Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Khẳng định nào dưới đây đúng?
Ta có:
Vậy đáp án đúng là:
Cho hàm số
. Cho các khẳng định sau:
i) Hàm số xác định với mọi x
ii) Đồ thị hàm số luôn đi qua điểm (1; 1)
iii) Hàm số nghịch biến trên ![]()
iv) Đồ thị hàm số có hai đường tiệm cận
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Ta có khẳng định ii) và iv) là đúng
i) Sai vì hàm số đã cho xác định khi x > 0
iii) Sai vì hàm số nghịch biến trên
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho a và b là các số thực thỏa mãn điều kiện
và
. Chọn khẳng định đúng trong các khẳng định sau:
Ta có:
Giá trị của biểu thức
bằng:
Ta có:
Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng?
Đồ thị hàm số có đường tiệm cận đứng x = 1
Giá trị của biểu thức
là:
Ta có:
Biết rằng tập tất cả các giá trị thực của tham số m để hàm số
đồng biến trên khoảng
và
là đoạn
. Tính ![]()
Tập xác định
Hàm số đã cho đồng biến trên tức là
Xét
Ta có:
Ta có bảng biến thiên

Từ bảng biến thiên suy ra
Hàm số đã cho đồng biến trên tức là
Xét ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên suy ra
Kết hợp kết quả ta được
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Tính đạo hàm của hàm số ![]()
Ta có:
Đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có: