Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Thu gọn biểu thức
biết a và b là hai số thực dương.
Ta có:
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Cho
. Tính ![]()
Ta có:
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Tập xác định của hàm số
là:
Điều kiện xác định:
=> Tập xác định của hàm số là
Cho hàm số
. Khẳng định nào sau đây đúng?
Đồ thị hàm số có đường tiệm cận đứng x = 1
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Cho
. Rút gọn biểu thức 
Ta có:
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho biết
. Tính
![]()
Ta có: