Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Dân số của thành phố A hiện nay là 4 triệu người. Biết rằng tỉ lệ tăng dân số hằng năm của thành phố A là 1%. Hỏi dân số của thành phố A sau 5 năm nữa sẽ là bao nhiêu?

    Với mỗi số nguyên dương n, ký hiệu u_{n} là số dân của thành phố A sau n năm.

    Khi đó, theo giả thiết của bài toán ta có:

    u_{n} = u_{n - 1} + u_{n - 1}.0,01 =
u_{n - 1}.1,01;(n \geq 2)

    Ta có: \left( u_{n} ight) là một cấp số nhân với số hạng đầu là u_{1} = 4
+ 4.0,01 = 4.1,01 và công bội q =
1,01

    \Rightarrow u_{n} = 4.1,01.(1,01)^{n -
1} = 4.(1,01)^{n};(n \geq 1)

    => Số dân của thành phố A sau 5 năm là: \Rightarrow u_{5} = 4.(1,01)^{5} = 4,2 (triệu người).

  • Câu 2: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 3: Thông hiểu

    Tìm x và y để dãy số 9;x; - 1;y là một cấp số cộng?

    Để dãy số 9;x; - 1;y là một cấp số cộng thì \left\{ \begin{matrix}x = \dfrac{9 - 1}{2} \\- 1 = \dfrac{x + y}{2} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 4 \\y = - 6 \\\end{matrix} ight.

  • Câu 4: Vận dụng cao

    Tại một nhà máy, người ta đo được rằng 80\% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100\ m^{3} ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

    Đáp án: 500

    Đáp án là:

    Tại một nhà máy, người ta đo được rằng 80\% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100\ m^{3} ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

    Đáp án: 500

    Ta có:

    100 + 100.0,8 + 100.0,8)^{2} +
100.(0,8)^{3} + \ldots

    = 100.\frac{1}{1 - 0,8} = 500\left( \
m^{3} ight).

  • Câu 5: Nhận biết

    Xác định số hạng tổng quát của dãy số dãy số \left( u_{n} ight) với \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{n + 1} = u_{n} - 2 \\\end{matrix} ight..

    Từ công thức \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{n + 1} = u_{n} - 2 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{2} = u_{1} - 2 = \dfrac{1}{2} - 2 = - \dfrac{3}{2} \\u_{3} = u_{2} - 2 = \dfrac{- 3}{2} - 2 = - \dfrac{7}{2} \\\end{matrix} ight.

    Xét đáp án u_{n} = \frac{1}{2} + 2(n -
1) với n = 2 \Rightarrow u_{2} =
\frac{1}{2} + 2(2 - 1) = \frac{5}{2} (loại)

    Xét đáp án u_{n} = \frac{1}{2} - 2(n -
1) ta thấy thỏa mãn

    Xét đáp án u_{n} = \frac{1}{2} -
2n với n = 2 \Rightarrow u_{2} =
\frac{1}{2} - 2.2 = - \frac{7}{2} (loại)

    Xét đáp án u_{n} = \frac{1}{2} +
2n với n = 1 \Rightarrow u_{1} =
\frac{1}{2} + 2.1 = \frac{5}{2} (loại)

  • Câu 6: Nhận biết

    Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?

    Từ định nghĩa cấp số nhân ta có các kết quả sau:

    \begin{matrix}  {u_{n + 1}} = {u_n}.q;\left( {n \geqslant 1} ight) \hfill \\  {u_n} = {u_1}.{q^{n - 1}};\left( {n \geqslant 2} ight) \hfill \\  {u_k}^2 = {u_{k - 1}}.{u_{k + 1}};\left( {k \geqslant 2} ight) \hfill \\ \end{matrix}

    Đáp án C sai

  • Câu 7: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.

     Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 3} \\   {q = \dfrac{9}{3} = 3} \end{array}} ight. \Rightarrow {u_n} = {u_1}.{q^{n - 1}} = {3.3^{n - 1}} = {3^n}

  • Câu 8: Vận dụng cao

    Cho một dãy số có các số hạng đầu tiên là 1,8,22,43,... Hiệu của hai số hạng liên tiếp của dãy số đó lập thành 1 cấp số cộng: 7,14,21,..., 7n. Số 35351 là số hạng thứ bao nhiêu của dãy số đã cho?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} - {u_1} = 7} \\   {{u_3} - {u_2} = 14} \\   \begin{gathered}  {u_4} - {u_3} = 21 \hfill \\  ... \hfill \\ \end{gathered}  \\   {{u_n} - {u_{n - 1}} = 7\left( {n - 1} ight)} \end{array}} ight.

    Cộng vế với vế của phương trình ta được:

    \begin{matrix}  {u_n} - {u_1} = 7 + 14 + 21 + ... + 7\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} - {u_1} = \dfrac{{7n.\left( {n - 1} ight)}}{2} \hfill \\   \Rightarrow 35331 - 1 = \dfrac{{7n.\left( {n - 1} ight)}}{2} \hfill \\   \Leftrightarrow {n^2} - n - 10100 = 0 \hfill \\   \Leftrightarrow n = 101 \hfill \\ \end{matrix}

     Vậy số 35351 là số hạng thứ 101 của dãy số đã cho.

  • Câu 9: Thông hiểu

    Cho cấp số nhân (un) biết u1 = 12; \frac{{{u_3}}}{{{u_8}}} = 243. Tính {u_9}

    Gọi q là công bội của cấp số nhân (un)

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_3} = {u_1}.{q^2}} \\   {{u_8} = {u_1}.{q^7}} \end{array}} ight. \Rightarrow \dfrac{{{u_3}}}{{{u_8}}} = \dfrac{{{u_1}.{q^2}}}{{{u_1}.{q^7}}} = \dfrac{1}{{{q^5}}} \hfill \\   \Rightarrow q = d\frac{1}{3} \hfill \\   \Rightarrow {u_9} = {u_1}.{q^8} = 12.{\left( {\dfrac{1}{3}} ight)^8} = \dfrac{4}{{2187}} \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_2} =  - 8 = {u_1}.q = 2q} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 4} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{S_5} = {u_1}.\dfrac{{1 - {q^5}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^5}}}{{1 + 4}} = 410} \\   {{S_6} = {u_1}.\dfrac{{1 - {q^6}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^6}}}{{1 + 4}} =  - 1638} \\   {{u_5} = {u_1}{q^4} = 2.{{\left( { - 4} ight)}^4} = 512} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 11: Vận dụng

    Cho dãy số (Un) là một cấp số cộng có u1 = 3 và công sai d = 4. Biết rằng tổng n số hạng đầu của dãy số (Un) là {S_n} = 253. Giá trị của n là:

     Ta có:

    \begin{matrix}  {S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} ight)d} ight]}}{2} \hfill \\   \Leftrightarrow \dfrac{{n\left[ {2.3 + \left( {n - 1} ight).4} ight]}}{2} = 253 \hfill \\   \Leftrightarrow 4{n^2} + 2n - 506 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 11} \\   {n =  - \dfrac{{23}}{2}\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Trong các dãy số sau, dãy số nào không phải cấp số nhân?

    Xét đáp án 1^{2};2^{2};3^{2};4^{2};...\Leftrightarrow \frac{u_{2}}{u_{1}} = 4 eq
\frac{9}{4} = \frac{u_{3}}{u_{2}}

    => Dãy số 1^{2};2^{2};3^{2};4^{2};... không phải là cấp số nhân.

  • Câu 13: Thông hiểu

    Cho cấp số cộng u_{3} = 15;d = - 2. Tính u_{n}

    Ta có:

    \left\{ \begin{matrix}u_{3} = 15 \\d = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + 2d = 15 \\d = - 2 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 19 \\d = - 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = u_{1} + (n - 1)d = -2n + 21

  • Câu 14: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n + 1} = 2u_{n} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có

    \left\{ \begin{matrix}u_{1} = \frac{1}{2} \\u_{2} = 2u_{1} \\u_{3} = 2u_{2} \\\cdots \\u_{n} = 2u_{n - 1} \\\end{matrix} ight.

    Nhân vế với vế của các đẳng thức trên, ta được: u_{1} \cdot u_{2} \cdot u_{3}\ldots u_{n} =
\frac{1}{2} \cdot 2^{n - 1} \cdot u_{1} \cdot u_{2}\ldots u_{n - 1}
\Leftrightarrow u_{n} = 2^{n - 2}.

  • Câu 15: Vận dụng

    Trong các phát biểu sau, có bao nhiêu phát biểu đúng?

    (1) Dãy số được xác định bởi a_{n} = 1 +
\frac{1}{n} là một dãy bị chặn.

    (2) Dãy số được xác định bởi an = n2 là một dãy giảm.

    (3) Dãy số được xác định bởi an = 1 − n2 là một dãy số giảm và không bị chặn dưới.

    (4) Dãy số được xác định bởi an = (−1)nn2 là một dãy không tăng, không giảm.

    0 < 1 + \frac{1}{n} < 2,\forall n
\in \mathbb{N}^{*} nên dãy số xác định bởi a_{n} = 1 + \frac{1}{n} là một dãy bị chặn.

    an + 1 − an = (n+1)2 − n2 = 2n + 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = n2 là dãy tăng.

    an + 1 − an = (1−(n+1)2) − (1−n2) = 2n − 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = 1 − n2 là dãy số giảm và không bị chặn dưới.

    a1 =  − 1 < a2 = 4 > a3 =  − 9 nên dãy số xác định bởi an = (−1)nn2 là dãy không tăng không giảm.

  • Câu 16: Thông hiểu

    Trong các dãy số sau, dãy số nào là dãy số giảm?

     

    • Xét đáp án u_{n} = \frac{n - 3}{n +
1} :

     

    Ta có u_{n} = \frac{n - 3}{n + 1};u_{n +
1} = \frac{n - 2}{n + 2}. Khi đó:

    u_{n + 1} - u_{n} = \frac{n - 2}{n + 2}
- \frac{n - 3}{n + 1} = \frac{4}{(n + 1)(n + 1)} > 0,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

     

    • Xét đáp án u_{n} =
\frac{n}{2}:

     

    Ta có u_{n} = \frac{n}{2};u_{n + 1} =
\frac{n + 1}{2}. Khi đó u_{n + 1} -
u_{n} = \frac{n + 1}{2} - \frac{n}{2} = \frac{1}{2} > 0,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

     

    • Xét đáp án u_{n} =
\frac{2}{n^{2}}:

     

    Ta có u_{n} = \frac{2}{n^{2}};u_{n + 1} =
\frac{2}{(n + 1)^{2}} \Rightarrow \frac{u_{n + 1}}{u_{n}} =
\frac{n^{2}}{(n + 1)^{2}} < \frac{n^{2}}{n^{2}} = 1,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số giảm.

     

    • Xét đáp án u_{n} = \frac{( -
1)^{n}}{3^{n}}:

     

    Ta có u_{1} = \frac{- 1}{3};u_{2} =
\frac{1}{9};u_{3} = \frac{- 1}{27}

    Vậy (un) là dãy số không tăng, không giảm.

  • Câu 17: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=\frac{n}{3^{n}-1}. Ba số hạng đầu tiên của dãy số đó lần lượt là:

    Ta có:

    \begin{matrix}  {u_1} = \dfrac{1}{{{3^1} - 1}} = \dfrac{1}{2} \hfill \\  {u_2} = \dfrac{2}{{{3^2} - 1}} = \dfrac{1}{4} \hfill \\  {u_3} = \dfrac{3}{{{3^3} - 1}} = \dfrac{3}{{26}} \hfill \\ \end{matrix}

    Ba số hạng đầu tiên của dãy số đó lần lượt là: \frac{1}{2};\frac{1}{4};\frac{3}{26}

  • Câu 18: Nhận biết

    Tính tổng 10 số hạng đầu của cấp số cộng u_{1} = 5;u_{2} = 9.

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 4

    \Rightarrow S_{10} = \frac{10}{2}.\left(
u_{1} + u_{10} ight) = 5\left( 2u_{1} + 9d ight) = 230

  • Câu 19: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=2^{n}. Tìm số hạng u_{n+1}

    Ta có:

    \begin{matrix}  {u_n} = {2^n} \hfill \\   \Rightarrow {u_{n + 1}} = {2^{n + 1}} = {2.2^n} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.

    Số hạng thứ ba của dãy số \left( u_{n}
ight) là: u_{3} = \frac{5.3 +
2}{19.3 + 1} = \frac{17}{58}.

    Xét u_{n} = 9 - 2n ta có: u_{n + 1} - u_{n} = - 2 < 0,\forall
n\mathbb{\in N} suy ra \left( u_{n}
ight) là dãy số giảm

    Lại có n\mathbb{\in N \Rightarrow}n \geq
0 \Rightarrow u_{n} = 9 - 2n \leq 9 suy ra \left( u_{n} ight) là dãy số bị chặn trên.

    Suy ra phát biểu “Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới.” là phát biểu sai.

    Ta có: S = \frac{1}{3} + \frac{1}{3^{2}}
+ ... + \frac{1}{3^{n}} + ... là tổng cấp số nhân lùi vô hạn \left( u_{n} ight) với u_{n} = \frac{1}{3^{n}} có số hạng đầu và công bội lần lượt là: u_{1} = \frac{1}{3};q
= \frac{1}{3}

    \Rightarrow S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = \dfrac{1}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo