Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số các số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn là

    Giả sử số tự nhiên thỏa mãn yêu cầu bài toán là: \overline{ab}.

    - Chọn a có 4 cách: a ∈ {2;4;6;8}.

    - Chọn b có 5 cách: b ∈ {0;2;4;6;8}.

    Vậy có tất cả: 4.5 = 20 số tự nhiên có 2 chữ số mà hai chữ số đó là số chẵn.

  • Câu 2: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên lẻ có ba chữ số đôi một khác nhau?

    Gọi số tự nhiên có ba chữ số có dạng \overline{abc};(a eq 0)

    c \in \left\{ 1;3;5;7;9 ight\} => Có 5 cách.

    a eq 0,a eq c => Có 8 cách.

    b eq a,d => Có 8 cách.

    => Số các số được tạo thành là: 5.8.8
= 320 số.

  • Câu 3: Nhận biết

    Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?

    Mỗi tập con có 8 phần tử của tập hợp E là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp E là. C_{10}^{8} = 45.

  • Câu 4: Nhận biết

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    Đáp án là:

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.

    Đáp án: 1024

    2^{10} = 1024 dãy nhị phân 10 bit.

  • Câu 5: Nhận biết

    Có bao nhiêu cách chọn ngẫu nhiên 3 viên bi từ một hộp có 20 viên bi.

     Chọn 3 viên bi từ 20 viên bi: C_{20}^3 cách.

  • Câu 6: Thông hiểu

    Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton (x +
1)^{5}?

    Để có tổng các hệ số ta thay x =
1 ta được: (1 + 1)^{2} = 2^{5} =
32

  • Câu 7: Thông hiểu

    Tìm tất cả các số tự nhiên có đúng 5 chữ số sao cho trong mỗi số đó chữ số đứng sau lớn hơn chữ số đứng liền trước?

    Gọi số có 5 chữ cố có dạng là \overline{abcde}. Điều kiện a eq 0;a < b < c < d <
e

    Ta chuyển bài toán về tìm số các số tự nhiên có 5 chữ số khác nhau lập từ các chữ số 1;2;3;4;5;6;7;8;9 để lập số thoả yêu cầu của bài toán.

    Do đó sẽ có số các số có 5 chữ số khác nhau lập từ 1;2;3;4;5;6;7;8;9C_{9}^{5} = 126 số

  • Câu 8: Nhận biết

    Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?

    Mỗi cách phân công \mathbf{3} bạn An, Bình, Công vào 3 chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của 3 phần tử. Vậy có 3!\ \  = \ \ 6 cách.

  • Câu 9: Nhận biết

    Thực hiện khai triển nhị thức Newton (x + 2y)^{5} ta được kết quả là:

    Ta có:

    (x + 2y)^{5} = x^{5} + 10x^{4}y +
40x^{3}y^{2} + 80x^{2}y^{3} + 80xy^{4} + 32y^{5}

  • Câu 10: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 11: Thông hiểu

    Có bao nhiêu giá trị của n thỏa mãn phương trình \frac{10P_{n - 1}}{P_{n + 1}} - 4 =
\frac{2}{n + 1}?

    Điều kiện n\mathbb{\in N};n \geq
1

    Ta có:

    \frac{10P_{n - 1}}{P_{n + 1}} - 4 =
\frac{2}{n + 1}

    \Leftrightarrow \frac{10(n - 1)(n -
2)...2.1}{(n + 1)n(n - 1)(n - 2)...2.1} - 4 = \frac{2}{n +
1}

    \Leftrightarrow \frac{10}{(n + 1).n} - 4
= \frac{2}{n + 1}

    \Leftrightarrow 10 - 4(n + 1).n - 2n =
0

    \Leftrightarrow - 4n^{2} - 6n + 10 = 0\Leftrightarrow \left\lbrack \begin{matrix}n = 1(tm) \ = - \dfrac{5}{2}(ktm) \\\end{matrix} ight.

    Vậy phương trình chỉ có một giá trị của n thỏa mãn điều kiện bài toán.

  • Câu 12: Nhận biết

    Một tổ có 5 học sinh nữ và 6 học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên hai học sinh của tổ đó đi trực nhật biết cần có cả nam và nữ.

    Chọn một học sinh nữ có 5 cách.

    Chọn một học sinh nam có 6 cách.

    Áp dụng quy tắc nhân, có 5.6 = 30 cách chọn hai học sinh có cả nam và nữ.

  • Câu 13: Thông hiểu

    Cho x là số thực dương, số hạng không chứa x trong khai triển nhị thức \left( x + \frac{2}{\sqrt{x}}
ight)^{30}là:

    Ta có \left( x + \frac{2}{\sqrt{x}}
ight)^{30} = \left( x + 2x^{- \frac{1}{2}} ight)^{30} = \sum_{k =
0}^{30}{C_{30}^{k}x^{30 - k}\left( 2x^{\frac{- 1}{2}} ight)^{k} =
\sum_{k = 0}^{30}{C_{30}^{k}2^{k}x^{30 - \frac{3}{2}k}}}

    Số hạng tổng quát thứ k + 1 trong khai triển là T_{k + 1} =
C_{30}^{k}2^{k}x^{30 - \frac{3}{2}k}.

    Số hạng này không chứa x tương ứng với trường hợp 30 - \frac{3k}{2} = 0
\Leftrightarrow k = 20.

    Vậy số hạng không chứa x trong khai triển là T_{21} = C_{30}^{20}2^{20} =
2^{20}C_{30}^{10}.

  • Câu 14: Vận dụng

    Tìm n thuộc tập hợp số tự nhiên, biết rằng 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n (C_{n}^{k} là số tổ hợp chập k của n phần tử).

    Trước hết ta chứng minh công thức \frac{k}{n}C_{n}^{k} = C_{n - 1}^{k - 1} với 1 \leq k \leq nn \geq 2.

    Thật vậy, \frac{k}{n}C_{n}^{k} =
\frac{k}{n}.\frac{n!}{k!(n - k)!} = \frac{(n - 1)!}{(k - 1)!(n - k)!} =
C_{n - 1}^{k - 1}.(đpcm)

    Áp dụng công thức trên ta có

    1.C_{n}^{1} + 2.C_{n}^{2} + 3.C_{n}^{3}
+ ... + n.C_{n}^{n} = n\left( \frac{1}{n}.C_{n}^{1} +
\frac{2}{n}.C_{n}^{2} + \frac{3}{n}.C_{n}^{3} + ... +
\frac{n}{n}.C_{n}^{n} ight)

    = n\left( C_{n - 1}^{0} + C_{n - 1}^{1}
+ C_{n - 1}^{2} + ... + C_{n - 1}^{n - 1} ight) = n2^{n -
1}

    Theo đề 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + n.C_{n}^{n} = 256n \Leftrightarrow n2^{n - 1} = 256n
\Leftrightarrow 2^{n - 1} = 256 \Leftrightarrow n = 9..

  • Câu 15: Nhận biết

    Tìm số hạng chứa x^{7} trong khai triển \left( x - \frac{1}{x} ight)^{13}.

    Ta có công thức của số hạng tổng quát:

    T_{k + 1} = C_{13}^{k}x^{13 - k}.\left(
- \frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - k}( - 1)^{k}x^{- k} =
C_{13}^{k}.( - 1)^{k}x^{13 - 2k}

    Số hạng chứa x^{7}khi và chỉ khi 13 - 2k = 7 \Leftrightarrow k =
3.

    Vậy số hạng chứa x^{7} trong khai triển là -
C_{13}^{3}x^{7}.

  • Câu 16: Vận dụng

    Cho tập A =
\left\{ 1,2,3,4,5,6,7,8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

    x lẻ và không chia hết cho 5 nên d \in \left\{ 1,3,7 ight\} \Rightarrow
d có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 17: Vận dụng

    Cho 6 chữ số 2,3,4,5,6,7 số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    c3 cách chọn

    a6 cách chọn

    b6 cách chọn

    Vậy có: 3.6.6 = 108 số.

  • Câu 18: Nhận biết

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả:

    Ta có: (x + 1)^{4} = x^{4} + 4x^{3} + 6x^{2} +
4x + 1

  • Câu 19: Thông hiểu

    Có bao nhiêu số nguyên dương n gồm 3 chữ số có nghĩa (chữ số đầu tiên phải khác 0) trong đó chữ số hàng chục và chữ số hàng đơn vị của n giống hệt nhau và hai chữ số này khác chữ số hàng trăm của n?

    Chọn a_{1} \in X\backslash\left\{ 0
ight\} có: 9 cách.

    Chọn a_{2} \in X\backslash\left\{ a_{1}
ight\} có: 9 cách.

    Chọn a_{3} = a_{2} có: 1 cách.

    Theo quy tắc nhân có: 9.9 =
81 số.

  • Câu 20: Vận dụng

    Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 5 suy ra e = \left\{ 0;5 ight\}.

    TH1. Với e = 0 suy ra có 4 \times 5 \times 4 \times 3 = 240 số cần tìm.

    TH2. Với e = 5, suy ra có 5 \times 4 \times 3 + 3 \times 4 \times 4 \times 3
= 204 số cần tìm.

    Vậy có tất cả 444 số cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo