Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?
Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.
Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?
Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.
Khai triển biểu thức
ta thu được kết quả là:
Ta có: .
Hệ số của
trong khai triển thành đa thức của
bằng bao nhiêu? Cho biết n là số tự nhiên thỏa mãn:
.
Ta có
Thay vào
:
Thay vào
:
Phương trình trừ
theo vế:
.
Theo đề ta có
Số hạng tổng quát của khai triển :
Theo giả thiết ta có .
Vậy hệ số cần tìm .
Biết hệ số của
trong khai triển của
là
. Tìm
.
Số hạng thứ trong khai triển của
là:
.
Số hạng chứa ứng với
.
Ta có: (với
;
)
. Vậy
.
Từ các chữ số
,
,
,
,
,
có thể lập được bao nhiêu số tự nhiên lẻ có
chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?
Gọi là số cần tìm
Ta có và
Với thì
hoặc
Với thì
hoặc
Với thì
hoặc
Mỗi trường hợp có số thỏa mãn yêu cầu
Vậy có tất cả số cần tìm.
Tìm hệ số của
trong khai triển ![]()
Số hạng tổng quát của khai triển đã cho là
với ,
. Số hạng này chứa
khi và chỉ khi
(thỏa mãn).
Vậy hệ số của trong khai triển
là
.
Cho các chữ số
,
,
,
,
,
. Từ các chữ số đã cho lập được bao nhiêu số tự nhiên chẵn có
chữ số và các chữ số đôi một bất kỳ khác nhau?
Gọi số cần tìm là: (với
,
).
Trường hợp 1:
Chọn , nên có
cách chọn.
Chọn nên có
cách chọn.
Chọn có
cách chọn.
Chọn có
cách chọn.
Suy ra, có số.
Trường hợp 2:
Chọn , nên có
cách chọn.
Chọn nên có
cách chọn.
Chọn có
cách chọn.
Chọn có
cách chọn.
Suy ra, có số.
Vậy có tất cả: số.
Tìm hệ số của số hạng chứa
trong khai triển
?
Ta có:
Hệ số chứa trong khai triển là:
.
Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 5?
Số tự nhiên có 5 chữ số có dạng:
Do số cần tìm chia hết cho 5 => => e có 2 cách chọn.
a có 9 cách chọn
b, c, d có 10 cách chọn
=> Số các số tạo thành là: 2.9.10.10.10 = 18 000 số.
Có bao nhiêu số tự nhiên nhỏ hơn
chia hết cho
và
.
Số các số tự nhiên lớn nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ hơn chia hết cho
và
là
.
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Có bao nhiêu cách xếp 5 bạn A, B, C, D, E vào 1 chiếc ghế dài sao cho bạn A ngồi chính giữa?
Xếp bạn A ngồi chính giữa: có 1 cách.
Khi đó xếp 4 bạn B, C, D, E vào 4 vị trí còn lại, có 4! = 24 cách.
Vậy có tất cả 24 cách xếp.
Có bao nhiêu cách sắp xếp
học sinh thành một hàng dọc?
Số cách sắp xếp học sinh thành một hàng dọc là
.
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi chính giữa là:
Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp
Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong
người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
Thứ 2: có cách chọn bạn đi thăm
Thứ 3: có cách chọn bạn đi thăm
Thứ 4: có cách chọn bạn đi thăm
Thứ 5: có cách chọn bạn đi thăm
Thứ 6: có cách chọn bạn đi thăm
Thứ 7: có cách chọn bạn đi thăm
Chủ nhật: có cách chọn bạn đi thăm
Vậy theo quy tắc nhân, có (kế hoạch).
Hỏi có bao nhiêu số có 4 chữ số đôi một khác nhau và là số lẻ.
Gọi số cần lập có dạng: .
D: có 5 cách chọn (1,3,5,7)
A: có 8 cách chọn (khác D và khác 0)
B: có 8 cách chọn (khác D và khác 0)
C: có 7 cách chọn (khác A,B,D)
Vậy có 5.8.8.7 = 2240 (số) có 4 chữ số đôi một khác nhau và là số lẻ.
Cho tập hợp
. Có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau từ các chữ số thuộc tập hợp
?
Gọi số tự nhiên có ba chữ số là:
TH1: c = 0
Chữ số a có 6 cách chọn.
Với mỗi cách chọn a có 5 cách chọn chữ số b
=> Số các số tạo thành là: 1 . 5 . 6 = 30 (số)
TH2: => Chữ số c có 3 cách chọn.
Chữ số a có 5 cách chọn, với mỗi cách chọn a ta có 5 cách chọn b.
=> Số các số tạo thành là: 3 . 5 . 5 = 75 (số)
Vậy có tất cả 30 + 75 = 105 (số) thỏa mãn yêu cầu đề bài.
Từ thành phố A đến thành phố B có 2 con đường, từ thành phố B đến thành phố C có 3 con đường. Hỏi có bao nhiêu cách đi từ A đến C sao cho bắt buộc phải đi qua B.
Đi từ A đến B: 2 cách.
Đi từ B đến C: 3 cách.
Vậy đi từ A đến C (qua B) có: 2.3 = 6 cách.
Phát biểu nào sau đây đúng?
Phát biểu đúng là:
Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?
Gọi số cần tìm có dạng . Vì
chia hết cho 6 suy ra
TH1. Với suy ra
, do đó gồm các bộ
suy ra có 24 số.
TH2. Với suy ra
, do đó gồm các bộ
,
suy ra có 42 số.
Vậy có tất cả số cần tìm.