Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=7.3^n ta có: 

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{7.3}^{n + 1}}}}{{{{7.3}^n}}} = 3

    => Dãy số u_n=7.3^n là một cấp số nhân 

  • Câu 2: Thông hiểu

    Cho cấp số nhân lùi vô hạn \left( {{u_n}} ight) công bội q. Đặt S = {u_1} + {u_2} + ... + {u_n} + ... thì:

    Tổng cấp số nhân là: S = {u_1}.\frac{{1 - {q^n}}}{{1 - q}}

    Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:

    \begin{matrix}  \left| q ight| < 1 \Rightarrow {q^n} \mapsto 0 \hfill \\   \Rightarrow 1 - {q^n} \mapsto 1 \hfill \\   \Rightarrow S = \dfrac{{{u_1}}}{{1 - q}} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho dãy (un) xác định bởi u_{1} = \frac{1}{2}un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{2} = u_{1} + 2 \\
u_{3} = u_{2} + 4 \\
\ldots \\
u_{49} = u_{48} + 2.49 \\
u_{50} = u_{49} + 2.50 \\
\end{matrix} ight.

    Cộng vế với vế các đẳng thức trên, ta được:

    u_{50} = \frac{1}{2} + 2(2 + 3 + \ldots +
50) = \frac{1}{2} + 2(25.51 - 1) = 2548,5.

  • Câu 4: Vận dụng cao

    Một quả bóng rơi từ độ cao 6m với phương vuông góc với mặt đất. Mỗi lần chạm đất quả bóng nảy lên với độ cao bằng \dfrac{3}{4} độ cao của lần rơi trước. Tính quãng đường quả bóng đã bay từ lúc thả bóng cho đến lúc bóng không nảy nữa.

    Ta có: Quãng đường bóng bay bằng tổng quãng đường bóng nảy lên và quãng đường bóng rơi xuống

    Vì mỗi lần bóng nảy lên bằng \dfrac{3}{4} lần nảy trước nên ta có tổng quãng đường bóng nảy lên là:

    {S_1} = 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} ight)^2} + ... + 6.{\left( {\frac{3}{4}} ight)^n} + ...

    Đây là tổng của cấp số nhân lùi vô hạn có {u_1} = 6.\frac{3}{4} = \frac{9}{1},q = \frac{3}{4}

    => {S_1} = \dfrac{{\dfrac{9}{2}}}{{1 - \dfrac{3}{4}}} = 18

    Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên là:

    {S_2} = 6 + 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} ight)^2} + ... + 6.{\left( {\frac{3}{4}} ight)^n} + ...

    Đây là tổng của cấp số nhân lùi vô hạn với {u_1} = 6;q = \frac{3}{4}

    => {S_2} = \dfrac{6}{{1 - \dfrac{3}{4}}} = 24

    Vậy tổng quãng đường bóng bay là 42m

  • Câu 5: Vận dụng

    Tìm tất cả các giá trị của x để ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân:

    \Rightarrow {x^2} = \left( {2x - 1} ight)\left( {2x + 1} ight)

    \Rightarrow {x^2} = 4{x^2} - 1

    \Rightarrow 3{x^2} = 1

    \Rightarrow {x^2} = \frac{1}{3} \Rightarrow x =  \pm \frac{1}{{\sqrt 3 }}

  • Câu 6: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 7: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 1 và công sai d = 2. Tổng 10 số hạng đầu của cấp số cộng bằng:

    Tổng 10 số hạng đầu của cấp số cộng là

    S_{n} = \frac{n}{2}\left\lbrack 2u_{1} +
(n - 1)d ightbrack

    \Rightarrow S_{10} =
\frac{10}{2}\left\lbrack 2.1 + (10 - 1)2 ightbrack =
100

  • Câu 8: Vận dụng cao

    Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu tiên là 24850. Tính giá trị của biểu thức S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{48}}.{u_{49}}}} + \frac{1}{{{u_{49}}.{u_{50}}}}

    Ta có:

    \begin{matrix}  {u_{100}} + {u_1} = 497 \hfill \\   \Rightarrow {u_{100}} = 1 + 99d \hfill \\   \Rightarrow d = 5 \hfill \\   \Rightarrow {u_{50}} = 246 \hfill \\ \end{matrix}

    Ta lại có

    \begin{matrix}  5S = \dfrac{{{u_2} - {u_1}}}{{{u_1}{u_2}}} + \dfrac{{{u_3} - {u_2}}}{{{u_2}{u_3}}} + ... + \dfrac{{{u_{49}} - {u_{48}}}}{{{u_{48}}.{u_{49}}}} + \dfrac{{{u_{50}} - {u_{49}}}}{{{u_{50}}.{u_{49}}}} = \dfrac{1}{{{u_1}}} - \dfrac{1}{{{u_{50}}}} = 1 - \dfrac{1}{{246}} \hfill \\   \Rightarrow S = \dfrac{{49}}{{246}} \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 10: Nhận biết

    Biết bốn số 5;x;15;y theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức 3x + 2y bằng

    Ta có:

    x = \frac{5 + 15}{2} = 10 \Rightarrow y= 20

    \Rightarrow 3x + 2y = 70

  • Câu 11: Nhận biết

    Hãy liệt kê năm số hạng đầu của dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = 3^{n} + n - 2;\left( n \in
\mathbb{N}^{*} ight)?

    Ta có:

    u_{1} = 3^{1} + 1 - 2 = 2

    u_{2} = 3^{2} + 2 - 2 = 9

    u_{3} = 3^{3} + 3 - 2 = 28

    u_{4} = 3^{4} + 4 - 2 = 83

    u_{5} = 3^{5} + 5 - 2 = 246

    Vậy năm số hạng đầu tiên của dãy số là 2;9;28;83;246

  • Câu 12: Vận dụng

    Cho dãy số (an) được xác định bởi \left\{ \begin{matrix}
a_{1} = 1;a_{2} = 2 \\
a_{n + 2} - a_{n + 1} - a_{n} = 0 \\
\end{matrix} ight..

    Phát biểu nào dưới đây về dãy số (an) là đúng?

    Mỗi số hạng thứ ba trở đi luôn bằng tổng của hai số đứng ngay trước nó. Đồng thời số hạng đầu tiên và số hạng thứ hai của dãy là các số dương nên dễ thấy dãy số là một dãy tăng.

  • Câu 13: Thông hiểu

    Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?

     Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{12}}{a} = \dfrac{b}{{12}}} \\   {\dfrac{b}{{12}} = \dfrac{{192}}{b}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{144}}{y}} \\   {{b^2} = 2034} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a =  \pm 3} \\   {b =  \pm 48} \end{array}} ight.

  • Câu 14: Vận dụng

    Số hạng tổng quát của cấp số cộng là {u_n} = 3n + 4,n \in {\mathbb{N}^*}. Gọi {S_n} là tổng số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?

    Cấp số cộng {u_n} = an + b \to \left\{ {\begin{array}{*{20}{c}}  {{u_1} = a + b} \\   {d = a} \end{array}} ight.

    \begin{matrix}  {u_n} = 3n + 4 \to \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 7} \\   {d = 3} \end{array}} ight. \hfill \\   \Rightarrow {S_n} = n{u_1} + \dfrac{{n\left( {n - 1} ight)d}}{2} = 7n + \dfrac{{3\left( {{n^2} - n} ight)}}{2} = \dfrac{{3{n^2} + 11n}}{2} \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Cho cấp số cộng (un) có u_1 = -4; d = \frac{1}{2}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 4} \\   {d = \dfrac{1}{2}} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=3^{n}. Tìm số hạng u_{2n-1}

    Ta có:

    \begin{matrix}  {u_n} = {3^n} \hfill \\   \Rightarrow {u_{2n - 1}} = {3^{2n - 1}} = {3^n}{.3^{n - 1}} \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.\frac{{{2^n}}}{n}. Tìm số hạng u_{3}

    Ta có:

    {u_3} = {( - 1)^3}.\frac{{{2^3}}}{3} =  - \frac{8}{3}

  • Câu 18: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 19: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

  • Câu 20: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6;xy. Tìm y biết rằng công bội của cấp số nhân là 6?

    Ta có:

    Ba số hạng đầu của một cấp số nhân là x -
6;xy có công bội q = 6

    \Rightarrow \left\{ \begin{matrix}u_{1} = x - 6;q = 6 \\x = u_{2} = u_{1}q = 6(x - 6) \\y = u_{3} = u_{2}q^{2} = 36x \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{36}{5} \\y = 36.\dfrac{36}{5} = \dfrac{1296}{5} \\\end{matrix} ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 63 lượt xem
Sắp xếp theo