Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình \sin x + 1 = 0 có nghiệm là:

    Ta có:

    \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm là x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 2: Thông hiểu

    Nếu một cung tròn có số đo 3a^{0} thì số đo radian của nó là:

    Áp dụng công thức \mu =
\frac{m.\pi}{180} tương ứng với m =
3a ta được:

    \mu = \frac{m.\pi}{180} =
\frac{3a.\pi}{180} = \frac{a.\pi}{60}

  • Câu 3: Nhận biết

    Đổi số đo của góc 70^{0} sang đơn vị radian

    Cách 1: Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Khi đó:\mu = \frac{70.\pi}{180} =
\frac{7.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.

    Bước 2. Bấm 70 shift DRG 1 =

  • Câu 4: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Tất các các hàm số đều có TXĐ: {\text{D}} = \mathbb{R}.

    Do đó \forall x \in {\text{D}} \Rightarrow  - x \in {\text{D}}{\text{.}}

    Bây giờ ta kiểm tra f\left( { - x} ight) = f\left( x ight) hoặc f\left( { - x} ight) =  - f\left( x ight).

     Với y = f\left( x ight) =  - \,\,\sin x. Ta có

    f\left( { - x} ight) =  - \,\,\sin \left( { - x} ight) = \sin x =  - \left( { - \sin x} ight)

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

    Suy ra hàm số là hàm số lẻ.

    Với y = f\left( x ight) = \cos x - \sin x. . Ta có

    f\left( { - x} ight) = \cos \left( { - x} ight) - \sin \left( { - x} ight) = \cos x + \sin x

    \Rightarrow f\left( { - x} ight) e \left\{ { - f\left( x ight),f\left( x ight)} ight\}

    Suy ra hàm số không chẵn không lẻ.

    Với y = f\left( x ight) = \cos x + {\sin ^2}x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight) + {\sin ^2}\left( { - \,x} ight)

    = \cos \left( { - \,x} ight) + {\left[ {\sin \left( { - \,x} ight)} ight]^2}

    = \cos x + {\left[ { - \sin x} ight]^2} = \cos x + {\sin ^2}x

    \Rightarrow f\left( { - x} ight) = f\left( x ight)

    Suy ra hàm số là hàm số chẵn.

    Với y = f\left( x ight) = \cos x\sin x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight).\sin \left( { - \,x} ight) =  - \cos x\sin x

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

     Suy ra hàm số là hàm số lẻ.

  • Câu 5: Thông hiểu

    Biết A,B,C là các góc của tam giác ABC, mệnh đề nào sau đây đúng?

    A,B,C là các góc của tam giác ABC nên A + B + C = \pi \Rightarrow A + C = \pi -
B.

    Khi đó sin(A + C) = sin(\pi - B) =
sinB;cos(A + C) = cos(\pi - B) = - cosB.

    tan(A + C) = tan(\pi - B) = - tanB;cot(A
+ C) = cot(\pi - B) = - cotB.

  • Câu 6: Thông hiểu

    Nghiệm của phương trình \sqrt 3 \tan x =  - 3 là:

     Giải phương trình ta có:

    \begin{matrix}  \sqrt 3 \tan x =  - 3 \Rightarrow \tan x =  - \sqrt 3  \hfill \\   \Rightarrow x =  - \dfrac{\pi }{3} + k\pi ,\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy phương trình có nghiệm x =  - \frac{{\pi }}{3} + k\pi

  • Câu 7: Nhận biết

    Nghiệm của phương trình tan (2x) -1 = 0 là?

     Ta có: \tan 2x - 1 = 0 \Leftrightarrow \tan 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{4} + k\pi  \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{2}.

  • Câu 8: Thông hiểu

    Đổi số đo của góc \frac{\pi}{12}rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \dfrac{\dfrac{\pi}{12}.180}{\pi}ight)^{0} = 15^{0}

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm (shift π ÷12) shift DRG 2 =

  • Câu 9: Vận dụng cao

    Nếu \alpha +\beta + \gamma = \frac{\pi}{2}\cot\alpha + \cot\gamma = 2\cot\beta thì \cot\alpha.\cot\gamma bằng bao nhiêu?

    Từ giả thiết ta có:

    \alpha + \beta + \gamma = \frac{\pi}{2}\Rightarrow \beta = \frac{\pi}{2} - (\alpha + \gamma)

    Ta có:

    \cot\alpha + \cot\gamma =2\cot\beta

    = 2\cot\left\lbrack \frac{\pi}{2} -(\alpha + \gamma) ightbrack = 2\tan(\alpha + \gamma)

    = 2.\frac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma}

    Mặt khác

    \dfrac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma} = \dfrac{\dfrac{1}{\cot\alpha} +\dfrac{1}{\cot\gamma}}{1 - \dfrac{1}{\cot\alpha}.\dfrac{1}{\cot\gamma}} =\dfrac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Rightarrow \cot\alpha + \cot\gamma =2.\frac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Leftrightarrow \cot\alpha.\cot\gamma - 1= 2

    \Leftrightarrow \cot\alpha.\cot\gamma =3

  • Câu 10: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Nhắc lại kiến thức cơ bản:

    Hàm số y = \sin x là hàm số lẻ.

    Hàm số y = \cos x là hàm số chẵn.

    Hàm số y = \tan x là hàm số lẻ.

    Hàm số y = \cot x là hàm số lẻ.

  • Câu 11: Nhận biết

    Tìm tập xác định của hàm số y = \frac{{ \sin 2x}}{{\cos x - 1}}

    Hàm số xác định khi và chỉ khi

    \cos x - 1 e 0 \Leftrightarrow \cos x e 1 \Leftrightarrow x e k2\pi ,{\text{ }}k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} ight\}

  • Câu 12: Thông hiểu

    Phương trình \cos^{2}2x+ \cos 2x-\frac{3}{4}=0 có nghiệm là:

     \begin{matrix}  {\cos ^2}2x + \cos 2x - \dfrac{3}{4} = 0 \hfill \\   \Leftrightarrow \left( {\cos 2x - \dfrac{1}{2}} ight).\left( {\cos 2x + \dfrac{3}{2}} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\cos 2x - \dfrac{1}{2} = 0} \\   {\cos 2x + \dfrac{3}{2} = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\cos 2x = \dfrac{1}{2}\left( {tm} ight)} \\   {\cos 2x =  - \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\  \cos 2x = \dfrac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x = \dfrac{\pi }{3} + k2\pi } \\   {2x =  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{6} + k\pi } \\   {x =  - \dfrac{\pi }{6} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\   \Rightarrow x =  \pm \dfrac{\pi }{6} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Biến đổi thành tích biểu thức \frac{sin7\alpha - sin5\alpha}{sin7\alpha +
sin5\alpha} ta được

    Ta có \frac{sin7\alpha -
sin5\alpha}{sin7\alpha + sin5\alpha} = \frac{2cos6\alpha \cdot
sin\alpha}{2sin6\alpha \cdot cos\alpha} =
\cot{6\alpha}.tan\alpha

  • Câu 14: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

  • Câu 15: Vận dụng

    Số nghiệm của phương trình \sin 5x + \sqrt 3 \cos 5x = 2\sin 7x trên khoảng \left( {0;\frac{\pi }{2}} ight) là? 

     Phương trình \Leftrightarrow \frac{1}{2}\sin 5x + \frac{{\sqrt 3 }}{2}\cos 5x = \sin 7x

    \Leftrightarrow \sin \left( {5x + \frac{\pi }{3}} ight) = \sin 7x

    \Leftrightarrow \sin 7x = \sin \left( {5x + \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  7x = 5x + \frac{\pi }{3} + k2\pi  \hfill \\  7x = \pi  - \left( {5x + \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k\pi  \hfill \\  x = \frac{\pi }{{18}} + \frac{{k\pi }}{6} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    Với  0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

    Với 0 < \frac{\pi }{{18}} + k\frac{\pi }{6} < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{3} < k < \frac{8}{3}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k = 0 \to x = \frac{\pi }{{18}} \hfill \\  k = 1 \to x = \frac{{2\pi }}{9} \hfill \\  k = 2 \to x = \frac{{7\pi }}{{18}} \hfill \\ \end{gathered}  ight.

    Vậy có 4 nghiệm thỏa mãn.

  • Câu 16: Nhận biết

    Số vị trí biểu diễn các nghiệm của phương trình \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 trên đường tròn lượng giác là?

     Ta có \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) =  - \sqrt 3

    \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) = \tan \left( { - \frac{\pi }{3}} ight)

    \Leftrightarrow 2x - \frac{\pi }{3} =  - \,\frac{\pi }{3} + k\pi

    \Leftrightarrow 2x = k\pi  \Leftrightarrow x = \frac{{k\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.

  • Câu 17: Nhận biết

    Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?

    i) \cos^{2}\alpha =
\frac{1}{\tan^{2}\alpha + 1}.

    iii) \sqrt{2}\cos\left( \alpha +
\frac{\pi}{4} ight) = \cos\alpha + \sin\alpha.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - cos\alpha.

    iv) cot2\alpha = 2\cot^{2}\alpha -
1.

    i) Ta có: \frac{1}{\cos^{2}\alpha} = 1 +
\tan^{2}\alpha \Leftrightarrow \cos^{2}\alpha = \frac{1}{1 +
\tan^{2}\alpha}

    Vậy i) đúng.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - sin\left( \frac{\pi}{2} - \alpha ight) = -
cos\alpha.

    Vậy ii) đúng.

    iii) \sqrt{2}cos\left( \alpha +
\frac{\pi}{4} ight) = \sqrt{2}\left( cos\alpha cos\frac{\pi}{4} -
sin\alpha sin\frac{\pi}{4} ight) = cos\alpha - sin\alpha.

    Vậy iii) sai.

    iv) Ta lấy \alpha =
\frac{\pi}{3}. Ta có VP =
cot2\alpha = cot2 \cdot \frac{\pi}{3} = - \frac{\sqrt{3}}{3},VT =
2\cot^{2}\left( \frac{\pi}{3} ight) - 1 = - \frac{1}{3}.

    Ta có VP eq VT.

    Do đó iv) sai.

    Vậy có 2 đẳng thức đúng.

  • Câu 18: Vận dụng

    Giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y=\sqrt{4\sin x+5} lần lượt là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \sin x \leqslant 1 \hfill \\   \Rightarrow  - 4 \leqslant 4\sin x \leqslant 4 \hfill \\   \Rightarrow  - 4 + 5 \leqslant 4\sin x + 5 \leqslant 4 + 5 \hfill \\   \Rightarrow 1 \leqslant 4\sin x + 5 \leqslant 9 \hfill \\   \Rightarrow 1 \leqslant \sqrt {4\sin x + 5}  \leqslant 3 \hfill \\ \end{matrix}

  • Câu 19: Vận dụng

    Một đồng hồ treo tường, kim giờ dài 10,57cm và kim phút dài 13,34cm. Trong 30 phút mũi kim giờ vạch lên cung tròn có độ dài là

    Ta có: 6 giờ thì kim giờ vạch lên 1 cung có số đo

    => 30 phút kim giờ vạch lên 1 cung có số đo là \frac{\pi}{12}

    => Độ dài cung tròn mà nó vạch lên là l = R.\alpha = 10,57.\frac{3,14}{12} \approx
2,77(cm)

  • Câu 20: Thông hiểu

    Số vị trí biểu diễn các nghiệm của phương trình \tan3x = \tan x trên đường tròn lượng giác là?

    ĐK: \left\{ \begin{matrix}cos3x eq 0 \\cosx eq 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{6} + \dfrac{k\pi}{3} \\x eq \dfrac{\pi}{2} + k\pi \\\end{matrix}(*) ight.\  ight.

    Ta có tan3x = tanx \Leftrightarrow 3x = x
+ k\pi \Leftrightarrow x = \frac{k\pi}{2},k \in \mathbb{Z}.

    Kết hợp điều kiện (*) suy ra x = k\pi,k
\in \mathbb{Z} nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo