Tính
biết
và
.
Ta có
.
Mà nên
.
Vậy .
Tính
biết
và
.
Ta có
.
Mà nên
.
Vậy .
Tập nghiệm của phương trình
là?
Ta có: .
Nếu
với
và
thì
Ta có:
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Nhắc lại lý thuyết:
Cho (C) là đồ thị của hàm số và
, ta có:
+ Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số .
+ Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số
Vậy đồ thị hàm số được suy từ đồ thị hàm số
bằng cách tịnh tiến sang phải
đơn vị.
Đổi số đo của góc
sang đơn vị radian?
Cách 1: Áp dụng công thức với
ta được:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.
Bước 2: Bấm 50 SHIFT Ans 1 =
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Đúng||Sai
b) Trên khoảng
phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng
phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng
bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Trên khoảng phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng bằng
. Đúng||Sai
Ta có phương trình đã cho tương đương với
.
Vì nên suy ra
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Điều kiện xác định của hàm số: 
Điều kiện xác định của hàm số:
Phương trình ![]()
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
Ta có

Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Chu kì của hàm số
là
Hàm số tuần hoàn với chu kỳ
.
Mệnh đề nào sau đây sai?
Mệnh đề sai:
Sửa lại:
Hai hàm số nào sau đây có chu kì khác nhau?
Hai hàm số có cùng chu kì 2π
Hai hàm số có cùng chu kì 4π
Hai hàm số có cùng chu kì
Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì
Với
là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?
Đẳng thức đúng: .
Giải phương trình
được nghiệm là:
Ta có
Vậy phương trình đã cho có nghiệm là
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
và
xác định và
xác định
Ta có: xác định khi và chỉ khi
Mà cot x xác định khi
Do đó hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho hàm số
. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?
Tập xác định:
Hàm số tuần hoàn với chu kì
, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên
Dựa vào kết quả khảo sát sự biến thiên của hàm số phần lí thuyết ta có thể suy ra với hàm số
đồng biến trên khoảng
và
.
Cho góc
thỏa mãn
. Giá trị của biểu thức ![]()
Ta có:
Ta có:
Khi đó giá trị biểu thức G là: