Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho n là số tự nhiên thỏa mãn 3^{n}C_{n}^{0} -
3^{n - 1}C_{n}^{1} + 3^{n - 2}C_{n}^{2} - ..... + ( - 1)^{n}C_{n}^{n} =
2048. Tìm hệ số của x^{10} trong khai triển (x + 2)^{n}.

    Ta có (3 - 1)^{n} = 3^{n}C_{n}^{0} - 3^{n
- 1}C_{n}^{1} + 3^{n - 2}C_{n}^{2} - ..... + ( -
1)^{n}C_{n}^{n}

    \Leftrightarrow 2^{n} = 2048
\Leftrightarrow 2^{n} = 2^{11} \Leftrightarrow n = 11.

    Xét khai triển (x + 2)^{11} = \sum_{k =
0}^{11}{C_{11}^{k}x^{11 - k}.2^{k}}

    Tìm hệ số của x^{10}
\Leftrightarrowtìm k\mathbb{\in N\
\ }(k \leq 11) thỏa mãn 11 - k = 10
\Leftrightarrow k = 1.

    Vậy hệ số của x^{10} trong khai triển (x + 2)^{11}C_{11}^{1}.2 = 22.

  • Câu 2: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?

    Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là (1;2),(1;5),(1;8),(2;4),(4;5),(4;8).

    Trường hợp này có 2!.6 số.

    Chữ số cuối bằng 2 ta có các bộ (1;0),(4;0),(1;3),(3;4),(5;8), hoán vị được 2!.3 + 2 số.

    Chữ số cuối bằng 4 ta có các bộ (2;0),(2;3),(3;5),(3;8), hoán vị được 2!.3 + 1 số.

    Chữ số cuối bằng 8 ta có các bộ (0;1),(0;4),(1;3),(2;5),(3;4), hoán vị được 2!.3 + 2 số.

    Kết hợp lại ta có 35 số.

  • Câu 3: Nhận biết

    Giả sử một công việc phải hoàn thành qua 2 giai đoạn:

    Giai đoạn 1 có a cách thực hiện.

    Với mỗi cách thực hiện của giai đoạn 1 ta có b cách thực hiện cho giai đoạn 2.

    Khi đó số cách thực hiện công việc là:

    Áp dụng quy tắc nhân ta có số cách thực hiện công việc là a.b cách.

  • Câu 4: Nhận biết

    Để giải một bài tập ta cần phải giải hai bài tập nhỏ. Bài tập 19 cách giải, bài tập 25 cách giải. Số các cách để giải hoàn thành bài tập trên là:

    Sô cách giải bài toán 1 : 9 cách.

    Số cách giải bài toán 2 : 5 cách.

    Áp dụng quy tắc nhân: 9 × 5 = 45 cách.

  • Câu 5: Vận dụng

    Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:

    Gọi số cần tìm có dạng: \overline{abcde}\
\ \ \ \ \ \ (a eq 0).

    Chọn e: có 1 cách (e = 0)

    Chọn a: có 9 cách (a eq 0)

    Chọn \overline{bcd}: có 10^{3} cách

    Theo quy tắc nhân, có 1.9.10^{3} =
9000(số).

  • Câu 6: Thông hiểu

    Xét những số gồm 9 chữ số, trong đó có năm chữ số 1 và bốn chữ số còn lại 2;3;4;5. Hỏi có bao nhiêu số như vậy biết rằng năm chữ số 1 được xếp kế nhau.

    Xếp năm chữ số 1 kế nhau vào 9 vị trí có 5 cách.

    Xếp 2;3;4;5 vào 4 vị trí còn lại có 4! cách.

    Theo quy tắc nhân, ta được 5.4! =
120 (số).

  • Câu 7: Vận dụng

    Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Số cách chọn 2 nam đứng ở đầu và cuối là. A_{7}^{2}. Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là A_{6}^{5}. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là. 5!.A_{6}^{5}

    Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. A_{7}^{2}.5!.A_{6}^{5} =
3628800.

  • Câu 8: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam đứng cạnh nhau và nữ đứng cạnh nhau:

    Trường hợp 1: Nữ đứng trước

    Có 6 vị trí để xếp, vì nam đứng cạnh nhau và nữ đứng cạnh nhau nên nữ sẽ đứng vị trí số 1, 2, 3 còn nam đứng vị trí số 4, 5, 6

    Sắp xếp học sinh nữ vào vị trí 1, 2, 3

    Vị trí số 1 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nữ)

    Vị trí số 2 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nữ còn lại)

    Vị trí số 3 có 1 cách chọn (vì chỉ còn 1 bạn nữ để chọn)

    Có 6 vị trí để xếp, vì nam nữ đứng xen kẽ nên nữ sẽ đứng vị trí số 1, 3, 5 còn nam đứng vị trí số 2, 4, 6.

    Sắp xếp học sinh nam vào vị trí 4, 5, 6

    Vị trí số 4 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nam)

    Vị trí số 5 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nam còn lại)

    Vị trí số 6 có 1 cách chọn (vì chỉ còn 1 bạn nam để chọn)

    Trường hợp 1 có 3.2.1.3.2.1 = 36 (cách xếp)

    Trường hợp 2: Nam đứng trước

    Tương tự như trường hợp 1, trường hợp 2 có 36 (cách xếp)

    Vậy áp dụng quy tắc cộng ta có cả hai trường hợp có 36 + 36 = 72 (cách xếp).

  • Câu 9: Thông hiểu

    Cho số tự nhiên n thỏa mãn 3C_{n+1}^{3}-3A_{n}^{2}=42(n-1). Giá trị của biểu thức 3C_{n}^{4}-A_{n}^{2}

    Ta có: 

    \begin{matrix}  3C_{n + 1}^3 - 3A_n^2 = 42(n - 1) \hfill \\  DK:n > 2,n \in \mathbb{Z} \hfill \\   \Leftrightarrow 3\dfrac{{\left( {n + 1} ight)!}}{{3!\left( {n + 1 - 3} ight)!}} - 3\dfrac{{n!}}{{\left( {n - 2} ight)!}} = 42(n - 1) \hfill \\   \Leftrightarrow 3\dfrac{{\left( {n + 1} ight)n.\left( {n - 1} ight).\left( {n - 2} ight)!}}{{3!\left( {n - 2} ight)!}} - 3\dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)!}}{{\left( {n - 2} ight)!}} = 42(n - 1) \hfill \\   \Leftrightarrow \dfrac{{\left( {n + 1} ight)n.\left( {n - 1} ight)}}{2} - 3.n\left( {n - 1} ight) = 42(n - 1) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n - 1 = 0} \\   {{n^2} + n - 6n = 84} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 1\left( {ktm} ight)} \\   \begin{gathered}  n = 12\left( {tm} ight) \hfill \\  n =  - 7\left( {ktm} ight) \hfill \\ \end{gathered}  \end{array}} ight. \hfill \\ \end{matrix}

    Thay n = 12 vào biểu thức ta được: 3C_{12}^4 - A_{12}^2 = 1353

     

  • Câu 10: Nhận biết

    Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?

    Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là C_{8}^{3}

    Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!

    Vậy số cách trao các huy chương này là C_{8}^{3}.3! = 336

  • Câu 11: Nhận biết

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?

    Đánh số thứ tự các vị trí theo hàng dọc từ 1 đến 6.

    Trường hợp 1. Nam đứng trước, nữ đứng sau.

    Xếp nam (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nữ (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Trường hợp 2. Nữ đứng trước, nam đứng sau.

    Xếp nữ (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nam (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Theo quy tắc cộng ta có. 36 + 36 =
72 cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.

  • Câu 12: Thông hiểu

    Tìm hệ số của x^{25}y^{10} trong khai triển \left( x^{3} + xy ight)^{15}.

    Số hạng tổng quát của khai triển đã cho là C_{15}^{k}.\left( x^{3} ight)^{15 - k}.(xy)^{k}
= C_{15}^{k}.x^{45 - 2k}.y^{k},

    với 0 \leq k \leq 15, k \in \mathbb{N}. Số hạng này chứa x^{25}y^{10} khi và chỉ khi k = 10 (thỏa mãn).

    Vậy hệ số của x^{25}y^{10} trong khai triển \left( x^{3} + xy
ight)^{15}là C_{15}^{10} =
3003..

  • Câu 13: Nhận biết

    Số hạng không chứa x trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    Số hạng tổng quát trong khai triển nhị thức \left( x^{3} - \frac{1}{x^{2}} ight)^{5};(x eq
0) là:

    C_{5}^{k}.\left( x^{3} ight)^{5 -
k}.\left( - \frac{1}{x^{2}} ight)^{k} = C_{5}^{k}.( - 1)^{k}.x^{15 -
5k}

    Số hạng không chứa x khi và chỉ khi 15 -
5k = 0 \Rightarrow k = 3

    Vậy số hạng không chứa x là: C_{5}^{3}.(
- 1)^{3} = - 10.

  • Câu 14: Nhận biết

    Tìm số hạng chứa x^3 trong khai triển \left( x - \frac{1}{2x} ight)^{9}.

    Số hạng thứ k + 1 trong khai triển là: T_{k + 1} = C_{9}^{k}x^{9 - k}
\cdot \left( - \frac{1}{2x} ight)^{k} = C_{9}^{k} \cdot \left( -
\frac{1}{2} ight)^{k}x^{9 - 2}.

    Số hạng chứa x^{3} có giá trị k thỏa mãn: 9 - 2k = 3 \Leftrightarrow k = 3.

    Vậy số hạng chứa x^{3} trong khai triển là: -
\frac{1}{8}C_{9}^{3}x^{3}.

  • Câu 15: Vận dụng

    Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số 2011 chữ số và trong đó có ít nhất hai chữ số 9.

    Đặt X là các số tự nhiên thỏa yêu cầu bài toán.

    A ={ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}

    Với mỗi số thuộc A có m chữ số (m \leq 2008) thì ta có thể bổ sung thêm 2011 - m số 0 vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng \overline{a_{1}a_{2}...a_{2011}};\ a_{i} \in
\left\{ 0,1,2,3,...,9 ight\}

    A_{0} = \left\{ a \in A| ight.mà trong a không có chữ số 9}

    A_{1} = \left\{ a \in A| ight. mà trong a có đúng 1 chữ số 9}

    \bullet Ta thấy tập A có 1 + \frac{9^{2011} - 1}{9} phần tử

    \bullet Tính số phần tử của A_{0}

    Với x \in A_{0} \Rightarrow x =
\overline{a_{1}...a_{2011}};a_{i} \in \left\{ 0,1,2,...,8 ight\}\ i =
\overline{1,2010}a_{2011} = 9 -
r với r \in \lbrack 1;9brack,r
\equiv \sum_{i = 1}^{2010}a_{i}. Từ đó ta suy ra A_{0}9^{2010} phần tử.

    \bullet Tính số phần tử của A_{1}

    Để lập số của thuộc tập A_{1} ta thực hiện liên tiếp hai bước sau:

    Bước 1: Lập một dãy gồm 2010 chữ số thuộc tập \left\{ 0,1,2...,8
ight\} và tổng các chữ số chia hết cho 9. Số các dãy là 9^{2009}.

    Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9.

    Do đó A_{1}2010.9^{2009} phần tử.

    Vậy số các số cần lập là:

    1 + \frac{9^{2011} - 1}{9} - 9^{2010} -
2010.9^{2009} = \frac{9^{2011} - 2019.9^{2010} + 8}{9}.

  • Câu 16: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 5 chữ số đôi một khác nhau và tận cùng bằng một chữ số khác 3.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}a_{5}} là số thỏa yêu cầu bài toán.

    Chọn a_{5} \in X\backslash\left\{ 3
ight\} có: 8 cách.

    Chọn a_{1} \in X\backslash\left\{ a_{5}
ight\} có: 8 cách.

    Chọn a_{2} \in X\backslash\left\{
a_{1};a_{5} ight\} có: 7 cách.

    Chọn a_{3} \in X\backslash\left\{
a_{1};a_{5};a_{2} ight\} có: 6 cách.

    Chọn a_{4} \in X\backslash\left\{
a_{1};a_{5};a_{2};a_{3} ight\} có: 5 cách.

    Theo quy tắc nhân có: 8.8.7.6.5 =
13440 số.

  • Câu 17: Thông hiểu

    Từ khai triển biểu thức (x + 1)^{10} thành đa thức. Tổng các hệ số của đa thức là:

    Xét khai triển f(x) = (x + 1)^{10} =
\sum_{k = 0}^{10}C_{10}^{k}.x^{k}.

    Gọi S là tổng các hệ số trong khai triển thì ta có S = f(1) = (1 + 1)^{10}
= 2^{10} = 1024.

  • Câu 18: Nhận biết

    Có bao nhiêu các sắp xếp 10 bạn học sinh thành một hàng ngang ?

    Mỗi cách xếp 10 học sinh thành một hàng ngang là một hoán vị của tập hợp có 10 phần tử.

    Suy ra số cách sắp xếp là P_{10}.

  • Câu 19: Nhận biết

    Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:

    Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.

  • Câu 20: Nhận biết

    Số số hạng trong khai triển (x + 2)^{50} là:

    Số số hạng trong khai triển là: n + 1 =
50 + 1 = 51.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo