Cho
. Rút gọn biểu thức 
Ta có:
Cho
. Rút gọn biểu thức 
Ta có:
Tìm đạo hàm của hàm số
trên khoảng ![]()
Với điều kiện ta có:
. Khi đó:
=>
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Rút gọn biểu thức
với x > 0
Ta có:
Cho hàm số
. Cho các khẳng định sau:
i) Hàm số xác định với mọi x
ii) Đồ thị hàm số luôn đi qua điểm (1; 1)
iii) Hàm số nghịch biến trên ![]()
iv) Đồ thị hàm số có hai đường tiệm cận
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Ta có khẳng định ii) và iv) là đúng
i) Sai vì hàm số đã cho xác định khi x > 0
iii) Sai vì hàm số nghịch biến trên
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Cho
. Tìm giá trị lớn nhất
của biểu thức
![P = {\left[ {\frac{{4a - 9{a^{ - 1}}}}{{2{a^{\frac{1}{2}}} - 3{a^{\frac{1}{2}}}}} + \frac{{a - 4 + 3{a^{ - 1}}}}{{{a^{\frac{1}{2}}} - {a^{\frac{1}{2}}}}}} ight]^2} - \frac{3}{2}{a^2}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Ta có:
Vậy
Khảo sát hàm số ta có:
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?
Ta có: A = 2, n = 7; I = 0,014
Số dân tỉnh A đến năm 2025 là triệu người.
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Cho hàm số
. Tính tổng
là:
Với ta có:
Nhận thấy
Tính đạo hàm của hàm số ![]()
Ta có:
Đồ thị hàm số
có điểm cực tiểu và điểm cực đại nằm về hai phía trục tung khi:
Ta có:
Đồ thị có điểm cực đại và cực tiểu khi và chỉ khi y’ = 0 có hai nghiệm
Theo định lí Vi – et ta có:
Hai điểm cực trị nằm về hai phía trục tung khi và chỉ khi
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Cho
. Tính ![]()
Ta có:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Tập xác định của hàm số
là:
Điều kiện xác định:
=> Tập xác định của hàm số là