Cho tập hợp
có
phần tử. Số tập con gồm hai phần từ của
là:
Mỗi cách lấy ra phần tử trong
phần tử của
để tạo thành tập con gồm
phần tử là một tổ hợp chập
của
phần tử
Số tập con của
gồm
phần tử là
.
Cho tập hợp
có
phần tử. Số tập con gồm hai phần từ của
là:
Mỗi cách lấy ra phần tử trong
phần tử của
để tạo thành tập con gồm
phần tử là một tổ hợp chập
của
phần tử
Số tập con của
gồm
phần tử là
.
Biết rằng khai triển nhị thức Newton
có tất cả 6 số hạng. Hãy xác định
?
Vì trong khai triển nhị thức Newton đã cho có tất cả 6 số hạng nên
Vậy n = 5 là giá trị cần tìm.
Khai triển nhị thức newton của
thành đa thức thì có tất cả bao nhiêu số hạng có hệ số nguyên dương?
Để hệ số nguyên dương thì ,do
nên ta có
vậy t=0,1,2….672 nên có 673 giá trị.
Mỗi khi thực hiện giao dịch qua app thanh toán tiền, ngân hàng sẽ gửi một mã xác thực (OTP – One Time Password) gồm 6 chữ số từ 0 đến 9. Hỏi có thể có bao nhiêu mã OTP?
Mỗi mã xác thực gồm 6 chữ số được tạo thành từ các số từ 0 đến 9
=> Với mỗi chữ số trong mã xác thực sẽ có 10 cách chọn
=> Số mã xác thực có thể tạo thành là: mã.
Tìm hệ số của
trong khai triển nhị thức Newton của
?
Số hạng tổng quát là:
Hệ số của tìm được khi
Vậy hệ số của trong khai triển là
.
Từ các chữ số 6; 7; 8; 9. có thể lập được bao nhiêu chữ số tự nhiên có 3 chữ số.
Gọi số cần lập có dạng .
A: có 4 cách chọn.
B: có 4 cách chọn.
C: có 4 cách chọn.
Vậy có 4.4.4 = 64 (số) tự nhiên có 3 chữ số.
Cho tập
. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.
Vì lẻ và không chia hết cho 5 nên
có 3 cách chọn
Số các chọn các chữ số còn lại là:
Vậy số thỏa yêu cầu bài toán.
Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?
Gọi số in trên vé có dạng
Số cách chọn là 10 (
có thể là 0).
Số cách chọn là 9.
Số cách chọn là 8.
Số cách chọn là 7.
Số cách chọn là 6.
Do đó có 10.9.8.7.6 = 23460 (số).
Cho
là số thực dương, số hạng không chứa
trong khai triển nhị thức
là:
Ta có
Số hạng tổng quát thứ trong khai triển là
.
Số hạng này không chứa tương ứng với trường hợp
.
Vậy số hạng không chứa trong khai triển là
.
Hệ số của số hạng chứa
trong khai triển Newton
là:
Số hạng tổng quát của khái triển
Số của số hạng chứa :
. Hệ số của số hạng chứa
.
Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:
Khi đó công việc có thể được thực hiện bằng (cách) (theo quy tắc nhân)
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam đứng cạnh nhau và nữ đứng cạnh nhau:
Trường hợp 1: Nữ đứng trước
Có 6 vị trí để xếp, vì nam đứng cạnh nhau và nữ đứng cạnh nhau nên nữ sẽ đứng vị trí số 1, 2, 3 còn nam đứng vị trí số 4, 5, 6
Sắp xếp học sinh nữ vào vị trí 1, 2, 3
Vị trí số 1 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nữ)
Vị trí số 2 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nữ còn lại)
Vị trí số 3 có 1 cách chọn (vì chỉ còn 1 bạn nữ để chọn)
Có 6 vị trí để xếp, vì nam nữ đứng xen kẽ nên nữ sẽ đứng vị trí số 1, 3, 5 còn nam đứng vị trí số 2, 4, 6.
Sắp xếp học sinh nam vào vị trí 4, 5, 6
Vị trí số 4 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nam)
Vị trí số 5 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nam còn lại)
Vị trí số 6 có 1 cách chọn (vì chỉ còn 1 bạn nam để chọn)
Trường hợp 1 có 3.2.1.3.2.1 = 36 (cách xếp)
Trường hợp 2: Nam đứng trước
Tương tự như trường hợp 1, trường hợp 2 có 36 (cách xếp)
Vậy áp dụng quy tắc cộng ta có cả hai trường hợp có 36 + 36 = 72 (cách xếp).
Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?
TH1: Chọn 7 người 18 người không là cặp vợ chồng:
TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng:
TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng:
Vậy số cách chọn thỏa mãn là: cách
Cho tập hợp
. Số tập con gồm 3 phần tử của
sao cho không có số
là:
Mỗi tập con gồm 3 phần tử của không có số
là tổ hợp chập 3 của 9 phần tử.
Số tập con gồm 3 phần tử của không có số
là.
.
Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
Số cách chọn 2 nam đứng ở đầu và cuối là. . Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là
. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là.
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. .
Cho đa giác n cạnh. Tìm n để đa giác có số đường chéo gấp đôi số cạnh.
Đa giác n cạnh có n đỉnh.
Mỗi đỉnh nối với đỉnh khác để tạo ra đường chéo
Do đó n đỉnh sẽ có đường
Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là:
Theo bài ra ta có:
Vậy .
Số cách xếp 5 học sinh
vào một ghế dài sao cho bạn
ngồi chính giữa là:
Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp
Trong balo của học sinh A có 8 bút chì khác, 6 bút bi và 10 quyển vở. Số cách chọn một đồ vật trong balo là:
Áp dụng quy tắc cộng, số cách chọn một đồ vật trong balo là: 8 + 6 + 10 = 24 cách.
Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?
Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là .
Trường hợp này có 2!.6 số.
Chữ số cuối bằng 2 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 4 ta có các bộ , hoán vị được
số.
Chữ số cuối bằng 8 ta có các bộ , hoán vị được
số.
Kết hợp lại ta có 35 số.
Tìm số hạng không chứa
trong khai triển
biết
.
Ta có:
.
Suy ra số hạng tổng quát trong khai triển: .
Tìm .
Vậy hệ số của số hạng không chứa trong khai triển là:
.