Xác định số hạng không chứa x trong khai triển nhị thức Newton
. Biết rằng
.
Ta có:
Xét khai triển
Số hạng tổng quát
Số hạng không chứa x ứng với
Suy ra số hạng không chứa x là .
Xác định số hạng không chứa x trong khai triển nhị thức Newton
. Biết rằng
.
Ta có:
Xét khai triển
Số hạng tổng quát
Số hạng không chứa x ứng với
Suy ra số hạng không chứa x là .
Một hộp có 3 viên bi trắng, 2 viên bi đen và 2 viên bi vàng. Hỏi có bao nhiêu cách lấy ngẫu nhiên 2 viên bi từ hộp đó.
Chọn 2 viên từ hộp 7 viên có: (cách).
Hệ số của số hạng chứa
trong khai triển Newton
là:
Số hạng tổng quát của khái triển
Số của số hạng chứa :
. Hệ số của số hạng chứa
.
Hỏi có bao nhiêu số có 4 chữ số đôi một khác nhau và là số lẻ.
Gọi số cần lập có dạng: .
D: có 5 cách chọn (1,3,5,7)
A: có 8 cách chọn (khác D và khác 0)
B: có 8 cách chọn (khác D và khác 0)
C: có 7 cách chọn (khác A,B,D)
Vậy có 5.8.8.7 = 2240 (số) có 4 chữ số đôi một khác nhau và là số lẻ.
Cho tập
. Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?
Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra có 3 cách chọn, a có 5 cách chọn
có
số.
Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A là số.
Suy ra có tất cả số cần tìm.
Tìm số tự nhiên
thỏa ![]()
Điều kiện: .
Ta có:
Vậy .
Biểu thức
là khai triển của nhị thức nào dưới đây?
Ta có:
Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?
Một tam giác được lập thành từ 3 điểm.
Cứ 2 điểm thuộc + 1 điểm nằm ngoài có sẵn, ta được một tam giác.
Số cách lấy 2 điểm từ 6 điểm thuộc là:
(cách).
Có bao nhiêu số tự nhiên nhỏ hơn
chia hết cho
và
.
Số các số tự nhiên lớn nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ hơn chia hết cho
và
là
.
Số hạng chứa
trong khai triển biểu thức
là:
Ta có: .
Số hạng cần tìm là: .
Có tất cả bao nhiêu cách xếp
quyển sách khác nhau vào một hàng ngang trên giá sách?
Mỗi cách sắp xếp quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của
phần tử. Vậy số cách sáp xếp là
.
Một tổ có
học sinh nữ và
học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên hai học sinh của tổ đó đi trực nhật biết cần có cả nam và nữ.
Chọn một học sinh nữ có 5 cách.
Chọn một học sinh nam có 6 cách.
Áp dụng quy tắc nhân, có 5.6 = 30 cách chọn hai học sinh có cả nam và nữ.
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?
Từ nhà An đến nhà Bình có 4 cách chọn đường.
Từ nhà Bình đến nhà Cường có 6 cách chọn đường.
Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).
Cho kiểu gen AaBb. Giả sử quá trình giảm phân tạo giao tử bình thường và không xảy ra đột biến. Sơ đồ hình cây biểu thị sự hình thành giao tử được biểu diễn như hình bên.

Từ sơ đồ cây, số loại giao tử của kiểu gen AaBb là:
Từ sơ đồ cây, ta thấy có 4 kết quả có thể xảy ra.
=> Số loại giao tử của kiểu gen AaBb là 4.
Trong khai triển của
, số hạng mà lũy thừa của
và
bằng nhau là số hạng thứ bao nhiêu của khai triển?
Ta có số hạng thứ là :
Theo đề bài ta có;
Vậy số hạng thỏa yêu cầu bài toán là số hạng thứ .
Cho đa giác đều
nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong
của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong
đỉnh của đa giác. Tìm
.
Số tam giác có 3 đỉnh là 3 trong 2n điểm là
Ứng với 2 đường chéo đi qua tâm của đa giác đều cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm
Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.
Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là
Theo giả thiết ta có:
Vậy .
Có bao nhiêu vectơ khác vectơ được tạo thành từ 10 điểm phân biệt khác nhau?
Ta có vecto tạo thành từ hai điểm A, B ta được vecto và
.
Chọn hai điểm bất kì trong 10 điểm phân biệt là tổ hợp chập 2 của 10 phần tử.
=> Số vectơ khác vectơ được tạo thành từ 10 điểm phân biệt khác nhau là: vecto.
Cho tập
. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.
Gọi là số cần lập,
có 1 cách chọn, cách chọn
Trường hợp này có 360 số
có một cách chọn, số cách chọn
Trường hợp này có 300 số.
Vậy có số thỏa yêu cầu bài toán.
Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số 1 xếp kề nhau?
Gọi 11111 là số a.
Vậy ta cần sắp các số a, 2, 3, 4, 5.
⇒ Số cách sắp xếp số thỏa mãn là: 1.2.3.4.5 = 120 (số).
Tìm số hạng chứa
trong khai triển
.
Số hạng thứ trong khai triển là:
.
Số hạng chứa có giá trị
thỏa mãn:
.
Vậy số hạng chứa trong khai triển là:
.