Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các dãy số sau, dãy số nào không phải cấp số nhân?

    Xét đáp án 1^{2};2^{2};3^{2};4^{2};...\Leftrightarrow \frac{u_{2}}{u_{1}} = 4 eq
\frac{9}{4} = \frac{u_{3}}{u_{2}}

    => Dãy số 1^{2};2^{2};3^{2};4^{2};... không phải là cấp số nhân.

  • Câu 2: Vận dụng cao

    Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu tiên là 24850. Tính giá trị của biểu thức S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{48}}.{u_{49}}}} + \frac{1}{{{u_{49}}.{u_{50}}}}

    Ta có:

    \begin{matrix}  {u_{100}} + {u_1} = 497 \hfill \\   \Rightarrow {u_{100}} = 1 + 99d \hfill \\   \Rightarrow d = 5 \hfill \\   \Rightarrow {u_{50}} = 246 \hfill \\ \end{matrix}

    Ta lại có

    \begin{matrix}  5S = \dfrac{{{u_2} - {u_1}}}{{{u_1}{u_2}}} + \dfrac{{{u_3} - {u_2}}}{{{u_2}{u_3}}} + ... + \dfrac{{{u_{49}} - {u_{48}}}}{{{u_{48}}.{u_{49}}}} + \dfrac{{{u_{50}} - {u_{49}}}}{{{u_{50}}.{u_{49}}}} = \dfrac{1}{{{u_1}}} - \dfrac{1}{{{u_{50}}}} = 1 - \dfrac{1}{{246}} \hfill \\   \Rightarrow S = \dfrac{{49}}{{246}} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 4: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) có tổng n số hạng đầu tiên là S_{n} = 5^{n} - 1 với n = 1,2,.... Tìm số hạng đầu u_{1} và công bội q của cấp số nhân đó?

    Ta có:

    \left\{ \begin{matrix}
u_{1} = S_{1} = 5 - 1 = 4 \\
u_{1} + u_{2} = S_{2} = 5^{2} - 1 = 24 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{1} = 4 \\
u_{2} = 24 - u_{1} = 20 \\
\end{matrix} ight.

    \Rightarrow u_{1} = 4, q = \frac{u_{2}}{u_{1}} = 5.

  • Câu 5: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{1};u_{2};u_{3};...;u_{n} có công sai d, các số hạng của cấp số cộng đã cho đều khác 0. Với giá trị nào của d thì dãy số \frac{1}{u_{1}};\frac{1}{u_{2}};\frac{1}{u_{3}};...;\frac{1}{u_{n}} là một cấp số cộng?

    Ta có:

    \left\{ \begin{matrix}u_{2} - u_{1} = d \\u_{3} - u_{2} = d \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{u_{2}} - \dfrac{1}{u_{1}} = \dfrac{- d}{u_{1}.u_{2}} \\\dfrac{1}{u_{3}} - \dfrac{1}{u_{2}} = \dfrac{- d}{u_{2}.u_{3}} \\\end{matrix} ight.

    Theo yêu cầu bài toán thì ta phải có:

    \frac{1}{u_{2}} - \frac{1}{u_{1}} =\frac{1}{u_{3}} - \frac{1}{u_{2}}

    \Leftrightarrow \left\{ \begin{matrix}d = 0 \\\dfrac{1}{u_{1}} = \dfrac{1}{u_{3}} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}d = 0 \\u_{1} = u_{3} = u_{1} + 2d \\\end{matrix} ight.

    \Rightarrow d = 0

  • Câu 6: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 5 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có u_{n} = 5 + 1 + 2 + 3 + \ldots + n -
1 = 5 + \frac{n(n - 1)}{2}

  • Câu 7: Vận dụng cao

    Tính tổng S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}. Biết dãy số (un) xác định bởi: {u_1} = \frac{1}{3};{u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}

     Ta có:

    {u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n} \Leftrightarrow \frac{{{u_{n + 1}}}}{{n + 1}} = \frac{{{u_n}}}{{3n}}

    Do {u_1} = \frac{1}{3} \Rightarrow \frac{{{u_1}}}{1} = \frac{1}{3}

    Từ đó suy ra:

    \begin{matrix}  \dfrac{{{u_2}}}{2} = \dfrac{1}{3}.\dfrac{1}{3} = {\left( {\dfrac{1}{3}} ight)^2} \hfill \\  \dfrac{{{u_3}}}{3} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^2} = {\left( {\dfrac{1}{3}} ight)^3} \hfill \\  ... \hfill \\  \dfrac{{{u_{10}}}}{{10}} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^9} = {\left( {\dfrac{1}{3}} ight)^{10}} \hfill \\ \end{matrix}

    Hay dãy \left( {\frac{{{u_n}}}{n}} ight) là một cấp số nhân có số hạng đầu {u_1} = \frac{1}{3},q = \frac{1}{3}

    Khi đó S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}} = \frac{{{3^{10}} - 1}}{{{{2.3}^{10}}}} = \frac{{29524}}{{59049}}

  • Câu 8: Thông hiểu

    Cho một cấp số cộng có {u_4} = 2;{u_2} = 4. Hỏi {u_1} bằng bao nhiêu?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_4} = 2} \\   {{u_2} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + 3d = 2} \\   {{u_1} + d = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {d =  - 1} \end{array}} ight.

  • Câu 9: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là: 

    Ta có: \frac{{4{x^2} - 1}}{{2x + 1}} = 2x - 1

    Vậy công sai của cấp số nhân là 2x - 1

    Vậy số hạng tiếp theo sẽ là: \left( {4{x^2} - 1} ight)\left( {2x - 1} ight) = 8{x^3} - 4{x^2} - 2x + 1

  • Câu 10: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{2} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có \left\{ \begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{2} \\
u_{3} = u_{2} + 2^{2} \\
\cdots \\
u_{n} = u_{n - 1} + (n - 1)^{2} \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên, ta được

    u_{n} = 1 + 1^{2} + 2^{2} + \ldots + (n
- 1)^{2} = 1 + \frac{n(n - 1)(n - 2)}{6}

  • Câu 11: Nhận biết

    Xác định bốn số hạng đầu của một dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = sin^{2}\left( \frac{\pi
n}{4} ight) + \cos\left( \frac{2\pi n}{3} ight) với \forall n \in \mathbb{N}^{*}?

    Ta có:

    u_{1} = \sin^{2}\left( \frac{\pi}{4}ight) + \cos\left( \frac{2\pi}{3} ight) = 0

    u_{2} = \sin^{2}\left( \frac{2\pi}{4}ight) + \cos\left( \frac{4\pi}{3} ight) = \frac{1}{2}

    u_{3} = \sin^{2}\left( \frac{3\pi}{4}ight) + \cos\left( \frac{6\pi}{3} ight) = \frac{3}{2}

    u_{4} = \sin^{2}\left( \frac{4\pi}{4}ight) + \cos\left( \frac{8\pi}{3} ight) = \frac{- 1}{2}

  • Câu 12: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 13: Vận dụng

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 2\left( u_{3} +
u_{4} + u_{5} ight) = u_{6} + u_{7} + u_{8}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}?

    Đáp án: 4

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 2\left( u_{3} +
u_{4} + u_{5} ight) = u_{6} + u_{7} + u_{8}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}?

    Đáp án: 4

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    2\left( u_{3} + u_{4} + u_{5} ight) =u_{6} + u_{7} + u_{8}

    \Leftrightarrow 2\left( u_{3} + u_{3}q +u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 2u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 2u_{3} = u_{6} do \ 1 + q + q^{2} > 0

    \Leftrightarrow 2u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 2 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = \sqrt[3]{2} \\
\end{matrix} ight.

    Ta có:

    \frac{u_{8} + u_{9} + u_{10}}{u_{2} +
u_{3} + u_{4}} = \frac{u_{8} + u_{8}q + u_{8}q^{2}}{u_{2} + u_{2}q +
u_{2}q^{2}}= \frac{u_{8}\left( 1 + q + q^{2}
ight)}{u_{2}\left( 1 + q + q^{2} ight)} = \frac{u_{2}q^{6}}{u_{2}} =
q^{6} = 4

  • Câu 14: Nhận biết

    Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?

    Ta có u2019 = 2.2019 + 1 = 4039

  • Câu 15: Nhận biết

    Cho dãy số (u_n) xác định bởi u_{n}=\frac{n^{2}}{3^{n}} với \forall  n\geq 1. Khi đó số hạng u_{2n} của dãy (u_{n}) là 

     Ta có:

    \begin{matrix}  {u_n} = \dfrac{{{n^2}}}{{{3^n}}} \hfill \\   \Rightarrow {u_{2n}} = \dfrac{{{{\left( {2n} ight)}^2}}}{{{3^{2n}}}} = \dfrac{{4{n^2}}}{{{9^n}}} \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.

    Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng

    Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_6} = 40} \end{array}} ight.

    {u_1} + 5.d = 40

    \begin{matrix}   \Rightarrow 4 + 5.d = 40 \hfill \\   \Rightarrow 5.d = 36 \hfill \\   \Rightarrow d = \dfrac{{36}}{5} \hfill \\ \end{matrix}

    Vậy công sai của cấp số cộng là d = \frac{{36}}{5}

    Khi đó 4 số hạng được thêm lần lượt là: \frac{{56}}{5};\frac{{92}}{5};\frac{{128}}{5};\frac{{164}}{5}

    Tổng bốn số hạng ở trên là: \frac{{56}}{5} + \frac{{92}}{5} + \frac{{128}}{5} + \frac{{164}}{5} = 88

  • Câu 17: Vận dụng

    Với mọi số nguyên dương n, tổng S_{n}=n^{3}+11n chia hết cho:

    Với n=1 ta có: {S_1} = 1 + 11 = 12 không chia hết cho 9.

    Với n=2 ta có: {S_2} = {2^3} + 11.2 = 30 không chia hết cho 4 và 12

    Ta sẽ chứng minh S_{n}=n^{3}+11n chia hết cho 6 với mọi số nguyên dương n

    Giả sử khẳng định đúng với n=k nghĩa là {S_k} = {k^3} + 11k chia hết cho 6.

    Ta cần chứng minh khẳng định đúng với n=k+1 tức là:

    {S_{k + 1}} = {\left( {k + 1} ight)^3} + 11.\left( {k + 1} ight) cũng chia hết cho 6

    Ta có:

    \begin{matrix}  {S_{k + 1}} = {\left( {k + 1} ight)^3} + 11.\left( {k + 1} ight) \hfill \\   = {k^3} + 3{k^2} + 3k + 1 + 11k + 11 \hfill \\   = \left( {{k^3} + 11k} ight) + \left( {3{k^2} + 3k} ight) + 12 \hfill \\   = \left( {{k^3} + 11k} ight) + 3k\left( {k + 1} ight) + 12 \hfill \\ \end{matrix}

    Ta lại có: \left\{ \begin{gathered}  \left( {{k^3} + 11k} ight) \vdots 6 \hfill \\  12 \vdots 6 \hfill \\ \end{gathered}  ight. ta cần chứng minh 3k\left( {k + 1} ight) \vdots 6

    Thật vậy k\left( {k + 1} ight) là tích hai số nguyên dương liên tiếp nên k\left( {k + 1} ight) \vdots 2

    Mặt khác 3k\left( {k + 1} ight) \vdots 3 và 2, 3 là hai số nguyên tố cùng nhau nên 3k\left( {k + 1} ight) \vdots  6

    Vậy {S_{k + 1}} = {\left( {k + 1} ight)^3} + 11k chia hết cho 6 hay S_{n}=n^{3}+11n chia hết cho 6 với mọi số nguyên dương n.

  • Câu 18: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = 3;q = - 2. Số 192 là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = 192

    \Rightarrow u_{1}.q^{n - 1} =
192

    \Rightarrow 3.2^{n - 1} =
192

    \Rightarrow ( - 1)^{n - 1}.2^{n - 1} =
64

    \Rightarrow n = 7

  • Câu 19: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với số hạng đầu u_{1} và công bội q. Với n \geq
1, khẳng định nào sau đây đúng?

    Do \left( u_{n} ight) là cấp số nhân nên u_{n + 1} = u_{n}.q\ \ ,\ \ (n
\geq 1).

  • Câu 20: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} =
2 và công sai d = 3. Giá trị u_{2024} bằng

    Áp dụng công thức số hạng tổng quát

    u_{2024} = u_{1} + 2023d = 2 + 2023.3 = 6071.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 63 lượt xem
Sắp xếp theo