Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Bố bạn Nam gửi 15000 USD vào trong ngân hàng theo hình thức lãi kép với lãi suất 0,73% một tháng để dành cho Nam học đại học. Nếu cuối cùng mỗi tháng kể từ ngày gửi Nam rút tiền đều đặn 300USSD (trừ tháng cuối) thì sai bao nhiêu tháng số tiền để dành cho Nam sẽ được rút hết? (tháng cuối là tháng mà số tiền còn trong ngân hàng không vượt 300USSD và khi đó Nam rút hết toàn bộ số tiền còn lại).
Gọi An là số tiền còn lại sau khi nam rút đến tháng thứ n, A là số tiền gủi vào, r là lãi suất hàng tháng và X là số tiền rút ra hàng tháng
Ta có:
Vậy
Áp dụng vào bài toán ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Cho hàm số
. Tính tổng
là:
Với ta có:
Nhận thấy
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Cho hàm số
. Khẳng định nào sau đây đúng?
Đồ thị hàm số có đường tiệm cận đứng x = 1
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là: