Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Khách hàng A gửi 60 triệu đồng vào ngân hàng với kì hạn 1 tháng với lãi suất của loại kì hạn này là 0,5\%. Ngân hàng đó quy định: “Khi kết thúc kỳ hạn gửi tiền mà người gửi không đến rút tiền thì toàn bộ số tiền (bao gồm cả vốn và lãi) sẽ được chuyển gửi tiếp với kỳ hạn như kỳ hạn mà người gửi đã gửi”. Hỏi nếu sau hai năm, kể từ ngày gửi người đó đến ngân hàng để rút tiền thì số tiền rút được (gồm cả vốn và lãi) là bao nhiêu?

    Với số nguyên dương n, kí hiệu u_{n} là số tiền người đó rút được (gồm cả vốn và lãi) sau n tháng kể từ ngày gửi. khi đó, theo giả thiết của bài toán ta có:

    u_{n} = u_{n - 1} + u_{n - 1}.0,005 =
u_{n - 1}.1,005;(\forall n \geq 2)

    Ta có: \left( u_{n} ight) là một cấp số nhân với số hạng đầu u_{1} =
6.10^{7} + 6.10^{7}.0,005 = 6.10^{7}.1,005 với công bội q = 1,005 nên u_{n} = 6.10^{7}.1,005.(1,005)^{n - 1} =
6.10^{7}.(1,005)^{n};(n \geq 1)

    Số tiền rút được sau 2 năm là:

    u_{24} = 6.10^{7}.1,005^{24} \approx
67629587(đồng)

  • Câu 2: Thông hiểu

    Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}u_{1} = 2 \\u_{6} = 486 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\u_{1}q^{5} = 486 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q^{5} = 243 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = 3 \\\end{matrix} ight.

  • Câu 3: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{2} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có \left\{ \begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{2} \\
u_{3} = u_{2} + 2^{2} \\
\cdots \\
u_{n} = u_{n - 1} + (n - 1)^{2} \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên, ta được

    u_{n} = 1 + 1^{2} + 2^{2} + \ldots + (n
- 1)^{2} = 1 + \frac{n(n - 1)(n - 2)}{6}

  • Câu 4: Thông hiểu

    Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho?

    Gọi năm số hạng của cấp số cộng đã cho là: u_{1}^{};u_{2}^{};u_{3}^{};u_{4}^{};u_{5}^{}.

    Theo đề bài ta có:

    u_{1} - u_{5} = 20

    \Leftrightarrow u_{1} - (u_{1} + 4d) =
20

    \Leftrightarrow d = - 5

    Vậy công sai của cấp số cộng đã cho là d
= - 5

  • Câu 5: Vận dụng

    Cho dãy số \left(
u_{n} ight) xác định bởi \left\{
\begin{matrix}
u_{1} = 6 \\
u_{n + 1} = \sqrt{6 + u_{n}};\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}
u_{1} = 6 \\
u_{n + 1} = \sqrt{6 + u_{n}} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 6 \\
u_{n + 1} \geq 0 \\
\end{matrix} ight.\  \Rightarrow u_{n} \geq 0

    \Rightarrow \left\{ \begin{matrix}
u_{1} = 6 \\
u_{n + 1} = \sqrt{6 + u_{n}} \geq \sqrt{6} \\
\end{matrix} ight.

    Ta chứng minh quy nạp u_{n} \leq
2\sqrt{3};u_{1} \leq 2\sqrt{3};u_{k} \leq 2\sqrt{3}

    u_{k + 1} = \sqrt{6 + u_{k + 1}} \leq
\sqrt{6 + 2\sqrt{3}} \leq \sqrt{6 + 6} = 2\sqrt{3}

    Cách khác:

    Ta có: u_{2} = \sqrt{12} > 3 >
\frac{5}{2} > 2 nên loại các đáp án \sqrt{6} \leq u_{n} < \frac{5}{2}; \sqrt{6} \leq u_{n} < 3; \sqrt{6} \leq u_{n} < 2

  • Câu 6: Vận dụng cao

    Tính tổng 3 + 33 + 333 + ... + 33...33 + ....

     Ta có:

    \begin{matrix}  S = 3\left( {1 + 11 + 111 + ... + 11...1} ight) \hfill \\  S = 3.\left( {\dfrac{{10 - 1}}{9} + \dfrac{{{{10}^2} - 1}}{9} + ... + \dfrac{{{{10}^n} - 1}}{9}} ight) \hfill \\  S = \dfrac{3}{9}.\left( {10 + {{10}^2} + ... + {{10}^n} - n} ight) \hfill \\  S = \dfrac{1}{3}.\left( {10.\dfrac{{{{10}^n} - 1}}{{10 - 1}} - n} ight) = \dfrac{1}{{27}}.\left( {{{10}^{n + 1}} - 10 - 9n} ight) \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Trong dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là dãy số tăng?

    2^{n};n là các dãy dương và tăng nên \frac{1}{2^{n}};\frac{1}{n} là các dãy giảm

    => Loại các đáp án u_{n} =\frac{1}{2^{n}};u_{n} = \frac{1}{n}

    Xét đáp án u_{n} = \frac{n + 5}{3n +1} ta có: \Rightarrow \left\{\begin{matrix}u_{1} = \dfrac{3}{2} \\u_{2} = \dfrac{7}{6} \\\end{matrix} ight.\  \Rightarrow u_{1} > u_{2}(L)

    => Dãy số u_{n} = \frac{n + 5}{3n +1} không phải dãy tăng.

    Xét đáp án u_{n} = \frac{2n - 1}{n + 1} =2 - \frac{3}{n + 1}

    \Rightarrow u_{n + 1} - u_{n} = 3\left(\frac{1}{n + 1} - \frac{1}{n + 2} ight) > 0

    => Dãy số u_{n} = \frac{2n - 1}{n +1} là dãy tăng.

  • Câu 8: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu là u_{1} = 3;d = 5. Hỏi số hạng thứ tư là số nào dưới đây?

    Ta có: u_{4} = u_{1} + 3d = 3 + 3.5 =
18

    Vậy u_{4} = 18

  • Câu 9: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)d = - 2;S_{8} = 72. Tìm số hạng đầu tiên u_{1}.

    Ta có:

    \left\{ \begin{matrix}d = - 2 \\S_{8} = 72 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}d = - 2 \\8u_{1} + \dfrac{8.7.d}{2} = 72 \\\end{matrix} ight.

    \Rightarrow 8u_{1} + 28.( - 2) =
72

    \Rightarrow u_{1} = 16

  • Câu 10: Nhận biết

    Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội q eq 0. Mệnh đề nào sau đây là đúng?

    Ta có: ac = b^{2} \Rightarrow
\frac{1}{b^{2}} = \frac{1}{ac}

  • Câu 11: Nhận biết

    Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.

    Ta có: d = 6 - 1 = 5

    Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng

    => x = 6 + 5 = 11

    Vậy x = 11

  • Câu 12: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=2^{n}. Tìm số hạng u_{n+1}

    Ta có:

    \begin{matrix}  {u_n} = {2^n} \hfill \\   \Rightarrow {u_{n + 1}} = {2^{n + 1}} = {2.2^n} \hfill \\ \end{matrix}

  • Câu 13: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 6d = 26 \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 13 - 3d \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    Khi đó:

    \Rightarrow (13 - 2d)^{2} + (13 +
2d)^{2} = 466

    \Rightarrow \left\lbrack \begin{matrix}
d = 4 \Rightarrow u_{1} = 1 \\
d = - 4 \Rightarrow u_{1} = 25 \\
\end{matrix} ight.

  • Câu 14: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = 2n + 5. Số 19 là số hạng thứ bao nhiêu của dãy số đó?

    Ta có

    u_{n} = 19 \Leftrightarrow 2n + 5 =
19

    \Leftrightarrow 2n = 14 \Leftrightarrow n
= 7.

    Vậy 19 là số hạng thứ 7 của dãy số đã cho.

  • Câu 15: Nhận biết

    Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?

    Ta có u2019 = 2.2019 + 1 = 4039

  • Câu 16: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có công bội âm. Biết u_{3} = 12;u_{7} = 192. Khi đó u_{10} = ?

    Ta có:

    \left\{ \begin{matrix}
u_{3} = 12 \\
u_{7} = 192 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1}.q^{2} = 12 \\
u_{1}.q^{6} = 192 \\
\end{matrix} ight.

    \Leftrightarrow \frac{q^{2}}{q^{6}} =
\frac{12}{192} \Leftrightarrow q^{4} = 16

    \Leftrightarrow q = - 2;(q < 0)
\Rightarrow u_{1} = 3

    \Rightarrow u_{10} = u_{1}.q^{9} = 3.( -
2)^{9} = - 1536

  • Câu 17: Vận dụng cao

    Tính tổng S = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

    \begin{matrix}  S = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  S = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {16 + 2 + \dfrac{1}{{16}}} ight) + ... + \left( {{2^{2n}} + 2 + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\  S = \left( {4 + 16 + ... + {2^{2n}}} ight) + 2n + \left( {\frac{1}{4} + \dfrac{1}{{16}} + ... + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\ \end{matrix}

    Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân ta có:

    \begin{matrix}  S = 4.\dfrac{{{4^{n - 1}}}}{3} + 2n + \dfrac{1}{4}.\dfrac{{{2^{\dfrac{1}{{2n}}}} - 1}}{{\dfrac{1}{4} - 1}} \hfill \\  S = 4.\dfrac{{{4^n} - 1}}{3} + 2n + \dfrac{1}{3}.\dfrac{{{2^{2n}} - 1}}{{{2^{2n}}}} \hfill \\  S = 2n + \dfrac{{{4^{n - 1}}}}{3}.\dfrac{{{{4.4}^n} + 1}}{{{4^n}}} = 2n + \dfrac{{\left( {{4^n} - 1} ight)\left( {{4^{n + 1}} + 1} ight)}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có cấp số nhân (un) nên khi đó:

    \begin{matrix}\left\{ {\begin{array}{*{20}{c}}  {{u_m} = 16} \\   {{u_{m + 1}} = 36} \end{array}} ight. \Leftrightarrow \dfrac{{{u_{m + 1}}}}{{{u_m}}} = \dfrac{{36}}{{16}} = \dfrac{9}{4} \Rightarrow q = \dfrac{9}{4} \hfill \\   \Rightarrow {u_{m + 2}} = {u_{m + 1}}.q = 36.\dfrac{9}{4} = 81 \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Cấp số nhân \left( u_{n} ight) có số hạng tổng quát là u_{n} =
\frac{3}{5}.2^{n - 1},n \in \mathbb{N}^{*}. Số hạng đầu tiên và công bội của cấp số nhân đó là

    Theo công thức số hạng tổng quát của cấp số nhân ta suy ra u_{1} = \frac{3}{5}q = 2.

  • Câu 20: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 45 lượt xem
Sắp xếp theo