Cho tập hợp
. Số tập con gồm 3 phần tử của
sao cho không có số
là:
Mỗi tập con gồm 3 phần tử của không có số
là tổ hợp chập 3 của 9 phần tử.
Số tập con gồm 3 phần tử của không có số
là.
.
Cho tập hợp
. Số tập con gồm 3 phần tử của
sao cho không có số
là:
Mỗi tập con gồm 3 phần tử của không có số
là tổ hợp chập 3 của 9 phần tử.
Số tập con gồm 3 phần tử của không có số
là.
.
Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra một học sinh đi dự trại hè của trường. Hỏi có bao nhiêu cách chọn?
Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:
Bước 2: Đếm số cách chọn.
* Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.
* Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.
Bước 3: Áp dụng quy tắc cộng.
Vậy có 20 + 25 = 45 cách chọn.
Cho tập hợp E ={0; 1; 2; 3; 4; 5; 6; 7}. Có thể lập bao nhiêu số gồm 5 chữ số khác nhau đôi một lấy từ E trong đó một trong ba chữ số đầu tiên bằng 1?
Gọi số cần tìm là
Trường hợp 1: a = 1.
Chọn b: 7 cách.
Chọn c: 6 cách.
Chọn d: 5 cách.
Chọn e: 4 cách.
⇒ Theo Quy tắc nhân có: 7.6.5.4 840 = số.
Trường hợp 2: b =1.
Chọn a: 6 cách.
Chọn c: 6 cách.
Chọn d: 5 cách.
Chọn e: 4 cách.
⇒ Theo quy tắc nhân có: 6.6.5.4 720 = số.
Trường hợp 3: c =1.
Chọn a: 6 cách.
Chọn b: 6 cách.
Chọn d: 5 cách.
Chọn e: 4 cách.
⇒ Theo quy tắc nhân có: số.
⇒ Theo quy tắc cộng có tất cả số
Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?
Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.
Có bao nhiêu cách xếp 8 người vào một bàn tròn?
Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! cách xếp.
Vậy có 1.7! = 5040 cách xếp
Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?
+TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
+TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là . Vậy số cách lập nhóm trong trường hợp này là.
.
Vậy số cách lập cần tìm là. .
Có tất cả bao nhiêu số hạng trong khai triển nhị thức Newton của
?
Khi viết nhị thức dưới dạng khai triển
số hạng.
Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?
Số cách chọn một quyển sách là 8 cách.
Số cách chọn một cái bút là 10 cách.
=> Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách.
Biết rằng khai triển nhị thức Newton
có tất cả 6 số hạng. Hãy xác định
?
Vì trong khai triển nhị thức Newton đã cho có tất cả 6 số hạng nên
Vậy n = 5 là giá trị cần tìm.
Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có
sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở
vị trí khác nhau. Yêu cầu mỗi vị trí có đúng
sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho
người đó?
Mỗi cách xếp sinh viên vào
vị trí thỏa đề là một hoán vị của
phần tử.
Suy ra số cách xếp là cách.
Số các số tự nhiên gồm
chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số 1 xếp kề nhau?
Gọi 11111 là số a.
Vậy ta cần sắp các số a, 2, 3, 4, 5.
⇒ Số cách sắp xếp số thỏa mãn là: 1.2.3.4.5 = 120 (số).
Cho khai triển
. Tìm hệ số
biết rằng ![]()
Ta có . Vậy
;
;
.
Theo bài ra nên ta có:
(thỏa mãn) hoặc
(loại).
Từ đó ta có .
Cho tập hợp
gồm
phần tử. Số các hoán vị của
phần tử của tập hợp
là bao nhiêu?
Số các hoán vị của phần tử:
.
Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau trong mỗi hàng dọc cũng như trong mỗi hàng ngang?
Giả sử 4 hàng dọc được kí hiệu là
Mỗi hàng các vị trí lại được kí hiệu từ 1 đến 10
Theo yêu cầu bài toán thì:
Các bạn trường A được xếp ở D1 ghi số chẵn, D2 ghi số lẽ, D3 ghi số chẵn, D4 ghi số lẽ.
Các bạn trường B ở các vị trí còn lại hoặc ngược lại.
Nên số cách xếp là cách.
Từ các số
lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chia hết cho 5?
Vì chia hết cho 5 nên
chỉ có thể là 5
có 1 cách chọn d.
Có 6 cách , 5 cách chọn b và 4 cách chọn c.
Vậy có số thỏa yêu cầu bài toán.
Cho khai triển
. Giá trị của
bằng:
.
Thay vào
ta có:
.
Tổng hệ số của
và
trong khai triển
là:
Ta có: .
Tổng hệ số của và
bằng
.
Cho tập
. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Tìm hệ số
của số hạng chứa
trong khai triển
.
Ta có:
Ta có: , suy ra
Vậy hệ số của số hạng chứa
trong khai triển
là