Cho a và b là các số thực thỏa mãn điều kiện
và
. Chọn khẳng định đúng trong các khẳng định sau:
Ta có:
Cho a và b là các số thực thỏa mãn điều kiện
và
. Chọn khẳng định đúng trong các khẳng định sau:
Ta có:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Giá trị của biểu thức
là:
Ta có:
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Cho hàm số
. Tính tổng
là:
Với ta có:
Nhận thấy
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Cho hàm số
. Tập xác định của hàm số đã cho là:
Điều kiện xác đinh:
=> Tập xác định của hàm số là:
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Đạo hàm của hàm số ![]()
Ta có:
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Cho hàm số
. Tính ![]()
Ta có:
=>
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Cho
. Tính ![]()
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Tìm đạo hàm của hàm số
trên khoảng ![]()
Với điều kiện ta có:
. Khi đó:
=>
Cho hàm số
. Tính ![]()
Ta có:
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi