Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tìm tất cả các giá trị của tham số m để phương trình 2m\sin^{2}x + 4\sin x\cos x - 4\cos^{2}x = 0 vô nghiệm?

    Ta có:

    2m\sin^{2}x + 4\sin x\cos x -4\cos^{2}x = 0

    \Leftrightarrow m(1 - \cos2x) + 2\sin2x -2(1 + \cos2x) = 0

    \Leftrightarrow 2\sin2x - (m + 2)\cos2x = 2- m
    Phương trình vô nghiệm \Leftrightarrow 4 +(m + 2)^{2} < (2 - m)^{2}

    \Leftrightarrow 4 + m^{2} + 4m + 4 <4 - 4m + m^{2}

    \Leftrightarrow 8m + 4 < 0\Leftrightarrow m < - \frac{1}{2}

  • Câu 2: Thông hiểu

    Số nghiệm của phương trình \cot (x+ \frac{\pi}{4})+1=0 trên khoảng ( -\pi ;3\pi ) là?

     Ta có:\cot (x+\frac{\pi}{4})+1=0 \Leftrightarrow \cot (x+\frac{\pi}{4})=-1

    \Leftrightarrow x+\frac{\pi}{4}=-\frac{\pi}{4}+k \pi  \Leftrightarrow x= -\frac{\pi}{2} +k\pi, k \in \mathbb{Z}

    ycbt\Leftrightarrow -\pi< -\frac{\pi}{2} +k \pi  <3\pi\Leftrightarrow  -\frac{1}{2} < k < \frac{7}{2}, k \in \mathbb{Z}

    nên k \in \{0;1;2;3\}.

  • Câu 3: Nhận biết

    Trên đường tròn bán kính 15dm, cho cung tròn có độ dài l = 25\pi(dm). Số đo của cung tròn đó là:

    Độ dài cung tròn là: l =
R.\alpha

    => \alpha = \frac{l}{R} =
\frac{25\pi}{15} = \frac{5\pi}{3}

  • Câu 4: Nhận biết

    Từ thời điểm đồng hồ chỉ đúng 12 giờ đến khi kim giờ chỉ 1 giờ đúng thì kim phút quay được góc bao nhiêu độ?

    Khi kim giờ chỉ đúng 1 giờ thì kim phút đã quay được 1 vòng ứng với góc lượng giác là: - 360^{0}

  • Câu 5: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)\cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 thì tích P = r.s bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)nên theo định lí Vi – ét ta có:\left\{\begin{matrix}\tan\alpha + \tan\beta = p \\\tan\alpha.\tan\beta = q \\\end{matrix} ight.

    \cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}\cot\alpha + \cot\beta = r \\\cot\alpha\cot\beta = s \\\end{matrix} ight.

    Khi đó:

    P = r.s

    P = \left( \cot\alpha + \cot\betaight).\cot\alpha.\cot\beta

    P = \left( \frac{1}{\tan\alpha} +
\frac{1}{\tan\beta}
ight).\frac{1}{\tan\alpha}.\frac{1}{\tan\beta}

    P = \frac{\tan\alpha +\tan\beta}{\tan\alpha.\tan\beta} = \frac{p}{q^{2}}

  • Câu 6: Nhận biết

    Khẳng định nào sau đây đúng?

    Trong khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y = \sin
x đồng biến.

  • Câu 7: Thông hiểu

    Chọn đẳng thức đúng.

    Ta có:

    \begin{matrix}\cot a + \cot b = \dfrac{\cos a}{\sin a} + \dfrac{\cos b}{\sin b} \hfill \\= \dfrac{\cos a.sinb + \sin a.\cos b}{\sin a.\sin b} = \dfrac{\sin(a +b)}{\sin a.\sin b} \hfill\\\end{matrix}

    Ta lại có:

    \begin{matrix}\cos2a = 2\cos^{2}a - 1\hfill \\\Rightarrow \cos^{2}a = \dfrac{1}{2}(1 + \cos2a) \hfill\\\end{matrix}

  • Câu 8: Nhận biết

    Hàm số nào sau đây có chu kì khác 2\pi?

    Hàm số y = \cos^{3}x = \frac{1}{4}(\cos3x +3\cos x) có chu kì 2\pi.

    Hàm số y = \sin\frac{x}{2}\cos\frac{x}{2}
= \frac{1}{2}\sin x có chu kì 2\pi.

    Hàm số y = \sin^{2}(x + 2) = \frac{1}{2} -\frac{1}{2}\cos(2x + 4) có chu kì \pi.

    Hàm số y = \cos^{2}\left( \frac{x}{2} + 1ight) = \frac{1}{2} + \frac{1}{2}\cos(x + 2) có chu kì 2\pi.

  • Câu 9: Nhận biết

    Giải phương trình: \sqrt 3 \tan 2x - 3 = 0

     Giải phương trình:

    \begin{matrix}  \sqrt 3 \tan 2x - 3 = 0 \hfill \\   \Leftrightarrow \tan 2x = \sqrt 3  \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{3} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).

    Ta có: sina + sinb = 2sin\frac{a +
b}{2}cos\frac{a - b}{2}, do đó đẳng thức sina + sinb = 2sin\frac{a + b}{2} \cdot sin\frac{a
- b}{2} sai.

  • Câu 11: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thưc P =
\tan\left( \alpha + \frac{\pi}{4} ight).

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( \pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    P = \tan\left( \alpha + \dfrac{\pi}{4}ight) = \dfrac{\tan\alpha + \tan\dfrac{\pi}{4}}{1 -\tan\alpha.\tan\dfrac{\pi}{4}} = \dfrac{2 + 1}{1 - 2} = - 3

  • Câu 12: Thông hiểu

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 13: Thông hiểu

    Nghiệm của phương trình 2cos (2x) =-2

    Ta có: 2 \cos 2x = -2 \Leftrightarrow \cos 2x=-1 \Leftrightarrow 2 x= \pi + k2\pi

    \Leftrightarrow x = \frac{\pi}{2} +k \pi , \, k \in \mathbb{Z}.

  • Câu 14: Nhận biết

    Gọi x_0 là nghiệm dương nhỏ nhất của phương trình \frac{{2\cos 2x}}{{1 - \sin 2x}} = 0. Mệnh đề nào sau đây là đúng?

    Điều kiện: 1 - \sin 2x e 0 \Leftrightarrow \sin 2x e 1

    Phương trình \frac{{2\cos 2x}}{{1 - \sin 2x}} = 0

    \Leftrightarrow \cos 2x = 0\xrightarrow{{{{\sin }^2}2x + {{\cos }^2}2x = 1}}\left[ \begin{gathered}  \sin 2x = 1\,\,\,\,\,\,\,\,\,\,(L) \hfill \\  \sin 2x =  - 1\,\,\,\,\,(TM) \hfill \\ \end{gathered}  ight.

    Cho - \frac{\pi }{4} + k\pi  > 0\xrightarrow{{}}k > \frac{1}{4}.

    Do đó nghiệm dương nhỏ nhất ứng với  k = 1 \to x = \frac{{3\pi }}{4} \in \left[ {\frac{{3\pi }}{4};\pi } ight].

  • Câu 15: Vận dụng

    Cho đồ thị hàm số như hình vẽ:

    Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây

    Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án

    y = \sqrt{2}\sin\left( x + \frac{\pi}{4}
ight)

    Tại x = 0 thì y = -
\frac{\sqrt{2}}{2} => Loại đáp án y = \cos\left( x - \frac{\pi}{4}
ight)

    Tại x = \frac{3\pi}{4} \Rightarrow y =
1 ta thấy chỉ có y = \sin\left( x -
\frac{\pi}{4} ight) thỏa mãn

  • Câu 16: Thông hiểu

    Cho phương trình \sin\left( 2x -
\frac{\pi}{4} ight) = \sin\left( x + \frac{3\pi}{4} ight) (*), vậy:

    a) Phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z}). ight. Đúng||Sai

    b) Trong khoảng (0;\pi) phương trình có 2 nghiệm. Đúng||Sai

    c) Tổng các nghiệm của phương trình trong khoảng (0;\pi) bằng \frac{7\pi}{6}. Sai||Đúng

    d) Trong khoảng (0;\pi) phương trình có nghiệm lớn nhất bằng \frac{5\pi}{6}. Đúng||Sai

    Đáp án là:

    Cho phương trình \sin\left( 2x -
\frac{\pi}{4} ight) = \sin\left( x + \frac{3\pi}{4} ight) (*), vậy:

    a) Phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z}). ight. Đúng||Sai

    b) Trong khoảng (0;\pi) phương trình có 2 nghiệm. Đúng||Sai

    c) Tổng các nghiệm của phương trình trong khoảng (0;\pi) bằng \frac{7\pi}{6}. Sai||Đúng

    d) Trong khoảng (0;\pi) phương trình có nghiệm lớn nhất bằng \frac{5\pi}{6}. Đúng||Sai

    Ta có:

    \sin\left( 2x - \frac{\pi}{4} ight) =
\sin\left( x + \frac{3\pi}{4} ight)

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {2x - \dfrac{\pi }{4} = x + \dfrac{{3\pi }}{4} + k2\pi } \\ 
  {2x - \dfrac{\pi }{4} = \dfrac{\pi }{4} - x + k2\pi } 
\end{array}(k \in \mathbb{Z})} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z})\  ight.\

    x \in (0;\pi)\ nên\ x \in \left\{
\frac{\pi}{6};\frac{5\pi}{6} ight\}

    Vậy phương trình có hai nghiệm thuộc khoảng (0;\pi)x
= \frac{\pi}{6};x = \frac{5\pi}{6}.

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 17: Nhận biết

    Phương trình lượng giác \cos 3x = \cos \frac{\pi }{{15}} có nghiệm là ?

     Ta có: \cos 3x = \cos \frac{\pi }{{15}} \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi

    \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}

  • Câu 18: Vận dụng

    Cho góc \alpha thỏa mãn \tan\alpha + \cot\alpha < 0\sin\alpha = \frac{1}{5}. Tính P = \sin2\alpha

    Ta có: \tan\alpha =
\frac{1}{\cot\alpha}

    => \tan\alpha;\cot\alpha cùng dấu

    \tan\alpha + \cot\alpha < 0
\Rightarrow \tan\alpha < 0

    Ta có: \sin\alpha = \frac{1}{5} > 0
\Rightarrow \cos\alpha < 0

    Khi đó: \cos\alpha = - \sqrt{1 -
\sin\alpha} = - \frac{2\sqrt{6}}{5}

    P = \sin2\alpha = 2\sin\alpha.\cos\alpha =- \frac{4\sqrt{6}}{25}

  • Câu 19: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Theo công thức cộng

    \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 20: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{1}{{\sqrt {1 - \sin \,x} }}.

    Hàm số xác định khi và chỉ khi 

    1 - \sin x > 0 \Leftrightarrow \sin x < 1 \,\,(*)

    - 1 \leqslant \sin x \leqslant 1 nên \left( * ight) \Leftrightarrow \sin x e 1 \Leftrightarrow x e \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} ight\}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo