Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 2: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos3x = 4\cos^{3}x - 3\cos x

  • Câu 3: Vận dụng

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} thỏa mãn biểu thức 2\cos\widehat{A} +\cos\widehat{B} + \cos\widehat{C} = \frac{9}{4}. Biết rằng \sin\frac{\widehat{A}}{2} =
\frac{x}{y} với x,y\in\mathbb{ N};yeq 0;(x;y) = 1. Tính giá trị biểu thức Q = x + y?

    Ta có:

    2cos\widehat{A} + \cos\widehat{B} +
\cos\widehat{C}

    = 2 - 4\sin^{2}\frac{\widehat{A}}{2} +2\sin\frac{\widehat{A}}{2}.\cos\left( \frac{\widehat{B} - \widehat{C}}{2}ight)

    = - 4.\left\lbrack \sin^{2}\frac{\widehat{A}}{2} -\frac{1}{2}\sin\frac{\widehat{A}}{2}.\cos\left( \frac{\widehat{B} -\widehat{C}}{2} ight) + \frac{1}{16}\cos^{2}\left( \frac{\widehat{B} -\widehat{C}}{2} ight) ightbrack

    + \frac{1}{4}\cos^{2}\left(\frac{\widehat{B} - \widehat{C}}{2} ight) + 2

    = - 4.\left\lbrack\sin\frac{\widehat{A}}{2} - \frac{1}{4}\cos\left( \frac{\widehat{B} -\widehat{C}}{2} ight) ightbrack^{2} + \frac{1}{4}\cos^{2}\left(\frac{\widehat{B} - \widehat{C}}{2} ight) + 2

    \leq \frac{1}{4}cos^{2}\left(
\frac{\widehat{B} - \widehat{C}}{2} ight) + 2 \leq
\frac{9}{4}\forall\Delta ABC

    Dấy “=” xảy ra khi \left\{ \begin{matrix}\widehat{B} = \widehat{C} \\\sin\dfrac{\widehat{A}}{2} = \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow x = 1;y = 4 \Rightarrow Q =5

  • Câu 4: Vận dụng

    Cho phương trình lượng giác \left(\sqrt{3} - 1 ight)\sin x + \left( \sqrt{3} + 1 ight)\cos x =2\sqrt{2}\sin2x, vậy:

    a) Phương trình đã cho tương đương với \sin(x + \dfrac{7\pi}{12}) = \sin 2x. Đúng||Sai

    b) Trên khoảng (0;2\pi) phương trình có 4 nghiệm. Đúng||Sai

    c) Trên khoảng (0;2\pi) thì x = \frac{5\pi}{36} là nghiệm nhỏ nhất. Sai||Đúng

    d) Tổng các nghiệm nằm trong khoảng (0;2\pi) của phương trình bằng 3\pi. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác \left(\sqrt{3} - 1 ight)\sin x + \left( \sqrt{3} + 1 ight)\cos x =2\sqrt{2}\sin2x, vậy:

    a) Phương trình đã cho tương đương với \sin(x + \dfrac{7\pi}{12}) = \sin 2x. Đúng||Sai

    b) Trên khoảng (0;2\pi) phương trình có 4 nghiệm. Đúng||Sai

    c) Trên khoảng (0;2\pi) thì x = \frac{5\pi}{36} là nghiệm nhỏ nhất. Sai||Đúng

    d) Tổng các nghiệm nằm trong khoảng (0;2\pi) của phương trình bằng 3\pi. Đúng||Sai

    Phương trình \Leftrightarrow \sqrt{3}\sin x + \cos x + \sqrt{3}\cos x - \sin x = 2\sqrt{2}\sin2x

    \Leftrightarrow sin(x + \frac{\pi}{6}) +
cos(x + \frac{\pi}{6}) = \sqrt{2}sin2x

    \Leftrightarrow \sin\left( x +
\frac{7\pi}{12} ight) = sin2x

    \Leftrightarrow \left\lbrack\begin{matrix}2x = x + \dfrac{7\pi}{12} + k2\pi \\2x = \pi - x - \dfrac{7\pi}{12} + k2\pi \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{7\pi}{12} + k2\pi \\x = \dfrac{5\pi}{36} + k\dfrac{2\pi}{3} \\\end{matrix} ight..

    Do x \in (0;2\pi) nên phương trình có các nghiệm là: \frac{7\pi}{12};\
\frac{5\pi}{36};\ \frac{29\pi}{36};\ \frac{53\pi}{36}.

    Vậy tổng các nghiệm cần tính là: 3\pi.

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 5: Nhận biết

    Biết \frac{\pi}{2} < \alpha <
\frac{3\pi}{2}, khẳng định nào sau đây đúng?

    Với \frac{\pi}{2} < \alpha <
\frac{3\pi}{2} thì \cos\alpha <
0.

  • Câu 6: Thông hiểu

    Nghiệm của phương trình \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

     Ta có \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

    \Leftrightarrow \frac{{2x}}{3} + \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} =  - \frac{\pi }{3} + k\pi

    \Leftrightarrow x =  - \frac{\pi }{2} + \frac{{k3\pi }}{2}\left( {k \in \mathbb{Z}} ight).

  • Câu 7: Nhận biết

    Với x \in \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight) = \left( { - \frac{\pi }{4} + 8\pi ;\frac{\pi }{4} + 8\pi } ight) thuộc góc phần tư thứ I và II.

  • Câu 8: Thông hiểu

    Biến đổi thành tích biểu thức \frac{sin7\alpha - sin5\alpha}{sin7\alpha +
sin5\alpha} ta được

    Ta có \frac{sin7\alpha -
sin5\alpha}{sin7\alpha + sin5\alpha} = \frac{2cos6\alpha \cdot
sin\alpha}{2sin6\alpha \cdot cos\alpha} =
\cot{6\alpha}.tan\alpha

  • Câu 9: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Nhắc lại kiến thức cơ bản:

    Hàm số y = \sin x là hàm số lẻ.

    Hàm số y = \cos x là hàm số chẵn.

    Hàm số y = \tan x là hàm số lẻ.

    Hàm số y = \cot x là hàm số lẻ.

  • Câu 10: Nhận biết

    Mệnh đề nào sau đây đúng?

     Mệnh đề đúng là: \sin x = 0 \Rightarrow x = k\pi

  • Câu 11: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thức T =
\tan\left( \alpha + \frac{\pi}{4} ight)

    Ta có:

    T = \tan\left( \alpha + \frac{\pi}{4}
ight)

    \Rightarrow T = \dfrac{\tan\alpha +\tan\dfrac{\pi}{4}}{1 - \tan\alpha.\tan\dfrac{\pi}{4}}

    \Rightarrow T = \frac{\tan\alpha + 1}{1- \tan\alpha}

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( 2\pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    Khi đó giá trị biểu thức T là: T = \frac{2 + 1}{1 - 2} = -
3

  • Câu 12: Nhận biết

    Phương trình lượng giác \cos 3x = \cos \frac{\pi }{{15}} có nghiệm là ?

     Ta có: \cos 3x = \cos \frac{\pi }{{15}} \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi

    \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}

  • Câu 13: Thông hiểu

    Cho \sin x +
\cos x = \sqrt{2}. Tính giá trị \sin2x bằng

    Ta có:

    \sin x + \cos x = \sqrt{2}

    \Rightarrow \left( \sin x + \cos x
ight)^{2} = 2

    \Rightarrow 1 + 2\sin x.\cos x =2

    \Rightarrow \sin2x = 1

  • Câu 14: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

    Ta có: y = 1 + \left| \cos x ight| \geq1;y = 1 + \left| \sin x ight| \geq 1

    => Loại đáp án y = 1 + \left| \cos xight|y = 1 + \left| \sin xight|

    Tại x = 0 => y = 1 ta thấy y = 1 +\sin|x| thỏa mãn

  • Câu 15: Nhận biết

    Phương trình \sin x + 1 = 0 có nghiệm là:

    Ta có:

    \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm là x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 16: Vận dụng cao

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 17: Thông hiểu

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    Đáp án là:

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    ĐKXĐ: \left\{ \begin{matrix}
\sin x eq 0 \\
\cos x eq 0 \\
\end{matrix} ight..

    \frac{2\sin x}{\cot x} - \frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight)

    \Leftrightarrow 2\sin^{2}x - \tan x\cot x= 2\left( \sin x - \cos x ight)\sin x\cot x

    \Leftrightarrow 2sin^{2}x - 1 = 2\left(
\sin x - \cos x ight)\cos x

    \Leftrightarrow 2\sin^{2}x - 1 =2\sin x.\cos x - 2\cos^{2}x

    \Leftrightarrow 2\sin^{2}x + 2\cos^{2}x -1 = \sin2x \Leftrightarrow \sin2x = 1

    \Leftrightarrow 2x = \frac{\pi}{2} +
k2\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi\left( k\mathbb{\in Z}
ight)

    Đối chiếu điều kiện, nghiệm phương trình là x = \frac{\pi}{4} + k\pi,k\mathbb{\in
Z}

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow P = 2a + 3b = 2.4 + 3.1 =
11.

  • Câu 18: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 2x + \sin \frac{x}{2}

    Hàm số y = \cos 2x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{2} = \pi

    Hàm số y = \sin \frac{x}{2} tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{{\dfrac{1}{2}}} = 4\pi

    Suy ra hàm số y = \cos 2x + \sin \frac{x}{2} tuần hoàn với chu kì T = 4\pi

  • Câu 19: Thông hiểu

    Cho phương trình {\cot ^2}3x - 3\cot 3x + 2 = 0. Đặt t = \cot 3x, ta được phương trình nào sau đây? 

     Ta có: {\cot ^2}3x - 3\cot 3x + 2 = 0  trở thành {t^2} - 3t + 2 = 0.

  • Câu 20: Nhận biết

    Tập nghiệm của phương trình \sin \left( {x + \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2}là?

     Ta có:   \sin \left( {x + \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{gathered}  x + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi  \hfill \\  x + \frac{\pi }{4} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{12}} + k2\pi  \hfill \\  x = \frac{{5\pi }}{{12}} + k2\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight)

     

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo