Cho ba số dương a, b, c theo thứ tự lập thành một cấp số cộng. Giá trị lớn nhất của biểu thức
có dạng
. Hỏi x + y bằng bao nhiêu?
Ta có:
Theo bài ra ta có:
Dấu bằng xảy ra khi và chỉ khi
=> x + y = 11
Cho ba số dương a, b, c theo thứ tự lập thành một cấp số cộng. Giá trị lớn nhất của biểu thức
có dạng
. Hỏi x + y bằng bao nhiêu?
Ta có:
Theo bài ra ta có:
Dấu bằng xảy ra khi và chỉ khi
=> x + y = 11
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Dân số của thành phố A hiện nay là 4 triệu người. Biết rằng tỉ lệ tăng dân số hằng năm của thành phố A là 1%. Hỏi dân số của thành phố A sau 5 năm nữa sẽ là bao nhiêu?
Với mỗi số nguyên dương n, ký hiệu là số dân của thành phố A sau n năm.
Khi đó, theo giả thiết của bài toán ta có:
Ta có: là một cấp số nhân với số hạng đầu là
và công bội
=> Số dân của thành phố A sau 5 năm là: (triệu người).
Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?
Ta có:
Với
Đáp án sai
Cho cấp số nhân
với công bội
. Đặt
. Khẳng định nào sau đây đúng?
Theo công thức tính tổng số hạng đầu của CSN ta được
.
Trong các phát biểu sau, phát biểu nào là sai?
Ta lấy một phản ví dụ:
Dãy số (un) với là cấp số cộng có công sai d = 1 > 0
Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.
Cho dãy số
với mọi
. Khi đó số hạng thứ 5 của dãy là:
Ta có:
Khi đó số hạng thứ 5 của dãy là 48
Cho cấp số cộng
có
. Giá trị nhỏ nhất của
bằng:
Ta gọi là công sai của cấp số cộng.
Khi đó:
Vậy giá trị nhỏ nhất của là -24 đạt được khi khi
.
Cho dãy số (un) thỏa mãn
. Tìm giá trị nhỏ nhất của n thỏa mãn ![]()
Ta có:
Đặt
Dãy (vn) là cấp số nhân với công bội q = 10
=>
Vậy giá trị nhỏ nhất của n để là n = 102
Một cấp số cộng có số hạng đầu là 1, công sai là 4, tổng của n số hạng đầu là 561. Khi đó số hạng thứ n của cấp số cộng đó là
có giá trị là bao nhiêu?
Ta có:
Cho cấp số cộng
có
. Tính tổng 100 số hạng đầu tiên của cấp số cộng.
Ta có:
Cho dãy số
xác định bởi
với
. Khi đó số hạng
của dãy
là
Ta có:
Một cấp số nhân có số hạng đầu
, công bội q = 2. Biết
. Tìm n?
Ta có:
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Cho dãy số
biết
với
. Mệnh đề nào sau đây đúng?
Ta có:
=> Dãy số bị chặn dưới bởi 0.
Mặt khác
Vậy bị chặn trên, do đó dãy
bị chặn.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Cho cấp số nhân
có
. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Ta có:
Cho dãy số (un) được xác định như sau
. Số hạng u11 là?
Ta có:
Cho cấp số cộng
có
và
. Khẳng định nào sau đây là đúng?
Ta có:
Cho dãy số (un) có u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?
Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.