Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Tìm m để phương trình: {x^4} - \left( {3m + 5} ight){x^2} + {\left( {m + 1} ight)^2} = 0 có bốn nghiệm lập thành một cấp số cộng?

    Giả sử bốn nghiệm phân biệt của phương trình {x_1};{x_2};{x_3};{x_4}

    Đặt {x^2} = y \geqslant 0, ta được phương trình:

    {y^2} - \left( {3m + 5} ight)y + {\left( {m + 1} ight)^2} = 0\left( * ight)

    Ta phải tìm m sao cho (*) có hai nghiệm dương phân biệt 0 < {y_1} < {y_2}

    Khi đó (*) có 4 nghiệm là {x_1} =  - \sqrt {{y_2}} ,{x_2} =  - \sqrt {{y_1}} ;{x_3} = \sqrt {{y_1}} ;{x_4} = \sqrt {{y_2}}

    Theo đề bài thì bốn nghiệm lập thành một cấp số cộng nên

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_3} + {x_1} = 2{x_2}} \\   {{x_4} + {x_3} = 2{x_3}} \end{array}} ight. \Leftrightarrow \sqrt {{y_1}}  - \sqrt {{y_2}}  = 2\sqrt {{y_1}}  \hfill \\   \Rightarrow 3\sqrt {{y_1}}  = \sqrt {{y_2}}  \Rightarrow 9{y_1} = {y_2}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng hệ thức Vi – et cho phương trình (*) ta có hệ:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\Delta  = {{\left( {3m + 5} ight)}^2} - 4{{\left( {m + 1} ight)}^2} > 0} \\   {S = {y_1} + {y_2} = 10{y_1} = 3m + 5} \\   {P = {y_1}{y_2} = 9{y_1}^2 = {{\left( {m + 1} ight)}^2}} \end{array}} ight. \Leftrightarrow m = 5

  • Câu 2: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là u_{1} = - 6;q = - 2. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.

    Ta có:

    2046 = u_{1}.\frac{1 - q^{n}}{1 -
q}

    \Rightarrow 2046 = ( - 6).\frac{1 - ( -
2)^{n}}{1 - ( - 2)}

    \Rightarrow n = 10

  • Câu 3: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 6d = 26 \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 13 - 3d \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    Khi đó:

    \Rightarrow (13 - 2d)^{2} + (13 +
2d)^{2} = 466

    \Rightarrow \left\lbrack \begin{matrix}
d = 4 \Rightarrow u_{1} = 1 \\
d = - 4 \Rightarrow u_{1} = 25 \\
\end{matrix} ight.

  • Câu 4: Vận dụng

    Cho dãy số (un) biết un = 3n + 6. Mệnh đề nào sau đây đúng?

    Ta có un = 3n + 6 ⇒ un + 1 = 3(n+1) + 6 = 3n + 9

    Xét hiệu un + 1 − un = (3n+9) − (3n+6) = 3 > 0, ∀n ∈ N*

    Vậy (un) là dãy số tăng.

  • Câu 5: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight) biết u_{5} = 5, u_{10} = 15 Khi đó u_{7} bằng

    Ta có

    \left\{ \begin{matrix}
u_{5} = 5 \\
u_{10} = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 4d = 5 \\
u_{1} + 9d = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 3 \\
d = 2 \\
\end{matrix} ight.

    Vậy u_{7} = u_{1} + 6d = - 3 + 6.2 =
9

  • Câu 6: Thông hiểu

    Tìm b > 0 để các số \frac{1}{\sqrt{2} };\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Các số \frac{1}{\sqrt{2} };\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    \Rightarrow {\left( {\sqrt b } ight)^2} = \left( {\frac{1}{{\sqrt 2 }}} ight).\left( {\sqrt 2 } ight)

    \Rightarrow b = 1 (Vì b > 0)

  • Câu 7: Nhận biết

    Trong các phát biểu sau, phát biểu nào là sai?

    Ta lấy một phản ví dụ:

    Dãy số (un) với {u_n} = n - 2 là cấp số cộng có công sai d = 1 > 0

    Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.

  • Câu 8: Nhận biết

    Cho dãy số (un)u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?

    Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.

  • Câu 9: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là S_{n} = 5^{n} - 1. Tìm số hạng thứ 4 của cấp số nhân đã cho.

    Ta có:

    S_{n} = 5^{n - 1}

    \Rightarrow u_{1}.\frac{1 - q^{n}}{1 -q} = 5^{n - 1}

    \Rightarrow \left\{ \begin{matrix}u_{1} = q - 1 \\q = 5 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = 5 \\\end{matrix} ight.

    Khi đó u_{4} = u_{1}.q^{3} = 4.5^{3} =500

  • Câu 10: Vận dụng cao

    Cho cấp số nhân \left( u_{n} ight) có các số hạng đều dương và \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} + \ldots + u_{n} = 2020 \\\dfrac{1}{u_{1}} + \dfrac{1}{u_{2}} + \dfrac{1}{u_{3}} + \ldots +\dfrac{1}{u_{n}} = 2021 \\\end{matrix} ight. Giá trị của P = u_{1} \cdot u_{2} \cdot u_{3}\ldots\ldots
u_{n} là:

    Ta có P = u_{1} \cdot \left( u_{1} \cdot q ight)\ldots..\left( u_{1} \cdot q^{n - 1} ight)

    = u_{1}^{n} \cdot q^{1 + 2 + 3 + \ldots + (n - 1)}

    = u_{1}^{n} \cdot q^{\frac{n(n -1)}{2}} = \left( u_{1} \cdot q^{\frac{n - 1}{2}}ight)^{n}

    Theo giả thiết, ta có:

    A = u_{1} + u_{2} +
u_{3} + \ldots + u_{n} = u_{1} \cdot \frac{q^{n} - 1}{q -
1}
    B = \frac{1}{u_{1}} + \frac{1}{u_{2}} +
\frac{1}{u_{3}} + \ldots + \frac{1}{u_{n}}

    = \frac{1}{u_{1}} \cdot \left( 1 +
\frac{1}{q} + \frac{1}{q^{2}} + \ldots + \frac{1}{q^{n - 1}}
ight)

    = \dfrac{1}{u_{1}} \cdot \dfrac{1 -\dfrac{1}{q^{n}}}{1 - \dfrac{1}{q}} = \dfrac{1}{u_{1}} \cdot \dfrac{q^{n} -1}{q - 1} \cdot \dfrac{1}{q^{n - 1}}.
    Suy ra \frac{A}{B} = u_{1}^{2} \cdot q^{n -
1} = \left( u_{1} \cdot q^{\frac{n - 1}{2}} ight)^{2}. Vậy P = \sqrt{\left( \frac{A}{B} ight)^{n}} =
\sqrt{\left( \frac{2020}{2021} ight)^{n}}.

  • Câu 11: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.

    Số hạng thứ ba của dãy số \left( u_{n}
ight) là: u_{3} = \frac{5.3 +
2}{19.3 + 1} = \frac{17}{58}.

    Xét u_{n} = 9 - 2n ta có: u_{n + 1} - u_{n} = - 2 < 0,\forall
n\mathbb{\in N} suy ra \left( u_{n}
ight) là dãy số giảm

    Lại có n\mathbb{\in N \Rightarrow}n \geq
0 \Rightarrow u_{n} = 9 - 2n \leq 9 suy ra \left( u_{n} ight) là dãy số bị chặn trên.

    Suy ra phát biểu “Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới.” là phát biểu sai.

    Ta có: S = \frac{1}{3} + \frac{1}{3^{2}}
+ ... + \frac{1}{3^{n}} + ... là tổng cấp số nhân lùi vô hạn \left( u_{n} ight) với u_{n} = \frac{1}{3^{n}} có số hạng đầu và công bội lần lượt là: u_{1} = \frac{1}{3};q
= \frac{1}{3}

    \Rightarrow S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = \dfrac{1}{2}

  • Câu 12: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 13: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) có số hạng đầu là u_{1} = 1, công bội là q = 2019. Tính u_{2019}?

    Theo công thức cấp số nhân ta có: u_{2019} = u_{1}.q^{n - 1} = 1.2019^{2019 - 1} =
2019^{2018}

  • Câu 14: Nhận biết

    Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi u_{1} = - 5;d = 3.

    Theo bài ra ta có:

    S_{100} = \frac{\left( 2u_{1} + 99d
ight).100}{2} = 14350

  • Câu 15: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=\frac{n}{3^{n}-1}. Ba số hạng đầu tiên của dãy số đó lần lượt là:

    Ta có:

    \begin{matrix}  {u_1} = \dfrac{1}{{{3^1} - 1}} = \dfrac{1}{2} \hfill \\  {u_2} = \dfrac{2}{{{3^2} - 1}} = \dfrac{1}{4} \hfill \\  {u_3} = \dfrac{3}{{{3^3} - 1}} = \dfrac{3}{{26}} \hfill \\ \end{matrix}

    Ba số hạng đầu tiên của dãy số đó lần lượt là: \frac{1}{2};\frac{1}{4};\frac{3}{26}

  • Câu 16: Nhận biết

    Cho dãy số có các số hạng đầu là 0;\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{4}{5};\ldots Số hạng tổng quát của dãy số này là

    Ta có 0=\frac{0}{0+1};\frac{1}{2}=\frac{1}{1+1};\frac{2}{3}=\frac{2}{2+1};

    \frac{3}{4}=\frac{3}{3+1};\frac{4}{5}=\frac{4}{4+1}

    Suy ra u_{n} = \frac{n}{n + 1}

  • Câu 17: Thông hiểu

    Cho dãy số \left( u_{n} ight) biết \left\{ \begin{matrix}u_{1} = 3 \\u_{n + 1} = 3u_{n} \\\end{matrix},\forall n \in N^{*} ight.. Tìm số hạng tổng quát của dãy số \left( u_{n}ight).

    Ta có u_{1} = 3\frac{u_{n+1}}{u_{n}}=3

    Suy ra dãy số \left( u_{n}ight)là cấp số nhân với \left\{\begin{matrix}u_{1} = 3 \\q = 3 \\\end{matrix} ight.

    Do đó u_{n} = u_{1}.q^{n - 1} = 3.3^{n -1} = 3^{n}

  • Câu 18: Thông hiểu

    Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho?

    Gọi năm số hạng của cấp số cộng đã cho là: u_{1}^{};u_{2}^{};u_{3}^{};u_{4}^{};u_{5}^{}.

    Theo đề bài ta có:

    u_{1} - u_{5} = 20

    \Leftrightarrow u_{1} - (u_{1} + 4d) =
20

    \Leftrightarrow d = - 5

    Vậy công sai của cấp số cộng đã cho là d
= - 5

  • Câu 19: Vận dụng

    Dân số của thành phố A hiện nay là 4 triệu người. Biết rằng tỉ lệ tăng dân số hằng năm của thành phố A là 1%. Hỏi dân số của thành phố A sau 5 năm nữa sẽ là bao nhiêu?

    Với mỗi số nguyên dương n, ký hiệu u_{n} là số dân của thành phố A sau n năm.

    Khi đó, theo giả thiết của bài toán ta có:

    u_{n} = u_{n - 1} + u_{n - 1}.0,01 =
u_{n - 1}.1,01;(n \geq 2)

    Ta có: \left( u_{n} ight) là một cấp số nhân với số hạng đầu là u_{1} = 4
+ 4.0,01 = 4.1,01 và công bội q =
1,01

    \Rightarrow u_{n} = 4.1,01.(1,01)^{n -
1} = 4.(1,01)^{n};(n \geq 1)

    => Số dân của thành phố A sau 5 năm là: \Rightarrow u_{5} = 4.(1,01)^{5} = 4,2 (triệu người).

  • Câu 20: Thông hiểu

    Giả sử Q là tập hợp con của tập các số nguyên dương sao cho

    (a) k ∈ \mathbb{ Q}

    (b) n ∈ \mathbb{Q} => n + 1 ∈ \mathbb{Q} ,∀ n ≥ k.

    Chọn mệnh đề đúng trong các mệnh đề dưới đây.

     Mệnh đề " Mọi số nguyên dương đều thuộc \mathbb{Q}" sai vì \mathbb{Q} là tập con thực sự của \mathbb{N^*} nên tồn tại số nguyên dương không thuộc \mathbb{Q}.

    Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc \mathbb{Q}" đúng theo lí thuyết của phương pháp quy nạp.

    Mệnh đề "Mọi số nguyên bé hơn k đều thuộc \mathbb{Q}" sai theo giả thiết thì phải là số tự nhiên lớn hơn k \in \mathbb{Q}.

    Mệnh đề "Mọi số nguyên đều thuộc \mathbb{Q}" sai vì số nguyên âm không thuộc \mathbb{Q}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 63 lượt xem
Sắp xếp theo