Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

  • Câu 2: Nhận biết

    Số vị trí biểu diễn các nghiệm của phương trình \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 trên đường tròn lượng giác là?

     Ta có \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) =  - \sqrt 3

    \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) = \tan \left( { - \frac{\pi }{3}} ight)

    \Leftrightarrow 2x - \frac{\pi }{3} =  - \,\frac{\pi }{3} + k\pi

    \Leftrightarrow 2x = k\pi  \Leftrightarrow x = \frac{{k\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.

  • Câu 3: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)\cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 thì tích P = r.s bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)nên theo định lí Vi – ét ta có:\left\{\begin{matrix}\tan\alpha + \tan\beta = p \\\tan\alpha.\tan\beta = q \\\end{matrix} ight.

    \cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}\cot\alpha + \cot\beta = r \\\cot\alpha\cot\beta = s \\\end{matrix} ight.

    Khi đó:

    P = r.s

    P = \left( \cot\alpha + \cot\betaight).\cot\alpha.\cot\beta

    P = \left( \frac{1}{\tan\alpha} +
\frac{1}{\tan\beta}
ight).\frac{1}{\tan\alpha}.\frac{1}{\tan\beta}

    P = \frac{\tan\alpha +\tan\beta}{\tan\alpha.\tan\beta} = \frac{p}{q^{2}}

  • Câu 4: Nhận biết

    Tìm tập xác định của hàm số y =
\cot\left( 2x - \frac{\pi}{4} ight) + sin2x

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( 2x - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Leftrightarrow 2x - \dfrac{\pi}{4} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{8} + k\dfrac{\pi}{2};\left( k\mathbb{\in Z}ight) \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{\pi}{8} + k\frac{\pi}{2},k\mathbb{\in Z}
ight\}

  • Câu 5: Nhận biết

    Tập xác định của hàm số y =
3tan^{2}\left( \frac{x}{2} - \frac{\pi}{4} ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}cos^{2}\left( \dfrac{x}{2} - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Rightarrow \dfrac{x}{2} - \dfrac{\pi}{4} eq \dfrac{\pi}{2} + k\pi \hfill \\\Rightarrow x eq \dfrac{3\pi}{2} + k2\pi;k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{3\pi}{2} + k2\pi,k\mathbb{\in Z}
ight\}

  • Câu 6: Nhận biết

    Công thức nào sau đây sai?

    Ta có:

    \sin a\cos b - \cos a\sin b = \sin(a -
b)

    \cos a\cos b + \sin a\sin b = \cos(a -
b)

    \sin(a + b) = \sin a\cos b + \cos a\sin
b

    \cos(a + b) = \cos a\cos b - \sin a\sin
b

  • Câu 7: Nhận biết

    Nghiệm của phương trình \cos x = \cos 3x là

     \begin{matrix}  \cos x = \cos 3x \hfill \\   \Leftrightarrow \cos 3x = \cos x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = x + k2\pi } \\   {3x =  - x + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x = \dfrac{{k\pi }}{2}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Cho hình vẽ:

    Trên đường tròn lượng giác, số đo của góc lượng giác (OA;OB') là:

    Từ hình vẽ ta có: (OA;OB') = -
\frac{\pi}{2}

  • Câu 9: Thông hiểu

    Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    => Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là \frac{\pi}{2}

  • Câu 10: Thông hiểu

    Chu kì của hàm số y = \sin\left(
\frac{2}{5}x ight).cos\left( \frac{2}{5}x ight)k\pi. Giá trị của k là:

    Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Đáp án là:

    Chu kì của hàm số y = \sin\left(
\frac{2}{5}x ight).cos\left( \frac{2}{5}x ight)k\pi. Giá trị của k là:

    Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Ta có:

    y = \sin\left( \frac{2}{5}x
ight).cos\left( \frac{2}{5}x ight) = \frac{1}{2}\sin\left(
\frac{4}{5}x ight)

    Hàm số trên có chu kì là T =
\frac{2\pi}{|a|} = \frac{2\pi}{\frac{4}{5}} =
\frac{5\pi}{2}

    Vậy k = \frac{5}{2}.

  • Câu 11: Thông hiểu

    Với điều kiện xác định của các giá trị lượng giác, cho P = \dfrac{\sin2a + \sin5a - \sin3a}{1+ \cos a - 2\sin^{2}2a}. Đơn giản biểu thức P ta được:

    Ta có:

    P = \dfrac{\sin2a + \sin5a - \sin3a}{1 +\cos a - 2\sin^{2}2a}

    P = \frac{\sin2a + 2\cos4a.\sin a}{\cos4a +\cos a}

    P = \frac{2\sin a\cos a +2\cos4a.\sin a}{\cos4a + \cos a}

    P = \frac{2\sin a\left( \cos a + \cos4aight)}{\cos a + \cos4a}

    P = 2\sin a

  • Câu 12: Vận dụng

    Cho \frac{\pi}{2} < \alpha < \pi. Xác định dấu của biểu thức M = \cos\left( -
\frac{\pi}{2} + \alpha ight).tan(\pi - \alpha)

    Ta có:

    \frac{\pi}{2} < \alpha < \pi
ightarrow 0 < - \frac{\pi}{2} + \alpha <
\frac{\pi}{2}

    \Rightarrow \cos\left( - \frac{\pi}{2} +
\alpha ight) > 0

    \frac{\pi}{2} < \alpha < \pi
ightarrow 0 < \pi - \alpha < \frac{\pi}{2}

    \Rightarrow \tan(\pi - \alpha) >
0

    => M = \cos\left( - \frac{\pi}{2} +
\alpha ight).tan(\pi - \alpha) > 0

  • Câu 13: Nhận biết

    Với x thuộc (0;1), hỏi phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} có bao nhiêu nghiệm?

     Phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} \Leftrightarrow \cos \left( {6\pi x} ight) =  \pm \frac{{\sqrt 3 }}{2}

    - Với \cos 6\pi x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{\pi }{6} \Leftrightarrow 6\pi x =  \pm \,\frac{\pi }{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{{35}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{1}{{12}} < k < \frac{{37}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \to có 6 nghiệm.

    - Với \cos 6\pi x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{{5\pi }}{6} \Leftrightarrow 6\pi x =  \pm \,\frac{{5\pi }}{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{5}{{12}} < k < \frac{{31}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{5}{{12}} < k < \frac{{41}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \tocó 6 nghiệm.

    Vậy phương trình đã cho có 12 nghiệm.

  • Câu 14: Thông hiểu

    Góc có số đo \frac{2.\pi}{5}đổi sang độ là:

    Cách 1: \frac{2.\pi}{5}
ightarrow \frac{2.180^{0}}{5} = 72^{0}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 3 chuyển về chế độ "độ".

    Bước 2: Bấm \frac{2.\pi}{5} SHIFT Ans 2 =

  • Câu 15: Thông hiểu

    Nghiệm của phương trình \sqrt 3 \tan x =  - 3 là:

     Giải phương trình ta có:

    \begin{matrix}  \sqrt 3 \tan x =  - 3 \Rightarrow \tan x =  - \sqrt 3  \hfill \\   \Rightarrow x =  - \dfrac{\pi }{3} + k\pi ,\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy phương trình có nghiệm x =  - \frac{{\pi }}{3} + k\pi

  • Câu 16: Thông hiểu

    Giải phương trình 2\cos x = - 1 được nghiệm là:

    Ta có

    2cosx = - 1 \Leftrightarrow \cos x = -
\frac{1}{2}

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi,\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm là x =
\pm \frac{2\pi}{3} + k2\pi,k\mathbb{\in Z}

  • Câu 17: Nhận biết

    Điều kiện xác định của hàm số y = f\left( x ight) = \frac{{2\cos x - 1}}{{\sin x}}

     Điều kiện xác định của hàm số:

    \begin{matrix}  \sin x e 0 \hfill \\   \Leftrightarrow x e k\pi ,k \in \mathbb{Z} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Cho vòng tròn lượng giác được kí hiệu như sau:

    Điểm nào biểu diễn nghiệm của phương trình 2sinx - 1 = 0?

    Ta có:

    2sinx - 1 = 0 \Leftrightarrow \sin x =
\frac{1}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.

  • Câu 19: Vận dụng

    Phương trình \sin 2x = \frac{1}{2} có bao nhiêu nghiệm trên khoảng \left( {0;\frac{{15\pi }}{2}} ight)?

     Ta có: \sin 2x = \frac{1}{2} \Leftrightarrow \sin 2x = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  2x = \frac{\pi }{6} + k2\pi  \hfill \\  2x = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{12}} + k\pi  \hfill \\  x = \frac{{5\pi }}{{12}} + k\pi  \hfill \\ \end{gathered}  ight.    \left( {k \in \mathbb{Z}} ight)

    * Trường hợp 1: x = \frac{\pi }{{12}} + k\pi, \left( {k \in \mathbb{Z}} ight)

    0 < x < \frac{{15\pi }}{2} \Leftrightarrow 0 < \frac{\pi }{{12}} + k\pi  < \frac{{15\pi }}{2}

    \Leftrightarrow  - \frac{1}{{12}} < k < \frac{{89}}{{12}}\mathop  \Rightarrow \limits^{k \in \mathbb{Z}} k = \left\{ {0;1;2;3;4;5;6;7} ight\}.

    Vậy có tất cả 8 giá trị k tương ứng với trường hợp 1 có 8 nghiệm là:

    x = \frac{\pi }{{12}}; x = \frac{13\pi }{{12}}; x = \frac{25\pi }{{12}}; x = \frac{37\pi }{{12}}; x = \frac{49\pi }{{12}}; x = \frac{61\pi }{{12}}; x = \frac{73\pi }{{12}}; x = \frac{85\pi }{{12}}.

    * Trường hợp 2:  x = \frac{5\pi }{{12}} + k\pi, \left( {k \in \mathbb{Z}} ight) 

    0 < x < \frac{{15\pi }}{2} \Leftrightarrow 0 < \frac{{5\pi }}{{12}} + k\pi  < \frac{{15\pi }}{2}

    \Leftrightarrow  - \frac{5}{{12}} < k < \frac{{85}}{{12}}\mathop  \Rightarrow \limits^{k \in \mathbb{Z}} k = \left\{ {0;1;2;3;4;5;6;7} ight\}.

    Vậy có tất cả 8 giá trị k tương ứng với trường hợp 2 có 8 nghiệm là:

    x = \frac{5\pi }{{12}}; x = \frac{17\pi }{{12}}; x = \frac{29\pi }{{12}}; x = \frac{41\pi }{{12}}; x = \frac{53\pi }{{12}}; x = \frac{65\pi }{{12}}; x = \frac{77\pi }{{12}}; x = \frac{89\pi }{{12}}.

    Vậy trên khoảng \left( {0;\frac{{15\pi }}{2}} ight) phương trình đã cho có tất cả là 16 nghiệm.

  • Câu 20: Vận dụng

    Cho hàm số y =f(x) = \cos2x - 4\cos x + 4. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)?

    Ta có:

    y =f(x) = \cos2x - 4\cos x + 4

    = 2\cos^{2}x - 4\cos x + 3

    Đặt \cos x = t,t \in \lbrack -
1;1brack. Xét hàm số f(t) =
2t^{2} - 4t + 3 trên đoạn \lbrack -
1;1brack

    Ta có bảng biến thiên

    Từ bảng biến thiên ta có: \left\{
\begin{matrix}
\max y = \max\underset{t \in \lbrack - 1;1brack}{f(t)} = 9 \\
\min y = \min\underset{t \in \lbrack - 1;1brack}{f(t)} = 1 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 361 lượt xem
Sắp xếp theo