Đề kiểm tra 15 phút Chương 9 Phương pháp tọa độ trong mặt phẳng

Mô tả thêm: Đề kiểm tra 15 phút Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Đâu là đường thẳng không có điểm chung với đường thẳng x - 3y + 4 = 0?

    Kí hiệu d:x - 3y + 4 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1; - 3).

    (i) Xét đáp án: d_{1}:\left\{
\begin{matrix}
x = 1 + t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (1;3)
ightarrow {\overrightarrow{n}}_{1},\ \ \overrightarrow{n} không cùng phương nên loại.

    (ii) Xét đáp án: d_{2}:\left\{
\begin{matrix}
x = 1 - t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3;1)
ightarrow {\overrightarrow{n}}_{2},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iii) Xét đáp án: d_{3}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{3} = (1;3)
ightarrow {\overrightarrow{n}}_{3},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iv) Xét đáp án: d_{4}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M(1;2) \in d_{4} \\
{\overrightarrow{n}}_{4} = (1; - 3) \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
{\overrightarrow{n}}_{4} = \overrightarrow{n} \\
M\boxed{\in}d \\
\end{matrix} ight.\  ightarrow d||d_{4}. (Chọn)

  • Câu 2: Thông hiểu

    Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°.

     Xét hai đường thẳng d_1: 6x – 5y + 4 = 0d_2:\left\{\begin{matrix}x=10-6t\\ y=1+5t\end{matrix}ight..

    Ta có: \overrightarrow {{n_1}}  = (6; - 5);\overrightarrow {{n_2}}  = (5;6)

    \overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 6.5 - 5.6 = 0 nên suy ra hai đường thẳng vuông góc với nhau.

  • Câu 3: Vận dụng

    Cho đường tròn \left( C_{m} ight):x^{2} + y^{2} + 2(m - 1)x -
2my - 4 = 0. Biết rằng khi giá trị m thay đổi, đường tròn \left( C_{m} ight) luôn đi qua điểm I cố định có hoành độ dương. Xác định giá trị của tham số m sao cho tiếp tuyến của đường tròn \left( C_{m} ight) tại I song song với (d):x - 2y - 1 = 0?

    Gỉa sử đường tròn luôn đi qua điểm I\left( x_{0};y_{0} ight) cố định khi m thay đổi. Khi đó:

    {x_{0}}^{2} + {y_{0}}^{2} + 2(m - 1)x_{0}
- 2my_{0} - 4 = 0 với mọi m

    \Leftrightarrow m\left( 2x_{0} - 2y_{0}
ight) + {x_{0}}^{2} + {y_{0}}^{2} - 2x_{0} - 4 = 0 với mọi m

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x_{0} - 2y_{0} = 0 \\
{x_{0}}^{2} + {y_{0}}^{2} - 2x_{0} - 4 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = y_{0} \\
2{x_{0}}^{2} - 2x_{0} - 4 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = y_{0} = - 1 \\
x_{0} = y_{0} = 2 \\
\end{matrix} ight.

    Vậy ta có điểm I(2;2)

    Đường tròn có tâm J(1 - m;m). VTPT của tiếp tuyến của đường tròn tại I là \overrightarrow{IJ} = ( - m - 1;m -
2)

    Để tiếp tuyến tại I song song với đường thẳng (d) nên tồn tại giá trị k sao cho:

    \overrightarrow{IJ} = k(1; - 2)
\Leftrightarrow \left\{ \begin{matrix}
- m - 1 = k \\
m - 2 = - 2k \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m = - 4 \\
k = 3 \\
\end{matrix} ight.

    Vậy giá trị m cần tìm là m = -
4.

  • Câu 4: Thông hiểu

    Tìm m để góc tạo bởi hai đường thẳng ∆1:\sqrt{3}x -y+7=0∆_2: mx + y + 1 = 0 một góc bằng 30°.

    Ta có:

    \begin{matrix}  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{\sqrt {3 + 1} .\sqrt {{m^2} + 1} }} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \cos {30^0} \hfill \\   \Leftrightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\   \Leftrightarrow \sqrt 3 \sqrt {{m^2} + 1}  = \left| {m\sqrt 3  - 1} ight| \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = {\left( {m\sqrt 3  - 1} ight)^2} \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = 3{m^2} - 2m\sqrt 3  + 1 \hfill \\   \Leftrightarrow 2m\sqrt 3  + 2 = 0 \hfill \\   \Leftrightarrow m =  - \dfrac{1}{{\sqrt 3 }} \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Cho hai đường thẳng (\Delta):x + \sqrt{3}y - 6 = 0(\Delta)':\sqrt{3}x - y + 7 = 0. Tính góc hợp bởi hai đường thẳng đã cho?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (\Delta):x + \sqrt{3}y - 6 = 0 là: \overrightarrow{n_{\Delta}} = \left( 1;\sqrt{3}
ight)

    Vectơ pháp tuyến của đường thẳng (\Delta)':\sqrt{3}x - y + 7 = 0 là: \overrightarrow{n_{\Delta}} = \left(
1;\sqrt{3} ight)

    Ta có: \overrightarrow{n_{\Delta}}.\overrightarrow{n_{\Delta}}
= 0 \Rightarrow (\Delta)\bot(\Delta')

    Vậy góc hợp bởi hai đường thẳng bằng 90^{0}.

  • Câu 6: Thông hiểu

    Hãy xác định phương trình chính tắc của parabol (P). Biết rằng (P) cắt đường thẳng d:x + 2y = 0 tại hai điểm A,BAB =
4\sqrt{5}?

    Phương trình chính tắc của (P) có dạng y^{2} = 2px;(p > 0)

    Ta có đường thẳng d cắt (P) tại hai điểm \left\{ \begin{matrix}
A \equiv O \\
B = ( - 2m;m) \\
\end{matrix} ight.

    Ta có:

    AB = 4\sqrt{5} \Leftrightarrow AB^{2} =
5m^{2} = \left( 4\sqrt{5} ight)^{2}

    \Leftrightarrow m^{2} = 16
\Leftrightarrow m = \pm 4

    Với m = 4 \Rightarrow B( - 8;4) \Rightarrow 16 = 2p.( - 8)
\Rightarrow p = - 1 < 0(ktm)

    Với m = - 4 \Rightarrow B(8; - 4) \Rightarrow 16 = 2p.8
\Rightarrow p = 1(tm)

    Vậy phương trình chính tắc của parabol cần tìm là: y^{2} = 2x.

  • Câu 7: Nhận biết

    Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương \overrightarrow{u}=(1;3)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 3t + 2 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;3} ight)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 2t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 2 \hfill \\  y = t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;1} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 3 \hfill \\  y = 2t + 1 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

  • Câu 8: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x + 3)^{2} + (y - 5)^{2} = 10. Viết phương trình tiếp tuyến của đường tròn đã cho, biết hệ số góc của tiếp tuyền bằng - \frac{1}{3}.

    Đường tròn (C) có tâm I( - 3;5) và bán kính R = \sqrt{10}

    Tiếp tuyến d có hệ số góc k = -
\frac{1}{3} nên có dạng y = -
\frac{1}{3}x + b

    \Leftrightarrow x + 3y - 3b =
0

    Vì d là tiếp tuyến của (C) nên d(I;d) = R

    \Leftrightarrow \frac{| - 3 + 3.5 -
3b|}{\sqrt{1^{2} + 3^{2}}} = \sqrt{10}

    \Leftrightarrow |12 - 3b| = 10\Leftrightarrow \left\lbrack \begin{matrix}b = \dfrac{2}{3} \\b = \dfrac{22}{3} \\\end{matrix} ight.

    Với b = \frac{2}{3} thì phương trình d là: y = - \frac{1}{3}x + \frac{2}{3}
\Rightarrow x + 3y - 2 = 0

    Với b = \frac{22}{3} thì phương trình d là: y = - \frac{1}{3}x +
\frac{22}{3} \Rightarrow x + 3y - 22 = 0

    Vậy các phương trình tiếp tuyến cần tìm là: x + 3y - 2 = 0;x + 3y - 22 = 0.

  • Câu 9: Nhận biết

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 10: Nhận biết

    Điểm nào sau đây không thuộc đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight. ?

    Gọi d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight.\ .M( - 1;3)\overset{x = - 1,\ y = 3 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
- 1 = - 1 + 2t \\
3 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 ightarrow M \in
d.

    N(1; - 2)\overset{x = 1,\ y = - 2
ightarrow d}{ightarrow}\left\{ \begin{matrix}
1 = - 1 + 2t \\
- 2 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow N \in
d.

    P(3;1)\overset{x = 3,\ y = 1 ightarrow d}{ightarrow}\left\{ \begin{matrix}3 = - 1 + 2t \\1 = 3 - 5t \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t = 2 \\t = \dfrac{2}{5} \\\end{matrix} ight.\  ightarrow P\in d.

    Chọn P(3;1).

    Q( - 3;8)\overset{x = - 3,\ y = 8
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 3 = - 1 + 2t \\
8 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 ightarrow Q \in
d.

  • Câu 11: Thông hiểu

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 3y + 8 = 0, đi qua điểm A( - 2;1) và tiếp xúc với đường thẳng \Delta:\ 3x - 4y + 10 = 0. Phương trình của đường tròn (C) là:

    Dễ thấy A \in \Delta nên tâm I của đường tròn nằm trên đường thẳng qua A vuông góc với \Delta

    \Delta^{'}:4x + 3y + 5 = 0
ightarrow I = \Delta^{'} \cap d:\left\{ \begin{matrix}
4x + 3y + 5 = 0 \\
x + 3y + 8 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 3 \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
I(1; - 3) \\
R = IA = 5 \\
\end{matrix} ight.\ .

    Vậy phương trình đường tròn là: (x -
1)^{2} + (y + 3)^{2} = 25.

  • Câu 12: Nhận biết

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 13: Vận dụng

    Viết phương trình chính tắc của elip biết nó đi qua điểm A\left( 2;\sqrt{3} ight) và tỉ số của độ dài trục lớn với tiêu cự bằng \frac{2}{\sqrt{3}}.

    Gọi phương trình chính tắc của Elip là (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1, với a > b >
0.

    \bullet Elip đi qua điểm A\left( 2;\sqrt{3} ight) suy ra \frac{2^{2}}{a^{2}} + \frac{\left( \sqrt{3}
ight)^{2}}{b^{2}} = 1 \Leftrightarrow \frac{4}{a^{2}} +
\frac{3}{b^{2}} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1).

    \bullet Tỉ số của độ dài trục lớn với tiêu cự bằng \frac{2}{\sqrt{3}} suy ra \frac{2a}{2c} = \frac{2}{\sqrt{3}} \Leftrightarrow
c^{2} = \frac{3}{4}a^{2}.

    Kết hợp với điều kiện b^{2} = a^{2} -
c^{2}, ta được b^{2} = a^{2} -
\frac{3}{4}a^{2} = \frac{a^{2}}{4} \Leftrightarrow a^{2} = 4b^{2}\ \ \ \
\ \ \ \ \ \ (2).

    Từ (1),\ \ (2) suy ra \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{3}{b^{2}} = 1 \\
a^{2} = 4b^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{4}{4b^{2}} + \frac{3}{b^{2}} = 1 \\
a^{2} = 4b^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{4}{b^{2}} = 1 \\
a^{2} = 4b^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 4 \\
\end{matrix} ight.\ .

    Vậy phương trình cần tìm là (E):\frac{x^{2}}{16} + \frac{y^{2}}{4} =
1.

  • Câu 14: Thông hiểu

    Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm F_{1}\left(
- \sqrt{3};0 ight) và đi qua điểm D\left( 1;\frac{\sqrt{3}}{2} ight)?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;\left( a > b > 0,c^{2} = a^{2} - b^{2} ight)

    Ta có:

    c^{2} = a^{2} - b^{2} \Rightarrow c =
\sqrt{a^{2} - b^{2}} = \sqrt{3}

    Khi đó ta có: a^{2} - b^{2} = 3\ \
(*)

    Do elip đi qua điểm D\left(
1;\frac{\sqrt{3}}{2} ight)

    \Rightarrow \frac{1}{a^{2}} +
\frac{3}{4b^{2}} = 1 \Rightarrow 4b^{2} + 3a^{2} = 4a^{2}b^{2}\ \
(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}
a^{2} - b^{2} = 3 \\
4b^{2} + 3a^{2} = 4a^{2}b^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 3.\left( 3 + b^{2} ight) = 4.\left( 3 + b^{2} ight).b^{2}
\\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 5b^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{4} + \frac{y^{2}}{1} =
1.

  • Câu 15: Thông hiểu

    Trong mặt phẳng hệ trục tọa độ Oxy cho các tọa độ các điểm A(3; - 5),B( - 1;2)G(2; - 2). Xác định tọa độ điểm D sao cho G là trọng tâm tam giác ABD?

    Xét tam giác ABD có G là trọng tâm khi đó ta có:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{D}}{3} \\y_{G} = \dfrac{y_{A} + y_{B} + y_{D}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = \dfrac{3 - 1 + x_{D}}{3} \\- 2 = \dfrac{- 5 + 2 + y_{D}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{D} = 4 \\y_{D} = - 3 \\\end{matrix} ight.

    Vậy tọa độ điểm D(4; - 3).

  • Câu 16: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?

    Phương trình tham số của đường thẳng là: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 4 - 3t \\
\end{matrix} ight.

  • Câu 17: Nhận biết

    Trong mặt phẳng tọa độ Oxy, viết phương trình chính tắc của elip biết một đỉnh là A_{1}( - 5;0) và một tiêu điểm là F_{2}(2;0).

    Ta có a = 5;\ c = 2 \Rightarrow b^{2} =
25 - 4 = 21

    Vậy \frac{x^{2}}{25} + \frac{y^{2}}{21} =
1.

  • Câu 18: Nhận biết

    Đường thẳng nào song song với đường thẳng \Delta:2x - y - 1 = 0?

    Đường thẳng song song với đường thẳng \Delta:2x - y - 1 = 0 là: 4x - 2y - 1 = 0.

  • Câu 19: Nhận biết

    Cho phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 (1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 là phương trình đường tròn là:

    {a^2} + {b^2} - c > 0

  • Câu 20: Vận dụng

    Xác định a để hai đường thẳng d_{1}:ax + 3y–4 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + t \\
y = 3 + 3t \\
\end{matrix} ight. cắt nhau tại một điểm nằm trên trục hoành.

    Ox \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = - 1 + t \\
y = 3 + 3t = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 0 \\
\end{matrix} ight.

    ightarrow Ox \cap d_{2} = A( - 2;0)
\in d_{1}

    ightarrow - 2a - 4 = 0 \Leftrightarrow
a = - 2.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 9 Phương pháp tọa độ trong mặt phẳng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo