Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?

     Số cách lập nhóm có hai học sinh là: C_{10}^2 cách

    Số học sinh còn lại 8 học sinh (vì 2 học sinh lập nhóm đầu tiên)

    => Số cách lập nhóm có 3 học sinh là: C_8^3 cách

    Số học sinh còn lại còn 5 học sinh để lập nhóm 5 học sinh 

    => Số cách lập nhóm 5 học sinh là: C_5^5 cách

    Mà các cách lập nhóm liên quan đến nhau

    => Số cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh là

    C_{10}^{2}\times C_{8}^{3}\times C_{5}^{5} cách.

  • Câu 2: Thông hiểu

    : Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp theo từng môn?

    Có 4 bộ sách được sắp 4 vị trí có 4! cách

    Sắp xếp 3 quyển sách Toán có 3! cách

    Sắp xếp 2 sách Hóa có 2! cách

    Sắp xếp 4 quyển sách Lý có 4! cách

    Sắp xếp 5 quyển sách Sinh có 5! cách

    Vậy số cách sắp xếp số sách trên kệ theo từng môn là: 4!.2!.3!.4!.5! = 829440 cách.

  • Câu 3: Nhận biết

    Giả sử bạn muốn màu áo sơ mi cỡ 39 hoặc 40. Áo cỡ 39 có 5 màu khác nhau, áo cỡ 40 có 4 màu khác nhau. Hỏi bạn có bao nhiêu sự lựa chọn (về màu và cỡ áo)?

    Áo cỡ 39 có 5 cách chọn

    Áo cỡ 40 có 4 cách chọn

    Vậy có tất cả 5 + 4 = 9cách chọn về màu và cỡ áo.

  • Câu 4: Nhận biết

    Có bao nhiêu số tự nhiên có ba chữ số dạng \overline{abc} với a, b, c \in\left\{ 0;1;\ 2;\ 3;\ 4;5;6 ight\} sao cho a < b < c.

    Vì số tự nhiên có ba chữ số dạng \overline{abc} với a, b, c \in\left\{ 0;1;\ 2;\ 3;\ 4;5;6 ight\} sao cho a < b < c nên a, b, c \in\left\{ 1;\ 2;\ 3;\ 4;5;6 ight\}. Suy ra số các số có dạng \overline{abc}C_{6}^{3} = 20.

  • Câu 5: Nhận biết

    Giá trị của C_{n}^{0}-C_{n}^{1}+C_{n}^{n-1}-C_{n}^{n} bằng:

    Ta có:

    \begin{matrix}  C_n^0 - C_n^1 + C_n^{n - 1} - C_n^n \hfill \\   = 1 - C_n^1 + C_n^1 - 1 = 0 \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Cho tập hợp số: A = \left\{ 0,1,2,3,4,5,6 ight\}.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

    Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \{ 0,1,2,3\}, \{ 0,1,2,6\}, \{ 0,2,3,4\}, \{ 0,3,4,5\}, \{ 1,2,4,5\}, \{ 1,2,3,6\}, \left\{ 1,3,5,6 ight\}.

    Vậy số các số cần lập là: 4(4! - 3!) +
3.4! = 144 số.

  • Câu 7: Thông hiểu

    Một người có 5 chiếc áo trong đó có 3chiếc áo trắng. Người đó cũng có 3 chiếc cà vạt trong đó có 2 chiếc cà vạt màu vàng. Tìm số cách chọn một chiếc áo và một chiếc cà vạt sao cho đã chọn áo trắng thì không chọn cà vạt màu vàng.

    5 chiếc áo gồm: 3 trắng và 2 màu khác.

    3 chiếc cà vạt gồm: 2 vàng và 1 màu khác.

    Trường hợp 1: Áo trắng, cà vạt màu khác vàng.

    Áo trắng: có 3 cách chọn.

    Cà vạt màu khác vàng: 1 cách chọn.

    Suy ra có: 3.1 = 3 (cách).

    Trường hợp 2: Áo màu khác trắng, cà vạt màu bất kì.

    Áo màu khác trắng: 2 cách chọn.

    Cà vạt màu bất kì: 3 cách chọn.

    Suy ra có: 2.3 = 6 (cách).

    Vậy có: 3+6 = 9 (cách) chọn thỏa mãn yêu cầu đề bài.

  • Câu 8: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 9: Nhận biết

    Tính số cách chọn một học sinh trong khối lớp 10 tham gia công tác Đoàn. Biết rằng khối 10 có 350 học sinh nam và 245 học sinh nữ?

    Áp dụng quy tắc cộng ta có số cách chọn học sinh tham gia công tác Đoàn là: 350 + 245 = 495.

  • Câu 10: Nhận biết

    Có bao nhiêu số hạng trong khai triển (6x + 4)^{4}?

    Trong khai triển nhị thức (6x +
4)^{4}n = 4 nên có 5 số hạng.

  • Câu 11: Vận dụng

    Tìm số hạng chứa x^{26} trong khai triển \left( \frac{1}{x^{4}} + x^{7}
ight)^{n}. Cho biết n là số nguyên dương thỏa mãn hệ thức C_{2n +
1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{n} = 2^{20} -
1.

    Từ giả thiết ta suy ra C_{2n + 1}^{0} +
C_{2n + 1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{n} =
2^{20}.

    Mặt khác: C_{2n + 1}^{k} = C_{2n + 1}^{2n
+ 1 - k}\ \ ,\ \forall k\mathbb{\in N},\ 0 \leq k \leq 2n + 1 nên ta có:

    C_{2n + 1}^{0} + C_{2n + 1}^{1} + C_{2n +1}^{2} + ... + C_{2n + 1}^{n}

    = \frac{1}{2}\left( C_{2n + 1}^{0} + C_{2n+ 1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{2n + 1} ight) =\frac{1}{2}(1 + 1)^{2n + 1} = 2^{2n}

    Suy ra: 2^{2n} = 2^{20} \Leftrightarrow n
= 10.

    Số hạng tổng quát trong khai triển \left(
\frac{1}{x^{4}} + x^{7} ight)^{10}là: T_{k + 1} = C_{10}^{k}\left( \frac{1}{x^{4}}
ight)^{10 - k}\left( x^{7} ight)^{k} = C_{10}^{k}x^{11k -
40}.

    Hệ số của x^{26}C_{10}^{k} với k thỏa mãn: 11k - 40 = 26 \Leftrightarrow k = 6.

    Vậy hệ số của x^{26}C_{10}^{6} = 210.

  • Câu 12: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

  • Câu 13: Nhận biết

    Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?

    Số cách chọn sách Toán là 20 cách.

    Số cách chọn sách Vật lí là 40 cách.

    Số cách chọn sách Hóa học là 50 cách.

    Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.

  • Câu 14: Nhận biết

    Cho A = \left\{
1,\ 2,\ 3,\ 4 ight\}. Từ tập hợp này lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau?

    Mỗi số tự nhiên tự nhiên có 4 chữ số khác nhau được lập từ tập A là hoán vị của 4 phần tử.

    Vậy có 4! = 24 số cần tìm.

  • Câu 15: Nhận biết

    Khai triển (x +
3y)^{4} thành đa thức ta được biểu thức gồm mấy số hạng?

    Biểu thức (x + 3y)^{4} khai triển thành đa thức có 5 hạng tử.

  • Câu 16: Thông hiểu

    Biết hệ số của số hạng chứa x^{2} trong khai triển (1 + 4x)^{n}3040. Số tự nhiên n bằng bao nhiêu?

    Ta có: (1 + 4x)^{n} = \sum_{k =
0}^{n}{C_{n}^{k}(4x)^{k}} = \sum_{k =
0}^{n}{C_{n}^{k}4^{k}x^{k}}.

    Hệ số của số hạng chứa x^{2} là: C_{n}^{2}4^{2}.

    Giả thiết suy ra C_{n}^{2}4^{2} = 3040\Leftrightarrow C_{n}^{2} = 190 \Leftrightarrow \frac{n(n - 1)}{2} = 190\Leftrightarrow n^{2} - n - 380 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}n = 20\ \ (t/m) \ = - 19\ (loai) \\\end{matrix} ight.

  • Câu 17: Thông hiểu

    Biết hệ số của x^{3} trong khai triển của {(1 - 3x)^n} là – 270. Giá trị của n là

    Khai triển biểu thức như sau:

    \begin{matrix}  {(1 - 3x)^n} = \sumolimits_{k = 0}^n {C_n^k.{{\left( 1 ight)}^{n - k}}.{{\left( { - 3x} ight)}^k}}  \hfill \\   = \sumolimits_{k = 0}^n {C_n^k.{{\left( { - 3} ight)}^k}.{x^k}}  \hfill \\ \end{matrix}

    Hệ số của x3 trong khai triển bằng -270

    => C_n^3.{\left( { - 3} ight)^3} =  - 270 \Rightarrow n = 5

  • Câu 18: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

  • Câu 19: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 6 chữ số đôi một khác nhau trong đó phải có 1 và 3 đứng cạnh nhau, không kể thứ tự trước sau.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số thỏa yêu cầu bài toán.

    Chọn 2 vị trí cạnh nhau từ 6 vị trí (từ a_{1} ightarrow a_{6}) có: 5 cách.

    Xếp số 1 và 3 vào 2 vị trí vừa chọn có: 2 cách.

    Chọn số cho 4 vị trí từ tập X\backslash\left\{ 1;3 ight\} có: 7.6.5.4 = 840 cách.

    Theo quy tắc nhân có: 5.2.840 =
8400 số.

  • Câu 20: Vận dụng

    Có bao nhiêu số tự nhiên gồm 5 chữ số lớn hơn 4 và đôi một khác nhau?

    Gọi số tự nhiên cần tìm có dạng \overline{abcde}.

    Khi đó: acó 5 cách chọn, bcó 4 cách chọn, ccó 3 cách chọn, dcó 2 cách chọn, ecó 1 cách chọn.

    Nên có tất cả5.4.3.2.1 =
120số.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo