Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Khẳng định nào dưới đây đúng?
Ta có:
Vậy đáp án đúng là:
Giá trị của biểu thức
bằng:
Ta có:
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Tập xác định của hàm số
là:
Điều kiện xác định:
=> Tập xác định của hàm số là
Cho hàm số
. Tính ![]()
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng?
Đồ thị hàm số có đường tiệm cận đứng x = 1
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Cho a và b là các số thực thỏa mãn điều kiện
và
. Chọn khẳng định đúng trong các khẳng định sau:
Ta có:
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Cho hàm số
. Tính ![]()
Ta có:
=>
Cho
, viết
về dạng
và
về dạng
. Tình giá trị biểu thức ![]()
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có: