Cho
. Khẳng định nào sau đây đúng?
Ta có:
=>
=>
Điểm cuối cung thuộc góc phần tư thứ ba
=>
Cho
. Khẳng định nào sau đây đúng?
Ta có:
=>
=>
Điểm cuối cung thuộc góc phần tư thứ ba
=>
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I. Do đó
đồng biến
nghịch biến.
nghịch biến
nghịch biến.
Trong các khẳng định sau, khẳng định nào sai?
Ta có .
Tổng các nghiệm thuộc khoảng
của phương trình: ![]()
Giải phương trình:
Tổng nghiệm của phương trình bằng 0.
Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?
Ta có thể hiểu như sau:
“ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.
Giải phương trình: ![]()
Giải phương trình:
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Sai||Đúng
b) Trong khoảng
phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng
phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên
bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Sai||Đúng
b) Trong khoảng phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên bằng
. Đúng||Sai
Phương trình
Vì nên:
Với ta chỉ chọn được
.
Với ta chỉ chọn được
.
Vậy tổng các nghiệm bằng .
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Giải phương trình ![]()
Ta có:
Nếu một cung tròn có số đo
thì số đo radian của nó là:
Áp dụng công thức tương ứng với
ta được:
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Góc có số đo
đổi sang độ là:
Cách 1:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 3 chuyển về chế độ "độ".
Bước 2: Bấm SHIFT Ans 2 =
Giải phương trình
ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:
Ta có:
Suy ra:
Nghiệm âm lớn nhất của phương trình là: ứng với
Nghiệm dương nhỏ nhất của phương trình là: ứng với
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Kiểm tra được ;
;
là các hàm số chẵn.
là hàm số lẻ.
Cho hàm số
. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?
Tập xác định:
Hàm số tuần hoàn với chu kì
, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên
Dựa vào kết quả khảo sát sự biến thiên của hàm số phần lí thuyết ta có thể suy ra với hàm số
đồng biến trên khoảng
và
.
Mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Tìm giá trị lớn nhất M của biểu thức
xác định
Ta có:
Mặt khác
Vậy giá trị lớn nhất của biểu thức là .
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Cho công thức
biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với
là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.
Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số đạt giá trị lớn nhất.
Khi đó .
Vì nên ta có
.
Do đó (tháng đầu tiên của năm)