậy 15120 số thỏa yêu cầu bài toán.