Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có cấp số nhân (un) nên khi đó:

    \begin{matrix}\left\{ {\begin{array}{*{20}{c}}  {{u_m} = 16} \\   {{u_{m + 1}} = 36} \end{array}} ight. \Leftrightarrow \dfrac{{{u_{m + 1}}}}{{{u_m}}} = \dfrac{{36}}{{16}} = \dfrac{9}{4} \Rightarrow q = \dfrac{9}{4} \hfill \\   \Rightarrow {u_{m + 2}} = {u_{m + 1}}.q = 36.\dfrac{9}{4} = 81 \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là 12288 m^{ 2 }. Diện tích bề mặt của tầng trên cùng là:

    Đáp án: 6 m2

    Đáp án là:

    Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là 12288 m^{ 2 }. Diện tích bề mặt của tầng trên cùng là:

    Đáp án: 6 m2

    Diện tích bề mặt của tầng trên cùng là S_{11} = \frac{12288}{2^{11}} = 6\
m^{2}.

  • Câu 3: Vận dụng cao

    Cho a, b, c theo thứ tự lập thành cấp số cộng. Giá trị x + y là bao nhiêu? Biết:

    B = {\log _2}\left( {{a^2} + ab + } ight){b^2} + bc + {c^2} = x{\log _2}\left( {{a^2} + ac + {c^2}} ight) + y;\left( {x,y \in \mathbb{N}} ight)

    Ta có: a, b, c lập thành cấp số cộng nên

    a + c = 2b => (a + c)2 = 4b2

    \begin{matrix}   \Rightarrow b\left( {a + c} ight) + 2{b^2} = {\left( {a + c} ight)^2} \hfill \\   \Rightarrow 2{a^2} + ab + 2{b^2} + bc + {c^2} = 2\left( {{a^2} + ac + {c^2}} ight) \hfill \\   \Rightarrow B = {\log _2}\left( {{a^2} + ab + } ight){b^2} + bc + {c^2} = {\log _2}\left( {{a^2} + ac + {c^2}} ight) + 1 \hfill \\   =  > x + y = 1 + 1 = 2 \hfill \\ \end{matrix}

  • Câu 4: Vận dụng

    Một cấp số cộng có số hạng đầu là 1, công sai là 4, tổng của n số hạng đầu là 561. Khi đó số hạng thứ n của cấp số cộng đó là u_{n} có giá trị là bao nhiêu?

    Ta có: \left\{ \begin{matrix}
u_{1} = 1;d = 4 \\
S_{m} = 561 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 1;d = 4 \.u_{1} + \dfrac{n(n - 1)}{2}.d = 561 \\\end{matrix} ight.

    \Leftrightarrow n + \frac{n^{2} -
n}{2}.4 = 561

    \Leftrightarrow 2n^{2} - n - 561 =
0

    \Leftrightarrow n = 17

    \Rightarrow u_{n} = u_{17} = u_{1} + 16d
= 1 + 16.4 = 65

  • Câu 5: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=5^{n+1}. Tìm số hạng u_{n-1}

    Ta có:

    \begin{matrix}  {u_n} = {5^{n + 1}} \hfill \\   \Rightarrow {u_{n - 1}} = {5^{\left( {n - 1} ight) + 1}} = {5^n} \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?

    Ta có:

    n2 − n + 1 < n2 + 2n + 2 (do n > 0)

    Suy ra u_{n} = \frac{n^{2} - n + 1}{n^{2}
+ 2n + 2} < 1, với mọi n.

  • Câu 7: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu và công sai lần lượt là - 2;3. Số hạng thứ 10 bằng:

    Ta có: u_{1} = - 2;d = 3

    \Rightarrow u_{10} = u_{1} + 9d =
25

  • Câu 8: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - 1} ight)}^{n + 1}}.\left( {n + 1} ight)}}{{{{\left( { - 1} ight)}^n}.n}} =  - \frac{{n + 1}}{n}=> Loại đáp án A

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( {n + 1} ight)}^2}}}{{{n^2}}}=> Loại đáp án B

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2 \Rightarrow {u_{n + 1}} = 2{u_n}=> Dãy số là cấp số nhân có công bội q = 2

    Chọn đáp án C

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{n + 1}}{{3n}}=> Loại đáp án B

  • Câu 9: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 10: Thông hiểu

    Dãy số nào sau đây là một cấp số cộng?

    Dãy số ở đáp án A thỏa mãn điều kiện {u_{n + 1}} - {u_1} = 2 với n \geqslant 1 là cấp số cộng.

  • Câu 11: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với số hạng đầu u_{1} và công bội q. Với n \geq
1, khẳng định nào sau đây đúng?

    Do \left( u_{n} ight) là cấp số nhân nên u_{n + 1} = u_{n}.q\ \ ,\ \ (n
\geq 1).

  • Câu 12: Nhận biết

    Dãy số nào sau đây có giới hạn bằng 0?

    \left| q ight| < 1 nên \lim {q^n} = 0.

  • Câu 13: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.2n. Mệnh đề nào sau đây sai?

    Ta có:

    \begin{matrix}  {u_n} = {( - 1)^n}.2n \hfill \\   \Rightarrow {u_1} = {( - 1)^1}.2.1 =  - 2 \hfill \\   \Rightarrow {u_2} = {( - 1)^2}.2.2 = 4 \hfill \\   \Rightarrow {u_3} = {( - 1)^3}.2.3 =  - 6 \hfill \\   \Rightarrow {u_4} = {( - 1)^4}.2.4 = 8 \hfill \\ \end{matrix}

    Vậy mệnh đề sai là: u_{4}=-8

  • Câu 14: Thông hiểu

    Một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

    Ta có:

    u_{n} = 32805

    \Rightarrow u_{1}.q^{n - 1} =
32805

    \Rightarrow 3^{n - 1} =
6561

    \Rightarrow n = 9

    Vậy u_{9} là số hạng chính giữa của cấp số nhân nên cấp số nhân đã cho có 17 số hạng.

  • Câu 15: Vận dụng

    Dân số của thành phố A hiện nay là 4 triệu người. Biết rằng tỉ lệ tăng dân số hằng năm của thành phố A là 1%. Hỏi dân số của thành phố A sau 5 năm nữa sẽ là bao nhiêu?

    Với mỗi số nguyên dương n, ký hiệu u_{n} là số dân của thành phố A sau n năm.

    Khi đó, theo giả thiết của bài toán ta có:

    u_{n} = u_{n - 1} + u_{n - 1}.0,01 =
u_{n - 1}.1,01;(n \geq 2)

    Ta có: \left( u_{n} ight) là một cấp số nhân với số hạng đầu là u_{1} = 4
+ 4.0,01 = 4.1,01 và công bội q =
1,01

    \Rightarrow u_{n} = 4.1,01.(1,01)^{n -
1} = 4.(1,01)^{n};(n \geq 1)

    => Số dân của thành phố A sau 5 năm là: \Rightarrow u_{5} = 4.(1,01)^{5} = 4,2 (triệu người).

  • Câu 16: Thông hiểu

    Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho?

    Gọi năm số hạng của cấp số cộng đã cho là: u_{1}^{};u_{2}^{};u_{3}^{};u_{4}^{};u_{5}^{}.

    Theo đề bài ta có:

    u_{1} - u_{5} = 20

    \Leftrightarrow u_{1} - (u_{1} + 4d) =
20

    \Leftrightarrow d = - 5

    Vậy công sai của cấp số cộng đã cho là d
= - 5

  • Câu 17: Vận dụng cao

    Cho phương trình bậc ba: {x^3} + \left( {5 - m} ight){x^2} + \left( {6 - 5m} ight)x - 6m = 0 (m là tham số). Tìm m để phương trình có ba nghiệm phân biệt lập thành cấp số nhân.

    Ta có:

    \begin{matrix}  {x^3} + \left( {5 - m} ight){x^2} + \left( {6 - 5m} ight)x - 6m = 0 \hfill \\   \Leftrightarrow \left( {x - m} ight)\left( {{x^2} + 5x + 6} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = m} \\   {x =  - 2} \\   {x =  - 3} \end{array}} ight. \hfill \\ \end{matrix}

    Để ba nghiệm của phương trình lập thành một cấp số nhân

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\left( { - 2} ight).\left( { - 3} ight) = {m^2}} \\   { - 3m = {{\left( { - 2} ight)}^2}} \\   { - 2m = {{\left( { - 3} ight)}^2}} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  \pm \sqrt 6 } \\   {m =  - \dfrac{4}{3}} \\   {m =  - \dfrac{9}{2}} \end{array}} ight.

     

  • Câu 18: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 1 và công sai d = 2. Tổng 10 số hạng đầu của cấp số cộng bằng:

    Tổng 10 số hạng đầu của cấp số cộng là

    S_{n} = \frac{n}{2}\left\lbrack 2u_{1} +
(n - 1)d ightbrack

    \Rightarrow S_{10} =
\frac{10}{2}\left\lbrack 2.1 + (10 - 1)2 ightbrack =
100

  • Câu 19: Vận dụng

    Trong các dãy số sau, dãy nào là dãy số tăng?

    Đáp án u_n = \sin (n)  và In = (−1)n ⋅ n là các dãy không tăng, không giảm.

    Xét đáp án v_{n} = \frac{n - 1}{n +
1}, ta có:

    v_{n} = 1 - \frac{2}{n + 1} \Rightarrow
v_{n + 1} - v_{n} = \frac{2}{n + 1} - \frac{2}{n + 2} > 0,\forall n
\in \mathbb{N}^{*}

    Suy ra (vn) là dãy số tăng.

  • Câu 20: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{n + 3}{2n^{2} - 1}. Biết rằng u_{k} = \frac{7}{31}. Khi đó u_{k} là số hạng thứ mấy trong dãy số?

    Ta có:

    u_{k} = \frac{7}{31} \Rightarrow \frac{k
+ 3}{2k^{2} - 1} = \frac{7}{31}

    \Leftrightarrow 14k^{2} - 7 = 31k +
93

    \Leftrightarrow 14k^{2} - 31k - 100 = 0\Leftrightarrow \left\lbrack \begin{matrix}k = 4(tm) \\k = - \dfrac{25}{14}(ktm) \\\end{matrix} ight.

    Vậy u_{k} là số hạng thứ tư trong dãy số.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 59 lượt xem
Sắp xếp theo