Tính tổng
với
.
Với thì
Ta có:
Do đó ta xem S là tổng của n số hạng, mà mỗi số hạng đều bằng -1..
=>
Ta có: và
là cấp số cộng có n số hạng nên.
Tính tổng
với
.
Với thì
Ta có:
Do đó ta xem S là tổng của n số hạng, mà mỗi số hạng đều bằng -1..
=>
Ta có: và
là cấp số cộng có n số hạng nên.
Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?
Ta thấy ở dãy số có
nên đây là cấp số nhân với công bội
.
Tính tổng 
Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân ta có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Cho cấp số cộng
có
và công sai
. Tổng 10 số hạng đầu của cấp số cộng bằng:
Tổng 10 số hạng đầu của cấp số cộng là
Xác định số hạng tổng quát của dãy số dãy số
với
.
Từ công thức
Xét đáp án với
(loại)
Xét đáp án ta thấy thỏa mãn
Xét đáp án với
(loại)
Xét đáp án với
(loại)
Trong các dãy số sau, dãy số nào bị chặn trên?
Ta có:
.
Vậy đây là dãy số bị chặn trên.
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 5 của cấp số nhân đã cho.
Mặt khác
Cho cấp số cộng
có
và
. Khẳng định nào sau đây là đúng?
Ta có:
Cho cấp số cộng
biết
,
Khi đó
bằng
Ta có
Vậy
Cho dãy số
xác định bởi
. Khi đó
có giá trị bằng
Theo công thức truy hồi ta có
.
Cho cấp số nhân
có
. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Ta có:
Cho cấp số nhân có các số hạng lần lượt là
. Mệnh đề nào sau đây đúng?
Cấp số nhân
Vậy
Biểu thức nào sau đây cho ta tập giá trị của tổng ![]()
Ta có:
Với
Với
Với
Dự đoán ta sẽ chứng minh (*) đúng bằng phương pháo quy nạp.
Với đương nhiên (*) đúng.
Giả sử (*) đúng với tức là:
Ta chứng minh (*) đúng với
Ta có:
Vậy (*) đúng với mọi số tự nhiên n tức là
Trong các dãy số sau, dãy số nào là cấp số nhân?
Ta có:
=> là cấp số nhân
Cho dãy số (un) với
. Mệnh đề nào sau đây đúng?
Dãy số là dãy số không bị chặn vì
Giả sử A là tập con của tập hợp các số nguyên dương sao cho
(I) k ∈ A
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k
Lúc đó, ta có:
(I) k ∈ A : số nguyên dương k thuộc tập A.
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k : nếu số nguyên dương n(n≥k) thuộc tập A thì số nguyên dương đứng ngay sau nó (n+1) cũng thuộc A. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.
Dãy số nào sau đây không phải là một cấp số cộng?
Xét đáp án A:
=> Loại đáp án A
Xét đáp án B:
=> Loại đáp án B
Xét đáp án C:
=> Chọn đáp án C
Xét đáp án D:
=> Loại đáp án D
Tại một nhà máy, người ta đo được rằng
lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với
ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?
Đáp án: 500
Tại một nhà máy, người ta đo được rằng lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với
ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?
Đáp án: 500
Ta có:
.
Tính tổng 10 số hạng đầu tiên của cấp số nhân(un) có ![]()
Ta có: