Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
=>
Cho hàm số
. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Thực hiện kiểm tra đáp án ta thấy:
Hàm số là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
Hàm số không chẵn không lẻ
Hàm số và hàm số
là hàm số chẵn.
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Sai||Đúng
b) Trong khoảng
phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng
phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên
bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Sai||Đúng
b) Trong khoảng phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên bằng
. Đúng||Sai
Phương trình
Vì nên:
Với ta chỉ chọn được
.
Với ta chỉ chọn được
.
Vậy tổng các nghiệm bằng .
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Tính ![]()
Ta có:
Cho
là nghiệm của phương trình nào sau đây?
Giải PT, ta có:
Chọn đẳng thức đúng.
Ta có:
Hai hàm số nào sau đây có chu kì khác nhau?
Hai hàm số có cùng chu kì 2π
Hai hàm số có cùng chu kì 4π
Hai hàm số có cùng chu kì
Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì
Mệnh đề nào sau đây đúng?
Ta có:
Vậy đúng.
Nghiệm dương bé nhất của phương trình
là
Giải phương trình
Với k = 0 => (Thỏa mãn)
Vậy nghiệm nguyên dương nhỏ nhất của phương trình là
Tìm chu kì T của hàm số ![]()
Hàm số y = sin(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Tập nghiệm của phương trình
là?
Ta có: .
Mệnh đề nào sau đây sai?
Mệnh đề sai:
Sửa lại:
Trong các mệnh đề sau, mệnh đề nào sai?
Vì hàm số y = tan x tuần hoàn với chu kì π
Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.
Đổi số đo của góc
sang đơn vị radian
Cách 1: Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.
Bước 2. Bấm 70 shift DRG 1 =
Giải phương trình
ta được họ nghiệm
. Tính
?
Đáp án: 11
Giải phương trình ta được họ nghiệm
. Tính
?
Đáp án: 11
ĐKXĐ: .
Đối chiếu điều kiện, nghiệm phương trình là
.