Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Một đồng hồ treo tường, kim giờ dài 10,57cm và kim phút dài 13,34cm. Trong 30 phút mũi kim giờ vạch lên cung tròn có độ dài là

    Ta có: 6 giờ thì kim giờ vạch lên 1 cung có số đo

    => 30 phút kim giờ vạch lên 1 cung có số đo là \frac{\pi}{12}

    => Độ dài cung tròn mà nó vạch lên là l = R.\alpha = 10,57.\frac{3,14}{12} \approx
2,77(cm)

  • Câu 2: Thông hiểu

    Gọi S là tập nghiệm của phương trình \cos 2x - \sin 2x = 1. Khẳng định nào sau đây là đúng?

     Phương trình \Leftrightarrow \sqrt 2 \cos \left( {2x + \frac{\pi }{4}} ight) = 1 \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} ight) = \frac{1}{{\sqrt 2 }}

    \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} ight) = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  2x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi  \hfill \\  2x + \frac{\pi }{4} =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x =  - \frac{\pi }{4} + k\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}.

    Xét nghiệm x =  - \frac{\pi }{4} + k\pi, với k = 1 ta được x = \frac{{3\pi }}{4}.

  • Câu 3: Nhận biết

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt 3 \cos x + m - 1 = 0 có nghiệm?

     Ta có \sqrt 3 \cos x + m - 1 = 0 \Leftrightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}.

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant \frac{{1 - m}}{{\sqrt 3 }} \leqslant 1

    \Leftrightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3 \xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ {0;1;2} ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m.

  • Câu 4: Vận dụng cao

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 5: Thông hiểu

    Biết rằng \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} = \tan\left(\dfrac{m\pi}{n} ight) với m,n\in\mathbb{ N} và \frac{m}{n} tối giản. Khi đó kết quả nào sau đây đúng?

    Ta có:

    \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} =\frac{2\sin\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9}ight)}{2\cos\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9} ight)} =\tan\left( \dfrac{\pi}{3} ight)

    \Rightarrow \left\{ \begin{matrix}
m = 1 \\
n = 3 \\
\end{matrix} ight.\  \Rightarrow n - m = 2

  • Câu 6: Nhận biết

    Chu kì của hàm số y = 3\sin2x là số nào sau đây?

    Chu kì của hàm số là T = \frac{2\pi}{2} =\pi

  • Câu 7: Nhận biết

    Số vị trí biểu diễn các nghiệm của phương trình \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 trên đường tròn lượng giác là?

     Ta có \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) =  - \sqrt 3

    \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) = \tan \left( { - \frac{\pi }{3}} ight)

    \Leftrightarrow 2x - \frac{\pi }{3} =  - \,\frac{\pi }{3} + k\pi

    \Leftrightarrow 2x = k\pi  \Leftrightarrow x = \frac{{k\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.

  • Câu 8: Thông hiểu

    Nghiệm của phương trình \sqrt 3 \tan x =  - 3 là:

     Giải phương trình ta có:

    \begin{matrix}  \sqrt 3 \tan x =  - 3 \Rightarrow \tan x =  - \sqrt 3  \hfill \\   \Rightarrow x =  - \dfrac{\pi }{3} + k\pi ,\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy phương trình có nghiệm x =  - \frac{{\pi }}{3} + k\pi

  • Câu 9: Thông hiểu

    Xác định hàm số chẵn trong các hàm số dưới đây?

    Ta có:

    Hàm số y = \sin x.cos3x có tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow -}x\mathbb{\in
R}

    y( - x) = \sin( - x).\cos( -3x) = - \sin x.\cos3x = - y(x)

    Suy ra hàm số y = \sin x.\cos3x là hàm số lẻ.

    Hàm số y = \cos2x là hàm số chẵn vì tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow
-}x\mathbb{\in R}

    y( - x) = \cos( - 2x) = cos2x =
y(x)

    Tương tự ta có hàm số y = \sin x là hàm số lẻ, hàm số y = \sin x + \cos
x không chẵn cũng không lẻ.

  • Câu 10: Nhận biết

    Một bánh xe của người đi xe ô tô quay được 1 vòng trong 0,1giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).

    Đáp án: 6,28

    Đáp án là:

    Một bánh xe của người đi xe ô tô quay được 1 vòng trong 0,1giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).

    Đáp án: 6,28

    Số đo góc quay của 1 vòng là 2\pi.

  • Câu 11: Thông hiểu

    Hàm số y = \tan x + \cot x +
\frac{1}{\sin x} + \frac{1}{\cos x}không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi và chỉ khi:

    \begin{matrix}\left\{ \begin{matrix}\sin x eq 0 \hfill \\\cos x eq 0 \hfill \\\end{matrix} ight.\  \Rightarrow sin2x eq 0 \\\Rightarrow x eq \dfrac{k\pi}{2};k\mathbb{\in Z}\hfill \\\end{matrix}

    Chọn k = 3 => x eq
\frac{3\pi}{2}

    Nhưng điểm \frac{3\pi}{2} thuộc khoảng (\pi + k2\pi;2\pi +
k2\pi)

    Vậy hàm số không xác định trên (\pi +
k2\pi;2\pi + k2\pi);k\mathbb{\in Z}

  • Câu 12: Thông hiểu

    Trên đường tròn định hướng, mỗi cung lượng giác \mathop {AB}^{\displaystyle\frown} xác định:

    Trên đường tròn định hướng, mỗi cung lượng giác \mathop {AB}^{\displaystyle\frown} xác định vô số góc lượng giác tia đầu OA, tia cuối OB.

  • Câu 13: Nhận biết

    Cho \alpha \in
\left( 0;\frac{\pi}{2} ight). Khẳng định nào sau đây đúng?

    Ta có:

    \alpha \in \left( 0;\frac{\pi}{2}
ight) \Rightarrow \alpha - \pi \in \left( - \pi; - \frac{\pi}{2}
ight)

    \Rightarrow \sin(\alpha - \pi) <
0

  • Câu 14: Nhận biết

    Nghiệm của phương trình \sin x = -
1

    Ta có: \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 15: Nhận biết

    Trong các hàm sau hàm nào là hàm số chẵn?

    Xét hàm số y = -cosx

    Lấy x \in D \Rightarrow  - x \in D ta có:

    - \cos \left( { - x} ight) =  - \cos x \Rightarrow f\left( { - x} ight) = f\left( x ight)

    => Hàm số y = -cosx là hàm số chẵn.

  • Câu 16: Vận dụng

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Kiểm tra được y = 1 - sin^{2}x; y = \left| \cot x ight|.sin^{2}x; y = 1 + \left| \cot x + \tan x
ight| là các hàm số chẵn.

    y = x^{2}tan2x - \cot x là hàm số lẻ.

  • Câu 17: Thông hiểu

    Nghiệm của phương trình 2\sin^{2}x+5 \sin x + 3=0 là

      \begin{matrix}  2{\sin ^2}x + 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x + 1} ight).\left( {2\sin x + 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x + 1 = 0} \\   {2\sin x + 3 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x =  - 1} \\   {\sin x =  - \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\   \Rightarrow \sin x =  - 1 \hfill \\   \Rightarrow x =  - \dfrac{\pi }{2} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Hàm số y = \cos x đồng biến trên khoảng nào sau đây?

    Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.

  • Câu 19: Thông hiểu

    Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x không tuần hoàn. Thật vậy:

    Tập xác định {\text{D}} = \mathbb{R}.

    Giả sử f\left( {x + T} ight) = f\left( x ight),{\text{ }}\forall x \in {\text{D}}

    \Leftrightarrow \left( {x + T} ight) + \sin \left( {x + T} ight) = x + \sin x,{\text{ }}\forall x \in {\text{D}}

    .\Leftrightarrow T + \sin \left( {x + T} ight) = \sin x,{\text{ }}\forall x \in {\text{D}} (*)

    Cho x = 0 và x = π, ta được

    \left\{ \begin{gathered}  T + \sin x = \sin 0 = 0 \hfill \\  T + \sin \left( {\pi  + T} ight) = \sin \pi  = 0 \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}2T + \sin T + \sin \left( {\pi  + T} ight) = 0 \Leftrightarrow T = 0

    Điều này trái với định nghĩa là T > 0

    Vậy hàm số y = x + \sin x không phải là hàm số tuần hoàn.

    Tương tự chứng minh cho các hàm số y = x\cos xy = \frac{{\sin x}}{x} không tuần hoàn.

  • Câu 20: Vận dụng

    Gọi x_0 là nghiệm âm lớn nhất của  \sin 9x + \sqrt 3 \cos 7x = \sin 7x + \sqrt 3 \cos 9x. Mệnh đề nào sau đây là đúng?

     Phương trình \Leftrightarrow \sin 9x - \sqrt 3 \cos 9x = \sin 7x - \sqrt 3 \cos 7x

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \sin \left( {7x - \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  9x - \frac{\pi }{3} = 7x - \frac{\pi }{3} + k2\pi  \hfill \\  9x - \frac{\pi }{3} = \pi  - \left( {7x - \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{{\text{Cho}} < 0}}\left[ \begin{gathered}  k\pi  < 0 \Leftrightarrow k < 0\xrightarrow{{k \in \mathbb{Z}}}{k_{\max }} =  - 1 \to x =  - \pi  \hfill \\  \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} < 0 \Leftrightarrow k <  - \frac{5}{6}\xrightarrow{{k \in \mathbb{Z}}}{k_{\max }} =  - 1 \to x =  - \frac{\pi }{{48}} \hfill \\ \end{gathered}  ight.

    So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là x =  - \frac{\pi }{{48}} \in \left( { - \frac{\pi }{{12}};0} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo