Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 2: Nhận biết

    Tìm tập các định D của hàm số y = \frac{1
- \sin x}{\cos x - 1}

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\cos x - 1 eq 0 \hfill \\\Rightarrow \cos x eq 1 \hfill \\\Rightarrow x eq k2\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ k2\pi,k\mathbb{\in Z} ight\}

  • Câu 3: Nhận biết

    Điều kiện xác định của hàm số y = \cot \left( {x - \frac{{2\pi }}{5}} ight) là:

     Ta có: y = \cot \left( {x - \dfrac{{2\pi }}{5}} ight) = \dfrac{{\cos \left( {x - \dfrac{{2\pi }}{5}} ight)}}{{\sin \left( {x - \dfrac{{2\pi }}{5}} ight)}}

    Điều kiện xác định của hàm số

    \begin{matrix}  \sin \left( {x - \dfrac{{2\pi }}{5}} ight) e 0 \hfill \\   \Leftrightarrow x - \dfrac{{2\pi }}{5} e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{2\pi }}{5} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 4: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)\cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 thì tích P = r.s bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)nên theo định lí Vi – ét ta có:\left\{\begin{matrix}\tan\alpha + \tan\beta = p \\\tan\alpha.\tan\beta = q \\\end{matrix} ight.

    \cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}\cot\alpha + \cot\beta = r \\\cot\alpha\cot\beta = s \\\end{matrix} ight.

    Khi đó:

    P = r.s

    P = \left( \cot\alpha + \cot\betaight).\cot\alpha.\cot\beta

    P = \left( \frac{1}{\tan\alpha} +
\frac{1}{\tan\beta}
ight).\frac{1}{\tan\alpha}.\frac{1}{\tan\beta}

    P = \frac{\tan\alpha +\tan\beta}{\tan\alpha.\tan\beta} = \frac{p}{q^{2}}

  • Câu 5: Thông hiểu

    Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo 35^{0} (lấy 2 chữ số thập phân).

    Cung có số đo 35^{0} thì có số đó radian là \alpha = \frac{35\pi}{180} =
\frac{7\pi}{36}

    Bán kính đường tròn R = \frac{20}{2} =
10cm

    => l = R.\alpha = 10.\frac{7\pi}{36}
\approx 6,11cm

  • Câu 6: Thông hiểu

    Đổi số đo của góc 40^{0}35' sang đơn vị radian với độ chính xác đến hàng phần trăm.

    Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Ta có: 40^{0}35' = \left( 40 +
\frac{25}{60} ight)^{0} khi đó:

    \mu = \dfrac{\left( 40 + \dfrac{25}{60}ight).\pi}{180} = \dfrac{97.\pi}{432} \approx 0,71

  • Câu 7: Nhận biết

    Công thức nào sau đây sai?

    Ta có:

    \sin a\cos b - \cos a\sin b = \sin(a -
b)

    \cos a\cos b + \sin a\sin b = \cos(a -
b)

    \sin(a + b) = \sin a\cos b + \cos a\sin
b

    \cos(a + b) = \cos a\cos b - \sin a\sin
b

  • Câu 8: Vận dụng

    Tập giá trị của hàm số y = \frac{\sin3x -2\cos3x + 10}{6\cos x\cos2x - 4\cos^{3}x + 3} có bao nhiêu số nguyên?

    Ta có:

    y = \frac{sin3x - 2cos3x +
10}{6cosxcos2x - 4cos^{3}x + 3}

    = \frac{sin3x - 2cos3x + 10}{3(cos3x +
\cos x) - (cos3x + 3cosx) + 3}

    = \frac{sin3x - 2cos3x + 10}{2cos3x +
3}

    \Leftrightarrow (2\cos3x + 3)y = \sin3x -2\cos3x + 10

    \Leftrightarrow (2y + 2)cos3x - sin3x =
10 - 3y

    Điều kiện có nghiệm của phương trình là:

    (2y + 2)^{2} + ( - 1)^{2} \geq (10 -
3y)^{2}

    \Leftrightarrow 4y^{2} + 8y + 4 + 1 \geq
100 - 60y + 9y^{2}

    \Leftrightarrow 5y^{2} - 68y + 95 \leq
0

    \Leftrightarrow \frac{34 -
\sqrt{681}}{5} \leq y \leq \frac{34 + \sqrt{681}}{5}.

    y\mathbb{\in Z} nên y = \{ 2;3;4;\ldots;12\}.

    Vậy tập giá trị của y có 11 số nguyên.

  • Câu 9: Thông hiểu

    Phương trình \sin x = \sin \frac{\pi }{3} có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \sin x = \sin \dfrac{\pi }{3} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k2\pi } \\   {x = \pi  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k2\pi } \\   {x = \dfrac{{2\pi }}{3} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{\tan x - 1}{\sin x} + \cos\left( x +
\frac{\pi}{3} ight)?

    Hàm số y = \frac{\tan x - 1}{\sin x} +
\cos\left( x + \frac{\pi}{3} ight) xác định khi:

    \left\{ \begin{matrix}\sin x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \sin2x eq 0

    \Leftrightarrow 2x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2}\left( k\mathbb{\in Z}
ight)

    Vậy D=\mathbb{ R}\backslash\left\{\frac{k\pi}{2}|k\in\mathbb{ Z} ight\}

  • Câu 11: Thông hiểu

    Tìm chu kì T của hàm số lượng giác y =cos3x + cos5x

    Hàm số y = cos3x tuần hoàn với chu kì T =\frac{2\pi}{3}

    Hàm số y = cos5x tuần hoàn với chu kì T =\frac{2\pi}{5}

    => Hàm số y = cos3x + cos5x tuần hoàn với chu kì là T =2\pi

  • Câu 12: Thông hiểu

    Nghiệm của phương trình 2cos (2x) =-2

    Ta có: 2 \cos 2x = -2 \Leftrightarrow \cos 2x=-1 \Leftrightarrow 2 x= \pi + k2\pi

    \Leftrightarrow x = \frac{\pi}{2} +k \pi , \, k \in \mathbb{Z}.

  • Câu 13: Thông hiểu

    Giải phương trình \cos\left( 2x -
\frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}?

    Ta có:

    PT\Leftrightarrow \cos\left( 2x -
\frac{\pi}{3} ight) = \cos\frac{5\pi}{6}

    \Leftrightarrow \left\{ \begin{matrix}
2x - \frac{\pi}{3} = \frac{5\pi}{6} + k2\pi \\
2x - \frac{\pi}{3} = - \frac{5\pi}{6} + k2\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \frac{7\pi}{12} + k\pi \\
x = - \frac{\pi}{4} + k\pi \\
\end{matrix} ight.\ \ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \frac{7\pi}{12} + k\pi \\
x = - \frac{\pi}{4} + k\pi \\
\end{matrix} ight.\ \ \left( k\mathbb{\in Z} ight)

  • Câu 14: Nhận biết

    Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình {\tan ^2}x = 3?

     Ta có {\tan ^2}x = 3 \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = 3 \Leftrightarrow {\sin ^2}x = 3{\cos ^2}x

    \Leftrightarrow 1 - {\cos ^2}x = 3{\cos ^2}x \Leftrightarrow 4{\cos ^2}x = 1

    Vậy {\tan ^2}x = 3 \Leftrightarrow 4{\cos ^2}x = 1.

  • Câu 15: Nhận biết

    Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo \frac{3\pi}{4}.

    Độ dài cung tròn là: l =
20.\frac{3\pi}{4} = 15\pi(cm)

  • Câu 16: Nhận biết

    Phương án nào sau đây sai với mọi k\in\mathbb{ Z}?

    Ta có:

    \sin x = 0 \Leftrightarrow x =
k\pi;\left( k\mathbb{\in Z} ight)

    Vậy đáp án sai là: \sin x = 0
\Leftrightarrow x = \frac{\pi}{2} + k\pi

  • Câu 17: Nhận biết

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \left[ { - 2023;\,\,\,2023} ight] để phương trình m\cos x + 1 = 0 có nghiệm?

    Ta có m\cos x + 1 = 0 \Leftrightarrow \cos x =  - \frac{1}{m}

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant  - \frac{1}{m} \leqslant 1

    \Leftrightarrow m \geqslant 1\xrightarrow[{m \in \left[ { - 2023;\,2023} ight]}]{{m \in \mathbb{Z}}}m \in \left\{ {1;2;3;...;2023} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của tham số m.

  • Câu 18: Vận dụng

    Cho ba góc nhọn thỏa mãn \tan\widehat{A} = \frac{1}{2};\tan\widehat{B} =\frac{1}{5};\tan\widehat{C} = \frac{1}{8}. Tính tổng số đo ba góc nhọn.

    Ta có:

    \tan\left( \widehat{A} + \widehat{B}ight) = \dfrac{\tan\widehat{A} + \tan\widehat{B}}{1 -\tan\widehat{A}.tan\widehat{B}} = \dfrac{\dfrac{1}{2} + \dfrac{1}{5}}{1 -\dfrac{1}{2}.\dfrac{1}{5}} = \dfrac{7}{9}

    \Rightarrow \tan\left( \widehat{A} +\widehat{B} + \widehat{C} ight) = \frac{\tan\left( \widehat{A} +\widehat{B} ight) + \tan\widehat{C}}{1 - \tan\left( \widehat{A} +\widehat{B} ight).\tan\widehat{C}} = \dfrac{\dfrac{7}{9} + \dfrac{1}{8}}{1- \dfrac{7}{9}.\dfrac{1}{8}} = 1

    \Rightarrow \widehat{A} + \widehat{B} +
\widehat{C} = 45^{0}

  • Câu 19: Vận dụng

    Phương trình \sin2x + 3\cos x = 0 có bao nhiêu nghiệm trong khoảng (0;2018)?

    Ta có:

    \sin2x + 3\cos x = 0

    \Rightarrow 2\sin x\cos x + 3\cos x =0

    \Rightarrow \cos x(2\sin x + 3) =0

    \Rightarrow \left\lbrack \begin{matrix}\cos x = 0 \\2\cos x + 3 = 0 \\\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{2} + k\pi;\left( k\mathbb{\in Z} ight) \\\sin x = - \dfrac{3}{2}(L) \\\end{matrix} ight.

    Theo bài ra ta có: x \in
(0;2018)

    \Rightarrow 0 < \frac{\pi}{2} + k\pi
< 2018

    \Rightarrow - \frac{1}{2} < k <
641,849...

    \Rightarrow k \in \lbrack
0;641brack

    Vậy phương trình có 642 nghiệm.

  • Câu 20: Nhận biết

    Hàm số nào sau đây có chu kì khác 2\pi?

    Hàm số y = \cos^{3}x = \frac{1}{4}(\cos3x +3\cos x) có chu kì 2\pi.

    Hàm số y = \sin\frac{x}{2}\cos\frac{x}{2}
= \frac{1}{2}\sin x có chu kì 2\pi.

    Hàm số y = \sin^{2}(x + 2) = \frac{1}{2} -\frac{1}{2}\cos(2x + 4) có chu kì \pi.

    Hàm số y = \cos^{2}\left( \frac{x}{2} + 1ight) = \frac{1}{2} + \frac{1}{2}\cos(x + 2) có chu kì 2\pi.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo