Cho dãy số
, biết
. Ba số hạng đầu tiên của dãy số đó lần lượt là:
Ta có:
Ba số hạng đầu tiên của dãy số đó lần lượt là:
Cho dãy số
, biết
. Ba số hạng đầu tiên của dãy số đó lần lượt là:
Ta có:
Ba số hạng đầu tiên của dãy số đó lần lượt là:
Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu tiên là 24850. Tính giá trị của biểu thức ![]()
Ta có:
Ta lại có
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có:
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Dãy số nào sau đây không phải là cấp số nhân?
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số cộng với công sai
.
Trong các dãy số sau, dãy số nào là cấp số nhân?
Xét dãy số
Ta có: => Dãy số là cấp số nhân
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Xác định bốn số hạng đầu của một dãy số
xác định bởi công thức
với
?
Ta có:
Biết bốn số
theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức
bằng
Ta có:
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Cho cấp số cộng (un) có u3 = -15; u20 = 60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là:
Gọi u1, d lần lượt là số hạng đầu và công sai của cấp số cộng
Ta có:
=> Tổng của 10 số hạng đầu tiên của cấp số cộng này là:
Cho dãy số (un) xác định bởi
.
Số nguyên dương n nhỏ nhất sao cho
là?
Ta có:
= > un = 1 + 13 + 23 + … + (n−1)3
Ta lại có 13 + 23 + … + (n−1)3
Suy ra
Theo giả thiết ta có
Mà n là số nguyên dương nhỏ nhất nên n = 2020.
Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?
Ta có:
n2 − n + 1 < n2 + 2n + 2 (do n > 0)
Suy ra , với mọi n.
Tính tổng ![]()
Ta có:
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Ta có:
Dãy là một cấp số cộng
với d là hằng số.
Hay
=> Cấp số cộng cần tìm là:
Số đo ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân. Biết thể tích của khối hộp là
và diện tích toàn phần là
. Tính tổng số đo ba kích thước của hình hộp chữ nhật đó.
Ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân nên ta có thể gọi ba kích thước đó là .
Thể tích khối hộp chữ nhật:
Diện tích toàn phần của hình hộp chữ nhật là
Theo giả thiết ta có:
Với hoặc
thì kích thước của hình hộp chữ nhật là
=> Tổng các kích thước là 17,5cm.
Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?
Ta có:
=> d = 2
Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:
Ta có: mà
Xét tính tăng, giảm của dãy số
, ta thu được kết quả?
Ta có là dãy số tăng.
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có: