Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Cho tam giác
có các góc
thỏa mãn biểu thức
. Biết rằng
với
. Tính giá trị biểu thức
?
Ta có:
Dấy “=” xảy ra khi
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với
. Đúng||Sai
b) Trên khoảng
phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng
thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng
của phương trình bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với . Đúng||Sai
b) Trên khoảng phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng của phương trình bằng
. Đúng||Sai
Phương trình
.
Do nên phương trình có các nghiệm là:
.
Vậy tổng các nghiệm cần tính là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Biết
, khẳng định nào sau đây đúng?
Với thì
.
Nghiệm của phương trình
là
Ta có
.
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I và II.
Biến đổi thành tích biểu thức
ta được
Ta có
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Nhắc lại kiến thức cơ bản:
Hàm số là hàm số lẻ.
Hàm số là hàm số chẵn.
Hàm số là hàm số lẻ.
Hàm số là hàm số lẻ.
Mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Cho góc
thỏa mãn
. Tính giá trị biểu thức ![]()
Ta có:
Theo bài ra ta có:
Khi đó giá trị biểu thức T là:
Phương trình lượng giác
có nghiệm là ?
Ta có:
Cho
. Tính giá trị
bằng
Ta có:
Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

Ta có:
=> Loại đáp án và
Tại x = 0 => y = 1 ta thấy thỏa mãn
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Giải phương trình
ta được họ nghiệm
. Tính
?
Đáp án: 11
Giải phương trình ta được họ nghiệm
. Tính
?
Đáp án: 11
ĐKXĐ: .
Đối chiếu điều kiện, nghiệm phương trình là
.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Cho phương trình
. Đặt
, ta được phương trình nào sau đây?
Ta có: trở thành
.
Tập nghiệm của phương trình
là?
Ta có: