Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 2: Vận dụng cao

    Cho phương trình: x^{3} +3x^{2}-(24+m)x-26-n=0. Tìm hệ thức liên hệ giữa m và n để 3 nghiệm phân biệt x_{1},x_{2},x_{3} lập thành một cấp số cộng.

    Vì ba nghiệm {x_1};{x_2};{x_3} phân biệt lập thành một cấp số cộng nên ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} = x_0 - d} \\   {{x_2} = x_0} \\   {{x_3} = x_0 + d} \end{array}} ight.;\left( {d e 0} ight)

    Theo giả thiết ta có: 

    \begin{matrix}  {x^3} + 3{x^2} - (24 + m)x - 26 - n \hfill \\   = \left( {x - {x_1}} ight).\left( {x - {x_2}} ight).\left( {x - {x_3}} ight) \hfill \\   = \left( {x - {x_0} + d} ight)\left( {x - {x_0}} ight)\left( {x - {x_0} - d} ight) \hfill \\   = {x^3} - 3{x_0}{x^2} + \left( {3{x_0}^2 - {d^2}} ight)x - {x_0}^3 + {x_0}.{d^2};\left( {\forall x} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}   - 3{x_0} = 3 \hfill \\  24 + m = 3{x_0}^2 - {d^2} \hfill \\ \end{gathered}  \\   { - 26 - n =  - {x_0}^3 + {x_0}.{d^2}} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_0} =  - 1} \\   {m - n} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?

     Theo bài ra ta có:

    Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 8000} \\   {d = 500} \end{array}} ight.

    => Số tiền phải trả khi khoan giếng sâu 20m là:

    \begin{matrix}  {S_{20}} = \dfrac{{20.\left( {2{u_1} + 19.d} ight)}}{2} \hfill \\   \Rightarrow {S_{20}} = 10.\left( {2.8000 + 19.500} ight) = 255000 \hfill \\ \end{matrix}

    Vậy muốn khoan 20 mét thì mất 255000 đồng.

  • Câu 4: Vận dụng

    Một cấp số cộng có số hạng đầu là 1, công sai là 4, tổng của n số hạng đầu là 561. Khi đó số hạng thứ n của cấp số cộng đó là u_{n} có giá trị là bao nhiêu?

    Ta có: \left\{ \begin{matrix}
u_{1} = 1;d = 4 \\
S_{m} = 561 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 1;d = 4 \.u_{1} + \dfrac{n(n - 1)}{2}.d = 561 \\\end{matrix} ight.

    \Leftrightarrow n + \frac{n^{2} -
n}{2}.4 = 561

    \Leftrightarrow 2n^{2} - n - 561 =
0

    \Leftrightarrow n = 17

    \Rightarrow u_{n} = u_{17} = u_{1} + 16d
= 1 + 16.4 = 65

  • Câu 5: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n} = \frac{1}{2 - u_{n - 1}},\ \forall n \geq 2 \\
\end{matrix} ight.. Khi đó u_{3} có giá trị bằng

    Theo công thức truy hồi ta có

    u_{2} = \frac{1}{2 - \frac{1}{2}} =
\frac{2}{3} \Rightarrow u_{3} = \frac{1}{2 - \frac{2}{3}} =
\frac{3}{4}.

  • Câu 6: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;S_{23} = 483. Tìm công sai d của cấp số cộng?

    Gọi d là công sai của cấp số cộng khi đó ta có:

    S_{23} = 483 \Leftrightarrow
\frac{23\left( 2u_{1} + 22d ight)}{2} = 483

    \Leftrightarrow \frac{23.( - 2 +
22d)}{2} = 483

    \Leftrightarrow d = 2

  • Câu 7: Vận dụng cao

    Một quả bóng cao su được thả từ độ cao 81m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng

    Đáp án 405

    Đáp án là:

    Một quả bóng cao su được thả từ độ cao 81m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng

    Đáp án 405

    Gọi r_{i} là khoảng cách lần rơi thứ i

    Ta có r_{1} = 81, r_{2} = \frac{2}{3}.81,…, r_{n} = \left( \frac{2}{3} ight)^{n -
1}.81,…

    Suy ra tổng các khoảng cách rơi của quả bóng từ lúc thả bóng cho đến lần rơi thứ n bằng 81.\frac{1 - \left( \frac{2}{3} ight)^{n}}{1 -
\frac{2}{3}}.

    Gọi t_{i} là khoảng cách lần nảy thứ i

    Ta có t_{1} = \frac{2}{3}.81, t_{2} = \left( \frac{2}{3}
ight).\frac{2}{3}81,…, t_{n} =
\left( \frac{2}{3} ight)^{n - 1}\frac{2}{3}.81,…

    Suy ra tổng các khoảng cách nảy của quả bóng từ lúc thả bóng cho đến đến lần nảy thứ n bằng \dfrac{2}{3}.81.\dfrac{1 - \left( \dfrac{2}{3}ight)^{n - 1}}{1 - \dfrac{2}{3}}.

    Vậy tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng S =
\lim\left( 81.\frac{1 - \left( \frac{2}{3} ight)^{n}}{1 - \frac{2}{3}}
+ \frac{2}{3}.81.\frac{1 - \left( \frac{2}{3} ight)^{n - 1}}{1 -
\frac{2}{3}} ight) = 405.

  • Câu 8: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = 3;q = - 2. Số 192 là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = 192

    \Rightarrow u_{1}.q^{n - 1} =
192

    \Rightarrow 3.2^{n - 1} =
192

    \Rightarrow ( - 1)^{n - 1}.2^{n - 1} =
64

    \Rightarrow n = 7

  • Câu 9: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 10: Nhận biết

    Dãy số nào là dãy số tăng?

    Xét u_{n} = n^{2} ta có: u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} = 2n + 1
> 0;\forall n \in \mathbb{N}^{*}

    Vậy u_{n} = n^{2} là dãy số tăng.

  • Câu 11: Nhận biết

    Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?

    Ta có: \left\{ \begin{matrix}
u_{2} = 4 \\
u_{6} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1}q = 4 \\
u_{1}q^{5} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
q = 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} =
2.2^{n - 1} = 2^{n}

  • Câu 12: Thông hiểu

    Trong các dãy số dưới đây, dãy số nào là dãy số giảm?

    Xét phương án u_{n} = n^{2}, ta có:

    u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} =
2n + 1 > 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số tăng.

    Xét phương án u_{n} =
\frac{1}{n^{2}}, ta có:

    u_{n + 1} -
u_{n} = \frac{1}{(n + 1)^{2}} - \frac{1}{n^{2}} = \frac{- 2n -
1}{n^{2}(n + 1)^{2}} < 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số giảm.

    Xét phương án u_{n} = 2n - 1, ta có:

    u_{n + 1} - u_{n} = 2n + 1 - (2n - 1) = 2
> 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số tăng.

    Xét phương án u_{n} = n^{3} - 3, ta có:

    u_{n + 1} - u_{n} = (n + 1)^{3} - 3 -\left( n^{3} - 3 ight)

    = 3n^{2} + 3n + 1 > 0,\forall n \in\mathbb{N}^{*} nên dãy này là dãy số tăng.

    Vậy dãy số u_{n} =
\frac{1}{n^{2}} là dãy số giảm.

  • Câu 13: Thông hiểu

    Cho một cấp số cộng có {u_4} = 2;{u_2} = 4. Hỏi {u_1} bằng bao nhiêu?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_4} = 2} \\   {{u_2} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + 3d = 2} \\   {{u_1} + d = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {d =  - 1} \end{array}} ight.

  • Câu 14: Thông hiểu

    Tìm tất cả các giá trị của x để ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân

    \Rightarrow x^{2} = (2x - 1).(2x +
1)

    \Rightarrow x^{2} = 4x^{2} -
1

    \Rightarrow 3x^{2} = 1

    \Rightarrow x = \pm
\frac{1}{\sqrt{3}}

  • Câu 15: Nhận biết

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n}, dãy nào là cấp số nhân?

    Dãy u_{n} = \frac{1}{3^{n - 2}} =
9.\left( \frac{1}{3} ight)^{n} là cấp số nhân có \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 16: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 17: Nhận biết

    Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?

    Ta có u2019 = 2.2019 + 1 = 4039

  • Câu 18: Thông hiểu

    Giả sử Q là tập hợp con của tập các số nguyên dương sao cho

    (a) k ∈ \mathbb{ Q}

    (b) n ∈ \mathbb{Q} => n + 1 ∈ \mathbb{Q} ,∀ n ≥ k.

    Chọn mệnh đề đúng trong các mệnh đề dưới đây.

     Mệnh đề " Mọi số nguyên dương đều thuộc \mathbb{Q}" sai vì \mathbb{Q} là tập con thực sự của \mathbb{N^*} nên tồn tại số nguyên dương không thuộc \mathbb{Q}.

    Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc \mathbb{Q}" đúng theo lí thuyết của phương pháp quy nạp.

    Mệnh đề "Mọi số nguyên bé hơn k đều thuộc \mathbb{Q}" sai theo giả thiết thì phải là số tự nhiên lớn hơn k \in \mathbb{Q}.

    Mệnh đề "Mọi số nguyên đều thuộc \mathbb{Q}" sai vì số nguyên âm không thuộc \mathbb{Q}.

  • Câu 19: Vận dụng

    Số đo ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân. Biết thể tích của khối hộp là 125cm^{3} và diện tích toàn phần là 175cm^{2}. Tính tổng số đo ba kích thước của hình hộp chữ nhật đó.

    Ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân nên ta có thể gọi ba kích thước đó là \frac{a}{q};q;aq.

    Thể tích khối hộp chữ nhật: V =
\frac{a}{q}.a.a.q = a^{3} = 125 \Rightarrow a = 5

    Diện tích toàn phần của hình hộp chữ nhật là

    S_{tp} = 2.\left( \frac{a}{q}.a + a.a.q
+ a.q + \frac{a}{q} ight)

    = 2a^{2}\left( 1 + q + \frac{1}{q}
ight) = 50.\left( 1 + q + \frac{1}{q} ight)

    Theo giả thiết ta có:

    50.\left( 1 + q + \frac{1}{q} ight) =175 \Rightarrow \left\lbrack \begin{matrix}q = 2 \\q = \dfrac{1}{2} \\\end{matrix} ight.

    Với q = 2 hoặc q = \frac{1}{2} thì kích thước của hình hộp chữ nhật là 2,5cm;5cm;10cm

    => Tổng các kích thước là 17,5cm.

  • Câu 20: Vận dụng

    Cho cấp số nhân \left( u_{n}
ight) có công bội nguyên và các số hạng thoả mãn \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} ight.. Các khẳng định dưới đây là đúng hay sai?

    a) Số hạng đầu của cấp số nhân bằng 9. Đúng||Sai

    b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai

    c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng

    d) Gọi dãy số \left( v_{n} ight):\ \
v_{n} = u_{3n}, với n \in
\mathbb{N}^{*}. Khi đó tổng v_{1} +
v_{2} + v_{3} + ... + v_{10} = 12\left( 4^{10} - 1 ight). Sai||Đúng

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) có công bội nguyên và các số hạng thoả mãn \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} ight.. Các khẳng định dưới đây là đúng hay sai?

    a) Số hạng đầu của cấp số nhân bằng 9. Đúng||Sai

    b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai

    c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng

    d) Gọi dãy số \left( v_{n} ight):\ \
v_{n} = u_{3n}, với n \in
\mathbb{N}^{*}. Khi đó tổng v_{1} +
v_{2} + v_{3} + ... + v_{10} = 12\left( 4^{10} - 1 ight). Sai||Đúng

    a) Đúng

    Ta có:

    \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
u_{1}q^{3} - u_{1}q = 54 \\
u_{1}q^{4} - u_{1}q^{2} = 108 \\
\end{matrix} ight.\  ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1}q\left( q^{2} - 1 ight) = 54 \\
u_{1}q^{2}\left( q^{2} - 1 ight) = 108 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = \frac{54}{q(q^{2} - 1)} \\
\frac{1}{q} = \frac{54}{108} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = \frac{54}{2(2^{2} - 1)} \\
q = 2 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 9 \\
q = 2 \\
\end{matrix} ight.\  ight..

    b) Đúng.

    Ta có: S_{9} = \frac{u_{1} \cdot \left( 1
- q^{9} ight)}{1 - q} = \frac{9 \cdot \left( 1 - 2^{9} ight)}{1 - 2}
= 4599

    Vậy tổng của 9 số hạng đầu tiên bằng 4599 nên mệnh đề đúng.

    c) Sai.

    Ta có:

    u_{k} = 576 \Leftrightarrow u_{1} \cdot
q^{k - 1} = 576 \Leftrightarrow 9.2^{k - 1} = 576

    \Leftrightarrow 2^{k - 1} = 64
\Leftrightarrow k - 1 = 6 \Leftrightarrow k = 7

    Vậy số 576 là số hạng thứ 7 của cấp số nhân nên mệnh đề sai.

    d) Sai.

    Ta có v_{n} = u_{3n}, nên \left( v_{n} ight) là cấp số nhân với v_{1} = u_{3} = 36 và công bội q = \frac{v_{2}}{v_{1}} =
\frac{u_{6}}{u_{3}} = \frac{9.2^{5}}{9.2^{2}} = 8.

    Nên S_{10} = 36.\frac{8^{10} -
1}{7}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 50 lượt xem
Sắp xếp theo