Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Biết tổng ba số hạng đầu của một cấp số nhân là
, đồng thời theo thứ tự chúng là số hạng thứ nhất, số hạng thứ tư và số hạng thứ tám của một cấp số cộng. Công bội và số hạng đầu tiên của cấp số nhân là:
Gọi là bốn số hạng đầu của cấp số nhân
với công bội
.
Gọi là cấp số cộng tương ứng với công sai
.
Theo bài ra ta có:
Cho cấp số nhân lùi vô hạn
công bội
. Đặt
thì:
Tổng cấp số nhân là:
Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:
Cho dãy số
, với
. Mệnh đề nào sau đây đúng?
Ta có: là dãy thay dấu nên không tăng, không giảm.
Tập giá trị của dãy số là {-1; 1}
Vậy dãy số là dãy số bị chặn.
Cho a, b, c theo thứ tự lập thành cấp số cộng. Giá trị x + y là bao nhiêu? Biết:
![]()
Ta có: a, b, c lập thành cấp số cộng nên
a + c = 2b => (a + c)2 = 4b2
Cho cấp số cộng
có số hạng đầu và công sai lần lượt là
. Số hạng thứ
bằng:
Ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho phương trình bậc ba:
(m là tham số). Tìm m để phương trình có ba nghiệm phân biệt lập thành cấp số nhân.
Ta có:
Để ba nghiệm của phương trình lập thành một cấp số nhân
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Cho dãy số vô hạn (un) là cấp số cộng có công sai d, số hạng đầu u1. Hãy chọn khẳng định sai?
Ta có:
Công thức tổng n số hạng đầu tiên của cấp số cộng là:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số
được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số
được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng . Đúng||Sai
Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.
Số hạng thứ ba của dãy số là:
.
Xét ta có:
suy ra
là dãy số giảm
Lại có suy ra
là dãy số bị chặn trên.
Suy ra phát biểu “Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới.” là phát biểu sai.
Ta có: là tổng cấp số nhân lùi vô hạn
với
có số hạng đầu và công bội lần lượt là:
Xác định bốn số hạng đầu của một dãy số
xác định bởi công thức
với
?
Ta có:
Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.
Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì
Do m > 0 =>
Cho một cấp số nhân
có
. Hỏi
là số hạng thứ mấy của cấp số nhân?
Ta có:
Vậy số là số hạng thứ 11 của cấp số nhân.
Cho một cấp số cộng
có
. Giá trị
bằng bao nhiêu?
Ta có:
Tổng của 16 số hạng đầu tiên của cấp số cộng là:
Cho dãy số (un) với
, biết
. Hỏi uk là số hạng thứ mấy của dãy số đã cho?
Ta có:
(do k∈ℕ*)
Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) ∀n ∈ ℕ* : un ≤ n.
Vì cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.
Dãy không tăng, không giảm và không bị chặn dưới.
Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.
Biểu thức nào sau đây cho ta tập giá trị của tổng ![]()
Ta có:
Với
Với
Với
Dự đoán ta sẽ chứng minh (*) đúng bằng phương pháo quy nạp.
Với đương nhiên (*) đúng.
Giả sử (*) đúng với tức là:
Ta chứng minh (*) đúng với
Ta có:
Vậy (*) đúng với mọi số tự nhiên n tức là
Cho cấp số cộng (Un) có
. Giá trị của
bằng:
Ta có:
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: