Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Khẳng định nào dưới đây đúng?
Ta có: tương ứng với
=>
Nghiệm của phương trình
là:
Ta có
Với
là các số nguyên dương và
là phân số tối giản. Biết rằng
khi
và
. Tính
.
Ta có:
Vì nên
Khi đó =>
Phương trình ![]()
Cho góc
thỏa mãn
. Tính giá trị biểu thức ![]()
Ta có:
Theo bài ra ta có:
Khi đó giá trị biểu thức T là:
Giải phương trình
ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:
Ta có:
Suy ra:
Nghiệm âm lớn nhất của phương trình là: ứng với
Nghiệm dương nhỏ nhất của phương trình là: ứng với
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Biến đổi thành tích biểu thức
ta được
Ta có
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Tất các các hàm số đều có TXĐ: .
Do đó
Bây giờ ta kiểm tra hoặc
Với . Ta có
Suy ra hàm số là hàm số lẻ.
Với . Ta có
Suy ra hàm số không chẵn không lẻ.
Với . Ta có
Suy ra hàm số là hàm số chẵn.
Với Ta có
Suy ra hàm số là hàm số lẻ.
Chu kì của hàm số
là
Hàm số tuần hoàn với chu kỳ
.
Tập nghiệm của phương trình
là:
Ta có:
Cho tam giác ABC có:
và
. Xác định
.
Ta có:
Mà khi đó:
Số nghiệm của phương trình
với
là?
4 || Bốn || bốn || 4 nghiệm
Số nghiệm của phương trình với
là?
4 || Bốn || bốn || 4 nghiệm
Phương trình
Vì
Vì
Vậy có tất cả 4 nghiệm thỏa mãn bài toán.
Phương trình
có nghiệm là:
Giải phương trình:
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Điều kiện xác định của hàm số: 
Điều kiện xác định của hàm số:
Rút gọn biểu thức
ta được:
Ta có: