Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình \sin x + 1 = 0 có nghiệm là:

    Ta có:

    \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm là x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 2: Nhận biết

    Giải phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0?

     Phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0 \Leftrightarrow \frac{{2x}}{3} - \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} = \frac{\pi }{3} + k\pi  \Leftrightarrow x = \frac{\pi }{2} + \frac{{k3\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight).

  • Câu 3: Vận dụng

    Tập giá trị của hàm số y = \frac{\sin3x -2\cos3x + 10}{6\cos x\cos2x - 4\cos^{3}x + 3} có bao nhiêu số nguyên?

    Ta có:

    y = \frac{sin3x - 2cos3x +
10}{6cosxcos2x - 4cos^{3}x + 3}

    = \frac{sin3x - 2cos3x + 10}{3(cos3x +
\cos x) - (cos3x + 3cosx) + 3}

    = \frac{sin3x - 2cos3x + 10}{2cos3x +
3}

    \Leftrightarrow (2\cos3x + 3)y = \sin3x -2\cos3x + 10

    \Leftrightarrow (2y + 2)cos3x - sin3x =
10 - 3y

    Điều kiện có nghiệm của phương trình là:

    (2y + 2)^{2} + ( - 1)^{2} \geq (10 -
3y)^{2}

    \Leftrightarrow 4y^{2} + 8y + 4 + 1 \geq
100 - 60y + 9y^{2}

    \Leftrightarrow 5y^{2} - 68y + 95 \leq
0

    \Leftrightarrow \frac{34 -
\sqrt{681}}{5} \leq y \leq \frac{34 + \sqrt{681}}{5}.

    y\mathbb{\in Z} nên y = \{ 2;3;4;\ldots;12\}.

    Vậy tập giá trị của y có 11 số nguyên.

  • Câu 4: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0) thì P = cos^{2}(\alpha + \beta) + p\sin(\alpha +
\beta).cos(\alpha + \beta) + qsin^{2}(\alpha + \beta) bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0)nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}
\tan\alpha + \tan\beta = p \\
\tan\alpha.tan\beta = q \\
\end{matrix} ight.

    \Rightarrow \tan(\alpha + \beta) =
\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha.tan\beta} = \frac{p}{1 -
q}

    Khi đó:

    P = \cos^{2}(\alpha + \beta) +p\sin(\alpha + \beta).\cos(\alpha + \beta) + q\sin^{2}(\alpha +\beta)

    P = \cos^{2}(\alpha + \beta).\left\lbrack1 + p\tan(\alpha + \beta) + q\tan^{2}(\alpha + \beta)ightbrack

    P = \frac{1 + p\tan(\alpha + \beta) +q\tan^{2}(\alpha + \beta)}{1 + \tan^{2}(\alpha + \beta)}

    P = \dfrac{1 + p.\dfrac{p}{1 - q} +q.\left( \dfrac{p}{1 - q} ight)^{2}}{1 + \left( \dfrac{p}{1 - q}ight)^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2}(1 - q) +q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2} - p^{2}.q+ q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = 1

  • Câu 5: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 6: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{1}{{\sqrt {1 - \sin \,x} }}.

    Hàm số xác định khi và chỉ khi 

    1 - \sin x > 0 \Leftrightarrow \sin x < 1 \,\,(*)

    - 1 \leqslant \sin x \leqslant 1 nên \left( * ight) \Leftrightarrow \sin x e 1 \Leftrightarrow x e \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} ight\}

  • Câu 7: Thông hiểu

    Hàm số y = \sin \frac{x}{5} có chu kì bằng bao nhiêu?

     Chu kì của hàm số y = \sin \frac{x}{5} là: T = \dfrac{{2\pi }}{{\left| {\dfrac{1}{5}} ight|}} = 10\pi

  • Câu 8: Thông hiểu

    Nếu \cos(a + b) =
0 thì khẳng định nào sau đây đúng?

    Ta có:

    \cos(a + b) = 0

    \Leftrightarrow a + b = \frac{\pi}{2} +
k\pi

    \Leftrightarrow a = - b + \frac{\pi}{2}
+ k\pi

    \Rightarrow \left| \sin(a + 2b) ight|
= \left| \sin\left( - b + 2b + \frac{\pi}{2} + k\pi ight) ight| =
\left| \cos(b + k\pi) ight| = \left| \cos b ight|

  • Câu 9: Thông hiểu

    Giải phương trình \cos\left( 2x -
\frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}?

    Ta có:

    PT\Leftrightarrow \cos\left( 2x -
\frac{\pi}{3} ight) = \cos\frac{5\pi}{6}

    \Leftrightarrow \left\{ \begin{matrix}
2x - \frac{\pi}{3} = \frac{5\pi}{6} + k2\pi \\
2x - \frac{\pi}{3} = - \frac{5\pi}{6} + k2\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \frac{7\pi}{12} + k\pi \\
x = - \frac{\pi}{4} + k\pi \\
\end{matrix} ight.\ \ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \frac{7\pi}{12} + k\pi \\
x = - \frac{\pi}{4} + k\pi \\
\end{matrix} ight.\ \ \left( k\mathbb{\in Z} ight)

  • Câu 10: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Nhắc lại kiến thức cơ bản:

    Hàm số y = \sin x là hàm số lẻ.

    Hàm số y = \cos x là hàm số chẵn.

    Hàm số y = \tan x là hàm số lẻ.

    Hàm số y = \cot x là hàm số lẻ.

  • Câu 11: Nhận biết

    Với \pi < x< \frac{3\pi}{2} mệnh đề nào sau đây sai?

    Ta có: \pi < x <\frac{3\pi}{2}

    => \left\{ {\begin{array}{*{20}{c}}  {\sin  < 0} \\   {\tan a > 0} \\   {\cos a < 0} \\   {\cot a > 0} \end{array}} ight.

  • Câu 12: Nhận biết

    Tính giá trị biểu thức A =\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}

    \sin10^{0} eq 0 nên ta có:

    A =\frac{16\sin10^{0}.\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{8\sin20^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{4\sin40^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{2\sin80^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{\sin160^{0}}{16\sin10^{0}}

    A = \frac{\sin20^{0}}{16\sin10^{0}} =\frac{2.\sin10^{0}.\cos10^{0}}{16\sin10^{0}} =\frac{1}{8}.\cos10^{0}

  • Câu 13: Nhận biết

    Đồ thị hàm số y = \cos x - \frac{\pi }{4} đi qua điểm nào sau đây?

     Thay giá trị x =  - \frac{\pi }{2};y = \frac{\pi }{4} vào hàm số ta có:

    \cos \left( { - \frac{\pi }{2}} ight) - \frac{\pi }{4} =- \frac{\pi }{4}

    Vậy điểm thuộc đồ thị hàm số là: y = \cos x - \frac{\pi }{4}

  • Câu 14: Nhận biết

    Trong các hàm sau hàm nào là hàm số chẵn?

    Xét hàm số y = -cosx

    Lấy x \in D \Rightarrow  - x \in D ta có:

    - \cos \left( { - x} ight) =  - \cos x \Rightarrow f\left( { - x} ight) = f\left( x ight)

    => Hàm số y = -cosx là hàm số chẵn.

  • Câu 15: Vận dụng

    Số nghiệm thuộc đoạn \left[ {0;15\pi } ight] của phương trình: \tan x - 1 = 0

    Điều kiện xác định x e \dfrac{\pi}{2}+k\pi,(k \in \mathbb{Z})

    \begin{matrix}  \tan x - 1 = 0 \Rightarrow \tan x = 1 \hfill \\   \Rightarrow x = \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\  x \in \left[ {0;15\pi } ight];k \in \mathbb{Z} \Rightarrow 0 \leqslant \dfrac{\pi }{4} + k\pi  \leqslant 15\pi  \hfill \\   \Rightarrow k \in \left\{ {0;1;...;14} ight\} \hfill \\ \end{matrix}

    Vậy có tất cả 15 nghiệm.

  • Câu 16: Thông hiểu

    Cho đồ thị hàm số lượng giác như hình vẽ:

    Đường thẳng y = \frac{1}{2} cắt đồ thị hàm số y = 2sin^{2}x tại 4 điểm A, B, C, D như hình vẽ. Giá trị của x_{B} + x_{D}\frac{a}{b}\pi. Biết \frac{a}{b} là phân số tối giản. Giá trị của 2a + b là:

    Đáp án: 19

    Đáp án là:

    Cho đồ thị hàm số lượng giác như hình vẽ:

    Đường thẳng y = \frac{1}{2} cắt đồ thị hàm số y = 2sin^{2}x tại 4 điểm A, B, C, D như hình vẽ. Giá trị của x_{B} + x_{D}\frac{a}{b}\pi. Biết \frac{a}{b} là phân số tối giản. Giá trị của 2a + b là:

    Đáp án: 19

    Phương trình hoành độ giao điểm là:

    2\sin^{2}x = \frac{1}{2} \Leftrightarrow1 - \cos2x = \frac{1}{2} \Leftrightarrow \cos2x = \frac{1}{2}

    \Leftrightarrow 2x = \pm \frac{\pi}{3} +
k2\pi \Leftrightarrow x = \pm \frac{\pi}{6} + k\pi

    Ta thấy x_{A},x_{B},x_{C},x_{D} là bốn nghiệm dương nhỏ nhất của phương trình trên.

    Do đó: x_{A} = \frac{\pi}{6};x_{B} =
\frac{5\pi}{6};x_{C} = \frac{7\pi}{6};x_{D} = \frac{11\pi}{6}
\Rightarrow x_{B} + x_{D} = \frac{8}{3}\pi.

    Vậy 2a + b = 8.2 +3=1 9.

  • Câu 17: Thông hiểu

    Cho vòng tròn lượng giác được kí hiệu như sau:

    Điểm nào biểu diễn nghiệm của phương trình 2sinx - 1 = 0?

    Ta có:

    2sinx - 1 = 0 \Leftrightarrow \sin x =
\frac{1}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.

  • Câu 18: Thông hiểu

    Biến đổi thành tích biểu thức \frac{sin7\alpha - sin5\alpha}{sin7\alpha +
sin5\alpha} ta được

    Ta có \frac{sin7\alpha -
sin5\alpha}{sin7\alpha + sin5\alpha} = \frac{2cos6\alpha \cdot
sin\alpha}{2sin6\alpha \cdot cos\alpha} =
\cot{6\alpha}.tan\alpha

  • Câu 19: Thông hiểu

    Chu kì của hàm số y = \sin\left(
\frac{2}{5}x ight).cos\left( \frac{2}{5}x ight)k\pi. Giá trị của k là:

    Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Đáp án là:

    Chu kì của hàm số y = \sin\left(
\frac{2}{5}x ight).cos\left( \frac{2}{5}x ight)k\pi. Giá trị của k là:

    Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Ta có:

    y = \sin\left( \frac{2}{5}x
ight).cos\left( \frac{2}{5}x ight) = \frac{1}{2}\sin\left(
\frac{4}{5}x ight)

    Hàm số trên có chu kì là T =
\frac{2\pi}{|a|} = \frac{2\pi}{\frac{4}{5}} =
\frac{5\pi}{2}

    Vậy k = \frac{5}{2}.

  • Câu 20: Vận dụng

    Cho ba góc nhọn thỏa mãn \tan\widehat{A} = \frac{1}{2};\tan\widehat{B} =\frac{1}{5};\tan\widehat{C} = \frac{1}{8}. Tính tổng số đo ba góc nhọn.

    Ta có:

    \tan\left( \widehat{A} + \widehat{B}ight) = \dfrac{\tan\widehat{A} + \tan\widehat{B}}{1 -\tan\widehat{A}.tan\widehat{B}} = \dfrac{\dfrac{1}{2} + \dfrac{1}{5}}{1 -\dfrac{1}{2}.\dfrac{1}{5}} = \dfrac{7}{9}

    \Rightarrow \tan\left( \widehat{A} +\widehat{B} + \widehat{C} ight) = \frac{\tan\left( \widehat{A} +\widehat{B} ight) + \tan\widehat{C}}{1 - \tan\left( \widehat{A} +\widehat{B} ight).\tan\widehat{C}} = \dfrac{\dfrac{7}{9} + \dfrac{1}{8}}{1- \dfrac{7}{9}.\dfrac{1}{8}} = 1

    \Rightarrow \widehat{A} + \widehat{B} +
\widehat{C} = 45^{0}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 362 lượt xem
Sắp xếp theo