Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n chia hết cho 55 và 555 < n
< 5555?

    Trường hợp 1: n gồm ba chữ số.

    Gọi n có dạng \overline{abc}.

    Vì n chia hết cho 5 nên c là chữ số 5.

    Vì n gồm ba chữ số nên thỏa mãn n < 5555.

    Để 555 < n ta có:

    Nếu a là chữ số 5 thì b có 2 lựa chọn là {8; 9}

    Nếu a có 2 lựa chọn là {8; 9} thì b có 5 lựa chọn

    2 + 2.5 = 12

    Trường hợp 2: n gồm bốn chữ số.

    Gọi n có dạng \overline{abcd}

    Vì n chia hết cho 5 nên d là chữ số 5

    Vì n gồm bốn chữ số nên thỏa mãn 555 < n

    Để n < 5555 ta có

    Nếu a; b đều là chữ số 5 thì c có 2 lựa chọn là {1; 4}

    Nếu a là chữ số 5 thì b có 2 lựa chọn là {1; 4} và c có 5 lựa chọn.

    Nếu a có 2 lựa chọn là {1; 4} thì b; c có 5 lựa chọn.

    2 + 2.5 + 2.5.5 = 62

    Vậy có 12 + 62 = 74 số n thỏa mãn yêu cầu bài toán.

  • Câu 2: Nhận biết

    Biểu thức A =
32x^{5} - 80x^{4} + 80x^{3} - 40x^{2} + 10x - 1 là khai triển của nhị thức nào dưới đây?

    Ta có:

    A = (2x + 1)^{5} = 32x^{5} - 80x^{4} +
80x^{3} - 40x^{2} + 10x - 1

  • Câu 3: Nhận biết

    Để giải một bài tập ta cần phải giải hai bài tập nhỏ. Bài tập 19 cách giải, bài tập 25 cách giải. Số các cách để giải hoàn thành bài tập trên là:

    Sô cách giải bài toán 1 : 9 cách.

    Số cách giải bài toán 2 : 5 cách.

    Áp dụng quy tắc nhân: 9 × 5 = 45 cách.

  • Câu 4: Thông hiểu

    Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu sao cho 3 quả cầu lấy ra có ít nhất một quả cầu trắng?

    Trường hợp 1: 1 quả trắng và 2 quả đỏ.

    Số cách lấy là C_{5}^{1}.C_{6}^{2} =
75

    Trường hợp 2: 2 quả trắng và 1 quả đỏ.

    Số cách lấy là C_{5}^{2}.C_{6}^{1} =
60

    Trường hợp 3: 3 quả trắng.

    Số cách lấy là C_{5}^{3} =
10

    Do vậy số cách lấy ngẫu nhiên 3 quả cầy trong hộp sao cho trong 3 quả cầu lấy ra có ít nhất 1 quả cầu trắng là: 75 + 60 + 10 = 145 (cách)

  • Câu 5: Thông hiểu

    Biết hệ số của số hạng chứa x^{2} trong khai triển (1 + 4x)^{n}3040. Số tự nhiên n bằng bao nhiêu?

    Ta có: (1 + 4x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}(4x)^{k}} = \sum_{k =
0}^{n}{C_{n}^{k}4^{k}x^{k}}.

    Hệ số của số hạng chứa x^{2} là: C_{n}^{2}4^{2}.

    Giả thiết suy ra C_{n}^{2}4^{2} = 3040\Leftrightarrow C_{n}^{2} = 190 \Leftrightarrow \frac{n(n - 1)}{2} = 190\Leftrightarrow n^{2} - n - 380 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}n = 20\ \ (t/m) \ = - 19\ (loai) \\\end{matrix} ight.

  • Câu 6: Vận dụng

    Cho tập hợp số: A = \left\{ 0,1,2,3,4,5,6 ight\}.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

    Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \{ 0,1,2,3\}, \{ 0,1,2,6\}, \{ 0,2,3,4\}, \{ 0,3,4,5\}, \{ 1,2,4,5\}, \{ 1,2,3,6\}, \left\{ 1,3,5,6 ight\}.

    Vậy số các số cần lập là: 4(4! - 3!) +
3.4! = 144 số.

  • Câu 7: Thông hiểu

    Xác định số hạng không chứa x trong khai triển nhị thức Newton \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0). Biết rằng C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} + ... +
3^{n}.C_{n}^{n} = 256.

    Ta có:

    C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} +
... + 3^{n}.C_{n}^{n} = 256

    \Leftrightarrow (1 + 3)^{n} = 256
\Leftrightarrow 4^{n} = 256 \Leftrightarrow n = 4

    Xét khai triển \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0)

    Số hạng tổng quát C_{4}^{k}.\left( x^{2}
ight)^{4 - k}.\left( \frac{1}{x^{2}} ight)^{k} = C_{4}^{k}.x^{8 -
4k}

    Số hạng không chứa x ứng với 8 - 4k = 0
\Leftrightarrow k = 2

    Suy ra số hạng không chứa x là C_{4}^{2}
= 6.

  • Câu 8: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 9: Vận dụng

    Cho 6 chữ số 2,3,4,5,6,7 số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    c3 cách chọn

    a6 cách chọn

    b6 cách chọn

    Vậy có: 3.6.6 = 108 số.

  • Câu 10: Nhận biết

    Cho tập A gồm 12 phần tử. Số tập con có 4 phần tử của tập A là:

    Theo định nghĩa tổ hợp. “ Giả sử tập An phần tử (n
\geq 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho”.

    Do đó theo yêu cầu bài toán số tập con có 4 phần tử của tập A là C_{12}^{4}.

  • Câu 11: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 12: Nhận biết

    Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?

    Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.

  • Câu 13: Nhận biết

    Tìm hệ số của x^{7} trong khai triển (1 + x)^{10}.

    Số hạng tổng quát là: T_{k + 1} =
C_{10}^{k}.x^{k}.

    Số hạng chứa x^{7} trong khai triển (1 + x)^{10} là: T_{8} = C_{10}^{8}.x^{7} nên hệ số là 45.

  • Câu 14: Nhận biết

    Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:

    Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.

  • Câu 15: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 16: Nhận biết

    Hệ số x^{4} trong khai triển nhị thức (3x - 4)^{5} bằng:

    Hệ số của x^{4} trong khai triển (3x - 4)^{5} là: C_{5}^{1}.(3x)^{4}.( - 4)^{1} = -
1620.

  • Câu 17: Thông hiểu

    Xếp 6 chữ số 1, 1, 2, 2, 3, 4 thành hàng ngang sao cho hai chữ số giống nhau thì không xếp cạnh nhau. Hỏi có bao nhiêu cách sắp xếp như vậy?

    Số cách xếp sáu chữ số thành hàng một cách tùy ý là \frac{6!}{2!.2!} = 180.

    *) Tìm số cách xếp sáu chữ số sao cho có hai chữ số giống nhau đứng cạnh nhau

    +) TH1: Số cách xếp sao cho có hai chữ số 1 đứng cạnh nhau 5.\frac{4!}{2!} = 60.

    +) TH2: Số cách xếp sao cho có hai chữ số 2 đứng cạnh nhau 5.\frac{4!}{2!} = 60.

    +) TH3: Số cách xếp sao cho có hai chữ số 1 đứng cạnh nhau và hai chữ số 2 đứng cạnh nhau

    -) Nếu hai chữ số 1 ở vị trí (1;2)(5;6) ta có số cách xếp là 2.3.2 = 12.

    -) Nếu hai chữ số 1 ở ba vị trí còn lại thì số các xếp là 3.2.2 =12.

    Vậy số cách xếp hai chữ số giống nhau đứng cạnh nhau là 60 + 60 - 12 - 12 = 96.

    \Rightarrow Số cách xếp không có hai chữ số giống nhau nào đứng cạnh nhau là 180 - 96 = 84.

  • Câu 18: Nhận biết

    Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.

    Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử 

    => Số cách chọn là: A_{10}^2 = 90 (cách)

  • Câu 19: Vận dụng

    Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \left( \sqrt[3]{3} +
\sqrt[5]{5} ight)^{2019}?

    Ta có \left( \sqrt[3]{3} + \sqrt[5]{5}
ight)^{2019} = \sum_{k = 0}^{2019}{C_{2019}^{k}.\left( \sqrt[3]{3}
ight)^{2019 - k}.\left( \sqrt[5]{5} ight)^{k}} = \sum_{k =
0}^{2019}{C_{2019}^{k}.3^{\frac{2019 -
k}{3}}.5^{\frac{k}{5}}}.

    Để trong khai triển có số hạng là số nguyên thì \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
\frac{2019 - k}{3}\mathbb{\in N} \\
\frac{k}{5}\mathbb{\in N} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
673 - \frac{k}{3}\mathbb{\in N} \\
\frac{k}{5}\mathbb{\in N} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
k \vdots 15 \\
\end{matrix} ight..

    Ta có k \vdots 15 \Rightarrow k =
15m0 \leq k \leq 2019
\Leftrightarrow 0 \leq 15m \leq 2019 \Leftrightarrow 0 \leq m \leq
134,6. Suy ra có 135 số hạng là số nguyên trong khai triển của biểu thức.

  • Câu 20: Thông hiểu

    Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?

    Gọi số cần tìm có dạng \overline{abc};\left( a,b \in \left\{ 1;2;5;7;8
ight\},c \in \left\{ 2;8 ight\} ight)

    Trường hợp 1: a = 2;b = 7;c = 8. Có 1 số thỏa mãn yêu cầu bài toán.

    Trường hợp2: a = 2;b < 7;c =
8

    a có 1 cách chọn.

    c có 1 cách chọn.

    b có 2 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.1.2 =
2 (số).

    Trường hợp 3: a < 2;c \in \left\{ 2;8
ight\}

    a có 1 cách chọn.

    c có 2 cách chọn.

    b có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.2.3 =
6 (số).

    Vậy có: 1 + 2 + 6 = 9 (số).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo