Số hạng thứ
trong khai triển
bằng?
Ta có
Số hạng thứ trong khai triển tương ứng với
.
.
Số hạng thứ
trong khai triển
bằng?
Ta có
Số hạng thứ trong khai triển tương ứng với
.
.
Cho
là số tự nhiên thỏa mãn
. Tìm hệ số của
trong khai triển
.
Ta có
.
Xét khai triển
Tìm hệ số của tìm
thỏa mãn
.
Vậy hệ số của trong khai triển
là
.
Cho tập
. Từ các phần tử của tập A có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn?
Vì trong 6 chữ số khác nhau không có hai chữ số nào cùng chẵn nên có ít nhất 3 chữ số lẻ
TH1: Chọn 1 chữ số chẵn và 5 chữ số lẻ có:
TH2: Chọn 2 chữ số chẵn và 4 chữ số lẻ có:
TH3: Chọn 3 chữ số chẵn và 3 chữ số lẻ có:
Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau và không có hai chữ số liên tiếp nào cùng chẵn là: (số).
Cho tập hợp E ={0; 1; 2; 3; 4; 5; 6; 7}. Có thể lập bao nhiêu số gồm 5 chữ số khác nhau đôi một lấy từ E trong đó một trong ba chữ số đầu tiên bằng 1?
Gọi số cần tìm là
Trường hợp 1: a = 1.
Chọn b: 7 cách.
Chọn c: 6 cách.
Chọn d: 5 cách.
Chọn e: 4 cách.
⇒ Theo Quy tắc nhân có: 7.6.5.4 840 = số.
Trường hợp 2: b =1.
Chọn a: 6 cách.
Chọn c: 6 cách.
Chọn d: 5 cách.
Chọn e: 4 cách.
⇒ Theo quy tắc nhân có: 6.6.5.4 720 = số.
Trường hợp 3: c =1.
Chọn a: 6 cách.
Chọn b: 6 cách.
Chọn d: 5 cách.
Chọn e: 4 cách.
⇒ Theo quy tắc nhân có: số.
⇒ Theo quy tắc cộng có tất cả số
Tìm số hạng chứa
trong khai triển
biết
là số tự nhiên thỏa mãn
.
Điều kiện : .
Ta có
. Đối chiếu điều kiện ta được
.
Số hạng tổng quát của khai triển là :
Số hạng này chứa ứng với
.
Vậy hệ số của số hạng đó là .
Trong khai triển nhị thức
(
). Có tất cả 6 số hạng. Vậy n bằng:
Khai triển có 6 hạng tử
=>
Một nhóm học sinh có 5 nam và 3 nữ. Hỏi có bao nhiêu cách sắp xếp các học sinh thành hàng dọc sao cho các bạn học sinh nam đứng liền nhau và các học sinh nữ đứng liền nhau?
Để xếp 8 học sinh đã cho thành hàng dọc sao cho các học sinh nam đứng liền nhau và các học sinh nữ đứng liền nhau ta thực hiện các bước:
Bước 1: Xếp vị trí cho nam và nữ: có 2 cách (5 nam đứng đầu hàng, 3 nữ đứng cuối hàng hoặc 5 nam đứng cuối hàng, 3 nữ đầu hàng).
Bước 2: Xếp chỗ cho 5 nam vào 5 vị trí có 5! cách.
Bước 3: Xếp chỗ cho 3 nữ vào 3 vị trí có 3! cách.
Áp dụng quy tắc nhân ta có: (cách).
Có bao nhiêu số tự nhiên nhỏ hơn
chia hết cho
và
.
Số các số tự nhiên lớn nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ nhất nhỏ hơn chia hết cho
và
là
.
Số các số tự nhiên nhỏ hơn chia hết cho
và
là
.
Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ?
Mỗi cách xếp 10 học sinh thành một hàng ngang là một hoán vị của tập hợp có 10 phần tử.
Suy ra số cách sắp xếp là .
Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?
Gọi số cần tìm có dạng . Vì
chia hết cho 10 suy ra
.
TH1. Với , ta có
+ Nếu suy ra
, do đó có 2 số cần tìm.
+ Nếu suy ra
và
, do đó có 14 số cần tìm.
TH2. Với suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn
C.
Suy ra có số cần tìm. Vậy có tất cả 114 số cần tìm.
Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa và 3 chuyến máy bay. Hỏi một ngày có bao nhiêu cách lựa chọn đi từ tỉnh A đến tỉnh B?
Trường hợp 1: Số cách chọn đi từ tỉnh A đến tỉnh B bằng ô tô: có 10 cách.
Trường hợp 2: Số cách chọn đi từ tỉnh A đến tỉnh B bằng tàu hỏa: có 5 cách.
Trường hợp 3: Số cách chọn đi từ tỉnh A đến tỉnh B bằng máy bay: có 3 cách.
Vậy số cách lựa chọn đi từ tỉnh A đến tỉnh B là: cách
Khai triển
thành đa thức ta được biểu thức gồm mấy số hạng?
Biểu thức khai triển thành đa thức có 5 hạng tử.
Số cách xếp 5 học sinh ngồi vào một bàn dài là:
Ta có số cách xếp 5 học sinh vào một bàn dài là số các hoán vị của học sinh đó. Vậy kết quả là:
.
Một bài trắc nghiệm khách quan có 10 câu hỏi. Mỗi câu hỏi có 4 phương án trả lời. Có bao nhiêu phương án trả lời?
Mỗi câu hỏi có 4 cách chọn phương án trả lời.
Mười câu hỏi sẽ có số cách chọn phương án trả lời là 410.
Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần?
Với một cách chọn chữ số từ tập
ta có duy nhất một cách xếp chúng theo thứ tự giảm dần.
Ta có cách chọn
chữ số từ tập
.
Do đó có số tự nhiên cần tìm.
Số hạng tử trong khai triển
bằng
Số hạng tử trong khai triển là: 4 + 1 = 5 hạng tử.
Trong một hộp chứa 5 viên bi màu trắng đánh số từ 1 đến 5, 7 viên bi xanh đánh số từ 1 đến 7 và 9 viên bi vàng đánh số từ 1 đến 9. Chọn ngẫu nhiên hai viên bi. Số cách chọn được hai viên bi khác màu là:
Chọn được 1 viên bi trắng + 1 viên bi xanh ta có: 5.7 = 35 cách chọn.
Chọn được 1 viên bi trắng + 1 viên bi vàng ta có: 5.9 = 45 cách chọn.
Chọn được 1 viên bi xanh + 1 viên bi vàng ta có: 7.9 = 63 cách chọn.
Vậy số cách chọn được hai viên bi khác màu là 35 + 45 + 63 = 143 cách chọn.
Tìm số các số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ?
Trường hợp 1: 3 chữ số đều lẻ. Có số thỏa mãn.
Trường hợp 2: số đó gồm 2 chữ số chẵn và 1 chữ số lẻ
- Chọn 2 chữ số chẵn khác nhau có cách.
- Chọn 1 chữ số lẻ có 5 cách.
- Từ 3 số đã chọn đó lập được số.
Do đó có dãy gồm 3 chữ số phân biệt, trong đó có 2 chữ số chẵn, 1 chữ số lẻ kể cả chữ số 0 đứng đầu.
Xét dãy số có 3 chữ số phân biệt, gồm 2 chữ số chẵn, 1 chữ số lẻ mà chữ số đầu bằng 0
- Chọn 1 chữ số lẻ có 5 cách.
- Chọn 1 chữ số chẵn khác chữ số 0 có 4 cách.
Vậy có số có 3 chữ số phân biệt, gồm 2 chữ số chẵn, 1 chữ số lẻ mà chữ số đầu bằng 0.
Do đó có số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ.
Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?
Mỗi cách phân công bạn An, Bình, Công vào
chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của
phần tử. Vậy có
cách.
Thầy giáo chủ nhiệm có 10 quyển sách khác nhau và 8 quyển vở khác nhau. Thầy chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi. Hỏi có bao nhiêu cách chọn khác nhau?
Chọn một quyển sách có 10 cách chọn.
Chọn một quyển vở có 8 cách chọn.
Áp dụng quy tắc cộng có 18 cách chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi.