Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Nghiệm của phương trình sinx + cosx = 1 là:

     \begin{matrix}  \sin x + \cos x = 1 \hfill \\   \Leftrightarrow \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) = 1 \hfill \\   \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} ight) = \dfrac{1}{{\sqrt 2 }} \hfill \\   \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} ight) = \sin \left( {\dfrac{\pi }{4}} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x + \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi } \\   {x + \dfrac{\pi }{4} = \pi  - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{4} - \dfrac{\pi }{4} + k2\pi } \\   {x = \pi  - \dfrac{\pi }{4} - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k2\pi } \\   {x = \dfrac{\pi }{2} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = 3cosx + 4

    Do - 1 \leq cosx \leq 1\forall x \in
\mathbb{R} nên 1 \leq 3cosx + 4
\leq 7,\forall x \in \mathbb{R}.

    Nên \max_{\mathbb{R}}\mspace{2mu} y =
7 đạt được khi cosx = 1
\Leftrightarrow x = k2\pi\ (k \in \mathbb{Z}).

    \min_{\mathbb{R}}\mspace{2mu} y =
1 đạt được khi cosx = - 1
\Leftrightarrow x = \pi + k2\pi(k \in \mathbb{Z}).

    Suy ra \max_{\mathbb{R}}\mspace{2mu} y +
\min_{\mathbb{R}}\mspace{2mu} y = 8.

  • Câu 3: Nhận biết

    Tổng các nghiệm thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) của phương trình: \cos x = \frac{1}{2}

     Giải phương trình:

    \begin{matrix}  \cos x = \dfrac{1}{2} \hfill \\   \Leftrightarrow \cos x = \cos \left( {\dfrac{\pi }{3}} ight) \hfill \\   \Leftrightarrow x =  \pm \dfrac{\pi }{3} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Tổng nghiệm của phương trình bằng 0.

  • Câu 4: Nhận biết

    Phương trình \tan x = \tan 3x có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \tan x = \tan 3x \hfill \\   \Leftrightarrow \tan 3x = \tan x \hfill \\   \Leftrightarrow 3x = x + k\pi  \hfill \\   \Leftrightarrow 2x = k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Đổi số đo của góc - 125^{0}45' sang đơn vị radian:

    Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Ta có: - 125^{0}45' = - \left( 125 +
\frac{45}{60} ight)^{0} khi đó:

    \mu = \dfrac{- \left( 125 + \dfrac{45}{60}ight)^{0}.\pi}{180} = \dfrac{503.\pi}{720}

  • Câu 6: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Xét hàm số y = f(x) = sin2x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \sin( - 2x) = - sin2x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) 
 \hfill\\\end{matrix}

    Vậy hàm số y = sinx là hàm số lẻ

    Xét hàm số y = f(x) = x\cos x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = ( - x).cos( - x) = - x\cos x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = x.cosx là hàm số lẻ

    Xét hàm số y = f(x) = \cos
x.cotx có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \cos( - x).cot( - x) = - \cos x.cotx = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \cos x.cotx là hàm số lẻ

    Xét hàm số y = f(x) = \frac{\tan x}{\sin
x} có:

    Tập xác định D\mathbb{=
R}\backslash\left\{ k\frac{\pi}{2};k\mathbb{\in Z} ight\}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \dfrac{\tan( - x)}{\sin( - x)} = \dfrac{- \tan x}{- \sin x} =f(x) \hfill\\\Rightarrow f( - x) = f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \frac{\tan x}{\sin
x}là hàm số chẵn

  • Câu 7: Vận dụng cao

    Nếu \alpha +\beta + \gamma = \frac{\pi}{2}\cot\alpha + \cot\gamma = 2\cot\beta thì \cot\alpha.\cot\gamma bằng bao nhiêu?

    Từ giả thiết ta có:

    \alpha + \beta + \gamma = \frac{\pi}{2}\Rightarrow \beta = \frac{\pi}{2} - (\alpha + \gamma)

    Ta có:

    \cot\alpha + \cot\gamma =2\cot\beta

    = 2\cot\left\lbrack \frac{\pi}{2} -(\alpha + \gamma) ightbrack = 2\tan(\alpha + \gamma)

    = 2.\frac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma}

    Mặt khác

    \dfrac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma} = \dfrac{\dfrac{1}{\cot\alpha} +\dfrac{1}{\cot\gamma}}{1 - \dfrac{1}{\cot\alpha}.\dfrac{1}{\cot\gamma}} =\dfrac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Rightarrow \cot\alpha + \cot\gamma =2.\frac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Leftrightarrow \cot\alpha.\cot\gamma - 1= 2

    \Leftrightarrow \cot\alpha.\cot\gamma =3

  • Câu 8: Vận dụng

    Cho A, B, C là các góc của tam giác ABC. Khi đó D = \sin A + \sin B + \sin C tương đương với:

    Ta có:

    \left\{ \begin{matrix}\dfrac{A + B}{2} = \dfrac{\pi}{2} - \dfrac{C}{2} \\\dfrac{C}{2} = \dfrac{\pi}{2} - \dfrac{A + B}{2} \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\sin\dfrac{A + B}{2} = \cos\dfrac{C}{2} \\\sin\dfrac{C}{2} = \cos\dfrac{A + B}{2} \\\end{matrix} ight.

    Khi đó:

    D = \sin A + \sin B + \sin
C

    D = 2\sin\frac{A + B}{2}\cos\frac{A -B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}

    D = 2\cos\frac{C}{2}\cos\frac{A - B}{2} +2\cos\frac{A + B}{2}\cos\frac{C}{2}

    D = 2\cos\frac{C}{2}\left( \cos\frac{A -B}{2} + \cos\frac{A + B}{2} ight)

    D =4\cos\frac{C}{2}.\cos\frac{A}{2}.\cos\frac{B}{2}

  • Câu 9: Nhận biết

    Mệnh đề nào sau đây sai?

     Mệnh đề sai: \sin x = 0 \Rightarrow x = k2\pi

    Sửa lại:

    \sin x = 0 \Rightarrow x = k\pi ;(k \in \mathbb{Z})

  • Câu 10: Vận dụng

    Với x thuộc \left ( 0;1  ight ) hỏi phương trình cos^{2}\left ( 6\pi x ight )=\frac{3}{4} có bao nhiêu nghiệm:

     Giải phương trình:

    \begin{matrix}  {\cos ^2}\left( {6\pi x} ight) = \dfrac{3}{4} \hfill \\   \Leftrightarrow \dfrac{{\cos \left( {12\pi x} ight) + 1}}{2} = \dfrac{3}{4} \hfill \\   \Leftrightarrow 2\cos \left( {12\pi x} ight) + 2 = 3 \hfill \\   \Leftrightarrow \cos \left( {12\pi x} ight) = \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {12\pi x = \dfrac{\pi }{3} + k2\pi } \\   {12\pi x =  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{1}{{36}} + \dfrac{k}{6}} \\   {x =  - \dfrac{1}{{36}} + \dfrac{k}{6}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Xét nghiệm {x = \frac{1}{{36}} + \frac{k}{6}}

    Do x \in \left( {0;1} ight) => 0 < \frac{1}{{36}} + \frac{k}{6} < 1 \Rightarrow k \in \left\{ {0;1;2;3;4;5} ight\}

    Xét nghiệm {x = -\frac{1}{{36}} + \frac{k}{6}}

    Do x \in \left( {0;1} ight) =>0 < -\frac{1}{{36}} + \frac{k}{6} < 1 \Rightarrow k \in \left\{ {1;2;3;4;5;6} ight\}

    Vậy có tất cả 12 giá trị x thỏa mãn

  • Câu 11: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

  • Câu 12: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 13: Nhận biết

    Công thức nào sau đây đúng?

    Ta có:

    \cos3a = 4\cos^{3}a - 3\cos a

  • Câu 14: Nhận biết

    Điều kiện xác định của hàm số y = f\left( x ight) = \frac{{2\cos x - 1}}{{\sin x}}

     Điều kiện xác định của hàm số:

    \begin{matrix}  \sin x e 0 \hfill \\   \Leftrightarrow x e k\pi ,k \in \mathbb{Z} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Cho phương trình \sin x =\frac {1}{2}, nghiệm của phương trình là:

     Ta có: \sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in Z

  • Câu 16: Thông hiểu

    Tính giá trị \cos\left\lbrack \frac{\pi}{4} + \pi(2k + 1)
ightbrack

    Ta có:

    \cos\left\lbrack \frac{\pi}{4} + \pi(2k
+ 1) ightbrack

    = \cos\left\lbrack \frac{\pi}{4} + \pi +
k2\pi ightbrack

    = \cos\left\lbrack \frac{\pi}{4} + \pi
ightbrack

    = - \cos\left( \frac{\pi}{4} ight) = -
\frac{\sqrt{2}}{2}

  • Câu 17: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?

    Ta dễ dàng kiểm tra được các hàm số

    y = \sin x.\cos2x

    y = \frac{\tan x}{\tan^{2}x +1}

    y = \cos x.\sin^{3}x

    là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O

    Xét hàm số y = \sin^{3}x.\cos\left( x -\frac{\pi}{2} ight) ta có:

    f(x) = y = \sin^{3}x.\cos\left( x -\frac{\pi}{2} ight) = \sin^{3}x.\sin{x} = \sin^{4}x

    Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.

  • Câu 18: Nhận biết

    Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?

    Ta có thể hiểu như sau:

    “ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.

  • Câu 19: Thông hiểu

    Phương trình \cos^{2}2x+ \cos 2x-\frac{3}{4}=0 có nghiệm là:

     \begin{matrix}  {\cos ^2}2x + \cos 2x - \dfrac{3}{4} = 0 \hfill \\   \Leftrightarrow \left( {\cos 2x - \dfrac{1}{2}} ight).\left( {\cos 2x + \dfrac{3}{2}} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\cos 2x - \dfrac{1}{2} = 0} \\   {\cos 2x + \dfrac{3}{2} = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\cos 2x = \dfrac{1}{2}\left( {tm} ight)} \\   {\cos 2x =  - \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\  \cos 2x = \dfrac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x = \dfrac{\pi }{3} + k2\pi } \\   {2x =  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{6} + k\pi } \\   {x =  - \dfrac{\pi }{6} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\   \Rightarrow x =  \pm \dfrac{\pi }{6} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Hàm số y = \sin \frac{x}{5} có chu kì bằng bao nhiêu?

     Chu kì của hàm số y = \sin \frac{x}{5} là: T = \dfrac{{2\pi }}{{\left| {\dfrac{1}{5}} ight|}} = 10\pi

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo