Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Giá trị của biểu thức
là:
Ta có:
Đạo hàm của hàm số ![]()
Ta có:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có:
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Bố bạn Nam gửi 15000 USD vào trong ngân hàng theo hình thức lãi kép với lãi suất 0,73% một tháng để dành cho Nam học đại học. Nếu cuối cùng mỗi tháng kể từ ngày gửi Nam rút tiền đều đặn 300USSD (trừ tháng cuối) thì sai bao nhiêu tháng số tiền để dành cho Nam sẽ được rút hết? (tháng cuối là tháng mà số tiền còn trong ngân hàng không vượt 300USSD và khi đó Nam rút hết toàn bộ số tiền còn lại).
Gọi An là số tiền còn lại sau khi nam rút đến tháng thứ n, A là số tiền gủi vào, r là lãi suất hàng tháng và X là số tiền rút ra hàng tháng
Ta có:
Vậy
Áp dụng vào bài toán ta có:
Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Tính đạo hàm của hàm số ![]()
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Tìm tập xác định D của hàm số ![]()
Điều kiện xác định
Vậy tập xác định của hàm số là
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có: