Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 2: Thông hiểu

    Trong khai triển \left( 3x^{2} + \frac{1}{x}
ight)^{n}biết hệ số của x^{3}3^{4}C_{n}^{5}. Giá trị n có thể nhận là:

    Ta có \left( 3x^{2} + \frac{1}{x}
ight)^{n} = \sum_{k = 0}^{n}{C_{n}^{k}\left( 3x^{2} ight)^{n -
k}\left( \frac{1}{x} ight)^{k}} = \sum_{k = 0}^{n}{C_{n}^{k}3^{n -
k}x^{2n - 3k}}.

    Biết hệ số của x^{3}3^{4}C_{n}^{5} nên \left\{ \begin{matrix}
2n - 3k = 3 \\
n - k = 4 \\
k = 5 \\
0 \leq k \leq n,(k,n \in N) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 5 \\
n = 9 \\
\end{matrix} ight..

  • Câu 3: Thông hiểu

    Cho tập hợp M =
\left\{ 0;1;3;4;5;6;8 ight\}. Có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau từ các chữ số thuộc tập hợp M?

    Gọi số tự nhiên có ba chữ số là: \overline{abc};(a eq 0)

    TH1: c = 0

    Chữ số a có 6 cách chọn.

    Với mỗi cách chọn a có 5 cách chọn chữ số b

    => Số các số tạo thành là: 1 . 5 . 6 = 30 (số)

    TH2: c \in \left\{ 4;6;8
ight\} => Chữ số c có 3 cách chọn.

    Chữ số a có 5 cách chọn, với mỗi cách chọn a ta có 5 cách chọn b.

    => Số các số tạo thành là: 3 . 5 . 5 = 75 (số)

    Vậy có tất cả 30 + 75 = 105 (số) thỏa mãn yêu cầu đề bài.

  • Câu 4: Nhận biết

    Hệ số của x^{2} trong khai triển (x + 1)^{5} là:

     Ta có: {(x + 1)^5} ={x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 5x + 1.

    Hệ số của x^2 là 10.

  • Câu 5: Vận dụng

    Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần?

    Với một cách chọn 9 chữ số từ tập \left\{ 0,1,2,3,4,5,6,7,8,9
ight\} ta có duy nhất một cách xếp chúng theo thứ tự giảm dần.

    Ta có 10 cách chọn 9 chữ số từ tập \left\{ 0,1,2,3,4,5,6,7,8,9 ight\}.

    Do đó có 10 số tự nhiên cần tìm.

  • Câu 6: Thông hiểu

    Giả sử rằng:

    (1 + x)\left( 1 + x + x^{2}
ight)

    = (1 + 1)\left( 1 + 1 + 1^{2}
ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n} ight)

    = m_{0} + m_{1}x + m_{2}x^{2} + ... +
m_{a}x^{a}

    Hãy tính \sum_{i =
0}^{a}m_{i}?

    Ta có:

    \sum_{i = 0}^{a}m_{i} = (1 + 1)\left( 1
+ 1 + 1^{2} ight)...\left( 1 + 1 + 1^{2} + ... + 1^{n}
ight)

    = 2.3.4.....(n + 1) = (n +
1)!

  • Câu 7: Nhận biết

    Một lớp có 34 học sinh. Hỏi có bao nhiêu cách chọn 3 học sinh để làm lớp trưởng, lớp phó, bí thư?

     Chọn 3 học sinh từ 34 học sinh rồi xếp vào 3 vai trò lớp trưởng, lớp phó, bí thư có A_{34}^3 cách.

  • Câu 8: Nhận biết

    Hệ số của số hạng chứa x^{6}trong khai triển Newton \left( x - \frac{2}{x^{2}}
ight)^{15}là:

    \left( x - \frac{2}{x^{2}} ight)^{15}
= \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}\left( - \frac{2}{x^{2}}
ight)^{k}} = \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}( - 2)^{k}\left(
x^{- 2} ight)^{k} =}\sum_{k = 0}^{15}{C_{15}^{k}( - 2)^{k}x^{15 -
3k}}

    Số hạng tổng quát của khái triển T_{k +
1} = C_{15}^{k}( - 2)^{k}x^{15 - 3k}

    Số của số hạng chứa x^{6}: 15 - 3k = 6 \Leftrightarrow k = 3. Hệ số của số hạng chứa x^{6}C_{15}^{k}( - 2)^{k} =
C_{15}^{3}( - 2)^{3} = - 3640.

  • Câu 9: Nhận biết

    Biểu thức C_{4}^{0}x^{4}+C_{4}^{1}x^{3}y+C_{4}^{2}x^{2}y^{2}+C_{4}^{3}xy^{3}+C_{4}^{4}y^{4} bằng:

    Ta có:

    C_{4}^{0}x^{4}+C_{4}^{1}x^{3}y+C_{4}^{2}x^{2}y^{2}+C_{4}^{3}xy^{3}+C_{4}^{4}y^{4} =(x + y)^{4}

  • Câu 10: Thông hiểu

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n là số lẻ gồm năm chữ số, trong đó các chữ số cách đều chữ số chính giữa thì giống nhau.

    Vì n là số gồm năm chữ số, trong đó các chữ số cách đều chữ số chính giữa thì giống nhau.

    Gọi n có dạng \overline{abcba} để n là số lẻ ta có

    a có 3 lựa chọn là {1; 5; 9}

    b có 5 lựa chọn.

    c có 5 lựa chọn.

    Vậy có 5.5.3 = 75 số n thỏa mãn yêu cầu bài toán.

  • Câu 11: Thông hiểu

    Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số đã cho lập được bao nhiêu số tự nhiên chẵn có 4 chữ số và các chữ số đôi một bất kỳ khác nhau?

    Gọi số cần tìm là: \overline{abcd} (với b,\ c,\ d\  \in \left\{ 0;\ 1;\ 2;\ 3;\ 4;\ 5ight\}, a\  \in \left\{ 1;\ 2;\3;\ 4;\ 5 ight\}).

    Trường hợp 1:

    Chọn d = 0, nên có 1 cách chọn.

    Chọn a \in \left\{ \left. \ 1,\ 2,\ 3,\4,\ 5 ight\} ight. nên có 5 cách chọn.

    Chọn b4 cách chọn.

    Chọn c3 cách chọn.

    Suy ra, có 1.5.4.3 = 60 số.

    Trường hợp 2:

    Chọn d \in \left\{ 2,\ 4ight\}, nên có 2 cách chọn.

    Chọn a eq 0 nên có 4 cách chọn.

    Chọn b4 cách chọn.

    Chọn c3 cách chọn.

    Suy ra, có 2.4.4.3 = 96 số.

    Vậy có tất cả: 60 + 96 = 156 số.

  • Câu 12: Thông hiểu

    Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?

    TH1: Chọn 7 người 18 người không là cặp vợ chồng: C_{18}^{7}

    TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng: C_{4}^{1}.C_{18}^{6}

    TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng: \left(
C_{4}^{2} - 2 ight).C_{18}^{5}

    Vậy số cách chọn thỏa mãn là: C_{18}^{7}
+ C_{4}^{1}.C_{18}^{6} + \left( C_{4}^{2} - 2 ight).C_{18}^{5} =
140352 cách

  • Câu 13: Nhận biết

    Tính số cách chọn một học sinh trong khối lớp 10 tham gia công tác Đoàn. Biết rằng khối 10 có 350 học sinh nam và 245 học sinh nữ?

    Áp dụng quy tắc cộng ta có số cách chọn học sinh tham gia công tác Đoàn là: 350 + 245 = 495.

  • Câu 14: Vận dụng

    Cho biểu thức P
= \left( \frac{x + 1}{\sqrt[3]{x^{2}} - \sqrt[3]{x} + 1} - \frac{x -
1}{x - \sqrt{x}} ight)^{10} với x
> 0, x eq 1. Số hạng không chứa x trong khai triển Niu-tơn của P là:

    Ta có \frac{x + 1}{\sqrt[3]{x^{2}} -
\sqrt[3]{x} + 1} - \frac{x - 1}{x - \sqrt{x}} = \sqrt[3]{x} + 1 -
\frac{\sqrt{x} + 1}{\sqrt{x}} = \sqrt[3]{x} -
\frac{1}{\sqrt{x}}.

    Nên P = \left( \frac{x +
1}{\sqrt[3]{x^{2}} - \sqrt[3]{x} + 1} - \frac{x - 1}{x - \sqrt{x}}
ight)^{10} = \left( \sqrt[3]{x} - \frac{1}{\sqrt{x}}
ight)^{10}.

    Số hạng tổng quát của khai triển là: C_{10}^{k}x^{\frac{10 - k}{3}}.\left( \frac{-
1}{\sqrt{x}} ight)^{k} = ( - 1)^{k}C_{10}^{k}x^{\frac{20 -
5k}{6}}.

    Khi k = 4 thì số hạng không chứa x(
- 1)^{4}C_{10}^{4} = 210.

  • Câu 15: Nhận biết

    Có bao nhiêu cách xếp 6 người thành một hàng dọc

     Xếp 6 người thành một hàng dọc có: 6! = 720 cách.

  • Câu 16: Nhận biết

    Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?

    Mỗi tập con có 8 phần tử của tập hợp E là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp E là. C_{10}^{8} = 45.

  • Câu 17: Vận dụng

    Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số 2011 chữ số và trong đó có ít nhất hai chữ số 9.

    Đặt X là các số tự nhiên thỏa yêu cầu bài toán.

    A ={ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}

    Với mỗi số thuộc A có m chữ số (m \leq 2008) thì ta có thể bổ sung thêm 2011 - m số 0 vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng \overline{a_{1}a_{2}...a_{2011}};\ a_{i} \in
\left\{ 0,1,2,3,...,9 ight\}

    A_{0} = \left\{ a \in A| ight.mà trong a không có chữ số 9}

    A_{1} = \left\{ a \in A| ight. mà trong a có đúng 1 chữ số 9}

    \bullet Ta thấy tập A có 1 + \frac{9^{2011} - 1}{9} phần tử

    \bullet Tính số phần tử của A_{0}

    Với x \in A_{0} \Rightarrow x =
\overline{a_{1}...a_{2011}};a_{i} \in \left\{ 0,1,2,...,8 ight\}\ i =
\overline{1,2010}a_{2011} = 9 -
r với r \in \lbrack 1;9brack,r
\equiv \sum_{i = 1}^{2010}a_{i}. Từ đó ta suy ra A_{0}9^{2010} phần tử.

    \bullet Tính số phần tử của A_{1}

    Để lập số của thuộc tập A_{1} ta thực hiện liên tiếp hai bước sau:

    Bước 1: Lập một dãy gồm 2010 chữ số thuộc tập \left\{ 0,1,2...,8
ight\} và tổng các chữ số chia hết cho 9. Số các dãy là 9^{2009}.

    Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9.

    Do đó A_{1}2010.9^{2009} phần tử.

    Vậy số các số cần lập là:

    1 + \frac{9^{2011} - 1}{9} - 9^{2010} -
2010.9^{2009} = \frac{9^{2011} - 2019.9^{2010} + 8}{9}.

  • Câu 18: Nhận biết

    An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?

    Từ nhà An đến nhà Bình có 4 cách chọn đường.

    Từ nhà Bình đến nhà Cường có 6 cách chọn đường.

    Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).

  • Câu 19: Vận dụng

    Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcd} chia hết cho 6 suy ra \left\{ \begin{matrix}
e = \left\{ 0;2 ight\} \\
(a + b + c + d + e) \vdots 3 \\
\end{matrix} ight.

    TH1. Với e = 0 suy ra a + b + c + d \vdots 3, do đó gồm các bộ (1;2;5;7) suy ra có 24 số.

    TH2. Với e = 2 suy ra a + b + c + d + 2 \vdots 3, do đó gồm các bộ (0;1;5;7), (1;5;7;9) suy ra có 42 số.

    Vậy có tất cả 24 + 42 = 66 số cần tìm.

  • Câu 20: Nhận biết

    Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra một học sinh đi dự trại hè của trường. Hỏi có bao nhiêu cách chọn?

    Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:

    Bước 2: Đếm số cách chọn.

    * Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.

    * Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.

    Bước 3: Áp dụng quy tắc cộng.

    Vậy có 20 + 25 = 45 cách chọn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo