Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I. Do đó
đồng biến
nghịch biến.
nghịch biến
nghịch biến.
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I. Do đó
đồng biến
nghịch biến.
nghịch biến
nghịch biến.
Cho hai đồ thị hàm số
và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là
Đúng||Sai
c) Khi
thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi
thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Cho hai đồ thị hàm số và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số: Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là Đúng||Sai
c) Khi thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Vì .
Với với
.
Vậy toạ độ giao điểm của hai đồ thị hàm số là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Tập giá trị của hàm số
có bao nhiêu số nguyên?
Ta có:
Điều kiện có nghiệm của phương trình là:
Mà nên
.
Vậy tập giá trị của có 11 số nguyên.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Mặt khác
Do
Khi đó giá trị biểu thức H là:
Đổi số đo của góc
sang radian được kết quả là:
Ta có:
Nghiệm của phương trình
là?
Ta có:
.
Mệnh đề nào sau đây sai?
Mệnh đề sai:
Sửa lại:
Tìm tất cả các giá trị
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiêm
.
Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác ở hình bên là những điểm nào?

Ta có:
Vậy điểm biểu diễn nghiệm phương trình là điểm A, điểm B.
Tìm tập giá trị của hàm số
?
Ta có:
(với
)
Lại có:
Vậy tập giá trị của hàm số là
Mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Tổng các nghiệm thuộc khoảng
của phương trình: ![]()
Giải phương trình:
Tổng nghiệm của phương trình bằng 0.
Xác định chu kì T của hàm số lượng giác
?
Hàm số y = cos(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức
.
Ta có:
Ta lại có:
Với điều kiện xác định của các giá trị lượng giác, cho
. Đơn giản biểu thức P ta được:
Ta có:
Cho góc
thỏa mãn
. Tính giá trị biểu thưc
.
Theo bài ra ta có:
Cho
như hình vẽ dưới đây. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?

Ta có:
.
Các cung lượng giác ,
lần lượt được biểu diễn trên đường tròn lượng giác bởi các điểm F và E.
Khẳng định nào dưới đây đúng?
Ta có: tương ứng với
=>
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
=>