Đề kiểm tra 15 phút Toán 11 Chương 1 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?

    \cos x - \sin x = \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left( x -
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left(
\frac{\pi}{4} - x ight)

    Ta có:

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    = \sqrt{2}\cos\left\lbrack \frac{\pi}{2}
- \left( \frac{\pi}{4} - x ight) ightbrack

    = \sqrt{2}\sin\left( \frac{\pi}{4} - x
ight)

    Vậy có hai đồng nhất thức.

  • Câu 2: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 3x + \cos 5x.

    Hàm số y = \cos 3x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{3}

    Hàm số y = \cos 5x tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{5}

    Suy ra hàm số y = \cos 3x + \cos 5x tuần hoàn với chu kì T = 2\pi

  • Câu 3: Vận dụng

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

  • Câu 4: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác''?

    Mỗi đường tròn định hướng có bán kính R =
1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 5: Nhận biết

    Nghiệm của phương trình tan (2x) -1 = 0 là?

     Ta có: \tan 2x - 1 = 0 \Leftrightarrow \tan 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{4} + k\pi  \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{2}.

  • Câu 6: Nhận biết

    Hàm số nào sau đây có chu kì khác 2\pi?

    Hàm số y = \cos^{3}x = \frac{1}{4}(\cos3x +3\cos x) có chu kì 2\pi.

    Hàm số y = \sin\frac{x}{2}\cos\frac{x}{2}
= \frac{1}{2}\sin x có chu kì 2\pi.

    Hàm số y = \sin^{2}(x + 2) = \frac{1}{2} -\frac{1}{2}\cos(2x + 4) có chu kì \pi.

    Hàm số y = \cos^{2}\left( \frac{x}{2} + 1ight) = \frac{1}{2} + \frac{1}{2}\cos(x + 2) có chu kì 2\pi.

  • Câu 7: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \sin x. \cos x - \sin x - \cos x + m = 0 có nghiệm:

     Đặt t = \sin x + \cos x;\left( {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]} ight)

    => \sin x.\cos x = \frac{{{t^2} - 1}}{2}

    Phương trình trở thành:

    \begin{matrix}  \dfrac{{{t^2} - 1}}{2} - t + m = 0 \hfill \\   \Rightarrow  - 2m = {t^2} - 2t - 1 \hfill \\   \Rightarrow {\left( {t - 1} ight)^2} =  - 2m + 2 \hfill \\ \end{matrix}

    Do  {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]}

    \begin{matrix}   \Leftrightarrow  - \sqrt 2  - 1 \leqslant t - 1 \leqslant \sqrt 2  - 1 \hfill \\   \Leftrightarrow 0 \leqslant {\left( {t - 1} ight)^2} \leqslant 3 + 2\sqrt 2  \hfill \\ \end{matrix}

    Vậy để phương trình có nghiệm

    \begin{matrix}   \Leftrightarrow 0 \leqslant  - 2m + 2 \leqslant 3 + 2\sqrt 2  \hfill \\   \Leftrightarrow  - \dfrac{{1 + 2\sqrt 2 }}{2} \leqslant m \leqslant 1 \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} ight\} \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Phương trình lượng giác \cot\ x =
\frac{\sqrt{3}}{3} có nghiệm là:

    Ta có

    \cot x = \frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left(
\frac{\pi}{3} ight)

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight)

  • Câu 9: Vận dụng

    Tính giá trị biểu thức:

    C = \left\lbrack \sin\left(\frac{\pi}{2} - x ight) + \sin(10\pi + x) ightbrack^{2} +\left\lbrack \cos\left( \frac{3\pi}{2} - x ight) + \sin(8\pi - x)ightbrack^{2}

    Ta có:

    \sin\left( \frac{\pi}{2} - x ight) =
\cos x

    \sin(10\pi + x) = \sin x

    \cos\left( \frac{3\pi}{2} - x ight) =
\cos\left( 2\pi - \frac{\pi}{2} - x ight) = \cos\left( \frac{\pi}{2} +
x ight) = - \sin x

    \sin(8\pi - x) = \cos x

    Khi đó:

    C = \left\lbrack \sin\left(
\frac{\pi}{2} - x ight) + \sin(10\pi + x) ightbrack^{2} +
\left\lbrack \cos\left( \frac{3\pi}{2} - x ight) + \sin(8\pi - x)
ightbrack^{2}

    C = \left( \cos x + \sin x ight)^{2} +
\left\lbrack \cos x - \sin x ightbrack^{2}

    C = cos^{2}x + 2sinx\cos x + sin^{2}x +
cos^{2}x - 2sinx\cos x + sin^{2}x

    C = 2cos^{2}x + 2sin^{2}x =
2

  • Câu 10: Thông hiểu

    Cho x = \frac{\pi }{3} + k2\pi \left( {k \in \mathbb{Z}} ight) là nghiệm của phương trình nào sau đây?

     Giải PT, ta có: 2 \sin x - \sqrt 3  = 0 \Leftrightarrow \sin x = \frac{{\sqrt 3 }}{2} = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x = \pi  - \frac{\pi }{3} + k2\pi  = \frac{{2\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight)

  • Câu 11: Thông hiểu

    Biết \sin\alpha =
- \frac{4}{5};\left( 3\pi < \alpha < \frac{7\pi}{2}
ight). Tính \tan\alpha?

    Ta có: 3\pi < \alpha <
\frac{7\pi}{2} \Rightarrow \left\{ \begin{matrix}
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.

    Lại có \sin^{2}\alpha + \cos^{2}\alpha =1

    \Rightarrow \cos^{2}\alpha = 1 -\sin^{2}\alpha = \frac{9}{25}

    \Rightarrow \cos\alpha = \pm
\frac{3}{5}

    \cos\alpha < 0 \Rightarrow
\cos\alpha = - \frac{3}{5}

    \Rightarrow \tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{4}{3}

  • Câu 12: Nhận biết

    Hàm số nào sau đây là hàm số chẵn:

     Hàm số sinx là hàm số lẻ

    => Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ

    Xét hàm số y = |sinx| ta có:

    Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D

    Ta có: f(-x) = |sin⁡( -x)| = |- sinx| = |sinx|

    => f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn

    Vậy hàm số y = |sinx| là hàm số chẵn

  • Câu 13: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 14: Thông hiểu

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    Đáp án là:

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    ĐKXĐ: \left\{ \begin{matrix}
\sin x eq 0 \\
\cos x eq 0 \\
\end{matrix} ight..

    \frac{2\sin x}{\cot x} - \frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight)

    \Leftrightarrow 2\sin^{2}x - \tan x\cot x= 2\left( \sin x - \cos x ight)\sin x\cot x

    \Leftrightarrow 2sin^{2}x - 1 = 2\left(
\sin x - \cos x ight)\cos x

    \Leftrightarrow 2\sin^{2}x - 1 =2\sin x.\cos x - 2\cos^{2}x

    \Leftrightarrow 2\sin^{2}x + 2\cos^{2}x -1 = \sin2x \Leftrightarrow \sin2x = 1

    \Leftrightarrow 2x = \frac{\pi}{2} +
k2\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi\left( k\mathbb{\in Z}
ight)

    Đối chiếu điều kiện, nghiệm phương trình là x = \frac{\pi}{4} + k\pi,k\mathbb{\in
Z}

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow P = 2a + 3b = 2.4 + 3.1 =
11.

  • Câu 15: Nhận biết

    Khẳng định nào dưới đây đúng?

    Ta có: \pi rad tương ứng với 180^{0}

    => 1rad ightarrow x^{0}

    \Rightarrow x^{0} = \frac{180.1}{\pi} =\frac{180}{\pi}

  • Câu 16: Vận dụng

    Phương trình \cot x=\sqrt 3 có bao nhiêu nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight]?

     Ta có: \cot x=\sqrt 3

    \Leftrightarrow x = \frac{\pi }{6} + k\pi \,,\,k \in \mathbb{Z}, mà - 2022\pi  \leqslant x \leqslant 2022\pi.

    \Rightarrow  - 2022\pi  \leqslant \frac{\pi }{6} + k\pi  \leqslant 2022\pi

    \Leftrightarrow  - 2022 \leqslant \frac{1}{6} + k \leqslant 2022

    \Leftrightarrow  - 2022 - \frac{1}{6} \leqslant k \leqslant 2022 - \frac{1}{6}.

    Suy ra - 2022\pi  \leqslant x \leqslant 2022\pi, k \in Z.

    Vậy \cot x=\sqrt 3 có 4044 nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight].

  • Câu 17: Thông hiểu

    Hàm số y = \sin \frac{x}{5} có chu kì bằng bao nhiêu?

     Chu kì của hàm số y = \sin \frac{x}{5} là: T = \dfrac{{2\pi }}{{\left| {\dfrac{1}{5}} ight|}} = 10\pi

  • Câu 18: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\alpha = - 3\sqrt{2}\alpha \in \left( \frac{\pi}{2};\pi
ight). Tính giá trị của biểu thức P = \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2}.

    Ta có:

    P = \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2}

    P =\dfrac{\sin\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}} +\dfrac{\cos\dfrac{\alpha}{2}}{\sin\dfrac{\alpha}{2}}

    P = \dfrac{\sin^{2}\dfrac{\alpha}{2} +\cos^{2}\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}.\sin\dfrac{\alpha}{2}}

    P = \dfrac{1}{\dfrac{\sin\alpha}{2}} =\dfrac{2}{\sin\alpha}

    Mặt khác \alpha \in \left(\frac{\pi}{2};\pi ight) \Rightarrow \sin\alpha > 0

    1 + \cot^{2}\alpha =\dfrac{1}{\sin^{2}\alpha}

    \Rightarrow \sin^{2}\alpha =\dfrac{1}{19}

    \Rightarrow \sin\alpha =
\sqrt{\frac{1}{19}}

    \Rightarrow P = 2\sqrt{19}

  • Câu 19: Nhận biết

    Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?

    Ta có thể hiểu như sau:

    “ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.

  • Câu 20: Thông hiểu

    Số nghiệm của phương trình \cot (x+ \frac{\pi}{4})+1=0 trên khoảng ( -\pi ;3\pi ) là?

     Ta có:\cot (x+\frac{\pi}{4})+1=0 \Leftrightarrow \cot (x+\frac{\pi}{4})=-1

    \Leftrightarrow x+\frac{\pi}{4}=-\frac{\pi}{4}+k \pi  \Leftrightarrow x= -\frac{\pi}{2} +k\pi, k \in \mathbb{Z}

    ycbt\Leftrightarrow -\pi< -\frac{\pi}{2} +k \pi  <3\pi\Leftrightarrow  -\frac{1}{2} < k < \frac{7}{2}, k \in \mathbb{Z}

    nên k \in \{0;1;2;3\}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 158 lượt xem
Sắp xếp theo