Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?

    \cos x - \sin x = \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left( x -
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left(
\frac{\pi}{4} - x ight)

    Ta có:

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    = \sqrt{2}\cos\left\lbrack \frac{\pi}{2}
- \left( \frac{\pi}{4} - x ight) ightbrack

    = \sqrt{2}\sin\left( \frac{\pi}{4} - x
ight)

    Vậy có hai đồng nhất thức.

  • Câu 2: Nhận biết

    Chu kì của hàm số y = 3\sin2x là số nào sau đây?

    Chu kì của hàm số là T = \frac{2\pi}{2} =\pi

  • Câu 3: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 4: Thông hiểu

    Giải phương trình \cot(3x - 1) = - \sqrt{3}

    Ta có:

    \cot(3x - 1) = - \sqrt{3}

    \Leftrightarrow \cot(3x - 1) =
\cot\left( - \frac{\pi}{6} ight)

    \Leftrightarrow 3x - 1 = - \frac{\pi}{6}
+ k\pi

    \Rightarrow x = \frac{1}{3} -
\frac{\pi}{18} + k\frac{\pi}{3}

    \underset{k = 1}{ightarrow}x =
\frac{1}{3} + \frac{5\pi}{18} + k\frac{\pi}{3}

  • Câu 5: Thông hiểu

    Giải phương trình 4{\sin ^2}x = 3.

    Ta có 4{\sin ^2}x = 3 \Leftrightarrow {\sin ^2}x = \frac{3}{4} \Leftrightarrow \sin x =  \pm \frac{{\sqrt 3 }}{2}.

    Với \sin x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x = \frac{{2\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Với \sin x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \left( { - \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{3} + k2\pi  \hfill \\  x = \frac{{4\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Nhận thấy chưa có đáp án nào phù hợp. Ta biểu diễn các nghiệm trên đường tròn lượng giác (hình vẽ).

    Nếu tính luôn hai điểm A, B thì có tất cả 6 điểm cách đều nhau nên ta gộp được 6 điểm này thành một họ nghiệm, đó là x = k\frac{\pi }{3}.

    Suy ra nghiệm của phương trình \left\{ \begin{gathered}  x = k\frac{\pi }{3} \hfill \\  k\frac{\pi }{3} e l\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x = \frac{{k\pi }}{3} \hfill \\  k e 3\ell  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k,\ell  \in \mathbb{Z}} ight)

  • Câu 6: Nhận biết

    Gọi S là tập nghiệm của phương trình 2\cos x - \sqrt 3  = 0. Khẳng định nào sau đây là đúng?

    Ta có 2\cos x - \sqrt 3  = 0 \Leftrightarrow \cos x = \cos \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x =  - \,\frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Nhận thấy với nghiệm x =  - \,\frac{\pi }{6} + k2\pi \xrightarrow{{k = 1}}x = \frac{{11\pi }}{6} \in S.

  • Câu 7: Thông hiểu

    Cho hàm số y =\tan2x. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{4} + \frac{k\pi}{2}|k\mathbb{\in Z}
ight\}

    Hàm số y = \tan2x tuần hoàn với chu kì \frac{\pi}{2}, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên \left( 0;\frac{\pi}{2} ight)\backslash\left\{
\frac{\pi}{4} ight\}

    Dựa vào kết quả khảo sát sự biến thiên của hàm số y = \tan x phần lí thuyết ta có thể suy ra với hàm số y = tan2x đồng biến trên khoảng \left( 0;\frac{\pi}{4}
ight)\left(
\frac{\pi}{4};\frac{\pi}{2} ight).

  • Câu 8: Thông hiểu

    Cho góc lượng giác (Ox,Oy) = 22^{0}30' + k.360^{0}. Với giá trị k bằng bao nhiêu thì góc (Ox,Oy) =
1822^{0}30'?

    Theo bài ra ta có:

    \begin{matrix}(Ox,Oy) = 1822^{0}30\prime  \hfill \\\Rightarrow 22^{0}30\prime  + k.360^{0} = 1822^{0}30\prime  \hfill \\\Rightarrow k = 5 \hfill  \\\end{matrix}

  • Câu 9: Thông hiểu

    Phương trình  \cos\frac{\pi}{3} = \cos x có nghiệm là:

    Ta có:

    \cos\frac{\pi}{3} = \cos x

    \Leftrightarrow x = \pm \frac{\pi}{3} +k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 10: Nhận biết

    Mệnh đề nào sau đây đúng?

     Mệnh đề đúng là: \sin x = 0 \Rightarrow x = k\pi

  • Câu 11: Nhận biết

    Chọn khẳng định đúng.

    Ta có: \pi rad tương ứng với 180^{0}.

  • Câu 12: Thông hiểu

    Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

    Ta thấy hàm số có giá trị lớn nhất bằng \sqrt{2} và giá trị nhỏ nhất bằng - \sqrt{2} nên loại các đáp án y = \sin\left( x - \frac{\pi}{4} ight)y = \cos\left( x - \frac{\pi}{4}
ight).

    Tại x = \frac{3\pi}{4};y = -
\sqrt{2} chỉ có hàm số y =
\sqrt{2}\cos\left( x + \frac{\pi}{4} ight) thỏa mãn.

  • Câu 13: Nhận biết

    Khẳng định nào sau đây sai?

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 14: Nhận biết

    Gọi x_0 là nghiệm dương nhỏ nhất của phương trình \frac{{2\cos 2x}}{{1 - \sin 2x}} = 0. Mệnh đề nào sau đây là đúng?

    Điều kiện: 1 - \sin 2x e 0 \Leftrightarrow \sin 2x e 1

    Phương trình \frac{{2\cos 2x}}{{1 - \sin 2x}} = 0

    \Leftrightarrow \cos 2x = 0\xrightarrow{{{{\sin }^2}2x + {{\cos }^2}2x = 1}}\left[ \begin{gathered}  \sin 2x = 1\,\,\,\,\,\,\,\,\,\,(L) \hfill \\  \sin 2x =  - 1\,\,\,\,\,(TM) \hfill \\ \end{gathered}  ight.

    Cho - \frac{\pi }{4} + k\pi  > 0\xrightarrow{{}}k > \frac{1}{4}.

    Do đó nghiệm dương nhỏ nhất ứng với  k = 1 \to x = \frac{{3\pi }}{4} \in \left[ {\frac{{3\pi }}{4};\pi } ight].

  • Câu 15: Vận dụng

    Cho hình vẽ:

    Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

    Ta thấy hàm số có giá trị lớn nhất là \sqrt{2} và giá trị nhỏ nhất là - \sqrt{2} => loại hàm số y = \sin\left( x - \frac{\pi}{4} ight)y = \cos\left( x - \frac{\pi}{4}
ight)

    Tại x = \frac{3\pi}{4} \Rightarrow y = -
\sqrt{2} ta thấy chỉ có y =
\sqrt{2}\cos\left( x + \frac{\pi}{4} ight) thỏa mãn

  • Câu 16: Vận dụng

    Nếu \sin\alpha.\cos(\alpha + \beta) =\sin\beta với \alpha + \beta eq\frac{\pi}{2} + k\pi\alpha eq\frac{\pi}{2} + l\pi;\left( k;l\mathbb{\in Z} ight) thì

    Ta có:

    \begin{matrix}  \sin \alpha \cos (\alpha  + \beta ) = \sin \beta  \hfill \\   \Leftrightarrow \dfrac{1}{2}\sin (2\alpha  + \beta ) - \dfrac{1}{2}\sin \beta  = \sin \beta  \hfill \\   \Leftrightarrow \sin (2\alpha  + \beta ) = 3\sin \beta  \hfill \\   \Leftrightarrow \sin (2\alpha  + \beta ) - \sin \beta  = \dfrac{1}{2}[\sin (2\alpha  + \beta ) + \sin \beta ] \hfill \\   \Leftrightarrow 2\cos (\alpha  + \beta ).\sin \beta  = \sin (\alpha  + \beta ).\cos \beta  \hfill \\   \Leftrightarrow \dfrac{{\sin (\alpha  + \beta )}}{{\cos (\alpha  + \beta )}} = 2.\dfrac{{\sin \beta }}{{\cos \beta }} \hfill \\   \Rightarrow \sin \alpha .\cos (\alpha  + \beta ) = \sin \beta  \hfill \\   \Leftrightarrow \tan (\alpha  + \beta ) = 2\tan \beta  \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Nghiệm của phương trình tan (2x) -1 = 0 là?

     Ta có: \tan 2x - 1 = 0 \Leftrightarrow \tan 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{4} + k\pi  \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{2}.

  • Câu 18: Thông hiểu

    Xác định nghiệm của phương trình - \cos2x = \cos\left( x - 30^{0}ight)?

    Ta có:

    - \cos2x = \cos\left( x - 30^{0}ight)

    \Leftrightarrow \cos\left( 180^{0} - 2x
ight) = \cos\left( x - 30^{0} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 30^{0} = 180^{0} - 2x + k360^{0} \\
x - 30^{0} = - 180^{0} + 2x + k360^{0} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} - k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm \left\lbrack \begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} + k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight).

  • Câu 19: Vận dụng

    Giải phương trình \sqrt 3 \cos \left( {x + \frac{\pi }{2}} ight) + \sin \left( {x - \frac{\pi }{2}} ight) = 2\sin 2x?

     

    Ta có \cos \left( {x + \frac{\pi }{2}} ight) =  - \sin x và .\sin \left( {x - \frac{\pi }{2}} ight) =  - \cos x

    Do đó phương trình \Leftrightarrow  - \sqrt 3 \sin x - \cos x = 2\sin 2x

    \Leftrightarrow \sqrt 3 \sin x + \cos x =  - 2\sin 2x

    \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x =  - \sin 2x

    \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} ight) =  - \sin 2x

    \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} ight) = \sin \left( { - 2x} ight)

    \Leftrightarrow \left[ \begin{gathered}  x + \frac{\pi }{6} =  - 2x + k2\pi  \hfill \\  x + \frac{\pi }{6} = \pi  + 2x + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{{18}} + k\frac{{2\pi }}{3} \hfill \\  x =  - \frac{{5\pi }}{6} - k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Xét nghiệm x =  - \frac{{5\pi }}{6} - k2\pi \xrightarrow[{k \in \mathbb{Z},{\text{ }}k' \in \mathbb{Z}}]{{k =  - 1 - k'}}x = \frac{{7\pi }}{6} + k'2\pi.

    Vậy phương trình có nghiệm x =  - \frac{\pi }{{18}} + k\frac{{2\pi }}{3},{\text{ }}x = \frac{{7\pi }}{6} + k'2\pi {\text{ }}\left( {k,k' \in \mathbb{Z}} ight).

  • Câu 20: Nhận biết

    Cho góc lượng giác \alpha. Trong các khẳng định sau, khẳng định nào sai?

    Ta có:

    \cos2\alpha = 2\cos^{2}\alpha - 1 = 1 -2\sin^{2}\alpha = \cos^{2}\alpha - \sin^{2}\alpha

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 356 lượt xem
Sắp xếp theo