Tính đạo hàm của hàm số ![]()
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho
, viết
về dạng
và
về dạng
. Tình giá trị biểu thức ![]()
Ta có:
Cho hàm số
. Tập xác định của hàm số đã cho là:
Điều kiện xác đinh:
=> Tập xác định của hàm số là:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Có bao nhiêu giá trị nguyên của m để hàm số
xác định với mọi
?
Hàm số xác định với mọi
=>
Vì m nguyên nên
Vậy có tất cả 7 giá trị của m thỏa mãn điều kiện đề bài.
Cho
. Rút gọn biểu thức 
Ta có:
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Cho
. Tìm giá trị lớn nhất
của biểu thức
![P = {\left[ {\frac{{4a - 9{a^{ - 1}}}}{{2{a^{\frac{1}{2}}} - 3{a^{\frac{1}{2}}}}} + \frac{{a - 4 + 3{a^{ - 1}}}}{{{a^{\frac{1}{2}}} - {a^{\frac{1}{2}}}}}} ight]^2} - \frac{3}{2}{a^2}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Ta có:
Vậy
Khảo sát hàm số ta có:
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Giá trị của biểu thức
là:
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tìm tập xác định D của hàm số ![]()
Điều kiện xác định
Vậy tập xác định của hàm số là
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và