Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một tổ gồm n học sinh, biết rằng có 210 cách chọn 3 học sinh trong tổ để làm ba việc khác nhau. Số n thỏa mãn hệ thức nào dưới đây?

    Chọn một học sinh để làm việc thứ nhất, có n cách chọn.

    Chọn một học sinh để làm việc thứ hai có n − 1 cách chọn.

    Chọn một học sinh để làm việc thứ ba có n − 2 cách chọn.

    Do đó có n(n−1)(n−2) = 210 cách chọn.

  • Câu 2: Vận dụng

    Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số 2011 chữ số và trong đó có ít nhất hai chữ số 9.

    Đặt X là các số tự nhiên thỏa yêu cầu bài toán.

    A ={ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}

    Với mỗi số thuộc A có m chữ số (m \leq 2008) thì ta có thể bổ sung thêm 2011 - m số 0 vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng \overline{a_{1}a_{2}...a_{2011}};\ a_{i} \in
\left\{ 0,1,2,3,...,9 ight\}

    A_{0} = \left\{ a \in A| ight.mà trong a không có chữ số 9}

    A_{1} = \left\{ a \in A| ight. mà trong a có đúng 1 chữ số 9}

    \bullet Ta thấy tập A có 1 + \frac{9^{2011} - 1}{9} phần tử

    \bullet Tính số phần tử của A_{0}

    Với x \in A_{0} \Rightarrow x =
\overline{a_{1}...a_{2011}};a_{i} \in \left\{ 0,1,2,...,8 ight\}\ i =
\overline{1,2010}a_{2011} = 9 -
r với r \in \lbrack 1;9brack,r
\equiv \sum_{i = 1}^{2010}a_{i}. Từ đó ta suy ra A_{0}9^{2010} phần tử.

    \bullet Tính số phần tử của A_{1}

    Để lập số của thuộc tập A_{1} ta thực hiện liên tiếp hai bước sau:

    Bước 1: Lập một dãy gồm 2010 chữ số thuộc tập \left\{ 0,1,2...,8
ight\} và tổng các chữ số chia hết cho 9. Số các dãy là 9^{2009}.

    Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9.

    Do đó A_{1}2010.9^{2009} phần tử.

    Vậy số các số cần lập là:

    1 + \frac{9^{2011} - 1}{9} - 9^{2010} -
2010.9^{2009} = \frac{9^{2011} - 2019.9^{2010} + 8}{9}.

  • Câu 3: Thông hiểu

    Nghiệm của phương trình C_{x}^{1} + C_{x}^{2} + C_{x}^{3} =
\frac{7}{2}x thuộc khoảng nào?

    Điều kiện xác định x\mathbb{\in N};x \geq
3

    Ta có:

    C_{x}^{1} + C_{x}^{2} + C_{x}^{3} =
\frac{7}{2}x

    \Leftrightarrow \frac{x!}{(x - 1)!} +
\frac{x!}{2!(x - 2)!} + \frac{x!}{3!(x - 3)!} =
\frac{7}{2}x

    \Leftrightarrow x + \frac{x(x - 1)}{2} +
\frac{x(x - 1)(x - 2)}{6} = \frac{7}{2}x

    \Leftrightarrow 1 + \frac{x - 1}{2} +
\frac{(x - 1)(x - 2)}{6} = \frac{7}{2}

    \Leftrightarrow 6 + 3x - 3 + x^{2} - 3x
+ 2 - 21 = 0

    \Leftrightarrow x^{2} = 16
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 4(ktm) \\
\end{matrix} ight.

    Vậy nghiệm phương trình thuộc khoảng (3;5).

  • Câu 4: Thông hiểu

    Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số 1 xếp kề nhau?

    Gọi 11111 là số a.

    Vậy ta cần sắp các số a, 2, 3, 4, 5.

    ⇒ Số cách sắp xếp số thỏa mãn là: 1.2.3.4.5 = 120 (số).

  • Câu 5: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x - 3)^{4} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (x + 2)^{5}C_{5}^{2}.2^{2}.x^{3} = 40x^{3}

    Số hạng chứa x^{3} trong khai triển (x - 3)^{4}C_{4}^{1}.( - 3)^{1}.x^{3} = -
12x^{3}

    Do đó số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x -
3)^{4} đã cho là: 40x^{3} - ( -
12)x^{3} = 52x^{3}

    Vậy số hạng cần tìm là 52x^{3}.

  • Câu 6: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 7: Nhận biết

    Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:

     Số tập con có 3 phần tử từ tập 5 phần tử là: C_5^3 = 10.

  • Câu 8: Thông hiểu

    Lớp 11A có 20 học sinh nam và 15 học sinh nữ. Giáo viên chủ nhiệm muốn chọn một nhóm học sinh đại diện gồm 3 học sinh nam và 2 học sinh nữ. Hỏi có bao nhiêu cách chọn nhóm học sinh đại diện?

    Số cách chọn 3 học sinh nam là C_{20}^{3} cách.

    Số cách chọn 2 học sinh nữ là: C_{15}^{2} cách.

    Vậy số cách chọn nhóm học sinh đại diện là: C_{20}^{3}.C_{15}^{2} = 119700 cách.

  • Câu 9: Nhận biết

    Trong balo của học sinh A có 8 bút chì khác, 6 bút bi và 10 quyển vở. Số cách chọn một đồ vật trong balo là:

    Áp dụng quy tắc cộng, số cách chọn một đồ vật trong balo là: 8 + 6 + 10 = 24 cách.

  • Câu 10: Vận dụng

    Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần?

    Với một cách chọn 9 chữ số từ tập \left\{ 0,1,2,3,4,5,6,7,8,9
ight\} ta có duy nhất một cách xếp chúng theo thứ tự giảm dần.

    Ta có 10 cách chọn 9 chữ số từ tập \left\{ 0,1,2,3,4,5,6,7,8,9 ight\}.

    Do đó có 10 số tự nhiên cần tìm.

  • Câu 11: Nhận biết

    Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?

    Mỗi cách phân công \mathbf{3} bạn An, Bình, Công vào 3 chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của 3 phần tử. Vậy có 3!\ \  = \ \ 6 cách.

  • Câu 12: Vận dụng

    Hệ số của x^{5} trong khai triển thành đa thức của (2 - 3x)^{2n} bằng bao nhiêu? Cho biết n là số tự nhiên thỏa mãn: C_{2n + 1}^{0} + C_{2n +
1}^{2} + C_{2n + 1}^{4} + ... + C_{2n + 1}^{2n} = 1024.

    Ta có (x + 1)^{2n + 1} = C_{2n +
1}^{0}.x^{2n + 1} + C_{2n + 1}^{1}.x^{2n} + ... + C_{2n + 1}^{2n}.x +
C_{2n + 1}^{2n + 1} (1)

    Thay x = 1 vào (1): 2^{2n +
1} = C_{2n + 1}^{0} + C_{2n + 1}^{1} + ... + C_{2n + 1}^{2n} + C_{2n +
1}^{2n + 1} (2)

    Thay x = - 1 vào (1): 0 = -
C_{2n + 1}^{0} + C_{2n + 1}^{1} - ... - C_{2n + 1}^{2n} + C_{2n + 1}^{2n
+ 1} (3)

    Phương trình (2) trừ (3) theo vế: 2^{2n + 1} = 2\left( C_{2n + 1}^{0} + C_{2n +
1}^{2} + ... + C_{2n + 1}^{2n} ight).

    Theo đề ta có 2^{2n + 1} = 2.1024
\Leftrightarrow n = 5

    Số hạng tổng quát của khai triển (2 -
3x)^{10}:

    T_{k + 1} = C_{10}^{k}.2^{10 - k}.( -
3x)^{k} = C_{10}^{k}.2^{10 - k}.( - 3)^{k}.x^{k}

    Theo giả thiết ta có k = 5.

    Vậy hệ số cần tìm C_{10}^{5}.2^{5}.( -
3)^{5} = - 1959552.

  • Câu 13: Vận dụng

    Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.

    TH1. Có đúng 1 học sinh khối 10: 5.1.C_{5}^{4} + 5.C_{5}^{4}.1 = 50(cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)

    TH2. Có đúng 2 học sinh khối 10: C_{5}^{2}.C_{5}^{3}.C_{5}^{5} +
C_{5}^{2}.C_{5}^{4}.C_{5}^{4} + C_{5}^{2}.C_{5}^{5}.C_{5}^{3} =
450(cách).

    \Rightarrow50 + 450 = 500 cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.

  • Câu 14: Nhận biết

    Khai triển nhị thức Niu-tơn của (3 - 2x)^{2019} có bao nhiêu số hạng?

    Ta có: Khai triển nhị thức Niu-tơn (a +
b)^{n}n + 1 số hạng.

    Vậy trong khai triển nhị thức Niu-tơn của (3 - 2x)^{2019}2020 số hạng.

  • Câu 15: Nhận biết

    Một lớp có 15 nam và 20 nữ. Hỏi có bao nhiêu cách chọn 1 bạn đi trực nhật.

     Trường hợp 1: Chọn 1 nam. Có 15 cách.

     Trường hợp 2: Chọn 1 nữ. Có 20 cách.

    Vậy có 15+20 = 35 cách.

  • Câu 16: Thông hiểu

    Có bao nhiêu cách xếp 8 người vào một bàn tròn?

    Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! cách xếp.

    Vậy có 1.7! = 5040 cách xếp

  • Câu 17: Nhận biết

    Hệ số của x^{2} trong khai triển (x + 1)^{5} là:

     Ta có: {(x + 1)^5} ={x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 5x + 1.

    Hệ số của x^2 là 10.

  • Câu 18: Nhận biết

    Có bao nhiêu số hạng trong khai triển nhị thức (2x - 3)^{2018}?

    Trong khai triển nhị thức (a +
b)^{n} thì số các số hạng là n +
1 nên trong khai triển (2x -
3)^{2018}2019 số hạng.

  • Câu 19: Nhận biết

    Từ các chữ số 1, 2, 3, 4, 5. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Mỗi số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5 là một hoán vị của 5 phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là P_{5} = 5! =
120 (số).

  • Câu 20: Thông hiểu

    Tìm số hạng chứa x^{4} trong khai triển (x^{2}-\frac{1}{x})^{n} biết A_{n}^{2}-C_{n}^{2}=10.

    Ta có:

    \begin{matrix}  A_n^2 - C_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 - \dfrac{{A_n^2}}{{2!}} = 10 \hfill \\   \Leftrightarrow \dfrac{1}{2}A_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 = 20 \Leftrightarrow n = 5 \hfill \\ \end{matrix}

    Khai triển biểu thức như sau:

    \begin{matrix}  {\left( {{x^2} - \dfrac{1}{x}} ight)^5} = \sumolimits_{k = 0}^5 {C_5^k.{{\left( {{x^2}} ight)}^{5 - k}}.{{\left( { - \dfrac{1}{x}} ight)}^k}}  \hfill \\   = \sumolimits_{k = 0}^5 {C_5^k.{{\left( { - 1} ight)}^k}.{x^{10 - 3k}}}  \hfill \\ \end{matrix}

    Số hạng chứa x^{4} nghĩa là: 10 - 3k = 4 \Rightarrow k = 2

    => Số hạng cần tìm là C_5^2 = 10

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo