Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình \sin \left( {3x - \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} bằng?

    Ta có \sin \left( {3x - \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {3x - \frac{\pi }{4}} ight) = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  3x - \frac{\pi }{4} = \frac{\pi }{3} + k2\pi  \hfill \\  3x - \frac{\pi }{4} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left[ \begin{gathered}  3x = \frac{{7\pi }}{{12}} + k2\pi  \hfill \\  3x = \frac{{11\pi }}{{12}} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3} \hfill \\  x = \frac{{11\pi }}{{36}} + \frac{{k2\pi }}{3} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    TH1. Với

    x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3}\xrightarrow{{{\text{Cho}}}}\left[ \begin{gathered}  x > 0 \Leftrightarrow k >  - \frac{7}{{24}} \Rightarrow {k_{\min }} = 0 \to x = \frac{{7\pi }}{{36}} \hfill \\  x < 0 \Leftrightarrow k <  - \frac{7}{{24}} \Rightarrow {k_{\max }} =  - \,1 \to x =  - \frac{{17\pi }}{{36}} \hfill \\ \end{gathered}  ight.

    TH2. Với

    x = \frac{{11\pi }}{{36}} + \frac{{k2\pi }}{3}\xrightarrow{{{\text{Cho}}}}\left[ \begin{gathered}  x > 0 \Leftrightarrow k >  - \frac{{11}}{{24}} \Rightarrow {k_{\min }} = 0 \to x = \frac{{11\pi }}{{36}} \hfill \\  x < 0 \Leftrightarrow k <  - \frac{{11}}{{24}} \Rightarrow {k_{\max }} =  - \,1 \to x =  - \frac{{13\pi }}{{36}} \hfill \\ \end{gathered}  ight.

    So sánh bốn nghiệm ta được nghiệm âm lớn nhất là x =  - \frac{{13\pi }}{{36}} và nghiệm dương nhỏ nhất là x = \frac{{7\pi }}{{36}}.

    Khi đó tổng hai nghiệm này bằng - \frac{{13\pi }}{{36}} + \frac{{7\pi }}{{36}} =  - \frac{\pi }{6}.

     

  • Câu 2: Vận dụng

    Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức h(t)= 29 + 3.\sin\frac{\pi}{12}(t - 9) với h tính bằng \
^{0}Ct là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:

    Do - 1 \leq \sin\frac{\pi}{12}(t - 9)
\leq 1,\forall t nên

    \begin{matrix}
   - 3 \leqslant 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 3 \hfill \\
   \Leftrightarrow 26 \leqslant 29 + 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 32 \hfill \\
   \Leftrightarrow 26 \leqslant h(t) \leqslant 32 \hfill \\ 
\end{matrix}

    Do đó nhiệt độ thấp nhất trong ngày là 26^{0}C.

    Dấu bằng xảy ra\Leftrightarrow \sin\frac{\pi}{12}(t -9) = - 1

    \Leftrightarrow \frac{\pi}{12}(t - 9) = - \frac{\pi}{2} + k2\pi

    \Leftrightarrow t = 3 + 24k(k\mathbb{\in Z})

    Do 0 \leq t \leq 24 \Leftrightarrow 0
\leq 3 + 24k \leq 24 \Leftrightarrow \frac{- 3}{24} \leq k \leq
\frac{21}{24}.

    k\mathbb{\in Z} nên k = 0.

    Khi đó t = 3.

    Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.

  • Câu 3: Nhận biết

    Giải phương trình \cot x = - 1 thu được kết quả là:

    Điều kiện x eq k\pi\left( k\mathbb{\in
Z} ight)

    \cot x = - 1 \Leftrightarrow x = -
\frac{\pi}{4} + k\pi\ \left( k\mathbb{\in Z} ight).

  • Câu 4: Vận dụng

    Cho \frac{\pi}{2} < \alpha < \pi. Xác định dấu của biểu thức M = \cos\left( -
\frac{\pi}{2} + \alpha ight).tan(\pi - \alpha)

    Ta có:

    \frac{\pi}{2} < \alpha < \pi
ightarrow 0 < - \frac{\pi}{2} + \alpha <
\frac{\pi}{2}

    \Rightarrow \cos\left( - \frac{\pi}{2} +
\alpha ight) > 0

    \frac{\pi}{2} < \alpha < \pi
ightarrow 0 < \pi - \alpha < \frac{\pi}{2}

    \Rightarrow \tan(\pi - \alpha) >
0

    => M = \cos\left( - \frac{\pi}{2} +
\alpha ight).tan(\pi - \alpha) > 0

  • Câu 5: Nhận biết

    Tìm chu kì T của hàm số y = \sin\left( 5x- \frac{\pi}{4} ight)

    Hàm số y = sin(ax + b) tuần hoàn với chu kì T = \frac{2\pi}{|a|}

    => y = \sin\left( 5x- \frac{\pi}{4} ight) tuần hoàn với chu kì T =\frac{2\pi}{5}

  • Câu 6: Nhận biết

    Hai hàm số nào sau đây có chu kì khác nhau?

    Hai hàm số \left\{ \begin{matrix}y = \cos x \\y = \cot\dfrac{x}{2} \\\end{matrix} ight. có cùng chu kì 2π

    Hai hàm số \left\{ \begin{matrix}y = \sin\dfrac{x}{2} \\y = \cos\dfrac{x}{2} \\\end{matrix} ight. có cùng chu kì 4π

    Hai hàm số \left\{ \begin{matrix}y = tan2x \\y = cot2x \\\end{matrix} ight. có cùng chu kì \frac{\pi}{2}

    Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì \frac{\pi}{2}

  • Câu 7: Thông hiểu

    Cho \sin a =
\frac{3}{5};cosa < 0;cosb = \frac{3}{5};sinb > 0. Giá trị sin(a - b) bằng:

    Ta có:

    \left\{ \begin{matrix}
\sin a = \frac{3}{5} \\
\cos a < 0 \\
\end{matrix} \Rightarrow cosa = - \sqrt{1 - \sin^{2}a} = - \frac{4}{5}
ight.

    \left\{ \begin{matrix}
\cos b = \frac{3}{5} \\
\sin b > 0 \\
\end{matrix} \Rightarrow sinb = \sqrt{1 - \cos^{2}b} = \frac{4}{5}
ight.

    sin(a - b) = sina\cos b - cosa\sin b =
\frac{3}{5} \cdot \frac{3}{5} - \left( - \frac{4}{5} ight) \cdot
\frac{4}{5} = 1

  • Câu 8: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?

    Mỗi đường tròn định hướng có bán kính R =1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 9: Nhận biết

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 10: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 11: Thông hiểu

    Trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack, đồ thị hai hàm số y
= \tan xy = 1 cắt nhau tại bao nhiêu điểm?

    Phương trình hoành độ giao điểm của hai đồ thị hàm số là

    \tan x = 1 \Rightarrow x = \frac{\pi}{4}
+ k\pi;\left( k\mathbb{\in Z} ight)

    Theo bài ra ta có: x \in \left\lbrack -
2\pi;\frac{5\pi}{2} ightbrack

    \Rightarrow - 2\pi \leq \frac{\pi}{4} +
k\pi \leq \frac{5\pi}{2}

    \Rightarrow - \frac{9}{4} \leq k \leq
\frac{9}{4}

    \Rightarrow k \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack.

  • Câu 12: Thông hiểu

    Tìm giá trị thực của tham số m để phương trình \left( {m - 2} ight)\sin 2x = m + 1 nhận x = \frac{\pi }{{12}} làm nghiệm. 

     Vì x = \frac{\pi }{{12}}là một nghiệm của phương trình \left( {m - 2} ight)\sin 2x = m + 1nên ta có:

    \left( {m - 2} ight).\sin \frac{{2\pi }}{{12}} = m + 1

    \Leftrightarrow \frac{{m - 2}}{2} = m + 1 \Leftrightarrow m - 2 = 2m + 2 \Leftrightarrow m =  - \,4.

    Vậy m = - 4 là giá trị cần tìm.

  • Câu 13: Nhận biết

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt 3 \cos x + m - 1 = 0 có nghiệm?

     Ta có \sqrt 3 \cos x + m - 1 = 0 \Leftrightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}.

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant \frac{{1 - m}}{{\sqrt 3 }} \leqslant 1

    \Leftrightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3 \xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ {0;1;2} ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m.

  • Câu 14: Thông hiểu

    Đổi số đo của góc 50^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 50^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{50.\pi}{180} = \frac{5.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 50 SHIFT Ans 1 =

  • Câu 15: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 16: Nhận biết

    Đồ thị hàm số y=\cos x+1 đi qua điểm nào sau đây?

     Xét điểm (0; 2) => x = 0; y = 2

    Thay vào hàm số ta có:

    cos0 + 1 = 1 + 1 = 2 (thỏa mãn)

    Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)

  • Câu 17: Thông hiểu

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 18: Thông hiểu

    Điều kiện xác định của hàm số: y=\frac{{{\sin}^{2}}x+3\cos x+1}{\sin\frac{x}{2}}

     Điều kiện xác định của hàm số:

    \sin \frac{x}{2} e 0

    \Rightarrow \frac{x}{2} e k\pi

    \Rightarrow x e k2\pi

  • Câu 19: Thông hiểu

    Phương trình nào cùng tập nghiệm với phương trình \tan x = 1

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\cot x.\tan x = 1} \\   {\tan x = 1} \end{array}} ight. \Rightarrow \cot x = \dfrac{1}{{\tan x}} = 1

    Vậy phương trình \tan x = 1 có cùng tập nghiệm với phương trình \cot x = 1

  • Câu 20: Nhận biết

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha <
\frac{\pi}{2}

    => 0 - \pi < \alpha - \pi <
\frac{\pi}{2} - \pi

    => - \pi < \alpha - \pi < -
\frac{\pi}{2}

    Điểm cuối cung \alpha - \pi thuộc góc phần tư thứ ba

    => \sin(\alpha - \pi) <
0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo