Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Đại số tổ hợp gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    +TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} +
C_{5}^{3}. Vậy số cách lập nhóm trong trường hợp này là. 2.\left( C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1}
+ C_{5}^{3} ight)

    +TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là C_{5}^{1}C_{6}^{1}
+ C_{5}^{2}. Vậy số cách lập nhóm trong trường hợp này là. C_{5}^{1}.C_{6}^{1} +
C_{5}^{2}.

    Vậy số cách lập cần tìm là. 2.\left(
C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} + C_{5}^{3} ight) +
C_{5}^{1}.C_{6}^{1} + C_{5}^{2} = 375.

  • Câu 2: Nhận biết

    Tìm hệ số của số hạng chứa x^{10} trong khai triển của biểu thức \left( 3x^{3} - \frac{2}{x^{2}}
ight)^{5}.

    Ta có \left( 3x^{3} - \frac{2}{x^{2}}
ight)^{5} = \sum_{k = 0}^{5}{( - 1)^{k}.C_{5}^{k}.\left( 3x^{3}
ight)^{5 - k}.\left( \frac{2}{x^{2}} ight)^{k}} = \sum_{k = 0}^{5}{(
- 1)^{k}.C_{5}^{k}.3^{5 - k}.2^{k}}x^{15 - 5k}.

    Số hạng chứa x^{10} ứng với 15 - 5k = 10 \Leftrightarrow k =
1.

    Hệ số của số hạng chứa x^{10}( - 1)^{1}C_{5}^{1}.3^{4}.2^{1} = -
810.

  • Câu 3: Nhận biết

    Hệ số của x^{2} trong khai triển (x + 1)^{5} là:

     Ta có: {(x + 1)^5} ={x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 5x + 1.

    Hệ số của x^2 là 10.

  • Câu 4: Nhận biết

    Bạn Dũng có 9 quyển truyện tranh khác nhau và 6 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.

    Bạn Dũng có số cách chọn ra một quyển sách để đọc vào cuối tuần là 9 + 6 = 15 cách.

  • Câu 5: Nhận biết

    Cho các chữ số 2,3,4,5,6,7. Hỏi có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số khác nhau?

    Số cách lập số tự nhiên có 6 chữ số khác nhau từ các chữ số đã cho là số hoán vị của 6 phần tử, do đó có 6! = 720.

  • Câu 6: Thông hiểu

    Từ tập A = {1; 2; 3; 4; 5; 6} có thể lập được bao nhiêu số gồm 3 chữ số khác nhau và số đó không lớn hơn 456?

    Ta có: \overline{abc} là số cần tìm.

    Trường hợp 1: 100 \leq \overline{abc}
< 400

    Chọn a ∈ {1; 2; 3}: 3 cách.

    Chọn b \in A\backslash\left\{ a
ight\}: 5 cách.

    Chọn c \in A\backslash\left\{ a,b
ight\}: 4 cách.

    ⇒ Có 3.4.5 = 60 số.

    Trường hợp 2: 400 \leq \overline{abc}
< 450

    Chọn a = 4: 1 cách.

    Chọn b ∈ {1; 2; 3}: 3 cách.

    Chọn c \in A\backslash\left\{ 4;b
ight\}: 4 cách.

    ⇒ Có: 1.3.4 = 12 số.

    Trường hợp 3: 450 \leq \overline{abc}
< 456

    Chọn a = 4: 1 cách.

    Chọn b = 5: 1 cách.

    Chọn c \in A\backslash\left\{ 4;5
ight\}: 4 cách.

    ⇒ Có: 1.1.4 = 4 số.

    Từ (1); (2); (3) có 60 + 12 + 4 =
76 số thoả yêu cầu bài toán.

  • Câu 7: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?

    Giả sử số đó là \overline{a_{1}a_{2}a_{3}}

    Trường hợp 1. a_{3} = 0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.

    Trường hợp 2. a_{3} = 5. Với a_{1} = 2 chọn a_{2} có 6 cách nên có 6 số thỏa mãn. Với a_{1} eq 2 chọn a_{1} có 5 cách chọn, và tất nhiên a_{2} = 2 nên có 5 số thỏa mãn. Do đó có 12 + 6 + 5 = 23 số thỏa mãn.

  • Câu 8: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 9: Vận dụng

    Cho 6 chữ số 2,3,4,5,6,7 số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    c3 cách chọn

    a6 cách chọn

    b6 cách chọn

    Vậy có: 3.6.6 = 108 số.

  • Câu 10: Nhận biết

    Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn hai học sinh trong đó có một nam và một nữ đi dự trại hè của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?

    Học sinh nam có 280 cách chọn

    Học sinh nữ có 325 cách chọn

    Chọn hai học sinh trong đó có một nam và một nữ đi dự trại hè là: 280.325 = 91000

  • Câu 11: Thông hiểu

    Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau mỗi hàng ngang và tất cả các học sinh trong mỗi hàng đều cùng trường?

    Giả sử 4 hàng dọc được kí hiệu là D_{1};D_{2};D_{3};D_{4}

    Theo yêu cầu thì:

    Các bạn trường A được xếp ở D_{1};D_{3}

    Các bạn trường B được xếp ở D_{2};D_{4} hoặc ngược lại.

    Nên số cách xếp là 2.20!.20! cách.

  • Câu 12: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển (3x + 2)^{4}?

    Số hạng tổng quát theo thứ tự giảm dần số mũ x là:

    C_{4}^{k}(3x)^{4 - k}.2^{k} =
C_{4}^{k}.3^{4 - k}.2^{k}.x^{4 - k}

    Số hạng chứa x^{3} ứng với 4 - k = 3 \Rightarrow k = 1

    Số hạng cần tìm là C_{4}^{1}.3^{4 -
1}.2.x^{4 - 1} = 216x^{3}.

  • Câu 13: Nhận biết

    Cho tập A gồm 12 phần tử. Số tập con có 4 phần tử của tập A là:

    Theo định nghĩa tổ hợp. “ Giả sử tập An phần tử (n
\geq 1). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho”.

    Do đó theo yêu cầu bài toán số tập con có 4 phần tử của tập A là C_{12}^{4}.

  • Câu 14: Vận dụng

    Tìm số hạng không chứa x trong khai triển nhị thức Newton của \left( 2x^{2} - \frac{3}{x}
ight)^{n} (x eq 0). Cho biết 1.C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + nC_{n}^{n} = 256n (C_{n}^{k} là số tổ hợp chập k của n phần tử).

    Xét khai triển (1 + x)^{n} = C_{n}^{0} +
C_{n}^{1}x + C_{n}^{2}x^{2} + C_{n}^{3}x^{3} + ... +
C_{n}^{n}x^{n} (1)

    Đạo hàm hai vế của (1) ta được: n(1 + x)^{n - 1} = C_{n}^{1} + 2C_{n}^{2}x +
3C_{n}^{3}x^{2} + ... + nC_{n}^{n}x^{n - 1} (2)

    Trong công thức (2) ta cho x = 1 ta được:

    n2^{n - 1} = C_{n}^{1} + 2.C_{n}^{2} +
3.C_{n}^{3} + ... + nC_{n}^{n} \Leftrightarrow n.2^{n - 1} = 256n \Leftrightarrow 2^{n - 1} = 256 \Leftrightarrow n = 9.

    Khi đó, \left( 2x^{2} - \frac{3}{x}
ight)^{n} = \left( 2x^{2} - \frac{3}{x} ight)^{9} = \sum_{n =
0}^{9}{C_{9}^{k}( - 3)^{k}2^{9 - k}.x^{18 - 3k}}.

    Do đó số hạng không chứa x trong khai triển \left( 2x^{2} - \frac{3}{x}
ight)^{9} nếu 18 - 3k =
0 hay k = 6.

    Suy ra số hạng cần tìm là C_{9}^{6}( -
3)^{6}2^{3} = 489888.

  • Câu 15: Vận dụng

    Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao chữ số đầu chẵn chữ số đứng cuối lẻ.

    Vì chữ số đứng đầu chẵn nên a_{1}4 cách chọn, chữ số đứng cuối lẻ nên a_{8} có 4 cách chọn. Các số còn lại có 6.5.4.3.2.1 cách chọn

    Vậy có 4^{2}.6.5.4.3.2.1 = 11520 số thỏa yêu cầu bài toán.

  • Câu 16: Thông hiểu

    Một nhóm học sinh có 5 nam và 3 nữ. Hỏi có bao nhiêu cách sắp xếp các học sinh thành hàng dọc sao cho các bạn nam phải đứng liền nhau?

    Để xếp 8 học sinh đã cho thành hàng dọc sao cho các học sinh nam đứng liền nhau ta coi 5 nam là một đối tượng, đối tượng này cộng với 3 học sinh nữ thành 4 đối tượng xếp thành hàng dọc; ta thực hiện hai bước:

    Bước 1: Xếp vị trí cho 4 đối tượng có 4! cách

    Bước 2: Xếp chỗ cho 5 nam vào 5 vị trí có 5! cách.

    Áp dụng quy tắc nhân ta có: 4!.5! =
2880 cách.

  • Câu 17: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp F =
\left\{ 0,1,2,3,4,5,6,7 ight\} và nhỏ hơn 2021?

    Gọi số tự nhiên có bốn chữ số \overline{abcd};(a eq 0)

    Do \overline{abcd} < 2021a eq 0 nên a \in \left\{ 1;2 ight\}

    TH1: a = 1

    Chọn ba số trong dãy 0,2,3,4,5,6,7 xếp vào ba vị trí a,b,c ta có: A_{7}^{3} cách.

    => Trong trường hợp này có 1.A_{7}^{3}
= 210 số được tạo thành.

    TH2: a = 2 \Rightarrow b = 0,c = 1;d \in
\left\{ 3;4;5;6;7 ight\}

    => Trong trường hợp này có 1.1.1.5 =
5 số được tạo thành.

    Vậy có tất cả 210 + 5 = 215 số được tạo thành thỏa mãn yêu cầu đề bài.

  • Câu 18: Nhận biết

    Đếm số tập con gồm 3 phần tử được lấy ra từ tập A = \left\{ a;b;c;d;e;f ight\}?

    Mỗi tập con tập gồm 3phần tử được lấy ra từ tập A6 phần tử là một tổ hợp chập 3 của 6 phần tử.

    Vậy số tập con gồm 3 phần tử của AC_{6}^{3} = 20 tập con.

  • Câu 19: Nhận biết

    Trong balo của học sinh A có 8 bút chì khác, 6 bút bi và 10 quyển vở. Số cách chọn một đồ vật trong balo là:

    Áp dụng quy tắc cộng, số cách chọn một đồ vật trong balo là: 8 + 6 + 10 = 24 cách.

  • Câu 20: Thông hiểu

    Khai triển nhị thức {(2x - y)^5} ta được kết quả là:

    Khai triển nhị thức {(2x - y)^5} ta có:

    \begin{matrix}  {(2x - y)^5} = \sumolimits_{k = 0}^5 {C_5^k.{{\left( {2x} ight)}^{5 - k}}.{{\left( { - y} ight)}^k}}  \hfill \\  k = 1 \Rightarrow C_5^1.{\left( {2x} ight)^4}.{\left( { - y} ight)^1} =  - 80{x^4}y \hfill \\  k = 2 \Rightarrow C_5^2.{\left( {2x} ight)^3}.{\left( { - y} ight)^2} = 80{x^3}{y^2} \hfill \\  k = 3 \Rightarrow C_5^3.{\left( {2x} ight)^2}.{\left( { - y} ight)^3} =  - 40{x^2}{y^3} \hfill \\  k = 4 \Rightarrow C_5^4.{\left( {2x} ight)^1}.{\left( { - y} ight)^4} = 10x{y^4} \hfill \\  k = 5 \Rightarrow C_5^5.{\left( {2x} ight)^0}.{\left( { - y} ight)^5} =  - {y^5} \hfill \\  {(2x - y)^5} =  - 80{x^4}y + 80{x^3}{y^2} - 40{x^2}{y^3} + 10x{y^4} - {y^5} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo