Biểu thức
là khai triển của nhị thức nào dưới đây?
Ta có:
Biểu thức
là khai triển của nhị thức nào dưới đây?
Ta có:
Cho tập hợp
gồm
phần tử. Số các hoán vị của
phần tử của tập hợp
là bao nhiêu?
Số các hoán vị của phần tử:
.
Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?
Số cách lấy 5 con trong đó có 1 con át và 1 con vua là .
Khai triển
thành đa thức ta được biểu thức gồm mấy số hạng?
Biểu thức khai triển thành đa thức có 5 hạng tử.
Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.
TH1. Có đúng 1 học sinh khối 10: (cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)
TH2. Có đúng 2 học sinh khối 10: (cách).
Có
cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.
Một trường THPT được cử một học sinh đi dự trại hè toàn quốc. Nhà trường quyết định chọn một học sinh tiên tiến trong lớp 11A hoặc lớp 12B. Hỏi nhà trường có bao nhiêu cách chọn, biết rằng lớp 11A có 31 học sinh tiên tiến và lớp 12B có 22 học sinh tiên tiến?
Để chọn được một học sinh đi dự ta có 2 trường hợp:
Trường hợp 1: Học sinh ở lớp 11A: có 31 cách
Trường hợp 2: Học sinh ở lớp 12B: có 22 cách
Vậy có cách.
Cho biết hệ số của
trong khai triển
bằng
. Tìm
.
Ta có .
Hệ số của bằng
.
Vậy .
Một người có 5 chiếc áo trong đó có
chiếc áo trắng. Người đó cũng có 3 chiếc cà vạt trong đó có 2 chiếc cà vạt màu vàng. Tìm số cách chọn một chiếc áo và một chiếc cà vạt sao cho đã chọn áo trắng thì không chọn cà vạt màu vàng.
5 chiếc áo gồm: 3 trắng và 2 màu khác.
3 chiếc cà vạt gồm: 2 vàng và 1 màu khác.
Trường hợp 1: Áo trắng, cà vạt màu khác vàng.
Áo trắng: có 3 cách chọn.
Cà vạt màu khác vàng: 1 cách chọn.
Suy ra có: 3.1 = 3 (cách).
Trường hợp 2: Áo màu khác trắng, cà vạt màu bất kì.
Áo màu khác trắng: 2 cách chọn.
Cà vạt màu bất kì: 3 cách chọn.
Suy ra có: 2.3 = 6 (cách).
Vậy có: 3+6 = 9 (cách) chọn thỏa mãn yêu cầu đề bài.
Từ các chữ số
, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 6 chữ số đôi một khác nhau trong đó phải có 1 và 3 đứng cạnh nhau, không kể thứ tự trước sau.
Gọi là số thỏa yêu cầu bài toán.
Chọn 2 vị trí cạnh nhau từ 6 vị trí (từ ) có: 5 cách.
Xếp số 1 và 3 vào 2 vị trí vừa chọn có: 2 cách.
Chọn số cho 4 vị trí từ tập có:
cách.
Theo quy tắc nhân có: số.
Để giải một bài tập ta cần phải giải hai bài tập nhỏ. Bài tập 1 có 9 cách giải, bài tập 2 có 5 cách giải. Số các cách để giải hoàn thành bài tập trên là:
Sô cách giải bài toán 1 : 9 cách.
Số cách giải bài toán 2 : 5 cách.
Áp dụng quy tắc nhân: 9 × 5 = 45 cách.
Tìm số hạng không chứa
trong khai triển
biết
.
Ta có:
.
Suy ra số hạng tổng quát trong khai triển: .
Tìm .
Vậy hệ số của số hạng không chứa trong khai triển là:
.
Cho
là số tự nhiên thỏa mãn phương trình
. Tìm hệ số của số hạng chứa
trong khai triển nhị thức Niu-tơn của
( với
).
Điều kiện và
.
(Vì
).
Khi đó ta có khai triển: .
Số hạng tổng quát của khai triển là .
Hệ số của số hạng chứa ứng với
thỏa mãn:
.
Vậy hệ số của số hạng chứa là:
.
Cho tam giác
. Trên mỗi cạnh
lấy 9 điểm phân biệt là không có điểm nào trùng với 3 đỉnh
. Hỏi từ 30 điểm đã cho (tính cả
) có thể lập được bao nhiêu tam giác?
Để tạo ra một tam giác ta lấy 3 điểm không thẳng hàng
Ta xét cách lấy ba điểm thẳng hàng thì có 3 trường hợp là: 3 điểm thuộc đoạn AB, 3 điểm thuộc đoạn AC, điểm thuộc đoạn BC. Trên mỗi đoạn thẳng có 11 điểm nên số cách lấy 3 điểm trên mỗi đoạn là:
Số cách lấy 3 điểm bất kì trong 30 điểm là:
Vậy số tam giác được tạo ra từ 30 điểm đã cho là: tam giác.
Phát biểu nào sau đây đúng?
Phát biểu đúng là:
Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Giả sử số đó là
Trường hợp 1. xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2. . Với
chọn
có 6 cách nên có 6 số thỏa mãn. Với
chọn
có 5 cách chọn, và tất nhiên
nên có 5 số thỏa mãn. Do đó có
số thỏa mãn.
Từ các chữ số 1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau.
Gọi số cần lập có dạng .
A: có 5 cách chọn.
B: có 4 cách chọn.
C: có 3 cách chọn.
Vậy có 5.4.3 = 60 (số) có 3 chữ số đôi một khác nhau.
Đếm số tập con gồm
phần tử được lấy ra từ tập
?
Mỗi tập con tập gồm phần tử được lấy ra từ tập
có
phần tử là một tổ hợp chập
của
phần tử.
Vậy số tập con gồm phần tử của
là
tập con.
Cho tập hợp số:
.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.
Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là
,
,
,
,
,
.
Vậy số các số cần lập là: số.
Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?
Một tam giác được lập thành từ 3 điểm.
Cứ 2 điểm thuộc + 1 điểm nằm ngoài có sẵn, ta được một tam giác.
Số cách lấy 2 điểm từ 6 điểm thuộc là:
(cách).
Dãy
trong đó mỗi kí tự
chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit trong đó có ít nhất ba kí tự 0 và ít nhất ba kí tự 1?
Trường hợp 1: dãy nhị phân có ba kí tự 0 và bảy kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 2: dãy nhị phân có bốn kí tự 0 và sáu kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 3: dãy nhị phân có năm kí tự 0 và năm kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 4: dãy nhị phân có sáu kí tự 0 và bốn kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Trường hợp 5: dãy nhị phân có bảy kí tự 0 và ba kí tự 1.
Khi đó có dãy nhị phân 10 bit.
Vậy có dãy nhị phân 10 bit thỏa mãn yêu cầu bài toán.