Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 1 và công sai d = 2. Tổng 10 số hạng đầu của cấp số cộng bằng:

    Tổng 10 số hạng đầu của cấp số cộng là

    S_{n} = \frac{n}{2}\left\lbrack 2u_{1} +
(n - 1)d ightbrack

    \Rightarrow S_{10} =
\frac{10}{2}\left\lbrack 2.1 + (10 - 1)2 ightbrack =
100

  • Câu 2: Vận dụng

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \cos n + \sin n. Dãy số (u_{n}) bị chặn trên bởi số nào dưới đây?

     Ta có:

    \begin{matrix}  {u_n} = \cos n + \sin n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n + \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\sin \dfrac{\pi }{4}\sin n + \cos \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \cos \left( {n - \dfrac{\pi }{4}} ight) \hfill \\ \end{matrix}

    Với mọi n ta có:

    \begin{matrix}   - 1 \leqslant \cos \left( {n - \dfrac{\pi }{4}} ight) \leqslant 1 \hfill \\   \Leftrightarrow  - \sqrt 2  \leqslant {u_n} = \sqrt 2 \cos \left( {n - \dfrac{\pi }{4}} ight) \leqslant \sqrt 2  \hfill \\ \end{matrix}

    Vậy dãy số (u_{n}) bị chặn trên bởi \sqrt{2}

  • Câu 4: Vận dụng

    Cho dãy số (un)u_{1} = \frac{1}{5}u_{n + 1} = \frac{n + 1}{5n}u_{n},\forall n \geq
1.

    Tất cả các giá trị n để S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} < \frac{5^{2018} -
1}{{4.5}^{2018}} là?

    Ta có u_{n + 1} = \frac{n + 1}{5n}u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} = \frac{1}{5} \cdot
\frac{u_{n}}{n}

    Đặt v_{n} = \frac{u_{n}}{n},\forall n \geq
1. Suy ra (vn) là cấp số nhận có công bội q = \frac{1}{5}v = \frac{1}{5}.

    Ta có S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} = \sum_{k = 1}^{n}\mspace{2mu} v_{k} =
v_{1}\frac{1 - q^{n}}{1 - q} = \frac{1}{5} \cdot \frac{1 - \left(
\frac{1}{5} ight)^{n}}{1 - \frac{1}{5}} = \frac{1}{4} \cdot
\frac{5^{n} - 1}{5^{n}} = T_{n}

    Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.

    Suy ra T_{n} < \frac{5^{2018} -
1}{{4.5}^{2018}} = T_{2018} \Leftrightarrow n < 2018

  • Câu 5: Thông hiểu

    Cho cấp số cộng (u_{n}) có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát u_{n} của cấp số cộng.

    Theo bài ra ta có:

    Dãy số đã cho là cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {{u_2} = 9} \end{array} \Rightarrow d = {u_2} - {u_1} = 4} ight.

    => {u_n} = {u_1} + \left( {n - 1} ight).d = 4n + 1

    Vậy số hạng tổng quát của dãy số là: u_n=4n+1

  • Câu 6: Nhận biết

    Cho dãy số (u_n) xác định bởi u_{n}=\frac{n^{2}}{3^{n}} với \forall  n\geq 1. Khi đó số hạng u_{2n} của dãy (u_{n}) là 

     Ta có:

    \begin{matrix}  {u_n} = \dfrac{{{n^2}}}{{{3^n}}} \hfill \\   \Rightarrow {u_{2n}} = \dfrac{{{{\left( {2n} ight)}^2}}}{{{3^{2n}}}} = \dfrac{{4{n^2}}}{{{9^n}}} \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 1;q = - \frac{1}{10}. Số \frac{1}{10^{103}} là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = \frac{1}{10^{103}}

    \Rightarrow u_{1}.q^{n - 1} =
\frac{1}{10^{103}}

    \Rightarrow ( - 1)\left( - \frac{1}{10}
ight)^{n - 1} = 6561

    Mà n là số chẵn và n - 1 = 103

    \Rightarrow n = 104

  • Câu 8: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 9: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có cấp số nhân (un) nên khi đó:

    \begin{matrix}\left\{ {\begin{array}{*{20}{c}}  {{u_m} = 16} \\   {{u_{m + 1}} = 36} \end{array}} ight. \Leftrightarrow \dfrac{{{u_{m + 1}}}}{{{u_m}}} = \dfrac{{36}}{{16}} = \dfrac{9}{4} \Rightarrow q = \dfrac{9}{4} \hfill \\   \Rightarrow {u_{m + 2}} = {u_{m + 1}}.q = 36.\dfrac{9}{4} = 81 \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = - 3. Tổng 10 số hạng đầu tiên của dãy là:

    Tổng 10 số hạng đầu tiên của dãy là:

    S_{10} = \frac{10}{2}\left( 2u_{1} + 9d
ight) = 5(4 - 27) = - 115

  • Câu 11: Thông hiểu

    Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối u_{6} của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}q = 2 \\S_{6} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - q^{6}}{1 - q} = 189 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - 2^{6}}{1 - 2} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1} = 3 \\\end{matrix} ight.

    \Rightarrow u_{6} = u_{1}.q^{5} =
3.2^{6} = 96

  • Câu 12: Nhận biết

    Trong các phát biểu sau, phát biểu nào là sai?

    Ta lấy một phản ví dụ:

    Dãy số (un) với {u_n} = n - 2 là cấp số cộng có công sai d = 1 > 0

    Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.

  • Câu 13: Vận dụng

    Cho dãy số vô hạn (un) là cấp số cộng có công sai d, số hạng đầu u1. Hãy chọn khẳng định sai?

     Ta có:

    Công thức tổng n số hạng đầu tiên của cấp số cộng là:

    \begin{matrix}  {S_n} = n{u_1} + \dfrac{{n\left( {n - 1} ight)d}}{2} \hfill \\   \Rightarrow {S_{12}} = 12{u_1} + \dfrac{{12.11.d}}{2} = 6\left( {2{u_1} + 11d} ight) e \dfrac{n}{2}.\left( {2{u_1} + 11d} ight) \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Trong các dãy số sau đây, dãy số nào là cấp số cộng?

    Ta có dãy số 1; - 3; - 7; - 11; -
15 là một cấp số cộng có công sai d
= - 4.

  • Câu 15: Vận dụng cao

    Cho một dãy số có các số hạng đầu tiên là 1; 8; 22; 43; … Hiệu của hai số hạng liên tiếp của dãy số đó lập thành một cấp số cộng 7; 14; 21; …, 7n. Số 35351 là số hạng thứ mấy của cấp số đã cho?

    Theo đề bài ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} - {u_1} = 7} \\   {{u_3} - {u_2} = 14} \\   {{u_4} - {u_3} = 21} \\   \begin{gathered}  ..... \hfill \\  {u_n} - {u_{n - 1}} = 7\left( {n - 1} ight) \hfill \\ \end{gathered}  \end{array}} ight.

    Cộng các vế của các phương trình của hệ ta được:

    {u_n} - {u_1} = 7 + 14 + 21 + ... + 7\left( {n - 1} ight) = \frac{{7.n\left( {n - 1} ight)}}{2}\left( * ight)

    Đặt {u_n} = 35351

    Từ (*) suy ra:

    \begin{matrix}  35351 - 1 = \dfrac{{7n\left( {n - 1} ight)}}{2} \hfill \\   \Leftrightarrow {n^2} - n - 10100 = 0 \hfill \\   \Leftrightarrow n = 101 \hfill \\ \end{matrix}

    Do đó 35351 là số hạng thứ 101 của dãy số

  • Câu 16: Vận dụng cao

    Từ hình vuông có cạnh bằng 1, người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi S_{n}là diện tích của hình vuông được tạo thành ở bước thứ n \left( n \in \left\{ 1;2;3;... ight\}
ight). Tính tổng S = S_{1} +
S_{2} + S_{3} + ... + S_{n} + ...?

    Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Từ hình vuông có cạnh bằng 1, người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi S_{n}là diện tích của hình vuông được tạo thành ở bước thứ n \left( n \in \left\{ 1;2;3;... ight\}
ight). Tính tổng S = S_{1} +
S_{2} + S_{3} + ... + S_{n} + ...?

    Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)

    Giả sử cạnh hình vuông bằng a.

    Ta có cạnh của hình vuông được tạo ở bước 1 là \frac{a\sqrt{5}}{3} \Rightarrow S_{1} =
\frac{5a^{2}}{9}

    Tương tự như trên, ta có:

    S_{2} = \left(
\frac{5}{9} ight)^{2}a^{2},S_{3}
= \left( \frac{5}{9} ight)^{3}a^{2},…, S_{n} = \left( \frac{5}{9}
ight)^{n}a^{2}

    Nên S = S_{1} + S_{2} + S_{3} + ... +
S_{n} + ... là tổng của cấp số nhân lùi vô hạn với \left\{ \begin{matrix}
u_{1} = \frac{5}{9}a^{2} \\
q = \frac{5}{9} \\
\end{matrix} ight..

    Khi đó S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{5}{9}a^{2}}{1 - \dfrac{5}{9}} =\dfrac{5}{4}a^{2}.

    Với a = 1 suy ra S =
\frac{5}{4}.

  • Câu 17: Nhận biết

    Dãy số nào sau đây có giới hạn bằng 0?

    \left| q ight| < 1 nên \lim {q^n} = 0.

  • Câu 18: Thông hiểu

    Cho dãy số (un) được xác định như sau \left\{ \begin{matrix}
u_{1} = 0 \\
u_{n + 1} = \frac{n}{n + 1}\left( u_{n} + 1 ight) \\
\end{matrix} ight.. Số hạng u11 là?

    Ta có:

    \begin{matrix}
u_{2} & = \frac{1}{2}\left( u_{1} + 1 ight) = \frac{1}{2}; &
u_{3} = \frac{2}{3}\left( u_{2} + 1 ight) = 1; & u_{4} =
\frac{3}{4}\left( u_{3} + 1 ight) = \frac{3}{2}; \\
u_{5} & = \frac{4}{5}\left( u_{4} + 1 ight) = 2; & u_{6} =
\frac{5}{6}\left( u_{5} + 1 ight) = \frac{5}{2}; & u_{7} =
\frac{6}{7}\left( u_{6} + 1 ight) = 3 \\
u_{8} & = \frac{7}{8}\left( u_{7} + 1 ight) = \frac{7}{2}; &
u_{9} = \frac{8}{9}\left( u_{8} + 1 ight) = 4; & u_{10} =
\frac{1}{2}\left( u_{9} + 1 ight) = \frac{9}{2}; \\
u_{11} & = \frac{10}{11}\left( u_{10} + 1 ight) = 5 & & \\
\end{matrix}

  • Câu 19: Thông hiểu

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    Đáp án là:

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    a) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{6} = u_{1} + 5d = 5 + 5.2 =
15.

    b) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{n} = u_{1} + (n - 1)d = 5 + (n - 1).2
= 2n + 3.

    c) Áp dụng công thức tính tổng nsố hạng đầu tiên của cấp số cộng ta có:

    S_{n} = nu_{1} + \frac{(n - 1)n}{2}d = 5n
+ \frac{(n - 1)n}{2}.2 = n^{2} + 4n.

    d) Ta viết lại

    S = u_{10} + u_{11} + .. +
u_{20}

    = \left( u_{1} + u_{2} + .. + u_{20}
ight) - \left( u_{1} + u_{2} + .. + u_{9} ight)

    = S_{20} - S_{9} = 480 - 117 =
363.

  • Câu 20: Nhận biết

    Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.

    Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì

    \begin{matrix}  {m^2} = \left( {2m - 3} ight)\left( {2m + 3} ight) \hfill \\   \Leftrightarrow {m^2} = 4{m^2} - 9 \hfill \\   \Leftrightarrow {m^2} = 3 \hfill \\   \Leftrightarrow m =  \pm \sqrt 3  \hfill \\ \end{matrix}

    Do m > 0 => m = \sqrt 3

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 44 lượt xem
Sắp xếp theo