Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Có tất cả bao nhiêu cách xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách?

    Mỗi cách sắp xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của 6 phần tử. Vậy số cách sáp xếp là 6!.

  • Câu 2: Thông hiểu

    Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton (x +
1)^{5}?

    Để có tổng các hệ số ta thay x =
1 ta được: (1 + 1)^{2} = 2^{5} =
32

  • Câu 3: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5 ight\}. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 2 suy ra e = \left\{ 0;2;4 ight\}.

    TH1. Với e = 0, khi đó 5 \times 4 \times 3 \times 2 =
120 số.

    TH2. Với e = \left\{ 2;4
ight\}, khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn

    d.

    Suy ra có 4 \times 4 \times 3 \times 2
\times 2 = 192 số. Vậy có tất cả 120 + 192 = 312 số cần tìm.

  • Câu 4: Nhận biết

    Một lớp học có 25 học sinh nam và 20 học sinh nữ. Giáo viên chủ nhiệm muốn chọn ra một học sinh đi dự trại hè của trường. Hỏi có bao nhiêu cách chọn?

    Bước 1: Với bài toán a thì ta thấy cô giáo có thể có hai phương án để chọn học sinh đi thi:

    Bước 2: Đếm số cách chọn.

    * Phương án 1: chọn 1 học sinh đi dự trại hè của trường thì có 25 cách chọn.

    * Phương án 2: chọn học sinh nữ đi dự trại hè của trường thì có 20 cách chọn.

    Bước 3: Áp dụng quy tắc cộng.

    Vậy có 20 + 25 = 45 cách chọn.

  • Câu 5: Nhận biết

    Cho tập hợp M = {a; b; c}. Số hoán vị của ba phần tử của M là:

     Số hoán vị của ba phần tử của M là: 3! = 6.

  • Câu 6: Nhận biết

    Tìm hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}, (biết x eq 0).

    Số hạng tổng quát trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}.

    T_{k + 1} = C_{13}^{k}x^{13 - k}\left(
\frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - 2k}.

    T_{k + 1} chứa x^{7} \Leftrightarrow 13 - 2k = 7 \Leftrightarrow
k = 3.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x +
\frac{1}{x} ight)^{13} bằng: C_{13}^{3} = 286.

  • Câu 7: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 8: Nhận biết

    Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?

    Mỗi tập con có 8 phần tử của tập hợp E là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp E là. C_{10}^{8} = 45.

  • Câu 9: Vận dụng

    Cho n là số nguyên dương thỏa mãn A_{n}^{2} =
C_{n}^{2} + C_{n}^{1} + 4n + 6. Tìm hệ số của số hạng chứa x^{9} của khai triển biểu thức P(x) = \left( x^{2} + \frac{3}{x}
ight)^{n}.

    A_{n}^{2} = C_{n}^{2} + C_{n}^{1} + 4n +
6 \Leftrightarrow \frac{n!}{(n - 2)!} = \frac{n!}{(n - 2)!.2!} +
\frac{n!}{(n - 1)!.1!} + 4n + 6

    \Leftrightarrow n(n - 1) = \frac{n(n -
1)}{2} + n + 4n + 6 \Leftrightarrow n^{2} - 11n - 12 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = - 1\ (l) \\
n = 12\ (n) \\
\end{matrix} ight..

    Khi đó P(x) = \left( x^{2} + \frac{3}{x}
ight)^{12}.

    Công thức số hạng tổng quát: T_{k + 1} =
C_{12}^{k}.\left( x^{2} ight)^{12 - k}.\left( \frac{3}{x} ight)^{k}
= C_{12}^{k}.3^{k}.x^{24 - 3k}.

    Số hạng chứa x^{9} \Rightarrow 24 - 3k =
9 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{9} trong khai triển là C_{12}^{5}.3^{5} =
192456.

  • Câu 10: Thông hiểu

    Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Lý và 3 cuốn sách Hóa. Thầy muốn lấy ra 5 cuốn và tặng cho 5 học sinh A, B, C, D, E mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng nếu có ít nhất một cuốn sách Toán được tặng.

    Số cách lấy 5 cuốn sách trong tổng số 10 cuốn sách ở ba thể loại để tặng cho 5 học sinh là A_{10}^{5} (cách)

    Số cách lấy 5 cuốn sách để chia cho 5 học sinh trong đó không có cuốn sách Toán nào là A_{6}^{5} (cách).

    Vậy số cách lấy 5 cuốn sách thỏa ycbt là: A_{10}^{5} - A_{6}^{5} = 29520 cách.

  • Câu 11: Nhận biết

    Trong khai triển nhị thức Newton (3x - 2)^{5}, hệ số của số hạng chứa x^{3} bằng:

    Hệ số của số hạng chứa x^{3} trong khai triển (3x - 2)^{5} là: C_{5}^{3}.3^{3}.( - 2)^{2} =
1080.

  • Câu 12: Nhận biết

    Khai triển (x +
3y)^{4} thành đa thức ta được biểu thức gồm mấy số hạng?

    Biểu thức (x + 3y)^{4} khai triển thành đa thức có 5 hạng tử.

  • Câu 13: Nhận biết

    Một tổ có 5 học sinh nữ và 6 học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên hai học sinh của tổ đó đi trực nhật biết cần có cả nam và nữ.

    Chọn một học sinh nữ có 5 cách.

    Chọn một học sinh nam có 6 cách.

    Áp dụng quy tắc nhân, có 5.6 = 30 cách chọn hai học sinh có cả nam và nữ.

  • Câu 14: Thông hiểu

    Cho tập hợp E ={0; 1; 2; 3; 4; 5; 6; 7}. Có thể lập bao nhiêu số gồm 5 chữ số khác nhau đôi một lấy từ E trong đó một trong ba chữ số đầu tiên bằng 1?

    Gọi số cần tìm là \overline{abcde}

    Trường hợp 1: a = 1.

    Chọn b: 7 cách.

    Chọn c: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo Quy tắc nhân có: 7.6.5.4 840 = số.

    Trường hợp 2: b =1.

    Chọn a: 6 cách.

    Chọn c: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo quy tắc nhân có: 6.6.5.4 720 = số.

    Trường hợp 3: c =1.

    Chọn a: 6 cách.

    Chọn b: 6 cách.

    Chọn d: 5 cách.

    Chọn e: 4 cách.

    ⇒ Theo quy tắc nhân có: 6.6.5.4 =720 số.

    ⇒ Theo quy tắc cộng có tất cả 840 + 720 +720 = 2280 số

  • Câu 15: Thông hiểu

    Trong khai triển \left( 3x^{2} + \frac{1}{x}
ight)^{n}biết hệ số của x^{3}3^{4}C_{n}^{5}. Giá trị n có thể nhận là:

    Ta có \left( 3x^{2} + \frac{1}{x}
ight)^{n} = \sum_{k = 0}^{n}{C_{n}^{k}\left( 3x^{2} ight)^{n -
k}\left( \frac{1}{x} ight)^{k}} = \sum_{k = 0}^{n}{C_{n}^{k}3^{n -
k}x^{2n - 3k}}.

    Biết hệ số của x^{3}3^{4}C_{n}^{5} nên \left\{ \begin{matrix}
2n - 3k = 3 \\
n - k = 4 \\
k = 5 \\
0 \leq k \leq n,(k,n \in N) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = 5 \\
n = 9 \\
\end{matrix} ight..

  • Câu 16: Vận dụng

    Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chia hết cho 5?

    x chia hết cho 5 nên d chỉ có thể là 5 \Rightarrow có 1 cách chọn d.

    Có 6 cách , 5 cách chọn b và 4 cách chọn c.

    Vậy có 1.6.5.4 = 120 số thỏa yêu cầu bài toán.

  • Câu 17: Thông hiểu

    Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn?

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 4 cách chọn (2,4,6,8)

    B: có 5 cách chọn (0,2,4,6,8)

    C: có 5 cách chọn (0,2,4,6,8)

    Vậy có 4.5.5 = 100 (số) có 3 chữ số và cả 3 chữ số đều chẵn.

     

  • Câu 18: Thông hiểu

    Từ 6 chữ số 1,2,3,4,5,6 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau trong đó nhất thiết phải có mặt chữ số 1 và 2?

    Gọi số cần tìm có dạng \overline{abcde}

    Số cách sắp xếp số 1; 2 vào 5 vị trí ta có: A_{5}^{2} cách

    3 vị trí còn lại có A_{4}^{3} cách

    Vậy số cần thành lập là: A_{5}^{2}.A_{4}^{3} = 480 số.

  • Câu 19: Vận dụng

    Cho đa giác đều A_{1}A_{2}...A_{2n} nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n đỉnh của đa giác. Tìm n.

    Số tam giác có 3 đỉnh là 3 trong 2n điểm A_{1};A_{2};...;A_{2n}C_{2n}^{3}

    Ứng với 2 đường chéo đi qua tâm của đa giác đều A_{1};A_{2};...;A_{2n} cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm A_{1};A_{2};...;A_{2n}

    Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.

    Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là C_{n}^{2}

    Theo giả thiết ta có:

    C_{2n}^{3} = 20C_{n}^{2} \Leftrightarrow
\frac{(2n)!}{3!(2n - 3)!} = 20.\frac{n!}{n!(n - 2)!}

    \Leftrightarrow \frac{2n(2n - 1)(2n -
2)}{6} = 10n(n - 1)

    \Leftrightarrow 4n^{3} - 36n^{2} + 32n =
0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0(L) \\
n = 1(L) \\
n = 8(tm) \\
\end{matrix} ight.

    Vậy n = 8.

  • Câu 20: Vận dụng

    Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).

    Thứ 2: có 12 cách chọn bạn đi thăm

    Thứ 3: có 12 cách chọn bạn đi thăm

    Thứ 4: có 12 cách chọn bạn đi thăm

    Thứ 5: có 12 cách chọn bạn đi thăm

    Thứ 6: có 12 cách chọn bạn đi thăm

    Thứ 7: có 12 cách chọn bạn đi thăm

    Chủ nhật: có 12 cách chọn bạn đi thăm

    Vậy theo quy tắc nhân, có 12^{7} =
35831808 (kế hoạch).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo