Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Cho
. Tính ![]()
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Đạo hàm của hàm số ![]()
Ta có:
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Tính đạo hàm của hàm số ![]()
Ta có:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có:
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Tìm các giá trị của x để hàm số
có nghĩa:
Điều kiện xác định
Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Trong các biểu thức sau, biểu thức nào có nghĩa?
Tập xác định của hàm số tùy thuộc vào
Với nguyên dương, tập xác định
Với nguyên âm hoặc bằng 0, tập xác định
Với không nguyên, tập xác định là
Ta có: có
là số nguyên âm nên cơ số
=> có nghĩa
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Cho đồ thị ba hàm số trên khoảng như hình vẽ. Mệnh đề nào sau đây đúng?

Từ đồ thị ta thấy
Với thì
Với thì
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có: