Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm hệ số của x^{5} trong khai triển (1 + 3x)^{2n} biết A_{n}^{3} + 2A_{n}^{2} = 100.

    Ta có: A_{n}^{3} + 2A_{n}^{2} = 100
\Leftrightarrow \frac{n!}{(n - 3)!} + 2\frac{n!}{(n - 2)!} = 100
\Leftrightarrow n(n - 1)(n - 2) + 2n(n - 1) = 100

    \Leftrightarrow n^{3} - n^{2} - 100 = 0
\Leftrightarrow n = 5.

    Ta có: (1 + 3x)^{2n} = (1 + 3x)^{10} =
\sum_{k = 0}^{10}{C_{10}^{k}(3x)^{k}}.

    Hệ số x^{5} sẽ là C_{10}^{5}3^{5} = 61236.

  • Câu 2: Vận dụng

    Với n là số nguyên dương thỏa mãn 3C_{n + 1}^{3} -
3A_{n}^{2} = 52(n - 1). Trong khai triển biểu thức \left( x^{3} + 2y^{2} ight)^{n}, gọi T_{k} là số hạng mà tổng số mũ của xy của số hạng đó bằng 34. Hệ số của T_{k} là :

    Điều kiện: n \geq 2, n \in \mathbb{N}^{*}.

    Ta có 3C_{n + 1}^{3} - 3A_{n}^{2} = 52(n
- 1) \Leftrightarrow 3.\frac{(n + 1)!}{3!(n - 2)!} - 3\frac{n!}{(n -
2)!} = 52(n - 1)

    \Leftrightarrow \frac{(n - 1)n(n + 1)}{2}
- 3n(n - 1) = 52(n - 1) \Leftrightarrow n^{2} + n - 6n =
104.

    \Leftrightarrow n^{2} - 5n - 104 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 13 \\
n = - 8 \\
\end{matrix} ight.\  \Leftrightarrow n = 13.

    \left( x^{3} + 2y^{2} ight)^{13} =
\sum_{0}^{13}{C_{13}^{k}\left( x^{3} ight)^{13 - k}\left( 2y^{2}
ight)^{k}} = \sum_{0}^{13}{C_{13}^{k}2^{k}x^{39 -
3k}y^{2k}}.

    Ta có: 39 - 3k + 2k = 34 \Leftrightarrow
k = 5. Vậy hệ số C_{13}^{5}2^{5} =
41184.

  • Câu 3: Thông hiểu

    Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác có 3 người, cần có cả nam và nữ, cần có cả nhà toán học và nhà vật lý. Hỏi có bao nhiêu cách?

    Trường hợp 1: 2 nhà toán học nữ và 1 nhà vật lý nam có C_{3}^{2}.C_{4}^{1} = 12 cách

    Trường hợp 2: 1 nhà toán học nữ và 2 nhà vật lý nam có C_{3}^{1}.C_{4}^{2} = 18 cách

    Trường hợp 3: 1 nhà toán học nữ, 1 nhà toán học nam và 1 nhà vật lý nam có C_{3}^{1}.C_{5}^{1}.C_{4}^{1} =
60 cách

    Theo quy tắc cộng có: 12 + 18 + 60 =
90 cách lập.

  • Câu 4: Nhận biết

    Hệ số của x^{31} trong khai triển \left( x + \frac{1}{x^{2}} ight)^{40}(x eq
0) là:

    \left( x + \frac{1}{x^{2}} ight)^{40}
= \sum_{k = 0}^{40}{C_{40}^{k}x^{40 - k}.x^{- 2k}} = \sum_{k =
0}^{40}{C_{40}^{k}x^{40 - 3k}}

    Theo giả thiết: 40 - 3k = 31 \Rightarrow
k = 3.

    Vậy hệ số của x^{31}C_{40}^{3} = 9880.

  • Câu 5: Nhận biết

    Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu?

    Tổng số quả cầu trong hộp là 5 + 6 = 11

    Mỗi cách lấy ngẫu nhiên 3 quả cầu trong 11 quả cầu trong hộp là tổ hợp chập 3 của 11 phần tử

    Vậy số cách thỏa mãn yêu cầu bài toán là C_{11}^{3} = 165 (cách).

  • Câu 6: Nhận biết

    Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?

    Số cách chọn sách Toán là 20 cách.

    Số cách chọn sách Vật lí là 40 cách.

    Số cách chọn sách Hóa học là 50 cách.

    Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.

  • Câu 7: Thông hiểu

    Từ 5 chữ số 1, 2, 5, 7, 8 có thể lập bao nhiêu số chẵn gồm 3 chữ số phân biệt và nhỏ hơn hoặc bằng 278?

    Gọi số cần tìm có dạng \overline{abc};\left( a,b \in \left\{ 1;2;5;7;8
ight\},c \in \left\{ 2;8 ight\} ight)

    Trường hợp 1: a = 2;b = 7;c = 8. Có 1 số thỏa mãn yêu cầu bài toán.

    Trường hợp2: a = 2;b < 7;c =
8

    a có 1 cách chọn.

    c có 1 cách chọn.

    b có 2 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.1.2 =
2 (số).

    Trường hợp 3: a < 2;c \in \left\{ 2;8
ight\}

    a có 1 cách chọn.

    c có 2 cách chọn.

    b có 3 cách chọn.

    ⇒ Theo quy tắc nhân ta có: 1.2.3 =
6 (số).

    Vậy có: 1 + 2 + 6 = 9 (số).

  • Câu 8: Nhận biết

    Biết rằng khai triển nhị thức Newton (m + 2)^{n - 3} với n\mathbb{\in N},n > 3;m eq - 2 có tất cả 6 số hạng. Hãy xác định n?

    Vì trong khai triển nhị thức Newton (m +
2)^{n - 3} đã cho có tất cả 6 số hạng nên n - 3 = 5 \Rightarrow n = 8

    Vậy n = 8 là giá trị cần tìm.

  • Câu 9: Vận dụng

    Cho tập A =
\left\{ 1,2,3,4,5,6,7,8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

    x lẻ và không chia hết cho 5 nên d \in \left\{ 1,3,7 ight\} \Rightarrow
d có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 10: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau?

    Gọi số tự nhiên có ba chữ số có dạng \overline{abc};(a eq 0)

    Có 9 cách chọn a

    Có 9 cách chọn b

    Có 8 cách chọn c

    => Số các số được tạo thành là: 9.9.8
= 648 số.

  • Câu 11: Thông hiểu

    Hệ số lớn nhất trong khai triển \left( \frac{1}{4} + \frac{3}{4}x
ight)^{4}là:

    Ta có \left( \frac{1}{4} + \frac{3}{4}x
ight)^{4} = \sum_{k = 0}^{4}{C_{4}^{k}.\left( \frac{1}{4} ight)^{4 -
k}.\left( \frac{3}{4} ight)^{k}}

    = \frac{1}{256} + \frac{3}{64}x +
\frac{27}{128}x^{2} + \frac{27}{64}x^{3} +
\frac{81}{256}x^{4}

    Vậy hệ số lớn nhất trong khai triển là \frac{27}{64}.

  • Câu 12: Nhận biết

    Đếm số cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài. Biết các sách Văn phải xếp kề nhau?

    Vì các sách Văn phải xếp kề nhau nên ta xem 5 cuốn sách Văn là một phần tử.

    Xếp 7 cuốn sách toán lên kệ có 7! cách.

    Giữa 7 cuốn sách Toán có 8 khoảng trống, ta xếp phần tử chứa 5 cuốn sách Văn vào 8 vị trí đó có 8 cách.

    5 cuốn sách Văn có thể hoán đổi vị trí cho nhau ta được 5! cách.

    Vậy số cách sắp xếp thỏa mãn yêu cầu bài toán là. 8.7!.5! = 8!.5!.

  • Câu 13: Nhận biết

    Số hạng chứa x^{4} trong khai triển biểu thức (2x + 3)^{5} là:

     Ta có: (2x+3)^5=32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243.

    Số hạng cần tìm là: 240x^{4}.

  • Câu 14: Nhận biết

    Cho hai dãy ghế được xếp như sau.

    Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?

    Xếp 4 bạn nam vào một dãy có 4! (cách xếp).

    Xếp 4 bạn nữ vào một dãy có 4! (cách xếp).

    Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.

    Số cách xếp theo yêu cầu là. 4!.4!.2^{4} (cách xếp).

  • Câu 15: Nhận biết

    Số cách chọn một học sinh trong nhóm gồm 5 nữ và 4 nam là:

    Áp dụng quy tắc cộng ta có số cách chọn một học sinh là: 5 + 4 = 9 cách.

  • Câu 16: Thông hiểu

    Một tập thể có 14 người gồm 6 nam và 8 nữ, trong đó có An và Bình, chọn một tồ công tác gồm 6 người. Tìm số cách chọn sao cho trong tổ có 1 tổ trưởng, 5 tổ viên, An và Bình không đồng thời có mặt trong tổ.

    Trường hợp 1: An và Bình không có mặt trong tổ công tác:

    Chọn 6 bạn trong 12 bạn (14 người loại An và Bình) có C_{12}^{6} cách.

    Trường hợp 2: An có trong tổ công tác, Bình không có trong tổ công tác:

    Chọn An có 1 cách, Chọn 5 bạn trong 12 người còn lại có C_{12}^{5} cách

    Trường hợp 3: Bình có trong tổ công tác, An không có trong tổ công tác có C_{12}^{5} cách.

    Trong 1 tổ 6 người có 6 cách chọn ra 1 tổ trưởng

    Như vậy có tất cả số cách là: \left(
C_{12}^{6} + C_{12}^{5} + C_{12}^{5} ight).6 = 15048 cách

  • Câu 17: Vận dụng

    Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 5 suy ra e = \left\{ 0;5 ight\}.

    TH1. Với e = 0 suy ra có 4 \times 5 \times 4 \times 3 = 240 số cần tìm.

    TH2. Với e = 5, suy ra có 5 \times 4 \times 3 + 3 \times 4 \times 4 \times 3
= 204 số cần tìm.

    Vậy có tất cả 444 số cần tìm.

  • Câu 18: Vận dụng

    Có bao nhiêu chữ số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,8.

    Gọi x = \overline{abcd};\ a,b,c,d \in
\left\{ 0,1,2,4,5,6,8 ight\}.

    Cách 1: Tính trực tiếp

    x là số chẵn nên d \in \left\{ 0,2,4,6,8 ight\}.

    TH 1: d = 0 \Rightarrow có 1 cách chọn d.

    Với mỗi cách chọn d ta có 6 cách chọn a \in \left\{ 1,2,4,5,6,8
ight\}

    Với mỗi cách chọn a,d ta có 5 cách chọn b \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a ight\}

    Với mỗi cách chọn a,b,d ta có 4 cách chọn c \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a,b ight\}

    Suy ra trong trường hợp này có 1.6.5.4 =
120 số.

    TH 2: d eq 0 \Rightarrow d \in \left\{
2,4,6,8 ight\} \Rightarrow có 4 cách chọn d

    Với mỗi cách chọn d, do a eq 0 nên ta có 5 cách chọn

    a \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ d ight\}.

    Với mỗi cách chọn a,d ta có 5 cách chọn b \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a ight\}

    Với mỗi cách chọn a,b,d ta có 4 cách chọn c \in \left\{ 1,2,4,5,6,8
ight\}\backslash\left\{ a,b ight\}

    Suy ra trong trường hợp này có 4.5.5.4 =
400 số.

    Vậy có tất cả 120 + 400 = 520 số cần lập.

  • Câu 19: Nhận biết

    Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

    Chọn 1 kiểu mặt từ 3 kiểu mặt có 3 cách.

    Chọn 1 kiểu dây từ 4 kiểu dây có 4 cách.

    Vậy theo quy tắc nhân có 12 cách chọn 1 chiếc đồng hồ gồm một mặt và một dây.

  • Câu 20: Vận dụng

    Cho tập A =
\left\{ 1;2;3;4;5;6;7;8;9 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?

    Gọi \overline{125ab} là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.

    Suy ra b có 3 cách chọn, a có 5 cách chọn \Rightarrow3 \times 5 = 15 số.

    Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A4 \times 8 \times 7 \times 6
\times 5 = 6720 số.

    Suy ra có tất cả 6720 - 15 =
6705 số cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo