Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Kiểm tra được ;
;
là các hàm số chẵn.
là hàm số lẻ.
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Mà
.
Do đó . Vậy
.
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Trong các hàm số sau hàm số nào là hàm số lẻ?
Xét hàm số y = sinx:
Lấy ta có:
Vậy hàm số y = sinx là hàm số lẻ.
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Tìm giá trị thực của tham số m để phương trình
nhận
làm nghiệm.
Vì là một nghiệm của phương trình
nên ta có:
.
Vậy m = - 4 là giá trị cần tìm.
Cho hình vẽ:

Trên đường tròn lượng giác, số đo của góc lượng giác
là:
Từ hình vẽ ta có:
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Cho phương trình
có nghiệm là:
Giải phương trình như sau:
Vì
vậy phương trình lượng giác đã cho vô nghiệm.
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Cho tam giác ABC có:
và
. Xác định
.
Ta có:
Mà khi đó:
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp
là bình thường. Giả sử một người nào đó có nhịp tim là
lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số
ở đó
là huyết áp tính theo đơn vị
( milimét thuỷ ngân) và thời gian
tính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120
?
Đáp án: 1
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp là bình thường. Giả sử một người nào đó có nhịp tim là
lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số
ở đó
là huyết áp tính theo đơn vị
( milimét thuỷ ngân) và thời gian
tính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120
?
Đáp án: 1
Huyết áp là 120 khi
Xét
vì .
Vậy trong khoảng từ 0 đến 1 giây, có 1 lần huyết áp là 120 .
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Phương trình
Xét nghiệm , với k = 1 ta được
.
Phương trình lượng giác
có nghiệm là ?
Ta có:
Tính giá trị biểu thức
. Biết
?.
Ta có:
Chọn đẳng thức đúng.
Ta có:
Ta lại có:
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Mệnh đề nào sau đây sai?
Mệnh đề sai:
Sửa lại: