Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Tìm tất cả các giá trị của tham số m để phương trình
vô nghiệm.
TH1. Với m = 2, phương trình : vô lý.
Suy ra m=2 thì phương trình đã cho vô nghiệm.
TH2. Với , phương trình
Để phương trình vô nghiệm
Kết hợp hai trường hợp, ta được là giá trị cần tìm.
Trên đường tròn lượng giác có điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo
. Gọi N là điểm đối xứng với M qua trục Ox, số đo cung lượng giác AN bằng:
Vì số đo cung AM bằng
=>
N là điểm đối xứng với M qua trục Ox =>
=> Số đo cung AN bằng
=> Số đo cung lượng giác AN có số đo là:
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Phương trình
có nghiệm là
Giải phương trình:
Số nghiệm của phương trình
trên khoảng
là?
Phương trình
Với
Với
Vậy có 4 nghiệm thỏa mãn.
Tìm tập xác định
của hàm số
?
Hàm số xác định khi:
Vậy
Tập nghiệm của phương trình
là:
Ta có:
Phương án nào sau đây sai với mọi
?
Ta có:
Vậy đáp án sai là:
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm (shift -3π ÷16) shift DRG 2 =
Phương trình
có nghiệm là:
Cho các hàm số
. Trong các hàm số trên, có bao nhiêu hàm số lẻ?
Ta có:
là hàm số chẵn vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
Mệnh đề nào sau đây là sai?
Hàm số tuần hoàn với chu kì
Tính giá trị của ![]()
Ta có:
Rút gọn biểu thức ![]()
Ta có:
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Ta có
Nhận thấy với nghiệm .
Tập xác định của hàm số: ![]()
Ta có:
Giá trị lớn nhất của hàm số
tại điểm là nghiệm của phương trình nào dưới đây?
Theo bài ra ta có:
Phương trình (*) có nghiệm
Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó
Thu gọn biểu thức
thu được kết quả là:
Áp dụng công thức về cung liên kết ta có:
Suy ra: