Tập xác định của hàm số: ![]()
Ta có:
Tập xác định của hàm số: ![]()
Ta có:
Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có thuộc gốc phần tư thứ I
=> Hàm số đồng biến trên khoảng
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Giải phương trình: ![]()
Giải phương trình:
Điều kiện xác định của hàm số
là:
Ta có:
Điều kiện xác định của hàm số
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Tìm tập giá trị của hàm số ![]()
Ta có:
Tập nghiệm của phương trình
là?
Với những giá trị nào của x thì giá trị của các hàm số
và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Tính
biết
và
.
Ta có
.
Mà nên
.
Vậy .
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Đồ thị hàm số
đi qua điểm nào sau đây?
Xét điểm (0; 2) => x = 0; y = 2
Thay vào hàm số ta có:
cos0 + 1 = 1 + 1 = 2 (thỏa mãn)
Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Đúng||Sai
b) Trên khoảng
phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng
phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng
bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Trên khoảng phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng bằng
. Đúng||Sai
Ta có phương trình đã cho tương đương với
.
Vì nên suy ra
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Nghiệm của phương trình
là
Ta có
.
Tính độ dài của cung trên đường tròn có số đo 1,5 và bán kính bằng 20 cm.
Ta có:
Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo
(lấy 2 chữ số thập phân).
Cung có số đo thì có số đó radian là
Bán kính đường tròn
=>
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
lần lượt là:
Ta có:
Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác ở hình bên là những điểm nào?

Ta có:
Vậy điểm biểu diễn nghiệm phương trình là điểm A, điểm B.
Phương trình lượng giác
có nghiệm là:
Vậy nghiệm phương trình là:
Trên đường tròn với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo
. Gọi N là điểm đối xứng với điểm M qua trục Oy, số đo cung AN là:
Hình vẽ minh họa
Ta có:
=>
Khi đó số đo cung AN bằng .