Trong các hàm số sau, hàm số nào là hàm số chẵn?
Nhắc lại kiến thức cơ bản:
Hàm số là hàm số lẻ.
Hàm số là hàm số chẵn.
Hàm số là hàm số lẻ.
Hàm số là hàm số lẻ.
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Nhắc lại kiến thức cơ bản:
Hàm số là hàm số lẻ.
Hàm số là hàm số chẵn.
Hàm số là hàm số lẻ.
Hàm số là hàm số lẻ.
Hỏi trên đoạn
, phương trình
có bao nhiêu nghiệm?
Ta có
Theo giả thiết, ta có
.
Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
=>
Cung tròn có số đo là
. Hãy chọn số đo độ của cung tròn đó trong các cung tròn sau đây:
Ta có:
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Rút gọn biểu thức: ![]()
Ta có:
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Ta có .
Phương trình có nghiệm
Vậy có tất cả 3 giá trị nguyên của tham số m.
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Đổi số đo của góc
sang đơn vị radian?
Cách 1: Áp dụng công thức với
ta được:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.
Bước 2: Bấm 120 SHIFT Ans 1 =
Hàm số nào sau đây nhận giá trị âm nếu ![]()
Ta có:
Mà
=> mang giá trị âm
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với
. Đúng||Sai
b) Trên khoảng
phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng
thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng
của phương trình bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với . Đúng||Sai
b) Trên khoảng phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng của phương trình bằng
. Đúng||Sai
Phương trình
.
Do nên phương trình có các nghiệm là:
.
Vậy tổng các nghiệm cần tính là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Trong các mệnh đề sau, mệnh đề nào sai?
Vì hàm số y = tan x tuần hoàn với chu kì π
Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.
Cho hàm số
. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Nghiệm của phương trình 2cos (2x) =-2
Ta có:
.
Khẳng định nào sau đây đúng?
Ta có:
Điều kiện xác định của hàm số
là:
Ta có:
Điều kiện xác định của hàm số
Giải phương trình ![]()
Ta có
Tìm tập giá trị của hàm số
?
Ta có:
(với
)
Lại có:
Vậy tập giá trị của hàm số là
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Giải phương trình
thu được kết quả là:
Điều kiện
.