Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho dãy số (un)u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?

    Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.

  • Câu 2: Vận dụng

    Giả sử \sin \frac{a}{6};\cos a;\tan a theo thứ tự lập thành một cấp số nhân. Khi đó \cos 2a bằng:

    Điều kiện \cos a e 0 \Leftrightarrow a e \frac{\pi }{2} + k\pi ;\left( {k \in \mathbb{Z}} ight)

    Theo tính chất của cấp số nhân ta có:

    \begin{matrix}  {\cos ^2}a = \dfrac{{\sin a}}{6}.\tan a \hfill \\   \Leftrightarrow 6{\cos ^2}a = \dfrac{{{{\sin }^2}a}}{{\cos a}} \hfill \\   \Leftrightarrow 6{\cos ^3}a - {\sin ^2}a = 0 \hfill \\   \Leftrightarrow 6{\cos ^3}a + {\cos ^2}a - 1 = 0 \hfill \\   \Leftrightarrow {\cos ^2}a = \dfrac{1}{2} \hfill \\   \Rightarrow \cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\dfrac{1}{2}} ight)^2} - 1 =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho một cấp số cộng (Un) có {u_1} = \frac{1}{3};{u_8} = 26. Công sai d của cấp số cộng là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Rightarrow {u_8} = {u_1} + 7d \hfill \\   \Rightarrow 26 = \dfrac{1}{3} + 7.d \hfill \\   \Rightarrow d = \dfrac{{11}}{3} \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Dãy số có các số hạng cho bởi - 1;1; - 1;1;... có số hạng tổng quát là công thức nào dưới đây?

    Vì dãy số đã cho không phải là dãy hằng nên loại các đáp án u_{n} = 1u_{n} = - 1

    Ta có: u_{1} = - 1 ở các đáp án u_{n} = ( - 1)^{n}u_{n} = ( - 1)^{n + 1}

    Xét đáp án u_{n} = ( - 1)^{n} \Rightarrowu_{1} = - 1

    Xét đáp án u_{n} = ( - 1)^{n + 1}\Rightarrow u_{1} = ( - 1)^{2} = 1 eq - 1

    Vậy công thức tổng quát của dãy số đã cho là u_{n} = ( - 1)^{n}

  • Câu 5: Nhận biết

    Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội q eq 0. Mệnh đề nào sau đây là đúng?

    Ta có: ac = b^{2} \Rightarrow
\frac{1}{b^{2}} = \frac{1}{ac}

  • Câu 6: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{4} = - 12;u_{14} = 18. Giá trị S_{16} bằng bao nhiêu?

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

    Tổng của 16 số hạng đầu tiên của cấp số cộng là:

    S_{16} = \frac{\left( 2u_{1} + 15d
ight).16}{2} = 24

  • Câu 7: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.

     Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 3} \\   {q = \dfrac{9}{3} = 3} \end{array}} ight. \Rightarrow {u_n} = {u_1}.{q^{n - 1}} = {3.3^{n - 1}} = {3^n}

  • Câu 8: Thông hiểu

    Trong các dãy số dưới đây, dãy số nào là dãy số giảm?

    Xét phương án u_{n} = n^{2}, ta có:

    u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} =
2n + 1 > 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số tăng.

    Xét phương án u_{n} =
\frac{1}{n^{2}}, ta có:

    u_{n + 1} -
u_{n} = \frac{1}{(n + 1)^{2}} - \frac{1}{n^{2}} = \frac{- 2n -
1}{n^{2}(n + 1)^{2}} < 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số giảm.

    Xét phương án u_{n} = 2n - 1, ta có:

    u_{n + 1} - u_{n} = 2n + 1 - (2n - 1) = 2
> 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số tăng.

    Xét phương án u_{n} = n^{3} - 3, ta có:

    u_{n + 1} - u_{n} = (n + 1)^{3} - 3 -\left( n^{3} - 3 ight)

    = 3n^{2} + 3n + 1 > 0,\forall n \in\mathbb{N}^{*} nên dãy này là dãy số tăng.

    Vậy dãy số u_{n} =
\frac{1}{n^{2}} là dãy số giảm.

  • Câu 9: Nhận biết

    Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?

    Xét dãy số u_{n}=7-3n

    Ta có:

    \begin{matrix}  {u_{n + 1}} = 7 - 3\left( {n + 1} ight) \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} = 7 - 3\left( {n + 1} ight) - \left( {7 - 3n} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy dãy số u_{n}=7-3n là một cấp số cộng với u_1=4;d=-3

  • Câu 10: Nhận biết

    Xác định số hạng tổng quát của dãy số dãy số \left( u_{n} ight) với \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{n + 1} = u_{n} - 2 \\\end{matrix} ight..

    Từ công thức \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{n + 1} = u_{n} - 2 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{2} = u_{1} - 2 = \dfrac{1}{2} - 2 = - \dfrac{3}{2} \\u_{3} = u_{2} - 2 = \dfrac{- 3}{2} - 2 = - \dfrac{7}{2} \\\end{matrix} ight.

    Xét đáp án u_{n} = \frac{1}{2} + 2(n -
1) với n = 2 \Rightarrow u_{2} =
\frac{1}{2} + 2(2 - 1) = \frac{5}{2} (loại)

    Xét đáp án u_{n} = \frac{1}{2} - 2(n -
1) ta thấy thỏa mãn

    Xét đáp án u_{n} = \frac{1}{2} -
2n với n = 2 \Rightarrow u_{2} =
\frac{1}{2} - 2.2 = - \frac{7}{2} (loại)

    Xét đáp án u_{n} = \frac{1}{2} +
2n với n = 1 \Rightarrow u_{1} =
\frac{1}{2} + 2.1 = \frac{5}{2} (loại)

  • Câu 11: Vận dụng cao

    Với giá trị nào của m ta có thể tìm được các giá trị của x để các số {5^{x + 1}} + {5^{1 - x}};\frac{m}{2};{25^x} + {25^{ - x}} lập thành một cấp số cộng?

     Để ba số hạng lập thành một cấp số cộng ta có:

    \begin{matrix}  \left( {{5^{x + 1}} + {5^{1 - x}}} ight) + \left( {{{25}^x} + {{25}^{ - x}}} ight) = 2.\left( {\dfrac{m}{2}} ight) \hfill \\   \Rightarrow m = 5\left( {{5^x} + \dfrac{1}{{{5^x}}}} ight) + \left( {{5^{2x}} + \dfrac{1}{{{5^{2x}}}}} ight) \hfill \\ \end{matrix}

    Theo bất đẳng thức Cauchy ta có:

    \begin{matrix}  {5^x} + \dfrac{1}{{{5^x}}} \geqslant 2\sqrt 1  = 2 \hfill \\  {5^{2x}} + \dfrac{1}{{{5^{2x}}}} \geqslant 2 \hfill \\   \Rightarrow m \geqslant 5.2 + 2 = 12 \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?

     Theo bài ra ta có:

    Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 8000} \\   {d = 500} \end{array}} ight.

    => Số tiền phải trả khi khoan giếng sâu 20m là:

    \begin{matrix}  {S_{20}} = \dfrac{{20.\left( {2{u_1} + 19.d} ight)}}{2} \hfill \\   \Rightarrow {S_{20}} = 10.\left( {2.8000 + 19.500} ight) = 255000 \hfill \\ \end{matrix}

    Vậy muốn khoan 20 mét thì mất 255000 đồng.

  • Câu 13: Thông hiểu

    Cho dãy số \left(
u_{n} ight) biết u_{n} = \frac{3n
- 1}{3n + 1}. Dãy số \left( u_{n}
ight) bị chặn trên bởi số nào dưới đây?

    Ta có: u_{n} = \frac{3n - 1}{3n + 1} = 1
- \frac{2}{3n + 1} < 1

    Mặt khác u_{2} = \frac{5}{7} >
\frac{1}{2} > 0

    => Dãy số \left( u_{n}
ight) bị chặn trên bởi số 1.

  • Câu 14: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} + u_{8} + u_{9} + u_{15} = 100. Tính tổng 16 số hạng đầu tiên của cấp số cộng đã cho.

    Ta có:

    u_{2} + u_{8} + u_{9} + u_{15} =
100

    \Leftrightarrow 4u_{1} + 30d =
100

    \Leftrightarrow 2u_{1} + 15d =
50

    \Rightarrow S_{16} = \frac{16}{2}.\left(
u_{1} + u_{16} ight) = 8.50 = 400

  • Câu 15: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là: 

    Ta có: \frac{{4{x^2} - 1}}{{2x + 1}} = 2x - 1

    Vậy công sai của cấp số nhân là 2x - 1

    Vậy số hạng tiếp theo sẽ là: \left( {4{x^2} - 1} ight)\left( {2x - 1} ight) = 8{x^3} - 4{x^2} - 2x + 1

  • Câu 16: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) có số hạng đầu là u_{1} = 1, công bội là q = 2019. Tính u_{2019}?

    Theo công thức cấp số nhân ta có: u_{2019} = u_{1}.q^{n - 1} = 1.2019^{2019 - 1} =
2019^{2018}

  • Câu 17: Vận dụng

    Cho dãy số (an) được xác định bởi \left\{ \begin{matrix}
a_{1} = 1;a_{2} = 2 \\
a_{n + 2} - a_{n + 1} - a_{n} = 0 \\
\end{matrix} ight..

    Phát biểu nào dưới đây về dãy số (an) là đúng?

    Mỗi số hạng thứ ba trở đi luôn bằng tổng của hai số đứng ngay trước nó. Đồng thời số hạng đầu tiên và số hạng thứ hai của dãy là các số dương nên dễ thấy dãy số là một dãy tăng.

  • Câu 18: Thông hiểu

    Dãy số \left(
u_{n} ight) có công thức số hạng tổng quát nào dưới đây xác định một cấp số nhân?

    Xét dãy số U_{n} = 2020^{n} ta có:

    \frac{U_{n + 1}}{U_{n}} = \frac{2020^{n +
1}}{2020^{n}} = 2020;\forall n \in \mathbb{N}^{*} nên U_{n} = 2020^{n} là công thức số hạng tổng quát xác định một cấp số nhân.

    Xét dãy số U_{n} =
2020^{n^{3}}

    \frac{U_{n + 1}}{U_{n}} = \frac{2020^{(n
+ 1)^{3}}}{2020^{n^{3}}} = 2020^{3n^{2} + 3n + 1};\forall n \in
\mathbb{N}^{*} nên U_{n} =
2020^{n^{3}} không là công thức số hạng tổng quát xác định một cấp số nhân.

    Xét dãy số U_{n} = \frac{2020}{n +
2019}

    \frac{U_{n + 1}}{U_{n}} =
\frac{\frac{2020}{n + 1 + 2019}}{\frac{2020}{n + 2019}} = \frac{n +
2019}{n + 2020};\forall n \in \mathbb{N}^{*} nên U_{n} = \frac{2020}{n + 2019} không là công thức số hạng tổng quát xác định một cấp số nhân.

    Xét dãy số U_{n} = 2020n +
2019

    \frac{U_{n + 1}}{U_{n}} = \frac{2020(n +
1) + 2019}{2020n + 2019} = \frac{2020n + 4039}{2020n + 2019};\forall n
\in \mathbb{N}^{*} nên U_{n} =
2020n + 2019 không là công thức số hạng tổng quát xác định một cấp số nhân

  • Câu 19: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)với u_{n} = 3n - 7. Tìm số hạng đầu u_{1} và công sai d của cấp số cộng trên.

    Ta có:

    u_{n} = 3n - 7 \Rightarrow u_{1} = 3.1 -
7 = - 4

    u_{n} - u_{n - 1} = (3n - 7) - (3n - 3 -
7) = 3 \Rightarrow d = 3

  • Câu 20: Vận dụng cao

    Tính tổng 3 + 33 + 333 + ... + 33...33 + ....

     Ta có:

    \begin{matrix}  S = 3\left( {1 + 11 + 111 + ... + 11...1} ight) \hfill \\  S = 3.\left( {\dfrac{{10 - 1}}{9} + \dfrac{{{{10}^2} - 1}}{9} + ... + \dfrac{{{{10}^n} - 1}}{9}} ight) \hfill \\  S = \dfrac{3}{9}.\left( {10 + {{10}^2} + ... + {{10}^n} - n} ight) \hfill \\  S = \dfrac{1}{3}.\left( {10.\dfrac{{{{10}^n} - 1}}{{10 - 1}} - n} ight) = \dfrac{1}{{27}}.\left( {{{10}^{n + 1}} - 10 - 9n} ight) \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 59 lượt xem
Sắp xếp theo