Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Tìm các giá trị của x để hàm số
có nghĩa:
Điều kiện xác định
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Giá trị của biểu thức
là:
Ta có:
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?
Ta có: A = 2, n = 7; I = 0,014
Số dân tỉnh A đến năm 2025 là triệu người.
Cho hàm số
. Tính ![]()
Ta có:
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có: tại
và y' không xác định tại
Ta có bảng biến thiên đạo hàm như sau:

Dựa vào bảng biến thiên ta thấy hàm số y có 2 điểm cực trị
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có ba điểm cực trị
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Cho
. Rút gọn biểu thức 
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng?
Đồ thị hàm số có đường tiệm cận đứng x = 1
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Cho
. Tính ![]()
Ta có:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là: