Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0) thì P = cos^{2}(\alpha + \beta) + p\sin(\alpha +
\beta).cos(\alpha + \beta) + qsin^{2}(\alpha + \beta) bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0)nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}
\tan\alpha + \tan\beta = p \\
\tan\alpha.tan\beta = q \\
\end{matrix} ight.

    \Rightarrow \tan(\alpha + \beta) =
\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha.tan\beta} = \frac{p}{1 -
q}

    Khi đó:

    P = \cos^{2}(\alpha + \beta) +p\sin(\alpha + \beta).\cos(\alpha + \beta) + q\sin^{2}(\alpha +\beta)

    P = \cos^{2}(\alpha + \beta).\left\lbrack1 + p\tan(\alpha + \beta) + q\tan^{2}(\alpha + \beta)ightbrack

    P = \frac{1 + p\tan(\alpha + \beta) +q\tan^{2}(\alpha + \beta)}{1 + \tan^{2}(\alpha + \beta)}

    P = \dfrac{1 + p.\dfrac{p}{1 - q} +q.\left( \dfrac{p}{1 - q} ight)^{2}}{1 + \left( \dfrac{p}{1 - q}ight)^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2}(1 - q) +q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2} - p^{2}.q+ q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = 1

  • Câu 2: Thông hiểu

    Cho phương trình lượng giác 4cos2x = m - 1\ \ (*)

    a) Với m = 5, phương trình (*) có nghiệm là x = k\pi,\left( k\mathbb{\in Z}
ight) Đúng||Sai

    b) Với m = 3, phương trình (*) có một nghiệm là x = \frac{\pi}{6} Đúng||Sai

    c) Với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 3. Sai||Đúng

    d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng

    Đáp án là:

    Cho phương trình lượng giác 4cos2x = m - 1\ \ (*)

    a) Với m = 5, phương trình (*) có nghiệm là x = k\pi,\left( k\mathbb{\in Z}
ight) Đúng||Sai

    b) Với m = 3, phương trình (*) có một nghiệm là x = \frac{\pi}{6} Đúng||Sai

    c) Với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 3. Sai||Đúng

    d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng

    Thay m = 5 vào (*) ta được:

    4cos2x = 4 \Leftrightarrow cos2x =
1

    \Leftrightarrow 2x = k2\pi
\Leftrightarrow x = k\pi;\left( k\mathbb{\in Z} ight)

    Thay m = 3 vào (*) ta được:

    4cos2x = 2 \Leftrightarrow cos2x =
\frac{1}{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = \frac{\pi}{3} + k2\pi \\
2x = - \frac{\pi}{3} + k2\pi \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{\pi}{6} + k\pi \\
x = - \frac{\pi}{6} + k\pi \\
\end{matrix} ight.\ \left( k\mathbb{\in Z} ight)

    Với k = 0 thì phương trình có nghiệm x = \frac{\pi}{6} .

    Thay m = - 3 vào (*) ta được:

    4cos2x = - 4 \Leftrightarrow cos2x = -
1

    \Leftrightarrow 2x = \pi + k2\pi;\left(
k\mathbb{\in Z} ight)

    \Leftrightarrow x = \frac{\pi}{2} +
k\pi;\left( k\mathbb{\in Z} ight)

    Vì xét nghiệm trên đoạn \lbrack
0;2\pibrack nên ta có:

    0 \leq \frac{\pi}{2} + k\pi \leq 2\pi
\Leftrightarrow - \frac{1}{2} \leq k \leq \frac{3}{2}

    k\mathbb{\in Z \Rightarrow}k = \left\{
0;1 ight\}

    Vậy với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 2.

    d) Ta có: 4cos2x = m - 1 \Leftrightarrow
cos2x = \frac{m - 1}{4}

    Để phương trình có nghiệm thì - 1 \leq
\frac{m - 1}{4} \leq 1 \Leftrightarrow - 4 \leq m - 1 \leq
4

    \Leftrightarrow - 3 \leq m \leq
5m\mathbb{\in Z \Rightarrow}m =
\left\{ - 3; - 2; - 1;0;1;2;3;4;5 ight\}

    Vậy số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 10.

  • Câu 3: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ?

    Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.

  • Câu 4: Thông hiểu

    Phương trình \sin x = \sin \frac{\pi }{3} có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \sin x = \sin \dfrac{\pi }{3} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k2\pi } \\   {x = \pi  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k2\pi } \\   {x = \dfrac{{2\pi }}{3} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Chu kì của hàm số y = 3\sin2x là số nào sau đây?

    Chu kì của hàm số là T = \frac{2\pi}{2} =\pi

  • Câu 6: Nhận biết

    Giải phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0?

     Phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0 \Leftrightarrow \frac{{2x}}{3} - \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} = \frac{\pi }{3} + k\pi  \Leftrightarrow x = \frac{\pi }{2} + \frac{{k3\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight).

  • Câu 7: Vận dụng

    Giải phương trình \sqrt 3 \cos \left( {x + \frac{\pi }{2}} ight) + \sin \left( {x - \frac{\pi }{2}} ight) = 2\sin 2x?

     

    Ta có \cos \left( {x + \frac{\pi }{2}} ight) =  - \sin x và .\sin \left( {x - \frac{\pi }{2}} ight) =  - \cos x

    Do đó phương trình \Leftrightarrow  - \sqrt 3 \sin x - \cos x = 2\sin 2x

    \Leftrightarrow \sqrt 3 \sin x + \cos x =  - 2\sin 2x

    \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x =  - \sin 2x

    \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} ight) =  - \sin 2x

    \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} ight) = \sin \left( { - 2x} ight)

    \Leftrightarrow \left[ \begin{gathered}  x + \frac{\pi }{6} =  - 2x + k2\pi  \hfill \\  x + \frac{\pi }{6} = \pi  + 2x + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{{18}} + k\frac{{2\pi }}{3} \hfill \\  x =  - \frac{{5\pi }}{6} - k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Xét nghiệm x =  - \frac{{5\pi }}{6} - k2\pi \xrightarrow[{k \in \mathbb{Z},{\text{ }}k' \in \mathbb{Z}}]{{k =  - 1 - k'}}x = \frac{{7\pi }}{6} + k'2\pi.

    Vậy phương trình có nghiệm x =  - \frac{\pi }{{18}} + k\frac{{2\pi }}{3},{\text{ }}x = \frac{{7\pi }}{6} + k'2\pi {\text{ }}\left( {k,k' \in \mathbb{Z}} ight).

  • Câu 8: Thông hiểu

    Xác định hàm số chẵn trong các hàm số dưới đây?

    Ta có:

    Hàm số y = \sin x.cos3x có tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow -}x\mathbb{\in
R}

    y( - x) = \sin( - x).\cos( -3x) = - \sin x.\cos3x = - y(x)

    Suy ra hàm số y = \sin x.\cos3x là hàm số lẻ.

    Hàm số y = \cos2x là hàm số chẵn vì tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow
-}x\mathbb{\in R}

    y( - x) = \cos( - 2x) = cos2x =
y(x)

    Tương tự ta có hàm số y = \sin x là hàm số lẻ, hàm số y = \sin x + \cos
x không chẵn cũng không lẻ.

  • Câu 9: Thông hiểu

    Cho \cos a =
\frac{3}{5} cho 0^{0} < a <
90^{0}. Tính giá trị của \sin
a?

    Ta có:

    \sin^{2}a + \cos^{2}a = 1

    \Leftrightarrow \sin^{2}a = 1 -\cos^{2}a

    \Leftrightarrow \sin^{2}a = 1 - \left(\frac{3}{5} ight)^{2}

    \Leftrightarrow \sin^{2}a =\frac{16}{25}

    \Leftrightarrow \sin a = \pm
\frac{4}{5}

    0^{0} < a < 90^{0} nên \sin a > 0 \Rightarrow \sin a =
\frac{4}{5}

  • Câu 10: Thông hiểu

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 11: Thông hiểu

    Rút gọn biểu thức C = \cos\left( x + \frac{\pi}{4} ight) -\cos\left( x - \frac{\pi}{4} ight).

    Ta có:

    C = \cos\left( x + \frac{\pi}{4} ight)
- \cos\left( x - \frac{\pi}{4} ight)

    C = - 2\sin\left( \dfrac{x + \dfrac{\pi}{4}+ x - \dfrac{\pi}{4}}{2} ight).\sin\left( \dfrac{x + \dfrac{\pi}{4} - x +\dfrac{\pi}{4}}{2} ight)

    C = - 2\sin x.\sin\frac{\pi}{4} = -\sqrt{2}\sin x

  • Câu 12: Nhận biết

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 13: Nhận biết

    Tập xác định của hàm số f(x) = \tan x là:

    Ta có: f(x) = \tan x xác định khi và chỉ khi

    \cos x eq 0

    \Leftrightarrow x eq \frac{\pi}{2} +k\pi;\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số là: \mathbb{R}\backslash\left\{ (2k +1).\frac{\pi}{2}|k\mathbb{\in Z} ight\}

  • Câu 14: Thông hiểu

    Hàm số nào dưới đây đồng biến trên khoảng \left( 0;\frac{5\pi}{6}
ight)?

    Ta có:

    x \in \left( 0;\frac{5\pi}{6} ight)
\Rightarrow x - \frac{\pi}{3} \in \left( \frac{\pi}{3};\frac{\pi}{2}
ight) \subset \left( - \frac{\pi}{2};\frac{\pi}{2}
ight)

    Nên hàm số y = \sin\left( x -
\frac{\pi}{3} ight) đồng biến trên khoảng \left( 0;\frac{5\pi}{6}
ight) .

  • Câu 15: Vận dụng

    Cho góc \alpha thỏa mãn \tan\alpha + \cot\alpha < 0\sin\alpha = \frac{1}{5}. Tính P = \sin2\alpha

    Ta có: \tan\alpha =
\frac{1}{\cot\alpha}

    => \tan\alpha;\cot\alpha cùng dấu

    \tan\alpha + \cot\alpha < 0
\Rightarrow \tan\alpha < 0

    Ta có: \sin\alpha = \frac{1}{5} > 0
\Rightarrow \cos\alpha < 0

    Khi đó: \cos\alpha = - \sqrt{1 -
\sin\alpha} = - \frac{2\sqrt{6}}{5}

    P = \sin2\alpha = 2\sin\alpha.\cos\alpha =- \frac{4\sqrt{6}}{25}

  • Câu 16: Nhận biết

    Tìm chu kì của hàm số y = \sin\left( 5x - \frac{\pi}{4}
ight)?

    Hàm số y = \sin(ax + b) tuần hoàn với chu kì T =
\frac{2\pi}{|a|}

    Áp dụng công thức trên ta suy ra hàm số y
= \sin\left( 5x - \frac{\pi}{4} ight) tuần hoàn với chu kì T = \frac{2\pi}{5}.

  • Câu 17: Vận dụng

    Xác định chu kì T của hàm số y = 3\cos(2x+ 1) - 2\sin\left( \dfrac{x}{2} - 3 ight)

    Hàm số y = 3\cos(2x + 1) tuần hoàn với chu kì T_{1} = \pi

    Hàm số y = - 2\sin\left( \frac{x}{2} - 3ight) tuần hoàn với chu kì T_{2}
= 4\pi

    Suy ra hàm số y = 3\cos(2x + 1) -2\sin\left( \frac{x}{2} - 3 ight) tuần hoàn với chu kì T = 4\pi

  • Câu 18: Nhận biết

    Giá trị của \sin\left( - \frac{25\pi}{4} ight) là:

    Ta có:

    \sin\left( - \frac{25\pi}{4} ight) =
\sin\left( - \frac{\pi}{4} - 6\pi ight) = \sin\left( - \frac{\pi}{4}
ight) = - \frac{\sqrt{2}}{2}

  • Câu 19: Nhận biết

    Trong các phương trình sau, phương trình nào tương đương với phương trình 2{\cos ^2}x = 1?

    Ta có 2{\cos ^2}x = 1 \Leftrightarrow {\cos ^2}x = \frac{1}{2} . Mà {\sin ^2}x + {\cos ^2}x = 1 \to {\sin ^2}x = \frac{1}{2}.

    Do đó {\tan ^2}x = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = 1. Vậy 2{\cos ^2}x = 1 \Leftrightarrow {\tan ^2}x = 1.

  • Câu 20: Thông hiểu

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Đáp án là:

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Ta có:

    \tan\left( 2x + \frac{\pi}{3} ight) =
- 1

    \Leftrightarrow \tan\left( 2x +\frac{\pi}{3} ight) = \tan\left( - \frac{\pi}{4} ight)

    \Leftrightarrow 2x + \frac{\pi}{3} = -
\frac{\pi}{4} + k\pi

    \Leftrightarrow 2x = - \frac{7\pi}{12} +
k\pi

    \Leftrightarrow x = - \frac{7\pi}{24} +
\frac{k\pi}{2}\ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có họ nghiệm là:x = -
\frac{7\pi}{24} + \frac{k\pi}{2}\ \left( k\mathbb{\in Z}
ight).

    Do đó a = 7,b = 24

    \Rightarrow T = a^{2} - b = 7^{2} - 24 =
25.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 356 lượt xem
Sắp xếp theo