Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện C_{m}^{2}=153 và C_{m}^{n}=C_{m}^{n+2}. Khi đó m + n bằng

    Điều kiện: m,n \in \mathbb{N},m \geqslant 2,0 \leqslant n < m

    Ta có: C_m^n = C_m^{m - n}  

    \begin{matrix}  C_m^n = C_m^{n + 2} \hfill \\   \Leftrightarrow C_m^{m - n} = C_m^{n + 2} \hfill \\   \Rightarrow m - n = n + 2 \hfill \\   \Rightarrow n = \dfrac{{m - 2}}{2} \hfill \\ \end{matrix}

    Mặt khác ta có:

     \begin{matrix}  C_m^2 = 153 \hfill \\   \Leftrightarrow \dfrac{{m\left( {m - 1} ight)\left( {m - 2} ight)!}}{{2!\left( {m - 2} ight)!}} = 153 \hfill \\   \Leftrightarrow m\left( {m - 1} ight) = 306 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 18\left( {tm} ight)} \\   {m =  - 17\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => n=8

    vậy tổng m và n là: 18 + 8 = 26.

     

  • Câu 2: Vận dụng

    Tìm số hạng chứa x^{26} trong khai triển \left( \frac{1}{x^{4}} + x^{7}
ight)^{n}. Cho biết n là số nguyên dương thỏa mãn hệ thức C_{2n +
1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{n} = 2^{20} -
1.

    Từ giả thiết ta suy ra C_{2n + 1}^{0} +
C_{2n + 1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{n} =
2^{20}.

    Mặt khác: C_{2n + 1}^{k} = C_{2n + 1}^{2n
+ 1 - k}\ \ ,\ \forall k\mathbb{\in N},\ 0 \leq k \leq 2n + 1 nên ta có:

    C_{2n + 1}^{0} + C_{2n + 1}^{1} + C_{2n +1}^{2} + ... + C_{2n + 1}^{n}

    = \frac{1}{2}\left( C_{2n + 1}^{0} + C_{2n+ 1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{2n + 1} ight) =\frac{1}{2}(1 + 1)^{2n + 1} = 2^{2n}

    Suy ra: 2^{2n} = 2^{20} \Leftrightarrow n
= 10.

    Số hạng tổng quát trong khai triển \left(
\frac{1}{x^{4}} + x^{7} ight)^{10}là: T_{k + 1} = C_{10}^{k}\left( \frac{1}{x^{4}}
ight)^{10 - k}\left( x^{7} ight)^{k} = C_{10}^{k}x^{11k -
40}.

    Hệ số của x^{26}C_{10}^{k} với k thỏa mãn: 11k - 40 = 26 \Leftrightarrow k = 6.

    Vậy hệ số của x^{26}C_{10}^{6} = 210.

  • Câu 3: Nhận biết

    Khai triển nhị thức (2x + 3)^{4} ta được kết quả là:

     Ta có: (2x + 3)^{4} =16x^{4} + 96x^{3} + 216x^{2} + 216x + 81.

  • Câu 4: Thông hiểu

    Tìm hệ số của x^{3} trong khai triển f(x) = (1 + x)^{3} + (1 + x)^{4} + (1 +
x)^{5} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (1 + x)^{3}x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{4}C_{4}^{3}x^{3} = 4x^{3}

    Số hạng chứa x^{3} trong khai triển (1 + x)^{5}C_{5}^{3}x^{3} = 10x^{3}

    Do đó tổng các số hạng chứa x^{3} trong khai triển đã cho là: x^{3} + 4x^{3} + 10x^{3} = 15x^{3}

    Vậy hệ số cần tìm là 15.

  • Câu 5: Nhận biết

    Khai triển nhị thức Niu-tơn của (3 - 2x)^{2019} có bao nhiêu số hạng?

    Ta có: Khai triển nhị thức Niu-tơn (a +
b)^{n}n + 1 số hạng.

    Vậy trong khai triển nhị thức Niu-tơn của (3 - 2x)^{2019}2020 số hạng.

  • Câu 6: Nhận biết

    Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:

     Số các chỉnh hợp chập k của n phần tử là A_n^k=n(n - 1)(n - 2)...(n - k + 1).

  • Câu 7: Nhận biết

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?

    Đánh số thứ tự các vị trí theo hàng dọc từ 1 đến 6.

    Trường hợp 1. Nam đứng trước, nữ đứng sau.

    Xếp nam (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nữ (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Trường hợp 2. Nữ đứng trước, nam đứng sau.

    Xếp nữ (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nam (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Theo quy tắc cộng ta có. 36 + 36 =
72 cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.

  • Câu 8: Thông hiểu

    Trong phòng thi có hai dãy ghế đối diện nhau qua một cái bàn dài, mỗi dãy gồm 6 ghế. Người ta muốn xếp chỗ ngồi cho 6 nam sinh và 6 nữ sinh vào hai dãy ghế này. Có bao nhiêu cách xếp chỗ ngồi sao cho bất cứ 2 người nào ngồi cạnh nhau cũng đều khác giới và bất cứ 2 người nào ngồi đối diện nhau cũng đều khác giới?

    Giả sử gọi 2 dãy ghế là dãy A và dãy B.

    Dãy A các ghế đánh số từ 1 đến 6, dãy B các ghế đánh số từ 7 đến 12

    Chọn một bạn để xếp vào vị trí ghế số 1 có 12 cách.

    Chọn một bạn để xếp vào vị trí ghế số 7 để khác giới với bạn vị trí ghế số 1 có 6 cách.

    Chọn một bạn để xếp vào vị trí ghế số 2 có 10 cách.

    Chọn một bạn để xếp vào vị trí ghế số 8 để khác giới với bạn vị trí ghế số 1 có 5 cách.

    Cứ tuân theo cách xếp như vậy, ta có số cách xếp là: 12.10.8.6.4.2.6.5.4.3.2 = 33177600

  • Câu 9: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x - 3)^{4} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (x + 2)^{5}C_{5}^{2}.2^{2}.x^{3} = 40x^{3}

    Số hạng chứa x^{3} trong khai triển (x - 3)^{4}C_{4}^{1}.( - 3)^{1}.x^{3} = -
12x^{3}

    Do đó số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x -
3)^{4} đã cho là: 40x^{3} - ( -
12)x^{3} = 52x^{3}

    Vậy số hạng cần tìm là 52x^{3}.

  • Câu 10: Vận dụng

    Cho tập A =
\left\{ 1;2;3;4;5;6;7;8;9 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?

    Gọi \overline{125ab} là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.

    Suy ra b có 3 cách chọn, a có 5 cách chọn \Rightarrow3 \times 5 = 15 số.

    Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A4 \times 8 \times 7 \times 6
\times 5 = 6720 số.

    Suy ra có tất cả 6720 - 15 =
6705 số cần tìm.

  • Câu 11: Nhận biết

    Có sáu quả cầu xanh đánh số từ 1 đến 6, năm quả cầu đỏ đánh số từ 1 đến 5 và bảy quả cầu vàng đánh số từ 1 đến 7. Hỏi có bao nhiêu cách lấy ra ba quả cầu vừa khác màu vừa khác số?

    +) Chọn 1 quả màu đỏ có 5 cách.

    +) Chọn 1 quả màu xanh khác số với quả màu đỏ có 5 cách.

    +) Chọn 1 quả màu vàng khác số với quả màu đỏ và quả màu xanh có 5 cách.

    Vậy số cách lấy ra 3 quả cầu vừa khác màu, vừa khác số là: 5.5.5 = 125.

  • Câu 12: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 13: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 14: Nhận biết

    Có bao nhiêu số tự nhiên gồm 5 chữ số chia hết cho 5?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde} ;\left( {a e 0} ight)

    Do số cần tìm chia hết cho 5 => e \in \left\{ {0;5} ight\} => e có 2 cách chọn.

    a có 9 cách chọn

    b, c, d có 10 cách chọn

    => Số các số tạo thành là: 2.9.10.10.10 = 18 000 số.

  • Câu 15: Vận dụng

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 23.

    Số các số tự nhiên lớn nhất nhỏ hơn 100 chia hết cho 2396.

    Số các số tự nhiên nhỏ nhất nhỏ hơn 100 chia hết cho 230.

    Số các số tự nhiên nhỏ hơn 100 chia hết cho 23\frac{96
- 0}{6} + 1 = 17.

  • Câu 16: Thông hiểu

    Cho tập hợp các chữ số C = \left\{ 1,2,3,4,5 ight\}. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau là:

    Mỗi số tự nhiên có 5 chữ số khác nhau được lập từ tập hợp C là một hoán vị của 5.

    Suy ra có thể lập được 5! = 120 số thỏa mãn yêu cầu đề bài.

  • Câu 17: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 18: Nhận biết

    Xếp 3 quyển sách Toán, 4 sách Lý, 2 sách Hóa và 5 sách Sinh vào một kệ sách. Tất cả các quyển sách đều khác nhau. Hỏi có bao nhiêu cách sắp xếp một cách tùy ý?

    Trên kệ có tất cả 14 quyển sách khác nhau, số cách sắp xếp 14 quyển sách đó là 14!.

  • Câu 19: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 20: Thông hiểu

    Cho tập hợp C =
\left\{ 1;3;5;7 ight\} có thể lập được bao nhiêu số tự nhiên có 4 chữ số?

    Gọi số tự nhiên có 4 chữ số cần tìm là \overline{abcd},(a eq 0).

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 4 cách

    Vậy số các số tự nhiên có 4 chữ số có thể lập được là 4^{4} = 256.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo