Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Có bao nhiêu giá trị nguyên của tham số
để hàm số
có tập xác định
?
Vì số mũ không phải là số nguyên nên hàm số xác định với
Do
Vậy có 2017 giá trị nguyên của tham số m thỏa mãn yêu cầu.
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Đạo hàm của hàm số ![]()
Ta có:
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Thu gọn biểu thức
biết a và b là hai số thực dương.
Ta có:
Cho a và b là các số thực thỏa mãn điều kiện
và
. Chọn khẳng định đúng trong các khẳng định sau:
Ta có:
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Giá trị của biểu thức
là:
Ta có:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Tính đạo hàm của hàm số ![]()
Ta có: