Đề kiểm tra 15 phút Toán 11 Chương 1 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Phương trình nào sau đây luôn vô nghiệm.

    Ta có:

    2019\sin x = 2020

    \Rightarrow \sin x = \frac{2020}{2019}
> 1

    => Phương trình vô nghiệm.

  • Câu 2: Vận dụng

    Cho hai hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x};g(x) = \frac{|sin2x| - cos3x}{2 + tan^{2}x}. Mệnh đề nào sau đây đúng?

    Xét hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x} có tập xác định D=\mathbb{ R}

    Với mọi x thuộc D => -x thuộc D ta có:

    f( - x) = \frac{\cos( - 2x)}{1 +
sin^{2}( - 3x)} = \frac{cos2x}{1 + sin^{2}3x} = f(x)

    Vậy f(x) là hàm số chẵn

    Tương tự xét hàm số g(x) = \frac{|sin2x|
- cos3x}{2 + tan^{2}x};D\mathbb{= R}\backslash\left\{ \frac{\pi}{2} +
k\pi,k\mathbb{\in Z} ight\}

    Với mọi x thuộc D => -x thuộc D ta có:

    \begin{matrix}g( - x) = \dfrac{\left| \sin( - 2x) ight| - \cos( - 3x)}{2 + tan^{2}( -x)}\hfill \\= \dfrac{|sin2x| - cos3x}{2 + tan^{2}x} = g(x) \hfill\\\end{matrix}

    Vậy g(x) là hàm số chẵn.

  • Câu 3: Nhận biết

    Khẳng định nào sau đây đúng?

    Trong khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y = \sin
x đồng biến.

  • Câu 4: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về "góc lượng giác"?

    Trên đường tròn định hướng, góc hình học AOB có phân biệt điểm đầu A và điểm cuối B là góc lượng giác.

  • Câu 5: Thông hiểu

    Số nghiệm của phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} với - {180^0} \leqslant x \leqslant {180^0} là?

    4 || Bốn || bốn || 4 nghiệm

    Đáp án là:

    Số nghiệm của phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} với - {180^0} \leqslant x \leqslant {180^0} là?

    4 || Bốn || bốn || 4 nghiệm

     Phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {2x - {{40}^0}} ight) = \sin {60^0}

    \Leftrightarrow \left[ \begin{gathered}  2x - {40^0} = {60^0} + k{360^0} \hfill \\  2x - {40^0} = {180^0} - {60^0} + k{360^0} \hfill \\ \end{gathered}  ight.\,

    \Leftrightarrow \left[ \begin{gathered}  2x = {100^0} + k{360^0} \hfill \\  2x = {160^0} + k{360^0} \hfill \\ \end{gathered}  ight.\,

    \Leftrightarrow \left[ \begin{gathered}  x = {50^0} + k{180^0} \hfill \\  x = {80^0} + k{180^0} \hfill \\ \end{gathered}  ight.

    • TH1: Xét nghiệm x = {50^0} + k{180^0}:

    - {180^0} \leqslant x \leqslant {180^0}\xrightarrow{{}} - {180^0} \leqslant {50^0} + k{180^0} \leqslant {180^0}

    \Leftrightarrow  - \frac{{23}}{{18}} \leqslant k \leqslant \frac{{13}}{{18}}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k =  - 1 \to x =  - {130^0} \hfill \\  k = 0 \to x = {50^0} \hfill \\ \end{gathered}  ight..

    • TH2: Xét nghiệm x = {80^0} + k{180^0}:

    - {180^0} \leqslant x \leqslant {180^0}\xrightarrow{{}} - {180^0} \leqslant {80^0} + k{180^0} \leqslant {180^0}

    \Leftrightarrow  - \frac{{13}}{9} \leqslant k \leqslant \frac{5}{9}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k =  - 1 \to x =  - {100^0} \hfill \\  k = 0 \to x = {80^0} \hfill \\ \end{gathered}  ight..

    Vậy có tất cả 4 nghiệm thỏa mãn bài toán.

     

  • Câu 6: Nhận biết

    Từ thời điểm đồng hồ chỉ đúng 12 giờ đến khi kim giờ chỉ 1 giờ đúng thì kim phút quay được góc bao nhiêu độ?

    Khi kim giờ chỉ đúng 1 giờ thì kim phút đã quay được 1 vòng ứng với góc lượng giác là: - 360^{0}

  • Câu 7: Thông hiểu

    Cho phương trình \sin x =\frac {1}{2}, nghiệm của phương trình là:

     Ta có: \sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in Z

  • Câu 8: Vận dụng

    Cho A, B, C là các góc của tam giác ABC. Khi đó D = \sin A + \sin B + \sin C tương đương với:

    Ta có:

    \left\{ \begin{matrix}\dfrac{A + B}{2} = \dfrac{\pi}{2} - \dfrac{C}{2} \\\dfrac{C}{2} = \dfrac{\pi}{2} - \dfrac{A + B}{2} \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\sin\dfrac{A + B}{2} = \cos\dfrac{C}{2} \\\sin\dfrac{C}{2} = \cos\dfrac{A + B}{2} \\\end{matrix} ight.

    Khi đó:

    D = \sin A + \sin B + \sin
C

    D = 2\sin\frac{A + B}{2}\cos\frac{A -B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}

    D = 2\cos\frac{C}{2}\cos\frac{A - B}{2} +2\cos\frac{A + B}{2}\cos\frac{C}{2}

    D = 2\cos\frac{C}{2}\left( \cos\frac{A -B}{2} + \cos\frac{A + B}{2} ight)

    D =4\cos\frac{C}{2}.\cos\frac{A}{2}.\cos\frac{B}{2}

  • Câu 9: Nhận biết

    Tập xác định của hàm số y =
3tan^{2}\left( \frac{x}{2} - \frac{\pi}{4} ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}cos^{2}\left( \dfrac{x}{2} - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Rightarrow \dfrac{x}{2} - \dfrac{\pi}{4} eq \dfrac{\pi}{2} + k\pi \hfill \\\Rightarrow x eq \dfrac{3\pi}{2} + k2\pi;k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{3\pi}{2} + k2\pi,k\mathbb{\in Z}
ight\}

  • Câu 10: Thông hiểu

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 11: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{4}{5}\frac{\pi}{2} < \alpha < \pi. Tính giá trị của biểu thức P = \sin2(\alpha +\pi).

    Ta có:

    P = \sin2(\alpha + \pi) = \sin(2\alpha +2\pi) = \sin2\alpha = 2\sin\alpha.\cos\alpha

    Theo bài ra ta có:

    \frac{\pi}{2} < \alpha < \pi
\Rightarrow \cos\alpha < 0

    \cos^{2}\alpha = 1 - \sin^{2}\alpha =\frac{9}{25}

    \Rightarrow \cos\alpha = -
\frac{3}{5}

    => P = 2.\frac{4}{5}.\left( -
\frac{3}{5} ight) = - \frac{24}{25}

  • Câu 12: Nhận biết

    Giải phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0?

     Phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0 \Leftrightarrow \frac{{2x}}{3} - \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} = \frac{\pi }{3} + k\pi  \Leftrightarrow x = \frac{\pi }{2} + \frac{{k3\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight).

  • Câu 13: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{\tan x - 1}{\sin x} + \cos\left( x +
\frac{\pi}{3} ight)?

    Hàm số y = \frac{\tan x - 1}{\sin x} +
\cos\left( x + \frac{\pi}{3} ight) xác định khi:

    \left\{ \begin{matrix}\sin x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \sin2x eq 0

    \Leftrightarrow 2x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2}\left( k\mathbb{\in Z}
ight)

    Vậy D=\mathbb{ R}\backslash\left\{\frac{k\pi}{2}|k\in\mathbb{ Z} ight\}

  • Câu 14: Thông hiểu

    Một bánh xe đạp trong 5 giây quay được 2 vòng. Hỏi bánh xe quay được 1 góc bao nhiêu độ trong 2 giây?

    Trong 1 giây bánh xe quay được \frac{2}{5} vòng

    Suy ra trong 2 giây bánh xe quay được \frac{4}{5} vòng

    Vậy góc bánh xe quay được là: \frac{4}{5}.360^{0} = 288^{0}

  • Câu 15: Nhận biết

    Tập nghiệm của phương trình \sin x = 0 là: 

     Ta có:

    \begin{matrix}  \sin x = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k2\pi } \\   {x = \pi  + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\   \Leftrightarrow x = k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha <
\frac{\pi}{2}

    => 0 - \pi < \alpha - \pi <
\frac{\pi}{2} - \pi

    => - \pi < \alpha - \pi < -
\frac{\pi}{2}

    Điểm cuối cung \alpha - \pi thuộc góc phần tư thứ ba

    => \sin(\alpha - \pi) <
0

  • Câu 17: Vận dụng

    Tại thủ đô A số giờ có ánh sáng mặt trời trong ngày thứ x (ở đây x là số ngày tính từ ngày 1 tháng giêng) của một năm không nhận được cho bởi công thức:

    T(x) = 12 + 2,83sin\left( \frac{2\pi x}{365} -
\frac{32}{73} ight) với x\mathbb{\in Z};0 < x < 365.

    Hỏi vào ngày nào trong năm thì thủ đô A có khoảng 10 giờ ánh sáng mặt trời?

    Thủ đô A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu

    12 + 2,83sin\left( \frac{2\pi x}{365} -
\frac{32}{73} ight) = 10

    \Leftrightarrow \sin\left( \frac{2\pi
x}{365} - \frac{32}{73} ight) = \frac{- 200}{283}

    \Leftrightarrow \left\lbrack\begin{matrix}\dfrac{2\pi x}{365} - \dfrac{32}{73} \approx - 0,78 + k2\pi \\\dfrac{2\pi x}{365} - \dfrac{32}{73} \approx 3,93 + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x \approx 34,49 + 365\pi \\
x \approx 308,30 + 365\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x\mathbb{\in Z};0 < x <
365 nên k = 0 suy ra \left\lbrack \begin{matrix}
x \approx 34,69 \\
x \approx 308,30 \\
\end{matrix} ight..

    Như vậy vào khoảng ngày thứ 34 của năm tức là ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thành phố A sẽ có 10 giờ ánh sáng mặt trời.

  • Câu 18: Thông hiểu

    Hàm số nào sau đây nhận giá trị âm nếu 0 < x < \frac{\pi }{2}

     Ta có:  y = \cos \left( {x + \pi } ight)  = -\cos x

    0 < x < \frac{\pi }{2} 

    => y = \cos \left( {x + \pi } ight) mang giá trị âm

  • Câu 19: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 20: Thông hiểu

    Giá trị nào sau đây của x thỏa mãn \sin2x.\sin3x = \cos2x.\cos3x?

    Ta có:

    \begin{matrix}\sin2x.\sin3x = \cos2x.\cos3x \hfill \\\Leftrightarrow \cos2x.\cos3x - \sin2x.\sin3x = 0 \hfill\\\Leftrightarrow \cos5x = 0 \hfill\\\Leftrightarrow 5x = 45 + k.180^{0}\hfill \\\Leftrightarrow x = 18^{0} + 36^{.}.k;\left( k\mathbb{\in Z} ight)\hfill \\\end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 154 lượt xem
Sắp xếp theo