Đề kiểm tra 15 phút Hàm số lũy thừa

Mô tả thêm: Bài kiểm tra 15 phút Hàm số lũy thừa của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 2: Vận dụng

    Cho hình vẽ sau là đồ thị của ba hàm số y = {x^\alpha };y = {x^\beta };y = {x^\gamma } với x > 0\alpha ;\beta ;\gamma là các số thực cho trước, mệnh đề nào sau đây đúng?

    Chọn mệnh đề đúng

    Hàm số {x^\alpha } nghịch biến trên \alpha  < 0

    Các hàm số y = {x^\beta };y = {x^\gamma } đồng biến nên \beta ;\gamma  > 0

    Tại x = 3 thì {3^\beta } > {3^\gamma } \Rightarrow \beta  > \gamma

  • Câu 3: Nhận biết

    Tập xác định của hàm số f\left( x ight) = {\left( {{x^2} - 1} ight)^{ - 2}} là:

    Hàm số f\left( x ight) = {\left( {{x^2} - 1} ight)^{ - 2}} xác định khi {x^2} - 1 e 0 \Rightarrow x e  \pm 1

    Vậy tập xác định của hàm số là D = \mathbb{R}\backslash \left\{ { \pm 1} ight\}

  • Câu 4: Vận dụng cao

    Hàm số y = \left( {x - 1} ight)\sqrt[3]{{{x^2}}} có bao nhiêu điểm cực trị?

    Tập xác định \mathbb{R}

    Ta có: y' = 0 tại x = \frac{2}{5} và y' không xác định tại

    Ta có bảng biến thiên đạo hàm như sau:

    Số điểm cực trị của hàm số

    Dựa vào bảng biến thiên ta thấy hàm số y có 2 điểm cực trị

  • Câu 5: Thông hiểu

    Tính đạo hàm của hàm số y = \left( {{x^2} + 2x - 2} ight){.5^x}

     Ta có:

    \begin{matrix}  y' = \left( {{x^2} + 2x - 2} ight)'{.5^x} + \left( {{5^x}} ight)'.\left( {{x^2} + 2x - 2} ight) \hfill \\   \Rightarrow y' = \left( {2x + 2} ight){.5^x} + \left( {{x^2} + 2x - 2} ight){.5^x}.\ln 5 \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 7: Thông hiểu

    Cho một số thực \alpha tùy ý. Trong các khẳng định sau khẳng định nào đúng?

     Theo tính chất đạo hàm của hàm số lũy thừa, hàm số y = {x^\alpha } có đạo hàm với mọi x > 0 và \left( {{x^\alpha }} ight)' = \alpha {x^{\alpha  - 1}}

  • Câu 8: Thông hiểu

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} có tập xác định là:

    Hàm số y = {x^\alpha } có số mũ nguyên âm xác định khi

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} xác định khi 4{x^2} - 1 e 0 \Leftrightarrow x e  \pm \frac{1}{2}

    Vậy tập xác định là: D = \mathbb{R}\backslash \left\{ { - \frac{1}{2};\frac{1}{2}} ight\}

  • Câu 9: Thông hiểu

    Thu gọn biểu thức T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} biết a và b là hai số thực dương.

    Ta có: T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} = \left( {{a^{\frac{7}{6}}}:{a^{\frac{1}{6}}}} ight).\left( {{b^{\frac{{ - 2}}{3}}}:{b^{\frac{2}{6}}}} ight) = \frac{a}{b}

  • Câu 10: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 12: Vận dụng

    Cho a và b là các số thực thỏa mãn {3.2^a} + {2^b} = 7\sqrt 2{5.2^n} - {2^b} = 9\sqrt 2. Giá trị biểu thức S = a + b là:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{2^a} = 2\sqrt 2 } \\   {{2^b} = \sqrt 2 } \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{3}{2}} \\   {b = \dfrac{1}{2}} \end{array}} ight. \Rightarrow S = 2

  • Câu 13: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 14: Vận dụng

    Tìm đạo hàm của hàm số y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} trên khoảng \left( { - \infty ;\frac{1}{3}} ight)

    Với điều kiện x < \frac{1}{3} ta có: y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} = {\left( {1 - 3x} ight)^{\frac{5}{3}}}. Khi đó:

    => y' =  - 5{\left( {1 - 3x} ight)^{\frac{2}{3}}}

  • Câu 15: Nhận biết

    Cho 0 < a e 1. Rút gọn biểu thức P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}}

    Ta có: P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}} = \frac{{{a^{12}}}}{{{a^{\frac{7}{2}}}}} = {a^{12 - \frac{7}{2}}} = {a^{\frac{{17}}{2}}}

  • Câu 16: Thông hiểu

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 17: Nhận biết

    Tìm tập xác định D của hàm số y = {\left( {{x^2} + x - 2} ight)^{ - 3}}

    Điều kiện xác định {x^2} + x - 2 e 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x e  - 2} \\   {x e 1} \end{array}} ight.

    Vậy tập xác định của hàm số là  D = \mathbb{R}\backslash \left\{ { - 2;1} ight\}

  • Câu 18: Vận dụng

    Trong các khẳng định dưới đây, khẳng định nào sai?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 2  - 1 < 1} \\   {2017 < 2018} \end{array}} ight. \Rightarrow {\left( {\sqrt 2  - 1} ight)^{2017}} > {\left( {\sqrt 2  - 1} ight)^{2018}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 3  - 1 < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {\sqrt 3  - 1} ight)^{2018}} < {\left( {\sqrt 3  - 1} ight)^{2017}}

    \left\{ {\begin{array}{*{20}{c}}  {2 > 1} \\   {\sqrt 2  + 1 > \sqrt 3 } \end{array}} ight. \Rightarrow {2^{\sqrt 2  + 1}} > {2^{\sqrt 3 }}

    \left\{ {\begin{array}{*{20}{c}}  {0 < 1 - \dfrac{{\sqrt 2 }}{2} < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2018}} < {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2017}}

    Vậy đáp án sai là: {\left( {\sqrt 3  - 1} ight)^{2018}} > {\left( {\sqrt 3  - 1} ight)^{2017}}

  • Câu 19: Vận dụng

    Cho a và b là các số thực thỏa mãn điều kiện {\left( {\frac{3}{4}} ight)^a} > {\left( {\frac{4}{5}} ight)^a}{b^{\dfrac{5}{4}}} > {b^{\dfrac{4}{3}}}. Chọn khẳng định đúng trong các khẳng định sau:

    Ta có:

    {\left( {\frac{3}{4}} ight)^a} > {\left( {\frac{4}{5}} ight)^a} \Rightarrow a < 0

    {b^{\frac{5}{4}}} > {b^{\frac{4}{3}}} \Rightarrow 0 < b < 1

  • Câu 20: Thông hiểu

    Tính đạo hàm của hàm số y = {\left( {{x^2} - 3x + 2} ight)^{\sqrt 3 }}

    Ta có:

    \begin{matrix}  y' = \sqrt 3 .{\left( {{x^2} - 3x + 2} ight)^{\sqrt 3  - 1}}.\left( {{x^2} - 3x + 1} ight)\prime \hfill \\   \Rightarrow y' = \sqrt 3 .\left( {2x - 3} ight).{\left( {{x^2} - 3x + 2} ight)^{\sqrt 3  - 1}} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Hàm số lũy thừa Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo