Cho đồ thị ba hàm số trên khoảng như hình vẽ. Mệnh đề nào sau đây đúng?

Từ đồ thị ta thấy
Với thì
Với thì
Cho đồ thị ba hàm số trên khoảng như hình vẽ. Mệnh đề nào sau đây đúng?

Từ đồ thị ta thấy
Với thì
Với thì
Tìm tập xác định D của hàm số ![]()
Điều kiện xác định
Vậy tập xác định của hàm số là
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Tìm đạo hàm của hàm số
trên khoảng ![]()
Với điều kiện ta có:
. Khi đó:
=>
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được:
Cho a và b là các số thực thỏa mãn điều kiện
và
. Chọn khẳng định đúng trong các khẳng định sau:
Ta có:
Cho
. Rút gọn biểu thức 
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Giá trị của biểu thức
là:
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Cho
. Tính ![]()
Ta có:
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Cho biểu thức
với a và b là các số thực dương. Khẳng định nào sau đây là đúng?
Thực hiện thu gọn biểu thức như sau:
Tập xác định của hàm số
là:
Hàm số xác định khi
Vậy tập xác định của hàm số là