Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 2: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = \frac{3n^{2} - 19n}{4};\left( n
\in \mathbb{N}^{*} ight). Tìm số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    S_{n} = \frac{3n^{2} - 19n}{4} =
\frac{3}{4}n^{2} - \frac{19}{4}n

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = \dfrac{3}{4} \\u_{1} - \dfrac{d}{2} = - \dfrac{19}{4} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 4 \\d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 3: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.

    Số hạng thứ ba của dãy số \left( u_{n}
ight) là: u_{3} = \frac{5.3 +
2}{19.3 + 1} = \frac{17}{58}.

    Xét u_{n} = 9 - 2n ta có: u_{n + 1} - u_{n} = - 2 < 0,\forall
n\mathbb{\in N} suy ra \left( u_{n}
ight) là dãy số giảm

    Lại có n\mathbb{\in N \Rightarrow}n \geq
0 \Rightarrow u_{n} = 9 - 2n \leq 9 suy ra \left( u_{n} ight) là dãy số bị chặn trên.

    Suy ra phát biểu “Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới.” là phát biểu sai.

    Ta có: S = \frac{1}{3} + \frac{1}{3^{2}}
+ ... + \frac{1}{3^{n}} + ... là tổng cấp số nhân lùi vô hạn \left( u_{n} ight) với u_{n} = \frac{1}{3^{n}} có số hạng đầu và công bội lần lượt là: u_{1} = \frac{1}{3};q
= \frac{1}{3}

    \Rightarrow S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = \dfrac{1}{2}

  • Câu 4: Vận dụng cao

    Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu tiên là 24850. Tính giá trị của biểu thức S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{48}}.{u_{49}}}} + \frac{1}{{{u_{49}}.{u_{50}}}}

    Ta có:

    \begin{matrix}  {u_{100}} + {u_1} = 497 \hfill \\   \Rightarrow {u_{100}} = 1 + 99d \hfill \\   \Rightarrow d = 5 \hfill \\   \Rightarrow {u_{50}} = 246 \hfill \\ \end{matrix}

    Ta lại có

    \begin{matrix}  5S = \dfrac{{{u_2} - {u_1}}}{{{u_1}{u_2}}} + \dfrac{{{u_3} - {u_2}}}{{{u_2}{u_3}}} + ... + \dfrac{{{u_{49}} - {u_{48}}}}{{{u_{48}}.{u_{49}}}} + \dfrac{{{u_{50}} - {u_{49}}}}{{{u_{50}}.{u_{49}}}} = \dfrac{1}{{{u_1}}} - \dfrac{1}{{{u_{50}}}} = 1 - \dfrac{1}{{246}} \hfill \\   \Rightarrow S = \dfrac{{49}}{{246}} \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight)u_{1} = 3 và công bội q = 3. Số hạng tổng quát của cấp số nhân \left( u_{n}
ight)

    Số hạng tổng quát của cấp số nhân \left(
u_{n} ight)

    u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1} =
3^{n}.

  • Câu 6: Thông hiểu

    Tìm x và y để dãy số 9;x; - 1;y là một cấp số cộng?

    Để dãy số 9;x; - 1;y là một cấp số cộng thì \left\{ \begin{matrix}x = \dfrac{9 - 1}{2} \\- 1 = \dfrac{x + y}{2} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 4 \\y = - 6 \\\end{matrix} ight.

  • Câu 7: Vận dụng cao

    Cho phương trình bậc ba: {x^3} + \left( {5 - m} ight){x^2} + \left( {6 - 5m} ight)x - 6m = 0 (m là tham số). Tìm m để phương trình có ba nghiệm phân biệt lập thành cấp số nhân.

    Ta có:

    \begin{matrix}  {x^3} + \left( {5 - m} ight){x^2} + \left( {6 - 5m} ight)x - 6m = 0 \hfill \\   \Leftrightarrow \left( {x - m} ight)\left( {{x^2} + 5x + 6} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = m} \\   {x =  - 2} \\   {x =  - 3} \end{array}} ight. \hfill \\ \end{matrix}

    Để ba nghiệm của phương trình lập thành một cấp số nhân

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\left( { - 2} ight).\left( { - 3} ight) = {m^2}} \\   { - 3m = {{\left( { - 2} ight)}^2}} \\   { - 2m = {{\left( { - 3} ight)}^2}} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  \pm \sqrt 6 } \\   {m =  - \dfrac{4}{3}} \\   {m =  - \dfrac{9}{2}} \end{array}} ight.

     

  • Câu 8: Vận dụng

    Cho dãy số \left(
u_{n} ight) với \left\{\begin{matrix}u_{1} = 1 \\u_{n + 1} = \dfrac{u_{n} + 2}{u_{n} + 1};(n \geq 1) \\\end{matrix} ight.. Chọn đáp án đúng.

    Ta chứng minh 1 \leq u_{n} \leq
\frac{3}{2};n \geq 1 bằng phương pháp quy nạp.

    Với n = 1 ta có: 1 \leq u_{1} \leq \frac{3}{2}

    Giả sử 1 \leq u_{k} \leq \frac{3}{2};k
\geq 1. Ta cần chứng minh 1 \leq
u_{k +} \leq \frac{3}{2}.

    Thật vậy u_{k + 1} = 1 + \frac{1}{u_{k} +
1}

    u_{k} + 1 > 0 \Rightarrow u_{k + 1}
= 1 + \frac{1}{u_{k} + 1} > 1

    u_{k} + 1 \geq 2 \Rightarrow u_{k + 1}
= 1 + \frac{1}{u_{k} + 1} \leq 1 + \frac{1}{2} =
\frac{3}{2}

    Vậy 1 \leq u_{n} \leq \frac{3}{2};n \geq
1 hay dãy \left( u_{n}
ight) bị chặn trên bởi \frac{3}{2} và bị chặn dưới bởi 1.

  • Câu 9: Vận dụng

    Tính tổng S = -
2 + 4 - 8 + 16 - 32 + 64 - ... + ( - 2)^{n - 1} + ( - 2)^{n} với n \geq 1,n\mathbb{\in N}.

    Các số hạng - 2;4; - 8;16; - 32;64;...;(
- 2)^{n - 1};( - 2)^{n} có tổng S gồm có n số hạng theo thứ tự đó lập thành một cấp số nhân có u_{1} = -
2;q = - 2

    \Rightarrow S = S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q}

    \Rightarrow S = ( - 2).\frac{1 - ( -
2)^{n}}{3}

  • Câu 10: Nhận biết

    Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?

    Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a

    Theo bài ra ta có:

    Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng

    => u3 – u2 = u4 – u3

    => 6 – 1 = a – 6

    => a = 11

  • Câu 11: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 5d = 3. Mệnh đề nào sau đây đúng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = - 5 \\
d = 3 \\
\end{matrix} ight.\ \overset{CTTQ}{ightarrow}u_{13} = u_{1} + (13 -
1)d = - 5 + 3(13 - 1) = 31

  • Câu 12: Thông hiểu

    Cho một cấp số cộng (Un) có {u_1} = \frac{1}{3};{u_8} = 26. Công sai d của cấp số cộng là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Rightarrow {u_8} = {u_1} + 7d \hfill \\   \Rightarrow 26 = \dfrac{1}{3} + 7.d \hfill \\   \Rightarrow d = \dfrac{{11}}{3} \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight)u_{2} = - 6,u_{5} =
48. Tính S_{5}.

    Ta có \left\{ \begin{matrix}
u_{1}.q = - 6 \\
u_{1}.q^{4} = 48 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1}.q = - 6 \\
q^{3} = - 8 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
q = - 2 \\
\end{matrix} ight.\  ight.\  ight.

    Vậy S_{5} = \frac{3\left( 1 - ( - 2)^{5}
ight)}{1 - ( - 2)} = 33.

  • Câu 14: Nhận biết

    Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1

    Một học sinh chứng minh un luôn chia hết cho 19 như sau:

    Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19

    Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.

    Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1

    Bước 3: Vì 5.23k − 2 + 33k − 119.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*

    Vậy un chia hết cho 19, ∀n ∈ ℕ*

    Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?

    Lập luận hoàn toàn đúng!

  • Câu 15: Thông hiểu

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n} sau, dã số nào là dãy số tăng?

    Xét đáp án u_{n} = 2^{n} ta có:

    u_{n + 1} - u_{n} = 2^{n + 1} - 2^{n} =
2^{n} > 0

    => Dãy số u_{n} = 2^{n} là dãy tăng.

  • Câu 16: Thông hiểu

    Số hạng đầu tiên của cấp số nhân (u_{n}) thỏa mãn hệ \left\{\begin{matrix}u_{4}-u_{2}=72\\ u_{5}-u_{3}=144\end{matrix}ight. là:

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_4} - {u_2} = 72} \\   {{u_5} - {u_3} = 144} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}.{q^3} - {u_1}.q = 72} \\   {{u_1}.{q^4} - {u_1}.{q^2} = 144} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}q.\left( {{q^2} - 1} ight) = 72} \\   {{u_1}.{q^2}\left( {{q^2} - 1} ight) = 144} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {q = 2} \\   {{u_1} = 12} \end{array}} ight.

  • Câu 17: Thông hiểu

    Cho dãy số (un) biết u_{n} = \frac{5^{n}}{n^{2}}. Mệnh đề nào sau đây đúng?

    Ta có u_{n} = \frac{5^{n}}{n^{2}} >
0,\forall n \in \mathbb{N}^{*} \Rightarrow u_{n + 1} = \frac{5^{n +
1}}{(n + 1)^{2}}

    Xét tỉ số:

    \frac{u_{n + 1}}{u_{n}} = \frac{5^{n +
1}}{(n + 1)^{2}} \cdot \frac{n^{2}}{5^{n}}

    = \frac{5n^{2}}{n^{2} + 2n + 1} =
\frac{n^{2} + 2n + 1 + 4n^{2} - 2n - 1}{n^{2} + 2n + 1}

    = 1 + \frac{2n(n - 1) + 2n^{2} -
1}{n^{2} + 2n + 1} > 1,\forall n \in \mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

  • Câu 18: Nhận biết

    Cho dãy số u_{n}
= \frac{n^{2} + 2n - 1}{n + 1}. Giá trị u11

    Ta có u_{11} = \frac{11^{2} + 2.11 - 1}{11
+ 1} = \frac{71}{6}

  • Câu 19: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 20: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có công bội âm. Biết u_{3} = 12;u_{7} = 192. Khi đó u_{10} = ?

    Ta có:

    \left\{ \begin{matrix}
u_{3} = 12 \\
u_{7} = 192 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1}.q^{2} = 12 \\
u_{1}.q^{6} = 192 \\
\end{matrix} ight.

    \Leftrightarrow \frac{q^{2}}{q^{6}} =
\frac{12}{192} \Leftrightarrow q^{4} = 16

    \Leftrightarrow q = - 2;(q < 0)
\Rightarrow u_{1} = 3

    \Rightarrow u_{10} = u_{1}.q^{9} = 3.( -
2)^{9} = - 1536

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 59 lượt xem
Sắp xếp theo