Đề kiểm tra 15 phút Hàm số lũy thừa

Mô tả thêm: Bài kiểm tra 15 phút Hàm số lũy thừa của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số f\left( x ight) = \frac{{{2^x}}}{{{x^x} + 2}}. Tính tổng f\left( 0 ight) + f\left( {\frac{1}{{10}}} ight) + ... + f\left( {\frac{{18}}{{10}}} ight) + f\left( {\frac{{19}}{{10}}} ight) là:

    Với a + b = 2 ta có:

    f\left( a ight) + f\left( b ight) = \frac{{{2^a}}}{{{2^a} + 2}} + \frac{{{2^b}}}{{{2^b} + 2}} = \frac{{{{2.2}^{a + b}} + {{2.2}^a} + {{2.2}^b}}}{{{2^{a + b}} + {{2.2}^a} + {{2.2}^b} + 4}} = 1

    Nhận thấy \frac{1}{{10}} + \frac{{19}}{{10}} = 2... \Rightarrow P = f\left( 0 ight) + f\left( 1 ight) + 9.1 = \frac{{59}}{6}

  • Câu 2: Thông hiểu

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 3: Vận dụng cao

    Cho hình vuông C_{1} có cạnh bằng 1, C_{2} là hình vuông có các đỉnh là các trung điểm của cạnh hình vuông C_{1}. Tương tự, gọi C_{3} là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông C_{2}. Tiếp tục như vậy ta được một dãy các hình vuông C_{1},C_{2},C_{3},...,C_{n},... Gọi S_{10} là tổng diện tích của 10 hình vuông đầu tiên của dãy. Tính 512S_{10}.

    Đáp án: 1023

    Đáp án là:

    Cho hình vuông C_{1} có cạnh bằng 1, C_{2} là hình vuông có các đỉnh là các trung điểm của cạnh hình vuông C_{1}. Tương tự, gọi C_{3} là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông C_{2}. Tiếp tục như vậy ta được một dãy các hình vuông C_{1},C_{2},C_{3},...,C_{n},... Gọi S_{10} là tổng diện tích của 10 hình vuông đầu tiên của dãy. Tính 512S_{10}.

    Đáp án: 1023

    Hình vẽ minh họa

    Diện tích của hình vuông C_{1} là 1.

    Độ dài đường chéo hình vuông C_{1} \sqrt{2}.

    Hình vuông C_{2} có cạnh bằng \frac{1}{2}đường chéo hình vuông C_{1}.

    \RightarrowDiện tích của hình vuông C_{2}\left( \frac{\sqrt{2}}{2} ight)^{2}

    Hình vuông C_{3} có cạnh bằng \frac{1}{2}đường chéo hình vuông C_{2}.

    \RightarrowDiện tích của hình vuông C_{3}\left( \frac{\sqrt{2}}{2} ight)^{4}

    ………………….

    Hình vuông C_{n} có cạnh bằng \frac{1}{2}đường chéo hình vuông C_{n - 1}.

    \RightarrowDiện tích của hình vuông C_{n}\left( \frac{\sqrt{2}}{2} ight)^{2(n -
1)}

    Do đó, dãy diện tích các hình vuông C_{1},C_{2},C_{3},...,C_{n},...lập thành cấp số nhân với số hạng đầu u_{1} = 1,q =
\left( \frac{\sqrt{2}}{2} ight)^{2} = \frac{1}{2}

    \Rightarrow S_{10} = u_{1}.\frac{1 -
q^{10}}{1 - q} = \frac{1023}{512} \Rightarrow 512S_{10} =
1023

    Đáp án: 1023

  • Câu 4: Vận dụng cao

    Cho a \geqslant 0;a e 1;a e \frac{3}{2}. Tìm giá trị lớn nhất {P_{\max }} của biểu thức

    P = {\left[ {\frac{{4a - 9{a^{ - 1}}}}{{2{a^{\frac{1}{2}}} - 3{a^{\frac{1}{2}}}}} + \frac{{a - 4 + 3{a^{ - 1}}}}{{{a^{\frac{1}{2}}} - {a^{\frac{1}{2}}}}}} ight]^2} - \frac{3}{2}{a^2}

    Ta có:

    \begin{matrix}  P = {\left[ {\dfrac{{4a - 9{a^{ - 1}}}}{{2{a^{\frac{1}{2}}} - 3{a^{\frac{1}{2}}}}} + \dfrac{{a - 4 + 3{a^{ - 1}}}}{{{a^{\frac{1}{2}}} - {a^{\frac{1}{2}}}}}} ight]^2} - \dfrac{3}{2}{a^2} \hfill \\  P = {\left[ {\dfrac{{4{a^2} - 9}}{{a.\frac{{\left( {2a - 3} ight)}}{{{a^{\frac{1}{2}}}}}}} + \dfrac{{{a^2} - 4a + 3}}{{a.\frac{{\left( {a - 1} ight)}}{{{a^{\frac{1}{2}}}}}}}} ight]^2} - \dfrac{3}{2}{a^2} \hfill \\  P = {\left[ {\dfrac{{\left( {2a + 3} ight)\left( {2a - 3} ight)}}{{2{a^{\frac{1}{2}}} - 3{a^{\frac{1}{2}}}}} + \dfrac{{\left( {a - 1} ight)\left( {a - 3} ight)}}{{{a^{\frac{1}{2}}}\left( {a - 1} ight)}}} ight]^2} - \dfrac{3}{2}{a^2} \hfill \\  P = {\left[ {\dfrac{{\left( {2a + 3} ight) + \left( {a + 3} ight)}}{{{a^{\frac{1}{2}}}}}} ight]^2} - \dfrac{3}{2}{a^2} \hfill \\  P = 9a - \dfrac{3}{2}{a^2} = f\left( a ight) \hfill \\ \end{matrix}

    Ta có: f'\left( a ight) = 9 - 3a;\left( {a \geqslant 0;a e 1;a e \frac{3}{2}} ight)

    Vậy f'\left( a ight) = 0 \Rightarrow a = 3

    Khảo sát hàm số ta có: {P_{\max }} = f\left( 3 ight) = \frac{{27}}{2}

  • Câu 5: Thông hiểu

    Với a là một số thực dương thì biểu thức P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} được rút gọn là:

    Ta có: P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}

  • Câu 6: Thông hiểu

    Cho hàm số y = {x^{\frac{{ - 3}}{4}}}. Khẳng định nào sau đây sai?

    Hàm số y = {x^{\frac{{ - 3}}{4}}} có các tính chất như sau:

    Đồ thị hàm số nhận trục tung làm tiệm cận đứng

    Đồ thị hàm số nhận trục hoành làm tiệm cận ngang

    Là hàm số nghịch biến trên \left( {0; + \infty } ight)

  • Câu 7: Vận dụng

    Cho {9^x} + {9^{ - x}} = 14;\frac{{6 + 3.\left( {{3^x} + {3^{ - x}}} ight)}}{{2 - {3^{x + 1}} - {3^{1 - x}}}} = \frac{a}{b}; (\frac{a}{b} là phân số tối giản). Tính giá trị biểu thức P = ab.

    Ta có:

    \begin{matrix}  {\left( {{3^x} + {3^{ - x}}} ight)^2} = 14 + 2 = 16 \hfill \\   \Rightarrow {3^x} + {3^{ - x}} = 4 \hfill \\   \Rightarrow \dfrac{a}{b} = \dfrac{{6 + 3.4}}{{2 - 3.4}} =  - \dfrac{9}{5} \hfill \\   \Rightarrow P =  - 45 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Tìm tập xác định D của hàm số y = {\left( {{x^2} + x - 2} ight)^{ - 3}}

    Điều kiện xác định {x^2} + x - 2 e 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x e  - 2} \\   {x e 1} \end{array}} ight.

    Vậy tập xác định của hàm số là  D = \mathbb{R}\backslash \left\{ { - 2;1} ight\}

  • Câu 9: Thông hiểu

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 10: Thông hiểu

    Tính đạo hàm của hàm số y = \left( {{x^2} + 2x - 2} ight){.5^x}

     Ta có:

    \begin{matrix}  y' = \left( {{x^2} + 2x - 2} ight)'{.5^x} + \left( {{5^x}} ight)'.\left( {{x^2} + 2x - 2} ight) \hfill \\   \Rightarrow y' = \left( {2x + 2} ight){.5^x} + \left( {{x^2} + 2x - 2} ight){.5^x}.\ln 5 \hfill \\ \end{matrix}

  • Câu 11: Vận dụng

    Cho hình vẽ sau là đồ thị của ba hàm số y = {x^\alpha };y = {x^\beta };y = {x^\gamma } với x > 0\alpha ;\beta ;\gamma là các số thực cho trước, mệnh đề nào sau đây đúng?

    Chọn mệnh đề đúng

    Hàm số {x^\alpha } nghịch biến trên \alpha  < 0

    Các hàm số y = {x^\beta };y = {x^\gamma } đồng biến nên \beta ;\gamma  > 0

    Tại x = 3 thì {3^\beta } > {3^\gamma } \Rightarrow \beta  > \gamma

  • Câu 12: Nhận biết

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

  • Câu 13: Vận dụng

    Cho biểu thức P = {\left\{ {{a^{\frac{1}{3}}}.{{\left[ {{a^{\frac{{ - 1}}{2}}}.{b^{\frac{{ - 1}}{3}}}.{{\left( {{a^2}{b^2}} ight)}^{\frac{2}{3}}}} ight]}^{\frac{{ - 1}}{2}}}} ight\}^6} với a và b là các số thực dương. Khẳng định nào sau đây là đúng?

     Thực hiện thu gọn biểu thức như sau:

    \begin{matrix}  P = {\left\{ {{a^{\frac{1}{3}}}.{{\left[ {{a^{\frac{{ - 1}}{2}}}.{b^{\frac{{ - 1}}{3}}}.{{\left( {{a^2}{b^2}} ight)}^{\frac{2}{3}}}} ight]}^{\frac{{ - 1}}{2}}}} ight\}^6} \hfill \\  P = {\left\{ {{a^{\frac{1}{3}}}.{{\left[ {{a^{\frac{{ - 1}}{2}}}.{b^{\frac{{ - 1}}{3}}}.\left( {{a^{\frac{4}{3}}}{b^{\frac{4}{3}}}} ight)} ight]}^{\frac{{ - 1}}{2}}}} ight\}^6} \hfill \\  P = {\left\{ {{a^{\frac{1}{3}}}.{{\left[ {{a^{\frac{5}{6}}}.b} ight]}^{\frac{{ - 1}}{2}}}} ight\}^6} \hfill \\  P = {\left\{ {{a^{\frac{1}{3}}}.{a^{\frac{{ - 5}}{{12}}}}.{b^{\frac{{ - 1}}{2}}}} ight\}^6} \hfill \\  P = {\left\{ {{a^{\frac{{ - 1}}{{12}}}}.{b^{\frac{{ - 1}}{2}}}} ight\}^6} \hfill \\  P = {a^{\frac{{ - 1}}{2}}}.{b^{ - 3}} = \dfrac{1}{{{b^3}\sqrt a }} = \dfrac{{\sqrt a }}{{a{b^3}}} \hfill \\ \end{matrix}

  • Câu 14: Vận dụng

    Cho biết {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}, khẳng định nào sau đây đúng?

    Điều kiện: x - 2 > 0 \to x > 2

    Ta có:

    - \frac{1}{3} >  - \frac{1}{6} \Rightarrow {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}

    \Rightarrow x - 2 < 1 \Rightarrow x < 3

    Vậy 2 < x < 3

  • Câu 15: Thông hiểu

    Hàm số nào sau đây nghịch biến trên tập xác định của nó?

    Ta có: y = {x^{ - \frac{5}{2}}} \Rightarrow y' =  - \frac{5}{2}.{x^{ - \frac{7}{2}}};\forall x > 0 nên hàm số nghịch biến trên tập xác định của nó.

  • Câu 16: Thông hiểu

    Viết biểu thức \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có: 

    \begin{matrix}  A = \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} = {\left( {a\sqrt {{a^{\frac{3}{2}}}} } ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} \hfill \\   = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{4}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{7}{8}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{{23}}{{24}}}} \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Cho 0 < a e 1. Rút gọn biểu thức P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}}

    Ta có: P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}} = \frac{{{a^{12}}}}{{{a^{\frac{7}{2}}}}} = {a^{12 - \frac{7}{2}}} = {a^{\frac{{17}}{2}}}

  • Câu 18: Nhận biết

    Rút gọn biểu thức P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} với x > 0

    Ta có: P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} = \frac{{{x^{\frac{1}{6}}}.{x^{\frac{4}{3}}}.{x^{\frac{5}{4}}}}}{{{x^{\frac{3}{2}}}}} = \frac{{{x^{\frac{{11}}{4}}}}}{{{x^{\frac{3}{2}}}}} = {x^{\frac{5}{4}}} 

  • Câu 19: Nhận biết

    Cho hàm số y = {\left( {{x^2} - 2x + 1} ight)^{\frac{1}{3}}}. Tập xác định của hàm số đã cho là:

    Điều kiện xác đinh: {x^2} - 2x + 1 > 0 \Rightarrow x e 1

    => Tập xác định của hàm số là: D = \mathbb{R}\backslash \left\{ 1 ight\}

  • Câu 20: Thông hiểu

    Cho đồ thị hàm số y = {x^{ - \sqrt 2 }}. Khẳng định nào dưới đây đúng?

     Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } y = 0 suy ra đồ thị hàm số có tiệm cận ngang là y = 0

    Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Hàm số lũy thừa Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo