Cho biết hệ số của
trong khai triển
bằng
. Tìm
.
Ta có .
Hệ số của bằng
.
Vậy .
Cho biết hệ số của
trong khai triển
bằng
. Tìm
.
Ta có .
Hệ số của bằng
.
Vậy .
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?
Từ nhà An đến nhà Bình có 4 cách chọn đường.
Từ nhà Bình đến nhà Cường có 6 cách chọn đường.
Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).
Chọn đáp án đúng khi khai triển nhị thức
?
Ta có:
Tính giá trị biểu thức ![]()
Áp dụng công thức cho
ta có:
Từ các chữ số
, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 4 chữ số đôi một khác nhau và bắt đầu bằng 56 hoặc 65.
Gọi là số thỏa yêu cầu bài toán.
Chọn có: 2 cách.
Chọn có: 7 cách.
Chọn có: 6 cách.
Theo quy tắc nhân có: số.
Cho
. Từ tập hợp này lập được bao nhiêu số tự nhiên có
chữ số đôi một khác nhau?
Mỗi số tự nhiên tự nhiên có chữ số khác nhau được lập từ tập
là hoán vị của
phần tử.
Vậy có số cần tìm.
Một người vào cửa hàng ăn, người đó chọn thực đơn. Trong đó gồm
món ăn trong
món ăn,
loại quả tráng miệng trong
loại quả tráng miệng và
loại nước uống trong
loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?
Chọn một món ăn có 5 cách.
Chọn một loại quả tráng miệng có 4 cách.
Chọn một loại nước uống có 3 cách.
Áp dụng quy tắc nhân, có 5.4.3 = 60 cách chọn thực đơn.
Trong khai triển của
, số hạng mà lũy thừa của
và
bằng nhau là số hạng thứ bao nhiêu của khai triển?
Ta có số hạng thứ là :
Theo đề bài ta có;
Vậy số hạng thỏa yêu cầu bài toán là số hạng thứ .
Trong một bản đồ được lập theo kỹ thuật số của thành phố X, mọi căn nhà trong thành phố đều được lập địa chỉ và “địa chỉ số” của mỗi căn nhà là một dãy gồm 16 chữ số lấy từ hai chữ số 0 và 1. Ví dụ: 0000110000111100 (4 chữ số 0, 2 chữ số 1, 4 chữ số 0, 4 chữ số 1, 2 chữ số 0). Hỏi thành phố X có tối đa bao nhiêu căn nhà?
Ta có: “địa chỉ số” của mỗi căn nhà là một dãy gồm 16 chữ số
Mà mỗi chữ số có 2 cách chọn. (0 hoặc 1)
Nên theo quy tắc nhân, thành phố X có tối đa: căn nhà.
Số số hạng trong khai triển
là:
Số số hạng trong khai triển là: .
Quan sát mạch điện như sau:

Mạch điện có 6 công tắc khác nhau, trong đó mỗi công tắc có 2 trạng thái đóng và mở. Hỏi có bao nhiêu cách đóng mở 6 công tắc để mạch điện thông mạch từ E đến F?
Cả 3 công tắc của nhánh trên đóng còn 1 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh trên đóng còn 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh dưới đóng còn 1 trong 3 công tắc của nhánh trên mở có: Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh dưới đóng còn 3 công tắc nhánh trên mở có:
Cả 3 công tắc của nhánh trên đóng và cả 3 công tắc nhánh dưới đóng có:
Vậy có tất cả 15 cách.
Hệ số của số hạng chứa
trong khai triển nhị thức
(với
) là:
Số hạng tổng quát của khai triển (với
) là:
.
Số hạng trên chứa suy ra
.
Vậy hệ số của số hạng chứa trong khai triển trên là
.
Có bao nhiêu cách xếp 6 người thành một hàng dọc
Xếp 6 người thành một hàng dọc có: 6! = 720 cách.
Từ 6 chữ số
có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và 2?
Gọi số cần tìm có dạng
Số cách sắp xếp số 1; 2 vào 5 vị trí ta có: cách
3 vị trí còn lại có cách
Vậy số cần thành lập là: số.
Cho đa giác đều có tất cả 12 cạnh. Hỏi đa giác có bao nhiêu đường chéo?
Từ 12 đỉnh của đa giác đều, ta xác định được đoạn thẳng.
Vậy đa giác đều có tất cả đường chéo.
Có tất cả bao nhiêu cách xếp
quyển sách khác nhau vào một hàng ngang trên giá sách?
Mỗi cách sắp xếp quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của
phần tử. Vậy số cách sáp xếp là
.
Có thể lập được bao nhiêu số tự nhiên có 4 chữ số từ tập hợp các chữ số
?
Gọi số tự nhiên có 4 chữ số là: .
Mỗi chữ số có 6 cách chọn.
Mà số cần lập gồm 4 chữ số nên theo quy tắc nhân có thể lập được số.
Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?
Gọi số in trên vé có dạng
Số cách chọn là 10 (
có thể là 0).
Số cách chọn là 9.
Số cách chọn là 8.
Số cách chọn là 7.
Số cách chọn là 6.
Do đó có 10.9.8.7.6 = 23460 (số).
Đội văn nghệ của nhà trường gồm
học sinh lớp 12A,
học sinh lớp 12B và
học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?
Tổng số học sinh trong đội văn nghệ của nhà trường là học sinh.
Số cách chọn học sinh bất kì trong
học sinh là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12A là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12B là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12C là.
cách.
Vậy có cách thỏa mãn yêu cầu bài toán.
Dãy
trong đó mỗi kí tự
chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit trong đó có ít nhất ba kí tự 0 và ít nhất ba kí tự 1?
Trường hợp 1: dãy nhị phân có ba kí tự 0 và bảy kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 2: dãy nhị phân có bốn kí tự 0 và sáu kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 3: dãy nhị phân có năm kí tự 0 và năm kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 4: dãy nhị phân có sáu kí tự 0 và bốn kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 5: dãy nhị phân có bảy kí tự 0 và ba kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Vậy có dãy nhị phân 10 bit thỏa mãn yêu cầu bài toán.