Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm số hạng chứa x^{7} trong khai triển \left( x - \frac{1}{x} ight)^{13}.

    Ta có công thức của số hạng tổng quát:

    T_{k + 1} = C_{13}^{k}x^{13 - k}.\left(
- \frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - k}( - 1)^{k}x^{- k} =
C_{13}^{k}.( - 1)^{k}x^{13 - 2k}

    Số hạng chứa x^{7}khi và chỉ khi 13 - 2k = 7 \Leftrightarrow k =
3.

    Vậy số hạng chứa x^{7} trong khai triển là -
C_{13}^{3}x^{7}.

  • Câu 2: Nhận biết

    Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có 5 sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở 5 vị trí khác nhau. Yêu cầu mỗi vị trí có đúng 1 sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 người đó?

    Mỗi cách xếp 5 sinh viên vào 5 vị trí thỏa đề là một hoán vị của 5 phần tử.

    Suy ra số cách xếp là 5! = 120 cách.

  • Câu 3: Thông hiểu

    Tìm hệ số không chứa x trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n}, biết n là sô nguyên dương thỏa mãn C_{n}^{n - 1} + C_{n}^{n - 2} =
78.

    C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow n + \frac{n(n - 1)}{2} = 78 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 12 \\
n = - 13(l) \\
\end{matrix} ight..

    \left( x^{3} - \frac{2}{x} ight)^{n} =
\left( x^{3} - \frac{2}{x} ight)^{12} = \sum_{k =
0}^{12}{C_{12}^{k}\left( x^{3} ight)^{12 - k}( - 2)^{k}\left(
\frac{1}{x} ight)^{k} =}\sum_{k = 0}^{12}{C_{12}^{k}( - 2)^{k}x^{36 -
4k}}.

    Số hạng không chứa x ứng với 36 - 4k = 0 \Leftrightarrow k = 9C_{12}^{9}( - 2)^{9} = -
112640.

  • Câu 4: Nhận biết

    Một học sinh có 12 quyển sách đôi một khác nhau, trong đó có 2 sách Toán, 4 sách Văn, 6 sách Anh Văn. Hỏi có bao nhiêu cách xếp tất cả các quyển sách lên một kệ sách dài nếu mọi quyển sách cùng môn được xếp kề nhau?

    Có 3! = 6 cách xếp 3 loại sách.

    Có 2! = 2 cách xếp 2 sách Toán.

    Có 4! = 24 cách xếp 4 sách Văn.

    Vậy theo qui tắc nhân có tất cả 6.2.24 = 720 cách xếp thoả mãn yêu cầu đề bài

  • Câu 5: Vận dụng

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 6: Nhận biết

    Cho các số 1,5, 6,7. Hỏi lập được bao nhiêu số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho?

    Số các số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho là: 4! = 24số.

  • Câu 7: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?

    Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là (1;2),(1;5),(1;8),(2;4),(4;5),(4;8).

    Trường hợp này có 2!.6 số.

    Chữ số cuối bằng 2 ta có các bộ (1;0),(4;0),(1;3),(3;4),(5;8), hoán vị được 2!.3 + 2 số.

    Chữ số cuối bằng 4 ta có các bộ (2;0),(2;3),(3;5),(3;8), hoán vị được 2!.3 + 1 số.

    Chữ số cuối bằng 8 ta có các bộ (0;1),(0;4),(1;3),(2;5),(3;4), hoán vị được 2!.3 + 2 số.

    Kết hợp lại ta có 35 số.

  • Câu 8: Thông hiểu

    Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:

    Gọi số cần tìm có dạng \overline{abcde};(a eq 0)

    Số cách chọn e là 1 cách, (e = 0)

    Số cách chọn a là 9 cách; (a eq 0)

    Số cách chọn \overline{bcd}10^{3} cách

    Vậy có 1.9.10^{3} = 9000 số.

  • Câu 9: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp F =
\left\{ 0,1,2,3,4,5,6,7;8;9 ight\} và không vượt quá 2023?

    TH1: Số cần tìm có dạng \overline{201d}

    Chữ số d có 7 cách chọn là một trong các chữ số \left\{ 3,4,5,6,7;8;9 ight\}.

    Suy ra có 7 số thỏa mãn.

    TH2: Số cần tìm có dạng \overline{abcd};(a = 1)

    3 vị trí còn lại có A_{5}^{3} =
504 cách chọn

    Suy ra có 504 số thỏa mãn

    Kết hợp cả hai trường hợp ta có: 504 + 7 = 511 số được tạo thành thỏa mãn yêu cầu đề bài.

  • Câu 10: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi riêng dãy?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Trường hợp 1: Các bạn nam ngồi dãy A, các bạn nữ ngồi dãy B

    Số cách xếp là: 6!.6! cách.

    Trường hợp 2: Các bạn nữ ngồi dãy A, các bạn nam ngồi dãy B

    Số cách xếp là: 6!.6! cách.

    Vậy số cách xếp là: 2.6!.6! =
1036800 cách.

  • Câu 11: Nhận biết

    Để giải một bài tập ta cần phải giải hai bài tập nhỏ. Bài tập 19 cách giải, bài tập 25 cách giải. Số các cách để giải hoàn thành bài tập trên là:

    Sô cách giải bài toán 1 : 9 cách.

    Số cách giải bài toán 2 : 5 cách.

    Áp dụng quy tắc nhân: 9 × 5 = 45 cách.

  • Câu 12: Nhận biết

    Số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x} ight)^{40} là:

    Số hạng thứ k + 1 trong khai triển \left( x + \frac{1}{x}
ight)^{40} là:

    a_{k + 1} = C_{40}^{k}x^{40 - k}.\left(
\frac{1}{x} ight)^{k} = C_{40}^{k}x^{40 - k}x^{- k} = C_{40}^{k}x^{40
- 2k}.

    Số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x}
ight)^{40} tương ứng với: 40 - 2k
= 34 \Leftrightarrow k = 3.

    Vậy số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x}
ight)^{40} là: C_{40}^{3}x^{34}.

  • Câu 13: Thông hiểu

    Hệ số lớn nhất trong khai triển \left( \frac{1}{4} + \frac{3}{4}x
ight)^{4}là:

    Ta có \left( \frac{1}{4} + \frac{3}{4}x
ight)^{4} = \sum_{k = 0}^{4}{C_{4}^{k}.\left( \frac{1}{4} ight)^{4 -
k}.\left( \frac{3}{4} ight)^{k}}

    = \frac{1}{256} + \frac{3}{64}x +
\frac{27}{128}x^{2} + \frac{27}{64}x^{3} +
\frac{81}{256}x^{4}

    Vậy hệ số lớn nhất trong khai triển là \frac{27}{64}.

  • Câu 14: Nhận biết

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    Đáp án là:

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    2^{10} = 1024 dãy nhị phân 10 bit.

  • Câu 15: Thông hiểu

    Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu sao cho 3 quả cầu lấy ra có ít nhất một quả cầu trắng?

    Trường hợp 1: 1 quả trắng và 2 quả đỏ.

    Số cách lấy là C_{5}^{1}.C_{6}^{2} =
75

    Trường hợp 2: 2 quả trắng và 1 quả đỏ.

    Số cách lấy là C_{5}^{2}.C_{6}^{1} =
60

    Trường hợp 3: 3 quả trắng.

    Số cách lấy là C_{5}^{3} =
10

    Do vậy số cách lấy ngẫu nhiên 3 quả cầy trong hộp sao cho trong 3 quả cầu lấy ra có ít nhất 1 quả cầu trắng là: 75 + 60 + 10 = 145 (cách)

  • Câu 16: Vận dụng

    Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).

    Thứ 2: có 12 cách chọn bạn đi thăm

    Thứ 3: có 12 cách chọn bạn đi thăm

    Thứ 4: có 12 cách chọn bạn đi thăm

    Thứ 5: có 12 cách chọn bạn đi thăm

    Thứ 6: có 12 cách chọn bạn đi thăm

    Thứ 7: có 12 cách chọn bạn đi thăm

    Chủ nhật: có 12 cách chọn bạn đi thăm

    Vậy theo quy tắc nhân, có 12^{7} =
35831808 (kế hoạch).

  • Câu 17: Nhận biết

    Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa và 3 chuyến máy bay. Hỏi một ngày có bao nhiêu cách lựa chọn đi từ tỉnh A đến tỉnh B?

    Trường hợp 1: Số cách chọn đi từ tỉnh A đến tỉnh B bằng ô tô: có 10 cách.

    Trường hợp 2: Số cách chọn đi từ tỉnh A đến tỉnh B bằng tàu hỏa: có 5 cách.

    Trường hợp 3: Số cách chọn đi từ tỉnh A đến tỉnh B bằng máy bay: có 3 cách.

    Vậy số cách lựa chọn đi từ tỉnh A đến tỉnh B là: 10 + 5 + 3 = 18 cách

  • Câu 18: Vận dụng

    Với n là số nguyên dương thỏa mãn 3C_{n + 1}^{3} -
3A_{n}^{2} = 52(n - 1). Trong khai triển biểu thức \left( x^{3} + 2y^{2} ight)^{n}, gọi T_{k} là số hạng mà tổng số mũ của xy của số hạng đó bằng 34. Hệ số của T_{k} là :

    Điều kiện: n \geq 2, n \in \mathbb{N}^{*}.

    Ta có 3C_{n + 1}^{3} - 3A_{n}^{2} = 52(n
- 1) \Leftrightarrow 3.\frac{(n + 1)!}{3!(n - 2)!} - 3\frac{n!}{(n -
2)!} = 52(n - 1)

    \Leftrightarrow \frac{(n - 1)n(n + 1)}{2}
- 3n(n - 1) = 52(n - 1) \Leftrightarrow n^{2} + n - 6n =
104.

    \Leftrightarrow n^{2} - 5n - 104 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 13 \\
n = - 8 \\
\end{matrix} ight.\  \Leftrightarrow n = 13.

    \left( x^{3} + 2y^{2} ight)^{13} =
\sum_{0}^{13}{C_{13}^{k}\left( x^{3} ight)^{13 - k}\left( 2y^{2}
ight)^{k}} = \sum_{0}^{13}{C_{13}^{k}2^{k}x^{39 -
3k}y^{2k}}.

    Ta có: 39 - 3k + 2k = 34 \Leftrightarrow
k = 5. Vậy hệ số C_{13}^{5}2^{5} =
41184.

  • Câu 19: Nhận biết

    Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của (3 -
2x)^{5}?

    Khi viết nhị thức (3 - 2x)^{5} dưới dạng khai triển 5 + 1 = 6 số hạng.

  • Câu 20: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0,2,4,6,8 với điều các chữ số đó không lặp lại?

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a4 cách chọn

    b4 cách chọn

    c3 cách chọn

    Vậy có: 4.4.3 = 48 số.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo