Cho đồ thị ba hàm số trên khoảng như hình vẽ. Mệnh đề nào sau đây đúng?

Từ đồ thị ta thấy
Với thì
Với thì
Cho đồ thị ba hàm số trên khoảng như hình vẽ. Mệnh đề nào sau đây đúng?

Từ đồ thị ta thấy
Với thì
Với thì
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có ba điểm cực trị
Tính đạo hàm của hàm số ![]()
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Tìm đạo hàm của hàm số
trên khoảng ![]()
Với điều kiện ta có:
. Khi đó:
=>
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Cho hàm số
. Cho các khẳng định sau:
i) Hàm số xác định với mọi x
ii) Đồ thị hàm số luôn đi qua điểm (1; 1)
iii) Hàm số nghịch biến trên ![]()
iv) Đồ thị hàm số có hai đường tiệm cận
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Ta có khẳng định ii) và iv) là đúng
i) Sai vì hàm số đã cho xác định khi x > 0
iii) Sai vì hàm số nghịch biến trên
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Cho hàm số
. Tính tổng
là:
Với ta có:
Nhận thấy
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Cho a và b là các số thực thỏa mãn điều kiện
và
. Chọn khẳng định đúng trong các khẳng định sau:
Ta có:
Tìm các giá trị của x để hàm số
có nghĩa:
Điều kiện xác định
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có: