Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho dãy số \left(
u_{n} ight):u_{n} = sin\frac{\pi}{n}. Chọn khẳng định sai trong các khẳng định sau đây.

    Ta có: u_{n + 1} = sin\frac{\pi}{n +
1} nên u_{n + 1} = sin\frac{\pi}{n +
1} đúng.

    Do - 1 \leq sin\frac{\pi}{n} \leq
1 nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.

    u_{1} = sin\pi = 0,u_{2} =
sin\frac{\pi}{2} = 1,u_{3} = sin\frac{\pi}{3} =
\frac{\sqrt{3}}{2}.

    Do \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số không tăng, không giảm.

    Vậy “Dãy số (un) không tăng, không giảm” đúng.

    Do đó “Dãy số (un) tăng” sai.

  • Câu 2: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{n} = - 2 \\
u_{n + 1} = - 2 - \frac{1}{u_{n}} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có u_{1} = - \frac{3}{2};u_{2} = -
\frac{4}{3};u_{3} = - \frac{5}{4};\ldots suy ra được u_{n} = - \frac{n + 1}{n}.

  • Câu 3: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân với u_{n} eq 0;n \in\mathbb{N}^{*}. Dãy số nào sau đây không phải là cấp số nhân?

    Giả sử \left( u_{n} ight) là cấp số nhân công bội q thì:

    Dãy u_{1};u_{3};u_{5} là cấp số nhân công bội q^{2}.

    Dãy 3u_{1};3u_{2};3u_{3} là cấp số nhân với công bội 2q.

    Dãy \frac{1}{u_{1}};\frac{1}{u_{2}};\frac{1}{u_{3}} là cấp số nhân công bội \frac{1}{q}.

    Dãy u_{1} + 2;u_{2} + 2;u_{3} +2 không là cấp số nhân.

  • Câu 4: Nhận biết

    Dãy số nào là dãy số tăng?

    Xét u_{n} = n^{2} ta có: u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} = 2n + 1
> 0;\forall n \in \mathbb{N}^{*}

    Vậy u_{n} = n^{2} là dãy số tăng.

  • Câu 5: Vận dụng

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Đáp án là:

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Gọi u_{n} là tiền lương anh Nam nhận được vào năm thứ n.

    Tại năm đầu tiên, lương anh Nam nhận được là u_{1} = 35000.

    Vì mỗi năm, anh Nam được tăng lương thêm 1400 đô, nên ta có u_{n} = u_{n - 1} + 1400

    Do đó \left( u_{n} ight) là cấp số cộng với u_{1} = 35000,\ d =
1400.

    Tổng lương mà anh Nam nhận được là 319200 đô, áp dụng công thức tính tổng n số hạng đầu của cấp số cộng:

    S_{n} = \frac{\left\lbrack 2u_{1} + (n -
1)d ightbrack.n}{2}

    \Leftrightarrow 319200 =
\frac{\left\lbrack 2.35000 + (n - 1).1400
ightbrack.n}{2}

    \Rightarrow n = 8.

    Vậy anh Nam mất 8 năm làm việc để được tổng lương là 319200.

  • Câu 6: Vận dụng cao

    Cho a, b, c theo thứ tự lập thành cấp số cộng. Giá trị x + y là bao nhiêu? Biết:

    B = {\log _2}\left( {{a^2} + ab + } ight){b^2} + bc + {c^2} = x{\log _2}\left( {{a^2} + ac + {c^2}} ight) + y;\left( {x,y \in \mathbb{N}} ight)

    Ta có: a, b, c lập thành cấp số cộng nên

    a + c = 2b => (a + c)2 = 4b2

    \begin{matrix}   \Rightarrow b\left( {a + c} ight) + 2{b^2} = {\left( {a + c} ight)^2} \hfill \\   \Rightarrow 2{a^2} + ab + 2{b^2} + bc + {c^2} = 2\left( {{a^2} + ac + {c^2}} ight) \hfill \\   \Rightarrow B = {\log _2}\left( {{a^2} + ab + } ight){b^2} + bc + {c^2} = {\log _2}\left( {{a^2} + ac + {c^2}} ight) + 1 \hfill \\   =  > x + y = 1 + 1 = 2 \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?

    Ta có: \left\{ \begin{matrix}u_{12} = 23 \\S_{12} = 144 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + 11d = 23 \\\dfrac{12}{2}.\left( u_{1} + u_{12} ight) = 144 \\\end{matrix} ight.

    => d = 2

  • Câu 8: Nhận biết

    Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1

    Một học sinh chứng minh un luôn chia hết cho 19 như sau:

    Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19

    Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.

    Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1

    Bước 3: Vì 5.23k − 2 + 33k − 119.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*

    Vậy un chia hết cho 19, ∀n ∈ ℕ*

    Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?

    Lập luận hoàn toàn đúng!

  • Câu 9: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.

    Số hạng thứ ba của dãy số \left( u_{n}
ight) là: u_{3} = \frac{5.3 +
2}{19.3 + 1} = \frac{17}{58}.

    Xét u_{n} = 9 - 2n ta có: u_{n + 1} - u_{n} = - 2 < 0,\forall
n\mathbb{\in N} suy ra \left( u_{n}
ight) là dãy số giảm

    Lại có n\mathbb{\in N \Rightarrow}n \geq
0 \Rightarrow u_{n} = 9 - 2n \leq 9 suy ra \left( u_{n} ight) là dãy số bị chặn trên.

    Suy ra phát biểu “Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới.” là phát biểu sai.

    Ta có: S = \frac{1}{3} + \frac{1}{3^{2}}
+ ... + \frac{1}{3^{n}} + ... là tổng cấp số nhân lùi vô hạn \left( u_{n} ight) với u_{n} = \frac{1}{3^{n}} có số hạng đầu và công bội lần lượt là: u_{1} = \frac{1}{3};q
= \frac{1}{3}

    \Rightarrow S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = \dfrac{1}{2}

  • Câu 10: Vận dụng

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_6} = 17} \\   {{u_2} + {u_4} = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {2{u_1} + 5d = 17} \\   {2{u_1} + 6d = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 16} \\   {d =  - 3} \end{array}} ight.

  • Câu 11: Thông hiểu

    Tìm x để ba số 1
+ x;9 + x;33 + x theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Ba số 1 + x;9 + x;33 + x theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow (9 + x)^{2} = (1 + x).(33 +
x)

    \Rightarrow 81 + 18x + x^{2} = x^{2} +
34x + 33

    \Rightarrow 16x = 48

    \Rightarrow x = 3

  • Câu 12: Thông hiểu

    Cho một cấp số nhân \left( u_{n} ight)u_{1} = 5;q = \frac{1}{3} . Hỏi \frac{5}{59049} là số hạng thứ mấy của cấp số nhân?

    Ta có: u_{n} = u_{1}.q^{n - 1}
\Leftrightarrow \frac{5}{59049} = 5.\left( \frac{1}{3} ight)^{n - 1}
\Rightarrow n = 11

    Vậy số \frac{5}{59049} là số hạng thứ 11 của cấp số nhân.

  • Câu 13: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = \frac{3}{2}.5^{n}. Khẳng định nào sau đây đúng?

    Ta có: u_{n} = \frac{3}{2}.5^{n} là cấp số nhân có u_{1} = \frac{15}{2};q =5.

  • Câu 14: Thông hiểu

    Một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

    Ta có:

    u_{n} = 32805

    \Rightarrow u_{1}.q^{n - 1} =
32805

    \Rightarrow 3^{n - 1} =
6561

    \Rightarrow n = 9

    Vậy u_{9} là số hạng chính giữa của cấp số nhân nên cấp số nhân đã cho có 17 số hạng.

  • Câu 15: Vận dụng

    Cho dãy số (un)u_{1} = \frac{1}{5}u_{n + 1} = \frac{n + 1}{5n}u_{n},\forall n \geq
1.

    Tất cả các giá trị n để S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} < \frac{5^{2018} -
1}{{4.5}^{2018}} là?

    Ta có u_{n + 1} = \frac{n + 1}{5n}u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} = \frac{1}{5} \cdot
\frac{u_{n}}{n}

    Đặt v_{n} = \frac{u_{n}}{n},\forall n \geq
1. Suy ra (vn) là cấp số nhận có công bội q = \frac{1}{5}v = \frac{1}{5}.

    Ta có S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} = \sum_{k = 1}^{n}\mspace{2mu} v_{k} =
v_{1}\frac{1 - q^{n}}{1 - q} = \frac{1}{5} \cdot \frac{1 - \left(
\frac{1}{5} ight)^{n}}{1 - \frac{1}{5}} = \frac{1}{4} \cdot
\frac{5^{n} - 1}{5^{n}} = T_{n}

    Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.

    Suy ra T_{n} < \frac{5^{2018} -
1}{{4.5}^{2018}} = T_{2018} \Leftrightarrow n < 2018

  • Câu 16: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.2n. Mệnh đề nào sau đây sai?

    Ta có:

    \begin{matrix}  {u_n} = {( - 1)^n}.2n \hfill \\   \Rightarrow {u_1} = {( - 1)^1}.2.1 =  - 2 \hfill \\   \Rightarrow {u_2} = {( - 1)^2}.2.2 = 4 \hfill \\   \Rightarrow {u_3} = {( - 1)^3}.2.3 =  - 6 \hfill \\   \Rightarrow {u_4} = {( - 1)^4}.2.4 = 8 \hfill \\ \end{matrix}

    Vậy mệnh đề sai là: u_{4}=-8

  • Câu 17: Vận dụng cao

    Tính tổng {S_n} = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

     Ta có:

    \begin{matrix}  {S_n} = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  {S_n} = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {{4^2} + 2 + \dfrac{1}{{{4^2}}}} ight) + ... + \left( {\dfrac{1}{4} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{4^n}}}} ight) \hfill \\  {S_n} = 2n + \left( {4 + {4^2} + ... + {4^n}} ight) + \left( {\dfrac{1}{4} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{4^n}}}} ight) \hfill \\   = 2n + 4.\dfrac{{1 - {4^n}}}{{1 - 4}} + \frac{1}{4}\frac{{1 - \frac{1}{{{4^n}}}}}{{1 - \frac{1}{4}}} \hfill \\  {S_n} = 2n + \dfrac{4}{3}\left( {{4^n} - 1} ight) + \dfrac{{{4^{n - 1}}}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:

    Ta có:

    Số nguyên dương chia hết cho 3 có dạng 3n;\left( n \in \mathbb{N}^{*} ight) nên chúng lập thành cấp số cộng u_{n} =
n

    ightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
u_{50} = 150 \\
\end{matrix} ight.

    S_{n} = \frac{n}{2}.\left( u_{1} + u_{n}
ight) = n.u_{1} + \frac{n(n - 1)d}{2}

    \Rightarrow S_{50} = \frac{50}{2}.\left(
u_{1} + u_{50} ight) = 3825

  • Câu 19: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 20: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} =
2 và công sai d = 3. Giá trị u_{2024} bằng

    Áp dụng công thức số hạng tổng quát

    u_{2024} = u_{1} + 2023d = 2 + 2023.3 = 6071.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo