Biểu thức
bằng:
Ta có:
Biểu thức
bằng:
Ta có:
Một tổ chăm sóc khách hàng của một trung tâm điện tử gồm 12 nhân viên. Số cách phân công 3 nhân viên đi đến ba địa điểm khác nhau để chăm sóc khách hàng là
Số cách xếp 3 nhân viên từ 12 nhân viên vào 3 vị trí khác nhau là: cách.
Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách chọn 2 người sao cho luôn có 2 màu áo khác nhau.
Trường hợp 1: 1 áo vàng + 1 áo đỏ
Có: (cách).
Trường hợp 2: 1 áo đỏ + 1 áo xanh
Có: (cách).
Trường hợp 3: 1 áo xanh + 1 áo vàng
Có: (cách)
Vậy có (cách).
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Nếu chữ số hàng chục là thì số có chữ số hàng đơn vị là
thì số các chữ số nhỏ hơn
năm ở hàng đơn vị cũng bằng
. Do chữ số hang chục lớn hơn bằng
còn chữ số hang đơn vị thi
.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:
.
Một người vào một cửa hàng ăn, người đó chọn thực đơn 1 món ăn trong 5 món khác nhau, 1 loại quả tráng miệng trong 5 loại quả tráng miệng khác nhau, 1 loại đồ uống trong 3 loại đồ uống khác nhau. Có bao nhiêu cách chọn một thực đơn?
Người đó chọn 1 món ăn trong 5 món khác nhau có 5 cách.
Người đó chọn 1 loại quả tráng miệng trong 5 loại quả tráng miệng khác nhau có 5 cách.
Người đó chọn 1 loại đồ uống trong 3 loại đồ uống khác nhau có 3 cách.
Áp dụng quy tắc nhân ta có 5.5.3 = 75cách.
Lớp 11A có 20 học sinh nam và 15 học sinh nữ. Giáo viên chủ nhiệm muốn chọn một nhóm học sinh đại diện gồm 3 học sinh nam và 2 học sinh nữ. Hỏi có bao nhiêu cách chọn nhóm học sinh đại diện?
Số cách chọn 3 học sinh nam là cách.
Số cách chọn 2 học sinh nữ là: cách.
Vậy số cách chọn nhóm học sinh đại diện là: cách.
Giải phương trình
. Kết luận nào sau đây đúng?
Điều kiện:
Ta có:
Vậy kết luận đúng là: n là số nguyên tố.
Một bài trắc nghiệm khách quan có 10 câu hỏi. Mỗi câu hỏi có 4 phương án trả lời. Có bao nhiêu phương án trả lời?
Mỗi câu hỏi có 4 cách chọn phương án trả lời.
Mười câu hỏi sẽ có số cách chọn phương án trả lời là 410.
Số số hạng trong khai triển
là:
Số số hạng trong khai triển là: .
Một người có 7 áo trong đó có 3 áo trắng và 5 cà vạt trong đó có 2 cà vạt vàng. Hỏi người đó có bao nhiêu cách chọn bộ áo và cà vạt nếu chọn áo nào cũng được và cà vạt nào cũng được?
Số cách chọn 1 một bộ áo và cà vạt là:
Cho khai triển
. Giá trị của
bằng:
.
Thay vào
ta có:
.
Một tập hợp M gồm 20 phần tử. Hỏi M có bao nhiêu tập con khác rỗng mà có số phần tử chẵn?
Tổng số các tập con của tập M là:
Trong đó số tập con khác rỗng và có số phần tử chẵn là:
Lại có:
Và
Do đó:
Tìm hệ số của số hạng chứa
trong khai triển
?
Ta có:
Hệ số chứa trong khai triển là:
.
Từ các số
có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau?
Mỗi số tự nhiên có ba chữ số khác nhau được lập từ các số là một chỉnh hợp chập 3 của 6 phần tử.
Vậy từ các số có thể lập được:
số tự nhiên có ba chữ số khác nhau.
Biến đổi biểu thức
dưới dạng
. Tính giá trị biểu thức
?
Ta có:
Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần?
Với một cách chọn chữ số từ tập
ta có duy nhất một cách xếp chúng theo thứ tự giảm dần.
Ta có cách chọn
chữ số từ tập
.
Do đó có số tự nhiên cần tìm.
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Một lớp có 34 học sinh. Hỏi có bao nhiêu cách chọn 3 học sinh để làm lớp trưởng, lớp phó, bí thư?
Chọn 3 học sinh từ 34 học sinh rồi xếp vào 3 vai trò lớp trưởng, lớp phó, bí thư có cách.
Cho tập hợp
có
phần tử. Số tập con gồm hai phần từ của
là:
Mỗi cách lấy ra phần tử trong
phần tử của
để tạo thành tập con gồm
phần tử là một tổ hợp chập
của
phần tử
Số tập con của
gồm
phần tử là
.
Quan sát mạch điện như sau:

Mạch điện có 6 công tắc khác nhau, trong đó mỗi công tắc có 2 trạng thái đóng và mở. Hỏi có bao nhiêu cách đóng mở 6 công tắc để mạch điện thông mạch từ E đến F?
Cả 3 công tắc của nhánh trên đóng còn 1 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh trên đóng còn 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh dưới đóng còn 1 trong 3 công tắc của nhánh trên mở có: Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh dưới đóng còn 3 công tắc nhánh trên mở có:
Cả 3 công tắc của nhánh trên đóng và cả 3 công tắc nhánh dưới đóng có:
Vậy có tất cả 15 cách.