Tìm số hạng chứa
trong khai triển
.
Ta có công thức của số hạng tổng quát:
Số hạng chứa khi và chỉ khi
.
Vậy số hạng chứa trong khai triển là
.
Tìm số hạng chứa
trong khai triển
.
Ta có công thức của số hạng tổng quát:
Số hạng chứa khi và chỉ khi
.
Vậy số hạng chứa trong khai triển là
.
Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có
sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở
vị trí khác nhau. Yêu cầu mỗi vị trí có đúng
sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho
người đó?
Mỗi cách xếp sinh viên vào
vị trí thỏa đề là một hoán vị của
phần tử.
Suy ra số cách xếp là cách.
Tìm hệ số không chứa
trong khai triển
, biết
là sô nguyên dương thỏa mãn
.
.
.
Số hạng không chứa ứng với
là
.
Một học sinh có 12 quyển sách đôi một khác nhau, trong đó có 2 sách Toán, 4 sách Văn, 6 sách Anh Văn. Hỏi có bao nhiêu cách xếp tất cả các quyển sách lên một kệ sách dài nếu mọi quyển sách cùng môn được xếp kề nhau?
Có 3! = 6 cách xếp 3 loại sách.
Có 2! = 2 cách xếp 2 sách Toán.
Có 4! = 24 cách xếp 4 sách Văn.
Vậy theo qui tắc nhân có tất cả 6.2.24 = 720 cách xếp thoả mãn yêu cầu đề bài
Tổng số nguyên dương n thỏa mãn
là:
Điều kiện. .
hoặc
.
Vậy tổng số nguyên dương n bằng 11.
Cho các số
,
,
,
. Hỏi lập được bao nhiêu số tự nhiên có
chữ số với các số khác nhau lập từ các số đã cho?
Số các số tự nhiên có chữ số với các số khác nhau lập từ các số đã cho là:
số.
Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?
Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là .
Trường hợp này có 2!.6 số.
Chữ số cuối bằng 2 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 4 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 8 ta có các bộ , hoán vị được
số.
Kết hợp lại ta có 35 số.
Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:
Gọi số cần tìm có dạng
Số cách chọn là 1 cách, (
)
Số cách chọn là 9 cách;
Số cách chọn là
cách
Vậy có số.
Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp
và không vượt quá
?
TH1: Số cần tìm có dạng
Chữ số d có 7 cách chọn là một trong các chữ số .
Suy ra có 7 số thỏa mãn.
TH2: Số cần tìm có dạng
3 vị trí còn lại có cách chọn
Suy ra có 504 số thỏa mãn
Kết hợp cả hai trường hợp ta có: 504 + 7 = 511 số được tạo thành thỏa mãn yêu cầu đề bài.
Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho nam sinh và nữ sinh ngồi riêng dãy?
Giả sử gọi 2 dãy ghế là dãy A và dãy B.
Trường hợp 1: Các bạn nam ngồi dãy A, các bạn nữ ngồi dãy B
Số cách xếp là: cách.
Trường hợp 2: Các bạn nữ ngồi dãy A, các bạn nam ngồi dãy B
Số cách xếp là: cách.
Vậy số cách xếp là: cách.
Để giải một bài tập ta cần phải giải hai bài tập nhỏ. Bài tập 1 có 9 cách giải, bài tập 2 có 5 cách giải. Số các cách để giải hoàn thành bài tập trên là:
Sô cách giải bài toán 1 : 9 cách.
Số cách giải bài toán 2 : 5 cách.
Áp dụng quy tắc nhân: 9 × 5 = 45 cách.
Số hạng chứa
trong khai triển
là:
Số hạng thứ trong khai triển
là:
.
Số hạng chứa trong khai triển
tương ứng với:
.
Vậy số hạng chứa trong khai triển
là:
.
Hệ số lớn nhất trong khai triển
là:
Ta có
Vậy hệ số lớn nhất trong khai triển là .
Dãy
trong đó mỗi kí tự
chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.
Đáp án: 1024
Dãy trong đó mỗi kí tự
chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit.
Đáp án: 1024
Có dãy nhị phân 10 bit.
Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu sao cho 3 quả cầu lấy ra có ít nhất một quả cầu trắng?
Trường hợp 1: 1 quả trắng và 2 quả đỏ.
Số cách lấy là
Trường hợp 2: 2 quả trắng và 1 quả đỏ.
Số cách lấy là
Trường hợp 3: 3 quả trắng.
Số cách lấy là
Do vậy số cách lấy ngẫu nhiên 3 quả cầy trong hộp sao cho trong 3 quả cầu lấy ra có ít nhất 1 quả cầu trắng là: 75 + 60 + 10 = 145 (cách)
Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong
người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
Thứ 2: có cách chọn bạn đi thăm
Thứ 3: có cách chọn bạn đi thăm
Thứ 4: có cách chọn bạn đi thăm
Thứ 5: có cách chọn bạn đi thăm
Thứ 6: có cách chọn bạn đi thăm
Thứ 7: có cách chọn bạn đi thăm
Chủ nhật: có cách chọn bạn đi thăm
Vậy theo quy tắc nhân, có (kế hoạch).
Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa và 3 chuyến máy bay. Hỏi một ngày có bao nhiêu cách lựa chọn đi từ tỉnh A đến tỉnh B?
Trường hợp 1: Số cách chọn đi từ tỉnh A đến tỉnh B bằng ô tô: có 10 cách.
Trường hợp 2: Số cách chọn đi từ tỉnh A đến tỉnh B bằng tàu hỏa: có 5 cách.
Trường hợp 3: Số cách chọn đi từ tỉnh A đến tỉnh B bằng máy bay: có 3 cách.
Vậy số cách lựa chọn đi từ tỉnh A đến tỉnh B là: cách
Với
là số nguyên dương thỏa mãn
. Trong khai triển biểu thức
, gọi
là số hạng mà tổng số mũ của
và
của số hạng đó bằng
. Hệ số của
là :
Điều kiện: ,
.
Ta có
.
.
.
Ta có: . Vậy hệ số
.
Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của
?
Khi viết nhị thức dưới dạng khai triển
số hạng.
Có bao nhiêu số tự nhiên có
chữ số lập từ các số
với điều các chữ số đó không lặp lại?
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.