Cho bất đẳng thức , với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Cho bất đẳng thức , với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).
Công thức đúng là:
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Trên khoảng phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Trên khoảng phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng bằng
. Đúng||Sai
Ta có phương trình đã cho tương đương với
.
Vì nên suy ra
.
Kết luận:
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Hai hàm số nào sau đây có chu kì khác nhau?
Hai hàm số có cùng chu kì 2π
Hai hàm số có cùng chu kì 4π
Hai hàm số có cùng chu kì
Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì
Phương trình có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Tính giá trị của biểu thức là:
Ta có:
Phương trình có nghiệm là:
Tính tổng
Ta có:
Nên
=>
Tập nghiệm của phương trình là?
Ta có: .
Tìm chu kì của hàm số ?
Hàm số tuần hoàn với chu kì
Áp dụng công thức trên ta suy ra hàm số tuần hoàn với chu kì
.
Mệnh đề nào sau đây sai?
Mệnh đề sai:
Sửa lại:
Tìm chu kì T của hàm số
Hàm số tuần hoàn với chu kì
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Tất các các hàm số đều có TXĐ: .
Do đó
Bây giờ ta kiểm tra hoặc
Với . Ta có
Suy ra hàm số là hàm số lẻ.
Với . Ta có
Suy ra hàm số không chẵn không lẻ.
Với . Ta có
Suy ra hàm số là hàm số chẵn.
Với Ta có
Suy ra hàm số là hàm số lẻ.
Thu gọn biểu thức thu được kết quả là:
Áp dụng công thức về cung liên kết ta có:
Suy ra:
Cho . Chọn khẳng định đúng.
Đặt
Có
.
Vậy .
Biết là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Hàm số nào sau đây nhận giá trị âm nếu
Ta có:
Mà
=> mang giá trị âm
Nghiệm của phương trình là
Ta có
.
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:
Do nên
Do đó nhiệt độ thấp nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
ĐK:
Ta có .
Kết hợp điều kiện (*) suy ra nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.