Tìm hệ số của
trong khai triển
với
biết
là số nguyên dương thỏa mãn ![]()
Đk:
Với , nhị thức trở thành
Số hạng tổng quát là
Từ yêu cầu bài toán ta cần có:
Vậy hệ số của số hạng chứa là
.
Tìm hệ số của
trong khai triển
với
biết
là số nguyên dương thỏa mãn ![]()
Đk:
Với , nhị thức trở thành
Số hạng tổng quát là
Từ yêu cầu bài toán ta cần có:
Vậy hệ số của số hạng chứa là
.
Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?
Số cách chọn sách Toán là 20 cách.
Số cách chọn sách Vật lí là 40 cách.
Số cách chọn sách Hóa học là 50 cách.
Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.
Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?
Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.
Tìm hệ số của
trong khai triển
biết
.
Ta có:
.
Ta có: .
Hệ số sẽ là
.
Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho
mà mỗi số
chữ số và trong đó có ít nhất hai chữ số
.
Đặt là các số tự nhiên thỏa yêu cầu bài toán.
{ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}
Với mỗi số thuộc A có chữ số
thì ta có thể bổ sung thêm
số
vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng
mà trong
không có chữ số 9}
mà trong
có đúng 1 chữ số 9}
Ta thấy tập A có
phần tử
Tính số phần tử của
Với và
với
. Từ đó ta suy ra
có
phần tử.
Tính số phần tử của
Để lập số của thuộc tập ta thực hiện liên tiếp hai bước sau:
Bước 1: Lập một dãy gồm chữ số thuộc tập
và tổng các chữ số chia hết cho 9. Số các dãy là
.
Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9.
Do đó có
phần tử.
Vậy số các số cần lập là:
.
Cho hai dãy ghế được xếp như sau.

Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?
Xếp 4 bạn nam vào một dãy có (cách xếp).
Xếp 4 bạn nữ vào một dãy có (cách xếp).
Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.
Số cách xếp theo yêu cầu là. (cách xếp).
Cho khai triển
trong đó
và các hệ số thỏa mãn hệ thức
. Hệ số lớn nhất là:
Xét khai triển .
Cho ta được
Khi đó .
Ta có hệ số
Hệ số lớn nhất nên
Vì nên nhận
Vậy hệ số lớn nhất .
Từ tập hợp các chữ số
có thể lập được bao nhiêu số tự nhiên có hai chữ số khác nhau?
Gọi số tự nhiên có hai chữ số
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Vậy số các số tự nhiên có thể tạo thành từ tập hợp các chữ số đã cho là số.
Có 1 con mèo vàng,
con mèo đen,
con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào
cái ghế sao cho mỗi ghế chỉ có một con mèo. Đếm số cách xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau.
Số cách xếp con mèo vàng và con mèo đen ở cạnh nhau là .
Xem nhóm con mèo vàng và đen này là một phần tử, cùng với con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím, ta được
phần tử. Xếp
phần tử này là.
Vậy có .
Có bao nhiêu số tự nhiên có
chữ số lập từ các số
với điều các chữ số đó không lặp lại?
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.
Tính số cách sắp xếp 8 học sinh thành 1 hàng dọc?
Số cách sắp xếp 8 học sinh thành 1 hàng dọc là 8! = 40320 cách.
Cho tập
. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Biết rằng
thỏa mãn biểu thức
. Tính giá trị biểu thức
?
Ta có:
Lại có:
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Số hạng chứa
trong khai triển biểu thức
là:
Ta có: .
Số hạng cần tìm là: .
Trong menu của một nhà hàng gồm 5 món mặn, 5 món tráng miệng và 3 loại nước uống. Thực khách đến ăn sẽ được lên thực đơn gồm 1 món mặn, 1 món tráng miệng và 1 loại nước uống. Số thực đơn có thể có là:
Chọn món mặn có 5 cách chọn.
Số cách chọn món tráng miệng là 5 cách.
Số cách chọn một loại nước uống là 3 cách.
Theo quy tắc nhân ta có: (cách).
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12
Chọn một bạn để xếp vào vị trí ghế số 1 có 12 cách.
Chọn một bạn để xếp vào vị trí ghế số 7 để khác giới với bạn vị trí ghế số 1 có 6 cách.
Chọn một bạn để xếp vào vị trí ghế số 2 có 10 cách.
Chọn một bạn để xếp vào vị trí ghế số 8 để khác giới với bạn vị trí ghế số 1 có 5 cách.
Cứ tuân theo cách xếp như vậy, ta có số cách xếp là:
Hệ số của số hạng chứa
trong khai triển Newton
là:
Số hạng tổng quát của khái triển
Số của số hạng chứa :
. Hệ số của số hạng chứa
.
Tìm hệ số của
trong khai triển
.
Số hạng tổng quát là: .
Số hạng chứa trong khai triển
là:
nên hệ số là 45.
Từ 6 chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và chia hết cho 3?
Gọi số tự nhiên có 4 chữ số là
Bộ bốn chữ số có tổng chia hết cho 3 là:
Trường hợp 1:
Chọn a: 3 cách (vì a ≠ 0).
Chọn b, c, d: cách chọn.
Khi đó: 3.6=18 (cách).
Trường hợp 2:
Chọn :
Vậy 6 + 24 = 30 (số)