Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm hệ số không chứa x trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n}, biết n là sô nguyên dương thỏa mãn C_{n}^{n - 1} + C_{n}^{n - 2} =
78.

    C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow n + \frac{n(n - 1)}{2} = 78 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 12 \\
n = - 13(l) \\
\end{matrix} ight..

    \left( x^{3} - \frac{2}{x} ight)^{n} =
\left( x^{3} - \frac{2}{x} ight)^{12} = \sum_{k =
0}^{12}{C_{12}^{k}\left( x^{3} ight)^{12 - k}( - 2)^{k}\left(
\frac{1}{x} ight)^{k} =}\sum_{k = 0}^{12}{C_{12}^{k}( - 2)^{k}x^{36 -
4k}}.

    Số hạng không chứa x ứng với 36 - 4k = 0 \Leftrightarrow k = 9C_{12}^{9}( - 2)^{9} = -
112640.

  • Câu 2: Nhận biết

    Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?

     Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).

  • Câu 3: Nhận biết

    Cho hai dãy ghế được xếp như sau.

    Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?

    Xếp 4 bạn nam vào một dãy có 4! (cách xếp).

    Xếp 4 bạn nữ vào một dãy có 4! (cách xếp).

    Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.

    Số cách xếp theo yêu cầu là. 4!.4!.2^{4} (cách xếp).

  • Câu 4: Nhận biết

    Hệ số của x^{2} trong khai triển (2x + 3)^{5} là:

    Ta có số hạng tổng quát: T_{k + 1} =C_{5}^{k}.(2x)^{5 - k}.3^{k} = C_{5}^{k}.2^{5 - k}.x^{5 -k}.3^{k}

    Số hạng chứa x^{2} nên 5 - k = 2 \Rightarrow k = 3

    Vậy hệ số của x^{2} trong khai triển đã cho là: C_{5}^{3}.2^{2}.3^{3}.

  • Câu 5: Vận dụng

    Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.

    TH1. Có đúng 1 học sinh khối 10: 5.1.C_{5}^{4} + 5.C_{5}^{4}.1 = 50(cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)

    TH2. Có đúng 2 học sinh khối 10: C_{5}^{2}.C_{5}^{3}.C_{5}^{5} +
C_{5}^{2}.C_{5}^{4}.C_{5}^{4} + C_{5}^{2}.C_{5}^{5}.C_{5}^{3} =
450(cách).

    \Rightarrow50 + 450 = 500 cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.

  • Câu 6: Vận dụng

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

    Nếu chữ số hàng chục là n thì số có chữ số hàng đơn vị là n - 1 thì số các chữ số nhỏ hơn n năm ở hàng đơn vị cũng bằng n. Do chữ số hang chục lớn hơn bằng 1 còn chữ số hang đơn vị thi \geq.

    Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:

    1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =
45.

  • Câu 7: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 8: Thông hiểu

    Số các số có 6 chữ số khác nhau không bắt đầu bởi 12 được lập từ 1;\ \ 2;\ \ 3;\ \ 4;\ \ 5;\ \ 6 là:

    Lập số tự nhiên có 6 chữ số khác nhau, ta tìm được: 6! số.

    Lập số tự nhiên có 6 chữ số khác nhau nhưng bắt đầu bằng 12, ta tìm được: 4! số.

    Vậy số các số có 6 chữ số khác nhau không bắt đầu bởi 126! - 4! = 696 số.

  • Câu 9: Thông hiểu

    Có bao nhiêu cách xếp 5 bạn A, B, C, D, E vào một băng ghế dài sao cho C luôn ở chính giữa.

    Giả sử 5 bạn ngồi vào 5 vị trí được đánh số 1, 2, 3, 4, 5.

    Xếp bạn C vào vị trí số 3: có 1 cách.

    Xếp 1 bạn trong 4 bạn còn lại vào vị trí 1: có 4 cách.

    Xếp 1 bạn trong 3 bạn còn lại vào vị trí 2: có 3 cách.

    Xếp 1 bạn trong 2 bạn còn lại vào vị trí 3: có 2 cách.

    Xếp bạn còn lại vào vị trí 5: có 1 cách.

    Áp dụng quy tắc nhân, có 1.4.3.2 = 24 cách xếp 5 bạn vào ghế băng dài sao cho C luôn ở chính giữa.

  • Câu 10: Thông hiểu

    Cho số tự nhiên n thỏa mãn 3C_{n+1}^{3}-3A_{n}^{2}=42(n-1). Giá trị của biểu thức 3C_{n}^{4}-A_{n}^{2}

    Ta có: 

    \begin{matrix}  3C_{n + 1}^3 - 3A_n^2 = 42(n - 1) \hfill \\  DK:n > 2,n \in \mathbb{Z} \hfill \\   \Leftrightarrow 3\dfrac{{\left( {n + 1} ight)!}}{{3!\left( {n + 1 - 3} ight)!}} - 3\dfrac{{n!}}{{\left( {n - 2} ight)!}} = 42(n - 1) \hfill \\   \Leftrightarrow 3\dfrac{{\left( {n + 1} ight)n.\left( {n - 1} ight).\left( {n - 2} ight)!}}{{3!\left( {n - 2} ight)!}} - 3\dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)!}}{{\left( {n - 2} ight)!}} = 42(n - 1) \hfill \\   \Leftrightarrow \dfrac{{\left( {n + 1} ight)n.\left( {n - 1} ight)}}{2} - 3.n\left( {n - 1} ight) = 42(n - 1) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n - 1 = 0} \\   {{n^2} + n - 6n = 84} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 1\left( {ktm} ight)} \\   \begin{gathered}  n = 12\left( {tm} ight) \hfill \\  n =  - 7\left( {ktm} ight) \hfill \\ \end{gathered}  \end{array}} ight. \hfill \\ \end{matrix}

    Thay n = 12 vào biểu thức ta được: 3C_{12}^4 - A_{12}^2 = 1353

     

  • Câu 11: Nhận biết

    Trong balo của học sinh A có 8 bút chì khác, 6 bút bi và 10 quyển vở. Số cách chọn một đồ vật trong balo là:

    Áp dụng quy tắc cộng, số cách chọn một đồ vật trong balo là: 8 + 6 + 10 = 24 cách.

  • Câu 12: Thông hiểu

    Biết n là số nguyên dương thỏa mãn C_{n}^{n - 1} +
C_{n}^{n - 2} = 78, số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n} là:

    Ta có: C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow \frac{n!}{(n - 1)!.1!} + \frac{n!}{(n - 2)!.2!} = 78
\Leftrightarrow n + \frac{(n - 1)n}{2} = 78

    \Leftrightarrow n^{2} + n - 156 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 12 \\
n = - 13 \\
\end{matrix} ight.\  \Leftrightarrow n = 12 (vì n là số nguyên dương).

    Số hạng tổng quát trong khai triển \left(
x^{3} - \frac{2}{x} ight)^{12}là: ( - 1)^{k}C_{12}^{k}\left( x^{3} ight)^{12 -
k}\left( \frac{2}{x} ight)^{k} = ( - 1)^{k}C_{12}^{k}.2^{k}.x^{36 -
4k}.

    Cho 36 - 4k = 8 \Leftrightarrow k =
7.

    Vậy số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x}
ight)^{12}-
C_{12}^{7}.2^{7}.x^{8} = - 101376x^{8}.

  • Câu 13: Thông hiểu

    Từ 6 chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và chia hết cho 3?

    Gọi số tự nhiên có 4 chữ số là \overline{abcd};(a eq b eq c eq
d)

    Bộ bốn chữ số có tổng chia hết cho 3 là: A = \left\{
(0;1;2;3),(0;2;3;4),(0;3;4;5),(1;2;4;5) ight\}

    Trường hợp 1: \overline{abcd} \in \left\{
(0;1;2;3),(0;2;3;4),(0;3;4;5) ight\}

    Chọn a: 3 cách (vì a ≠ 0).

    Chọn b, c, d: 3! = 6 cách chọn.

    Khi đó: 3.6=18 (cách).

    Trường hợp 2: \overline{abcd} \in \left\{
1;2;4;5 ight\}

    Chọn a,b,c,d: 4! = 24

    Vậy 6 + 24 = 30 (số)

  • Câu 14: Nhận biết

    Hệ số của x^{31} trong khai triển \left( x + \frac{1}{x^{2}} ight)^{40}(x eq
0) là:

    \left( x + \frac{1}{x^{2}} ight)^{40}
= \sum_{k = 0}^{40}{C_{40}^{k}x^{40 - k}.x^{- 2k}} = \sum_{k =
0}^{40}{C_{40}^{k}x^{40 - 3k}}

    Theo giả thiết: 40 - 3k = 31 \Rightarrow
k = 3.

    Vậy hệ số của x^{31}C_{40}^{3} = 9880.

  • Câu 15: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 16: Nhận biết

    Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?

    Học sinh nam có 280 cách chọn

    Học sinh nữ có 325 cách chọn

    Chọn một học sinh khối 11 đi dự dạ hội của học sinh thành phố thì có 280 + 325 = 605 cách.

  • Câu 17: Nhận biết

    Từ các chữ số 6; 7; 8; 9. có thể lập được bao nhiêu chữ số tự nhiên có 3 chữ số.

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 4 cách chọn.

    B: có 4 cách chọn.

    C: có 4 cách chọn.

    Vậy có 4.4.4 = 64 (số) tự nhiên có 3 chữ số.

  • Câu 18: Vận dụng

    Cho n là số tự nhiên thỏa mãn C_{n}^{0} + 2.C_{n}^{1}
+ 2^{2}.C_{n}^{2} + ... + 2^{n}.C_{n}^{n} = 59049. Biết số hạng thứ 3 trong khai triển Newton của \left( x^{2} - \frac{3}{x}
ight)^{n} có giá trị bằng \frac{81}{2}n. Tìm giá trị của x.

    Ta có: C_{n}^{0} + 2.C_{n}^{1} +2^{2}.C_{n}^{2} + ... + 2^{n}.C_{n}^{n} = 59049

    \Rightarrow (2 + 1)^{n}= 59049 \Leftrightarrow 3^{n} = 3^{10} \Leftrightarrow n =10.

    Ta được nhị thức \left( x^{2} -
\frac{3}{x} ight)^{10}.

    Số hạng thứ ba của khai triển là T_{3} =
C_{10}^{2}.\left( x^{2} ight)^{8}.\left( - \frac{3}{x} ight)^{2} =
405x^{14}.

    Theo giả thiết ta có: 405x^{14} =
\frac{81}{2}n \Leftrightarrow 405x^{14} = 405 \Leftrightarrow x^{14} = 1 \Leftrightarrow x = \pm 1.

  • Câu 19: Nhận biết

    Một hộp có 3 viên bi trắng, 2 viên bi đen và 2 viên bi vàng. Hỏi có bao nhiêu cách lấy ngẫu nhiên 2 viên bi từ hộp đó.

     Chọn 2 viên từ hộp 7 viên có: C_7^2 = 21 (cách).

  • Câu 20: Nhận biết

    Tìm hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}, (biết x eq 0).

    Số hạng tổng quát trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}.

    T_{k + 1} = C_{13}^{k}x^{13 - k}\left(
\frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - 2k}.

    T_{k + 1} chứa x^{7} \Leftrightarrow 13 - 2k = 7 \Leftrightarrow
k = 3.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x +
\frac{1}{x} ight)^{13} bằng: C_{13}^{3} = 286.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo