Đề kiểm tra 15 phút Hàm số lũy thừa

Mô tả thêm: Bài kiểm tra 15 phút Hàm số lũy thừa của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y = {x^\pi }. Tính y''\left( 1 ight)

    Ta có:

    \begin{matrix}  y' = \pi .{x^{\pi  - 1}} \Rightarrow y'' = \pi \left( {\pi  - 1} ight).{x^{\pi  - 2}} \hfill \\  y''\left( 1 ight) = \pi \left( {\pi  - 1} ight) \hfill \\ \end{matrix}

  • Câu 2: Nhận biết

    Tìm tập xác định D của hàm số y = {\left( {{x^2} + x - 2} ight)^{ - 3}}

    Điều kiện xác định {x^2} + x - 2 e 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x e  - 2} \\   {x e 1} \end{array}} ight.

    Vậy tập xác định của hàm số là  D = \mathbb{R}\backslash \left\{ { - 2;1} ight\}

  • Câu 3: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Cho đồ thị hàm số y = {x^{ - \sqrt 2 }}. Khẳng định nào dưới đây đúng?

     Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } y = 0 suy ra đồ thị hàm số có tiệm cận ngang là y = 0

    Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0

  • Câu 5: Thông hiểu

    Hàm số nào sau đây nghịch biến trên tập xác định của nó?

    Ta có: y = {x^{ - \frac{5}{2}}} \Rightarrow y' =  - \frac{5}{2}.{x^{ - \frac{7}{2}}};\forall x > 0 nên hàm số nghịch biến trên tập xác định của nó.

  • Câu 6: Nhận biết

    Cho 0 < a e 1 và biểu thức \sqrt {a.\sqrt[3]{a}} viết dưới dạng {a^n}. Giá trị của n là:

    Ta có:

    \sqrt {a.\sqrt[3]{a}}  = {\left( {a.{a^{\frac{1}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{2}{3}}}

    Vậy n = \frac{2}{3}

  • Câu 7: Thông hiểu

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 8: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 9: Vận dụng

    Cho a và b là các số thực thỏa mãn điều kiện {\left( {\frac{3}{4}} ight)^a} > {\left( {\frac{4}{5}} ight)^a}{b^{\dfrac{5}{4}}} > {b^{\dfrac{4}{3}}}. Chọn khẳng định đúng trong các khẳng định sau:

    Ta có:

    {\left( {\frac{3}{4}} ight)^a} > {\left( {\frac{4}{5}} ight)^a} \Rightarrow a < 0

    {b^{\frac{5}{4}}} > {b^{\frac{4}{3}}} \Rightarrow 0 < b < 1

  • Câu 10: Nhận biết

    Cho hàm số y = {\left( {{x^2} - 2x + 1} ight)^{\frac{1}{3}}}. Tập xác định của hàm số đã cho là:

    Điều kiện xác đinh: {x^2} - 2x + 1 > 0 \Rightarrow x e 1

    => Tập xác định của hàm số là: D = \mathbb{R}\backslash \left\{ 1 ight\}

  • Câu 11: Thông hiểu

    Thu gọn biểu thức T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} biết a và b là hai số thực dương.

    Ta có: T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} = \left( {{a^{\frac{7}{6}}}:{a^{\frac{1}{6}}}} ight).\left( {{b^{\frac{{ - 2}}{3}}}:{b^{\frac{2}{6}}}} ight) = \frac{a}{b}

  • Câu 12: Thông hiểu

    Tính đạo hàm của hàm số y = {\left( {{x^2} - 3x + 2} ight)^{\sqrt 3 }}

    Ta có:

    \begin{matrix}  y' = \sqrt 3 .{\left( {{x^2} - 3x + 2} ight)^{\sqrt 3  - 1}}.\left( {{x^2} - 3x + 1} ight)\prime \hfill \\   \Rightarrow y' = \sqrt 3 .\left( {2x - 3} ight).{\left( {{x^2} - 3x + 2} ight)^{\sqrt 3  - 1}} \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Cho a là một số dương, biểu thức {a^{\frac{2}{3}}}.\sqrt a viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: {a^{\frac{2}{3}}}.\sqrt a  = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{7}{6}}}

  • Câu 14: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m \in \left( { - 2018;2018} ight) để hàm số y = {\left( {{x^2} - 2x - m + 1} ight)^{\sqrt 5 }} có tập xác định \mathbb{R}?

    Vì số mũ \sqrt 5 không phải là số nguyên nên hàm số xác định với \forall x \in \mathbb{R}

    \begin{matrix}  {x^2} - 2x - m + 1 > 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\Delta ' > 0} \\   {a > 0} \end{array}} ight. \Leftrightarrow 1 - \left( {m - 1} ight) > 0 \Rightarrow m > 0 \hfill \\ \end{matrix}

    Do \left\{ {\begin{array}{*{20}{c}}  {m \in \left( { - 2018;2018} ight)} \\   {m \in \mathbb{Z}} \end{array}} ight. \Rightarrow m \in \left\{ {1;2;3;...;2017} ight\}

    Vậy có 2017 giá trị nguyên của tham số m thỏa mãn yêu cầu.

  • Câu 15: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 16: Vận dụng

    Cho hình vẽ sau là đồ thị của ba hàm số y = {x^\alpha };y = {x^\beta };y = {x^\gamma } với x > 0\alpha ;\beta ;\gamma là các số thực cho trước, mệnh đề nào sau đây đúng?

    Chọn mệnh đề đúng

    Hàm số {x^\alpha } nghịch biến trên \alpha  < 0

    Các hàm số y = {x^\beta };y = {x^\gamma } đồng biến nên \beta ;\gamma  > 0

    Tại x = 3 thì {3^\beta } > {3^\gamma } \Rightarrow \beta  > \gamma

  • Câu 17: Vận dụng

    Tìm tập xác định của hàm số y = \sqrt {4 - {x^2}}  + \sqrt[3]{{\frac{{x + 1}}{{x - 1}}}} + x + 1

    Hàm số xác định khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {4 - {x^2} \geqslant 0} \\   {x e 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 2 \leqslant x \leqslant 2} \\   {x e 1} \end{array}} ight.

    Vậy tập xác định của hàm số là D = \left[ { - 2;2} ight]\backslash \left\{ 1 ight\}

  • Câu 18: Vận dụng

    Cho biết {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}, khẳng định nào sau đây đúng?

    Điều kiện: x - 2 > 0 \to x > 2

    Ta có:

    - \frac{1}{3} >  - \frac{1}{6} \Rightarrow {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}

    \Rightarrow x - 2 < 1 \Rightarrow x < 3

    Vậy 2 < x < 3

  • Câu 19: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 20: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Hàm số lũy thừa Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo