Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Phương trình  \cos\frac{\pi}{3} = \cos x có nghiệm là:

    Ta có:

    \cos\frac{\pi}{3} = \cos x

    \Leftrightarrow x = \pm \frac{\pi}{3} +k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 2: Nhận biết

    Với x \in \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight) = \left( { - \frac{\pi }{4} + 8\pi ;\frac{\pi }{4} + 8\pi } ight) thuộc góc phần tư thứ I và II.

  • Câu 3: Thông hiểu

    Giá trị nào sau đây của x thỏa mãn \sin2x.\sin3x = \cos2x.\cos3x?

    Ta có:

    \begin{matrix}\sin2x.\sin3x = \cos2x.\cos3x \hfill \\\Leftrightarrow \cos2x.\cos3x - \sin2x.\sin3x = 0 \hfill\\\Leftrightarrow \cos5x = 0 \hfill\\\Leftrightarrow 5x = 45 + k.180^{0}\hfill \\\Leftrightarrow x = 18^{0} + 36^{.}.k;\left( k\mathbb{\in Z} ight)\hfill \\\end{matrix}

  • Câu 4: Nhận biết

    Tập nghiệm của phương trình \sin x=0 là?

     Ta có: \sin x =0 \Leftrightarrow x = k\pi \, , \, k \in \mathbb{Z}.

  • Câu 5: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{\tan x - 1}{\sin x} + \cos\left( x +
\frac{\pi}{3} ight)?

    Hàm số y = \frac{\tan x - 1}{\sin x} +
\cos\left( x + \frac{\pi}{3} ight) xác định khi:

    \left\{ \begin{matrix}\sin x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \sin2x eq 0

    \Leftrightarrow 2x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2}\left( k\mathbb{\in Z}
ight)

    Vậy D=\mathbb{ R}\backslash\left\{\frac{k\pi}{2}|k\in\mathbb{ Z} ight\}

  • Câu 6: Vận dụng

    Cho A, B, C là các góc của tam giác ABC. Khi đó D = \sin A + \sin B + \sin C tương đương với:

    Ta có:

    \left\{ \begin{matrix}\dfrac{A + B}{2} = \dfrac{\pi}{2} - \dfrac{C}{2} \\\dfrac{C}{2} = \dfrac{\pi}{2} - \dfrac{A + B}{2} \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\sin\dfrac{A + B}{2} = \cos\dfrac{C}{2} \\\sin\dfrac{C}{2} = \cos\dfrac{A + B}{2} \\\end{matrix} ight.

    Khi đó:

    D = \sin A + \sin B + \sin
C

    D = 2\sin\frac{A + B}{2}\cos\frac{A -B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}

    D = 2\cos\frac{C}{2}\cos\frac{A - B}{2} +2\cos\frac{A + B}{2}\cos\frac{C}{2}

    D = 2\cos\frac{C}{2}\left( \cos\frac{A -B}{2} + \cos\frac{A + B}{2} ight)

    D =4\cos\frac{C}{2}.\cos\frac{A}{2}.\cos\frac{B}{2}

  • Câu 7: Thông hiểu

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    Đáp án là:

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    ĐKXĐ: \left\{ \begin{matrix}
\sin x eq 0 \\
\cos x eq 0 \\
\end{matrix} ight..

    \frac{2\sin x}{\cot x} - \frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight)

    \Leftrightarrow 2\sin^{2}x - \tan x\cot x= 2\left( \sin x - \cos x ight)\sin x\cot x

    \Leftrightarrow 2sin^{2}x - 1 = 2\left(
\sin x - \cos x ight)\cos x

    \Leftrightarrow 2\sin^{2}x - 1 =2\sin x.\cos x - 2\cos^{2}x

    \Leftrightarrow 2\sin^{2}x + 2\cos^{2}x -1 = \sin2x \Leftrightarrow \sin2x = 1

    \Leftrightarrow 2x = \frac{\pi}{2} +
k2\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi\left( k\mathbb{\in Z}
ight)

    Đối chiếu điều kiện, nghiệm phương trình là x = \frac{\pi}{4} + k\pi,k\mathbb{\in
Z}

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow P = 2a + 3b = 2.4 + 3.1 =
11.

  • Câu 8: Thông hiểu

    Biết số đo một góc (Ox;Oy) = \frac{3\pi}{2} + 2001\pi. Giá trị tổng quát của góc (Ox;Oy)

    Ta có:

    (Ox;Oy) = \frac{3\pi}{2} + 2001\pi =\frac{\pi}{2} + 2002\pi

    \Rightarrow (Ox;Oy) = \frac{\pi}{2} +k\pi;\left( k\mathbb{\in Z} ight)

  • Câu 9: Thông hiểu

    Nghiệm của phương trình \sin x = \frac{\sqrt{2}}{2} được biểu diễn trên đường tròn lượng giác ở hình bên là những điểm nào?

    Ta có:

    \sin x = \frac{\sqrt{2}}{2}

    \Rightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{4} + k2\pi \\x = \dfrac{3\pi}{4} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy điểm biểu diễn nghiệm phương trình là điểm A, điểm B.

  • Câu 10: Nhận biết

    Tìm tập xác định của hàm số y =
\cot\left( 2x - \frac{\pi}{4} ight) + sin2x

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( 2x - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Leftrightarrow 2x - \dfrac{\pi}{4} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{8} + k\dfrac{\pi}{2};\left( k\mathbb{\in Z}ight) \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{\pi}{8} + k\frac{\pi}{2},k\mathbb{\in Z}
ight\}

  • Câu 11: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 12: Nhận biết

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha <
\frac{\pi}{2}

    => 0 - \pi < \alpha - \pi <
\frac{\pi}{2} - \pi

    => - \pi < \alpha - \pi < -
\frac{\pi}{2}

    Điểm cuối cung \alpha - \pi thuộc góc phần tư thứ ba

    => \sin(\alpha - \pi) <
0

  • Câu 13: Vận dụng

    Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình \sin \left( {3x - \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} bằng?

    Ta có \sin \left( {3x - \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {3x - \frac{\pi }{4}} ight) = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  3x - \frac{\pi }{4} = \frac{\pi }{3} + k2\pi  \hfill \\  3x - \frac{\pi }{4} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left[ \begin{gathered}  3x = \frac{{7\pi }}{{12}} + k2\pi  \hfill \\  3x = \frac{{11\pi }}{{12}} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3} \hfill \\  x = \frac{{11\pi }}{{36}} + \frac{{k2\pi }}{3} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    TH1. Với

    x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3}\xrightarrow{{{\text{Cho}}}}\left[ \begin{gathered}  x > 0 \Leftrightarrow k >  - \frac{7}{{24}} \Rightarrow {k_{\min }} = 0 \to x = \frac{{7\pi }}{{36}} \hfill \\  x < 0 \Leftrightarrow k <  - \frac{7}{{24}} \Rightarrow {k_{\max }} =  - \,1 \to x =  - \frac{{17\pi }}{{36}} \hfill \\ \end{gathered}  ight.

    TH2. Với

    x = \frac{{11\pi }}{{36}} + \frac{{k2\pi }}{3}\xrightarrow{{{\text{Cho}}}}\left[ \begin{gathered}  x > 0 \Leftrightarrow k >  - \frac{{11}}{{24}} \Rightarrow {k_{\min }} = 0 \to x = \frac{{11\pi }}{{36}} \hfill \\  x < 0 \Leftrightarrow k <  - \frac{{11}}{{24}} \Rightarrow {k_{\max }} =  - \,1 \to x =  - \frac{{13\pi }}{{36}} \hfill \\ \end{gathered}  ight.

    So sánh bốn nghiệm ta được nghiệm âm lớn nhất là x =  - \frac{{13\pi }}{{36}} và nghiệm dương nhỏ nhất là x = \frac{{7\pi }}{{36}}.

    Khi đó tổng hai nghiệm này bằng - \frac{{13\pi }}{{36}} + \frac{{7\pi }}{{36}} =  - \frac{\pi }{6}.

     

  • Câu 14: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

    Ta có: y = 1 + \left| \cos x ight| \geq1;y = 1 + \left| \sin x ight| \geq 1

    => Loại đáp án y = 1 + \left| \cos xight|y = 1 + \left| \sin xight|

    Tại x = 0 => y = 1 ta thấy y = 1 +\sin|x| thỏa mãn

  • Câu 15: Thông hiểu

    Hàm số y = \sin \frac{x}{5} có chu kì bằng bao nhiêu?

     Chu kì của hàm số y = \sin \frac{x}{5} là: T = \dfrac{{2\pi }}{{\left| {\dfrac{1}{5}} ight|}} = 10\pi

  • Câu 16: Thông hiểu

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 17: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

    Công thức đúng là: sin(\alpha + \pi) = -
sin\alpha

  • Câu 18: Nhận biết

    Tập nghiệm của phương trình \sin x = 0 là: 

     Ta có:

    \begin{matrix}  \sin x = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k2\pi } \\   {x = \pi  + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\   \Leftrightarrow x = k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt 3 \cos x + m - 1 = 0 có nghiệm?

     Ta có \sqrt 3 \cos x + m - 1 = 0 \Leftrightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}.

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant \frac{{1 - m}}{{\sqrt 3 }} \leqslant 1

    \Leftrightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3 \xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ {0;1;2} ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m.

  • Câu 20: Nhận biết

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo