Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giá trị của n bằng bao nhiêu, biết \frac{5}{C_{5}^{n}}-\frac{2}{C_{6}^{n}}=\frac{14}{C_{7}^{n}}

     Điều kiện: n \le 5.

    Thay n=3 vào phương trình, ta được \frac{5}{C_{5}^{3}}-\frac{2}{C_{6}^{3}}=\frac{14}{C_{7}^{3}}\Leftrightarrow \frac{2}{5} = \frac{2}{5} (đúng). Do đó n=3 là nghiệm của phương trình.

  • Câu 2: Thông hiểu

    Xét những số gồm 9 chữ số trong đó có 5 chữ số 1 và bốn chữ số còn lại 2, 3, 4, 5. Hỏi có bao nhiêu số nếu 5 chữ số 1 xếp kề nhau?

    Gọi 11111 là số a.

    Vậy ta cần sắp các số a, 2, 3, 4, 5.

    ⇒ Số cách sắp xếp số thỏa mãn là: 1.2.3.4.5 = 120 (số).

  • Câu 3: Nhận biết

    Tìm số hạng chứa x^3 trong khai triển \left( x - \frac{1}{2x} ight)^{9}.

    Số hạng thứ k + 1 trong khai triển là: T_{k + 1} = C_{9}^{k}x^{9 - k}
\cdot \left( - \frac{1}{2x} ight)^{k} = C_{9}^{k} \cdot \left( -
\frac{1}{2} ight)^{k}x^{9 - 2}.

    Số hạng chứa x^{3} có giá trị k thỏa mãn: 9 - 2k = 3 \Leftrightarrow k = 3.

    Vậy số hạng chứa x^{3} trong khai triển là: -
\frac{1}{8}C_{9}^{3}x^{3}.

  • Câu 4: Nhận biết

    Số số hạng trong khai triển (x + 2)^{50} là:

    Số số hạng trong khai triển là: n + 1 =
50 + 1 = 51.

  • Câu 5: Nhận biết

    Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?

    Mỗi cách phân công \mathbf{3} bạn An, Bình, Công vào 3 chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của 3 phần tử. Vậy có 3!\ \  = \ \ 6 cách.

  • Câu 6: Vận dụng

    Khai triển nhị thức newton của P(x) = (\sqrt[3]{2}x + 3)^{2018} thành đa thức thì có tất cả bao nhiêu số hạng có hệ số nguyên dương?

    P(x) = (\sqrt[3]{2}x + 3)^{2018} =
\sum_{k = 0}^{2018}{\left( \sqrt[3]{2}x ight)^{2018 - k}3^{k}} =
\sum_{k = 0}^{2018}{2^{\frac{2018 - k}{3}}.3^{k}x^{2018 -
k}}

    Để hệ số nguyên dương thì (2018 - k)
\vdots 3 \Leftrightarrow 2018 - k = 3t \Leftrightarrow k = 2018 -
3t,do 0 \leq k \leq 2018 nên ta có 0 \leq 2018 - 3t \leq 2018
\Leftrightarrow 0 \leq t \leq \frac{2018}{3} \approx 672,6 vậy t=0,1,2….672 nên có 673 giá trị.

  • Câu 7: Nhận biết

    Có bao nhiêu cách xếp 6 người thành một hàng dọc

     Xếp 6 người thành một hàng dọc có: 6! = 720 cách.

  • Câu 8: Thông hiểu

    Tổng các hệ số trong khai triển nhị thức Newton của (2x - 3)^{5} bằng:

    Ta có:

    (2x - 3)^{5} = C_{5}^{0}(2x)^{5}.( -
3)^{0} + C_{5}^{1}.(2x)^{4}.( - 3)^{1}

    + ... + C_{5}^{4}.(2x)^{1}.( - 3)^{4} +
C_{5}^{5}.(2x)^{0}.( - 3)^{5}

    = C_{5}^{0}2^{5}.( - 3)^{0}.x^{5} +
C_{5}^{1}.2^{4}.( - 3)^{1}.x^{4}

    + ... + C_{5}^{4}.2.( - 3)^{4}.x +
C_{5}^{5}.( - 3)^{5}

    Cho x = 1 ta được:

    (2.1 - 3)^{5} = C_{5}^{0}2^{5}.( -
3)^{0}.1^{5} + C_{5}^{1}.2^{4}.( - 3)^{1}.1^{4} + ... + C_{5}^{4}.2.( -
3)^{4}.1 + C_{5}^{5}.( - 3)^{5} = - 1

    Vậy tổng hệ số trong khai triển đã cho bằng -1.

  • Câu 9: Vận dụng

    Cho tập B =
\left\{ 0;1;2;4;5;7 ight\}. Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?

    Gọi số cần tìm là số dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 3 suy ra a + b + c + d + e \vdots 3.

    Khi đó bộ (a,b,c,d,e) = \left\{
(0;1;2;4;5),(0;2;4;5;7),(0;1;2;5;7) ight\}.

    Với bộ (a,b,c,d,e) = (0;1;2;4;5) suy ra có 4 \times 4 \times 3 \times 2
\times 1 = 96 số cần tìm.

    Tương tự với các bộ số còn lại.

  • Câu 10: Nhận biết

    Từ các chữ số  1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau.

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 5 cách chọn.

    B: có 4 cách chọn. 

    C: có 3 cách chọn.

    Vậy có 5.4.3 = 60 (số) có 3 chữ số đôi một khác nhau.

  • Câu 11: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp F =
\left\{ 0,1,2,3,4,5,6,7 ight\} và nhỏ hơn 2021?

    Gọi số tự nhiên có bốn chữ số \overline{abcd};(a eq 0)

    Do \overline{abcd} < 2021a eq 0 nên a \in \left\{ 1;2 ight\}

    TH1: a = 1

    Chọn ba số trong dãy 0,2,3,4,5,6,7 xếp vào ba vị trí a,b,c ta có: A_{7}^{3} cách.

    => Trong trường hợp này có 1.A_{7}^{3}
= 210 số được tạo thành.

    TH2: a = 2 \Rightarrow b = 0,c = 1;d \in
\left\{ 3;4;5;6;7 ight\}

    => Trong trường hợp này có 1.1.1.5 =
5 số được tạo thành.

    Vậy có tất cả 210 + 5 = 215 số được tạo thành thỏa mãn yêu cầu đề bài.

  • Câu 12: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a + b (cách) (theo quy tắc nhân)

  • Câu 13: Vận dụng

    Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).

    Thứ 2: có 12 cách chọn bạn đi thăm

    Thứ 3: có 12 cách chọn bạn đi thăm

    Thứ 4: có 12 cách chọn bạn đi thăm

    Thứ 5: có 12 cách chọn bạn đi thăm

    Thứ 6: có 12 cách chọn bạn đi thăm

    Thứ 7: có 12 cách chọn bạn đi thăm

    Chủ nhật: có 12 cách chọn bạn đi thăm

    Vậy theo quy tắc nhân, có 12^{7} =
35831808 (kế hoạch).

  • Câu 14: Vận dụng

    Cho tập hợp số: A = \left\{ 0,1,2,3,4,5,6 ight\}.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

    Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \{ 0,1,2,3\}, \{ 0,1,2,6\}, \{ 0,2,3,4\}, \{ 0,3,4,5\}, \{ 1,2,4,5\}, \{ 1,2,3,6\}, \left\{ 1,3,5,6 ight\}.

    Vậy số các số cần lập là: 4(4! - 3!) +
3.4! = 144 số.

  • Câu 15: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 16: Nhận biết

    Hệ số của x^{2} trong khai triển (2x + 3)^{5} là:

    Ta có số hạng tổng quát: T_{k + 1} =C_{5}^{k}.(2x)^{5 - k}.3^{k} = C_{5}^{k}.2^{5 - k}.x^{5 -k}.3^{k}

    Số hạng chứa x^{2} nên 5 - k = 2 \Rightarrow k = 3

    Vậy hệ số của x^{2} trong khai triển đã cho là: C_{5}^{3}.2^{2}.3^{3}.

  • Câu 17: Thông hiểu

    Biết n là số nguyên dương thỏa mãn C_{n}^{n - 1} +
C_{n}^{n - 2} = 78, số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n} là:

    Ta có: C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow \frac{n!}{(n - 1)!.1!} + \frac{n!}{(n - 2)!.2!} = 78
\Leftrightarrow n + \frac{(n - 1)n}{2} = 78

    \Leftrightarrow n^{2} + n - 156 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 12 \\
n = - 13 \\
\end{matrix} ight.\  \Leftrightarrow n = 12 (vì n là số nguyên dương).

    Số hạng tổng quát trong khai triển \left(
x^{3} - \frac{2}{x} ight)^{12}là: ( - 1)^{k}C_{12}^{k}\left( x^{3} ight)^{12 -
k}\left( \frac{2}{x} ight)^{k} = ( - 1)^{k}C_{12}^{k}.2^{k}.x^{36 -
4k}.

    Cho 36 - 4k = 8 \Leftrightarrow k =
7.

    Vậy số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x}
ight)^{12}-
C_{12}^{7}.2^{7}.x^{8} = - 101376x^{8}.

  • Câu 18: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn C ngồi chính giữa là:

    Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp A;B;C;D;E

  • Câu 19: Nhận biết

    Có bao nhiêu cách xếp 5 bạn ABCDE vào 1 chiếc ghế dài sao cho bạn A ngồi chính giữa?

    Xếp bạn A ngồi chính giữa: có 1 cách.

    Khi đó xếp 4 bạn BCDE vào 4 vị trí còn lại, có 4! = 24 cách.

    Vậy có tất cả 24 cách xếp.

  • Câu 20: Thông hiểu

    Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số đã cho lập được bao nhiêu số tự nhiên chẵn có 4 chữ số và các chữ số đôi một bất kỳ khác nhau?

    Gọi số cần tìm là: \overline{abcd} (với b,\ c,\ d\  \in \left\{ 0;\ 1;\ 2;\ 3;\ 4;\ 5ight\}, a\  \in \left\{ 1;\ 2;\3;\ 4;\ 5 ight\}).

    Trường hợp 1:

    Chọn d = 0, nên có 1 cách chọn.

    Chọn a \in \left\{ \left. \ 1,\ 2,\ 3,\4,\ 5 ight\} ight. nên có 5 cách chọn.

    Chọn b4 cách chọn.

    Chọn c3 cách chọn.

    Suy ra, có 1.5.4.3 = 60 số.

    Trường hợp 2:

    Chọn d \in \left\{ 2,\ 4ight\}, nên có 2 cách chọn.

    Chọn a eq 0 nên có 4 cách chọn.

    Chọn b4 cách chọn.

    Chọn c3 cách chọn.

    Suy ra, có 2.4.4.3 = 96 số.

    Vậy có tất cả: 60 + 96 = 156 số.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo