Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong các dãy số dưới đây, dãy số nào là dãy số giảm?

    Xét phương án u_{n} = n^{2}, ta có:

    u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} =
2n + 1 > 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số tăng.

    Xét phương án u_{n} =
\frac{1}{n^{2}}, ta có:

    u_{n + 1} -
u_{n} = \frac{1}{(n + 1)^{2}} - \frac{1}{n^{2}} = \frac{- 2n -
1}{n^{2}(n + 1)^{2}} < 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số giảm.

    Xét phương án u_{n} = 2n - 1, ta có:

    u_{n + 1} - u_{n} = 2n + 1 - (2n - 1) = 2
> 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số tăng.

    Xét phương án u_{n} = n^{3} - 3, ta có:

    u_{n + 1} - u_{n} = (n + 1)^{3} - 3 -\left( n^{3} - 3 ight)

    = 3n^{2} + 3n + 1 > 0,\forall n \in\mathbb{N}^{*} nên dãy này là dãy số tăng.

    Vậy dãy số u_{n} =
\frac{1}{n^{2}} là dãy số giảm.

  • Câu 2: Nhận biết

    Dãy số u_{n} = 2^{n} là cấp số nhân với

    Cấp số nhân 1;2;4;8;16;32;...

    \Rightarrow \left\{ \begin{matrix}u_{1} = 1 \\q = \dfrac{u_{2}}{u_{1}} = 2 \\\end{matrix} ight.

  • Câu 3: Nhận biết

    Cho dãy số \left( u_{n} ight), biết u_{n} = \frac{n}{2^{n}}. Chọn đáp án đúng.

    Ta có: u_{4} = \frac{4}{2^{4}} =
\frac{4}{16} = \frac{1}{4}

  • Câu 4: Nhận biết

    Tìm b >
0 để các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow \left( \sqrt{b} ight)^{2}
= \frac{1}{\sqrt{2}}.\sqrt{2}

    \Rightarrow b = 1

  • Câu 5: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = 9. Khi đó số 2018 là số hạng thứ mấy trong dãy?

    Theo bài ra ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 2018 = 2 + (n -
1)d

    \Leftrightarrow n = 225

  • Câu 6: Vận dụng

    Tính tổng S = 1
- 2 + 3 - 4 + 5 + ... + (2n - 1) - 2n với n \geq 1;n\mathbb{\in N}.

    Với \forall n \in \mathbb{N}^{*} thì (2n - 1) - 2n = - 1

    Ta có:

    S = 1 - 2 + 3 - 4 + 5 + ... + (2n - 1) -
2n

    S = (1 - 2) + (3 - 4) + (5 - 6) + ... +
\left\lbrack (2n - 1) - 2n ightbrack

    Do đó ta xem S là tổng của n số hạng, mà mỗi số hạng đều bằng -1..

    => S = - 1

    Ta có: 1;3;5;...;2n - 12;4;6;...;2n là cấp số cộng có n số hạng nên.

    S = (1 + 3 + 5 + ... + 2n - 1) - (2 + 4
+ 6 + ... + 2n)

    S = \frac{n}{2}.(1 + 2n - 1) -
\frac{n}{2}.(2 + 2n)

    S = n^{2} - \left( n^{2} + n ight) = -
n

  • Câu 7: Vận dụng

    Cho dãy số \left( u_{n} ight) xác định bởi công thức \left\{ \begin{matrix}
u_{1} = 2020 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.\ ;\left( \forall n \in \mathbb{N}^{*}
ight). Tìm số hạng tổng quát của dãy số?

    Ta có:

    u_{n + 1} - u_{n} = n,\forall n \in
\mathbb{N}^{*} suy ra

    u_{2} - u_{1} = 1

    u_{3} - u_{2} = 2

    u_{4} - u_{3} = 3

    u_{n + 1} - u_{n} = n

    Cộng các vễ theo đẳng thức trên ta được

    u_{n + 1} - u_{n} = 1 + 2 + 3 + ... + n
= \frac{n(n + 1)}{2}

    \Leftrightarrow u_{n + 1} = 2020 +
\frac{n(n + 1)}{2};\left( \forall n \in \mathbb{N}^{*}
ight)

  • Câu 8: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 9: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 10: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 0,1;d = 0,1. Số hạng thứ 7 của cấp số cộng là

    Ta có: u_{7} = u_{1} + 6d = - 0,1 + 6.0,1
= 0,5

  • Câu 11: Nhận biết

    Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?

    Ta có u2019 = 2.2019 + 1 = 4039

  • Câu 12: Nhận biết

    Cho dãy số (un) với u_{n} = \frac{an^{2}}{n + 1} ( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?

    Ta có u_{n + 1} = \frac{a \cdot (n +
1)^{2}}{(n + 1) + 1} = \frac{a(n + 1)^{2}}{n + 2}

  • Câu 13: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = 2;u_{2} = - 8. Mệnh đề nào sau đây đúng?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = - 8 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1}.q = - 8 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\\begin{matrix}q = - 4 \\S_{5} = 2.\dfrac{1 - ( - 4)^{5}}{1 + 4} = 410 \\S_{6} = 2.\dfrac{1 - ( - 4)^{6}}{1 + 4} = - 1638 \\u_{5} = u_{1}.q^{4} = 512 \\\end{matrix} \\\end{matrix} ight.

  • Câu 14: Vận dụng

    Công bội nguyên dương của cấp số nhân (u_{n}) thỏa mãn \left\{\begin{matrix}u_{1}+u_{2}+u_{3}=14\\ u_{1}u_{2}u_{3}=64\end{matrix}ight. là:

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_2} + {u_3} = 14} \\   {{u_1}{u_2}{u_3} = 64} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.q + {u_1}.{q^2} = 14} \\   {{u_2}.{{\left( {{u_2}} ight)}^2} = 64} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.q + {u_1}.{q^2} = 14} \\   {{{\left( {{u_2}} ight)}^3} = 64} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.q + {u_1}.{q^2} = 14} \\   {{u_2} = 4} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.{q^2} = 10} \\   {{u_1}.q = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.{q^2} = 10} \\   {{u_1}.q = 4} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\left[ {\begin{array}{*{20}{c}}  {q = 2} \\   {q = \dfrac{1}{2}} \end{array}} ight.} \\   {{u_1}.q = 4} \end{array}} ight.

  • Câu 15: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{1}=-3 và d=\frac{1}{2}. Khẳng định nào sau đây là đúng?

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   \Rightarrow {u_n} =  - 3 + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{6} = 17 \\
u_{2} + u_{4} = 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 5d = 17 \\
2u_{1} + 6d = 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 16 \\
d = - 3 \\
\end{matrix} ight.

  • Câu 17: Vận dụng cao

    Từ hình vuông có cạnh bằng 1, người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi S_{n}là diện tích của hình vuông được tạo thành ở bước thứ n \left( n \in \left\{ 1;2;3;... ight\}
ight). Tính tổng S = S_{1} +
S_{2} + S_{3} + ... + S_{n} + ...?

    Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Từ hình vuông có cạnh bằng 1, người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi S_{n}là diện tích của hình vuông được tạo thành ở bước thứ n \left( n \in \left\{ 1;2;3;... ight\}
ight). Tính tổng S = S_{1} +
S_{2} + S_{3} + ... + S_{n} + ...?

    Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)

    Giả sử cạnh hình vuông bằng a.

    Ta có cạnh của hình vuông được tạo ở bước 1 là \frac{a\sqrt{5}}{3} \Rightarrow S_{1} =
\frac{5a^{2}}{9}

    Tương tự như trên, ta có:

    S_{2} = \left(
\frac{5}{9} ight)^{2}a^{2},S_{3}
= \left( \frac{5}{9} ight)^{3}a^{2},…, S_{n} = \left( \frac{5}{9}
ight)^{n}a^{2}

    Nên S = S_{1} + S_{2} + S_{3} + ... +
S_{n} + ... là tổng của cấp số nhân lùi vô hạn với \left\{ \begin{matrix}
u_{1} = \frac{5}{9}a^{2} \\
q = \frac{5}{9} \\
\end{matrix} ight..

    Khi đó S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{5}{9}a^{2}}{1 - \dfrac{5}{9}} =\dfrac{5}{4}a^{2}.

    Với a = 1 suy ra S =
\frac{5}{4}.

  • Câu 18: Thông hiểu

    Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số 5;x;y;320 theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?

    Ta có:

    Các số hạng 5;x;y;320 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 5 \\\begin{matrix}q = \dfrac{x}{5} \\y = u_{3} = u_{1}q^{2} = \dfrac{x^{2}}{5} \\320 = u_{4} = u_{1}q^{3} = \dfrac{x^{3}}{25} \\\end{matrix} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 20 \\y = 80 \\\end{matrix} ight.

  • Câu 19: Vận dụng cao

    Với giá trị nào của m ta có thể tìm được các giá trị của x để các số {5^{x + 1}} + {5^{1 - x}};\frac{m}{2};{25^x} + {25^{ - x}} lập thành một cấp số cộng?

     Để ba số hạng lập thành một cấp số cộng ta có:

    \begin{matrix}  \left( {{5^{x + 1}} + {5^{1 - x}}} ight) + \left( {{{25}^x} + {{25}^{ - x}}} ight) = 2.\left( {\dfrac{m}{2}} ight) \hfill \\   \Rightarrow m = 5\left( {{5^x} + \dfrac{1}{{{5^x}}}} ight) + \left( {{5^{2x}} + \dfrac{1}{{{5^{2x}}}}} ight) \hfill \\ \end{matrix}

    Theo bất đẳng thức Cauchy ta có:

    \begin{matrix}  {5^x} + \dfrac{1}{{{5^x}}} \geqslant 2\sqrt 1  = 2 \hfill \\  {5^{2x}} + \dfrac{1}{{{5^{2x}}}} \geqslant 2 \hfill \\   \Rightarrow m \geqslant 5.2 + 2 = 12 \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là u_{1} = - 6;q = - 2. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.

    Ta có:

    2046 = u_{1}.\frac{1 - q^{n}}{1 -
q}

    \Rightarrow 2046 = ( - 6).\frac{1 - ( -
2)^{n}}{1 - ( - 2)}

    \Rightarrow n = 10

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 59 lượt xem
Sắp xếp theo