Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Giá trị của biểu thức
là:
Ta có:
Tập xác định của hàm số
là:
Điều kiện xác định:
=> Tập xác định của hàm số là
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Cho hình vuông
có cạnh bằng 1,
là hình vuông có các đỉnh là các trung điểm của cạnh hình vuông
. Tương tự, gọi
là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông
. Tiếp tục như vậy ta được một dãy các hình vuông
Gọi
là tổng diện tích của 10 hình vuông đầu tiên của dãy. Tính
.
Đáp án: 1023
Cho hình vuông có cạnh bằng 1,
là hình vuông có các đỉnh là các trung điểm của cạnh hình vuông
. Tương tự, gọi
là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông
. Tiếp tục như vậy ta được một dãy các hình vuông
Gọi
là tổng diện tích của 10 hình vuông đầu tiên của dãy. Tính
.
Đáp án: 1023
Hình vẽ minh họa
Diện tích của hình vuông là 1.
Độ dài đường chéo hình vuông là
.
Hình vuông có cạnh bằng
đường chéo hình vuông
.
Diện tích của hình vuông
là
Hình vuông có cạnh bằng
đường chéo hình vuông
.
Diện tích của hình vuông
là
………………….
Hình vuông có cạnh bằng
đường chéo hình vuông
.
Diện tích của hình vuông
là
Do đó, dãy diện tích các hình vuông lập thành cấp số nhân với số hạng đầu
Đáp án: 1023
Cho
. Rút gọn biểu thức 
Ta có:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Tìm các giá trị của x để hàm số
có nghĩa:
Điều kiện xác định
Tính đạo hàm của hàm số ![]()
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và