Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).
Ta có: , do đó đẳng thức
sai.
Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).
Ta có: , do đó đẳng thức
sai.
Cho góc
thỏa mãn
và
. Tính giá trị
.
Ta có:
Ta có:
Ta lại có:
Mà
Hàm số nào sau đây nhận giá trị âm nếu ![]()
Ta có:
Mà
=> mang giá trị âm
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Nhắc lại kiến thức cơ bản:
Hàm số là hàm số lẻ.
Hàm số là hàm số chẵn.
Hàm số là hàm số lẻ.
Hàm số là hàm số lẻ.
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Số nghiệm của phương trình
trên khoảng
là?
Phương trình
Với
Với
Vậy có 4 nghiệm thỏa mãn.
Đồ thị hàm số
được suy ra từ đồ thị C của hàm số y = cosx + 1 bằng cách:
Ta có:
Tịnh tiến đồ thị y = cosx + 1 sang phải ta được đồ thị hàm số
Tiếp theo tịnh tiến đồ thị xuống dưới một đơn vị ta được đồ thị hàm số
VD
0
Tìm chu kì T của hàm số lượng giác ![]()
Hàm số y = cos3x tuần hoàn với chu kì
Hàm số y = cos5x tuần hoàn với chu kì
=> Hàm số tuần hoàn với chu kì là
Giải phương trình
được nghiệm là:
Ta có
Vậy phương trình đã cho có nghiệm là
Nghiệm của phương trình
là:
Ta có
Đổi số đo của góc
sang đơn vị radian:
Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Ta có: khi đó:
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Mà
.
Do đó . Vậy
.
Đồ thị hàm số
đi qua điểm nào sau đây?
Thay giá trị vào hàm số ta có:
Vậy điểm thuộc đồ thị hàm số là:
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Tính
biết
và
.
Ta có
.
Mà nên
.
Vậy .
Chọn đẳng thức đúng.
Ta có:
Ta lại có:
Điểm cuối của góc lượng giác a ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của góc lượng giác a ở góc phần tư thứ I hoặc thứ III thì cùng dấu
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Với giá trị nào của m thì phương trình
có nghiệm:
Ta có:
Do
Vậy
Tập nghiệm của phương trình
là?
Ta có: