Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Một bánh xe của người đi xe ô tô quay được
vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Một bánh xe của người đi xe ô tô quay được vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Số đo góc quay của vòng là
.
Mệnh đề nào sau đây là đúng?
Từ công thức nên ta có
và
tỉ lệ với nhau.
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Phương trình
có nghiệm là:
Giải phương trình:
Đồ thị hàm số
đi qua điểm nào sau đây?
Xét điểm (0; 2) => x = 0; y = 2
Thay vào hàm số ta có:
cos0 + 1 = 1 + 1 = 2 (thỏa mãn)
Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Giải phương trình
ta được họ nghiệm
. Tính
?
Đáp án: 11
Giải phương trình ta được họ nghiệm
. Tính
?
Đáp án: 11
ĐKXĐ: .
Đối chiếu điều kiện, nghiệm phương trình là
.
Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Cho đồ thị hàm số như hình vẽ:

Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây
Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án
Tại x = 0 thì => Loại đáp án
Tại ta thấy chỉ có
thỏa mãn
Điều kiện xác định của hàm số:
là:
Điều kiện xác định của hàm số:
Hỏi trên
, phương trình
có bao nhiêu nghiệm?
Phương trình
Theo giả thiết
Vậy phương trình có duy nhất một nghiệm trên .
Chu kì của hàm số
là
Hàm số tuần hoàn với chu kỳ
.
Xác định hàm số chẵn trong các hàm số dưới đây?
Ta có:
Hàm số có tập xác định
nên
và
Suy ra hàm số là hàm số lẻ.
Hàm số là hàm số chẵn vì tập xác định
nên
và
Tương tự ta có hàm số là hàm số lẻ, hàm số
không chẵn cũng không lẻ.
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Ta có .
Phương trình có nghiệm
Vậy có tất cả 3 giá trị nguyên của tham số m.
Biết rằng
. Mệnh đề nào sau đây đúng?
Ta có:
Xét trên đường tròn lượng giác ta thấy thuộc góc phần tư thứ II nên ta có:
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
=>
Với x thuộc
hỏi phương trình
có bao nhiêu nghiệm:
Giải phương trình:
Xét nghiệm
Do =>
Xét nghiệm
Do =>
Vậy có tất cả 12 giá trị x thỏa mãn
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.