Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức
.
Ta có:
Ta lại có:
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức
.
Ta có:
Ta lại có:
Biết
là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Cho góc lượng giác
. Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Tìm tất cả các giá trị
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiêm
.
Tập nghiệm của phương trình
là:
Ta có:
Nghiệm của phương trình
là
Ta có
.
Phương trình lượng giác
có nghiệm là ?
Ta có:
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Theo bài ra ta có:
=>
Cho
là nghiệm của phương trình nào sau đây?
Giải PT, ta có:
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Phương án nào sau đây sai với mọi
?
Ta có:
Vậy đáp án sai là:
Phương trình
có nghiệm là:
Điều kiện xác định:
Kiểm tra điều kiện ta thấy thỏa mãn
Vậy nghiệm của phương trình là:
Tìm chu kì của hàm số
?
Hàm số tuần hoàn với chu kì
Áp dụng công thức trên ta suy ra hàm số tuần hoàn với chu kì
.
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Tập giá trị của hàm số
là:
Ta có:
Mà
=>
Cung nào sau đây có mút trùng với B hoặc B’?

Quan sát hình vẽ ta thấy vị trí điểm B và B’ ứng với các góc .
Tương ứng với đó ta được góc trùng với các vị trí B và B’ là: .
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?
Ta dễ dàng kiểm tra được các hàm số
là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O
Xét hàm số ta có:
Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.
Cho góc
thỏa mãn
. Tính giá trị biểu thức ![]()
Ta có:
Theo bài ra ta có:
Khi đó giá trị biểu thức T là:
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì