Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Nghiệm của phương trình \sin x = -
1

    Ta có: \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 2: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 3: Nhận biết

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 4: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{1}{{\sqrt {1 - \sin \,x} }}.

    Hàm số xác định khi và chỉ khi 

    1 - \sin x > 0 \Leftrightarrow \sin x < 1 \,\,(*)

    - 1 \leqslant \sin x \leqslant 1 nên \left( * ight) \Leftrightarrow \sin x e 1 \Leftrightarrow x e \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} ight\}

  • Câu 5: Nhận biết

    Tìm tập các định D của hàm số y =\frac{1}{\sin\left( x - \dfrac{\pi}{2} ight)}

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( x - \dfrac{\pi}{2} ight) eq 0 \hfill \\\Rightarrow x - \dfrac{\pi}{2} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ (1 + 2k)\frac{\pi}{2},k\mathbb{\in Z}ight\}

  • Câu 6: Thông hiểu

    Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác (OG;OP) là:

    Góc lượng giác (OG;OP) chiếm \frac{1}{4} đường tròn

    => Số đo là: \frac{1}{4}.2\pi + k2\pi= \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 7: Vận dụng

    Cho hình vẽ:

    Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

    Ta thấy hàm số có giá trị lớn nhất là \sqrt{2} và giá trị nhỏ nhất là - \sqrt{2} => loại hàm số y = \sin\left( x - \frac{\pi}{4} ight)y = \cos\left( x - \frac{\pi}{4}
ight)

    Tại x = \frac{3\pi}{4} \Rightarrow y = -
\sqrt{2} ta thấy chỉ có y =
\sqrt{2}\cos\left( x + \frac{\pi}{4} ight) thỏa mãn

  • Câu 8: Nhận biết

    Công thức nào sau đây đúng?

    Ta có:

    \cos3a = 4\cos^{3}a - 3\cos a

  • Câu 9: Vận dụng

    Tính tổng T tất cả các nghiệm của phương trình 2\cos 2x + 2\cos x - \sqrt 2  = 0 trên đoạn \left[ {0;3\pi } ight].

    Phương trình 2\cos 2x + 2\cos x - \sqrt 2  = 0

    \Leftrightarrow 2\left( {2{{\cos }^2}x - 1} ight) + 2\cos x - \sqrt 2  = 0

    \Leftrightarrow 4{\cos ^2}x + 2\cos x - 2 - \sqrt 2  = 0

    \Leftrightarrow \left[ \begin{gathered}  \cos x = \frac{{\sqrt 2 }}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(TM) \hfill \\  \cos x =  - \frac{{\sqrt 2  + 1}}{2}\,\,\,\,\,\,(L) \hfill \\ \end{gathered}  ight.\,\, \Leftrightarrow \cos x = \frac{{\sqrt 2 }}{2}

     \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi \xrightarrow{{x \in \left[ {0;3\pi } ight]}}x = \frac{\pi }{4};x = \frac{{9\pi }}{4} \hfill \\  x =  - \,\frac{\pi }{4} + k2\pi \xrightarrow{{x \in \left[ {0;3\pi } ight]}}x = \frac{{7\pi }}{4} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}T = \frac{\pi }{4} + \frac{{9\pi }}{4} + \frac{{7\pi }}{4} = \frac{{17\pi }}{4}.

  • Câu 10: Nhận biết

    Cung tròn bán kính bằng 8,43cm có số đo 3,85 rad có độ dài là?

    Độ dài cung tròn là l = R.\alpha =8,43.3,85 = 32,4555(cm)

  • Câu 11: Nhận biết

    Với x thuộc (0;1), hỏi phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} có bao nhiêu nghiệm?

     Phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} \Leftrightarrow \cos \left( {6\pi x} ight) =  \pm \frac{{\sqrt 3 }}{2}

    - Với \cos 6\pi x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{\pi }{6} \Leftrightarrow 6\pi x =  \pm \,\frac{\pi }{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{{35}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{1}{{12}} < k < \frac{{37}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \to có 6 nghiệm.

    - Với \cos 6\pi x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{{5\pi }}{6} \Leftrightarrow 6\pi x =  \pm \,\frac{{5\pi }}{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{5}{{12}} < k < \frac{{31}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{5}{{12}} < k < \frac{{41}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \tocó 6 nghiệm.

    Vậy phương trình đã cho có 12 nghiệm.

  • Câu 12: Thông hiểu

    Chọn đẳng thức đúng.

    Ta có:

    \cos^{2}\left( \frac{\pi}{2} +\frac{a}{2} ight) = \frac{1 + \cos\left( \dfrac{\pi}{2} + aight)}{2}

    = \frac{1 + \sin( - a)}{2} = \frac{1 -
\sin a}{2}

  • Câu 13: Thông hiểu

    Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình \tan3x= \tan x?

    Điều kiện xác định:

    \left\{ \begin{matrix}\cos3x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{6} + \dfrac{k\pi}{3} \\x eq \dfrac{\pi}{2} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan3x = \tan x

    \Leftrightarrow 3x = x +
k\pi

    \Leftrightarrow x =
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Kết hợp với điều kiện xác định suy ra phương trình có nghiệm x = k\pi;\left( k\mathbb{\in Z} ight) nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.

  • Câu 14: Thông hiểu

    Cho \sin x +cosx = \frac{1}{2}. Tính giá trị biểu thức A = \frac{1 + sin2x}{1 - sin2x}

    Do \sin x + cosx = \frac{1}{2} nên bình phương hai vế ta được:

    1 + 2sinx\cos x = \frac{1}{4} \Rightarrowsin2x = - \frac{3}{4}

    Vậy A = \frac{1 + sin2x}{1 - sin2x} =\frac{1 - 3/4}{1 + 3/4} = \frac{1}{7}

  • Câu 15: Thông hiểu

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Đáp án là:

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Ta có:

    \tan\left( 2x + \frac{\pi}{3} ight) =
- 1

    \Leftrightarrow \tan\left( 2x +\frac{\pi}{3} ight) = \tan\left( - \frac{\pi}{4} ight)

    \Leftrightarrow 2x + \frac{\pi}{3} = -
\frac{\pi}{4} + k\pi

    \Leftrightarrow 2x = - \frac{7\pi}{12} +
k\pi

    \Leftrightarrow x = - \frac{7\pi}{24} +
\frac{k\pi}{2}\ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có họ nghiệm là:x = -
\frac{7\pi}{24} + \frac{k\pi}{2}\ \left( k\mathbb{\in Z}
ight).

    Do đó a = 7,b = 24

    \Rightarrow T = a^{2} - b = 7^{2} - 24 =
25.

  • Câu 16: Nhận biết

    Phương án nào sau đây sai với mọi k\in\mathbb{ Z}?

    Ta có:

    \sin x = 0 \Leftrightarrow x =
k\pi;\left( k\mathbb{\in Z} ight)

    Vậy đáp án sai là: \sin x = 0
\Leftrightarrow x = \frac{\pi}{2} + k\pi

  • Câu 17: Thông hiểu

    Tìm tập giá trị của hàm số y = 5\sin x - 12\cos x?

    Ta có:

    y = 5\sin x - 12\cos x

    =>y = 13\left( \frac{5\sin x - 12\cos x}{13}ight)

    => y = 13\left( \sin\alpha.\sin x -\cos\alpha.\cos x ight)

    y = 13cos(x + \alpha) (với \sin\alpha = \frac{5}{13};\cos\alpha =\frac{12}{13})

    Lại có:

    - 1 \leq \cos(x + \alpha) \leq
1

    \Leftrightarrow - 13 \leq 13cos(x +
\alpha) \leq 13

    \Leftrightarrow - 13 \leq y \leq
13

    Vậy tập giá trị của hàm số là \lbrack -
13;13brack

  • Câu 18: Vận dụng

    Tính tổng A =\sin^{2}35^{0} + \sin^{2}10^{0} + \sin^{2}15^{0} + ... + \sin^{2}80^{0} +\sin^{2}85^{0}

    Ta có: 5^{0} + 85^{0} = 10^{0} + 80^{0} =
40^{0} + 50^{0} = ... = 90^{0}

    Nên \sin^{2}5^{0} + \sin^{2}85^{0} =\sin^{2}10^{0} + \sin^{2}80^{0} = \sin^{2}40^{0} +\sin^{2}50^{0} = ... =1

    sin^{2}45^{0} = \frac{1}{2}

    => A = \underbrace {1 + 1 + ... + 1}_{n{\text{ so 1}}} + \frac{1}{2} = \frac{{17}}{2}

  • Câu 19: Nhận biết

    Đồ thị hàm số y = \cos x - \frac{\pi }{4} đi qua điểm nào sau đây?

     Thay giá trị x =  - \frac{\pi }{2};y = \frac{\pi }{4} vào hàm số ta có:

    \cos \left( { - \frac{\pi }{2}} ight) - \frac{\pi }{4} =- \frac{\pi }{4}

    Vậy điểm thuộc đồ thị hàm số là: y = \cos x - \frac{\pi }{4}

  • Câu 20: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 362 lượt xem
Sắp xếp theo