Đề kiểm tra 15 phút Hàm số lũy thừa

Mô tả thêm: Bài kiểm tra 15 phút Hàm số lũy thừa của chúng tôi gồm 4 mức độ được thay đổi ngẫu nhiên, giúp bạn đọc rèn luyện củng cố kiến thức tốt hơn.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính đạo hàm của hàm số y = \left( {{x^2} + 2x - 2} ight){.5^x}

     Ta có:

    \begin{matrix}  y' = \left( {{x^2} + 2x - 2} ight)'{.5^x} + \left( {{5^x}} ight)'.\left( {{x^2} + 2x - 2} ight) \hfill \\   \Rightarrow y' = \left( {2x + 2} ight){.5^x} + \left( {{x^2} + 2x - 2} ight){.5^x}.\ln 5 \hfill \\ \end{matrix}

  • Câu 2: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 3: Thông hiểu

    Cho đồ thị hàm số y = {x^{ - \sqrt 2 }}. Khẳng định nào dưới đây đúng?

     Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } y = 0 suy ra đồ thị hàm số có tiệm cận ngang là y = 0

    Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0

  • Câu 4: Thông hiểu

    Với a > 0 hãy rút gọn biểu thức P = \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } } :{x^{\frac{9}{{16}}}}

    Ta có: 

    \begin{matrix}  \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } }  = \sqrt {x\sqrt {x\sqrt {x\sqrt {{x^{\frac{3}{2}}}} } } }  = \sqrt {x\sqrt {x\sqrt {{x^{\frac{7}{4}}}} } }  \hfill \\   = \sqrt {x\sqrt {x.{x^{\frac{7}{8}}}} }  = \sqrt {x\sqrt {{x^{\frac{{15}}{8}}}} }  = \sqrt {x.{x^{\frac{{15}}{{16}}}}}  = \sqrt {{x^{\frac{{31}}{{16}}}}}  = {x^{\frac{{31}}{{32}}}} \hfill \\   \Rightarrow P = {x^{\frac{{31}}{{32}}}}:{x^{\frac{9}{{16}}}} = {x^{\frac{{13}}{{32}}}} \hfill \\ \end{matrix}

  • Câu 5: Vận dụng cao

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 6: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

  • Câu 7: Vận dụng

    Cho {4^x} + {4^{ - x}} = 34. Tính giá trị của biểu thức T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}}

    Ta có:

    \begin{matrix}  {4^x} + {4^{ - x}} = 34 \hfill \\   \Rightarrow {2^{2x}} + 2 + {2^{ - 2x}} = 36 \hfill \\   \Rightarrow {\left( {{2^x} + {2^{ - x}}} ight)^2} = 36 \hfill \\   \Rightarrow {2^x} + {2^{ - x}} = 6;\left( {{2^x} + {2^{ - x}} > 0} ight) \hfill \\ \end{matrix}

    Khi đó ta được:

    T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}} = \frac{{6 - 3}}{{1 - 2\left( {{2^x} + {2^{ - x}}} ight)}} = \frac{3}{{1 - 2.6}} = \frac{{ - 3}}{{11}}

  • Câu 8: Thông hiểu

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 9: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 10: Vận dụng

    Hàm số y = \sqrt[3]{{{{\left( {{x^2} - 2x - 3} ight)}^2}}} + 2 có bao nhiêu điểm cực trị?

    Tập xác định D = \mathbb{R}

    Ta có: y' = \frac{2}{3}.\frac{{2x - 2}}{{\sqrt[3]{{{x^2} - 2x - 3}}}};\left( {x e  - 1;x e 3} ight)

    Ta có bảng biến thiên như sau:

    Tìm số cực trị của hàm số lũy thừa

    Vậy hàm số đã cho có ba điểm cực trị

  • Câu 11: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 12: Vận dụng

    Tìm tập xác định của hàm số y = \sqrt {4 - {x^2}}  + \sqrt[3]{{\frac{{x + 1}}{{x - 1}}}} + x + 1

    Hàm số xác định khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {4 - {x^2} \geqslant 0} \\   {x e 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 2 \leqslant x \leqslant 2} \\   {x e 1} \end{array}} ight.

    Vậy tập xác định của hàm số là D = \left[ { - 2;2} ight]\backslash \left\{ 1 ight\}

  • Câu 13: Thông hiểu

    Hàm số nào sau đây nghịch biến trên tập xác định của nó?

    Ta có: y = {x^{ - \frac{5}{2}}} \Rightarrow y' =  - \frac{5}{2}.{x^{ - \frac{7}{2}}};\forall x > 0 nên hàm số nghịch biến trên tập xác định của nó.

  • Câu 14: Nhận biết

    Tập xác định của hàm số y = {\left( {x + 3} ight)^{\frac{3}{2}}} - \sqrt[4]{{5 - x}} là:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {x + 3 > 0} \\   {5 - x \geqslant 0} \end{array}} ight. \Rightarrow  - 3 < x \leqslant 5

    => Tập xác định của hàm số là D = \left( { - 3;5} ight]

  • Câu 15: Nhận biết

    Tập xác định của hàm số f\left( x ight) = {\left( {{x^2} - 1} ight)^{ - 2}} là:

    Hàm số f\left( x ight) = {\left( {{x^2} - 1} ight)^{ - 2}} xác định khi {x^2} - 1 e 0 \Rightarrow x e  \pm 1

    Vậy tập xác định của hàm số là D = \mathbb{R}\backslash \left\{ { \pm 1} ight\}

  • Câu 16: Nhận biết

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Với a là một số thực dương thì biểu thức P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} được rút gọn là:

    Ta có: P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}

  • Câu 18: Thông hiểu

    Cho hàm số y = {x^{\frac{{ - 3}}{4}}}. Khẳng định nào sau đây sai?

    Hàm số y = {x^{\frac{{ - 3}}{4}}} có các tính chất như sau:

    Đồ thị hàm số nhận trục tung làm tiệm cận đứng

    Đồ thị hàm số nhận trục hoành làm tiệm cận ngang

    Là hàm số nghịch biến trên \left( {0; + \infty } ight)

  • Câu 19: Vận dụng cao

    Cho hình vuông C_{1} có cạnh bằng 1, C_{2} là hình vuông có các đỉnh là các trung điểm của cạnh hình vuông C_{1}. Tương tự, gọi C_{3} là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông C_{2}. Tiếp tục như vậy ta được một dãy các hình vuông C_{1},C_{2},C_{3},...,C_{n},... Gọi S_{10} là tổng diện tích của 10 hình vuông đầu tiên của dãy. Tính 512S_{10}.

    Đáp án: 1023

    Đáp án là:

    Cho hình vuông C_{1} có cạnh bằng 1, C_{2} là hình vuông có các đỉnh là các trung điểm của cạnh hình vuông C_{1}. Tương tự, gọi C_{3} là hình vuông có các đỉnh là trung điểm của các cạnh hình vuông C_{2}. Tiếp tục như vậy ta được một dãy các hình vuông C_{1},C_{2},C_{3},...,C_{n},... Gọi S_{10} là tổng diện tích của 10 hình vuông đầu tiên của dãy. Tính 512S_{10}.

    Đáp án: 1023

    Hình vẽ minh họa

    Diện tích của hình vuông C_{1} là 1.

    Độ dài đường chéo hình vuông C_{1} \sqrt{2}.

    Hình vuông C_{2} có cạnh bằng \frac{1}{2}đường chéo hình vuông C_{1}.

    \RightarrowDiện tích của hình vuông C_{2}\left( \frac{\sqrt{2}}{2} ight)^{2}

    Hình vuông C_{3} có cạnh bằng \frac{1}{2}đường chéo hình vuông C_{2}.

    \RightarrowDiện tích của hình vuông C_{3}\left( \frac{\sqrt{2}}{2} ight)^{4}

    ………………….

    Hình vuông C_{n} có cạnh bằng \frac{1}{2}đường chéo hình vuông C_{n - 1}.

    \RightarrowDiện tích của hình vuông C_{n}\left( \frac{\sqrt{2}}{2} ight)^{2(n -
1)}

    Do đó, dãy diện tích các hình vuông C_{1},C_{2},C_{3},...,C_{n},...lập thành cấp số nhân với số hạng đầu u_{1} = 1,q =
\left( \frac{\sqrt{2}}{2} ight)^{2} = \frac{1}{2}

    \Rightarrow S_{10} = u_{1}.\frac{1 -
q^{10}}{1 - q} = \frac{1023}{512} \Rightarrow 512S_{10} =
1023

    Đáp án: 1023

  • Câu 20: Vận dụng

    Cho a và b là các số thực thỏa mãn {3.2^a} + {2^b} = 7\sqrt 2{5.2^n} - {2^b} = 9\sqrt 2. Giá trị biểu thức S = a + b là:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{2^a} = 2\sqrt 2 } \\   {{2^b} = \sqrt 2 } \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{3}{2}} \\   {b = \dfrac{1}{2}} \end{array}} ight. \Rightarrow S = 2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Hàm số lũy thừa Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo