Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Cho hình vuông
có cạnh bằng 1,
là hình vuông có các đỉnh là các trung điểm của cạnh hình vuông
. Tương tự, gọi
là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông
. Tiếp tục như vậy ta được một dãy các hình vuông
Gọi
là tổng diện tích của 10 hình vuông đầu tiên của dãy. Tính
.
Đáp án: 1023
Cho hình vuông có cạnh bằng 1,
là hình vuông có các đỉnh là các trung điểm của cạnh hình vuông
. Tương tự, gọi
là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông
. Tiếp tục như vậy ta được một dãy các hình vuông
Gọi
là tổng diện tích của 10 hình vuông đầu tiên của dãy. Tính
.
Đáp án: 1023
Hình vẽ minh họa
Diện tích của hình vuông là 1.
Độ dài đường chéo hình vuông là
.
Hình vuông có cạnh bằng
đường chéo hình vuông
.
Diện tích của hình vuông
là
Hình vuông có cạnh bằng
đường chéo hình vuông
.
Diện tích của hình vuông
là
………………….
Hình vuông có cạnh bằng
đường chéo hình vuông
.
Diện tích của hình vuông
là
Do đó, dãy diện tích các hình vuông lập thành cấp số nhân với số hạng đầu
Đáp án: 1023
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Cho hàm số
. Tính ![]()
Ta có:
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng?
Đồ thị hàm số có đường tiệm cận đứng x = 1
Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Đạo hàm của hàm số ![]()
Ta có:
Rút gọn biểu thức
với x > 0
Ta có:
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Cho
. Rút gọn biểu thức 
Ta có:
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Cho a và b là các số thực thỏa mãn điều kiện
và
. Chọn khẳng định đúng trong các khẳng định sau:
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Cho hàm số
. Tập xác định của hàm số đã cho là:
Điều kiện xác đinh:
=> Tập xác định của hàm số là:
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Cho hàm số
. Tính tổng
là:
Với ta có:
Nhận thấy