Tập xác định của hàm số
là:
Hàm số xác định khi
Vậy tập xác định của hàm số là
Tập xác định của hàm số
là:
Hàm số xác định khi
Vậy tập xác định của hàm số là
Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?
Ta có: A = 2, n = 7; I = 0,014
Số dân tỉnh A đến năm 2025 là triệu người.
Cho
. Rút gọn biểu thức 
Ta có:
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có ba điểm cực trị
Khẳng định nào dưới đây đúng?
Ta có:
Vậy đáp án đúng là:
Thu gọn biểu thức
biết a và b là hai số thực dương.
Ta có:
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Rút gọn biểu thức
với x > 0
Ta có:
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Có bao nhiêu giá trị nguyên của m để hàm số
xác định với mọi
?
Hàm số xác định với mọi
=>
Vì m nguyên nên
Vậy có tất cả 7 giá trị của m thỏa mãn điều kiện đề bài.
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Giá trị của biểu thức
bằng:
Ta có:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có: