Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tập hợp M10 phần tử. Số tập con gồm hai phần từ của M là:

    Mỗi cách lấy ra 2 phần tử trong 10 phần tử của M để tạo thành tập con gồm 2 phần tử là một tổ hợp chập 2 của 10phần tử \Rightarrow Số tập con của M gồm 2 phần tử là C_{10}^{2}.

  • Câu 2: Nhận biết

    Biết rằng khai triển nhị thức Newton (x + 2)^{n};\left( n\mathbb{\in N}
ight) có tất cả 6 số hạng. Hãy xác định n?

    Vì trong khai triển nhị thức Newton (x +
2)^{n};\left( n\mathbb{\in N} ight) đã cho có tất cả 6 số hạng nên n + 1 = 6 \Rightarrow n =
5

    Vậy n = 5 là giá trị cần tìm.

  • Câu 3: Vận dụng

    Khai triển nhị thức newton của P(x) = (\sqrt[3]{2}x + 3)^{2018} thành đa thức thì có tất cả bao nhiêu số hạng có hệ số nguyên dương?

    P(x) = (\sqrt[3]{2}x + 3)^{2018} =
\sum_{k = 0}^{2018}{\left( \sqrt[3]{2}x ight)^{2018 - k}3^{k}} =
\sum_{k = 0}^{2018}{2^{\frac{2018 - k}{3}}.3^{k}x^{2018 -
k}}

    Để hệ số nguyên dương thì (2018 - k)
\vdots 3 \Leftrightarrow 2018 - k = 3t \Leftrightarrow k = 2018 -
3t,do 0 \leq k \leq 2018 nên ta có 0 \leq 2018 - 3t \leq 2018
\Leftrightarrow 0 \leq t \leq \frac{2018}{3} \approx 672,6 vậy t=0,1,2….672 nên có 673 giá trị.

  • Câu 4: Thông hiểu

    Mỗi khi thực hiện giao dịch qua app thanh toán tiền, ngân hàng sẽ gửi một mã xác thực (OTP – One Time Password) gồm 6 chữ số từ 0 đến 9. Hỏi có thể có bao nhiêu mã OTP?

    Mỗi mã xác thực gồm 6 chữ số được tạo thành từ các số từ 0 đến 9

    => Với mỗi chữ số trong mã xác thực sẽ có 10 cách chọn

    => Số mã xác thực có thể tạo thành là: 10^{6} = 1000000 mã.

  • Câu 5: Nhận biết

    Tìm hệ số của x^{2}y^{2} trong khai triển nhị thức Newton của (x + 2y)^{4}?

    Số hạng tổng quát là: C_{n}^{k}a^{k}b^{n
- k} = C_{4}^{k}.x^{k}.(2y)^{2 - k} = C_{4}^{k}.2^{k}.x^{k}.y^{2 -
k}

    Hệ số của x^{2}y^{2} tìm được khi k = 2

    Vậy hệ số của x^{2}y^{2} trong khai triển là C_{4}^{2}.2^{2} =
12.

  • Câu 6: Nhận biết

    Từ các chữ số 6; 7; 8; 9. có thể lập được bao nhiêu chữ số tự nhiên có 3 chữ số.

     Gọi số cần lập có dạng \overline {ABC}.

    A: có 4 cách chọn.

    B: có 4 cách chọn.

    C: có 4 cách chọn.

    Vậy có 4.4.4 = 64 (số) tự nhiên có 3 chữ số.

  • Câu 7: Vận dụng

    Cho tập A =
\left\{ 1,2,3,4,5,6,7,8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

    x lẻ và không chia hết cho 5 nên d \in \left\{ 1,3,7 ight\} \Rightarrow
d có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 8: Vận dụng

    Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?

    Gọi số in trên vé có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}}

    Số cách chọn a_{1} là 10 (a_{1} có thể là 0).

    Số cách chọn a_{2} là 9.

    Số cách chọn a_{3} là 8.

    Số cách chọn a_{4} là 7.

    Số cách chọn a_{5} là 6.

    Do đó có 10.9.8.7.6 = 23460 (số).

  • Câu 9: Thông hiểu

    Cho x là số thực dương, số hạng không chứa x trong khai triển nhị thức \left( x + \frac{2}{\sqrt{x}}
ight)^{30}là:

    Ta có \left( x + \frac{2}{\sqrt{x}}
ight)^{30} = \left( x + 2x^{- \frac{1}{2}} ight)^{30} = \sum_{k =
0}^{30}{C_{30}^{k}x^{30 - k}\left( 2x^{\frac{- 1}{2}} ight)^{k} =
\sum_{k = 0}^{30}{C_{30}^{k}2^{k}x^{30 - \frac{3}{2}k}}}

    Số hạng tổng quát thứ k + 1 trong khai triển là T_{k + 1} =
C_{30}^{k}2^{k}x^{30 - \frac{3}{2}k}.

    Số hạng này không chứa x tương ứng với trường hợp 30 - \frac{3k}{2} = 0
\Leftrightarrow k = 20.

    Vậy số hạng không chứa x trong khai triển là T_{21} = C_{30}^{20}2^{20} =
2^{20}C_{30}^{10}.

  • Câu 10: Nhận biết

    Hệ số của số hạng chứa x^{6}trong khai triển Newton \left( x - \frac{2}{x^{2}}
ight)^{15}là:

    \left( x - \frac{2}{x^{2}} ight)^{15}
= \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}\left( - \frac{2}{x^{2}}
ight)^{k}} = \sum_{k = 0}^{15}{C_{15}^{k}x^{15 - k}( - 2)^{k}\left(
x^{- 2} ight)^{k} =}\sum_{k = 0}^{15}{C_{15}^{k}( - 2)^{k}x^{15 -
3k}}

    Số hạng tổng quát của khái triển T_{k +
1} = C_{15}^{k}( - 2)^{k}x^{15 - 3k}

    Số của số hạng chứa x^{6}: 15 - 3k = 6 \Leftrightarrow k = 3. Hệ số của số hạng chứa x^{6}C_{15}^{k}( - 2)^{k} =
C_{15}^{3}( - 2)^{3} = - 3640.

  • Câu 11: Nhận biết

    Giả sử có một công việc có thể tiến hành theo hai công đoạn M và N. Công đoạn M có a cách, công đoạn N có b cách mà không trùng với cách nào của công đoạn M. Khi đó công việc có thể thực hiện bằng:

    Khi đó công việc có thể được thực hiện bằng a + b (cách) (theo quy tắc nhân)

  • Câu 12: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam đứng cạnh nhau và nữ đứng cạnh nhau:

    Trường hợp 1: Nữ đứng trước

    Có 6 vị trí để xếp, vì nam đứng cạnh nhau và nữ đứng cạnh nhau nên nữ sẽ đứng vị trí số 1, 2, 3 còn nam đứng vị trí số 4, 5, 6

    Sắp xếp học sinh nữ vào vị trí 1, 2, 3

    Vị trí số 1 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nữ)

    Vị trí số 2 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nữ còn lại)

    Vị trí số 3 có 1 cách chọn (vì chỉ còn 1 bạn nữ để chọn)

    Có 6 vị trí để xếp, vì nam nữ đứng xen kẽ nên nữ sẽ đứng vị trí số 1, 3, 5 còn nam đứng vị trí số 2, 4, 6.

    Sắp xếp học sinh nam vào vị trí 4, 5, 6

    Vị trí số 4 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nam)

    Vị trí số 5 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nam còn lại)

    Vị trí số 6 có 1 cách chọn (vì chỉ còn 1 bạn nam để chọn)

    Trường hợp 1 có 3.2.1.3.2.1 = 36 (cách xếp)

    Trường hợp 2: Nam đứng trước

    Tương tự như trường hợp 1, trường hợp 2 có 36 (cách xếp)

    Vậy áp dụng quy tắc cộng ta có cả hai trường hợp có 36 + 36 = 72 (cách xếp).

  • Câu 13: Thông hiểu

    Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?

    TH1: Chọn 7 người 18 người không là cặp vợ chồng: C_{18}^{7}

    TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng: C_{4}^{1}.C_{18}^{6}

    TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng: \left(
C_{4}^{2} - 2 ight).C_{18}^{5}

    Vậy số cách chọn thỏa mãn là: C_{18}^{7}
+ C_{4}^{1}.C_{18}^{6} + \left( C_{4}^{2} - 2 ight).C_{18}^{5} =
140352 cách

  • Câu 14: Nhận biết

    Cho tập hợp M =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Số tập con gồm 3 phần tử của M sao cho không có số 0 là:

    Mỗi tập con gồm 3 phần tử của M không có số 0 là tổ hợp chập 3 của 9 phần tử.

    Số tập con gồm 3 phần tử của M không có số 0 là. C_{9}^{3}.

  • Câu 15: Vận dụng

    Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Số cách chọn 2 nam đứng ở đầu và cuối là. A_{7}^{2}. Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là A_{6}^{5}. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là. 5!.A_{6}^{5}

    Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. A_{7}^{2}.5!.A_{6}^{5} =
3628800.

  • Câu 16: Thông hiểu

    Cho đa giác n cạnh. Tìm n để đa giác có số đường chéo gấp đôi số cạnh.

    Đa giác n cạnh có n đỉnh.

    Mỗi đỉnh nối với n - 3 đỉnh khác để tạo ra đường chéo

    Do đó n đỉnh sẽ có n(n -
3)đường

    Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là: \frac{n(n - 3)}{2}

    Theo bài ra ta có: \frac{n(n - 3)}{2} =
2n \Leftrightarrow n^{2} - 7n = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 0(ktm) \\
n = 7(tm) \\
\end{matrix} ight.

    Vậy n = 7.

  • Câu 17: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn C ngồi chính giữa là:

    Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp A;B;C;D;E

  • Câu 18: Nhận biết

    Trong balo của học sinh A có 8 bút chì khác, 6 bút bi và 10 quyển vở. Số cách chọn một đồ vật trong balo là:

    Áp dụng quy tắc cộng, số cách chọn một đồ vật trong balo là: 8 + 6 + 10 = 24 cách.

  • Câu 19: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?

    Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là (1;2),(1;5),(1;8),(2;4),(4;5),(4;8).

    Trường hợp này có 2!.6 số.

    Chữ số cuối bằng 2 ta có các bộ (1;0),(4;0),(1;3),(3;4),(5;8), hoán vị được 2!.3 + 2 số.

    Chữ số cuối bằng 4 ta có các bộ (2;0),(2;3),(3;5),(3;8), hoán vị được 2!.3 + 1 số.

    Chữ số cuối bằng 8 ta có các bộ (0;1),(0;4),(1;3),(2;5),(3;4), hoán vị được 2!.3 + 2 số.

    Kết hợp lại ta có 35 số.

  • Câu 20: Thông hiểu

    Tìm số hạng không chứa x trong khai triển \left( x^{2} - \frac{1}{x} ight)^{n} biết A_{n}^{2} - C_{n}^{2} =
105.

    Ta có: A_{n}^{2} - C_{n}^{2} = 105
\Leftrightarrow \frac{n!}{(n - 2)!} - \frac{n!}{2!(n - 2)!} =
105 \Leftrightarrow \frac{1}{2}n(n
- 1) = 105 \Leftrightarrow n^{2} -
n - 210 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 15 \\
n = - 14\ \ \ (L) \\
\end{matrix} ight..

    Suy ra số hạng tổng quát trong khai triển: T_{k + 1} = C_{15}^{k}.\left( x^{2} ight)^{15 -
k}.\left( - \frac{1}{x} ight)^{k} = C_{15}^{k}.( - 1)^{k}.x^{30 -
3k}.

    Tìm 30 - 3k = 0 \Leftrightarrow k =
10.

    Vậy hệ số của số hạng không chứa x trong khai triển là: C_{15}^{10}.( - 1)^{10} = 3003.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo