Tính đạo hàm của hàm số ![]()
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Giá trị của biểu thức
là:
Ta có:
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được:
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có ba điểm cực trị
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Tập xác định của hàm số
là:
Điều kiện xác định:
=> Tập xác định của hàm số là
Tập xác định của hàm số
là:
Hàm số xác định khi
Vậy tập xác định của hàm số là
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Cho hình vuông
có cạnh bằng 1,
là hình vuông có các đỉnh là các trung điểm của cạnh hình vuông
. Tương tự, gọi
là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông
. Tiếp tục như vậy ta được một dãy các hình vuông
Gọi
là tổng diện tích của 10 hình vuông đầu tiên của dãy. Tính
.
Đáp án: 1023
Cho hình vuông có cạnh bằng 1,
là hình vuông có các đỉnh là các trung điểm của cạnh hình vuông
. Tương tự, gọi
là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông
. Tiếp tục như vậy ta được một dãy các hình vuông
Gọi
là tổng diện tích của 10 hình vuông đầu tiên của dãy. Tính
.
Đáp án: 1023
Hình vẽ minh họa
Diện tích của hình vuông là 1.
Độ dài đường chéo hình vuông là
.
Hình vuông có cạnh bằng
đường chéo hình vuông
.
Diện tích của hình vuông
là
Hình vuông có cạnh bằng
đường chéo hình vuông
.
Diện tích của hình vuông
là
………………….
Hình vuông có cạnh bằng
đường chéo hình vuông
.
Diện tích của hình vuông
là
Do đó, dãy diện tích các hình vuông lập thành cấp số nhân với số hạng đầu
Đáp án: 1023
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có: