Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có khai triển: \left( x +
\frac{1}{x^{2}} ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
k}\left( x^{- 2} ight)^{k}} = \sum_{k = 0}^{40}{C_{40}^{k}x^{40 -
3k}}.

    Số hạng tổng quát trong khai triển: C_{40}^{k}x^{40 - 3k}

    Số hạng chứa x^{31} ứng với: 40 - 3k = 31 \Leftrightarrow k =
3

    Vậy số hạng chứa x^{31} là: C_{40}^{3}x^{31}.

  • Câu 2: Nhận biết

    Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:

     Số các chỉnh hợp chập k của n phần tử là A_n^k=n(n - 1)(n - 2)...(n - k + 1).

  • Câu 3: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 4: Thông hiểu

    Cho hai đường thẳng (d) gồm 5 điểm phân biệt và (d') gồm 7 điểm phân biệt. Biết rằng (d)//(d'). Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?

    Một tam giác được hình thành bởi ba điểm không thẳng hàng.

    TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)

    Số tam giác được tạo thành là: C_{5}^{1}.C_{7}^{2} (tam giác)

    TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)

    Số tam giác được tạo thành là: C_{5}^{2}.C_{7}^{1} (tam giác)

    Vậy số tam giác được tạo thành là C_{5}^{1}.C_{7}^{2} + C_{5}^{2}.C_{7}^{1} =
175.

  • Câu 5: Nhận biết

    Số hạng tử trong khai triển {(x - 2y)^4} bằng

    Số hạng tử trong khai triển {(x - 2y)^4} là: 4 + 1 = 5 hạng tử.

  • Câu 6: Thông hiểu

    Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác có 3 người, cần có cả nam và nữ, cần có cả nhà toán học và nhà vật lý. Hỏi có bao nhiêu cách?

    Trường hợp 1: 2 nhà toán học nữ và 1 nhà vật lý nam có C_{3}^{2}.C_{4}^{1} = 12 cách

    Trường hợp 2: 1 nhà toán học nữ và 2 nhà vật lý nam có C_{3}^{1}.C_{4}^{2} = 18 cách

    Trường hợp 3: 1 nhà toán học nữ, 1 nhà toán học nam và 1 nhà vật lý nam có C_{3}^{1}.C_{5}^{1}.C_{4}^{1} =
60 cách

    Theo quy tắc cộng có: 12 + 18 + 60 =
90 cách lập.

  • Câu 7: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 8: Nhận biết

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n gồm 4 chữ số đôi một khác nhau?

    Có thể lập được A_{5}^{4} = 120 số nguyên dương n gồm bốn chữ số đôi một khác nhau.

  • Câu 9: Thông hiểu

    Từ tập hợp các chữ số A = \left\{ 1,2,3,4,5,6 ight\} có thể lập được bao nhiêu số lẻ có bốn chữ số khác nhau?

    Gọi số tự nhiên có bốn chữ số cần tìm có dạng \overline{abcd};(a eq 0)

    Ta có: \overline{abcd} là số lẻ nên d là số lẻ. => Số cách chọn d có 3 cách.

    Tiếp theo chọn a có 5 cách chọn

    Sau đó chọn b có 4 cách chọn

    Cuối cùng chọn c có 3 cách chọn

    Vậy có thể lập được 3.5.4.3 =
180(số) thỏa mãn yêu cầu đề bài.

  • Câu 10: Thông hiểu

    Tìm hệ số của x^{6} trong khai triển \left( \frac{1}{x} + x^{3} ight)^{3n +
1}với x eq 0, biết n là số nguyên dương thỏa mãn 3C_{n + 1}^{2} + nP_{2} = 4A_{n}^{2}.

    Đk:n \geq 2,\ \ n \in
\mathbb{N.}

    \ \ \ \ \ \ \ 3C_{n + 1}^{2} + nP_{2} =
4A_{n}^{2}

    \Leftrightarrow 3\frac{(n + 1)!}{(n -
1)!2!} + 2!n = 4\frac{n!}{(n - 2)!}

    \Leftrightarrow \frac{3}{2}n(n + 1) + 2n
= 4n(n - 1)

    \Leftrightarrow \frac{5}{2}n^{2} -
\frac{15}{2}n = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0\ \ \ \ (L) \\
n = 3 \\
\end{matrix} ight.

    Với n = 3, nhị thức trở thành \left( \frac{1}{x} + x^{3}
ight)^{10}.

    Số hạng tổng quát là C_{10}^{k}.\left(
\frac{1}{x} ight)^{10 - k}.\left( x^{3} ight)^{k} = C_{10}^{k}.x^{4k
- 10}

    Từ yêu cầu bài toán ta cần có: 4k - 10 =
6 \Leftrightarrow k = 4.

    Vậy hệ số của số hạng chứa x^{6}C_{10}^{4} = 210..

  • Câu 11: Nhận biết

    Tính số chỉnh hợp chập 2 của 5 là:

    Số chỉnh hợp chập 2 của 5 là: A_{5}^{2}.

  • Câu 12: Thông hiểu

    Giả sử rằng:

    (1 + x)\left( 1 + x + x^{2}
ight)

    = (1 + 1)\left( 1 + 1 + 1^{2}
ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n} ight)

    = m_{0} + m_{1}x + m_{2}x^{2} + ... +
m_{a}x^{a}

    Hãy tính \sum_{i =
0}^{a}m_{i}?

    Ta có:

    \sum_{i = 0}^{a}m_{i} = (1 + 1)\left( 1
+ 1 + 1^{2} ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n}
ight)

    = 2.3.4.....(n + 1) = (n +
1)!

  • Câu 13: Nhận biết

    Cho tập hợp X gồm 10 phần tử. Số các hoán vị của 10 phần tử của tập hợp X là bao nhiêu?

    Số các hoán vị của 10 phần tử: 10!.

  • Câu 14: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 15: Vận dụng

    Quan sát mạch điện như sau:

    Mạch điện có 6 công tắc khác nhau, trong đó mỗi công tắc có 2 trạng thái đóng và mở. Hỏi có bao nhiêu cách đóng mở 6 công tắc để mạch điện thông mạch từ E đến F?

    Cả 3 công tắc của nhánh trên đóng còn 1 trong 3 công tắc của nhánh dưới mở có: C_{3}^{1} = 3

    Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có: C_{3}^{2} = 3

    Cả 3 công tắc của nhánh trên đóng còn 3 công tắc của nhánh dưới mở có: C_{3}^{3} = 1

    Cả 3 công tắc của nhánh dưới đóng còn 1 trong 3 công tắc của nhánh trên mở có: Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có: C_{3}^{1} = 3

    Cả 3 công tắc của nhánh dưới đóng còn 3 công tắc nhánh trên mở có: C_{3}^{3} = 1

    Cả 3 công tắc của nhánh trên đóng và cả 3 công tắc nhánh dưới đóng có: 1

    Vậy có tất cả 15 cách.

  • Câu 16: Vận dụng

    Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần?

    Với một cách chọn 9 chữ số từ tập \left\{ 0,1,2,3,4,5,6,7,8,9
ight\} ta có duy nhất một cách xếp chúng theo thứ tự giảm dần.

    Ta có 10 cách chọn 9 chữ số từ tập \left\{ 0,1,2,3,4,5,6,7,8,9 ight\}.

    Do đó có 10 số tự nhiên cần tìm.

  • Câu 17: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 18: Thông hiểu

    Một hội nghị bàn tròn có phái đoàn của các nước: Việt Nam có 3 người; Nhật có 5 người; Hàn Quốc có 2 người; Ấn Độ có 3 người; Thái Lan có 4 người. Hỏi có bao nhiêu cách xếp chỗ ngồi cho mọi thành viên sao cho người cùng quốc tịch thì ngồi cạnh nhau?

    Ta thấy tổng số nước tham dự hội nghị là 5 nước.

    Để xếp chỗ ngồi cho mọi thành viên sao cho người cùng quốc tịch thì ngồi cạnh nhau ̀ta thực hiện như sau:

    Xếp cờ của 5 nước vào 5 vị trí xung quanh bàn tròn: có 4! cách xếp.

    Ở vị trí cờ của Việt Nam xếp 3 người vào ba vị trí: có 3! cách xếp.

    Ở vị trí cờ của Nhật xếp 5 người vào năm vị trí: có 5! cách xếp.

    Ở vị trí cờ của Hàn Quốc xếp 2 người vào hai vị trí: có 2! cách xếp.

    Ở vị trí cờ của Ấn Độ xếp 3 người vào ba vị trí: có 3! cách xếp.

    Ở vị trí cờ của Thái Lan xếp 4 người vào bốn vị trí: có 4! cách xếp.

    Áp dụng quy tắc nhân, có tất cả: 4!.3!.5!.2!.3!.4! = 4976640 cách

  • Câu 19: Vận dụng

    Tìm hệ số của số hạng chứa x^{6} trong khai triển \left( 2x^{2} - \frac{3}{x} ight)^{n}(x eq
0), biết rằng \frac{2}{C_{n}^{2}} +
\frac{14}{3C_{n}^{3}} = \frac{1}{n} \left( C_{n}^{k} ight. là số tổ hợp chập k của n phần tử).

    Xét phương trình \frac{2}{C_{n}^{2}} +
\frac{14}{3C_{n}^{3}} = \frac{1}{n} (1)

    Điều kiện: n \geq 3,\ n\mathbb{\in
N}

    (1) \Leftrightarrow \frac{2.(n -
2)!.2!}{n!} + \frac{14(n - 3)!.3!}{3.n!} = \frac{1}{n} \Leftrightarrow
\frac{4}{n(n - 1)} + \frac{28}{n(n - 1)(n - 2)} =
\frac{1}{n}

    \Leftrightarrow \frac{4}{n - 1} +\frac{28}{(n - 1)(n - 2)} = 1 \Leftrightarrow 4(n - 2) + 28 = (n - 1)(n- 2)

    \Leftrightarrow n^{2} - 7n - 18 = 0 \Leftrightarrow \left\lbrack\begin{matrix}n = 9 \ = - 2\ (l) \\\end{matrix} ight.

    Với n = 9 ta có: \left( 2x^{2} - \frac{3}{x} ight)^{9} = \sum_{k
= 0}^{9}{C_{9}^{k}.}\left( 2x^{2} ight)^{9 - k}.\left( - \frac{3}{x}
ight)^{k} = \sum_{k = 0}^{9}{C_{9}^{k}.}2^{9 - k}.( - 3)^{k}.x^{18 -
3k}

    Số hạng tổng quát của khai triển là C_{9}^{k}.2^{9 - k}.( - 3)^{k}.x^{18 -
3k}

    Cho 18 - 3k = 6 \Rightarrow k = 4
\Rightarrow hệ số của số hạng chứa x^{6} trong khai triển là C_{9}^{4}.2^{5}.( - 3)^{4} = 326592.

  • Câu 20: Nhận biết

    Từ các chữ số 1, 2, 3, 4, 5. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Mỗi số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5 là một hoán vị của 5 phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là P_{5} = 5! =
120 (số).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo