Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 2: Nhận biết

    Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.

    Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử 

    => Số cách chọn là: A_{10}^2 = 90 (cách)

  • Câu 3: Thông hiểu

    Từ 6 chữ số 0;1;2;3;4;5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau sao cho chữ số 2 vs 3 đứng cạnh nhau.

    Gọi số cần tìm có dạng \overline{abcdef};(a eq 0) với a,b,c \in \left\{ 2;4;6;8 ight\}.

    Vì 2 và 3 đứng cạnh nhau ta gộp 2 và 3 thành 1 số \overline{23} hoặc \overline{32} thành 1 vị trí

    Do đó ta còn lại 5 vị trí \overline{abcde}

    Từ 5 chữ số trên ta lập được 5! số khác nhau có dạng \overline{abcde}

    Cho a = 0 ta lập được 4! các số dạng \overline{0bcde}

    Nên sẽ có 5! – 4! = 96 số có 5 chữ số khác nhau.

    Mặt khác ta gộp 2 và 3 thành 1 số \overline{23} hoặc \overline{32} thành 1 vị trí nên ta sẽ có số các số cần tìm là: 96.2 = 192 số thỏa mãn đề bài.

  • Câu 4: Nhận biết

    Bạn Anh muốn qua nhà bạn Bình để rủ Bình đến nhà bạn Châu chơi. Từ nhà Anh đến nhà Bình có 3con đường. Từ nhà Bình đến nhà Châu có 5con đường. Hỏi bạn Anh có bao nhiêu cách chọn đường đi từ nhà mình đến nhà bạn Châu.

    Từ nhà Anh đến nhà Bình có 3 cách chọn 1 con đường.

    Từ nhà bạn Bình đến nhà Châu có 5 cách chọn 1 con đường.

    Theo quy tắc nhân, số cách chọn đường đi từ nhà Anh đến nhà Châu là 5.3 = 15.

  • Câu 5: Vận dụng

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

    Nếu chữ số hàng chục là n thì số có chữ số hàng đơn vị là n - 1 thì số các chữ số nhỏ hơn n năm ở hàng đơn vị cũng bằng n. Do chữ số hang chục lớn hơn bằng 1 còn chữ số hang đơn vị thi \geq.

    Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:

    1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 =
45.

  • Câu 6: Vận dụng

    Tính tổng các chữ số gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5?

    Có 120 số có 5 chữ số được lập từ 5 chữ số đã cho.

    Bây giờ ta xét vị trí của một chữ số trong 5 số 1, 2, 3, 4, 5 chẳng hạn ta xét số 1. Số 1 có thể xếp ở 5 vị trí khác nhau, mỗi vị trí có 4!=24 số nên khi ta nhóm các các vị trí này lại có tổng là : 24\left( 10^{4} + 10^{3} + 10^{2} + 10 + 1 ight)
= 24.11111.

    Vậy tổng các số có 5 chữ số là : 24.11111(1 + 2 + 3 + 4 + 5) =
3999960.

  • Câu 7: Thông hiểu

    Từ tập hợp các chữ số A = \left\{ 1,2,3,4,5,6 ight\} có thể lập được bao nhiêu số có ba chữ số khác nhau thuộc khoảng (300;500)?

    Gọi số tự nhiên có ba chữ số cần tìm có dạng \overline{abc};(a eq 0)

    Số cần tìm thuộc khoảng (300;500) nên a \in \left\{ 3;4 ight\}=> a có 2 cách chọn.

    Số cách chọn b là 5 cách chọn

    Số cách chọn c là 4 cách chọn

    Vậy có thể lập được 2.5.4 =
40(số) thỏa mãn yêu cầu đề bài.

  • Câu 8: Thông hiểu

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n > 800 và gồm các chữ số đôi một khác nhau.

    Trường hợp 1: n gồm ba chữ số.

    Gọi n = \overline{abc}.

    Để n > 800 và gồm các chữ số đôi một khác nhau thì

    a có 2 lựa chọn là \left\{ 8;9
ight\}

    b có 4 lựa chọn vì phải khác a

    c có 3 lựa chọn vì phải khác a; b

    Vậy có 2.4.3 = 24 số.

    Trường hợp 2: n gồm bốn chữ số. Thỏa mãn n > 800.

    Để n gồm các chữ số đôi một khác nhau thì có A_{5}^{4} = 120 thỏa mãn.

    Trường hợp 3: n gồm năm chữ số. Thỏa mãn n > 800.

    Để n gồm các chữ số đôi một khác nhau thì có A_{5}^{4} = 120 thỏa mãn.

    Vậy có 120 + 120 + 24 = 264 số n thỏa mãn yêu cầu bài toán.

  • Câu 9: Vận dụng

    Với n là số nguyên dương thỏa mãn C_{n}^{1}+C_{n}^{2}=10 , hệ số của x^{5} trong khai triển của biểu thức bằng (x^{3}+\frac{2}{x})^{n}.

     Giải phương trình C_{n}^{1}+C_{n}^{2}=10

    Điều kiện n \ge2.

    Ta có: C_n^1 + C_n^2 = 10 \Leftrightarrow \frac{{n!}}{{1!(n - 1)!}} + \frac{{n!}}{{2!(n - 2)!}} = 10\Leftrightarrow n + \frac{1}{2}n(n - 1) = 10 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 4}\\{n =  - 5}\end{array}} ight..

    Vậy n=4.

    Ta có: (x^{3}+\frac{2}{x})^{4} =\frac{{{x^{16}} + 8{x^{12}} + 24{x^8} + 32{x^4} + 16}}{{{x^4}}}= {x^{12}} + 8{x^8} + 24{x^4} + 32 + \frac{{16}}{{{x^4}}}.

    Hệ số của x^5 trong khai triển bằng 0.

  • Câu 10: Nhận biết

    Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?

     Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).

  • Câu 11: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 12: Vận dụng

    Quan sát mạch điện như sau:

    Mạch điện có 6 công tắc khác nhau, trong đó mỗi công tắc có 2 trạng thái đóng và mở. Hỏi có bao nhiêu cách đóng mở 6 công tắc để mạch điện thông mạch từ E đến F?

    Cả 3 công tắc của nhánh trên đóng còn 1 trong 3 công tắc của nhánh dưới mở có: C_{3}^{1} = 3

    Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có: C_{3}^{2} = 3

    Cả 3 công tắc của nhánh trên đóng còn 3 công tắc của nhánh dưới mở có: C_{3}^{3} = 1

    Cả 3 công tắc của nhánh dưới đóng còn 1 trong 3 công tắc của nhánh trên mở có: Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có: C_{3}^{1} = 3

    Cả 3 công tắc của nhánh dưới đóng còn 3 công tắc nhánh trên mở có: C_{3}^{3} = 1

    Cả 3 công tắc của nhánh trên đóng và cả 3 công tắc nhánh dưới đóng có: 1

    Vậy có tất cả 15 cách.

  • Câu 13: Nhận biết

    Tìm hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}, (biết x eq 0).

    Số hạng tổng quát trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}.

    T_{k + 1} = C_{13}^{k}x^{13 - k}\left(
\frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - 2k}.

    T_{k + 1} chứa x^{7} \Leftrightarrow 13 - 2k = 7 \Leftrightarrow
k = 3.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x +
\frac{1}{x} ight)^{13} bằng: C_{13}^{3} = 286.

  • Câu 14: Nhận biết

    Tìm hệ số h của số hạng chứa x^{5} trong khai triển \left( x^{2} + \frac{2}{x}
ight)^{7}.

    Ta có: \left( x^{2} + \frac{2}{x}
ight)^{7} = {\sum_{k = 0}^{7}{C_{7}^{k}\left( x^{2} ight)^{k}\left(
\frac{2}{x} ight)}}^{7 - k} = \sum_{k = 0}^{7}{C_{7}^{k}.2^{7 -
k}.x^{3k - 7}}

    Ta có: 3k - 7 = 5, suy ra k = 4.

    Vậy hệ số h của số hạng chứa x^{5} trong khai triển\left( x^{2} + \frac{2}{x} ight)^{7}h = C_{7}^{4}.2^{3} = 280.

  • Câu 15: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?

    Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ

    TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có: 4.6! + 5.5! = 3480

    TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có: A_{5}^{4}.4.4.4 + A_{5}^{4}.6.A_{5}^{3} =
22080

    TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có: A_{5}^{3}.3.4.A_{4}^{2} + A_{5}^{3}.A_{5}^{3} =
12240

    Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: 3480 +
22080 + 12240 = 37800 (số).

  • Câu 16: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

  • Câu 17: Thông hiểu

    Tổng hệ số của x^{3}x^{2} trong khai triển (1 + 2x)^{4} là:

     Ta có: (1+2x)^4=16{x^4} + 32{x^3} + 24{x^2} + 8x + 1.

    Tổng hệ số của x^3x^2 bằng 32+24=56.

  • Câu 18: Thông hiểu

    Số các số có 6 chữ số khác nhau không bắt đầu bởi 12 được lập từ 1;\ \ 2;\ \ 3;\ \ 4;\ \ 5;\ \ 6 là:

    Lập số tự nhiên có 6 chữ số khác nhau, ta tìm được: 6! số.

    Lập số tự nhiên có 6 chữ số khác nhau nhưng bắt đầu bằng 12, ta tìm được: 4! số.

    Vậy số các số có 6 chữ số khác nhau không bắt đầu bởi 126! - 4! = 696 số.

  • Câu 19: Nhận biết

    Giả sử bạn muốn màu áo sơ mi cỡ 39 hoặc 40. Áo cỡ 39 có 5 màu khác nhau, áo cỡ 40 có 4 màu khác nhau. Hỏi bạn có bao nhiêu sự lựa chọn (về màu và cỡ áo)?

    Áo cỡ 39 có 5 cách chọn

    Áo cỡ 40 có 4 cách chọn

    Vậy có tất cả 5 + 4 = 9cách chọn về màu và cỡ áo.

  • Câu 20: Thông hiểu

    Tìm hệ số của x^{25}y^{10} trong khai triển \left( x^{3} + xy ight)^{15}.

    Số hạng tổng quát của khai triển đã cho là C_{15}^{k}.\left( x^{3} ight)^{15 - k}.(xy)^{k}
= C_{15}^{k}.x^{45 - 2k}.y^{k},

    với 0 \leq k \leq 15, k \in \mathbb{N}. Số hạng này chứa x^{25}y^{10} khi và chỉ khi k = 10 (thỏa mãn).

    Vậy hệ số của x^{25}y^{10} trong khai triển \left( x^{3} + xy
ight)^{15}là C_{15}^{10} =
3003..

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo