Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Tìm tập xác định D của hàm số ![]()
Điều kiện xác định
Vậy tập xác định của hàm số là
Cho hàm số
. Tính ![]()
Ta có:
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Cho hàm số
. Tập xác định của hàm số đã cho là:
Điều kiện xác đinh:
=> Tập xác định của hàm số là:
Cho
. Tính ![]()
Ta có:
Tìm đạo hàm của hàm số
trên khoảng ![]()
Với điều kiện ta có:
. Khi đó:
=>
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Cho
. Rút gọn biểu thức 
Ta có:
Rút gọn biểu thức
với x > 0
Ta có:
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Có bao nhiêu giá trị nguyên của tham số
để hàm số
có tập xác định
?
Vì số mũ không phải là số nguyên nên hàm số xác định với
Do
Vậy có 2017 giá trị nguyên của tham số m thỏa mãn yêu cầu.
Đạo hàm của hàm số ![]()
Ta có: