Đồ thị hàm số
đi qua điểm nào sau đây?
Xét điểm (0; 2) => x = 0; y = 2
Thay vào hàm số ta có:
cos0 + 1 = 1 + 1 = 2 (thỏa mãn)
Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)
Đồ thị hàm số
đi qua điểm nào sau đây?
Xét điểm (0; 2) => x = 0; y = 2
Thay vào hàm số ta có:
cos0 + 1 = 1 + 1 = 2 (thỏa mãn)
Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)
Tại thủ đô A số giờ có ánh sáng mặt trời trong ngày thứ
(ở đây
là số ngày tính từ ngày 1 tháng giêng) của một năm không nhận được cho bởi công thức:
với
.
Hỏi vào ngày nào trong năm thì thủ đô A có khoảng 10 giờ ánh sáng mặt trời?
Thủ đô A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu
Vì nên
suy ra
.
Như vậy vào khoảng ngày thứ 34 của năm tức là ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thành phố A sẽ có 10 giờ ánh sáng mặt trời.
Phương trình lượng giác
có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Ta có:
Vậy phương trình có họ nghiệm là:.
Do đó
.
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Tính giá trị biểu thức ![]()
Ta có:
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Chọn khẳng định đúng.
Ta có: tương ứng với
.
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?
Ta có thể hiểu như sau:
“ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.
Cho
. Xác định k để
.
Ta có:
Với giá trị nào của m thì phương trình
có nghiệm:
Ta có:
Do
Vậy
Phương trình
có nghiệm là:
Ta có , với
.
Đổi số đo của góc
sang đơn vị radian:
Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Ta có: khi đó:
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Mà
.
Do đó . Vậy
.
Rút gọn biểu thức ![]()
Ta có:
Nghiệm của phương trình
là?
Ta có:
.
Hàm số nào dưới đây đồng biến trên khoảng
?
Ta có:
Nên hàm số đồng biến trên khoảng
.
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định