Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tập xác định của hàm số: y = \frac{1}{{\sin x}} + 3\tan x

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\sin x e 0} \\   {\cos x e 0} \end{array}} ight. \Rightarrow \sin x.\cos x e 0 \hfill \\   \Rightarrow \sin 2x e 0 \Rightarrow x e \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 3: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos3x = 4\cos^{3}x - 3\cos x

  • Câu 4: Nhận biết

    Giải phương trình: \sqrt 3 \tan 2x - 3 = 0

     Giải phương trình:

    \begin{matrix}  \sqrt 3 \tan 2x - 3 = 0 \hfill \\   \Leftrightarrow \tan 2x = \sqrt 3  \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{3} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Điều kiện xác định của hàm số y = \cot \left( {x - \frac{{2\pi }}{5}} ight) là:

     Ta có: y = \cot \left( {x - \dfrac{{2\pi }}{5}} ight) = \dfrac{{\cos \left( {x - \dfrac{{2\pi }}{5}} ight)}}{{\sin \left( {x - \dfrac{{2\pi }}{5}} ight)}}

    Điều kiện xác định của hàm số

    \begin{matrix}  \sin \left( {x - \dfrac{{2\pi }}{5}} ight) e 0 \hfill \\   \Leftrightarrow x - \dfrac{{2\pi }}{5} e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{2\pi }}{5} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 3x + \cos 5x.

    Hàm số y = \cos 3x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{3}

    Hàm số y = \cos 5x tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{5}

    Suy ra hàm số y = \cos 3x + \cos 5x tuần hoàn với chu kì T = 2\pi

  • Câu 7: Thông hiểu

    Tìm tập giá trị của hàm số y = 3\cos2x + 5

    Ta có:

    - 1 \leq \cos2x \leq 1

    \Rightarrow - 3 \leq 3\cos2x \leq3

    \Rightarrow 2 \leq 3\cos2x + 5 \leq8

    \Rightarrow 2 \leq y \leq 8

    \Rightarrow T = \lbrack
2;8brack

  • Câu 8: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 9: Nhận biết

    Với những giá trị nào của x thì giá trị của các hàm số y = \sin 3xy = \sin x bằng nhau?

     Xét phương trình hoành độ giao điểm: sin 3x = sin x

    \Leftrightarrow \left[ \begin{gathered}  3x = x + k2\pi  \hfill \\  3x = \pi  - x + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{\pi }{4} + k\frac{\pi }{2} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

  • Câu 10: Nhận biết

    Tính \cos\alpha biết 0 < \alpha < \frac{\pi}{2}\sin\alpha = \frac{1}{4}.

    Ta có sin^{2}\alpha + cos^{2}\alpha =
1

    \Rightarrow cos^{2}\alpha = 1 -
sin^{2}\alpha = 1 - \left( \frac{1}{4} ight)^{2} =
\frac{15}{16}.

    0 < \alpha <
\frac{\pi}{2} nên \cos\alpha >
0.

    Vậy \cos\alpha =
\frac{\sqrt{15}}{4}.

  • Câu 11: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)\cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 thì tích P = r.s bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)nên theo định lí Vi – ét ta có:\left\{\begin{matrix}\tan\alpha + \tan\beta = p \\\tan\alpha.\tan\beta = q \\\end{matrix} ight.

    \cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}\cot\alpha + \cot\beta = r \\\cot\alpha\cot\beta = s \\\end{matrix} ight.

    Khi đó:

    P = r.s

    P = \left( \cot\alpha + \cot\betaight).\cot\alpha.\cot\beta

    P = \left( \frac{1}{\tan\alpha} +
\frac{1}{\tan\beta}
ight).\frac{1}{\tan\alpha}.\frac{1}{\tan\beta}

    P = \frac{\tan\alpha +\tan\beta}{\tan\alpha.\tan\beta} = \frac{p}{q^{2}}

  • Câu 12: Nhận biết

    Đồ thị hàm số y=\cos x+1 đi qua điểm nào sau đây?

     Xét điểm (0; 2) => x = 0; y = 2

    Thay vào hàm số ta có:

    cos0 + 1 = 1 + 1 = 2 (thỏa mãn)

    Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)

  • Câu 13: Vận dụng

    Cho phương trình lượng giác 2(\sin x +1)(\sin^{2}2x - 3\sin x + 1) = \sin4x.\cos x, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( \frac{x}{2} - \frac{\pi}{4}
ight).cos^{3}\left( \frac{3x}{2} + \frac{\pi}{4} ight) = 0. Đúng||Sai

    b) Trên khoảng ( - \pi;\pi) phương trình có 2 nghiệm. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên khoảng ( - \pi;\pi) bằng \frac{7\pi}{6}. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác 2(\sin x +1)(\sin^{2}2x - 3\sin x + 1) = \sin4x.\cos x, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( \frac{x}{2} - \frac{\pi}{4}
ight).cos^{3}\left( \frac{3x}{2} + \frac{\pi}{4} ight) = 0. Đúng||Sai

    b) Trên khoảng ( - \pi;\pi) phương trình có 2 nghiệm. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên khoảng ( - \pi;\pi) bằng \frac{7\pi}{6}. Đúng||Sai

    Ta có phương trình đã cho tương đương với

    2\left( \sin x + 1 ight)\left( \frac{1
- cos4x}{2} - 3sinx + 1 ight) = sin4x.cosx

    \Leftrightarrow \left( \sin x + 1
ight)(3 - 6sinx - cos4x) = sin4x.cosx

    \Leftrightarrow (sinx + 1)(3 - 6sinx) -
sinx.cos4x - cos4x = sin4x.cosx

    \Leftrightarrow 3(1 - 2sin^{2}x) - 3sinx
= sin5x + cos4x

    \Leftrightarrow 3cos2x + 3cos\left( x +
\frac{\pi}{2} ight) = \cos\left( 5x - \frac{\pi}{2} ight) +
cos4x

    \Leftrightarrow 3.2.cos\left(
\frac{3x}{2} + \frac{\pi}{4} ight).cos\left( \frac{x}{2} -
\frac{\pi}{4} ight) = 2.cos\left( \frac{9x}{2} - \frac{\pi}{4}
ight).cos\left( \frac{x}{2} - \frac{\pi}{4} ight)

    \Leftrightarrow \cos\left( \frac{x}{2} -
\frac{\pi}{4} ight)\left\lbrack 3cos\left( \frac{3x}{2} +
\frac{\pi}{4} ight) + \cos\left( \frac{9x}{2} + \frac{3\pi}{4} ight)
ightbrack = 0

    \Leftrightarrow \cos\left( \frac{x}{2} -
\frac{\pi}{4} ight).cos^{3}\left( \frac{3x}{2} + \frac{\pi}{4} ight)
= 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos\left( \frac{x}{2} - \frac{\pi}{4} ight) = 0 \\
\cos\left( \frac{3x}{2} + \frac{\pi}{4} ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{3\pi}{2} + k2\pi \\
x = \frac{\pi}{6} + k2\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight).

    x \in ( - \pi;\pi) nên suy ra x = - \frac{\pi}{2},x = \frac{\pi}{6},x =
\frac{3\pi}{2}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 14: Thông hiểu

    Nghiệm của phương trình \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

     Ta có \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

    \Leftrightarrow \frac{{2x}}{3} + \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} =  - \frac{\pi }{3} + k\pi

    \Leftrightarrow x =  - \frac{\pi }{2} + \frac{{k3\pi }}{2}\left( {k \in \mathbb{Z}} ight).

  • Câu 15: Thông hiểu

    Tính độ dài của cung trên đường tròn có số đo 1,5 và bán kính bằng 20 cm.

    Ta có: l = R.\alpha = 1,5.20 =
30(cm)

  • Câu 16: Thông hiểu

    Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo 35^{0} (lấy 2 chữ số thập phân).

    Cung có số đo 35^{0} thì có số đó radian là \alpha = \frac{35\pi}{180} =
\frac{7\pi}{36}

    Bán kính đường tròn R = \frac{20}{2} =
10cm

    => l = R.\alpha = 10.\frac{7\pi}{36}
\approx 6,11cm

  • Câu 17: Vận dụng

    Giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y=\sqrt{4\sin x+5} lần lượt là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \sin x \leqslant 1 \hfill \\   \Rightarrow  - 4 \leqslant 4\sin x \leqslant 4 \hfill \\   \Rightarrow  - 4 + 5 \leqslant 4\sin x + 5 \leqslant 4 + 5 \hfill \\   \Rightarrow 1 \leqslant 4\sin x + 5 \leqslant 9 \hfill \\   \Rightarrow 1 \leqslant \sqrt {4\sin x + 5}  \leqslant 3 \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Nghiệm của phương trình \sin x = \frac{\sqrt{2}}{2} được biểu diễn trên đường tròn lượng giác ở hình bên là những điểm nào?

    Ta có:

    \sin x = \frac{\sqrt{2}}{2}

    \Rightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{4} + k2\pi \\x = \dfrac{3\pi}{4} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy điểm biểu diễn nghiệm phương trình là điểm A, điểm B.

  • Câu 19: Thông hiểu

    Phương trình lượng giác \cos \left( {2x + \frac{\pi }{3}} ight) = \cos \left( {x + \frac{\pi }{6}} ight) có nghiệm là:

     \begin{matrix}  \cos \left( {2x + \dfrac{\pi }{3}} ight) = \cos \left( {x + \dfrac{\pi }{6}} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x + \dfrac{\pi }{3} = x + \dfrac{\pi }{6} + k2\pi } \\   {2x + \dfrac{\pi }{3} =  - x - \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - \dfrac{\pi }{6} + k2\pi } \\   {x =  - \dfrac{\pi }{6} + \dfrac{{k2\pi }}{3}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy nghiệm phương trình là: \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \dfrac{{ - \pi }}{6} + \dfrac{{k2\pi }}{3}} \end{array}} ight.

  • Câu 20: Vận dụng

    Trên đường tròn với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 60^{0}. Gọi N là điểm đối xứng với điểm M qua trục Oy, số đo cung AN là:

    Hình vẽ minh họa

    Ta có: \widehat{AOM} =
60^{0};\widehat{MON} = 60^{0}

    => \widehat{AON} =
120^{0}

    Khi đó số đo cung AN bằng 120^{0}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo