Giá trị của biểu thức
bằng:
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Cho hàm số
. Khẳng định nào sau đây sai?
Hàm số có các tính chất như sau:
Đồ thị hàm số nhận trục tung làm tiệm cận đứng
Đồ thị hàm số nhận trục hoành làm tiệm cận ngang
Là hàm số nghịch biến trên
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Đạo hàm của hàm số ![]()
Ta có:
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có ba điểm cực trị
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Có bao nhiêu giá trị nguyên của tham số
để hàm số
có tập xác định
?
Vì số mũ không phải là số nguyên nên hàm số xác định với
Do
Vậy có 2017 giá trị nguyên của tham số m thỏa mãn yêu cầu.
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Tập xác định của hàm số
là:
Hàm số xác định khi
Vậy tập xác định của hàm số là
Cho
, viết
về dạng
và
về dạng
. Tình giá trị biểu thức ![]()
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Trong các biểu thức sau, biểu thức nào có nghĩa?
Tập xác định của hàm số tùy thuộc vào
Với nguyên dương, tập xác định
Với nguyên âm hoặc bằng 0, tập xác định
Với không nguyên, tập xác định là
Ta có: có
là số nguyên âm nên cơ số
=> có nghĩa
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó: