Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Từ tập hợp các chữ số 1,2,8,6,7,5 có thể lập được bao nhiêu số tự nhiên có hai chữ số khác nhau?

    Gọi số tự nhiên có hai chữ số \overline{ab};(a eq 0)

    Số cách chọn a là 6 cách

    Số cách chọn b là 5 cách

    Vậy số các số tự nhiên có thể tạo thành từ tập hợp các chữ số đã cho là 6.5 = 30 số.

  • Câu 2: Nhận biết

    Số hạng thứ 13 trong khai triển (2 - x)^{15} bằng?

    Ta có (2 - x)^{15} = \sum_{k =
0}^{15}{C_{15}^{k}.2^{15 - k}.( - x)^{k}}

    Số hạng thứ 13 trong khai triển tương ứng với k = 12.\Rightarrow C_{15}^{12}.2^{15 - 12}.( - x)^{12} =
3640x^{12}.

  • Câu 3: Thông hiểu

    Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.

    Trường hợp 1: An và Bình không có mặt trong tổ công tác:

    Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có C_{12}^{6} cách.

    Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:

    Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có C_{12}^{5} cách

    Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có C_{12}^{5} cách.

    Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng

    Như vậy có tất cả số cách là: \left(
C_{12}^{6} + C_{12}^{5} + C_{12}^{5} ight).6 = 15048 cách

  • Câu 4: Thông hiểu

    Có nhiều nhất bao nhiêu biển đăng ký xe máy nếu mỗi biển chứa một dãy gồm một chữ cái, tiếp đến một chữ số khác 0 và cuối cùng là 5 chữ số.

    Đáp án: 23400000

    Đáp án là:

    Có nhiều nhất bao nhiêu biển đăng ký xe máy nếu mỗi biển chứa một dãy gồm một chữ cái, tiếp đến một chữ số khác 0 và cuối cùng là 5 chữ số.

    Đáp án: 23400000

    Bước 1: Chọn 1 chữ cái trong 26 chữ cái có 26 cách.

    Bước 2 chọn 1 chữ số khác 0 từ 9 chữ số.

    ⇒ Cuối cùng 5 chữ số còn lại mỗi số có 10 cách chọn.

    ⇒ Số các biển số xe thỏa mãn là: 26.9.10.10.10.10.10 = 23400000 biển.

  • Câu 5: Nhận biết

    Giá trị của C_{n}^{0}-C_{n}^{1}+C_{n}^{n-1}-C_{n}^{n} bằng:

    Ta có:

    \begin{matrix}  C_n^0 - C_n^1 + C_n^{n - 1} - C_n^n \hfill \\   = 1 - C_n^1 + C_n^1 - 1 = 0 \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Cho tập A =
\left\{ 1;2;3;4;5;6;7;8;9 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?

    Gọi \overline{125ab} là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.

    Suy ra b có 3 cách chọn, a có 5 cách chọn \Rightarrow3 \times 5 = 15 số.

    Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A4 \times 8 \times 7 \times 6
\times 5 = 6720 số.

    Suy ra có tất cả 6720 - 15 =
6705 số cần tìm.

  • Câu 7: Thông hiểu

    Biết hệ số của số hạng chứa x^{2} trong khai triển (1 + 4x)^{n}3040. Số tự nhiên n bằng bao nhiêu?

    Ta có: (1 + 4x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}(4x)^{k}} = \sum_{k =
0}^{n}{C_{n}^{k}4^{k}x^{k}}.

    Hệ số của số hạng chứa x^{2} là: C_{n}^{2}4^{2}.

    Giả thiết suy ra C_{n}^{2}4^{2} = 3040\Leftrightarrow C_{n}^{2} = 190 \Leftrightarrow \frac{n(n - 1)}{2} = 190\Leftrightarrow n^{2} - n - 380 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}n = 20\ \ (t/m) \ = - 19\ (loai) \\\end{matrix} ight.

  • Câu 8: Nhận biết

    Có bao nhiêu cách xếp 5 bạn ABCDE vào 1 chiếc ghế dài sao cho bạn A ngồi chính giữa?

    Xếp bạn A ngồi chính giữa: có 1 cách.

    Khi đó xếp 4 bạn BCDE vào 4 vị trí còn lại, có 4! = 24 cách.

    Vậy có tất cả 24 cách xếp.

  • Câu 9: Thông hiểu

    Từ 6 chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và 2?

    Gọi số cần tìm có dạng \overline{abcde}

    Số cách sắp xếp số 1; 2 vào 5 vị trí ta có: A_{5}^{2} cách

    3 vị trí còn lại có A_{4}^{3} cách

    Vậy số cần thành lập là: A_{5}^{2}.A_{4}^{3} = 480 số.

  • Câu 10: Nhận biết

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?

    Số cách lấy 5 con trong đó có 1 con át và 1 con vua là C_{4}^{1}C_{4}^{1}.C_{44}^{3} =
211904.

  • Câu 11: Nhận biết

    Số hạng không chứa x trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    Số hạng tổng quát trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    C_{5}^{k}.\left( x^{3} ight)^{5 -
k}.\left( - \frac{1}{x^{2}} ight)^{k} = C_{5}^{k}.( - 1)^{k}.x^{15 -
5k}

    Số hạng không chứa x khi và chỉ khi 15 -
5k = 0 \Rightarrow k = 3

    Vậy số hạng không chứa x là: C_{5}^{3}.(
- 1)^{3} = - 10.

  • Câu 12: Vận dụng

    Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?

    Gọi số in trên vé có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}}

    Số cách chọn a_{1} là 10 (a_{1} có thể là 0).

    Số cách chọn a_{2} là 9.

    Số cách chọn a_{3} là 8.

    Số cách chọn a_{4} là 7.

    Số cách chọn a_{5} là 6.

    Do đó có 10.9.8.7.6 = 23460 (số).

  • Câu 13: Thông hiểu

    Tìm số hạng không chứa x trong khai triển \left( x^{2} - \frac{1}{x} ight)^{n} biết A_{n}^{2} - C_{n}^{2} =
105.

    Ta có: A_{n}^{2} - C_{n}^{2} = 105
\Leftrightarrow \frac{n!}{(n - 2)!} - \frac{n!}{2!(n - 2)!} =
105 \Leftrightarrow \frac{1}{2}n(n
- 1) = 105 \Leftrightarrow n^{2} -
n - 210 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 15 \\
n = - 14\ \ \ (L) \\
\end{matrix} ight..

    Suy ra số hạng tổng quát trong khai triển: T_{k + 1} = C_{15}^{k}.\left( x^{2} ight)^{15 -
k}.\left( - \frac{1}{x} ight)^{k} = C_{15}^{k}.( - 1)^{k}.x^{30 -
3k}.

    Tìm 30 - 3k = 0 \Leftrightarrow k =
10.

    Vậy hệ số của số hạng không chứa x trong khai triển là: C_{15}^{10}.( - 1)^{10} = 3003.

  • Câu 14: Nhận biết

    Số hạng chứa x^{5} trong khai triển (x - 2)^{5} là:

    Công thức số hạng tổng quát: C_{5}^{k}.x^{k}.( - 2)^{5 - k} \Rightarrow k =
5 ta được số hạng chứa x^{5} là: x^{5}

  • Câu 15: Nhận biết

    Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:

     Số tập con có 3 phần tử từ tập 5 phần tử là: C_5^3 = 10.

  • Câu 16: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 17: Nhận biết

    Từ các chữ số  1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau.

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 5 cách chọn.

    B: có 4 cách chọn. 

    C: có 3 cách chọn.

    Vậy có 5.4.3 = 60 (số) có 3 chữ số đôi một khác nhau.

  • Câu 18: Vận dụng

    Cho 6 chữ số 2,3,4,5,6,7 số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    c3 cách chọn

    a6 cách chọn

    b6 cách chọn

    Vậy có: 3.6.6 = 108 số.

  • Câu 19: Nhận biết

    Khối lớp 11 có 300 học sinh nam và 250 học sinh nữ. Nhà trường cần chọn hai học sinh làm đại diện cho khối 11 trong đó có 1 học sinh nam và 1 học sinh nữ. Số cách chọn là:

    Áp dụng quy tắc nhân ta có số cách chọn 1 học sinh nam và 1 học sinh nữ là:

    300.250 = 75000 cách chọn.

  • Câu 20: Vận dụng

    Với số nguyên dương n, gọi a_{3n - 3} là hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} + 1 ight)^{n}(x +
2)^{n}. Tìm n để a_{3n - 3} = 26n.

    Ta có:

    \left( x^{2} + 1 ight)^{n} =
C_{n}^{0}x^{2n} + C_{n}^{1}x^{2n - 2} + C_{n}^{2}x^{2n - 4} + \ldots +
C_{n}^{n}

    (x + 2)^{n} = C_{n}^{0}x^{n} +
2C_{n}^{1}x^{n - 1} + 2^{2}C_{n}^{2}x^{n - 2} + \ldots +
2^{n}C_{n}^{n}

    Ta thấy n = 1,n = 2 không thoả mãn điều kiện bài toán.

    Với n \geq 3 ta có: x^{3n - 3} = x^{2n}.x^{n - 3} = x^{2n - 2}.x^{n -
1}

    Do đó hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} +
1 ight)^{n}(x + 2)^{n}.

    a_{3n - 3} = 2^{3}.C_{n}^{0}.C_{n}^{3} +
2.C_{n}^{1}.C_{n}^{1}.

    \Rightarrow a_{3n - 3} = 26n
\Leftrightarrow \frac{2n\left( 2n^{2} - 3n + 4 ight)}{3} =
26n

    \Leftrightarrow \left\lbrack\begin{matrix}n = 0\ \ (L) \ = - \dfrac{7}{2}\ \ (L). \ = 5\ \ (t/m) \\\end{matrix} ight.

    Vậy n = 5 là giá trị cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo