Đề kiểm tra 15 phút Hàm số lũy thừa

Mô tả thêm: Bài kiểm tra 15 phút Hàm số lũy thừa của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho a và b là các số thực thỏa mãn {3.2^a} + {2^b} = 7\sqrt 2{5.2^n} - {2^b} = 9\sqrt 2. Giá trị biểu thức S = a + b là:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{2^a} = 2\sqrt 2 } \\   {{2^b} = \sqrt 2 } \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{3}{2}} \\   {b = \dfrac{1}{2}} \end{array}} ight. \Rightarrow S = 2

  • Câu 2: Vận dụng cao

    Cho biết f\left( n ight) = \frac{{{2^n}}}{{{2^n} + 1}};\left( {n \in \mathbb{Z}} ight). Tính

    S = f\left( { - 100} ight) + f\left( { - 99} ight) + ... + f\left( { - 1} ight) + f\left( 0 ight) + f\left( 1 ight) + ... + f\left( {1000} ight)

    Ta có: 

    \begin{matrix}  f\left( n ight) + f\left( { - n} ight) = \dfrac{{{2^n}}}{{{2^n} + 1}} + \dfrac{{{2^{ - n}}}}{{{2^{ - n}} + 1}} = 1 \hfill \\   \Rightarrow S = \left[ {f\left( {1000} ight) + f\left( { - 1000} ight)} ight] + ... + \left[ {f\left( 1 ight) + f\left( { - 1} ight)} ight] + \dfrac{1}{2} = \dfrac{{2001}}{2} \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Tập xác định của hàm số f\left( x ight) = {\left( {x - 2} ight)^{ - 1}} là:

    Điều kiện xác định của hàm số là:

    x - 2 e 0 \Rightarrow x e 2

    => Tập xác định của hàm số là: D = \mathbb{R}\backslash \left\{ 2 ight\}

  • Câu 4: Thông hiểu

    Tính đạo hàm của hàm số y = \left( {{x^2} + 2x - 2} ight){.5^x}

     Ta có:

    \begin{matrix}  y' = \left( {{x^2} + 2x - 2} ight)'{.5^x} + \left( {{5^x}} ight)'.\left( {{x^2} + 2x - 2} ight) \hfill \\   \Rightarrow y' = \left( {2x + 2} ight){.5^x} + \left( {{x^2} + 2x - 2} ight){.5^x}.\ln 5 \hfill \\ \end{matrix}

  • Câu 5: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Cho hàm số f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} . Tính f'\left( 2 ight)

    Tập xác định \left( {\frac{2}{3}; + \infty } ight)

    Ta có: f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} \Rightarrow f'\left( x ight) = \frac{5}{3}.{\left( {2x - 3} ight)^{\frac{{ - 1}}{6}}} \Rightarrow f'\left( 2 ight) = \frac{5}{3}

  • Câu 7: Nhận biết

    Cho 0 < a e 1 và biểu thức \sqrt {a.\sqrt[3]{a}} viết dưới dạng {a^n}. Giá trị của n là:

    Ta có:

    \sqrt {a.\sqrt[3]{a}}  = {\left( {a.{a^{\frac{1}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{2}{3}}}

    Vậy n = \frac{2}{3}

  • Câu 8: Thông hiểu

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} có tập xác định là:

    Hàm số y = {x^\alpha } có số mũ nguyên âm xác định khi

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} xác định khi 4{x^2} - 1 e 0 \Leftrightarrow x e  \pm \frac{1}{2}

    Vậy tập xác định là: D = \mathbb{R}\backslash \left\{ { - \frac{1}{2};\frac{1}{2}} ight\}

  • Câu 9: Thông hiểu

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 10: Thông hiểu

    Cho hàm số y = {x^\pi }. Tính y''\left( 1 ight)

    Ta có:

    \begin{matrix}  y' = \pi .{x^{\pi  - 1}} \Rightarrow y'' = \pi \left( {\pi  - 1} ight).{x^{\pi  - 2}} \hfill \\  y''\left( 1 ight) = \pi \left( {\pi  - 1} ight) \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Viết biểu thức \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có: 

    \begin{matrix}  A = \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} = {\left( {a\sqrt {{a^{\frac{3}{2}}}} } ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} \hfill \\   = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{4}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{7}{8}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{{23}}{{24}}}} \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Rút gọn biểu thức P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} với x > 0

    Ta có: P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} = \frac{{{x^{\frac{1}{6}}}.{x^{\frac{4}{3}}}.{x^{\frac{5}{4}}}}}{{{x^{\frac{3}{2}}}}} = \frac{{{x^{\frac{{11}}{4}}}}}{{{x^{\frac{3}{2}}}}} = {x^{\frac{5}{4}}} 

  • Câu 14: Vận dụng cao

    Cho P = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}}Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}} với x và y là các số thực khác 0. So sánh P và Q?

    Ta có: {x^2};{y^2};\sqrt[3]{{{x^4}{y^2}}};\sqrt[3]{{{x^2}{y^4}}} là những số thực dương

    Ta lại có:

    \begin{matrix}  Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}}  \hfill \\   = 2\sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   = \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  + \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  = P \hfill \\   \Rightarrow P < Q \hfill \\ \end{matrix}

  • Câu 15: Vận dụng

    Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?

    Ta có: A = 2, n = 7; I = 0,014

    Số dân tỉnh A đến năm 2025 là S = 2.{e^{7.0,014}} \approx 2,2059 triệu người.

  • Câu 16: Vận dụng

    Cho f\left( x ight) = \sqrt {1 + 3x}  - \sqrt[3]{{1 + 2x}};g\left( x ight) = \sin x. Tính giá trị của biểu thức \frac{{f'\left( 0 ight)}}{{g'\left( 0 ight)}}

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {f'\left( x ight) = \dfrac{3}{{2\sqrt {1 + 3x} }} - \dfrac{2}{{3\sqrt[3]{{{{\left( {1 + 2x} ight)}^2}}}}} \Rightarrow f'\left( 0 ight) = \dfrac{5}{6}} \\   {g'\left( x ight) = \cos x \Rightarrow g'\left( 0 ight) = 1} \end{array}} ight. \hfill \\   \Rightarrow \frac{{f'\left( 0 ight)}}{{g'\left( 0 ight)}} = \dfrac{5}{6} \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Tìm tập xác định D của hàm số y = {\left( {{x^2} + x - 2} ight)^{ - 3}}

    Điều kiện xác định {x^2} + x - 2 e 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x e  - 2} \\   {x e 1} \end{array}} ight.

    Vậy tập xác định của hàm số là  D = \mathbb{R}\backslash \left\{ { - 2;1} ight\}

  • Câu 18: Thông hiểu

    Cho một số thực \alpha tùy ý. Trong các khẳng định sau khẳng định nào đúng?

     Theo tính chất đạo hàm của hàm số lũy thừa, hàm số y = {x^\alpha } có đạo hàm với mọi x > 0 và \left( {{x^\alpha }} ight)' = \alpha {x^{\alpha  - 1}}

  • Câu 19: Vận dụng

    Cho {4^x} + {4^{ - x}} = 34. Tính giá trị của biểu thức T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}}

    Ta có:

    \begin{matrix}  {4^x} + {4^{ - x}} = 34 \hfill \\   \Rightarrow {2^{2x}} + 2 + {2^{ - 2x}} = 36 \hfill \\   \Rightarrow {\left( {{2^x} + {2^{ - x}}} ight)^2} = 36 \hfill \\   \Rightarrow {2^x} + {2^{ - x}} = 6;\left( {{2^x} + {2^{ - x}} > 0} ight) \hfill \\ \end{matrix}

    Khi đó ta được:

    T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}} = \frac{{6 - 3}}{{1 - 2\left( {{2^x} + {2^{ - x}}} ight)}} = \frac{3}{{1 - 2.6}} = \frac{{ - 3}}{{11}}

  • Câu 20: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Hàm số lũy thừa Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo