Tính giá trị đúng của biểu thức ![]()
Ta có:
Tính giá trị đúng của biểu thức ![]()
Ta có:
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số:
Cho hình vẽ:

Trên đường tròn lượng giác, số đo của góc lượng giác
là:
Từ hình vẽ ta có:
Phương trình
có bao nhiêu nghiệm thuộc khoảng
?
Ta có:
Mà
Vậy phương trình có hai nghiệm thuộc khoảng .
Công thức nào sau đây sai?
Ta có:
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo
(lấy 2 chữ số thập phân).
Cung có số đo thì có số đó radian là
Bán kính đường tròn
=>
Tập nghiệm của phương trình
là?
Cho hai hàm số
. Mệnh đề nào sau đây đúng?
Xét hàm số có tập xác định
Với mọi x thuộc D => -x thuộc D ta có:
Vậy f(x) là hàm số chẵn
Tương tự xét hàm số
Với mọi x thuộc D => -x thuộc D ta có:
Vậy g(x) là hàm số chẵn.
Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình
?
Điều kiện xác định:
Ta có:
Kết hợp với điều kiện xác định suy ra phương trình có nghiệm nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Cho
và
. Khi đó giá trị của
là:
Ta có:
Do hay
Vậy
Tìm tất cả các giá trị của tham số m để phương trình
vô nghiệm.
TH1. Với m = 2, phương trình : vô lý.
Suy ra m=2 thì phương trình đã cho vô nghiệm.
TH2. Với , phương trình
Để phương trình vô nghiệm
Kết hợp hai trường hợp, ta được là giá trị cần tìm.
Tập nghiệm của phương trình
là?
Ta có: .
Cho tam giác
có các góc
thỏa mãn biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Vậy tam giác cân.
Xác định chu kì T của hàm số lượng giác
?
Hàm số y = cos(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Áp dụng: Hàm số tuần hoàn với chu kì