Cho cấp số cộng
thỏa mãn
. Tính công sai
của cấp số cộng đó:
Ta có:
Cho cấp số cộng
thỏa mãn
. Tính công sai
của cấp số cộng đó:
Ta có:
Cho một cấp số nhân có các số hạng đều không âm thỏa mãn
. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.
Giả sử công bội của cấp số nhân là q
Ta có:
=>
Do cấp số nhân có các số hạng không âm nên q = 2
Ta có:
Cho cấp số cộng
có
. Gọi
là tổng 5 số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Ta có:
Và
Bạn An thả quả bóng cao su từ độ cao
so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng
độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?
Đáp án: 45
Bạn An thả quả bóng cao su từ độ cao so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng
độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?
Đáp án: 45
Quãng đường bóng đi được từ khi thả đến chạm đất lần 1 là .
Quãng đường bóng đi được từ khi chạm đất lần 1đến chạm đất lần 2 là .
Quãng đường bóng đi được từ khi chạm đất lần 2 đến chạm đất lần 3 là ……
Quãng đường bóng đi được từ khi chạm đất lần n đến chạm đất lần là
Tổng quãng đường bóng đi được từ lúc thả đến không nảy lên nữa là:
.
Người ta trồng
cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, kể từ hàng thứ hai trở đi số cây trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi có tất cả bao nhiêu hàng cây?
Giả sử trồng được n hàng cây
Số cây ở mỗi hàng lập thành cấp số cộng có và công sai
Theo giả thiết ta có:
Vậy có tất cả hàng cây.
Xét tính tăng, giảm và bị chặn của dãy số (un), biết
, ta thu được kết quả?
Ta có
Mà un > 0, ∀n nên un + 1 < un, ∀n ≥ 1⇒ dãy (un) là dãy số giảm.
Vì 0 < un ≤ u1 = 2, ∀n ≥ 1 nên dãy (un) là dãy bị chặn trên.
Cho cấp số nhân
. Hỏi số
là số hạng thứ mấy trong cấp số nhân đã cho?
Ta có: là cấp số nhân với
Cho dãy số
xác định bởi công thức
. Khẳng định nào sau đây sai?
Ta có:
Với ta thấy
Suy ra dãy số đã cho là dãy số giảm.
Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Cho dãy số (un) xác định bởi
. Giá trị u10 là?
Từ ta có un + 1 − un = 5
⇒ dãy (un) là một cấp số cộng với công sai d = 5 nên
u10 = u1 + 9d = 2 + 45 = 47
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Biết ba số
lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?
Để ba số lập thành một cấp số nhân thì
Vậy tổng các giá trị của m là
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.
Ta có:
Với giá trị nào của m ta có thể tìm được các giá trị của x để các số
lập thành một cấp số cộng?
Để ba số hạng lập thành một cấp số cộng ta có:
Theo bất đẳng thức Cauchy ta có:
Cho cấp số cộng
với
. Tìm số hạng đầu
và công sai
của cấp số cộng trên.
Ta có:
Biết các số
và
lập thành một cấp số nhân; các số
và
lập thành một cấp số cộng. Tính tổng ![]()
Theo bài ra ta có:
Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn
theo thứ tự tăng dần?
Số nguyên tố là số tự nhiên lớn hơn và chỉ có hai ước số là
và chính nó.
Vậy dãy số nguyên tố nhỏ hơn là
,
,
,
.
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Dãy số nào là dãy số tăng?
Xét ta có:
Vậy là dãy số tăng.
Cho cấp số cộng
với
. Khi đó số
là số hạng thứ mấy trong dãy?
Theo bài ra ta có: