Giả sử bạn muốn màu áo sơ mi cỡ 39 hoặc 40. Áo cỡ 39 có 5 màu khác nhau, áo cỡ 40 có 4 màu khác nhau. Hỏi bạn có bao nhiêu sự lựa chọn (về màu và cỡ áo)?
Áo cỡ 39 có 5 cách chọn
Áo cỡ 40 có 4 cách chọn
Vậy có tất cả cách chọn về màu và cỡ áo.
Giả sử bạn muốn màu áo sơ mi cỡ 39 hoặc 40. Áo cỡ 39 có 5 màu khác nhau, áo cỡ 40 có 4 màu khác nhau. Hỏi bạn có bao nhiêu sự lựa chọn (về màu và cỡ áo)?
Áo cỡ 39 có 5 cách chọn
Áo cỡ 40 có 4 cách chọn
Vậy có tất cả cách chọn về màu và cỡ áo.
Số hạng không chứa
trong khai triển nhị thức
là:
Số hạng tổng quát trong khai triển nhị thức là:
Số hạng không chứa x khi và chỉ khi
Vậy số hạng không chứa x là: .
Số các số tự nhiên gồm
chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
Từ các chữ số
có thể lập được bao nhiêu số nguyên dương
và n là số chẵn?
Trường hợp 1: n gồm một chữ số.
Vì n < 200 và n là số chẵn nên có 2 số thỏa mãn là 4; 8
Trường hợp 2: n gồm hai chữ số.
Gọi n có dạng thỏa mãn n < 200 và để n là số chẵn ta có
b có 2 lựa chọn là {4; 8}
a có 5 lựa chọn.
Có
Trường hợp 3: n gồm ba chữ số. Vì n < 200 nên gọi n có dạng và để n là số chẵn ta có
c có 2 lựa chọn là {4; 8}
b có 5 lựa chọn. Có
Vậy có số n thỏa mãn yêu cầu bài toán.
Có bao nhiêu cách sắp xếp 3 nữ sinh và 3 nam sinh thành một hàng dọc sao cho các bạn nam đứng cạnh nhau và nữ đứng cạnh nhau:
Trường hợp 1: Nữ đứng trước
Có 6 vị trí để xếp, vì nam đứng cạnh nhau và nữ đứng cạnh nhau nên nữ sẽ đứng vị trí số 1, 2, 3 còn nam đứng vị trí số 4, 5, 6
Sắp xếp học sinh nữ vào vị trí 1, 2, 3
Vị trí số 1 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nữ)
Vị trí số 2 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nữ còn lại)
Vị trí số 3 có 1 cách chọn (vì chỉ còn 1 bạn nữ để chọn)
Có 6 vị trí để xếp, vì nam nữ đứng xen kẽ nên nữ sẽ đứng vị trí số 1, 3, 5 còn nam đứng vị trí số 2, 4, 6.
Sắp xếp học sinh nam vào vị trí 4, 5, 6
Vị trí số 4 có 3 cách chọn (vì có thể chọn một bạn bất kỳ trong 3 bạn nam)
Vị trí số 5 có 2 cách chọn (vì chỉ có thể chọn một trong hai bạn nam còn lại)
Vị trí số 6 có 1 cách chọn (vì chỉ còn 1 bạn nam để chọn)
Trường hợp 1 có 3.2.1.3.2.1 = 36 (cách xếp)
Trường hợp 2: Nam đứng trước
Tương tự như trường hợp 1, trường hợp 2 có 36 (cách xếp)
Vậy áp dụng quy tắc cộng ta có cả hai trường hợp có 36 + 36 = 72 (cách xếp).
Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?
Gọi số cần tìm có dạng . Vì
chia hết cho 10 suy ra
.
TH1. Với , ta có
+ Nếu suy ra
, do đó có 2 số cần tìm.
+ Nếu suy ra
và
, do đó có 14 số cần tìm.
TH2. Với suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn
C.
Suy ra có số cần tìm. Vậy có tất cả 114 số cần tìm.
Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:
Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.
Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.
Vì vậy số hoán vị 6 đối tượng là 6!.
Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.
Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!
Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.
Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong
người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
Thứ 2: có cách chọn bạn đi thăm
Thứ 3: có cách chọn bạn đi thăm
Thứ 4: có cách chọn bạn đi thăm
Thứ 5: có cách chọn bạn đi thăm
Thứ 6: có cách chọn bạn đi thăm
Thứ 7: có cách chọn bạn đi thăm
Chủ nhật: có cách chọn bạn đi thăm
Vậy theo quy tắc nhân, có (kế hoạch).
Tìm hệ số của số hạng chứa
trong khai triển
.
Ta có: .
Số hạng tổng quát của khai triển là: .
Số hạng chứa trong khai triển tương ứng với
.
Vậy hệ số cần tìm là: (theo tính chất của tổ hợp:
).
Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?
Số cách chọn sách Toán là 20 cách.
Số cách chọn sách Vật lí là 40 cách.
Số cách chọn sách Hóa học là 50 cách.
Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.
Số hạng chứa
trong khai triển biểu thức
là:
Ta có: .
Số hạng cần tìm là: .
Tìm hệ số của
trong khai triển
với
biết
là số nguyên dương thỏa mãn ![]()
Đk:
Với , nhị thức trở thành
Số hạng tổng quát là
Từ yêu cầu bài toán ta cần có:
Vậy hệ số của số hạng chứa là
.
Bạn Dũng có 9 quyển truyện tranh khác nhau và 6 quyển tiểu thuyết khác nhau. Bạn Dũng có bao nhiêu cách chọn ra một quyển sách để đọc vào cuối tuần.
Bạn Dũng có số cách chọn ra một quyển sách để đọc vào cuối tuần là 9 + 6 = 15 cách.
Có 8 vận động viên chạy thi. Người thắng sẽ nhận được huy chương vàng, người về đích thứ hai nhận huy chương bạc, người về đích thứ ba nhận huy chương đồng. Có bao nhiêu cách trao các huy chương này, nếu tất cả các kết cục của cuộc thi đều có thể xảy ra?
Số cách chọn 3 vận động viên về đích đầu tiên trong 8 vận động viên là
Số cách trao 3 huy chương vàng, bạc, đồng cho 3 vận động viên về đích đầu là 3!
Vậy số cách trao các huy chương này là
Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)
Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là . Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là.
.
Cho
. Từ tập hợp này lập được bao nhiêu số tự nhiên có
chữ số đôi một khác nhau?
Mỗi số tự nhiên tự nhiên có chữ số khác nhau được lập từ tập
là hoán vị của
phần tử.
Vậy có số cần tìm.
Tính giá trị biểu thức:
.
Xét khai triển
Thay ta được:
Một phòng thi có 40 thí sinh, trong đó có thí sinh A và B được xếp chỗ ngồi vào 20 bàn trong một phòng thi, mỗi bàn xếp đủ 2 thí sinh. Có bao nhiêu cách xếp chỗ ngồi sao cho hai thí sinh A và B được ngồi cùng một bàn?
Chọn một bàn trong 20 bàn để xếp hai thí sinh A và B vào bàn đó có: cách.
Xếp 38 thí sinh còn lại vào các vị trí còn lại có: 38! cách.
Vậy có cách xếp
Có bao nhiêu cách chọn ngẫu nhiên 3 viên bi từ một hộp có 20 viên bi.
Chọn 3 viên bi từ 20 viên bi: cách.
Hệ số của
trong khai triển thành đa thức của
bằng bao nhiêu? Cho biết n là số tự nhiên thỏa mãn:
.
Ta có
Thay vào
:
Thay vào
:
Phương trình trừ
theo vế:
.
Theo đề ta có
Số hạng tổng quát của khai triển :
Theo giả thiết ta có .
Vậy hệ số cần tìm .