Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Phương trình \sin 2x = \frac{1}{2} có bao nhiêu nghiệm trên khoảng \left( {0;\frac{{15\pi }}{2}} ight)?

     Ta có: \sin 2x = \frac{1}{2} \Leftrightarrow \sin 2x = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  2x = \frac{\pi }{6} + k2\pi  \hfill \\  2x = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{12}} + k\pi  \hfill \\  x = \frac{{5\pi }}{{12}} + k\pi  \hfill \\ \end{gathered}  ight.    \left( {k \in \mathbb{Z}} ight)

    * Trường hợp 1: x = \frac{\pi }{{12}} + k\pi, \left( {k \in \mathbb{Z}} ight)

    0 < x < \frac{{15\pi }}{2} \Leftrightarrow 0 < \frac{\pi }{{12}} + k\pi  < \frac{{15\pi }}{2}

    \Leftrightarrow  - \frac{1}{{12}} < k < \frac{{89}}{{12}}\mathop  \Rightarrow \limits^{k \in \mathbb{Z}} k = \left\{ {0;1;2;3;4;5;6;7} ight\}.

    Vậy có tất cả 8 giá trị k tương ứng với trường hợp 1 có 8 nghiệm là:

    x = \frac{\pi }{{12}}; x = \frac{13\pi }{{12}}; x = \frac{25\pi }{{12}}; x = \frac{37\pi }{{12}}; x = \frac{49\pi }{{12}}; x = \frac{61\pi }{{12}}; x = \frac{73\pi }{{12}}; x = \frac{85\pi }{{12}}.

    * Trường hợp 2:  x = \frac{5\pi }{{12}} + k\pi, \left( {k \in \mathbb{Z}} ight) 

    0 < x < \frac{{15\pi }}{2} \Leftrightarrow 0 < \frac{{5\pi }}{{12}} + k\pi  < \frac{{15\pi }}{2}

    \Leftrightarrow  - \frac{5}{{12}} < k < \frac{{85}}{{12}}\mathop  \Rightarrow \limits^{k \in \mathbb{Z}} k = \left\{ {0;1;2;3;4;5;6;7} ight\}.

    Vậy có tất cả 8 giá trị k tương ứng với trường hợp 2 có 8 nghiệm là:

    x = \frac{5\pi }{{12}}; x = \frac{17\pi }{{12}}; x = \frac{29\pi }{{12}}; x = \frac{41\pi }{{12}}; x = \frac{53\pi }{{12}}; x = \frac{65\pi }{{12}}; x = \frac{77\pi }{{12}}; x = \frac{89\pi }{{12}}.

    Vậy trên khoảng \left( {0;\frac{{15\pi }}{2}} ight) phương trình đã cho có tất cả là 16 nghiệm.

  • Câu 2: Thông hiểu

    Tìm tập nghiệm của phương trình \left( \sin x + 1 ight).\left( \sin x - \sqrt{2}
ight) = 0?

    Ta có:

    \left( \sin x + 1 ight).\left( \sin x
- \sqrt{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\sin x + 1 = 0 \\
\sin x - \sqrt{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\sin x = - 1 \\
\sin x = \sqrt{2}(L) \\
\end{matrix} ight.

    \Leftrightarrow \sin x = - 1
\Leftrightarrow x = - \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Vậy phương trình có tập nghiệm là: S =
\left\{ - \frac{\pi}{2} + k2\pi|k\mathbb{\in Z} ight\}

  • Câu 3: Thông hiểu

    Phương trình 2\sin x - 1 = 0 có bao nhiêu nghiệm thuộc khoảng ( - \pi;\pi)?

    Ta có:

    \sin x = \frac{1}{2} \Leftrightarrow\left\lbrack \begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x \in ( - \pi;\pi) \Rightarrow x =
\frac{\pi}{6};x = \frac{5\pi}{6}

    Vậy phương trình có hai nghiệm thuộc khoảng ( - \pi;\pi).

  • Câu 4: Nhận biết

    Nghiệm của phương trình \cos x = -
\frac{1}{2}

    Ta có:

    \cos x = - \frac{1}{2} \Leftrightarrow
\cos x = \cos\left( \frac{2\pi}{3} ight)

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi\ \ \ \ (k \in Ζ)

  • Câu 5: Thông hiểu

    Trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack, đồ thị hai hàm số y
= \tan xy = 1 cắt nhau tại bao nhiêu điểm?

    Phương trình hoành độ giao điểm của hai đồ thị hàm số là

    \tan x = 1 \Rightarrow x = \frac{\pi}{4}
+ k\pi;\left( k\mathbb{\in Z} ight)

    Theo bài ra ta có: x \in \left\lbrack -
2\pi;\frac{5\pi}{2} ightbrack

    \Rightarrow - 2\pi \leq \frac{\pi}{4} +
k\pi \leq \frac{5\pi}{2}

    \Rightarrow - \frac{9}{4} \leq k \leq
\frac{9}{4}

    \Rightarrow k \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack.

  • Câu 6: Nhận biết

    Chu kì của hàm số y = 3\sin2x là số nào sau đây?

    Chu kì của hàm số là T = \frac{2\pi}{2} =\pi

  • Câu 7: Vận dụng

    Cho hàm số y =f(x) = \cos2x - 4\cos x + 4. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)?

    Ta có:

    y =f(x) = \cos2x - 4\cos x + 4

    = 2\cos^{2}x - 4\cos x + 3

    Đặt \cos x = t,t \in \lbrack -
1;1brack. Xét hàm số f(t) =
2t^{2} - 4t + 3 trên đoạn \lbrack -
1;1brack

    Ta có bảng biến thiên

    Từ bảng biến thiên ta có: \left\{
\begin{matrix}
\max y = \max\underset{t \in \lbrack - 1;1brack}{f(t)} = 9 \\
\min y = \min\underset{t \in \lbrack - 1;1brack}{f(t)} = 1 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.

  • Câu 8: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 9: Thông hiểu

    Biết số đo một góc (Ox;Oy) = \frac{3\pi}{2} + 2001\pi. Giá trị tổng quát của góc (Ox;Oy)

    Ta có:

    (Ox;Oy) = \frac{3\pi}{2} + 2001\pi =\frac{\pi}{2} + 2002\pi

    \Rightarrow (Ox;Oy) = \frac{\pi}{2} +k\pi;\left( k\mathbb{\in Z} ight)

  • Câu 10: Nhận biết

    Công thức nào sau đây sai?

    Ta có:

    \sin a\cos b - \cos a\sin b = \sin(a -
b)

    \cos a\cos b + \sin a\sin b = \cos(a -
b)

    \sin(a + b) = \sin a\cos b + \cos a\sin
b

    \cos(a + b) = \cos a\cos b - \sin a\sin
b

  • Câu 11: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{\tan x - 1}{\sin x} + \cos\left( x +
\frac{\pi}{3} ight)?

    Hàm số y = \frac{\tan x - 1}{\sin x} +
\cos\left( x + \frac{\pi}{3} ight) xác định khi:

    \left\{ \begin{matrix}\sin x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \sin2x eq 0

    \Leftrightarrow 2x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2}\left( k\mathbb{\in Z}
ight)

    Vậy D=\mathbb{ R}\backslash\left\{\frac{k\pi}{2}|k\in\mathbb{ Z} ight\}

  • Câu 12: Thông hiểu

    Biến đổi thành tích biểu thức \frac{sin7\alpha - sin5\alpha}{sin7\alpha +
sin5\alpha} ta được

    Ta có \frac{sin7\alpha -
sin5\alpha}{sin7\alpha + sin5\alpha} = \frac{2cos6\alpha \cdot
sin\alpha}{2sin6\alpha \cdot cos\alpha} =
\cot{6\alpha}.tan\alpha

  • Câu 13: Nhận biết

    Công thức nào sau đây đúng?

    Ta có:

    \cos3a = 4\cos^{3}a - 3\cos a

  • Câu 14: Vận dụng

    Tính giá trị biểu thức T = \sin^{2}10^{0} + \sin^{2}20^{0} + ... +\sin^{2}80^{0}

    Ta có: 10^{0} + 80^{0} = 20^{0} + 70^{0}
= ... = 90^{0}

    Nên các cung lượng giác tương ứng đôi một phụ nhau ta có công thức \sin\left( 90^{0} - x ight) = \cos
x

    Khi đó ta có:

    T = \sin^{2}10^{0} + \sin^{2}20^{0} + ...+ \sin^{2}80^{0}

    T = \left( \sin^{2}10^{0} + \cos^{2}10^{0}ight) + \left( \sin^{2}20^{0} + \cos^{2}20^{0} ight)

    + \left(\sin^{2}30^{0} + \cos^{2}0^{0} ight) + \left( \sin^{2}40^{0} +\cos^{2}40^{0} ight)

    T = 1 + 1 + 1 + 1 = 4

  • Câu 15: Thông hiểu

    Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo 35^{0} (lấy 2 chữ số thập phân).

    Cung có số đo 35^{0} thì có số đó radian là \alpha = \frac{35\pi}{180} =
\frac{7\pi}{36}

    Bán kính đường tròn R = \frac{20}{2} =
10cm

    => l = R.\alpha = 10.\frac{7\pi}{36}
\approx 6,11cm

  • Câu 16: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 17: Nhận biết

    Tìm tập các định D của hàm số y =\frac{1}{\sin\left( x - \dfrac{\pi}{2} ight)}

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( x - \dfrac{\pi}{2} ight) eq 0 \hfill \\\Rightarrow x - \dfrac{\pi}{2} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ (1 + 2k)\frac{\pi}{2},k\mathbb{\in Z}ight\}

  • Câu 18: Nhận biết

    Hỏi x = \frac{{7\pi }}{3} là một nghiệm của phương trình nào sau đây?

     Với x = \frac{{7\pi }}{3}, suy ra \left\{ \begin{gathered}  \sin x = \sin \frac{{7\pi }}{3} = \frac{{\sqrt 3 }}{2} \hfill \\  \cos x = \cos \frac{{7\pi }}{3} = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  2\sin x - \sqrt 3  = 0 \hfill \\  2\cos x - 1 = 0 \hfill \\ \end{gathered}  ight.

  • Câu 19: Nhận biết

    Hàm số nào sau đây có chu kì khác 2\pi?

    Hàm số y = \cos^{3}x = \frac{1}{4}(\cos3x +3\cos x) có chu kì 2\pi.

    Hàm số y = \sin\frac{x}{2}\cos\frac{x}{2}
= \frac{1}{2}\sin x có chu kì 2\pi.

    Hàm số y = \sin^{2}(x + 2) = \frac{1}{2} -\frac{1}{2}\cos(2x + 4) có chu kì \pi.

    Hàm số y = \cos^{2}\left( \frac{x}{2} + 1ight) = \frac{1}{2} + \frac{1}{2}\cos(x + 2) có chu kì 2\pi.

  • Câu 20: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 354 lượt xem
Sắp xếp theo