Đề kiểm tra 15 phút Hàm số lũy thừa

Mô tả thêm: Bài kiểm tra 15 phút Hàm số lũy thừa của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y = {x^{\frac{{ - 3}}{4}}}. Khẳng định nào sau đây sai?

    Hàm số y = {x^{\frac{{ - 3}}{4}}} có các tính chất như sau:

    Đồ thị hàm số nhận trục tung làm tiệm cận đứng

    Đồ thị hàm số nhận trục hoành làm tiệm cận ngang

    Là hàm số nghịch biến trên \left( {0; + \infty } ight)

  • Câu 2: Thông hiểu

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 3: Nhận biết

    Rút gọn biểu thức P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} với x > 0

    Ta có: P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} = \frac{{{x^{\frac{1}{6}}}.{x^{\frac{4}{3}}}.{x^{\frac{5}{4}}}}}{{{x^{\frac{3}{2}}}}} = \frac{{{x^{\frac{{11}}{4}}}}}{{{x^{\frac{3}{2}}}}} = {x^{\frac{5}{4}}} 

  • Câu 4: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 5: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Cho đồ thị hàm số y = {x^{ - \sqrt 2 }}. Khẳng định nào dưới đây đúng?

     Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } y = 0 suy ra đồ thị hàm số có tiệm cận ngang là y = 0

    Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0

  • Câu 7: Vận dụng

    Khẳng định nào dưới đây đúng?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   { - 2017 >  - 2018} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{ - 2017}} > {\left( {\sqrt 5  + 2} ight)^{ - 2018}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{2018}} < {\left( {\sqrt 5  + 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    Vậy đáp án đúng là: {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

  • Câu 8: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m \in \left( { - 2018;2018} ight) để hàm số y = {\left( {{x^2} - 2x - m + 1} ight)^{\sqrt 5 }} có tập xác định \mathbb{R}?

    Vì số mũ \sqrt 5 không phải là số nguyên nên hàm số xác định với \forall x \in \mathbb{R}

    \begin{matrix}  {x^2} - 2x - m + 1 > 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\Delta ' > 0} \\   {a > 0} \end{array}} ight. \Leftrightarrow 1 - \left( {m - 1} ight) > 0 \Rightarrow m > 0 \hfill \\ \end{matrix}

    Do \left\{ {\begin{array}{*{20}{c}}  {m \in \left( { - 2018;2018} ight)} \\   {m \in \mathbb{Z}} \end{array}} ight. \Rightarrow m \in \left\{ {1;2;3;...;2017} ight\}

    Vậy có 2017 giá trị nguyên của tham số m thỏa mãn yêu cầu.

  • Câu 9: Nhận biết

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 10: Thông hiểu

    Cho một số thực \alpha tùy ý. Trong các khẳng định sau khẳng định nào đúng?

     Theo tính chất đạo hàm của hàm số lũy thừa, hàm số y = {x^\alpha } có đạo hàm với mọi x > 0 và \left( {{x^\alpha }} ight)' = \alpha {x^{\alpha  - 1}}

  • Câu 11: Vận dụng

    Trong các khẳng định dưới đây, khẳng định nào sai?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 2  - 1 < 1} \\   {2017 < 2018} \end{array}} ight. \Rightarrow {\left( {\sqrt 2  - 1} ight)^{2017}} > {\left( {\sqrt 2  - 1} ight)^{2018}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 3  - 1 < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {\sqrt 3  - 1} ight)^{2018}} < {\left( {\sqrt 3  - 1} ight)^{2017}}

    \left\{ {\begin{array}{*{20}{c}}  {2 > 1} \\   {\sqrt 2  + 1 > \sqrt 3 } \end{array}} ight. \Rightarrow {2^{\sqrt 2  + 1}} > {2^{\sqrt 3 }}

    \left\{ {\begin{array}{*{20}{c}}  {0 < 1 - \dfrac{{\sqrt 2 }}{2} < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2018}} < {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2017}}

    Vậy đáp án sai là: {\left( {\sqrt 3  - 1} ight)^{2018}} > {\left( {\sqrt 3  - 1} ight)^{2017}}

  • Câu 12: Vận dụng

    Cho biết {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}, khẳng định nào sau đây đúng?

    Điều kiện: x - 2 > 0 \to x > 2

    Ta có:

    - \frac{1}{3} >  - \frac{1}{6} \Rightarrow {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}

    \Rightarrow x - 2 < 1 \Rightarrow x < 3

    Vậy 2 < x < 3

  • Câu 13: Nhận biết

    Tập xác định của hàm số f\left( x ight) = {\left( {x - 2} ight)^{ - 1}} là:

    Điều kiện xác định của hàm số là:

    x - 2 e 0 \Rightarrow x e 2

    => Tập xác định của hàm số là: D = \mathbb{R}\backslash \left\{ 2 ight\}

  • Câu 14: Thông hiểu

    Hàm số nào sau đây nghịch biến trên tập xác định của nó?

    Ta có: y = {x^{ - \frac{5}{2}}} \Rightarrow y' =  - \frac{5}{2}.{x^{ - \frac{7}{2}}};\forall x > 0 nên hàm số nghịch biến trên tập xác định của nó.

  • Câu 15: Vận dụng

    Hàm số y = \sqrt[3]{{{{\left( {{x^2} - 2x - 3} ight)}^2}}} + 2 có bao nhiêu điểm cực trị?

    Tập xác định D = \mathbb{R}

    Ta có: y' = \frac{2}{3}.\frac{{2x - 2}}{{\sqrt[3]{{{x^2} - 2x - 3}}}};\left( {x e  - 1;x e 3} ight)

    Ta có bảng biến thiên như sau:

    Tìm số cực trị của hàm số lũy thừa

    Vậy hàm số đã cho có ba điểm cực trị

  • Câu 16: Thông hiểu

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 17: Vận dụng

    Tìm tập xác định của hàm số y = {\left( {x - 2} ight)^{\sqrt 5 }} + {\left( {{x^2} - 9} ight)^{\frac{3}{5}}} + {x^2} - 5x - 2

    Hàm số xác định khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {x - 2 > 0} \\   {{x^2} - 9 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x > 2} \\   {\left[ {\begin{array}{*{20}{c}}  {x <  - 3} \\   {x > 3} \end{array}} ight.} \end{array} \Rightarrow x > 3} ight.

    Vậy tập xác định của hàm số là: D = \left( {3; + \infty } ight)

  • Câu 18: Thông hiểu

    Cho hàm số f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} . Tính f'\left( 2 ight)

    Tập xác định \left( {\frac{2}{3}; + \infty } ight)

    Ta có: f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} \Rightarrow f'\left( x ight) = \frac{5}{3}.{\left( {2x - 3} ight)^{\frac{{ - 1}}{6}}} \Rightarrow f'\left( 2 ight) = \frac{5}{3}

  • Câu 19: Nhận biết

    Trong các biểu thức sau, biểu thức nào có nghĩa?

    Tập xác định của hàm số y = {x^\alpha } tùy thuộc vào \alpha

    Với \alpha nguyên dương, tập xác định \mathbb{R} 

    Với \alpha nguyên âm hoặc bằng 0, tập xác định \mathbb{R}\backslash \left\{ 0 ight\}

    Với \alpha không nguyên, tập xác định là \left( {0; + \infty } ight)

    Ta có: {\left( { - 3} ight)^{ - 6}}\alpha  =  - 6 là số nguyên âm nên cơ số x e 0

    => {\left( { - 3} ight)^{ - 6}} có nghĩa

  • Câu 20: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Hàm số lũy thừa Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo