Tính giá trị biểu thức ![]()
Áp dụng công thức cho
ta có:
Tính giá trị biểu thức ![]()
Áp dụng công thức cho
ta có:
Từ tập A = {1; 2; 3; 4; 5; 6} có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và số đó không lớn hơn 456?
Ta có: là số cần tìm.
Trường hợp 1:
Chọn a ∈ {1; 2; 3}: 3 cách.
Chọn : 5 cách.
Chọn : 4 cách.
⇒ Có số.
Trường hợp 2:
Chọn a = 4: 1 cách.
Chọn b ∈ {1; 2; 3}: 3 cách.
Chọn : 4 cách.
⇒ Có: 1.3.4 = 12 số.
Trường hợp 3:
Chọn a = 4: 1 cách.
Chọn b = 5: 1 cách.
Chọn : 4 cách.
⇒ Có: 1.1.4 = 4 số.
Từ (1); (2); (3) có số thoả yêu cầu bài toán.
Viết khai triển theo công thức nhị thức Niu-tơn
.
Ta có:
Hay .
Tìm số hạng chứa
trong khai triển
.
Số hạng thứ trong khai triển là:
.
Số hạng chứa có giá trị
thỏa mãn:
.
Vậy số hạng chứa trong khai triển là:
.
Với
là số nguyên dương thỏa mãn
. Trong khai triển biểu thức
, gọi
là số hạng mà tổng số mũ của
và
của số hạng đó bằng
. Hệ số của
là :
Điều kiện: ,
.
Ta có
.
.
.
Ta có: . Vậy hệ số
.
Cho tập hợp
gồm
phần tử. Số các hoán vị của
phần tử của tập hợp
là bao nhiêu?
Số các hoán vị của phần tử:
.
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu sao cho 3 quả cầu lấy ra có ít nhất một quả cầu trắng?
Trường hợp 1: 1 quả trắng và 2 quả đỏ.
Số cách lấy là
Trường hợp 2: 2 quả trắng và 1 quả đỏ.
Số cách lấy là
Trường hợp 3: 3 quả trắng.
Số cách lấy là
Do vậy số cách lấy ngẫu nhiên 3 quả cầy trong hộp sao cho trong 3 quả cầu lấy ra có ít nhất 1 quả cầu trắng là: 75 + 60 + 10 = 145 (cách)
Quân đến nhà Hoàng để cùng Hoàng đến nhà An. Từ nhà Quân đến nhà Hoàng có 4 con đường đi, từ nhà Hoàng đến nhà An có 6 con đường đi. Hỏi Quân có bao nhiêu cách chọn con đường đi từ nhà đến nhà An?
Giai đoạn 1: Quân đi từ nhà đến nhà Hoàng có 4 cách.
Giai đoạn 2: Quân đi từ nhà Bình đến nhà An có 6 cách.
Vậy số cách Quân lựa chọn con đường đi từ nhà đến nhà An là: cách
Cho
là số thực dương, số hạng không chứa
trong khai triển nhị thức
là:
Ta có
Số hạng tổng quát thứ trong khai triển là
.
Số hạng này không chứa tương ứng với trường hợp
.
Vậy số hạng không chứa trong khai triển là
.
Từ các chữ số
, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 4 chữ số đôi một khác nhau và bắt đầu bằng 56 hoặc 65.
Gọi là số thỏa yêu cầu bài toán.
Chọn có: 2 cách.
Chọn có: 7 cách.
Chọn có: 6 cách.
Theo quy tắc nhân có: số.
Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong
người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
Thứ 2: có cách chọn bạn đi thăm
Thứ 3: có cách chọn bạn đi thăm
Thứ 4: có cách chọn bạn đi thăm
Thứ 5: có cách chọn bạn đi thăm
Thứ 6: có cách chọn bạn đi thăm
Thứ 7: có cách chọn bạn đi thăm
Chủ nhật: có cách chọn bạn đi thăm
Vậy theo quy tắc nhân, có (kế hoạch).
Tổng số nguyên dương n thỏa mãn
là:
Điều kiện. .
hoặc
.
Vậy tổng số nguyên dương n bằng 11.
Cho biểu thức
, khi khai triển nhị thức đã cho ta được bao nhiêu số hạng?
Trong khai triển nhị thức Newton có
số hạng.
Dãy
trong đó mỗi kí tự
chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit trong đó có ít nhất ba kí tự 0 và ít nhất ba kí tự 1?
Trường hợp 1: dãy nhị phân có ba kí tự 0 và bảy kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 2: dãy nhị phân có bốn kí tự 0 và sáu kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 3: dãy nhị phân có năm kí tự 0 và năm kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 4: dãy nhị phân có sáu kí tự 0 và bốn kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 5: dãy nhị phân có bảy kí tự 0 và ba kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Vậy có dãy nhị phân 10 bit thỏa mãn yêu cầu bài toán.
Một tổ có
học sinh nữ và
học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên hai học sinh của tổ đó đi trực nhật biết cần có cả nam và nữ.
Chọn một học sinh nữ có 5 cách.
Chọn một học sinh nam có 6 cách.
Áp dụng quy tắc nhân, có 5.6 = 30 cách chọn hai học sinh có cả nam và nữ.
Một học sinh có 12 quyển sách đôi một khác nhau, trong đó có 2 sách Toán, 4 sách Văn, 6 sách Anh Văn. Hỏi có bao nhiêu cách xếp tất cả các quyển sách lên một kệ sách dài nếu mọi quyển sách cùng môn được xếp kề nhau?
Có 3! = 6 cách xếp 3 loại sách.
Có 2! = 2 cách xếp 2 sách Toán.
Có 4! = 24 cách xếp 4 sách Văn.
Vậy theo qui tắc nhân có tất cả 6.2.24 = 720 cách xếp thoả mãn yêu cầu đề bài
Có 3 người đàn ông, 2 người đàn bà và 1 đứa trẻ được xếp ngồi vào 6 cái ghế xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho đứa trẻ ngồi giữa hai người đàn bà?
Ta đánh số thứ tự cho 6 chiếc ghế từ số 1 đến số 6
Ta thực hiện việc xếp 6 người vào 6 chiếc ghế sao cho đứa trẻ ngồi giữa hai người đàn bà như sau:
Xếp đứa trẻ ngồi vào 1 trong các ghế có số thứ tự từ 2 đến 5 có 4 cách.
Xếp hai người đàn bà vào 2 ghế bên cạnh đứa trẻ có 2 cách.
Xếp 3 người đàn ông vào 3 ghế còn lại: có 3! cách.
Áp dụng quy tắc nhân, có tất cả: cách.
Lớp 10A có 20 học sinh nam và 15 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra hai học sinh một nam, một nữ để thi đấu cầu lông đôi nam nữ.
Chọn 1 nam có: 20 cách
Chọn 1 nữ có: 15 cách
Vậy số cách chọn 1 nam và 1 nữ là: 20.15 = 300 (cách).