Mệnh đề nào sau đây đúng?
Ta có:
Vậy đúng.
Mệnh đề nào sau đây đúng?
Ta có:
Vậy đúng.
Cho phương trình lượng giác ![]()
a) Phương trình có nghiệm
Sai||Đúng
b) Phương trình có nghiệm âm lớn nhất bằng
Đúng||Sai
c) Trên khoảng
phương trình đã cho có 3 nghiệm Sai||Đúng
d) Tổng các nghiệm của phương trình trong khoảng
bằng
Đúng||Sai
Cho phương trình lượng giác
a) Phương trình có nghiệm Sai||Đúng
b) Phương trình có nghiệm âm lớn nhất bằng Đúng||Sai
c) Trên khoảng phương trình đã cho có 3 nghiệm Sai||Đúng
d) Tổng các nghiệm của phương trình trong khoảng bằng
Đúng||Sai
Ta có:
Vì nên
.
Kết luận:
|
a) Sai |
b) Đúng |
c) Sai |
d) Đúng |
Hàm số nào sau đây nhận giá trị âm nếu ![]()
Ta có:
Mà
=> mang giá trị âm
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với
. Đúng||Sai
b) Trên khoảng
phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng
thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng
của phương trình bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với . Đúng||Sai
b) Trên khoảng phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng của phương trình bằng
. Đúng||Sai
Phương trình
.
Do nên phương trình có các nghiệm là:
.
Vậy tổng các nghiệm cần tính là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Tìm tất cả các giá trị của tham số m để phương trình
vô nghiệm.
TH1. Với m = 2, phương trình : vô lý.
Suy ra m=2 thì phương trình đã cho vô nghiệm.
TH2. Với , phương trình
Để phương trình vô nghiệm
Kết hợp hai trường hợp, ta được là giá trị cần tìm.
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Cho hàm số
. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Tập xác định D của hàm số
là:
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Tìm tập xác định
của hàm số
?
Hàm số xác định khi:
Vậy
Tập nghiệm của phương trình
là?
Ta có: .
Phương trình
có hai họ nghiệm có dạng
và
,
. Khi đó, tính
?
Ta có .
.
Cho tam giác
có các góc
thỏa mãn biểu thức
. Biết rằng
với
. Tính giá trị biểu thức
?
Ta có:
Dấy “=” xảy ra khi
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm -5 shift DRG 2 =
Góc có số đo
đổi sang độ là:
Cách 1:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 3 chuyển về chế độ "độ".
Bước 2: Bấm SHIFT Ans 2 =
Phương trình lượng giác
có nghiệm là:
Ta có
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi
Vậy tập xác định
Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Đổi số đo của góc
sang đơn vị radian với độ chính xác đến hàng phần trăm.
Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Ta có: khi đó: