Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng ?
Vectơ chỉ phương của đường thẳng trên là: .
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng ?
Vectơ chỉ phương của đường thẳng trên là: .
Với giá trị nào của tham số thì đường thẳng
vuông góc với đường thẳng
?
Ta có tọa độ vectơ pháp tuyến của là:
Tọa độ vectơ pháp tuyến của là:
Để thì
Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.
Với giá trị nào của thì hai đường thẳng
và
trùng nhau?
Đường tròn (C): viết được dưới dạng:
Từ phương trình đường tròn ta suy ra:
Vậy phương trình tổng quát
Tọa độ tâm và bán kính
của đường tròn
là:
Elip có một tiêu điểm và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Đường tròn đường kính với
có phương trình là:
Viết phương trình tham số của đường thẳng đi qua hai điểm và
.
Ta có:
Cho Hyperbol . Hãy tìm tọa độ điểm
trên
thỏa mãn
thuộc nhánh phải và
nhỏ nhất (ngắn nhất).
Ta có:
Gọi .
Ta có: .
thuộc nhánh phải của
nên
.
nhỏ nhất bằng
khi
.
Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm
và có vectơ pháp tuyến
có phương trình tổng quát là:
Ta có: đường thẳng nhận
làm vectơ pháp tuyến, mặt khác
đi qua điểm
nên
có phương trình tổng quát là:
Trong mặt phẳng với hệ tọa độ , cho tam giác
có
,
và
Trung tuyến
của tam giác đi qua điểm
có hoành độ bằng
thì tung độ của điểm
bằng bao nhiêu?
Ta có:
Chọn
Cho đường tròn . Tính khoảng cách từ tâm của
đến trục
.
Trong mặt phẳng với hệ trục tọa độ , cho hai đường thẳng
và
. Gọi điểm
sao cho
và
. Tính giá trị biểu thức
?
Gọi
Khi đó:
Với
Với
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Đường thẳng nào là đường chuẩn của parabol .
Ta có: .
Đường chuẩn: .
Trong hệ trục tọa độ , viết phương trình đường trung trực của đoạn thẳng
biết
?
Đường thẳng trung trực của là đường thẳng đi qua trung điểm
của
và nhận
làm vectơ pháp tuyến. Khi đó:
Vậy phương trình đường trung trực của MN là .
Nhận xét nào đúng về vị trí tương đối của hai đường thẳng và
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Suy ra và
không cùng phương và
Suy ra hai đường thẳng cắt nhau và không vuông góc.
Cho hai đường thẳng và
với
. Nếu
vô nghiệm thì vị trí tương đối của hai đường thẳng là:
Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình .
Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.
Cho Hypebol có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai là đáp án chứa độ dài trục lớn là .
Cho hypebol (H): . Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:
Ta có:
Ta có: a = 6; b =3
=> Độ dài trục ảo là 6, độ dài trục thực là 12
=> Tỉ số giữa độ dài trục ảo và độ dài trục thực là: