Đề kiểm tra 15 phút Toán 11 Chương 1 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Với những giá trị nào của x thì giá trị của các hàm số y = \sin 3xy = \sin x bằng nhau?

     Xét phương trình hoành độ giao điểm: sin 3x = sin x

    \Leftrightarrow \left[ \begin{gathered}  3x = x + k2\pi  \hfill \\  3x = \pi  - x + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{\pi }{4} + k\frac{\pi }{2} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

  • Câu 2: Thông hiểu

    Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình \tan3x= \tan x?

    Điều kiện xác định:

    \left\{ \begin{matrix}\cos3x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{6} + \dfrac{k\pi}{3} \\x eq \dfrac{\pi}{2} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan3x = \tan x

    \Leftrightarrow 3x = x +
k\pi

    \Leftrightarrow x =
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Kết hợp với điều kiện xác định suy ra phương trình có nghiệm x = k\pi;\left( k\mathbb{\in Z} ight) nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.

  • Câu 3: Vận dụng

    Tìm chu kì T của hàm số y = 2\sin^{2}x +3\cos^{2}3x

    Ta có:

    \begin{matrix}y = 2\sin^{2}x + 3\cos^{2}3x \hfill \\= 2.\dfrac{1 - \cos2x}{2} + 3.\dfrac{1 + \cos6x}{2} \hfill\\= \dfrac{1}{2}(3.\cos6x - 2\cos2x + 5)\hfill \\\end{matrix}

    Hàm số y = 3.\cos6x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = - 2\cos2x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \dfrac{1}{2}(3.\cos6x -2\cos2x + 5) tuần hoàn với chu kì T
= \pi

  • Câu 4: Thông hiểu

    Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    => Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là \frac{\pi}{2}

  • Câu 5: Nhận biết

    Mệnh đề nào sau đây sai?

     Mệnh đề sai: \sin x = 0 \Rightarrow x = k2\pi

    Sửa lại:

    \sin x = 0 \Rightarrow x = k\pi ;(k \in \mathbb{Z})

  • Câu 6: Vận dụng

    Số nghiệm thuộc đoạn \left[ {0;15\pi } ight] của phương trình: \tan x - 1 = 0

    Điều kiện xác định x e \dfrac{\pi}{2}+k\pi,(k \in \mathbb{Z})

    \begin{matrix}  \tan x - 1 = 0 \Rightarrow \tan x = 1 \hfill \\   \Rightarrow x = \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\  x \in \left[ {0;15\pi } ight];k \in \mathbb{Z} \Rightarrow 0 \leqslant \dfrac{\pi }{4} + k\pi  \leqslant 15\pi  \hfill \\   \Rightarrow k \in \left\{ {0;1;...;14} ight\} \hfill \\ \end{matrix}

    Vậy có tất cả 15 nghiệm.

  • Câu 7: Vận dụng

    Trong tam giác ABC nếu \frac{\tan\widehat{A}}{\tan\widehat{C}} =\frac{sin^{2}\widehat{A}}{sin^{2}\widehat{C}} thì tam giác ABC là tam giác gì?

    Ta có:

    \dfrac{\tan\widehat{A}}{\tan\widehat{C}}= \dfrac{\sin^{2}\widehat{A}}{\sin^{2}\widehat{C}}

    \Leftrightarrow\dfrac{\sin\widehat{A}.\cos\widehat{C}}{\cos\widehat{A}.\sin\widehat{C}} =\dfrac{\sin^{2}\widehat{A}}{\sin^{2}\widehat{C}}

    \Leftrightarrow \sin2\widehat{C} =\sin2\widehat{A}

    \Leftrightarrow \left\lbrack\begin{matrix}2\widehat{C} = 2\widehat{A} \\2\widehat{C} = \pi - 2\widehat{A} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\widehat{C} = \widehat{A} \\\widehat{C} + \widehat{A} = \dfrac{\pi}{2} \\\end{matrix} ight.

    Vậy tam giác ABC có thể là tam giác cân hoặc tam giác vuông.

  • Câu 8: Thông hiểu

    Nghiệm của phương trình \sin x = \frac{\sqrt{2}}{2} được biểu diễn trên đường tròn lượng giác ở hình bên là những điểm nào?

    Ta có:

    \sin x = \frac{\sqrt{2}}{2}

    \Rightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{4} + k2\pi \\x = \dfrac{3\pi}{4} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy điểm biểu diễn nghiệm phương trình là điểm A, điểm B.

  • Câu 9: Nhận biết

    Khẳng định nào sau đây đúng?

    Trong khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y = \sin
x đồng biến.

  • Câu 10: Nhận biết

    Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?

    Ta có thể hiểu như sau:

    “ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.

  • Câu 11: Nhận biết

    Trên đường tròn lượng giác, cung có số đo \frac{\pi}{6} + \frac{k2\pi}{3};\left(k\in\mathbb{ Z} ight) được biểu diễn bởi bao nhiêu điểm?

    Xét theo chiều dương với k =
0,1,2,3 ta thấy cung có số đo \frac{\pi}{6} + \frac{k2\pi}{3};\left(
k\mathbb{\in Z} ight) được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:

  • Câu 12: Vận dụng cao

    Tìm giá trị nhỏ nhất m của hàm số y = 2sin^{2}x +\sqrt{3}sin2x.

    Ta có y = 2sin^{2}x + \sqrt{3}sin2x = 1 -cos2x + \sqrt{3}sin2x

    \begin{matrix}= \sqrt{3}sin2x - cos2x + 1 = 2\left( \dfrac{\sqrt{3}}{2}sin2x -\dfrac{1}{2}cos2x ight) + 1 \\= 2\left( sin2x\cos\dfrac{\pi}{6} - \sin\dfrac{\pi}{6}cos2x ight) + 1 =2sin\left( 2x - \dfrac{\pi}{6} ight) + 1. \\\end{matrix}

    - 1 \leq \sin\left( 2x - \frac{\pi}{6}ight) \leq 1

    \begin{matrix}\Leftrightarrow - 1 \leq 1 + 2sin\left( 2x - \dfrac{\pi}{6} ight) \leq3 \hfill\\\Leftrightarrow - 1 \leq y \leq 3 \hfill\\\end{matrix}

    Do đó giá trị nhỏ nhất của hàm số là -1.

  • Câu 13: Vận dụng cao

    Tìm tất các các giá trị thực của tham số m để phương trình \cos x -m =0 vô nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình cos x = a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Phương trình \cos x - m = 0 \Leftrightarrow \cos x = m

    Do đó, phương trình \cos x -m =0 vô nghiệm \Leftrightarrow \left| m ight| > 1 \Leftrightarrow \left[ \begin{gathered}  m <  - 1 \hfill \\  m > 1 \hfill \\ \end{gathered}  ight..

  • Câu 14: Thông hiểu

    Biết rằng \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} = \tan\left(\dfrac{m\pi}{n} ight) với m,n\in\mathbb{ N} và \frac{m}{n} tối giản. Khi đó kết quả nào sau đây đúng?

    Ta có:

    \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} =\frac{2\sin\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9}ight)}{2\cos\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9} ight)} =\tan\left( \dfrac{\pi}{3} ight)

    \Rightarrow \left\{ \begin{matrix}
m = 1 \\
n = 3 \\
\end{matrix} ight.\  \Rightarrow n - m = 2

  • Câu 15: Vận dụng

    Số nghiệm của phương trình 2 \sin^{2}x-5 \sin x+3=0 thuộc \left [ 0;2\pi  ight ] là:

     Giải phương trình:

    \begin{matrix}  2{\sin ^2}x - 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x - 1} ight)\left( {2\sin x - 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x - 1 = 0} \\   {2\sin x - 3 = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x = 1} \\   {\sin x = \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\  \sin x = 1 \Rightarrow x = \dfrac{\pi }{2} + k2\pi ,\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Ta có: x \in \left[ {0;2\pi } ight]

    \begin{matrix}   \Rightarrow 0 \leqslant \dfrac{\pi }{2} + k2\pi  \leqslant 2\pi  \hfill \\   \Rightarrow  - \dfrac{1}{4} \leqslant k \leqslant \dfrac{3}{4} \Rightarrow k = 0 \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Công thức nào sau đây sai?

    Ta có:

    \sin a\cos b - \cos a\sin b = \sin(a -
b)

    \cos a\cos b + \sin a\sin b = \cos(a -
b)

    \sin(a + b) = \sin a\cos b + \cos a\sin
b

    \cos(a + b) = \cos a\cos b - \sin a\sin
b

  • Câu 17: Thông hiểu

    Phương trình nào sau đây luôn vô nghiệm.

    Ta có:

    2019\sin x = 2020

    \Rightarrow \sin x = \frac{2020}{2019}
> 1

    => Phương trình vô nghiệm.

  • Câu 18: Thông hiểu

    Cho \frac{\pi}{2}
< \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có:

    \sin(\pi + \alpha) = -
\sin\alpha

    \cos\left( \frac{\pi}{2} - \alpha
ight) = \sin\alpha

    \cos( - \alpha) =
\cos\alpha

    \tan(\alpha + \pi) =
\tan\alpha

    Theo bài ra \frac{\pi}{2} < \alpha
< \pi

    => \left\{ \begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight.

  • Câu 19: Thông hiểu

    Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách:

    Ta có

    y = \sin x = \cos \left( {\frac{\pi }{2} - x} ight) = \cos \left( {x - \frac{\pi }{2}} ight)

    =>Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là \frac{\pi }{2}

  • Câu 20: Thông hiểu

    Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x không tuần hoàn. Thật vậy:

    Tập xác định {\text{D}} = \mathbb{R}.

    Giả sử f\left( {x + T} ight) = f\left( x ight),{\text{ }}\forall x \in {\text{D}}

    \Leftrightarrow \left( {x + T} ight) + \sin \left( {x + T} ight) = x + \sin x,{\text{ }}\forall x \in {\text{D}}

    .\Leftrightarrow T + \sin \left( {x + T} ight) = \sin x,{\text{ }}\forall x \in {\text{D}} (*)

    Cho x = 0 và x = π, ta được

    \left\{ \begin{gathered}  T + \sin x = \sin 0 = 0 \hfill \\  T + \sin \left( {\pi  + T} ight) = \sin \pi  = 0 \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}2T + \sin T + \sin \left( {\pi  + T} ight) = 0 \Leftrightarrow T = 0

    Điều này trái với định nghĩa là T > 0

    Vậy hàm số y = x + \sin x không phải là hàm số tuần hoàn.

    Tương tự chứng minh cho các hàm số y = x\cos xy = \frac{{\sin x}}{x} không tuần hoàn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 154 lượt xem
Sắp xếp theo