Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 2: Nhận biết

    Dãy số nào sau đây không phải là một cấp số cộng?

    Xét đáp án A: - \frac{2}{3}; - \frac{1}{3};0;\frac{1}{3};\frac{2}{3};1;\frac{4}{3};....

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = \frac{1}{3}

    => Loại đáp án A 

    Xét đáp án B: 15\sqrt 2 ;12\sqrt 2 ;9\sqrt 2 ;6\sqrt 2 ;...

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = 3\sqrt 2

    => Loại đáp án B

    Xét đáp án C: \frac{4}{5};1;\frac{7}{5};\frac{9}{5};\frac{{11}}{5};...

    {u_2} - {u_1} = \frac{1}{5} e {u_3} - {u_2} = \frac{2}{5}

    => Chọn đáp án C

    Xét đáp án D: \frac{1}{{\sqrt 3 }};\frac{{2\sqrt 3 }}{3};\sqrt 3 ;\frac{{4\sqrt 3 }}{3};\frac{5}{{\sqrt 3 }};...

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = \frac{{\sqrt 3 }}{3}

    => Loại đáp án D

  • Câu 3: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) có công bội q. Đẳng thức nào sau đây đúng?

    Mệnh đề đúng u_{k} = u_{1}q^{k -
1}.

  • Câu 4: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có:

    \left\{ \begin{matrix}
u_{k} = 16 \\
u_{k + 1} = 36 \\
\end{matrix} ight.\  \Rightarrow q = \frac{u_{k + 1}}{u_{k}} =
\frac{9}{4}

    u_{k + 2} = u_{k + 1}.q =
81

  • Câu 5: Thông hiểu

    Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là 12288 m^{ 2 }. Diện tích bề mặt của tầng trên cùng là:

    Đáp án: 6 m2

    Đáp án là:

    Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là 12288 m^{ 2 }. Diện tích bề mặt của tầng trên cùng là:

    Đáp án: 6 m2

    Diện tích bề mặt của tầng trên cùng là S_{11} = \frac{12288}{2^{11}} = 6\
m^{2}.

  • Câu 6: Thông hiểu

    Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_2} =  - 8 = {u_1}.q = 2q} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 4} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{S_5} = {u_1}.\dfrac{{1 - {q^5}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^5}}}{{1 + 4}} = 410} \\   {{S_6} = {u_1}.\dfrac{{1 - {q^6}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^6}}}{{1 + 4}} =  - 1638} \\   {{u_5} = {u_1}{q^4} = 2.{{\left( { - 4} ight)}^4} = 512} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 7: Vận dụng

    Cho dãy số {u_n} = \frac{{{2^{n - 1}} + 1}}{n}. Số hạng thứ 10 của dãy số đó là:

    Ta có: {u_{10}} = \frac{{{2^{10 - 1}} + 1}}{{10}} = 51,3

  • Câu 8: Thông hiểu

    Số hạng âm trong dãy số x1; x2; x3; …; xn với x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}} là?

    Ta có c_{n + 5}^{4} = \frac{(n + 5)(n +4)(n + 3)(n + 2)}{24},

    \frac{143P_{n + 5}}{96P_{n + 3}} = \frac{143(n +5)(n + 4)}{96}

    x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}}

    = \frac{(n + 5)(n + 4)(2n + 17)(2n -
7)}{96} > 0,\forall n \geq 4,n \in \mathbb{N}^{*}

    Vậy các số hạng âm là x1; x2; x3.

  • Câu 9: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 10: Vận dụng

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết

    Cho S_{n} =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)} với n ∈ ℕ*. Mệnh đề nào sau đây đúng?

    Ta có S_{1} = \frac{1}{2},S_{2} =
\frac{2}{3},S_{3} = \frac{3}{4} \Rightarrow dự đoán S_{n} = \frac{n}{n + 1}

    Với n = 1, ta được S_{1} = \frac{1}{1.2} = \frac{1}{1 + 1} (đúng)

    Giả sử mệnh đề đúng khi n = k (k≥1), tức là \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} = \frac{k}{k + 1}

    Ta có \frac{1}{1.2} + \frac{1}{2.3} +
\ldots + \frac{1}{k(k + 1)} = \frac{k}{k + 1}

    \begin{matrix}
& \Leftrightarrow \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} = \frac{k}{k + 1} +
\frac{1}{(k + 1)(k + 2)} \\
& \\
& \\
\end{matrix}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k^{2} + 2k + 1}{(k + 1)(k + 2)}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k + 1}{k + 2}

    Suy ra mệnh đề đúng với n = k + 1.

  • Câu 12: Nhận biết

    Dãy số u_{n} =
2^{2n} là cấp số nhân với

    Cấp số nhân 4;16;64;....

    \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = \dfrac{u_{2}}{u_{1}} = 4 \\\end{matrix} ight.

  • Câu 13: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{4} = - 12;u_{14} = 18. Tính số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

  • Câu 14: Vận dụng cao

    Cho a, b, c theo thứ tự lập thành cấp số cộng. Giá trị x + y là bao nhiêu? Biết:

    B = {\log _2}\left( {{a^2} + ab + } ight){b^2} + bc + {c^2} = x{\log _2}\left( {{a^2} + ac + {c^2}} ight) + y;\left( {x,y \in \mathbb{N}} ight)

    Ta có: a, b, c lập thành cấp số cộng nên

    a + c = 2b => (a + c)2 = 4b2

    \begin{matrix}   \Rightarrow b\left( {a + c} ight) + 2{b^2} = {\left( {a + c} ight)^2} \hfill \\   \Rightarrow 2{a^2} + ab + 2{b^2} + bc + {c^2} = 2\left( {{a^2} + ac + {c^2}} ight) \hfill \\   \Rightarrow B = {\log _2}\left( {{a^2} + ab + } ight){b^2} + bc + {c^2} = {\log _2}\left( {{a^2} + ac + {c^2}} ight) + 1 \hfill \\   =  > x + y = 1 + 1 = 2 \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Với mọi n ∈ ℕ*, khẳng định nào sau đây sai?

    Thử với n = 1, n = 2, n = 3 ta kết luận được đáp án:

    2^{2} + 4^{2} + 6^{2}
+ \ldots + (2n)^{2} = \frac{2n(n + 1)(2n + 1)}{6} sai.

    Suy ra

    2^{2} + 4^{2} + 6^{2} + \ldots +
(2n)^{2} = \frac{2n(n + 1)(2n + 1)}{3} mới là kết quả đúng!

  • Câu 16: Vận dụng cao

    Từ độ cao 63m của tháp nghiêng Pi-sa ở Italia, người ta thả một quả bóng cao su xuống đất. Giả sử mỗi lần chạm quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt được ngay trước đó. Tính độ dài hành trình của quả bóng từ thời điểm ban đầu cho đến khi nó nằm yên trên mặt đất.

    Đáp án: 77

    Đáp án là:

    Từ độ cao 63m của tháp nghiêng Pi-sa ở Italia, người ta thả một quả bóng cao su xuống đất. Giả sử mỗi lần chạm quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt được ngay trước đó. Tính độ dài hành trình của quả bóng từ thời điểm ban đầu cho đến khi nó nằm yên trên mặt đất.

    Đáp án: 77

    Ta thấy:

    Ban đầu bóng cao 63m nên chạm đất lần 1 bóng di chuyển quãng đường S_{1} = 63(m).

    Từ lúc chạm đất lần một đến chạm đất lần hai bóng di chuyển được quãng đường là S_{2} = 2S_{1}.\frac{1}{10} =
2.63.\frac{1}{10} = \frac{63}{5} (do độ cao lần hai bằng \frac{1}{10} độ cao ban đầu).

    Từ lúc chạm đất lần hai đến chạm đất lần ba bóng di chuyển được quãng đường là S_{3} = S_{2}\frac{1}{10} (do độ cao lần ba bằng \frac{1}{10} độ cao lần hai)...

    Cứ tiếp tục như vậy kéo dài ra vô tận thì ta có được tổng quãng đường mà bóng cao su đã di chuyển là

    S = S_{1} + S_{2} + S_{3} +
...

    = S_{1} + S_{2} + S_{2}.\frac{1}{10} +
S_{2}.\left( \frac{1}{10} ight)^{2} + ...

    = S_{1} + S_{2}\dfrac{1}{1 -\dfrac{1}{10}}

    = 63 + \frac{63}{5}.\frac{10}{9} = 77\
(m) .

    Vậy quãng đường di chuyển của bóng là 77m.

  • Câu 17: Nhận biết

    Cho dãy số có các số hạng đầu là - 2;0;2;4;6;.... Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?

    Ta có: u_{1} = - 2 loại các đáp án u_{n} = n - 2u_{n} = - 2(n + 1). Ta kiểm tra u_{2} = 0

    Xét đáp án u_{n} = - 2nu_{2} = - 4 eq 0

    Xét đáp án u_{n} = 2n - 4u_{2} = 2.2 - 4 = 0 là đáp án đúng.

  • Câu 18: Nhận biết

    Cho dãy số \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là cấp số cộng với:

    Ta có: \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là một cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = \dfrac{1}{2}} \\   {{u_2} - {u_1} =  - \dfrac{1}{2} = d} \end{array}} ight.

  • Câu 19: Vận dụng

    Xét tính tăng, giảm của dãy số u_{n} = \frac{3^{n} - 1}{2^{n},} ta được kết quả?

    Ta có u_{n + 1} - u_{n} = \frac{3^{n + 1}- 1}{2^{n + 1}} - \frac{3^{n} - 1}{2^{n}}

    = \frac{3^{n + 1} - 1 -{2.3}^{n} + 2}{2^{n + 1}} = \frac{3^{n} + 1}{2^{n + 1}} >0

    dãy (un) là dãy số tăng.

  • Câu 20: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 51 lượt xem
Sắp xếp theo