Phương trình
có nghiệm là:
Ta có , với
.
Phương trình
có nghiệm là:
Ta có , với
.
Hàm số đồng biến trên khoảng
là:
Với thuộc góc phần tư thứ IV và thứ nhất nên hàm số
đồng biến trên khoảng
Biết
là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Rút gọn biểu thức ![]()
Ta có:
Đổi số đo
sang số đo theo đơn vị là radian.
Ta có:
Khẳng định nào sau đây là đúng khi nói về ?
Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.
Cho tam giác
có các góc
thỏa mãn biểu thức
. Biết rằng
với
. Tính giá trị biểu thức
?
Ta có:
Dấy “=” xảy ra khi
Đổi số đo của góc
sang đơn vị radian với độ chính xác đến hàng phần trăm.
Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Ta có: khi đó:
Trên đoạn
, đồ thị hai hàm số
và
cắt nhau tại bao nhiêu điểm?
Phương trình hoành độ giao điểm của hai đồ thị hàm số là
Theo bài ra ta có:
Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn .
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Ta có
Điều kiện để phương trình có nghiệm
nên có 2 giá trị nguyên.
Phương trình nào sau đây vô nghiệm?
+ Phương trình
Vậy phương trình vô nghiệm.
+ Phương trình
Vậy phương trình có nghiệm.
+ Phương trình
Vậy phương trình có nghiệm.
+ Phương trình
mà
nên phương trình
có nghiệm.
Tập nghiệm của phương trình
là:
Ta có:
Chọn đáp án sai
Trong khoảng
, hàm số
là hàm số:
Ta thấy:
Trên khoảng hàm
đồng biến và hàm
đồng biến
=> Trên hàm số
đồng biến.
Điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số:
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Ta có
Nhận thấy với nghiệm .
Tìm tập xác định
của hàm số
?
Hàm số xác định khi:
Vậy
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
Ta có

Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.
Cho đồ thị hàm số như hình vẽ:

Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây
Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án
Tại x = 0 thì => Loại đáp án
Tại ta thấy chỉ có
thỏa mãn
Chu kì của hàm số
là
Hàm số tuần hoàn với chu kỳ
.