Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được:
Giá trị của biểu thức
bằng:
Ta có:
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Tìm mệnh đề đúng trong các mệnh đề dưới đây:
Giả sử thuộc đồ thị hàm số
Xét thuộc đồ thị hàm số
Rõ ràng
Khi đó và ta thấy rằng hai điểm M và N đối xứng với nhau qua trục Oy
Do đó đồ thị hàm số và
đối xứng nhau qua trục Oy
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Khẳng định nào dưới đây đúng?
Ta có:
Vậy đáp án đúng là:
Cho
. Rút gọn biểu thức 
Ta có:
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Tìm tập xác định D của hàm số ![]()
Điều kiện xác định
Vậy tập xác định của hàm số là
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Với a > 0 hãy rút gọn biểu thức 
Ta có: