Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Cho phương trình lượng giác ![]()
a) Với
, phương trình (*) có nghiệm là
Đúng||Sai
b) Với
, phương trình (*) có một nghiệm là
Đúng||Sai
c) Với
thì số nghiệm của phương trình (*) trên đoạn
là 3. Sai||Đúng
d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng
Cho phương trình lượng giác
a) Với , phương trình (*) có nghiệm là
Đúng||Sai
b) Với , phương trình (*) có một nghiệm là
Đúng||Sai
c) Với thì số nghiệm của phương trình (*) trên đoạn
là 3. Sai||Đúng
d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng
Thay vào (*) ta được:
Thay vào (*) ta được:
Với thì phương trình có nghiệm
.
Thay vào (*) ta được:
Vì xét nghiệm trên đoạn nên ta có:
Mà
Vậy với thì số nghiệm của phương trình (*) trên đoạn
là 2.
d) Ta có:
Để phương trình có nghiệm thì
mà
Vậy số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 10.
Khẳng định nào sau đây là đúng khi nói về ?
Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.
Phương trình
có nghiệm là:
Giải phương trình:
Chu kì của hàm số
là số nào sau đây?
Chu kì của hàm số là
Giải phương trình
?
Phương trình
.
Giải phương trình
?
Ta có và .
Do đó phương trình
Xét nghiệm .
Vậy phương trình có nghiệm .
Xác định hàm số chẵn trong các hàm số dưới đây?
Ta có:
Hàm số có tập xác định
nên
và
Suy ra hàm số là hàm số lẻ.
Hàm số là hàm số chẵn vì tập xác định
nên
và
Tương tự ta có hàm số là hàm số lẻ, hàm số
không chẵn cũng không lẻ.
Cho
cho
. Tính giá trị của
?
Ta có:
Vì nên
Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có thuộc gốc phần tư thứ I
=> Hàm số đồng biến trên khoảng
Rút gọn biểu thức
.
Ta có:
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Tập xác định của hàm số
là:
Ta có: xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Hàm số nào dưới đây đồng biến trên khoảng
?
Ta có:
Nên hàm số đồng biến trên khoảng
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
=> cùng dấu
Mà
Ta có:
Khi đó:
Tìm chu kì của hàm số
?
Hàm số tuần hoàn với chu kì
Áp dụng công thức trên ta suy ra hàm số tuần hoàn với chu kì
.
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Giá trị của
là:
Ta có:
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Mà
.
Do đó . Vậy
.
Phương trình lượng giác
có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Ta có:
Vậy phương trình có họ nghiệm là:.
Do đó
.