Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố : "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?
Ta có: : "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.
Theo quy tắc nhân xác suất: .
Vậy: .
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố : "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?
Ta có: : "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.
Theo quy tắc nhân xác suất: .
Vậy: .
Hộp có
viên bi trắng,
viên bi đỏ và
viên bi xanh. Hộp
có
viên bi trắng,
viên bi đỏ và
viên bi xanh. Lấy ngẫu nhiên mỗi hộp một viên bi. Xác suất để hai viên bi được lấy ra có cùng màu là bao nhiêu?
Số phần tử của không gian mẫu: .
Số cách chọn từ mỗi hộp 1 viên bi sau cho 2 viên bi cùng màu là: .
Vậy xác suất cần tìm là .
Bác Hoa cài đặt mật khẩu 4 chữ số cho điện thoại. Bác đã quên mật khẩu chính xác và chỉ nhớ các chữ số đó là đôi một khác nhau. Xác suất để bác Hoa bấm đúng mật khẩu cho điện thoại trong một lần là:
Số phần tử không gian mẫu là:
Gọi A là biến cố “Bác A bấm đúng mật khẩu điện thoại trong một lần”
Vậy xác suất của biến cố A là:
Gieo 3 đồng tiền. Phép thử ngẫu nhiên này có không gian mẫu là:
Liệt kê các phần tử: .
Trong chiếc hộp chứa 37 tấm thẻ được đánh số theo thứ tự từ 1 đến 37 (hai tấm thẻ khác nhau được đánh số khác nhau). Lấy ngẫu nhiên đồng thời 3 thẻ trong hộp. Xác suất để các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3 bằng bao nhiêu?
Từ 1 đến 37 có 12 số chia hết cho 3; 13 số chia cho 3 dư 1 và 12 số chia cho 3 dư 2
Số phần tử không gian mẫu là:
Để lấy được 3 tấm thẻ mà tổng các số ghi trên ba tấm thẻ chia hết cho 3 ta có các trường hợp sau:
TH1: 3 số đều chia hết cho 3 ta có: cách chọn.
TH2: 3 số chia 3 dư 1 ta có: cách chọn.
TH3: 3 số chia 3 dư 2 ta có: cách chọn.
TH4: 1 số chia hết cho 3, 1 số chia 3 dư 1 và 1 số chia cho 3 dư 2 ta có: cách chọn.
Suy ra có tất cả cách chọn thỏa mãn yêu cầu đề bài.
Vậy xác suất của biến cố: “Các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3” là:
Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:
Chọn ba viên bi ngẫu nhiên trong hộp =>
Biến cố A: “Lấy ra được 3 viên bi màu đỏ” =>
=> Xác suất của biến cố A là:
Từ một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Lấy ngẫu nhiên 7 viên bi. Tính xác suất để lấy được ít nhất một viên bi vàng?
Số phần tử không gian mẫu:
Số phần tử biến cố lấy ngẫu nhiên 7 viên bi không có viên bi màu vàng là:
Vậy xác suất để lấy được ít nhất một viên bi vàng là:
Cho 8 quả cân có trọng lượng lần lượt là 1; 2; 3; 4; 5; 6; 7; 8 (kg). Chọn ngẫu nhiên 3 quả trong số đó. Xác suất để trọng lượng 3 quả không nhỏ hơn 10 (kg) là:
Chọn ba quả cân có cách.
Chọn ba quả cân có tổng trọng lượng nhỏ hơn hoặc bằng 9 có các trường hợp sau:
TH1: Trong các quả được lấy ra không có quả cân trọng lượng 1 kg.
Ta có là tổng trọng lượng nhỏ nhất có thể. Do đó trong trường hợp này có đúng 1 cách chọn.
TH2: Trong các quả được lấy ra có quả cân trọng lượng 1 kg. Khi đó ta có:
.
Trường hợp này ta có 6 cách chọn.
Vậy số cách chọn thỏa mãn yêu cầu bài toán là .
Xác suất cần tính là: .
Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp” và
là biến cố “Kết quả ba lần gieo là như nhau”. Hãy liệt kê các kết quả của biến cố
,
. Suy ra
.
Một đề thi trắc nghiệm gồm câu, mỗi câu có bốn phương án trả lời trong đó chỉ có một phương án đúng, mỗi câu trả lời đúng được
điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên
trong
phương án ở mỗi câu. Xác suất để thí sinh đó được
điểm là bao nhiêu?
Không gian mẫu của phép thử trên có số phần tử là .
Gọi là biến cố: “ Thí sinh đó được 6 điểm”
Tìm : Để được 6 điểm, thí sinh đó phải làm đúng 30 câu và làm sai 20 câu.
Công đoạn 1: Chọn 30 câu từ 50 câu để làm câu đúng. Có cách.
Công đoạn 2: Chọn phương án đúng của mỗi câu từ 30 câu đã chọn. Có cách.
Công đoạn 3: Chọn một phương án sai trong ba phương án sai của mỗi câu từ 20 còn lại. Có cách.
Theo quy tắc nhân, số kết quả thuận lợi cho biến cố là
.
Vậy xác suất để học sinh đó được 6 điểm là:.
Một hộp đựng thẻ được đánh số từ
đến
. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho
lớn hơn
. Tính giá trị của k.
Gọi biến cố : Lấy
tấm thẻ có ít nhất một tấm thẻ chia hết cho
. Với
.
Suy ra : Lấy
tấm thẻ không có tấm thẻ nào chia hết cho
.
Ta có:
.
Theo đề: .
Vậy là giá trị cần tìm.
Cho A là biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề đúng là:
Viết tập hợp Ω là không gian mẫu trong trò chơi tung đồng xu hai lần liên tiếp.
Ta có: Ω = {SS; SN; NS; NN}.
Gieo một con xúc xắc cân đối và đồng chất ba lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm bằng bao nhiêu?
Ta có:
Gọi A là biến cố ít nhất một lần xuất hiện mặt sáu chấm
Suy ra là biến cố không có lần nào xuất hiện mặt sáu chấm.
Khi đó xác suất của biến cố A cần tìm là:
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất lần. Số phần tử không gian mẫu là bao nhiêu?
Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có .
Số phần tử không gian mẫu là .
Gieo một đồng tiền liên tiếp lần. Số phần tử của không gian mẫu là bao nhiêu?
.
(lần 1 có 2 khả năng xảy ra - lần 2 có 2 khả năng xảy ra).
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng , hỏi tổ có bao nhiêu học sinh nữ?
Gọi số học sinh nữ là
Chọn bất kỳ 2 học sinh ta có cách.
Do đó số phần tử của không gian mẫu là
Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.
Để chọn 2 học sinh được 2 học sinh nữ có:
(cách)
Do đó số kết quả thuận lợi cho biến cố A là:
Xác suất để chọn được 2 học sinh nữ là:
Mà
Vậy có 5 học sinh nữ trong tổ.
Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:
"Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.
Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca. Tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.
Không gian mẫu là chọn tùy ý người từ
người.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
4 người được ó ít nhất 3 nữ
. Ta có hai trường hợp thuận lợi cho biến cố
như sau:
TH1:: Chọn 3 nữ và 1 nam, có cách.
TH2:: Cả 4 nữ, có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:
Ta có:
Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”
Vậy