Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Đúng||Sai
b) Trên khoảng
phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng
phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng
bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Trên khoảng phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng bằng
. Đúng||Sai
Ta có phương trình đã cho tương đương với
.
Vì nên suy ra
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi
Ta chọn nhưng điểm
thuộc khoảng
Vậy hàm số không xác định trong khoảng
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Kết luận nào đúng về tập nghiệm của phương trình
?
Ta có:
Vậy tập nghiệm của phương trình đã cho là .
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
=> cùng dấu
Mà
Ta có:
Khi đó:
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm (shift -3π ÷16) shift DRG 2 =
Cho vòng tròn lượng giác được kí hiệu như sau:

Điểm nào biểu diễn nghiệm của phương trình
?
Ta có:
Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.
Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây sai?
Ta có:
Tập nghiệm của phương trình
là?
Ta có: .
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Tập nghiệm của phương trình
là?
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:
Điểm N đối xứng với điểm M qua gốc tọa độ nên
Cung lượng giác ngược chiều dương nên số đo lượng giác cung
Cho
. Tính giá trị biểu thức ![]()
Do nên bình phương hai vế ta được:
Vậy
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là mệnh đề đúng.
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
Ta có

Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.