Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Nghiệm của phương trình \cos x = \cos 3x là

     \begin{matrix}  \cos x = \cos 3x \hfill \\   \Leftrightarrow \cos 3x = \cos x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = x + k2\pi } \\   {3x =  - x + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x = \dfrac{{k\pi }}{2}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Tìm tập giá trị của hàm số y = 3\cos2x + 5

    Ta có:

    - 1 \leq \cos2x \leq 1

    \Rightarrow - 3 \leq 3\cos2x \leq3

    \Rightarrow 2 \leq 3\cos2x + 5 \leq8

    \Rightarrow 2 \leq y \leq 8

    \Rightarrow T = \lbrack
2;8brack

  • Câu 3: Thông hiểu

    Tính giá trị của biểu thức B = \cos^{4}15^{0} - \sin^{4}15^{0} + \cos^{2}15^{0}- \sin^{2}15^{0}

    Ta có:

    B = \cos^{4}15^{0} - \sin^{4}15^{0} +\cos^{2}15^{0} - \sin^{2}15^{0}

    B = \left( \cos^{2}15^{0} - \sin^{2}15^{0}ight)\left( \cos^{2}15^{0} + \sin^{2}15^{0} ight) + \left(\cos^{2}15^{0} - \sin^{2}15^{0} ight)

    B = \left( \cos^{2}15^{0} - \sin^{2}15^{0}ight) + \left( \cos^{2}15^{0} - \sin^{2}15^{0} ight)

    B = 2\left( \cos^{2}15^{0} -\sin^{2}15^{0} ight)

    B =2 \cos30^{0}  =\sqrt{3}

  • Câu 4: Thông hiểu

    Cho hàm số y = 2cos\left( x +
\frac{\pi}{3} ight) + 3 có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là M, m. Tính giá trị của biểu thức S = 20M - 12m.

    Ta có: - 1 \leq \cos\left( x +
\frac{\pi}{3} ight) \leq 1

    Nên 1 \leq 2cos\left( x + \frac{\pi}{3}
ight) + 3 \leq 5.

    Suy ra S = 20M - 12m = 20.5 - 12.1 =
88.

  • Câu 5: Nhận biết

    Tổng các nghiệm thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) của phương trình: \cos x = \frac{1}{2}

     Giải phương trình:

    \begin{matrix}  \cos x = \dfrac{1}{2} \hfill \\   \Leftrightarrow \cos x = \cos \left( {\dfrac{\pi }{3}} ight) \hfill \\   \Leftrightarrow x =  \pm \dfrac{\pi }{3} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Tổng nghiệm của phương trình bằng 0.

  • Câu 6: Thông hiểu

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Đáp án là:

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Ta có:

    \tan\left( 2x + \frac{\pi}{3} ight) =
- 1

    \Leftrightarrow \tan\left( 2x +\frac{\pi}{3} ight) = \tan\left( - \frac{\pi}{4} ight)

    \Leftrightarrow 2x + \frac{\pi}{3} = -
\frac{\pi}{4} + k\pi

    \Leftrightarrow 2x = - \frac{7\pi}{12} +
k\pi

    \Leftrightarrow x = - \frac{7\pi}{24} +
\frac{k\pi}{2}\ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có họ nghiệm là:x = -
\frac{7\pi}{24} + \frac{k\pi}{2}\ \left( k\mathbb{\in Z}
ight).

    Do đó a = 7,b = 24

    \Rightarrow T = a^{2} - b = 7^{2} - 24 =
25.

  • Câu 7: Thông hiểu

    Tính giá trị của biểu thức C = \dfrac{\sin\dfrac{5\pi}{18}.\cos\dfrac{\pi}{9} -\sin\dfrac{\pi}{9}.\cos\dfrac{5\pi}{18}}{\cos\dfrac{\pi}{4}.\cos\dfrac{\pi}{12}- \sin\dfrac{\pi}{4}.\sin\dfrac{\pi}{12}} là:

    Ta có:

    \sin\dfrac{5\pi}{18}.\cos\dfrac{\pi}{9} -\sin\dfrac{\pi}{9}.\cos\dfrac{5\pi}{18}

    = \sin\left( \frac{5\pi}{18} -\frac{\pi}{9} ight)

    = \sin\frac{\pi}{6} =\frac{1}{2}

    \cos\dfrac{\pi}{4}.\cos\dfrac{\pi}{12} -\sin\dfrac{\pi}{4}.\sin\frac{\pi}{12}

    = \cos\left( \frac{\pi}{4} +\frac{\pi}{12} ight)

    = \cos\frac{\pi}{3} =\frac{1}{2}

    Vậy C=1

  • Câu 8: Nhận biết

    Công thức nào sau đây sai?

    Ta có:

    \sin a\cos b - \cos a\sin b = \sin(a -
b)

    \cos a\cos b + \sin a\sin b = \cos(a -
b)

    \sin(a + b) = \sin a\cos b + \cos a\sin
b

    \cos(a + b) = \cos a\cos b - \sin a\sin
b

  • Câu 9: Nhận biết

    Khẳng định nào sau đây sai?

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 10: Nhận biết

    Với x thuộc (0;1), hỏi phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} có bao nhiêu nghiệm?

     Phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} \Leftrightarrow \cos \left( {6\pi x} ight) =  \pm \frac{{\sqrt 3 }}{2}

    - Với \cos 6\pi x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{\pi }{6} \Leftrightarrow 6\pi x =  \pm \,\frac{\pi }{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{{35}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{1}{{12}} < k < \frac{{37}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \to có 6 nghiệm.

    - Với \cos 6\pi x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{{5\pi }}{6} \Leftrightarrow 6\pi x =  \pm \,\frac{{5\pi }}{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{5}{{12}} < k < \frac{{31}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{5}{{12}} < k < \frac{{41}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \tocó 6 nghiệm.

    Vậy phương trình đã cho có 12 nghiệm.

  • Câu 11: Thông hiểu

    Cho phương trình lượng giác 4cos2x = m - 1\ \ (*)

    a) Với m = 5, phương trình (*) có nghiệm là x = k\pi,\left( k\mathbb{\in Z}
ight) Đúng||Sai

    b) Với m = 3, phương trình (*) có một nghiệm là x = \frac{\pi}{6} Đúng||Sai

    c) Với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 3. Sai||Đúng

    d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng

    Đáp án là:

    Cho phương trình lượng giác 4cos2x = m - 1\ \ (*)

    a) Với m = 5, phương trình (*) có nghiệm là x = k\pi,\left( k\mathbb{\in Z}
ight) Đúng||Sai

    b) Với m = 3, phương trình (*) có một nghiệm là x = \frac{\pi}{6} Đúng||Sai

    c) Với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 3. Sai||Đúng

    d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng

    Thay m = 5 vào (*) ta được:

    4cos2x = 4 \Leftrightarrow cos2x =
1

    \Leftrightarrow 2x = k2\pi
\Leftrightarrow x = k\pi;\left( k\mathbb{\in Z} ight)

    Thay m = 3 vào (*) ta được:

    4cos2x = 2 \Leftrightarrow cos2x =
\frac{1}{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = \frac{\pi}{3} + k2\pi \\
2x = - \frac{\pi}{3} + k2\pi \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{\pi}{6} + k\pi \\
x = - \frac{\pi}{6} + k\pi \\
\end{matrix} ight.\ \left( k\mathbb{\in Z} ight)

    Với k = 0 thì phương trình có nghiệm x = \frac{\pi}{6} .

    Thay m = - 3 vào (*) ta được:

    4cos2x = - 4 \Leftrightarrow cos2x = -
1

    \Leftrightarrow 2x = \pi + k2\pi;\left(
k\mathbb{\in Z} ight)

    \Leftrightarrow x = \frac{\pi}{2} +
k\pi;\left( k\mathbb{\in Z} ight)

    Vì xét nghiệm trên đoạn \lbrack
0;2\pibrack nên ta có:

    0 \leq \frac{\pi}{2} + k\pi \leq 2\pi
\Leftrightarrow - \frac{1}{2} \leq k \leq \frac{3}{2}

    k\mathbb{\in Z \Rightarrow}k = \left\{
0;1 ight\}

    Vậy với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 2.

    d) Ta có: 4cos2x = m - 1 \Leftrightarrow
cos2x = \frac{m - 1}{4}

    Để phương trình có nghiệm thì - 1 \leq
\frac{m - 1}{4} \leq 1 \Leftrightarrow - 4 \leq m - 1 \leq
4

    \Leftrightarrow - 3 \leq m \leq
5m\mathbb{\in Z \Rightarrow}m =
\left\{ - 3; - 2; - 1;0;1;2;3;4;5 ight\}

    Vậy số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 10.

  • Câu 12: Thông hiểu

    Cho phương trình \sin x.\cos x = 1 có nghiệm là:

     Giải phương trình như sau:

    \begin{matrix}  \sin x.\cos x = 1 \hfill \\   \Leftrightarrow 2\sin x.\cos x = 2 \hfill \\   \Leftrightarrow \sin 2x = 2\left( L ight) \hfill \\ \end{matrix}

    \sin 2x \in \left[ { - 1;1} ight]

    vậy phương trình lượng giác đã cho vô nghiệm.

  • Câu 13: Vận dụng cao

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 14: Vận dụng

    Phương trình 3\sin^{2}x + m \sin 2 x -4\cos^{2}x=0 có nghiệm khi:

     Xét phương trình:

    \begin{matrix}  3{\sin ^2}x + m.\sin 2x - 4{\cos ^2}x = 0 \hfill \\   \Rightarrow 3{\sin ^2}x + 2m.\sin x.\cos x - 4{\cos ^2}x = 0\left( * ight) \hfill \\ \end{matrix}

    Trường hợp 1: \cos x = 0 \Rightarrow \sin x =  \pm 1

    Phương trình (*) trở thành:

    3 + 3.m - 4.0 = 0 (Vô lí)

    Trường hợp 2: \cos x e 0

    Chia cả hai vế của phương trình (*) cho cos2x

    Phương trình (*) trờ thành: 3{\tan ^2}x + 2m\tan x - 4 = 0 (**)

    Đặt tanx = t, phương trình trở thành: 3{t^2} + 2mt - 4 = 0\left( {***} ight)

    Phương trình đã cho có nghiệm => (***) có nghiệm

    => \Delta ' \geqslant 0 \Rightarrow {m^2} + 12 \geqslant 0 (luôn đúng với mọi m)

    => Phương trình đã cho có nghiệm với mọi 

    • m\in \mathbb{R}
  • Câu 15: Nhận biết

    Hàm số y =  1-2\sin x+\tan x + \cot x không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi 

    \begin{matrix}   \Leftrightarrow \left\{ \begin{gathered}  \sin x e 0 \hfill \\  \cos x e 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Leftrightarrow \sin 2x e 0 \hfill \\   \Leftrightarrow 2x e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{k\pi }}{2},k \in \mathbb{Z}. \hfill \\ \end{matrix}

    Ta chọn k = 3 \to x e \frac{{3\pi }}{2} nhưng điểm \frac{{3\pi }}{2} thuộc khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

    Vậy hàm số không xác định trong khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

  • Câu 16: Nhận biết

    Trên đường tròn cung có số đo 1 rad là?

    Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.

  • Câu 17: Vận dụng

    Cho \cos a = -
\frac{3}{5}0 < a <
\pi. Khi đó giá trị của \cos\frac{a}{2} là:

    Ta có:

    cos^{2}\dfrac{a}{2} = \frac{1 + \cos a}{2} = \dfrac{1 + \left( - \dfrac{3}{5} ight)}{2} =\frac{1}{5}

    \Rightarrow \cos\frac{a}{2} = \pm
\frac{\sqrt{5}}{5}

    Do 0 < a < \pi hay 0 < \frac{a}{2} < \frac{\pi}{2} \Rightarrow
\cos\frac{a}{2} > 0

    Vậy \cos\frac{a}{2} =
\frac{\sqrt{5}}{5}

  • Câu 18: Vận dụng

    Xác định chu kì T của hàm số y = \tan3x +\cot x

    Hàm số y = \tan3x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = \cot x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \tan3x + \cot x tuần hoàn với chu kì T = \pi

  • Câu 19: Thông hiểu

    Cho hàm số y =\tan2x. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{4} + \frac{k\pi}{2}|k\mathbb{\in Z}
ight\}

    Hàm số y = \tan2x tuần hoàn với chu kì \frac{\pi}{2}, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên \left( 0;\frac{\pi}{2} ight)\backslash\left\{
\frac{\pi}{4} ight\}

    Dựa vào kết quả khảo sát sự biến thiên của hàm số y = \tan x phần lí thuyết ta có thể suy ra với hàm số y = tan2x đồng biến trên khoảng \left( 0;\frac{\pi}{4}
ight)\left(
\frac{\pi}{4};\frac{\pi}{2} ight).

  • Câu 20: Nhận biết

    Hàm số nào sau đây có chu kì khác 2\pi?

    Hàm số y = \cos^{3}x = \frac{1}{4}(\cos3x +3\cos x) có chu kì 2\pi.

    Hàm số y = \sin\frac{x}{2}\cos\frac{x}{2}
= \frac{1}{2}\sin x có chu kì 2\pi.

    Hàm số y = \sin^{2}(x + 2) = \frac{1}{2} -\frac{1}{2}\cos(2x + 4) có chu kì \pi.

    Hàm số y = \cos^{2}\left( \frac{x}{2} + 1ight) = \frac{1}{2} + \frac{1}{2}\cos(x + 2) có chu kì 2\pi.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 362 lượt xem
Sắp xếp theo