Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Tính tổng sau ![]()
Ta có:
là tổng của 100 số hạng đầu tiên của cấp số cộng có
.
Dãy số nào sau đây không phải là cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Cho dãy số (un) xác định bởi
. Tìm số hạng thứ 2018 của dãy số đã cho.
Ta có:
Đặt
Khi đó (vn) là một cấp số nhân với và công bội q = 21
Do đó số hạng tổng quát của dãy (vn) là
=>
Cho các dãy số sau. Dãy số nào là dãy số tăng?
Xét đáp án dãy là dãy hằng nên không tăng không giảm.
Xét đáp án
(Loại)
Xét đáp án
(Chọn)
Xét đáp án
(Loại)
Cho
với n ∈ ℕ*. Mệnh đề nào sau đây đúng?
Ta có dự đoán
Với n = 1, ta được (đúng)
Giả sử mệnh đề đúng khi n = k (k≥1), tức là
Ta có
Suy ra mệnh đề đúng với n = k + 1.
Cho một cấp số cộng
có
. Tìm
?
Theo bài ra ta có:
Biết ba số
lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?
Để ba số lập thành một cấp số nhân thì
Vậy tổng các giá trị của m là
Cho một cấp số nhân có các số hạng đều không âm thỏa mãn
. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.
Giả sử công bội của cấp số nhân là q
Ta có:
=>
Do cấp số nhân có các số hạng không âm nên q = 2
Ta có:
Một cấp số cộng gồm
số hạng. Hiệu số hạng đầu và số hạng cuối bằng
. Tìm công sai
của cấp số cộng đã cho?
Gọi năm số hạng của cấp số cộng đã cho là:
Theo đề bài ta có:
Vậy công sai của cấp số cộng đã cho là
Cho cấp số nhân
có công bội nguyên và các số hạng thoả mãn
. Các khẳng định dưới đây là đúng hay sai?
a) Số hạng đầu của cấp số nhân bằng
. Đúng||Sai
b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai
c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng
d) Gọi dãy số
, với
. Khi đó tổng
. Sai||Đúng
Cho cấp số nhân có công bội nguyên và các số hạng thoả mãn
. Các khẳng định dưới đây là đúng hay sai?
a) Số hạng đầu của cấp số nhân bằng . Đúng||Sai
b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai
c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng
d) Gọi dãy số , với
. Khi đó tổng
. Sai||Đúng
a) Đúng
Ta có:
.
b) Đúng.
Ta có:
Vậy tổng của 9 số hạng đầu tiên bằng 4599 nên mệnh đề đúng.
c) Sai.
Ta có:
Vậy số 576 là số hạng thứ 7 của cấp số nhân nên mệnh đề sai.
d) Sai.
Ta có , nên
là cấp số nhân với
và công bội
.
Nên .
Một cấp số cộng có số hạng đầu là 1, công sai là 4, tổng của n số hạng đầu là 561. Khi đó số hạng thứ n của cấp số cộng đó là
có giá trị là bao nhiêu?
Ta có:
Cho một dãy số có các số hạng đầu tiên là 1,8,22,43,... Hiệu của hai số hạng liên tiếp của dãy số đó lập thành 1 cấp số cộng: 7,14,21,..., 7n. Số 35351 là số hạng thứ bao nhiêu của dãy số đã cho?
Ta có:
Cộng vế với vế của phương trình ta được:
Vậy số 35351 là số hạng thứ 101 của dãy số đã cho.
Cho cấp số nhân (un) biết u1 = 12;
. Tính ![]()
Gọi q là công bội của cấp số nhân (un)
Ta có:
Cho cấp số nhân
có các số hạng đều dương và
Giá trị của
là:
Ta có
Theo giả thiết, ta có:
Và
.
Suy ra . Vậy
.
Cho dãy số (un) với
( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?
Ta có
Cho cấp số cộng
có
và
. Khẳng định nào sau đây là đúng?
Ta có:
Trong các dãy số dưới đây, dãy số nào là dãy số giảm?
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Xét phương án , ta có:
nên dãy này là dãy số giảm.
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Vậy dãy số là dãy số giảm.
Cho cấp số cộng có số hạng đầu
công sai
. Năm số hạng liên tiếp đầu tiên của cấp số này là:
Ta có: