Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Với x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight), mệnh đề nào sau đây đúng?

    Ta có: x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight) = \left( - \frac{\pi}{4} +
8\pi;\frac{\pi}{4} + 8\pi ight) thuộc góc phần tư thứ I và thứ II.

  • Câu 2: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 3: Nhận biết

    Mệnh đề nào sau đây đúng?

     Mệnh đề đúng là: \sin x = 0 \Rightarrow x = k\pi

  • Câu 4: Vận dụng

    Tập giá trị của hàm số y = \frac{\sin3x -2\cos3x + 10}{6\cos x\cos2x - 4\cos^{3}x + 3} có bao nhiêu số nguyên?

    Ta có:

    y = \frac{sin3x - 2cos3x +
10}{6cosxcos2x - 4cos^{3}x + 3}

    = \frac{sin3x - 2cos3x + 10}{3(cos3x +
\cos x) - (cos3x + 3cosx) + 3}

    = \frac{sin3x - 2cos3x + 10}{2cos3x +
3}

    \Leftrightarrow (2\cos3x + 3)y = \sin3x -2\cos3x + 10

    \Leftrightarrow (2y + 2)cos3x - sin3x =
10 - 3y

    Điều kiện có nghiệm của phương trình là:

    (2y + 2)^{2} + ( - 1)^{2} \geq (10 -
3y)^{2}

    \Leftrightarrow 4y^{2} + 8y + 4 + 1 \geq
100 - 60y + 9y^{2}

    \Leftrightarrow 5y^{2} - 68y + 95 \leq
0

    \Leftrightarrow \frac{34 -
\sqrt{681}}{5} \leq y \leq \frac{34 + \sqrt{681}}{5}.

    y\mathbb{\in Z} nên y = \{ 2;3;4;\ldots;12\}.

    Vậy tập giá trị của y có 11 số nguyên.

  • Câu 5: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên khoảng \left( - \frac{\pi}{3};\frac{\pi}{6}
ight)?

    Với x \in \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

    \begin{matrix}ightarrow 2x \in \left( - \dfrac{2\pi}{3};\dfrac{\pi}{3} ight) \hfill\\ightarrow 2x + \dfrac{\pi}{6} \in \left( - \dfrac{\pi}{2};\dfrac{\pi}{2}ight) \hfill\\\end{matrix}

    Thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin\left( 2x + \frac{\pi}{6} ight) đồng biến trên khoảng \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

  • Câu 6: Thông hiểu

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    a) Sai

    TXĐ: D\mathbb{= R}. Do đó \forall x \in D \Rightarrow - x \in
D.

    Ta có \forall x \in D:g( - x) = \sin( -
x) = - \sin(x) = - g(x) \Rightarrow g(x) là hàm số lẻ.

    b) Đúng

    Phương trình \sin x = \cos x trong khoảng (0 ; 2\pi) có hai nghiệm x = \frac{\pi}{4}x = \frac{5\pi}{4}

    c) Sai

    Ta có: y = \sin x + \cos x =
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) , mà \forall x: - 1 \leq \sin\left( x + \frac{\pi}{4}
ight) \leq 1

    \Leftrightarrow - \sqrt{2} \leq
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) \leq \sqrt{2}.

    Vậy giá trị lớn nhất của hàm số y = \sin
x + \cos x bằng \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) =
1.

    d) Đúng

    Giá trị nhỏ nhất của hàm số y = \sin x +
\cos x bằng - \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) = -
1

    \Leftrightarrow x + \frac{\pi}{4} = -\frac{\pi}{2} + k2\pi\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight).

  • Câu 7: Vận dụng

    Cho ba góc nhọn thỏa mãn \tan\widehat{A} = \frac{1}{2};\tan\widehat{B} =\frac{1}{5};\tan\widehat{C} = \frac{1}{8}. Tính tổng số đo ba góc nhọn.

    Ta có:

    \tan\left( \widehat{A} + \widehat{B}ight) = \dfrac{\tan\widehat{A} + \tan\widehat{B}}{1 -\tan\widehat{A}.tan\widehat{B}} = \dfrac{\dfrac{1}{2} + \dfrac{1}{5}}{1 -\dfrac{1}{2}.\dfrac{1}{5}} = \dfrac{7}{9}

    \Rightarrow \tan\left( \widehat{A} +\widehat{B} + \widehat{C} ight) = \frac{\tan\left( \widehat{A} +\widehat{B} ight) + \tan\widehat{C}}{1 - \tan\left( \widehat{A} +\widehat{B} ight).\tan\widehat{C}} = \dfrac{\dfrac{7}{9} + \dfrac{1}{8}}{1- \dfrac{7}{9}.\dfrac{1}{8}} = 1

    \Rightarrow \widehat{A} + \widehat{B} +
\widehat{C} = 45^{0}

  • Câu 8: Nhận biết

    Giá trị của \sin\left( - \frac{25\pi}{4} ight) là:

    Ta có:

    \sin\left( - \frac{25\pi}{4} ight) =
\sin\left( - \frac{\pi}{4} - 6\pi ight) = \sin\left( - \frac{\pi}{4}
ight) = - \frac{\sqrt{2}}{2}

  • Câu 9: Nhận biết

    Tập xác định D của hàm số y =
\frac{1}{\sin x - \cos x} là:

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin x - \cos x eq 0 \hfill \\\Rightarrow \tan x eq 1 \hfill \\\Rightarrow x eq \dfrac{\pi}{4} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ \frac{\pi}{4} + k\pi,k\mathbb{\in Z}ight\}

  • Câu 10: Thông hiểu

    Phương trình \sin x =  - \frac{1}{2} có nghiệm thỏa mãn x nằm trong khoảng \left( {\pi ;\frac{{3\pi }}{2}} ight) là:

     Giải phương trình:

    \begin{matrix}  \sin x =  - \dfrac{1}{2} \Leftrightarrow \sin x = \sin \left( {\dfrac{{ - \pi }}{6}} ight) \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \pi  + \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \dfrac{{7\pi }}{6} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Do x \in \left( {\pi ;\frac{{3\pi }}{2}} ight) => {x = \frac{{7\pi }}{6} + k2\pi } thỏa mãn

  • Câu 11: Nhận biết

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \left[ { - 2023;\,\,\,2023} ight] để phương trình m\cos x + 1 = 0 có nghiệm?

    Ta có m\cos x + 1 = 0 \Leftrightarrow \cos x =  - \frac{1}{m}

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant  - \frac{1}{m} \leqslant 1

    \Leftrightarrow m \geqslant 1\xrightarrow[{m \in \left[ { - 2023;\,2023} ight]}]{{m \in \mathbb{Z}}}m \in \left\{ {1;2;3;...;2023} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của tham số m.

  • Câu 12: Nhận biết

    Giải phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0?

     Phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0 \Leftrightarrow \frac{{2x}}{3} - \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} = \frac{\pi }{3} + k\pi  \Leftrightarrow x = \frac{\pi }{2} + \frac{{k3\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight).

  • Câu 13: Thông hiểu

    Phương trình nào sau đây vô nghiệm?

     + Phương trình \sin x +3=0 \Leftrightarrow \sin x = -3

    Vậy phương trình \sin x +3=0 vô nghiệm.

    + Phương trình 2{\cos ^2}x - \cos x - 1 = 0 \Leftrightarrow \left[ \begin{gathered}  \cos x = 1 \hfill \\  \cos x =  - \frac{1}{2} \hfill \\ \end{gathered}  ight.

    Vậy phương trình 2{\cos ^2}x - \cos x - 1 = 0 có nghiệm.

    + Phương trình \tan x +3=0 \Leftrightarrow \tan x =-3

    \Leftrightarrow x = \arctan \left( { - 3} ight) + k\pi

    Vậy phương trình \tan x +3=0 có nghiệm.

    + Phương trình 3 \sin x -2=0 \Leftrightarrow \sin x = \frac {2}{3}-1 < \frac 2 3 < 1 nên phương trình 3 \sin x -2=0 có nghiệm.

  • Câu 14: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ?

    Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.

  • Câu 15: Thông hiểu

    Tìm tất cả các giá trị m để phương trình \sin{2x}.cos2x + m - 1 = 0 có nghiệm?

    Ta có:

    \sin{2x}.cos2x + m - 1 = 0

    \Leftrightarrow \frac{1}{2}sin4x + m - 1
\Leftrightarrow sin4x = 2 - 2m\ (*)

    Phương trình (*) có nghiêm \Leftrightarrow - 1 \leq 2 - 2m \leq 1
\Leftrightarrow \frac{1}{2} \leq m \leq \frac{3}{2}.

  • Câu 16: Nhận biết

    Tìm tất cả các giá trị của tham số m để phương trình \left( {m + 1} ight)\sin x + 2 - m = 0 có nghiệm?

     Phương trình \left( {m + 1} ight)\sin x + 2 - m = 0

    \Leftrightarrow \left( {m + 1} ight)\sin x = m - 2 \Leftrightarrow \sin x = \frac{{m - 2}}{{m + 1}}

    Để phương trình có nghiệm \Leftrightarrow  - \,1 \leqslant \frac{{m - 2}}{{m + 1}} \leqslant 1

    \Leftrightarrow \left\{ \begin{gathered}  0 \leqslant 1 + \frac{{m - 2}}{{m + 1}} \hfill \\  \frac{{m - 2}}{{m + 1}} - 1 \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  \frac{{2m - 1}}{{m + 1}} \geqslant 0 \hfill \\   - \frac{3}{{m + 1}} \leqslant 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  m \geqslant \frac{1}{2} \hfill \\  m <  - \,1 \hfill \\ \end{gathered}  ight. \hfill \\  m >  - \,1 \hfill \\ \end{gathered}  ight. \Leftrightarrow m \geqslant \frac{1}{2}

    là giá trị cần tìm.

  • Câu 17: Thông hiểu

    Cho góc \alpha thỏa mãn \sin2\alpha = - \frac{4}{5} và \frac{3\pi}{4} < \alpha < \pi. Tính giá trị của biểu thức P = \sin a -
\cos\alpha?

    Do \frac{3\pi}{4} < \alpha <
\pi => \left\{ \begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\end{matrix} ight.\  \Rightarrow P > 0

    Ta lại có:

    P^{2} = \left( \sin\alpha - \cos\alpha
ight)^{2}

    = 1 - 2\sin\alpha\cos\alpha

    = 1 - \sin2\alpha =\frac{9}{5}

    \Rightarrow P =
\frac{3}{\sqrt{5}}

  • Câu 18: Vận dụng

    Phương trình \cot x=\sqrt 3 có bao nhiêu nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight]?

     Ta có: \cot x=\sqrt 3

    \Leftrightarrow x = \frac{\pi }{6} + k\pi \,,\,k \in \mathbb{Z}, mà - 2022\pi  \leqslant x \leqslant 2022\pi.

    \Rightarrow  - 2022\pi  \leqslant \frac{\pi }{6} + k\pi  \leqslant 2022\pi

    \Leftrightarrow  - 2022 \leqslant \frac{1}{6} + k \leqslant 2022

    \Leftrightarrow  - 2022 - \frac{1}{6} \leqslant k \leqslant 2022 - \frac{1}{6}.

    Suy ra - 2022\pi  \leqslant x \leqslant 2022\pi, k \in Z.

    Vậy \cot x=\sqrt 3 có 4044 nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight].

  • Câu 19: Thông hiểu

    Hàm số y = \tan x + \cot x +
\frac{1}{\sin x} + \frac{1}{\cos x}không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi và chỉ khi:

    \begin{matrix}\left\{ \begin{matrix}\sin x eq 0 \hfill \\\cos x eq 0 \hfill \\\end{matrix} ight.\  \Rightarrow sin2x eq 0 \\\Rightarrow x eq \dfrac{k\pi}{2};k\mathbb{\in Z}\hfill \\\end{matrix}

    Chọn k = 3 => x eq
\frac{3\pi}{2}

    Nhưng điểm \frac{3\pi}{2} thuộc khoảng (\pi + k2\pi;2\pi +
k2\pi)

    Vậy hàm số không xác định trên (\pi +
k2\pi;2\pi + k2\pi);k\mathbb{\in Z}

  • Câu 20: Thông hiểu

    Chọn công thức đúng trong các công thức dưới đây.

    Công thức đúng là \sin a - \sin b =2\sin\frac{a + b}{2}.\cos\frac{a - b}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 361 lượt xem
Sắp xếp theo