Với
, mệnh đề nào sau đây đúng?
Ta có: thuộc góc phần tư thứ I và thứ II.
Với
, mệnh đề nào sau đây đúng?
Ta có: thuộc góc phần tư thứ I và thứ II.
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Chi hai vế phương trình cho
, ta được
.
Tìm chu kì T của hàm số lượng giác ![]()
Hàm số y = cos3x tuần hoàn với chu kì
Hàm số y = cos5x tuần hoàn với chu kì
=> Hàm số tuần hoàn với chu kì là
Tính độ dài của cung trên đường tròn có số đo 1,5 và bán kính bằng 20 cm.
Ta có:
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Công thức nào sau đây đúng?
Ta có:
Với những giá trị nào của x thì giá trị của các hàm số
và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Nhắc lại kiến thức cơ bản:
Hàm số là hàm số lẻ.
Hàm số là hàm số chẵn.
Hàm số là hàm số lẻ.
Hàm số là hàm số lẻ.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Rút gọn biểu thức ![]()
Ta có:
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Cho
là nghiệm của phương trình nào sau đây?
Ta có:
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Tính giá trị biểu thức ![]()
Ta có:
Nghiệm của phương trình
là
Ta có: .
Cho vòng tròn lượng giác được kí hiệu như sau:

Điểm nào biểu diễn nghiệm của phương trình
?
Ta có:
Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Chu kì của hàm số
là
Hàm số tuần hoàn với chu kỳ
.
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.