Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Gọi x_0 là nghiệm dương nhỏ nhất của phương trình \frac{{2\cos 2x}}{{1 - \sin 2x}} = 0. Mệnh đề nào sau đây là đúng?

    Điều kiện: 1 - \sin 2x e 0 \Leftrightarrow \sin 2x e 1

    Phương trình \frac{{2\cos 2x}}{{1 - \sin 2x}} = 0

    \Leftrightarrow \cos 2x = 0\xrightarrow{{{{\sin }^2}2x + {{\cos }^2}2x = 1}}\left[ \begin{gathered}  \sin 2x = 1\,\,\,\,\,\,\,\,\,\,(L) \hfill \\  \sin 2x =  - 1\,\,\,\,\,(TM) \hfill \\ \end{gathered}  ight.

    Cho - \frac{\pi }{4} + k\pi  > 0\xrightarrow{{}}k > \frac{1}{4}.

    Do đó nghiệm dương nhỏ nhất ứng với  k = 1 \to x = \frac{{3\pi }}{4} \in \left[ {\frac{{3\pi }}{4};\pi } ight].

  • Câu 2: Thông hiểu

    Cho góc \alpha thỏa mãn \sin2\alpha = \frac{2}{3}. Tính giá trị của biểu thức P = \sin^{4}\alpha +\cos^{4}a.

    Ta có:

    P = \sin^{4}\alpha +\cos^{4}a

    = \left( \sin^{2}\alpha + \cos^{2}\alphaight)^{2} - 2\sin^{2}\alpha \cos^{2}\alpha

    = 1 - \dfrac{1}{2}\left(2\sin\alpha\cos\alpha ight)^{2}

    = 1 -\dfrac{1}{2}\sin^{2}(2\alpha)

    = 1 - \frac{1}{2}.\left( \frac{2}{3}ight)^{2} = \frac{7}{9}

  • Câu 3: Vận dụng

    Tìm chu kì T của hàm số y = 2\sin^{2}x +3\cos^{2}3x

    Ta có:

    \begin{matrix}y = 2\sin^{2}x + 3\cos^{2}3x \hfill \\= 2.\dfrac{1 - \cos2x}{2} + 3.\dfrac{1 + \cos6x}{2} \hfill\\= \dfrac{1}{2}(3.\cos6x - 2\cos2x + 5)\hfill \\\end{matrix}

    Hàm số y = 3.\cos6x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = - 2\cos2x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \dfrac{1}{2}(3.\cos6x -2\cos2x + 5) tuần hoàn với chu kì T
= \pi

  • Câu 4: Vận dụng

    Số nghiệm của phương trình \sin 5x + \sqrt 3 \cos 5x = 2\sin 7x trên khoảng \left( {0;\frac{\pi }{2}} ight) là? 

     Phương trình \Leftrightarrow \frac{1}{2}\sin 5x + \frac{{\sqrt 3 }}{2}\cos 5x = \sin 7x

    \Leftrightarrow \sin \left( {5x + \frac{\pi }{3}} ight) = \sin 7x

    \Leftrightarrow \sin 7x = \sin \left( {5x + \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  7x = 5x + \frac{\pi }{3} + k2\pi  \hfill \\  7x = \pi  - \left( {5x + \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k\pi  \hfill \\  x = \frac{\pi }{{18}} + \frac{{k\pi }}{6} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    Với  0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

    Với 0 < \frac{\pi }{{18}} + k\frac{\pi }{6} < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{3} < k < \frac{8}{3}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k = 0 \to x = \frac{\pi }{{18}} \hfill \\  k = 1 \to x = \frac{{2\pi }}{9} \hfill \\  k = 2 \to x = \frac{{7\pi }}{{18}} \hfill \\ \end{gathered}  ight.

    Vậy có 4 nghiệm thỏa mãn.

  • Câu 5: Thông hiểu

    Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).

    Ta có: sina + sinb = 2sin\frac{a +
b}{2}cos\frac{a - b}{2}, do đó đẳng thức sina + sinb = 2sin\frac{a + b}{2} \cdot sin\frac{a
- b}{2} sai.

  • Câu 6: Vận dụng

    Tính giá trị biểu thức H =
tan10^{0}.tan20^{0}.tan30^{0}....tan80^{0}

    Ta có: \tan x.\tan\left( 90^{0} - xight) = \tan x.\cot x = 1

    H = \left( \tan10^{0}.\tan80^{0}ight).\left( \tan20^{0}.\tan70^{0} ight).\left( \tan30^{0}.\tan60^{0}ight).\left( \tan40^{0}.\tan50^{0} ight)

    H = 1.1.1.1 = 1

  • Câu 7: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 8: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 9: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{3}{5}. Giá trị của biểu thức G = \sin\left( \alpha +\frac{\pi}{6} ight).\sin\left( \alpha - \frac{\pi}{6}ight)

    Ta có:

    G = \sin\left( \alpha + \frac{\pi}{6}ight).\sin\left( \alpha - \frac{\pi}{6} ight)

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}- \cos2\alpha ight)

    Ta có:

    \cos2\alpha = 1 - 2\sin^{2}\alpha = 1 -2.\left( \frac{3}{5} ight)^{2} = \frac{7}{25}

    Khi đó giá trị biểu thức G là:

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}
- \frac{7}{25} ight) = \frac{1}{2}\left( \frac{1}{2} - \frac{7}{25}
ight) = \frac{11}{100}

  • Câu 10: Nhận biết

    Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây sai?

    Ta có:

    \sin( - a) = - \sin a

    \cos(a - \pi) = - \cos a

    \cot(a - \pi) = - \cot a

    \tan(\pi + a) = \tan a

  • Câu 11: Thông hiểu

    Hàm số y = \tan x + \cot x +
\frac{1}{\sin x} + \frac{1}{\cos x}không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi và chỉ khi:

    \begin{matrix}\left\{ \begin{matrix}\sin x eq 0 \hfill \\\cos x eq 0 \hfill \\\end{matrix} ight.\  \Rightarrow sin2x eq 0 \\\Rightarrow x eq \dfrac{k\pi}{2};k\mathbb{\in Z}\hfill \\\end{matrix}

    Chọn k = 3 => x eq
\frac{3\pi}{2}

    Nhưng điểm \frac{3\pi}{2} thuộc khoảng (\pi + k2\pi;2\pi +
k2\pi)

    Vậy hàm số không xác định trên (\pi +
k2\pi;2\pi + k2\pi);k\mathbb{\in Z}

  • Câu 12: Thông hiểu

    Số nghiệm của phương trình \sin 2x + \sqrt 3 \cos 2x = \sqrt 3 trên khoảng \left( {0;\frac{\pi }{2}} ight) là?

     Phương trình \Leftrightarrow \frac{1}{2}\sin 2x + \frac{{\sqrt 3 }}{2}\cos 2x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} ight) = \frac{{\sqrt 3 }}{2}\Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} ight) = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{gathered}  2x + \frac{\pi }{3} = \frac{\pi }{3} + k2\pi  \hfill \\  2x + \frac{\pi }{3} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{\pi }{6} + k\pi  \hfill \\ \end{gathered}  ight.,{\text{ }}k \in \mathbb{Z}.

    - Với 0 < k\pi  < \frac{\pi }{2} \Leftrightarrow 0 < k < \frac{1}{2}\xrightarrow{{k \in \mathbb{Z}}} không có giá trị thỏa mãn.

    - Với 0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2} \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

  • Câu 13: Nhận biết

    Khẳng định nào sau đây đúng?

    Ta có:

    \sin(2018a) =2\sin(1009a).\cos(1009a)

  • Câu 14: Nhận biết

    Tìm tập các định D của hàm số y = \frac{1
- \sin x}{\cos x - 1}

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\cos x - 1 eq 0 \hfill \\\Rightarrow \cos x eq 1 \hfill \\\Rightarrow x eq k2\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ k2\pi,k\mathbb{\in Z} ight\}

  • Câu 15: Nhận biết

    Hàm số nào sau đây là hàm số chẵn:

     Hàm số sinx là hàm số lẻ

    => Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ

    Xét hàm số y = |sinx| ta có:

    Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D

    Ta có: f(-x) = |sin⁡( -x)| = |- sinx| = |sinx|

    => f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn

    Vậy hàm số y = |sinx| là hàm số chẵn

  • Câu 16: Thông hiểu

    Số nghiệm của phương trình: \sqrt {1 - {x^2}} \sin x = 0

     Điều kiện xác định: x \in \left[ { - 1;1} ight]

    \begin{matrix}  \sqrt {1 - {x^2}} \sin x = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sqrt {1 - {x^2}}  = 0} \\   {\sin x = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {1 - {x^2} = 0} \\   {x = k\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 1} \\   {x = k\pi ;\left( {k \in \mathbb{Z}} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Với k = 0 => x = 0 (thỏa mãn)

    Vậy phương trình có tất cả 3 nghiệm.

  • Câu 17: Nhận biết

    Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình {\tan ^2}x = 3?

     Ta có {\tan ^2}x = 3 \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = 3 \Leftrightarrow {\sin ^2}x = 3{\cos ^2}x

    \Leftrightarrow 1 - {\cos ^2}x = 3{\cos ^2}x \Leftrightarrow 4{\cos ^2}x = 1

    Vậy {\tan ^2}x = 3 \Leftrightarrow 4{\cos ^2}x = 1.

  • Câu 18: Nhận biết

    Tìm tập xác định của hàm số y =
\cot\left( 2x - \frac{\pi}{4} ight) + sin2x

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( 2x - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Leftrightarrow 2x - \dfrac{\pi}{4} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{8} + k\dfrac{\pi}{2};\left( k\mathbb{\in Z}ight) \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{\pi}{8} + k\frac{\pi}{2},k\mathbb{\in Z}
ight\}

  • Câu 19: Thông hiểu

    Phương trình \sin \left( {\frac{\pi }{6} + x} ight) = \cos 2x có nghiệm là

     Giải phương trình:

    \begin{matrix}  \sin \left( {\dfrac{\pi }{6} + x} ight) = \cos 2x \hfill \\   \Leftrightarrow \sin \left( {\dfrac{\pi }{6} + x} ight) = \sin \left( {\dfrac{\pi }{2} - 2x} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{\pi }{6} + x = \dfrac{\pi }{2} - 2x + k2\pi } \\   {\dfrac{\pi }{6} + x = \pi  - \left( {\dfrac{\pi }{2} - 2x} ight) + k2\pi } \end{array}} ight. \hfill  \\ \end{matrix}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = \dfrac{\pi }{3} + k2\pi } \\   { - x = \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{9} + \dfrac{{k2\pi }}{3}} \\   {x =  - \dfrac{\pi }{3} + k'2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight)

  • Câu 20: Thông hiểu

    Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = 3cosx + 4

    Do - 1 \leq cosx \leq 1\forall x \in
\mathbb{R} nên 1 \leq 3cosx + 4
\leq 7,\forall x \in \mathbb{R}.

    Nên \max_{\mathbb{R}}\mspace{2mu} y =
7 đạt được khi cosx = 1
\Leftrightarrow x = k2\pi\ (k \in \mathbb{Z}).

    \min_{\mathbb{R}}\mspace{2mu} y =
1 đạt được khi cosx = - 1
\Leftrightarrow x = \pi + k2\pi(k \in \mathbb{Z}).

    Suy ra \max_{\mathbb{R}}\mspace{2mu} y +
\min_{\mathbb{R}}\mspace{2mu} y = 8.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 361 lượt xem
Sắp xếp theo