Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các phương trình sau, phương trình nào tương đương với phương trình 3{\sin ^2}x = {\cos ^2}x ?

     Ta có 3{\sin ^2}x = {\cos ^2}x. Chi hai vế phương trình cho {\sin ^2}x, ta được {\cot ^2}x = 3.

  • Câu 2: Thông hiểu

    Cho x = \frac{\pi }{3} + k2\pi \left( {k \in \mathbb{Z}} ight) là nghiệm của phương trình nào sau đây?

     Giải PT, ta có: 2 \sin x - \sqrt 3  = 0 \Leftrightarrow \sin x = \frac{{\sqrt 3 }}{2} = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x = \pi  - \frac{\pi }{3} + k2\pi  = \frac{{2\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight)

  • Câu 3: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 4: Thông hiểu

    Hàm số y = \tan x + \cot x +
\frac{1}{\sin x} + \frac{1}{\cos x}không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi và chỉ khi:

    \begin{matrix}\left\{ \begin{matrix}\sin x eq 0 \hfill \\\cos x eq 0 \hfill \\\end{matrix} ight.\  \Rightarrow sin2x eq 0 \\\Rightarrow x eq \dfrac{k\pi}{2};k\mathbb{\in Z}\hfill \\\end{matrix}

    Chọn k = 3 => x eq
\frac{3\pi}{2}

    Nhưng điểm \frac{3\pi}{2} thuộc khoảng (\pi + k2\pi;2\pi +
k2\pi)

    Vậy hàm số không xác định trên (\pi +
k2\pi;2\pi + k2\pi);k\mathbb{\in Z}

  • Câu 5: Nhận biết

    Tính giá trị biểu thức A =\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}

    \sin10^{0} eq 0 nên ta có:

    A =\frac{16\sin10^{0}.\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{8\sin20^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{4\sin40^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{2\sin80^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{\sin160^{0}}{16\sin10^{0}}

    A = \frac{\sin20^{0}}{16\sin10^{0}} =\frac{2.\sin10^{0}.\cos10^{0}}{16\sin10^{0}} =\frac{1}{8}.\cos10^{0}

  • Câu 6: Thông hiểu

    Biết \sin\alpha +
\cos\alpha = \frac{5}{4}. Khi đó \sin\alpha.\cos\alpha có giá trị bằng:

    Ta có:

    \sin\alpha.cos\alpha

    = \frac{1}{2}\left\lbrack \left(\sin\alpha + \cos\alpha ight)^{2} - \left( \sin^{2}\alpha +\cos^{2}\alpha ight) ightbrack

    = \frac{1}{2}\left\lbrack \left(
\frac{5}{4} ight)^{2} - 1 ightbrack = \frac{9}{32}

  • Câu 7: Thông hiểu

    Cho \sin x +cosx = \frac{1}{2}. Tính giá trị biểu thức A = \frac{1 + sin2x}{1 - sin2x}

    Do \sin x + cosx = \frac{1}{2} nên bình phương hai vế ta được:

    1 + 2sinx\cos x = \frac{1}{4} \Rightarrowsin2x = - \frac{3}{4}

    Vậy A = \frac{1 + sin2x}{1 - sin2x} =\frac{1 - 3/4}{1 + 3/4} = \frac{1}{7}

  • Câu 8: Thông hiểu

    Phương trình \sin x =
\frac{\sqrt{3}}{2} có nghiệm là:

    Ta có \sin x = \dfrac{\sqrt{3}}{2}\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{3} + k2\pi \\x = \dfrac{2\pi}{3} + k2\pi \\\end{matrix} ight., với k\mathbb{\in Z}.

  • Câu 9: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 10: Nhận biết

    Giải phương trình \cot x = - 1 thu được kết quả là:

    Điều kiện x eq k\pi\left( k\mathbb{\in
Z} ight)

    \cot x = - 1 \Leftrightarrow x = -
\frac{\pi}{4} + k\pi\ \left( k\mathbb{\in Z} ight).

  • Câu 11: Nhận biết

    Xác định chu kì T của hàm số lượng giác y
= \cos\left( \frac{x}{2} + 2016 ight)?

    Hàm số y = cos(ax + b) tuần hoàn với chu kì T = \frac{2\pi}{|a|}

    => y = \cos\left( \frac{x}{2} + 2016
ight) tuần hoàn với chu kì T =
4\pi

  • Câu 12: Vận dụng

    Nghiệm dương bé nhất của phương trình 2\sin^{2}x-5\sin x+3=0 là

     Giải phương trình 

    \begin{matrix}  2{\sin ^2}x - 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x - 1} ight).\left( {2\sin x - 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x - 1 = 0} \\   {2\sin x - 3 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x = 1} \\   {\sin x = \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\   \Rightarrow \sin x = 1 \hfill \\   \Rightarrow x = \dfrac{\pi }{2} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Với k = 0 => x =  \frac{\pi }{2} (Thỏa mãn)

    Vậy nghiệm nguyên dương nhỏ nhất của phương trình là x =  \frac{\pi }{2}

  • Câu 13: Vận dụng

    Tìm giá trị lớn nhất M của biểu thức P = 4\sin^{2}x + \sqrt{2}\sin\left( 2x +\frac{\pi}{4} ight) xác định

    Ta có:

    P = 4\sin^{2}x + \sqrt{2}\sin\left( 2x +\frac{\pi}{4} ight)

    \Rightarrow P = 4\left( \frac{1 -\cos2x}{2} ight) + \sin2x + \cos2x

    \Rightarrow P = \sin2x - \cos2x +2

    \Rightarrow P = \sqrt{2}\sin\left( 2x -\frac{\pi}{4} ight) + 2

    Mặt khác - 1 \leq \sin\left( 2x +\frac{\pi}{4} ight) \leq 1

    \Rightarrow - \sqrt{2} + 2 \leq\sqrt{2}\sin\left( 2x + \frac{\pi}{4} ight) + 2 \leq \sqrt{2} +2

    Vậy giá trị lớn nhất của biểu thức là P =\sqrt{2} + 2.

  • Câu 14: Thông hiểu

    Tính giá trị \cos\left\lbrack \frac{\pi}{3} + \pi(2k + 1)ightbrack

    Ta có:

    \cos\left\lbrack \frac{\pi}{3} + \pi(2k+ 1) ightbrack

    = \cos\left\lbrack \frac{\pi}{3} + \pi +k2\pi ightbrack

    = \cos\left\lbrack \frac{\pi}{3} + \piightbrack

    = - \cos\left( \frac{\pi}{3} ight) = -\frac{1}{2}

  • Câu 15: Thông hiểu

    Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).

    Ta có: sina + sinb = 2sin\frac{a +
b}{2}cos\frac{a - b}{2}, do đó đẳng thức sina + sinb = 2sin\frac{a + b}{2} \cdot sin\frac{a
- b}{2} sai.

  • Câu 16: Nhận biết

    Với x \in \left( {0;\frac{\pi }{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc góc phần tư thứ I. Do đó

    y = \sin 2x đồng biến \to y =  - \sin 2x nghịch biến.

    y = \cos 2x nghịch biến \to y =  - 1 + \cos 2x nghịch biến.

  • Câu 17: Nhận biết

    Công thức nào sau đây đúng?

    Ta có:

    \cos3a = 4\cos^{3}a - 3\cos a

  • Câu 18: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 19: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

    Ta có: y = 1 + \left| \cos x ight| \geq1;y = 1 + \left| \sin x ight| \geq 1

    => Loại đáp án y = 1 + \left| \cos xight|y = 1 + \left| \sin xight|

    Tại x = 0 => y = 1 ta thấy y = 1 +\sin|x| thỏa mãn

  • Câu 20: Nhận biết

    Với x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight), mệnh đề nào sau đây đúng?

    Ta có: x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight) = \left( - \frac{\pi}{4} +
8\pi;\frac{\pi}{4} + 8\pi ight) thuộc góc phần tư thứ I và thứ II.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 359 lượt xem
Sắp xếp theo