Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Hàm số y = \frac{{2\sin 2x + \cos 2x}}{{\sin 2x - \cos 2x + 3}} có tất cả bao nhiêu giá trị nguyên?

     Ta có y = \frac{{2\sin 2x + \cos 2x}}{{\sin 2x - \cos 2x + 3}}

    \Leftrightarrow \left( {y - 2} ight)\sin 2x - \left( {y + 1} ight)\cos 2x =  - 3y

    Điều kiện để phương trình có nghiệm

    \Leftrightarrow {\left( {y - 2} ight)^2} + {\left( {y + 1} ight)^2} \geqslant {\left( { - 3y} ight)^2} \Leftrightarrow 7{y^2} + 2y - 5 \leqslant 0

    \Leftrightarrow  - 1 \leqslant y \leqslant \frac{5}{7}\xrightarrow{{y \in \mathbb{Z}}}y \in \left\{ { - 1;0} ight\} nên có 2 giá trị nguyên.

  • Câu 2: Thông hiểu

    Tính giá trị của biểu thức C = \dfrac{\sin\dfrac{5\pi}{18}.\cos\dfrac{\pi}{9} -\sin\dfrac{\pi}{9}.\cos\dfrac{5\pi}{18}}{\cos\dfrac{\pi}{4}.\cos\dfrac{\pi}{12}- \sin\dfrac{\pi}{4}.\sin\dfrac{\pi}{12}} là:

    Ta có:

    \sin\dfrac{5\pi}{18}.\cos\dfrac{\pi}{9} -\sin\dfrac{\pi}{9}.\cos\dfrac{5\pi}{18}

    = \sin\left( \frac{5\pi}{18} -\frac{\pi}{9} ight)

    = \sin\frac{\pi}{6} =\frac{1}{2}

    \cos\dfrac{\pi}{4}.\cos\dfrac{\pi}{12} -\sin\dfrac{\pi}{4}.\sin\frac{\pi}{12}

    = \cos\left( \frac{\pi}{4} +\frac{\pi}{12} ight)

    = \cos\frac{\pi}{3} =\frac{1}{2}

    Vậy C=1

  • Câu 3: Nhận biết

    Điều kiện xác định của hàm số: y = \cos \sqrt {x - 1} là:

     Điều kiện xác định của hàm số:

    x - 1 \geqslant 0 \Leftrightarrow x \geqslant 1

  • Câu 4: Nhận biết

    Nghiệm của phương trình \cos x = -
\frac{1}{2}

    Ta có:

    \cos x = - \frac{1}{2} \Leftrightarrow
\cos x = \cos\left( \frac{2\pi}{3} ight)

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi\ \ \ \ (k \in Ζ)

  • Câu 5: Vận dụng

    Trong tam giác ABC nếu \frac{\tan\widehat{A}}{\tan\widehat{C}} =\frac{sin^{2}\widehat{A}}{sin^{2}\widehat{C}} thì tam giác ABC là tam giác gì?

    Ta có:

    \dfrac{\tan\widehat{A}}{\tan\widehat{C}}= \dfrac{\sin^{2}\widehat{A}}{\sin^{2}\widehat{C}}

    \Leftrightarrow\dfrac{\sin\widehat{A}.\cos\widehat{C}}{\cos\widehat{A}.\sin\widehat{C}} =\dfrac{\sin^{2}\widehat{A}}{\sin^{2}\widehat{C}}

    \Leftrightarrow \sin2\widehat{C} =\sin2\widehat{A}

    \Leftrightarrow \left\lbrack\begin{matrix}2\widehat{C} = 2\widehat{A} \\2\widehat{C} = \pi - 2\widehat{A} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\widehat{C} = \widehat{A} \\\widehat{C} + \widehat{A} = \dfrac{\pi}{2} \\\end{matrix} ight.

    Vậy tam giác ABC có thể là tam giác cân hoặc tam giác vuông.

  • Câu 6: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?

    Mỗi đường tròn định hướng có bán kính R =1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 7: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0) thì P = cos^{2}(\alpha + \beta) + p\sin(\alpha +
\beta).cos(\alpha + \beta) + qsin^{2}(\alpha + \beta) bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0)nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}
\tan\alpha + \tan\beta = p \\
\tan\alpha.tan\beta = q \\
\end{matrix} ight.

    \Rightarrow \tan(\alpha + \beta) =
\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha.tan\beta} = \frac{p}{1 -
q}

    Khi đó:

    P = \cos^{2}(\alpha + \beta) +p\sin(\alpha + \beta).\cos(\alpha + \beta) + q\sin^{2}(\alpha +\beta)

    P = \cos^{2}(\alpha + \beta).\left\lbrack1 + p\tan(\alpha + \beta) + q\tan^{2}(\alpha + \beta)ightbrack

    P = \frac{1 + p\tan(\alpha + \beta) +q\tan^{2}(\alpha + \beta)}{1 + \tan^{2}(\alpha + \beta)}

    P = \dfrac{1 + p.\dfrac{p}{1 - q} +q.\left( \dfrac{p}{1 - q} ight)^{2}}{1 + \left( \dfrac{p}{1 - q}ight)^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2}(1 - q) +q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2} - p^{2}.q+ q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = 1

  • Câu 8: Thông hiểu

    Tập giá trị của hàm số y = {\sin ^2}x - \sin x - 1 là:

     Ta có: y = {\sin ^2}x + \sin x + 1 = {\left( {\sin x - \frac{1}{2}} ight)^2} - \frac{5}{4}

    \sin x \in \left[ { - 1;1} ight]

    => - \frac{5}{4} \leqslant {\left( {\sin x - \frac{1}{2}} ight)^2} - \frac{5}{4} \leqslant 1

  • Câu 9: Thông hiểu

    Chọn công thức đúng trong các công thức dưới đây.

    Công thức đúng là \sin a - \sin b =2\sin\frac{a + b}{2}.\cos\frac{a - b}{2}

  • Câu 10: Nhận biết

    Tập xác định của hàm số: y = \frac{1}{{\sin x}} + 3\tan x

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\sin x e 0} \\   {\cos x e 0} \end{array}} ight. \Rightarrow \sin x.\cos x e 0 \hfill \\   \Rightarrow \sin 2x e 0 \Rightarrow x e \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Nghiệm của phương trình 2\sin^{2}x+5 \sin x + 3=0 là

      \begin{matrix}  2{\sin ^2}x + 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x + 1} ight).\left( {2\sin x + 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x + 1 = 0} \\   {2\sin x + 3 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x =  - 1} \\   {\sin x =  - \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\   \Rightarrow \sin x =  - 1 \hfill \\   \Rightarrow x =  - \dfrac{\pi }{2} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 3x + \cos 5x.

    Hàm số y = \cos 3x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{3}

    Hàm số y = \cos 5x tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{5}

    Suy ra hàm số y = \cos 3x + \cos 5x tuần hoàn với chu kì T = 2\pi

  • Câu 13: Thông hiểu

    Cho x= \frac{\pi}{2} +k\pi (k \in \mathbb{Z}) là nghiệm của phương trình nào sau đây?

     Ta có:

    \cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi  \Rightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} ight)

  • Câu 14: Nhận biết

    Số vị trí biểu diễn các nghiệm của phương trình \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 trên đường tròn lượng giác là?

     Ta có \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) =  - \sqrt 3

    \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) = \tan \left( { - \frac{\pi }{3}} ight)

    \Leftrightarrow 2x - \frac{\pi }{3} =  - \,\frac{\pi }{3} + k\pi

    \Leftrightarrow 2x = k\pi  \Leftrightarrow x = \frac{{k\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.

  • Câu 15: Nhận biết

    Đồ thị hàm số y=\cos x+1 đi qua điểm nào sau đây?

     Xét điểm (0; 2) => x = 0; y = 2

    Thay vào hàm số ta có:

    cos0 + 1 = 1 + 1 = 2 (thỏa mãn)

    Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)

  • Câu 16: Nhận biết

    Góc \frac{2\pi}{5} đổi sang độ bằng bao nhiêu?

    Ta có: \frac{2\pi}{5} =
\frac{2\pi}{5}\left( \frac{180}{\pi} ight)^{0} = 72^{0}.

  • Câu 17: Vận dụng

    Tập giá trị của hàm số y = \frac{\sin3x -2\cos3x + 10}{6\cos x\cos2x - 4\cos^{3}x + 3} có bao nhiêu số nguyên?

    Ta có:

    y = \frac{sin3x - 2cos3x +
10}{6cosxcos2x - 4cos^{3}x + 3}

    = \frac{sin3x - 2cos3x + 10}{3(cos3x +
\cos x) - (cos3x + 3cosx) + 3}

    = \frac{sin3x - 2cos3x + 10}{2cos3x +
3}

    \Leftrightarrow (2\cos3x + 3)y = \sin3x -2\cos3x + 10

    \Leftrightarrow (2y + 2)cos3x - sin3x =
10 - 3y

    Điều kiện có nghiệm của phương trình là:

    (2y + 2)^{2} + ( - 1)^{2} \geq (10 -
3y)^{2}

    \Leftrightarrow 4y^{2} + 8y + 4 + 1 \geq
100 - 60y + 9y^{2}

    \Leftrightarrow 5y^{2} - 68y + 95 \leq
0

    \Leftrightarrow \frac{34 -
\sqrt{681}}{5} \leq y \leq \frac{34 + \sqrt{681}}{5}.

    y\mathbb{\in Z} nên y = \{ 2;3;4;\ldots;12\}.

    Vậy tập giá trị của y có 11 số nguyên.

  • Câu 18: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 19: Thông hiểu

    Hỏi trên \left[ {0;\frac{\pi }{2}} ight), phương trình 2{\sin ^2}x - 3\sin x + 1 = 0 có bao nhiêu nghiệm?

     Phương trình 2{\sin ^2}x - 3\sin x + 1 = 0 \Leftrightarrow \left[ \begin{gathered}  \sin x = \frac{1}{2} \hfill \\  \sin x = 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  \sin x = \sin \frac{\pi }{6} \hfill \\  \sin x = 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\  x = \frac{\pi }{2} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết

    0 \leqslant x < \frac{\pi }{2} \Leftrightarrow \left[ \begin{gathered}  0 \leqslant \frac{\pi }{6} + k2\pi  < \frac{\pi }{2} \hfill \\  0 \leqslant \frac{{5\pi }}{6} + k2\pi  < \frac{\pi }{2} \hfill \\  0 \leqslant \frac{\pi }{2} + k2\pi  < \frac{\pi }{2} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{1}{6}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6} \hfill \\   - \frac{5}{{12}} < k <  - \frac{1}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k \in \emptyset  \hfill \\   - \frac{1}{4} < k < 0\xrightarrow{{k \in \mathbb{Z}}}k \in \emptyset  \hfill \\ \end{gathered}  ight.

    Vậy phương trình có duy nhất một nghiệm trên \left[ {0;\frac{\pi }{2}} ight).

  • Câu 20: Thông hiểu

    Biến đổi thành tích biểu thức \frac{sin7\alpha - sin5\alpha}{sin7\alpha +
sin5\alpha} ta được

    Ta có \frac{sin7\alpha -
sin5\alpha}{sin7\alpha + sin5\alpha} = \frac{2cos6\alpha \cdot
sin\alpha}{2sin6\alpha \cdot cos\alpha} =
\cot{6\alpha}.tan\alpha

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo