Đề kiểm tra 15 phút Toán 11 Chương 1 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giải phương trình 4{\sin ^2}x = 3.

    Ta có 4{\sin ^2}x = 3 \Leftrightarrow {\sin ^2}x = \frac{3}{4} \Leftrightarrow \sin x =  \pm \frac{{\sqrt 3 }}{2}.

    Với \sin x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x = \frac{{2\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Với \sin x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \left( { - \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{3} + k2\pi  \hfill \\  x = \frac{{4\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Nhận thấy chưa có đáp án nào phù hợp. Ta biểu diễn các nghiệm trên đường tròn lượng giác (hình vẽ).

    Nếu tính luôn hai điểm A, B thì có tất cả 6 điểm cách đều nhau nên ta gộp được 6 điểm này thành một họ nghiệm, đó là x = k\frac{\pi }{3}.

    Suy ra nghiệm của phương trình \left\{ \begin{gathered}  x = k\frac{\pi }{3} \hfill \\  k\frac{\pi }{3} e l\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x = \frac{{k\pi }}{3} \hfill \\  k e 3\ell  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k,\ell  \in \mathbb{Z}} ight)

  • Câu 2: Nhận biết

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \left[ { - 2023;\,\,\,2023} ight] để phương trình m\cos x + 1 = 0 có nghiệm?

    Ta có m\cos x + 1 = 0 \Leftrightarrow \cos x =  - \frac{1}{m}

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant  - \frac{1}{m} \leqslant 1

    \Leftrightarrow m \geqslant 1\xrightarrow[{m \in \left[ { - 2023;\,2023} ight]}]{{m \in \mathbb{Z}}}m \in \left\{ {1;2;3;...;2023} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của tham số m.

  • Câu 3: Thông hiểu

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Thực hiện kiểm tra đáp án ta thấy:

    Hàm số y = \cot x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    Hàm số y = \frac{\sin x + 1}{\cosx} không chẵn không lẻ

    Hàm số y = tan^{2}x và hàm số y = \left| \cot x ight| là hàm số chẵn.

  • Câu 4: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 5: Vận dụng

    Giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y=\sqrt{4\sin x+5} lần lượt là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \sin x \leqslant 1 \hfill \\   \Rightarrow  - 4 \leqslant 4\sin x \leqslant 4 \hfill \\   \Rightarrow  - 4 + 5 \leqslant 4\sin x + 5 \leqslant 4 + 5 \hfill \\   \Rightarrow 1 \leqslant 4\sin x + 5 \leqslant 9 \hfill \\   \Rightarrow 1 \leqslant \sqrt {4\sin x + 5}  \leqslant 3 \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).

    Ta có: sina + sinb = 2sin\frac{a +
b}{2}cos\frac{a - b}{2}, do đó đẳng thức sina + sinb = 2sin\frac{a + b}{2} \cdot sin\frac{a
- b}{2} sai.

  • Câu 7: Thông hiểu

    Giá trị nào sau đây của x thỏa mãn \sin2x.\sin3x = \cos2x.\cos3x?

    Ta có:

    \begin{matrix}\sin2x.\sin3x = \cos2x.\cos3x \hfill \\\Leftrightarrow \cos2x.\cos3x - \sin2x.\sin3x = 0 \hfill\\\Leftrightarrow \cos5x = 0 \hfill\\\Leftrightarrow 5x = 45 + k.180^{0}\hfill \\\Leftrightarrow x = 18^{0} + 36^{.}.k;\left( k\mathbb{\in Z} ight)\hfill \\\end{matrix}

  • Câu 8: Nhận biết

    Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình {\tan ^2}x = 3?

     Ta có {\tan ^2}x = 3 \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = 3 \Leftrightarrow {\sin ^2}x = 3{\cos ^2}x

    \Leftrightarrow 1 - {\cos ^2}x = 3{\cos ^2}x \Leftrightarrow 4{\cos ^2}x = 1

    Vậy {\tan ^2}x = 3 \Leftrightarrow 4{\cos ^2}x = 1.

  • Câu 9: Nhận biết

    Quy ước chọn chiều dương của một đường tròn định hướng là

    Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ

  • Câu 10: Thông hiểu

    Tìm chu kì T của hàm số y = \tan 3\pi x.

    Hàm số y = \tan \left( {ax + b} ight) tuần hoàn với chu kì T\,\, = \,\,\frac{\pi }{{\left| a ight|}}

    Áp dụng: Hàm số y = \tan 3\pi x tuần hoàn với chu kì T = \frac{1}{3}

  • Câu 11: Thông hiểu

    Đổi số đo của góc 50^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 50^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{50.\pi}{180} = \frac{5.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 50 SHIFT Ans 1 =

  • Câu 12: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 13: Vận dụng cao

    Hãy nêu tất cả các hàm số trong các hàm số y = sin;y = \cos x;y = \tan x;y = \cot x thỏa mãn điều kiện đồng biến và nhận giá trị âm trong khoảng \left( - \frac{\pi}{2};0 ight)?

    Ta có:

    Hàm số y = tan x đồng biến và nhận giá trị âm trên khoảng \left( - \frac{\pi}{2};0 ight)

    => y = \cos x;y = \cot x sai

    Trên khoảng \left( - \frac{\pi}{2};0ight) hàm số y = sin x đồng biến và nhận giá trị âm.

  • Câu 14: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ?

    Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.

  • Câu 15: Thông hiểu

    Kết luận nào đúng về tập nghiệm của phương trình \cos\left( \frac{\pi}{3} + \pi x
ight) = \sin(\pi x)?

    Ta có:

    \cos\left( \frac{\pi}{3} + \pi x ight)
= \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{2}
- \frac{\pi}{3} - \pi x ight) = \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{6}
- \pi x ight) = \sin(\pi x)

    \Leftrightarrow \left\lbrack\begin{matrix}\pi x = \dfrac{\pi}{6} - \pi x + k2\pi \\\pi x = \pi - \dfrac{\pi}{6} + \pi x + k2\pi(L) \\\end{matrix} ight.

    \Leftrightarrow x = \frac{1}{12} +
k;\left( k\mathbb{\in Z} ight)

    Vậy tập nghiệm của phương trình đã cho là \pi x = \frac{\pi}{6} - \pi x +
k2\pi.

  • Câu 16: Nhận biết

    Với x \in \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight) = \left( { - \frac{\pi }{4} + 8\pi ;\frac{\pi }{4} + 8\pi } ight) thuộc góc phần tư thứ I và II.

  • Câu 17: Vận dụng

    Trên đường tròn với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 60^{0}. Gọi N là điểm đối xứng với điểm M qua trục Oy, số đo cung AN là:

    Hình vẽ minh họa

    Ta có: \widehat{AOM} =
60^{0};\widehat{MON} = 60^{0}

    => \widehat{AON} =
120^{0}

    Khi đó số đo cung AN bằng 120^{0}.

  • Câu 18: Nhận biết

    Hàm số y = \cos x đồng biến trên khoảng nào sau đây?

    Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.

  • Câu 19: Vận dụng

    Tổng các nghiệm của phương trình \cos 2x - \sin 2x = 1 trong khoảng \left ( 0;2\pi  ight ) là:

     Giải phương trình:

    \begin{matrix}  \cos 2x - \sin 2x = 1 \hfill \\   \Leftrightarrow \sqrt 2 \cos \left( {2x + \dfrac{\pi }{4}} ight) = 1 \hfill \\   \Leftrightarrow \cos \left( {2x + \dfrac{\pi }{4}} ight) = \dfrac{1}{{\sqrt 2 }} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x + \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi } \\   {2x + \dfrac{\pi }{4} =  - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x =  - \dfrac{\pi }{4} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Xét nghiệm x = k\pi

    Do x \in \left ( 0;2\pi  ight ) => 0 < k\pi  < 2\pi  \Rightarrow k = 1

    => x = \pi

    Xét nghiệm {x =  - \frac{\pi }{4} + k\pi }

    Do x \in \left ( 0;2\pi  ight )

    \begin{matrix}  0 <  - \dfrac{\pi }{4} + k\pi  < 2\pi  \Rightarrow k \in \left\{ {1;2} ight\} \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {k = 1 \Rightarrow x = \dfrac{{3\pi }}{4}} \\   {k = 2 \Rightarrow x = \dfrac{{7\pi }}{4}} \end{array}} ight. \hfill \\ \end{matrix}

    vậy tổng tất cả các nghiệm của phương trình là: \frac{14\pi}{4}

  • Câu 20: Vận dụng

    Gọi x_0 là nghiệm âm lớn nhất của  \sin 9x + \sqrt 3 \cos 7x = \sin 7x + \sqrt 3 \cos 9x. Mệnh đề nào sau đây là đúng?

     Phương trình \Leftrightarrow \sin 9x - \sqrt 3 \cos 9x = \sin 7x - \sqrt 3 \cos 7x

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \sin \left( {7x - \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  9x - \frac{\pi }{3} = 7x - \frac{\pi }{3} + k2\pi  \hfill \\  9x - \frac{\pi }{3} = \pi  - \left( {7x - \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{{\text{Cho}} < 0}}\left[ \begin{gathered}  k\pi  < 0 \Leftrightarrow k < 0\xrightarrow{{k \in \mathbb{Z}}}{k_{\max }} =  - 1 \to x =  - \pi  \hfill \\  \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} < 0 \Leftrightarrow k <  - \frac{5}{6}\xrightarrow{{k \in \mathbb{Z}}}{k_{\max }} =  - 1 \to x =  - \frac{\pi }{{48}} \hfill \\ \end{gathered}  ight.

    So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là x =  - \frac{\pi }{{48}} \in \left( { - \frac{\pi }{{12}};0} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 171 lượt xem
Sắp xếp theo