Tìm tập xác định
của hàm số
?
Hàm số xác định khi:
Vậy
Tìm tập xác định
của hàm số
?
Hàm số xác định khi:
Vậy
Nghiệm của phương trình
là:
Giải phương trình ta có:
Vậy phương trình có nghiệm
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Cho đồ thị hàm số như hình vẽ:

Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây
Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án
Tại x = 0 thì => Loại đáp án
Tại ta thấy chỉ có
thỏa mãn
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.
Phương trình
có một nghiệm thuộc khoảng
là
Ta có .
Do đó là một nghiệm của phương trình
thuộc khoảng
.
Nghiệm của phương trình
là
Rút gọn biểu thức ![]()
Vì hai góc và
phụ nhau nên
Cho
. Khẳng định nào sau đây đúng?
Ta có:
Nghiệm dương bé nhất của phương trình
là
Giải phương trình
Với k = 0 => (Thỏa mãn)
Vậy nghiệm nguyên dương nhỏ nhất của phương trình là
Giải phương trình
?
Phương trình
.
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Đổi số đo
sang số đo theo đơn vị là radian.
Ta có:
Tính giá trị biểu thức ![]()
Ta có:
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Nghiệm của phương trình
là
Ta có:
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Cho góc lượng giác
. Với giá trị k bằng bao nhiêu thì góc
?
Theo bài ra ta có: