Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Tìm đạo hàm của hàm số
trên khoảng ![]()
Với điều kiện ta có:
. Khi đó:
=>
Giá trị của biểu thức
là:
Ta có:
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Cho
. Rút gọn biểu thức 
Ta có:
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Cho hàm số
. Tập xác định của hàm số đã cho là:
Điều kiện xác đinh:
=> Tập xác định của hàm số là:
Cho
, viết
về dạng
và
về dạng
. Tình giá trị biểu thức ![]()
Ta có:
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Có bao nhiêu giá trị nguyên của m để hàm số
xác định với mọi
?
Hàm số xác định với mọi
=>
Vì m nguyên nên
Vậy có tất cả 7 giá trị của m thỏa mãn điều kiện đề bài.
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Rút gọn biểu thức

Với ta có:
Khi đó:
Cho hàm số
. Tính ![]()
Ta có:
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có: