Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Giải phương trình ![]()
Ta có:
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
lần lượt là:
Ta có:
Tập xác định D của hàm số
là:
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Giá trị của
là:
Ta có:
Phương trình lượng giác
có nghiệm là:
Vậy nghiệm phương trình là:
Cho
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây:
Ta có thuộc góc phần tư thứ nhất của đường tròn lượng giác
=>
Giá trị nào sau đây của x thỏa mãn
?
Ta có:
Trong các hàm số sau hàm số nào là hàm số lẻ?
Xét hàm số y = sinx:
Lấy ta có:
Vậy hàm số y = sinx là hàm số lẻ.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Mà nên
Vậy tập xác định
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Chi hai vế phương trình cho
, ta được
.
Giải phương trình: ![]()
Giải phương trình:
Cho góc lượng giác
thỏa mãn
và
. Tính ![]()
Ta có:
Từ hệ thức
Do nên
Thay vào biểu thức ta được:
Tính tổng ![]()
Ta có:
Nên
=>
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức
.
Ta có:
Ta lại có:
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Cho hai đồ thị hàm số
và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là
Đúng||Sai
c) Khi
thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi
thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Cho hai đồ thị hàm số và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số: Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là Đúng||Sai
c) Khi thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Vì .
Với với
.
Vậy toạ độ giao điểm của hai đồ thị hàm số là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |