Giá trị của biểu thức
bằng:
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Cho hàm số
. Tính ![]()
Ta có:
=>
Tập xác định của hàm số
là:
Hàm số xác định khi
Vậy tập xác định của hàm số là
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Cho a và b là các số thực thỏa mãn điều kiện
và
. Chọn khẳng định đúng trong các khẳng định sau:
Ta có:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Cho hàm số
. Cho các khẳng định sau:
i) Hàm số xác định với mọi x
ii) Đồ thị hàm số luôn đi qua điểm (1; 1)
iii) Hàm số nghịch biến trên ![]()
iv) Đồ thị hàm số có hai đường tiệm cận
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Ta có khẳng định ii) và iv) là đúng
i) Sai vì hàm số đã cho xác định khi x > 0
iii) Sai vì hàm số nghịch biến trên
Giá trị của biểu thức
là:
Ta có:
Cho hàm số
. Tính ![]()
Ta có: