Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Hàm số y = \sin 2x nghịch biến trên khoảng nào sau đây?

     Hàm số y = \sin 2x tuần hoàn với chu kì T = \frac{{2\pi }}{2} = \pi

    Do hàm số y=\sin x nghịch biến trên \left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } ight)

    => Hàm số y = \sin{2x} nghịch biến khi 

    \begin{matrix}  \dfrac{\pi }{2} + k2\pi  < 2x < \dfrac{{3\pi }}{2} + k2\pi  \hfill \\   \Rightarrow \dfrac{\pi }{4} + k\pi  < x < \dfrac{{3\pi }}{4} + k\pi  \hfill \\ \end{matrix}

    Vậy đáp án đúng là \left( {\frac{\pi }{2};\pi } ight)

  • Câu 2: Nhận biết

    Đồ thị hàm số y = \cos x - \frac{\pi }{4} đi qua điểm nào sau đây?

     Thay giá trị x =  - \frac{\pi }{2};y = \frac{\pi }{4} vào hàm số ta có:

    \cos \left( { - \frac{\pi }{2}} ight) - \frac{\pi }{4} =- \frac{\pi }{4}

    Vậy điểm thuộc đồ thị hàm số là: y = \cos x - \frac{\pi }{4}

  • Câu 3: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{1}{{\sqrt {1 - \sin \,x} }}.

    Hàm số xác định khi và chỉ khi 

    1 - \sin x > 0 \Leftrightarrow \sin x < 1 \,\,(*)

    - 1 \leqslant \sin x \leqslant 1 nên \left( * ight) \Leftrightarrow \sin x e 1 \Leftrightarrow x e \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} ight\}

  • Câu 4: Nhận biết

    Nghiệm của phương trình tan (2x) -1 = 0 là?

     Ta có: \tan 2x - 1 = 0 \Leftrightarrow \tan 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{4} + k\pi  \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{2}.

  • Câu 5: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 6: Vận dụng

    Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử một người nào đó có nhịp tim là 70lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số P(t) = 100 + 20\sin\left( \frac{7\pi}{3}tight)ở đó P(t)là huyết áp tính theo đơn vị mmHg( milimét thuỷ ngân) và thời gian ttính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120 mmHg?

    Đáp án: 1

    Đáp án là:

    Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử một người nào đó có nhịp tim là 70lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số P(t) = 100 + 20\sin\left( \frac{7\pi}{3}tight)ở đó P(t)là huyết áp tính theo đơn vị mmHg( milimét thuỷ ngân) và thời gian ttính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120 mmHg?

    Đáp án: 1

    Huyết áp là 120 mmHgkhi

    P(t) = 120 \Leftrightarrow 100 +20sin\left( \frac{7\pi}{3}t ight) = 120

    \Leftrightarrow \sin\left(
\frac{7\pi}{3}t ight) = 1

    \Leftrightarrow \frac{7\pi}{3}t =\frac{\pi}{2} + k2\pi

    \Leftrightarrow t = \frac{3}{14} +
\frac{6k}{7}\left( k\mathbb{\in Z} ight)

    Xét 0 < t < 1

    \Leftrightarrow 0 < \frac{3}{14} +
\frac{6k}{7} < 1\Leftrightarrow  - \frac{1}{4} < k < \frac{{11}}{{12}} \Leftrightarrow k = 0

     k\mathbb{\in Z}.

    Vậy trong khoảng từ 0 đến 1 giây, có 1 lần huyết áp là 120 mmHg.

  • Câu 7: Nhận biết

    Nghiệm của phương trình \cos x = \cos 3x là

     \begin{matrix}  \cos x = \cos 3x \hfill \\   \Leftrightarrow \cos 3x = \cos x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = x + k2\pi } \\   {3x =  - x + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x = \dfrac{{k\pi }}{2}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Xác định chu kì T của hàm số y = \tan3x +\cot x

    Hàm số y = \tan3x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = \cot x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \tan3x + \cot x tuần hoàn với chu kì T = \pi

  • Câu 9: Thông hiểu

    Giải phương trình \cos\left( 2x -
\frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}?

    Ta có:

    PT\Leftrightarrow \cos\left( 2x -
\frac{\pi}{3} ight) = \cos\frac{5\pi}{6}

    \Leftrightarrow \left\{ \begin{matrix}
2x - \frac{\pi}{3} = \frac{5\pi}{6} + k2\pi \\
2x - \frac{\pi}{3} = - \frac{5\pi}{6} + k2\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \frac{7\pi}{12} + k\pi \\
x = - \frac{\pi}{4} + k\pi \\
\end{matrix} ight.\ \ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \frac{7\pi}{12} + k\pi \\
x = - \frac{\pi}{4} + k\pi \\
\end{matrix} ight.\ \ \left( k\mathbb{\in Z} ight)

  • Câu 10: Nhận biết

    Trên đường tròn cung có số đo 1 rad là?

    Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.

  • Câu 11: Thông hiểu

    Giải phương trình \cot(3x - 1) = - \sqrt{3}

    Ta có:

    \cot(3x - 1) = - \sqrt{3}

    \Leftrightarrow \cot(3x - 1) =
\cot\left( - \frac{\pi}{6} ight)

    \Leftrightarrow 3x - 1 = - \frac{\pi}{6}
+ k\pi

    \Rightarrow x = \frac{1}{3} -
\frac{\pi}{18} + k\frac{\pi}{3}

    \underset{k = 1}{ightarrow}x =
\frac{1}{3} + \frac{5\pi}{18} + k\frac{\pi}{3}

  • Câu 12: Thông hiểu

    Tập giá trị của hàm số y = {\sin ^2}x - \sin x - 1 là:

     Ta có: y = {\sin ^2}x + \sin x + 1 = {\left( {\sin x - \frac{1}{2}} ight)^2} - \frac{5}{4}

    \sin x \in \left[ { - 1;1} ight]

    => - \frac{5}{4} \leqslant {\left( {\sin x - \frac{1}{2}} ight)^2} - \frac{5}{4} \leqslant 1

  • Câu 13: Nhận biết

    Mệnh đề nào sau đây đúng?

    Ta có:

    \sin150^{0} = \sin30^{0}

    \Rightarrow \sin60^{0} >\sin150^{0}

    \cos30^{0} > \cos60^{0}

    \cot60^{0} =\cot240^{0}

    Vậy \tan45^{0} < \tan60^{0} đúng.

  • Câu 14: Thông hiểu

    Số nghiệm của phương trình \sin 2x + \sqrt 3 \cos 2x = \sqrt 3 trên khoảng \left( {0;\frac{\pi }{2}} ight) là?

     Phương trình \Leftrightarrow \frac{1}{2}\sin 2x + \frac{{\sqrt 3 }}{2}\cos 2x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} ight) = \frac{{\sqrt 3 }}{2}\Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} ight) = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{gathered}  2x + \frac{\pi }{3} = \frac{\pi }{3} + k2\pi  \hfill \\  2x + \frac{\pi }{3} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{\pi }{6} + k\pi  \hfill \\ \end{gathered}  ight.,{\text{ }}k \in \mathbb{Z}.

    - Với 0 < k\pi  < \frac{\pi }{2} \Leftrightarrow 0 < k < \frac{1}{2}\xrightarrow{{k \in \mathbb{Z}}} không có giá trị thỏa mãn.

    - Với 0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2} \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

  • Câu 15: Vận dụng

    Một đồng hồ treo tường, kim giờ dài 10,57cm và kim phút dài 13,34cm. Trong 30 phút mũi kim giờ vạch lên cung tròn có độ dài là

    Ta có: 6 giờ thì kim giờ vạch lên 1 cung có số đo

    => 30 phút kim giờ vạch lên 1 cung có số đo là \frac{\pi}{12}

    => Độ dài cung tròn mà nó vạch lên là l = R.\alpha = 10,57.\frac{3,14}{12} \approx
2,77(cm)

  • Câu 16: Nhận biết

    Phương án nào sau đây sai với mọi k\in\mathbb{ Z}?

    Ta có:

    \sin x = 0 \Leftrightarrow x =
k\pi;\left( k\mathbb{\in Z} ight)

    Vậy đáp án sai là: \sin x = 0
\Leftrightarrow x = \frac{\pi}{2} + k\pi

  • Câu 17: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Tất các các hàm số đều có TXĐ: {\text{D}} = \mathbb{R}.

    Do đó \forall x \in {\text{D}} \Rightarrow  - x \in {\text{D}}{\text{.}}

    Bây giờ ta kiểm tra f\left( { - x} ight) = f\left( x ight) hoặc f\left( { - x} ight) =  - f\left( x ight).

     Với y = f\left( x ight) =  - \,\,\sin x. Ta có

    f\left( { - x} ight) =  - \,\,\sin \left( { - x} ight) = \sin x =  - \left( { - \sin x} ight)

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

    Suy ra hàm số là hàm số lẻ.

    Với y = f\left( x ight) = \cos x - \sin x. . Ta có

    f\left( { - x} ight) = \cos \left( { - x} ight) - \sin \left( { - x} ight) = \cos x + \sin x

    \Rightarrow f\left( { - x} ight) e \left\{ { - f\left( x ight),f\left( x ight)} ight\}

    Suy ra hàm số không chẵn không lẻ.

    Với y = f\left( x ight) = \cos x + {\sin ^2}x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight) + {\sin ^2}\left( { - \,x} ight)

    = \cos \left( { - \,x} ight) + {\left[ {\sin \left( { - \,x} ight)} ight]^2}

    = \cos x + {\left[ { - \sin x} ight]^2} = \cos x + {\sin ^2}x

    \Rightarrow f\left( { - x} ight) = f\left( x ight)

    Suy ra hàm số là hàm số chẵn.

    Với y = f\left( x ight) = \cos x\sin x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight).\sin \left( { - \,x} ight) =  - \cos x\sin x

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

     Suy ra hàm số là hàm số lẻ.

  • Câu 18: Nhận biết

    Đồ thị hàm số y=\cos x+1 đi qua điểm nào sau đây?

     Xét điểm (0; 2) => x = 0; y = 2

    Thay vào hàm số ta có:

    cos0 + 1 = 1 + 1 = 2 (thỏa mãn)

    Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)

  • Câu 19: Thông hiểu

    Tính độ dài của cung trên đường tròn có số đo 1,5 và bán kính bằng 20 cm.

    Ta có: l = R.\alpha = 1,5.20 =
30(cm)

  • Câu 20: Thông hiểu

    Cho 2\pi < a
< \frac{5\pi}{2} . Chọn khẳng định đúng.

    Đặt a = b + 2\pi

    2\pi < a < \frac{5\pi}{2}
\Leftrightarrow 2\pi < b + 2\pi < \frac{5\pi}{2} \Leftrightarrow 0
< b < \frac{\pi}{2}

    tana = tan(b + 2\pi) = tanb >
0

    cota = \frac{1}{tana} >
0.

    Vậy \tan a > 0,\cot a > 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 323 lượt xem
Sắp xếp theo