Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:

    Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.

    Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.

    Vì vậy số hoán vị 6 đối tượng là 6!.

    Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.

    Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!

    Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.

  • Câu 2: Vận dụng

    Khai triển (\sqrt{5} - \sqrt[4]{7})^{124}. Hỏi có tất cả bao nhiêu số hạng hữu tỉ trong khai triển trên?

    Ta có (\sqrt{5} - \sqrt[4]{7})^{124} =
\sum_{k = 0}^{124}{C_{124}^{k}.( - 1)^{k}.5^{\frac{124 -
k}{2}}.7^{\frac{k}{4}}}

    Số hạng hữu tỉ trong khai triển tương ứng với \left\{ \begin{matrix}
\frac{124 - k}{2}\mathbb{\in Z} \\
\frac{k}{4}\mathbb{\in Z} \\
\end{matrix} ight.\  \Leftrightarrow k \in \left\{ 0;4;8;12;...;124
ight\}.

    Vậy số các giá trị k là: \frac{124 - 0}{4} + 1 = 32.

  • Câu 3: Vận dụng

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 4: Nhận biết

    Một trường THPT được cử một học sinh đi dự trại hè toàn quốc. Nhà trường quyết định chọn một học sinh tiên tiến trong lớp 11A hoặc lớp 12B. Hỏi nhà trường có bao nhiêu cách chọn, biết rằng lớp 11A có 31 học sinh tiên tiến và lớp 12B có 22 học sinh tiên tiến?

    Để chọn được một học sinh đi dự ta có 2 trường hợp:

    Trường hợp 1: Học sinh ở lớp 11A: có 31 cách

    Trường hợp 2: Học sinh ở lớp 12B: có 22 cách

    Vậy có 31 + 22 = 53 cách.

  • Câu 5: Thông hiểu

    Có bao nhiêu số tự nhiên lẻ trong khoảng (2000; 3000) có thể tạo nên bằng các chữ số 1,2,3,4,5,6 nếu các chữ số khác nhau?

    Gọi số tự nhiên trong khoảng (2000;3000) có dạng \overline{2abc}

    Vì là số tự nhiên lẻ nên c có 3 lựa chọn là \left\{ 1;3;5 ight\}

    a có 4 lựa chọn vì khác 2 và c

    b có 3 lựa chọn vì khác 2 và c, a.

    Vậy có 3.4.3 = 36 số tự nhiên thỏa mãn yêu cầu bài toán.

  • Câu 6: Nhận biết

    Khai triển biểu thức \left( x^{2} - 5y ight)^{5} ta được:

    Ta có:

    \left( x^{2} - 5y
ight)^{5}

    = C_{5}^{0}.\left( x^{2} ight)^{5} +
C_{5}^{1}\left( x^{2} ight)^{4}.( - 5y) + C_{5}^{2}.\left( x^{2}
ight)^{3}.( - 5y)^{2}

    + C_{5}^{3}.\left( x^{2} ight)^{2}.( -
5y)^{3} + C_{5}^{4}.\left( x^{2} ight)^{1}.( - 5y)^{4} +
C_{5}^{5}.\left( x^{2} ight)^{0}.( - 5y)^{5}

    =x^{10} - 25x^{8}y + 250x^{6}y^{2} -1250x^{4}y^{3} + 3125x^{2}y^{4} - 3125y^{5}

  • Câu 7: Nhận biết

    Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu?

    Tổng số quả cầu trong hộp là 5 + 6 = 11

    Mỗi cách lấy ngẫu nhiên 3 quả cầu trong 11 quả cầu trong hộp là tổ hợp chập 3 của 11 phần tử

    Vậy số cách thỏa mãn yêu cầu bài toán là C_{11}^{3} = 165 (cách).

  • Câu 8: Nhận biết

    Số hạng thứ 13 trong khai triển (2 - x)^{15} bằng?

    Ta có (2 - x)^{15} = \sum_{k =
0}^{15}{C_{15}^{k}.2^{15 - k}.( - x)^{k}}

    Số hạng thứ 13 trong khai triển tương ứng với k = 12.\Rightarrow C_{15}^{12}.2^{15 - 12}.( - x)^{12} =
3640x^{12}.

  • Câu 9: Thông hiểu

    Tìm số hạng chứa x^{4} trong khai triển (x^{2}-\frac{1}{x})^{n} biết A_{n}^{2}-C_{n}^{2}=10.

    Ta có:

    \begin{matrix}  A_n^2 - C_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 - \dfrac{{A_n^2}}{{2!}} = 10 \hfill \\   \Leftrightarrow \dfrac{1}{2}A_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 = 20 \Leftrightarrow n = 5 \hfill \\ \end{matrix}

    Khai triển biểu thức như sau:

    \begin{matrix}  {\left( {{x^2} - \dfrac{1}{x}} ight)^5} = \sumolimits_{k = 0}^5 {C_5^k.{{\left( {{x^2}} ight)}^{5 - k}}.{{\left( { - \dfrac{1}{x}} ight)}^k}}  \hfill \\   = \sumolimits_{k = 0}^5 {C_5^k.{{\left( { - 1} ight)}^k}.{x^{10 - 3k}}}  \hfill \\ \end{matrix}

    Số hạng chứa x^{4} nghĩa là: 10 - 3k = 4 \Rightarrow k = 2

    => Số hạng cần tìm là C_5^2 = 10

  • Câu 10: Nhận biết

    An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con

    đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn

    đường đi đến nhà Cường cùng Bình (như hình vẽ dưới đây và không có con đường nào khác)?

    Chọn đường đi từ nhà An đến nhà Bình có 4 cách chọn.

    Chọn đường đi từ nhà Bình đến nhà Cường có 6 cách chọn.

    Vậy theo quy tắc nhân có 4.6 = 24 cách cho An chọn đường đi đến nhà Cường cùng Bình.

  • Câu 11: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam đứng cạnh nhau và nữ đứng cạnh nhau:

    Trường hợp 1: Nữ đứng trước

    Có 6 vị trí để xếp, vì nam đứng cạnh nhau và nữ đứng cạnh nhau nên nữ sẽ đứng vị trí số 1, 2, 3 còn nam đứng vị trí số 4, 5, 6

    Sắp xếp học sinh nữ vào vị trí 1, 2, 3

    Vị trí số 1 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nữ)

    Vị trí số 2 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nữ còn lại)

    Vị trí số 3 có 1 cách chọn (vì chỉ còn 1 bạn nữ để chọn)

    Có 6 vị trí để xếp, vì nam nữ đứng xen kẽ nên nữ sẽ đứng vị trí số 1, 3, 5 còn nam đứng vị trí số 2, 4, 6.

    Sắp xếp học sinh nam vào vị trí 4, 5, 6

    Vị trí số 4 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nam)

    Vị trí số 5 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nam còn lại)

    Vị trí số 6 có 1 cách chọn (vì chỉ còn 1 bạn nam để chọn)

    Trường hợp 1 có 3.2.1.3.2.1 = 36 (cách xếp)

    Trường hợp 2: Nam đứng trước

    Tương tự như trường hợp 1, trường hợp 2 có 36 (cách xếp)

    Vậy áp dụng quy tắc cộng ta có cả hai trường hợp có 36 + 36 = 72 (cách xếp).

  • Câu 12: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12

    Chọn một bạn để xếp vào vị trí ghế số 1 có 12 cách.

    Chọn một bạn để xếp vào vị trí ghế số 7 để khác giới với bạn vị trí ghế số 1 có 6 cách.

    Chọn một bạn để xếp vào vị trí ghế số 2 có 10 cách.

    Chọn một bạn để xếp vào vị trí ghế số 8 để khác giới với bạn vị trí ghế số 1 có 5 cách.

    Cứ tuân theo cách xếp như vậy, ta có số cách xếp là: 12.10.8.6.4.2.6.5.4.3.2 = 33177600

  • Câu 13: Thông hiểu

    Tìm hệ số của x^{6} trong khai triển \left( \frac{1}{x} + x^{3} ight)^{3n +
1}với x eq 0, biết n là số nguyên dương thỏa mãn 3C_{n + 1}^{2} + nP_{2} = 4A_{n}^{2}.

    Đk:n \geq 2,\ \ n \in
\mathbb{N.}

    \ \ \ \ \ \ \ 3C_{n + 1}^{2} + nP_{2} =
4A_{n}^{2}

    \Leftrightarrow 3\frac{(n + 1)!}{(n -
1)!2!} + 2!n = 4\frac{n!}{(n - 2)!}

    \Leftrightarrow \frac{3}{2}n(n + 1) + 2n
= 4n(n - 1)

    \Leftrightarrow \frac{5}{2}n^{2} -
\frac{15}{2}n = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0\ \ \ \ (L) \\
n = 3 \\
\end{matrix} ight.

    Với n = 3, nhị thức trở thành \left( \frac{1}{x} + x^{3}
ight)^{10}.

    Số hạng tổng quát là C_{10}^{k}.\left(
\frac{1}{x} ight)^{10 - k}.\left( x^{3} ight)^{k} = C_{10}^{k}.x^{4k
- 10}

    Từ yêu cầu bài toán ta cần có: 4k - 10 =
6 \Leftrightarrow k = 4.

    Vậy hệ số của số hạng chứa x^{6}C_{10}^{4} = 210..

  • Câu 14: Nhận biết

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?

    Đánh số thứ tự các vị trí theo hàng dọc từ 1 đến 6.

    Trường hợp 1. Nam đứng trước, nữ đứng sau.

    Xếp nam (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nữ (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Trường hợp 2. Nữ đứng trước, nam đứng sau.

    Xếp nữ (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nam (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Theo quy tắc cộng ta có. 36 + 36 =
72 cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.

  • Câu 15: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 16: Nhận biết

    Hệ số của số hạng chứa x^{6}trong khai triển Newton \left( x - \frac{2}{x^{2}}
ight)^{15}là:

    \left( x - \frac{2}{x^{2}} ight)^{15}
= \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}\left( - \frac{2}{x^{2}}
ight)^{k}} = \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}( - 2)^{k}\left(
x^{- 2} ight)^{k} =}\sum_{k = 0}^{15}{C_{15}^{k}( - 2)^{k}x^{15 -
3k}}

    Số hạng tổng quát của khái triển T_{k +
1} = C_{15}^{k}( - 2)^{k}x^{15 - 3k}

    Số của số hạng chứa x^{6}: 15 - 3k = 6 \Leftrightarrow k = 3. Hệ số của số hạng chứa x^{6}C_{15}^{k}( - 2)^{k} =
C_{15}^{3}( - 2)^{3} = - 3640.

  • Câu 17: Vận dụng

    Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?

    Gọi số cần tìm có dạng \overline{abcd}. Vì \overline{abcd} chia hết cho 10 suy ra d = 0.

    TH1. Với a = 5, ta có

    + Nếu b = 4 suy ra c = \left\{ 0;1 ight\}, do đó có 2 số cần tìm.

    + Nếu b < 4 suy ra b = \left\{ 0;1 ight\}c = \left\{ 0;1;4;5;6;7;9 ight\}, do đó có 14 số cần tìm.

    TH2. Với a < 5
\Rightarrow a = \left\{ 1;4 ight\} suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn

    C.

    Suy ra có 2 \times 7 \times 7 =
98 số cần tìm. Vậy có tất cả 114 số cần tìm.

  • Câu 18: Vận dụng

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

    Nếu chữ số hàng chục là n thì số có chữ số hàng đơn vị là n - 1 thì số các chữ số nhỏ hơn n năm ở hàng đơn vị cũng bằng n. Do chữ số hang chục lớn hơn bằng 1 còn chữ số hang đơn vị thi \geq.

    Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:

    1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =
45.

  • Câu 19: Nhận biết

    Đếm số cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài. Biết các sách Văn phải xếp kề nhau?

    Vì các sách Văn phải xếp kề nhau nên ta xem 5 cuốn sách Văn là một phần tử.

    Xếp 7 cuốn sách toán lên kệ có 7! cách.

    Giữa 7 cuốn sách Toán có 8 khoảng trống, ta xếp phần tử chứa 5 cuốn sách Văn vào 8 vị trí đó có 8 cách.

    5 cuốn sách Văn có thể hoán đổi vị trí cho nhau ta được 5! cách.

    Vậy số cách sắp xếp thỏa mãn yêu cầu bài toán là. 8.7!.5! = 8!.5!.

  • Câu 20: Vận dụng

    Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).

    Thứ 2: có 12 cách chọn bạn đi thăm

    Thứ 3: có 12 cách chọn bạn đi thăm

    Thứ 4: có 12 cách chọn bạn đi thăm

    Thứ 5: có 12 cách chọn bạn đi thăm

    Thứ 6: có 12 cách chọn bạn đi thăm

    Thứ 7: có 12 cách chọn bạn đi thăm

    Chủ nhật: có 12 cách chọn bạn đi thăm

    Vậy theo quy tắc nhân, có 12^{7} =
35831808 (kế hoạch).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo