Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 2: Nhận biết

    Số hạng không chứa x trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    Số hạng tổng quát trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    C_{5}^{k}.\left( x^{3} ight)^{5 -
k}.\left( - \frac{1}{x^{2}} ight)^{k} = C_{5}^{k}.( - 1)^{k}.x^{15 -
5k}

    Số hạng không chứa x khi và chỉ khi 15 -
5k = 0 \Rightarrow k = 3

    Vậy số hạng không chứa x là: C_{5}^{3}.(
- 1)^{3} = - 10.

  • Câu 3: Vận dụng

    Cho n là số tự nhiên thỏa mãn C_{n}^{0} + 2.C_{n}^{1}
+ 2^{2}.C_{n}^{2} + ... + 2^{n}.C_{n}^{n} = 59049. Biết số hạng thứ 3 trong khai triển Newton của \left( x^{2} - \frac{3}{x}
ight)^{n} có giá trị bằng \frac{81}{2}n. Tìm giá trị của x.

    Ta có: C_{n}^{0} + 2.C_{n}^{1} +2^{2}.C_{n}^{2} + ... + 2^{n}.C_{n}^{n} = 59049

    \Rightarrow (2 + 1)^{n}= 59049 \Leftrightarrow 3^{n} = 3^{10} \Leftrightarrow n =10.

    Ta được nhị thức \left( x^{2} -
\frac{3}{x} ight)^{10}.

    Số hạng thứ ba của khai triển là T_{3} =
C_{10}^{2}.\left( x^{2} ight)^{8}.\left( - \frac{3}{x} ight)^{2} =
405x^{14}.

    Theo giả thiết ta có: 405x^{14} =
\frac{81}{2}n \Leftrightarrow 405x^{14} = 405 \Leftrightarrow x^{14} = 1 \Leftrightarrow x = \pm 1.

  • Câu 4: Vận dụng

    Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chia hết cho 5?

    x chia hết cho 5 nên d chỉ có thể là 5 \Rightarrow có 1 cách chọn d.

    Có 6 cách , 5 cách chọn b và 4 cách chọn c.

    Vậy có 1.6.5.4 = 120 số thỏa yêu cầu bài toán.

  • Câu 5: Thông hiểu

    Hệ số của x^{3} trong khai triển 3x^{3} + (1 + x)^{5} bằng:

    Ta có:

    {(1 + x)^5} = \sumolimits_{k = 0}^5 {C_5^k{{.1}^{5 - k}}.{x^k}}

    Hệ số của x3 trong khai triển {(1 + x)^5} là: C_5^3{.1^{5 - 3}} = 10

    => Hệ số của x^{3} trong khai triển 3x^{3} + (1 + x)^{5} bằng: 3 + 10 = 13

  • Câu 6: Nhận biết

    Cho tập M gồm 10 phần tử. Số tập con gồm 4 phần tử của M là:

    Số tập con gồm 4 phần tử của M là số cách chọn 4 phần tử bất kì trong 10 phần tử của M.

    Do đó số tập con gồm 4 phần tử của MC_{10}^{4}.

  • Câu 7: Thông hiểu

    Có 3 học sinh nam và 7 học sinh nữ. Hỏi có bao nhiêu cách chọn 3 bạn gồm cả nam và nữ đi trực nhật.

     Trường hợp 1: 2 nam + 1 nữ

    C_3^2.C_7^1 = 21 cách.

    Trường hợp 2: 1 nam + 2 nữ

    C_3^1.C_7^2 = 63 cách.

    Vậy có 21+63=84 cách.

  • Câu 8: Thông hiểu

    Có 3 người đàn ông, 2 người đàn bà và 1 đứa trẻ được xếp ngồi vào 6 cái ghế xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho đứa trẻ ngồi giữa hai người đàn ông?

    Ta đánh số thứ tự cho 6 chiếc ghế từ số 1 đến số 6

    Ta thực hiện việc xếp 6 người vào 6 chiếc ghế sao cho đứa trẻ ngồi giữa hai người đàn ông như sau:

    Xếp đứa trẻ ngồi vào 1 trong các ghế có số thứ tự từ 2 đến 5 có 4 cách.

    Chọn và xếp 2 người đàn ông trong 3 người đàn ông vào 2 ghế bên cạnh đứa trẻ: A_{3}^{2} = 6 cách.

    Xếp 3 người còn lại vào 3 ghế còn lại có 3! Cách.

    Áp dụng quy tắc nhân, có tất cả: 4.6.6 =
144 cách.

  • Câu 9: Thông hiểu

    Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?

    Gọi số cần tìm có dạng \overline{abc};\left( a,b,c \in \left\{ 1;2;5;7;8
ight\} ight)

    Trường hợp 1: a = 2;b = 7;c = 8. Có 1 số thỏa mãn yêu cầu bài toán.

    Trường hợp 2: a = 2;b < 7

    a có 1 cách chọn.

    b có 2 cách chọn.

    c có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.2.3 =
6 (số).

    Trường hợp 3: a = 2;b = 7;c <
8

    a có 1 cách chọn.

    b có 1 cách chọn.

    c có 2 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.1.2 =
2 (số).

    Trường hợp 4: a < 2.

    a có 1 cách chọn.

    b có 4 cách chọn.

    c có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.3.4 =
12 (số).

    ⇒ Vậy có 1 + 6 + 2 + 12 = 21 (số).

  • Câu 10: Nhận biết

    Khai triển biểu thức \left( x^{2} - 5y ight)^{5} ta được:

    Ta có:

    \left( x^{2} - 5y
ight)^{5}

    = C_{5}^{0}.\left( x^{2} ight)^{5} +
C_{5}^{1}\left( x^{2} ight)^{4}.( - 5y) + C_{5}^{2}.\left( x^{2}
ight)^{3}.( - 5y)^{2}

    + C_{5}^{3}.\left( x^{2} ight)^{2}.( -
5y)^{3} + C_{5}^{4}.\left( x^{2} ight)^{1}.( - 5y)^{4} +
C_{5}^{5}.\left( x^{2} ight)^{0}.( - 5y)^{5}

    =x^{10} - 25x^{8}y + 250x^{6}y^{2} -1250x^{4}y^{3} + 3125x^{2}y^{4} - 3125y^{5}

  • Câu 11: Thông hiểu

    Xác định số hạng không chứa x trong khai triển nhị thức Newton \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0). Biết rằng C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} + ... +
3^{n}.C_{n}^{n} = 256.

    Ta có:

    C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} +
... + 3^{n}.C_{n}^{n} = 256

    \Leftrightarrow (1 + 3)^{n} = 256
\Leftrightarrow 4^{n} = 256 \Leftrightarrow n = 4

    Xét khai triển \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0)

    Số hạng tổng quát C_{4}^{k}.\left( x^{2}
ight)^{4 - k}.\left( \frac{1}{x^{2}} ight)^{k} = C_{4}^{k}.x^{8 -
4k}

    Số hạng không chứa x ứng với 8 - 4k = 0
\Leftrightarrow k = 2

    Suy ra số hạng không chứa x là C_{4}^{2}
= 6.

  • Câu 12: Thông hiểu

    Từ các số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau?

    Mỗi số tự nhiên có ba chữ số khác nhau được lập từ các số 1,2,3,4,5,6 là một chỉnh hợp chập 3 của 6 phần tử.

    Vậy từ các số 1,2,3,4,5,6 có thể lập được: A_{6}^{3} = 120 số tự nhiên có ba chữ số khác nhau.

  • Câu 13: Vận dụng

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit trong đó có ít nhất ba kí tự 0 và ít nhất ba kí tự 1?

    Trường hợp 1: dãy nhị phân có ba kí tự 0 và bảy kí tự 1.

    Khi đó có \frac{10!}{3!.7!} =
120 dãy nhị phân 10 bit.

    Trường hợp 2: dãy nhị phân có bốn kí tự 0 và sáu kí tự 1.

    Khi đó có \frac{10!}{4!.6!} =
210 dãy nhị phân 10 bit.

    Trường hợp 3: dãy nhị phân có năm kí tự 0 và năm kí tự 1.

    Khi đó có \frac{10!}{5!.5!} =
252 dãy nhị phân 10 bit.

    Trường hợp 4: dãy nhị phân có sáu kí tự 0 và bốn kí tự 1.

    Khi đó có \frac{10!}{4!.6!} =
210 dãy nhị phân 10 bit.

    Trường hợp 5: dãy nhị phân có bảy kí tự 0 và ba kí tự 1.

    Khi đó có \frac{10!}{3!.7!} =
120 dãy nhị phân 10 bit.

    Vậy có 120 + 210 + 252 + 210 + 120 =
912 dãy nhị phân 10 bit thỏa mãn yêu cầu bài toán.

  • Câu 14: Nhận biết

    Tính số chỉnh hợp chập 2 của 5 là:

    Số chỉnh hợp chập 2 của 5 là: A_{5}^{2}.

  • Câu 15: Nhận biết

    Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?

    Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.

  • Câu 16: Nhận biết

    Kết quả của phép tính C_{6}^{2}-C_{6}^{3} là:

     Ta có: C_{6}^{2}-C_{6}^{3} =-5.

  • Câu 17: Vận dụng

    Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?

    Chọn 4 Toán, 2 Văn, 2 Lí có C_{10}^{4}C_{5}^{2}C_{8}^{2} cách.

    Chọn 4 Toán, 1 Văn, 3 Lí có C_{10}^{4}C_{5}^{1}C_{8}^{3} cách.

    Chọn 5 Toán, 2 Văn, 1 Lí có C_{10}^{5}C_{5}^{2}C_{8}^{1} cách.

    Chọn 5 Toán, 1 Văn, 2 Lí có C_{10}^{5}C_{5}^{1}C_{8}^{2} cách.

    Chọn 6 Toán, 1 Văn, 1 Lí có C_{10}^{6}C_{5}^{1}C_{8}^{1} cách.

    Tổng lại ta được 181440 cách thỏa mãn.

  • Câu 18: Nhận biết

    Cho tập hợp D gồm x phần tử. Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là:

    Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 19: Nhận biết

    Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?

    Mỗi tập con có 8 phần tử của tập hợp E là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp E là. C_{10}^{8} = 45.

  • Câu 20: Vận dụng

    Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcd} chia hết cho 6 suy ra \left\{ \begin{matrix}
e = \left\{ 0;2 ight\} \\
(a + b + c + d + e) \vdots 3 \\
\end{matrix} ight.

    TH1. Với e = 0 suy ra a + b + c + d \vdots 3, do đó gồm các bộ (1;2;5;7) suy ra có 24 số.

    TH2. Với e = 2 suy ra a + b + c + d + 2 \vdots 3, do đó gồm các bộ (0;1;5;7), (1;5;7;9) suy ra có 42 số.

    Vậy có tất cả 24 + 42 = 66 số cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo