Tìm tập các định D của hàm số
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Tìm tập các định D của hàm số
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Tất các các hàm số đều có TXĐ: .
Do đó
Bây giờ ta kiểm tra hoặc
Với . Ta có
Suy ra hàm số là hàm số lẻ.
Với . Ta có
Suy ra hàm số không chẵn không lẻ.
Với . Ta có
Suy ra hàm số là hàm số chẵn.
Với Ta có
Suy ra hàm số là hàm số lẻ.
Cho góc thỏa mãn
. Tính giá trị của biểu thức
.
Ta có:
Phương trình có nghiệm khi:
Xét phương trình:
Trường hợp 1:
Phương trình (*) trở thành:
3 + 3.m - 4.0 = 0 (Vô lí)
Trường hợp 2:
Chia cả hai vế của phương trình (*) cho cos2x
Phương trình (*) trờ thành: (**)
Đặt tanx = t, phương trình trở thành:
Phương trình đã cho có nghiệm => (***) có nghiệm
=> (luôn đúng với mọi m)
=> Phương trình đã cho có nghiệm với mọi
Giải phương trình ?
Ta có:
PT
Vậy phương trình có nghiệm
Biết rằng . Mệnh đề nào sau đây đúng?
Ta có:
Xét trên đường tròn lượng giác ta thấy thuộc góc phần tư thứ II nên ta có:
Tập nghiệm của phương trình là
Ta có
.
Đổi số đo của góc sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm -5 shift DRG 2 =
Tập nghiệm của phương trình là:
Ta có:
Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
Hàm số không tuần hoàn. Thật vậy:
Tập xác định .
Giả sử
.
Cho x = 0 và x = π, ta được
Điều này trái với định nghĩa là T > 0
Vậy hàm số không phải là hàm số tuần hoàn.
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Cho phương trình lượng giác
a) Phương trình có nghiệm Sai||Đúng
b) Phương trình có nghiệm âm lớn nhất bằng Đúng||Sai
c) Trên khoảng phương trình đã cho có 3 nghiệm Sai||Đúng
d) Tổng các nghiệm của phương trình trong khoảng bằng
Đúng||Sai
Cho phương trình lượng giác
a) Phương trình có nghiệm Sai||Đúng
b) Phương trình có nghiệm âm lớn nhất bằng Đúng||Sai
c) Trên khoảng phương trình đã cho có 3 nghiệm Sai||Đúng
d) Tổng các nghiệm của phương trình trong khoảng bằng
Đúng||Sai
Ta có:
Vì nên
.
Kết luận:
a) Sai |
b) Đúng |
c) Sai |
d) Đúng |
Tính tổng
Ta có:
Nên
=>
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Ta có:
Vậy phương trình có họ nghiệm là:.
Do đó
.
Cho hàm số . Mệnh đề nào sau đây đúng?
Ta có:
Vậy là mệnh đề đúng.
Cho hàm số . Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Trên đường tròn cung có số đo 1 rad là?
Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.
Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (h) được cho bởi công thức . Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất?
Ta có:
Do đó mực nước của kênh cao nhất khi
Vì
Vậy mực nước của kênh là cao nhất khi t = 14 (h)
Hàm số nào sau đây nhận giá trị âm nếu
Ta có:
Mà
=> mang giá trị âm
Biết rằng phương trình có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Trên khoảng phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Trên khoảng phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng bằng
. Đúng||Sai
Ta có phương trình đã cho tương đương với
.
Vì nên suy ra
.
Kết luận:
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |