Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Giá trị của biểu thức
là:
Ta có:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Trong các biểu thức sau, biểu thức nào có nghĩa?
Tập xác định của hàm số tùy thuộc vào
Với nguyên dương, tập xác định
Với nguyên âm hoặc bằng 0, tập xác định
Với không nguyên, tập xác định là
Ta có: có
là số nguyên âm nên cơ số
=> có nghĩa
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Cho biểu thức
với a và b là các số thực dương. Khẳng định nào sau đây là đúng?
Thực hiện thu gọn biểu thức như sau:
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Rút gọn biểu thức
với x > 0
Ta có:
Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Biết rằng tập tất cả các giá trị thực của tham số m để hàm số
đồng biến trên khoảng
và
là đoạn
. Tính ![]()
Tập xác định
Hàm số đã cho đồng biến trên tức là
Xét
Ta có:
Ta có bảng biến thiên

Từ bảng biến thiên suy ra
Hàm số đã cho đồng biến trên tức là
Xét ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên suy ra
Kết hợp kết quả ta được
Tập xác định của hàm số
là:
Điều kiện xác định:
=> Tập xác định của hàm số là
Cho hàm số
. Tính tổng
là:
Với ta có:
Nhận thấy
Tính đạo hàm của hàm số ![]()
Ta có:
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có ba điểm cực trị