Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tập xác định D của hàm số y =
\frac{1}{\sin x - \cos x} là:

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin x - \cos x eq 0 \hfill \\\Rightarrow \tan x eq 1 \hfill \\\Rightarrow x eq \dfrac{\pi}{4} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ \frac{\pi}{4} + k\pi,k\mathbb{\in Z}ight\}

  • Câu 2: Nhận biết

    Cung tròn bán kính bằng 8,43cm có số đo 3,85 rad có độ dài là?

    Độ dài cung tròn là l = R.\alpha =8,43.3,85 = 32,4555(cm)

  • Câu 3: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0) thì P = cos^{2}(\alpha + \beta) + p\sin(\alpha +
\beta).cos(\alpha + \beta) + qsin^{2}(\alpha + \beta) bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0)nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}
\tan\alpha + \tan\beta = p \\
\tan\alpha.tan\beta = q \\
\end{matrix} ight.

    \Rightarrow \tan(\alpha + \beta) =
\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha.tan\beta} = \frac{p}{1 -
q}

    Khi đó:

    P = \cos^{2}(\alpha + \beta) +p\sin(\alpha + \beta).\cos(\alpha + \beta) + q\sin^{2}(\alpha +\beta)

    P = \cos^{2}(\alpha + \beta).\left\lbrack1 + p\tan(\alpha + \beta) + q\tan^{2}(\alpha + \beta)ightbrack

    P = \frac{1 + p\tan(\alpha + \beta) +q\tan^{2}(\alpha + \beta)}{1 + \tan^{2}(\alpha + \beta)}

    P = \dfrac{1 + p.\dfrac{p}{1 - q} +q.\left( \dfrac{p}{1 - q} ight)^{2}}{1 + \left( \dfrac{p}{1 - q}ight)^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2}(1 - q) +q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2} - p^{2}.q+ q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = 1

  • Câu 4: Nhận biết

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 5: Vận dụng

    Cho tam giác ABC có: \cos\widehat{A} = \frac{4}{5}\cos\widehat{B} = \frac{5}{13}. Xác định \cos\widehat{C}.

    Ta có: \left\{ \begin{matrix}\cos\widehat{A} = \dfrac{4}{5} \\\cos\widehat{B} = \dfrac{5}{13} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}\sin\widehat{A} = \dfrac{3}{5} \\\sin\widehat{B} = \dfrac{12}{13} \\\end{matrix} ight.

    \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} khi đó:

    \cos\widehat{C} = \cos\left\lbrack180^{0} - \left( \widehat{A} + \widehat{B} ight)ightbrack

    = - \cos\left( \widehat{A} + \widehat{B}
ight)

    = - \left(\cos\widehat{A}\cos\widehat{B} - \sin\widehat{A}\sin\widehat{B}ight)

    = - \left( \frac{4}{5}.\frac{5}{13} -
\frac{3}{5}.\frac{12}{13} ight) = \frac{16}{65}

  • Câu 6: Vận dụng

    Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức h(t)= 29 + 3.\sin\frac{\pi}{12}(t - 9) với h tính bằng \
^{0}Ct là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là:

    Do - 1 \leq \sin\frac{\pi}{12}(t - 9)
\leq 1,\forall t nên

    \begin{matrix}- 3 \leq 3\sin\dfrac{\pi}{12}(t - 9) \leq 3 \\\Leftrightarrow 26 \leq 29 + 3\sin\dfrac{\pi}{12}(t - 9) \leq 32 \\\Leftrightarrow 26 \leq h(t) \leq 32 \\\end{matrix}

    Do đó nhiệt độ cao nhất trong ngày là 32^{0}C.

    Dấu bằng xảy ra \Leftrightarrow \sin\frac{\pi}{12}(t -
9) = 1 \Leftrightarrow \frac{\pi}{12}(t - 9) = \frac{\pi}{2} +
k2\pi \Leftrightarrow t = 15 +
24k(k\mathbb{\in Z})

    Do 0 \leq t \leq 24 \Leftrightarrow 0
\leq 15 + 24k \leq 24 \Leftrightarrow - \frac{15}{24} \leq k \leq
\frac{9}{24}.

    k\mathbb{\in Z} nên k = 0.

    Khi đó t = 15.

    Vậy lúc 15h là thời gian nhiệt độ cao nhất trong ngày.

  • Câu 7: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 8: Thông hiểu

    Cho đồ thị hàm số lượng giác như hình vẽ:

    Đường thẳng y = \frac{1}{2} cắt đồ thị hàm số y = 2sin^{2}x tại 4 điểm A, B, C, D như hình vẽ. Giá trị của x_{B} + x_{D}\frac{a}{b}\pi. Biết \frac{a}{b} là phân số tối giản. Giá trị của 2a + b là:

    Đáp án: 19

    Đáp án là:

    Cho đồ thị hàm số lượng giác như hình vẽ:

    Đường thẳng y = \frac{1}{2} cắt đồ thị hàm số y = 2sin^{2}x tại 4 điểm A, B, C, D như hình vẽ. Giá trị của x_{B} + x_{D}\frac{a}{b}\pi. Biết \frac{a}{b} là phân số tối giản. Giá trị của 2a + b là:

    Đáp án: 19

    Phương trình hoành độ giao điểm là:

    2\sin^{2}x = \frac{1}{2} \Leftrightarrow1 - \cos2x = \frac{1}{2} \Leftrightarrow \cos2x = \frac{1}{2}

    \Leftrightarrow 2x = \pm \frac{\pi}{3} +
k2\pi \Leftrightarrow x = \pm \frac{\pi}{6} + k\pi

    Ta thấy x_{A},x_{B},x_{C},x_{D} là bốn nghiệm dương nhỏ nhất của phương trình trên.

    Do đó: x_{A} = \frac{\pi}{6};x_{B} =
\frac{5\pi}{6};x_{C} = \frac{7\pi}{6};x_{D} = \frac{11\pi}{6}
\Rightarrow x_{B} + x_{D} = \frac{8}{3}\pi.

    Vậy 2a + b = 8.2 +3=1 9.

  • Câu 9: Thông hiểu

    Giá trị nào sau đây của x thỏa mãn \sin2x.\sin3x = \cos2x.\cos3x?

    Ta có:

    \begin{matrix}\sin2x.\sin3x = \cos2x.\cos3x \hfill \\\Leftrightarrow \cos2x.\cos3x - \sin2x.\sin3x = 0 \hfill\\\Leftrightarrow \cos5x = 0 \hfill\\\Leftrightarrow 5x = 45 + k.180^{0}\hfill \\\Leftrightarrow x = 18^{0} + 36^{.}.k;\left( k\mathbb{\in Z} ight)\hfill \\\end{matrix}

  • Câu 10: Nhận biết

    Với x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight), mệnh đề nào sau đây đúng?

    Ta có: x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight) = \left( - \frac{\pi}{4} +
8\pi;\frac{\pi}{4} + 8\pi ight) thuộc góc phần tư thứ I và thứ II.

  • Câu 11: Thông hiểu

    Cho hàm số y = -2\sin\left( x + \frac{\pi}{3} ight) + 2. Mệnh đề nào sau đây đúng?

    Ta có:

    - 1 \leq \sin\left( x + \frac{\pi}{3}ight) \leq 1

    \Rightarrow 2 \geq - 2\sin\left( x +\frac{\pi}{3} ight) \geq - 2

    \Rightarrow 4 \geq - 2\sin\left( x +\frac{\pi}{3} ight) + 2 \geq 0

    \Rightarrow 4 \geq y \geq 0

    Vậy y \geq 0;\forall x\mathbb{\inR} là mệnh đề đúng.

  • Câu 12: Thông hiểu

    Phương trình \sin x =  - \frac{1}{2} có nghiệm thỏa mãn x nằm trong khoảng \left( {\pi ;\frac{{3\pi }}{2}} ight) là:

     Giải phương trình:

    \begin{matrix}  \sin x =  - \dfrac{1}{2} \Leftrightarrow \sin x = \sin \left( {\dfrac{{ - \pi }}{6}} ight) \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \pi  + \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \dfrac{{7\pi }}{6} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Do x \in \left( {\pi ;\frac{{3\pi }}{2}} ight) => {x = \frac{{7\pi }}{6} + k2\pi } thỏa mãn

  • Câu 13: Vận dụng

    Tìm tập xác định D của hàm số y = \sqrt{1- sin2x} - \sqrt{1 + sin2x}

    Hàm số xác định khi và chỉ khi -1\leq \sin2x \leq 1

    Vậy tập xác định của hàm số là D=\mathbb{R}

  • Câu 14: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Vì hàm số y = tan x tuần hoàn với chu kì π

    Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.

  • Câu 15: Thông hiểu

    Đổi số đo của góc \frac{\pi}{12}rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \dfrac{\dfrac{\pi}{12}.180}{\pi}ight)^{0} = 15^{0}

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm (shift π ÷12) shift DRG 2 =

  • Câu 16: Nhận biết

    Đổi số đo của góc 70^{0} sang đơn vị radian

    Cách 1: Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Khi đó:\mu = \frac{70.\pi}{180} =
\frac{7.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.

    Bước 2. Bấm 70 shift DRG 1 =

  • Câu 17: Nhận biết

    Phương án nào sau đây sai với mọi k\in\mathbb{ Z}?

    Ta có:

    \sin x = 0 \Leftrightarrow x =
k\pi;\left( k\mathbb{\in Z} ight)

    Vậy đáp án sai là: \sin x = 0
\Leftrightarrow x = \frac{\pi}{2} + k\pi

  • Câu 18: Nhận biết

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt 3 \cos x + m - 1 = 0 có nghiệm?

     Ta có \sqrt 3 \cos x + m - 1 = 0 \Leftrightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}.

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant \frac{{1 - m}}{{\sqrt 3 }} \leqslant 1

    \Leftrightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3 \xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ {0;1;2} ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m.

  • Câu 19: Thông hiểu

    Hỏi trên \left[ {0;\frac{\pi }{2}} ight), phương trình 2{\sin ^2}x - 3\sin x + 1 = 0 có bao nhiêu nghiệm?

     Phương trình 2{\sin ^2}x - 3\sin x + 1 = 0 \Leftrightarrow \left[ \begin{gathered}  \sin x = \frac{1}{2} \hfill \\  \sin x = 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  \sin x = \sin \frac{\pi }{6} \hfill \\  \sin x = 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\  x = \frac{\pi }{2} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết

    0 \leqslant x < \frac{\pi }{2} \Leftrightarrow \left[ \begin{gathered}  0 \leqslant \frac{\pi }{6} + k2\pi  < \frac{\pi }{2} \hfill \\  0 \leqslant \frac{{5\pi }}{6} + k2\pi  < \frac{\pi }{2} \hfill \\  0 \leqslant \frac{\pi }{2} + k2\pi  < \frac{\pi }{2} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{1}{6}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6} \hfill \\   - \frac{5}{{12}} < k <  - \frac{1}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k \in \emptyset  \hfill \\   - \frac{1}{4} < k < 0\xrightarrow{{k \in \mathbb{Z}}}k \in \emptyset  \hfill \\ \end{gathered}  ight.

    Vậy phương trình có duy nhất một nghiệm trên \left[ {0;\frac{\pi }{2}} ight).

  • Câu 20: Thông hiểu

    Xác định nghiệm của phương trình - \cos2x = \cos\left( x - 30^{0}ight)?

    Ta có:

    - \cos2x = \cos\left( x - 30^{0}ight)

    \Leftrightarrow \cos\left( 180^{0} - 2x
ight) = \cos\left( x - 30^{0} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 30^{0} = 180^{0} - 2x + k360^{0} \\
x - 30^{0} = - 180^{0} + 2x + k360^{0} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} - k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm \left\lbrack \begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} + k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo