Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính số cách sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.

    Sắp xếp 4 nữ sinh vào 4 ghế. 4! cách.

    Xem 4 nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với 6 nam sinh. có 7! cách

    vậy có 7! \times 4! cách sắp xếp.

  • Câu 2: Vận dụng

    Cho tập hợp số: A = \left\{ 0,1,2,3,4,5,6 ight\}.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

    Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \{ 0,1,2,3\}, \{ 0,1,2,6\}, \{ 0,2,3,4\}, \{ 0,3,4,5\}, \{ 1,2,4,5\}, \{ 1,2,3,6\}, \left\{ 1,3,5,6 ight\}.

    Vậy số các số cần lập là: 4(4! - 3!) +
3.4! = 144 số.

  • Câu 3: Nhận biết

    Trong khai triển nhị thức Newton của (1 + 3x)^{4}, số hạng thứ hai theo số mũ tăng dần của biến x là:

    Ta có:

    (1 + 3x)^{4} = C_{4}^{0} + C_{4}^{1}.3x
+ C_{4}^{2}.9x^{2} + ...

    C_{4}^{1}.3x = 12x

  • Câu 4: Nhận biết

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả là:

     Ta có: (x + 1)^{4} =x^{4}+4x^{3}+6x^{2}+4x+1.

  • Câu 5: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi xen kẽ nhau trong từng dãy?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Chọn 3 bạn nam, 3 bạn nữ để xếp vào dãy A có C_{6}^{3}.C_{6}^{3}

    Trong dãy đó xếp sao cho nam và nữ ngồi xen kẽ nhau có: 3!.3!.2 cách.

    Xếp 3 nam, 3 nữ còn lại vào dãy B sao cho nam và nữ ngồi xen kẽ nhau có 3!.3!.2 cách.

    Vậy số cách xếp là: C_{6}^{3}.C_{6}^{3}.3!.3!.2.3!.3!.2 =
2073600 cách.

  • Câu 6: Vận dụng

    Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức \left( \sqrt[3]{3} +
\sqrt[5]{5} ight)^{2019}?

    Ta có \left( \sqrt[3]{3} + \sqrt[5]{5}
ight)^{2019} = \sum_{k = 0}^{2019}{C_{2019}^{k}.\left( \sqrt[3]{3}
ight)^{2019 - k}.\left( \sqrt[5]{5} ight)^{k}} = \sum_{k =
0}^{2019}{C_{2019}^{k}.3^{\frac{2019 -
k}{3}}.5^{\frac{k}{5}}}.

    Để trong khai triển có số hạng là số nguyên thì \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
\frac{2019 - k}{3}\mathbb{\in N} \\
\frac{k}{5}\mathbb{\in N} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
673 - \frac{k}{3}\mathbb{\in N} \\
\frac{k}{5}\mathbb{\in N} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
k\mathbb{\in N} \\
0 \leq k \leq 2019 \\
k \vdots 15 \\
\end{matrix} ight..

    Ta có k \vdots 15 \Rightarrow k =
15m0 \leq k \leq 2019
\Leftrightarrow 0 \leq 15m \leq 2019 \Leftrightarrow 0 \leq m \leq
134,6. Suy ra có 135 số hạng là số nguyên trong khai triển của biểu thức.

  • Câu 7: Nhận biết

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là:

    Số tập hợp con có 3 phần tử của một tập hợp có 7 phần tử là tổ hợp chập 3 của 7 phần từ.

    => Số tập hợp con là: C_{7}^{3} tập hợp

  • Câu 8: Thông hiểu

    Cho tập hợp M =
\left\{ 0;1;3;4;5;6;8 ight\}. Có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau từ các chữ số thuộc tập hợp M?

    Gọi số tự nhiên có ba chữ số là: \overline{abc};(a eq 0)

    TH1: c = 0

    Chữ số a có 6 cách chọn.

    Với mỗi cách chọn a có 5 cách chọn chữ số b

    => Số các số tạo thành là: 1 . 5 . 6 = 30 (số)

    TH2: c \in \left\{ 4;6;8
ight\} => Chữ số c có 3 cách chọn.

    Chữ số a có 5 cách chọn, với mỗi cách chọn a ta có 5 cách chọn b.

    => Số các số tạo thành là: 3 . 5 . 5 = 75 (số)

    Vậy có tất cả 30 + 75 = 105 (số) thỏa mãn yêu cầu đề bài.

  • Câu 9: Vận dụng

    Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.

    TH1. Có đúng 1 học sinh khối 10: 5.1.C_{5}^{4} + 5.C_{5}^{4}.1 = 50(cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)

    TH2. Có đúng 2 học sinh khối 10: C_{5}^{2}.C_{5}^{3}.C_{5}^{5} +
C_{5}^{2}.C_{5}^{4}.C_{5}^{4} + C_{5}^{2}.C_{5}^{5}.C_{5}^{3} =
450(cách).

    \Rightarrow50 + 450 = 500 cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.

  • Câu 10: Nhận biết

    Có bao nhiêu số tự nhiên có hai chữ số mà cả hai chữ số đó đều lẻ?

    - Gọi số tự nhiên có hai chữ số cần lập thỏa mãn yêu cầu bài toán là \overline{ab} (a, b ∈ {1;3;5;7;9})

    + a: có 5 cách chọn

    + b: có 5 cách chọn.

    Dó đó có: 5 x 5 = 25 cách lập số có 2 chữ số mà cả hai chữ số đều lẻ.

  • Câu 11: Thông hiểu

    Từ tập hợp các chữ số A = \left\{ 1,3,4,5,6,8,9 ight\} có thể lập được bao nhiêu số có ba chữ số đôi một khác nhau và luôn có mặt số 1?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc}

    TH1: \overline{1bc}. Chọn b, c có 5.6 = 30 cách.

    TH2: \overline{a1c}. Chọn b, c có 5.6 = 30 cách.

    TH3: \overline{ab1}. Chọn b, c có 5.6 = 30 cách.

    Vậy có thể lập được 30 + 30 + 30 =
90(số) thỏa mãn yêu cầu đề bài.

  • Câu 12: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a.b (cách).

  • Câu 13: Nhận biết

    Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra một học sinh đi dự trại hè của trường. Hỏi có bao nhiêu cách chọn?

    Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:

    Bước 2: Đếm số cách chọn.

    * Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.

    * Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.

    Bước 3: Áp dụng quy tắc cộng.

    Vậy có 20 + 25 = 45 cách chọn.

  • Câu 14: Thông hiểu

    Từ 9 chữ số 1;2;3;4;5;6;7;8;9 có thể lập được bao nhiêu số gồm 9 chữ số nếu như không có chữ số nào được lặp lại? Trong các số đó có bao nhiêu số mà các chữ số 1 và 7 không đứng cạnh nhau.

    Từ 9 chữ số 1;2;3;4;5;6;7;8;9 có thể lập được các số nếu như không có chữ số nào được lặp lại ta hiểu đó là số có 9 chữ số khác nhau.

    Do đó sẽ có 9! số thỏa mãn.

    Để tìm số mà các chữ số 1 và 7 không đứng cạnh nhau ta đi tìm các số mà 1 và 7 đứng cạnh nhau.

    Coi 1 và 7 là 1 số thì ta sẽ có \overline{17}\overline{71}.

    Đưa được về bài toán tìm số có 8 chữ số khác nhau.

    Do đó số các số tìm được là 8! số.

    Do 1 và 7 có 2 vị trí nên ta có 2.8! số.

    Vậy số có 9 chữ số khác nhau không có 1 và 7 đứng cạnh là: 9! - 2.8! = 282240 số.

  • Câu 15: Thông hiểu

    Tìm hệ số của x^{3} trong khai triển f(x) = (1 + x)^{3} + (1 + x)^{4} + (1 +
x)^{5} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (1 + x)^{3}x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{4}C_{4}^{3}x^{3} = 4x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{5}C_{5}^{3}x^{3} = 10x^{3}

    Do đó tổng các số hạng chứa x^{3} trong khai triển đã cho là: x^{3} + 4x^{3} + 10x^{3} = 15x^{3}

    Vậy hệ số cần tìm là 15.

  • Câu 16: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 17: Vận dụng

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

    Nếu chữ số hàng chục là n thì số có chữ số hàng đơn vị là n - 1 thì số các chữ số nhỏ hơn n năm ở hàng đơn vị cũng bằng n. Do chữ số hang chục lớn hơn bằng 1 còn chữ số hang đơn vị thi \geq.

    Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:

    1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =
45.

  • Câu 18: Thông hiểu

    Tính tổng các hệ số trong khai triển (1 - 2x)^{2018}.

    Xét khai triển (1 - 2x)^{2018} =C_{2018}^{0} - 2x.C_{2018}^{1} + ( - 2x)^{2}.C_{2018}^{2}  + ... + ( - 2x)^{2018}.C_{2018}^{2018}

    Tổng các hệ số trong khai triển là: S =
C_{2018}^{0} - 2.C_{2018}^{1} + ( - 2)^{2}.C_{2018}^{2} + ( -
2)^{3}.C_{2018}^{3} + ... + ( - 2)^{2018}.C_{2018}^{2018}

    Cho x = 1 ta có: (1 - 2.1)^{2018} = C_{2018}^{0} - 2.1.C_{2018}^{1}+ ( - 2.1)^{2}.C_{2018}^{2} + ... + ( -2.1)^{2018}.C_{2018}^{2018}

    \Leftrightarrow ( - 1)^{2018} = S\Leftrightarrow S = 1

  • Câu 19: Nhận biết

    Biểu thức C_{4}^{0}x^{4}+C_{4}^{1}x^{3}y+C_{4}^{2}x^{2}y^{2}+C_{4}^{3}xy^{3}+C_{4}^{4}y^{4} bằng:

    Ta có:

    C_{4}^{0}x^{4}+C_{4}^{1}x^{3}y+C_{4}^{2}x^{2}y^{2}+C_{4}^{3}xy^{3}+C_{4}^{4}y^{4} =(x + y)^{4}

  • Câu 20: Nhận biết

    Đếm số tập con gồm 3 phần tử được lấy ra từ tập A = \left\{ a;b;c;d;e;f ight\}?

    Mỗi tập con tập gồm 3phần tử được lấy ra từ tập A6 phần tử là một tổ hợp chập 3 của 6 phần tử.

    Vậy số tập con gồm 3 phần tử của AC_{6}^{3} = 20 tập con.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo