Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Biết rằng tồn tại đúng ba giá trị m1, m2, m3 của tham số m để phương trình{x^3} - 9{x^2} + 23x + {m^3} - 4{m^2} + m - 9 = 0  có ba nghiệm phân biệt lập thành một cấp số cộng, tính giá trị của biểu thức D = {m_1}^3 + {m_2}^3 + {m_3}^3

     Ta có phương trình đã cho có 3 nghiệm phân biệt thì điều kiện cần là - \frac{b}{{3a}} =  - \frac{{ - 9}}{3} = 3 là nghiệm của phương trình

    \begin{matrix}   \Leftrightarrow {3^3} - {9.3^2} + 23.3 + {m^3} - 4{m^2} + m - 9 = 0 \hfill \\   \Leftrightarrow {m^3} - 4{m^2} + m + 6 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 1} \\   {m = 2} \\   {m = 3} \end{array}} ight. \hfill \\ \end{matrix}

    Với m =  - 1;m = 2;m = 3 thì {m^3} - 4{m^2} + m + 6 = 0 \Leftrightarrow {m^3} - 4{m^2} + m - 9 =  - 15

    \begin{matrix}   \Rightarrow {x^3} - 9{x^2} + 23x - 15 = 0 \hfill \\   \Leftrightarrow \left( {x - 3} ight)\left( {{x^2} - 6x + 5} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 3} \\   {x = 5} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy ba số 1, 3, 5 lập thành cấp số cộng

    Vậy giá trị cần tìm là 34

  • Câu 2: Vận dụng

    Cho dãy số (un) xác định bởi {u_1} = 2;{u_{n + 1}} =  - 2{u_n};\left( {n \geqslant 1,n \in \mathbb{N}} ight). Tính tổng của 10 số hạng đầu tiên của dãy số?

     Ta có:

    \begin{matrix}  \dfrac{{{u_{n + 1}}}}{{{u_n}}} =  - 2 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 2} \end{array}} ight. \hfill \\   \Rightarrow {S_{10}} = \dfrac{{{u_1}.\left( {1 - {q^{10}}} ight)}}{{1 - q}} =  - 682 \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)d = - 2;S_{8} = 72. Tìm số hạng đầu tiên u_{1}.

    Ta có:

    \left\{ \begin{matrix}d = - 2 \\S_{8} = 72 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}d = - 2 \\8u_{1} + \dfrac{8.7.d}{2} = 72 \\\end{matrix} ight.

    \Rightarrow 8u_{1} + 28.( - 2) =
72

    \Rightarrow u_{1} = 16

  • Câu 4: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{( - 1)^{n}}{1 + n}. Khẳng định nào sau đây sai?

    Ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4}

    \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight.

    Vậy dãy số đã cho không tăng không giảm.

    Khẳng định sai là: “Dãy số \left( u_{n}
ight) là dãy giảm”

  • Câu 5: Nhận biết

    Hãy liệt kê năm số hạng đầu của dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = 3^{n} + n - 2;\left( n \in
\mathbb{N}^{*} ight)?

    Ta có:

    u_{1} = 3^{1} + 1 - 2 = 2

    u_{2} = 3^{2} + 2 - 2 = 9

    u_{3} = 3^{3} + 3 - 2 = 28

    u_{4} = 3^{4} + 4 - 2 = 83

    u_{5} = 3^{5} + 5 - 2 = 246

    Vậy năm số hạng đầu tiên của dãy số là 2;9;28;83;246

  • Câu 6: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{1} = 2;u_{8} = 16. Tìm d;S_{10}?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{8} = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1} + 7d = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
d = 2 \\
\end{matrix} ight.

    \Rightarrow S_{10} = \frac{\left\lbrack
2u_{1} + 9d ightbrack.n}{2} = 110

  • Câu 7: Vận dụng

    Xét tính bị chặn của dãy số u_{n} = \frac{1}{1.3} + \frac{1}{2.4} + \ldots +
\frac{1}{n(n + 2)}, ta thu được kết quả?

    Ta có 0 < u_{n} < \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{n \cdot (n + 1)} = 1 - \frac{1}{n + 1}
< 1

    Dãy (un) bị chặn.

  • Câu 8: Nhận biết

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm các số nguyên dương chia hết cho 7: 7, 14, 21, 28, …Công thức số hạng tổng quát của dãy số này là:

    Ta có u_{1} = 7 = 7.1, u_{2} = 14 = 7.2, u_{3} = 21 = 7.3, u_{4} = 28 = 7.4,…

    Suy ra u_{n} = 7n.

  • Câu 9: Thông hiểu

    Cho cấp số nhân \frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{4096}. Hỏi số \frac{1}{4096} là số hạng thứ mấy trong cấp số nhân đã cho?

    Ta có: \frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{4096} là cấp số nhân với \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\q = \dfrac{u_{2}}{u_{1}} = \dfrac{1}{2} \\\end{matrix} ight.

    \Rightarrow u_{n} = \frac{1}{2}.\left(
\frac{1}{2} ight)^{n - 1} = \frac{1}{2^{n}} =
\frac{1}{4096}

    \Rightarrow \frac{1}{2^{n}} =
\frac{1}{2^{12}} \Rightarrow n = 12

  • Câu 10: Vận dụng cao

    Tính tổng S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}. Biết dãy số (un) xác định bởi: {u_1} = \frac{1}{3};{u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}

     Ta có:

    {u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n} \Leftrightarrow \frac{{{u_{n + 1}}}}{{n + 1}} = \frac{{{u_n}}}{{3n}}

    Do {u_1} = \frac{1}{3} \Rightarrow \frac{{{u_1}}}{1} = \frac{1}{3}

    Từ đó suy ra:

    \begin{matrix}  \dfrac{{{u_2}}}{2} = \dfrac{1}{3}.\dfrac{1}{3} = {\left( {\dfrac{1}{3}} ight)^2} \hfill \\  \dfrac{{{u_3}}}{3} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^2} = {\left( {\dfrac{1}{3}} ight)^3} \hfill \\  ... \hfill \\  \dfrac{{{u_{10}}}}{{10}} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^9} = {\left( {\dfrac{1}{3}} ight)^{10}} \hfill \\ \end{matrix}

    Hay dãy \left( {\frac{{{u_n}}}{n}} ight) là một cấp số nhân có số hạng đầu {u_1} = \frac{1}{3},q = \frac{1}{3}

    Khi đó S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}} = \frac{{{3^{10}} - 1}}{{{{2.3}^{10}}}} = \frac{{29524}}{{59049}}

  • Câu 11: Nhận biết

    Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d = −2?

    Ta có: u_{11} = u_{1} + 10d = -
17

  • Câu 12: Vận dụng

    Cho dãy số (Un) là một cấp số cộng có u1 = 3 và công sai d = 4. Biết rằng tổng n số hạng đầu của dãy số (Un) là {S_n} = 253. Giá trị của n là:

     Ta có:

    \begin{matrix}  {S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} ight)d} ight]}}{2} \hfill \\   \Leftrightarrow \dfrac{{n\left[ {2.3 + \left( {n - 1} ight).4} ight]}}{2} = 253 \hfill \\   \Leftrightarrow 4{n^2} + 2n - 506 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 11} \\   {n =  - \dfrac{{23}}{2}\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6

    Ta có x = 6(x – 6) => x = 36/5

    Từ đó suy ra y = 6x = 216/5

  • Câu 14: Nhận biết

    Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?

    Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89

  • Câu 15: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 14x^{2} - 1. Số hạng thứ ba của cấp số nhân là:

    Công bội của cấp số nhân là: a =
\frac{4x^{2} - 1}{2x + 1} = 2x - 1

    Vậy số hạng thứ ba của cấp số nhân là:

    \left( 4x^{2} - 1 ight)(2x - 1) =
8x^{3} - 4x^{2} - 2x + 1

  • Câu 16: Nhận biết

    Trong các dãy số sau đây, dãy số nào là cấp số cộng?

    Ta có dãy số 1; - 3; - 7; - 11; -
15 là một cấp số cộng có công sai d
= - 4.

  • Câu 17: Thông hiểu

    Giả sử Q là tập hợp con của tập các số nguyên dương sao cho

    (a) k ∈ \mathbb{ Q}

    (b) n ∈ \mathbb{Q} => n + 1 ∈ \mathbb{Q} ,∀ n ≥ k.

    Chọn mệnh đề đúng trong các mệnh đề dưới đây.

     Mệnh đề " Mọi số nguyên dương đều thuộc \mathbb{Q}" sai vì \mathbb{Q} là tập con thực sự của \mathbb{N^*} nên tồn tại số nguyên dương không thuộc \mathbb{Q}.

    Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc \mathbb{Q}" đúng theo lí thuyết của phương pháp quy nạp.

    Mệnh đề "Mọi số nguyên bé hơn k đều thuộc \mathbb{Q}" sai theo giả thiết thì phải là số tự nhiên lớn hơn k \in \mathbb{Q}.

    Mệnh đề "Mọi số nguyên đều thuộc \mathbb{Q}" sai vì số nguyên âm không thuộc \mathbb{Q}.

  • Câu 18: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Xét đáp án \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};...\Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\pi} eq \frac{1}{\pi^{2}} = \frac{u_{3}}{u_{2}}

    => Dãy số \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};... không phải là cấp số nhân.

  • Câu 19: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q. Đẳng thức nào sau đây đúng?

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q.

    Theo công thức số hạng tổng quát ta có u_{n} = u_{1}q^{n - 1}, (n \geq 2).

  • Câu 20: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{4} = - 12;u_{14} = 18. Tính số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 61 lượt xem
Sắp xếp theo