Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho cấp số nhân (un) có {u_1} = 2 và công bội q = 3. Số hạng u2 là:

    Ta có: u2 = u1 . q = -2 . 3 = -6

  • Câu 2: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 3: Thông hiểu

    Giả sử Q là tập hợp con của tập các số nguyên dương sao cho

    (a) k ∈ \mathbb{ Q}

    (b) n ∈ \mathbb{Q} => n + 1 ∈ \mathbb{Q} ,∀ n ≥ k.

    Chọn mệnh đề đúng trong các mệnh đề dưới đây.

     Mệnh đề " Mọi số nguyên dương đều thuộc \mathbb{Q}" sai vì \mathbb{Q} là tập con thực sự của \mathbb{N^*} nên tồn tại số nguyên dương không thuộc \mathbb{Q}.

    Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc \mathbb{Q}" đúng theo lí thuyết của phương pháp quy nạp.

    Mệnh đề "Mọi số nguyên bé hơn k đều thuộc \mathbb{Q}" sai theo giả thiết thì phải là số tự nhiên lớn hơn k \in \mathbb{Q}.

    Mệnh đề "Mọi số nguyên đều thuộc \mathbb{Q}" sai vì số nguyên âm không thuộc \mathbb{Q}.

  • Câu 4: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 5: Nhận biết

    Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?

    Xét dãy số u_{n}=7-3n

    Ta có:

    \begin{matrix}  {u_{n + 1}} = 7 - 3\left( {n + 1} ight) \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} = 7 - 3\left( {n + 1} ight) - \left( {7 - 3n} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy dãy số u_{n}=7-3n là một cấp số cộng với u_1=4;d=-3

  • Câu 6: Thông hiểu

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Đáp án là:

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Ta có: 0,212121\ldots = 0,21 + 0,0021 +
0,000021 + \ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội \frac{1}{100}.

    Vì vậy

    0,212121\ldots = 0,21 + 0,0021 +0,000021 + \ldots= \frac{0,21}{1 - \frac{1}{100}} =\frac{7}{33}.

    Ta có: 0,333\ldots = 0,3 + 0,03 + 0,003 +
\ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là \frac{1}{10}

    Vì vậy

    4,333\ldots = 4 + 0,3 + 0,03 +0,003 + \ldots= 4 + \frac{0,3}{1 - \frac{1}{10}} =\frac{13}{3}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 7: Nhận biết

    Cho dãy số (u_{n}) với u_{n}=\frac{3}{2}.5^{n}. Khẳng định nào sau đây là đúng?

    Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{3}{2}{{.5}^{n + 1}}}}{{\dfrac{3}{2}{{.5}^n}}} = 5 > 1

    => (u_{n}) là một cấp số nhân với công bội là q = 5

    Số hạng đầu tiên của dãy là: {u_1} = \frac{3}{2}{.5^1} = \frac{{15}}{2}

  • Câu 8: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 6d = 26 \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 13 - 3d \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    Khi đó:

    \Rightarrow (13 - 2d)^{2} + (13 +
2d)^{2} = 466

    \Rightarrow \left\lbrack \begin{matrix}
d = 4 \Rightarrow u_{1} = 1 \\
d = - 4 \Rightarrow u_{1} = 25 \\
\end{matrix} ight.

  • Câu 9: Thông hiểu

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    Đáp án là:

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    a) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{6} = u_{1} + 5d = 5 + 5.2 =
15.

    b) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{n} = u_{1} + (n - 1)d = 5 + (n - 1).2
= 2n + 3.

    c) Áp dụng công thức tính tổng nsố hạng đầu tiên của cấp số cộng ta có:

    S_{n} = nu_{1} + \frac{(n - 1)n}{2}d = 5n
+ \frac{(n - 1)n}{2}.2 = n^{2} + 4n.

    d) Ta viết lại

    S = u_{10} + u_{11} + .. +
u_{20}

    = \left( u_{1} + u_{2} + .. + u_{20}
ight) - \left( u_{1} + u_{2} + .. + u_{9} ight)

    = S_{20} - S_{9} = 480 - 117 =
363.

  • Câu 10: Vận dụng cao

    Cho tam giác ABC cân tại A, AH ⊥ BC. Các cạnh AB, AH, BC lập thành một cấp số nhân. Tính công bội q của cấp số nhân đó.

    Ta có: AB = AC (tam giác ABC cân)

    Các cạnh BC, AB, AH lập thành cấp số nhân nên ta có hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\dfrac{1}{q} = \dfrac{{BC}}{{AH}} = \dfrac{{2HC}}{{AH}} = 2\cot \widehat C} \\   {\dfrac{1}{q} = \dfrac{{AH}}{{AB}} = 2\sin \widehat B} \end{array}} ight. \hfill \\   \Rightarrow \cot \widehat C = \sin \widehat C \Rightarrow 2\cos \widehat C = {\sin ^2}\widehat C = 1 - {\cos ^2}\widehat C \hfill \\   \Leftrightarrow {\cos ^2}\widehat C - 2\cos \widehat C - 1 = 0 \hfill \\   \Leftrightarrow \cos \widehat C = \sqrt 2  - 1;\left( {0 < \widehat C < {{90}^0}} ight) \hfill \\   \Leftrightarrow \sin \widehat C = \sqrt {2\left( {\sqrt 2  - 1} ight)}  \hfill \\ \end{matrix}

    Vậy công bội của cấp số nhân là q = \frac{1}{{\sin \widehat C}} = \frac{1}{{\sqrt {2\left( {\sqrt 2  - 1} ight)} }} = \frac{1}{2}.\sqrt {2\left( {\sqrt 2  + 1} ight)}

  • Câu 11: Thông hiểu

    Cho dãy số \left(
u_{n} ight):u_{n} = sin\frac{\pi}{n}. Chọn khẳng định sai trong các khẳng định sau đây.

    Ta có: u_{n + 1} = sin\frac{\pi}{n +
1} nên u_{n + 1} = sin\frac{\pi}{n +
1} đúng.

    Do - 1 \leq sin\frac{\pi}{n} \leq
1 nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.

    u_{1} = sin\pi = 0,u_{2} =
sin\frac{\pi}{2} = 1,u_{3} = sin\frac{\pi}{3} =
\frac{\sqrt{3}}{2}.

    Do \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số không tăng, không giảm.

    Vậy “Dãy số (un) không tăng, không giảm” đúng.

    Do đó “Dãy số (un) tăng” sai.

  • Câu 12: Vận dụng

    Cho dãy số \left(
u_{n} ight) biết u_{n} =
\frac{1}{1.4} + \frac{1}{2.5} + ... + \frac{1}{n(n + 3)} với \forall n = 1,2,3.... Mệnh đề nào sau đây đúng?

    Ta có: u_{n} > 0

    => Dãy số \left( u_{n}
ight) bị chặn dưới bởi 0.

    Mặt khác \frac{1}{k(k + 3)} <
\frac{1}{k(k + 1)} = \frac{1}{k} - \frac{1}{k + 1};\left( k\mathbb{\in
Z} ight)

    u_{n} < \frac{1}{1.2} + \frac{1}{2.3}
+ \frac{1}{3.4} + ... + \frac{1}{n(n + 1)}

    = 1 - \frac{1}{2} + \frac{1}{2} -
\frac{1}{3} + ... + \frac{1}{n} - \frac{1}{n + 1}

    = 1 - \frac{1}{n + 1} <
1

    Vậy \left( u_{n} ight) bị chặn trên, do đó dãy \left( u_{n}
ight) bị chặn.

  • Câu 13: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 14: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.\frac{{{2^n}}}{n}. Tìm số hạng u_{3}

    Ta có:

    {u_3} = {( - 1)^3}.\frac{{{2^3}}}{3} =  - \frac{8}{3}

  • Câu 15: Vận dụng cao

    Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số cộng. Biết \tan \frac{A}{2}.\tan \frac{C}{2} = \frac{x}{y};\left( {x,y \in \mathbb{N}} ight). Tính giá trị x + y.

    Ta có:

    \begin{matrix}  a + c = 2b \hfill \\   \Rightarrow \sin A + \sin C = 2\sin B \hfill \\   \Rightarrow 2\sin \dfrac{{A + C}}{2}.\cos \dfrac{{A - C}}{2} = 4\sin \dfrac{B}{2}.\cos \dfrac{B}{2} = 4\sin \dfrac{{A + C}}{2}.\cos \dfrac{{A + C}}{2} \hfill \\   \Rightarrow \cos \dfrac{{A - C}}{2} = 2\cos \dfrac{{A + C}}{2} \hfill \\   \Rightarrow \cos \dfrac{A}{2}.\cos \dfrac{C}{2} + \sin \dfrac{A}{2}.\sin \dfrac{C}{2} = 2\cos \dfrac{A}{2}.\cos \dfrac{C}{2} - 2\sin \dfrac{A}{2}.\sin \dfrac{C}{2} \hfill \\   \Rightarrow \cos \dfrac{A}{2}.\cos \dfrac{C}{2} = 3\sin \dfrac{A}{2}.\sin \dfrac{C}{2} \hfill \\   \Rightarrow 3\tan \dfrac{A}{2}.\tan \dfrac{C}{2} = 1 \hfill \\   \Rightarrow \tan \dfrac{A}{2}.\tan \dfrac{C}{2} = \dfrac{1}{3} \hfill \\ \end{matrix}

    => x + y = 4

  • Câu 16: Nhận biết

    Cho S_{n} =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)} với n ∈ ℕ*. Mệnh đề nào sau đây đúng?

    Ta có S_{1} = \frac{1}{2},S_{2} =
\frac{2}{3},S_{3} = \frac{3}{4} \Rightarrow dự đoán S_{n} = \frac{n}{n + 1}

    Với n = 1, ta được S_{1} = \frac{1}{1.2} = \frac{1}{1 + 1} (đúng)

    Giả sử mệnh đề đúng khi n = k (k≥1), tức là \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} = \frac{k}{k + 1}

    Ta có \frac{1}{1.2} + \frac{1}{2.3} +
\ldots + \frac{1}{k(k + 1)} = \frac{k}{k + 1}

    \begin{matrix}
& \Leftrightarrow \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} = \frac{k}{k + 1} +
\frac{1}{(k + 1)(k + 2)} \\
& \\
& \\
\end{matrix}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k^{2} + 2k + 1}{(k + 1)(k + 2)}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k + 1}{k + 2}

    Suy ra mệnh đề đúng với n = k + 1.

  • Câu 17: Vận dụng

    Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?

    Giả sử cấp số nhân có số hạng đầu là u_{1}, công bội q, với q >0

    Theo bài ra ta có:

    u_{4} = 8.u_{1} \Leftrightarrowu_{1}q^{3} = u_{1}.8

    \Leftrightarrow q = 2

    S_{4} = u_{1} + u_{2} + u_{3} + u_{4}= 360^{0}

    \Leftrightarrow u_{1}.\frac{1 - q^{4}}{1- q} = 360^{0} \Rightarrow u_{1} = 24^{0}

    u_{2} = 48^{0};u_{3};96^{0};u_{4} =192^{0}

    Vậy góc lớn nhất có số đo 192^{0}

  • Câu 18: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)với u_{n} = 3n - 7. Tìm số hạng đầu u_{1} và công sai d của cấp số cộng trên.

    Ta có:

    u_{n} = 3n - 7 \Rightarrow u_{1} = 3.1 -
7 = - 4

    u_{n} - u_{n - 1} = (3n - 7) - (3n - 3 -
7) = 3 \Rightarrow d = 3

  • Câu 19: Thông hiểu

    Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:

    Ta có:

    \begin{matrix}  {u_6} = {u_1}.{q^5} \hfill \\   \Leftrightarrow 0,00001 =  - {q^5} \hfill \\   \Leftrightarrow q = \dfrac{{ - 1}}{{10}} \hfill \\   \Rightarrow {u_n} = {u_1}.{q^{n - 1}} =  - 1.{\left( {\dfrac{{ - 1}}{{10}}} ight)^{n - 1}} = \dfrac{{{{\left( { - 1} ight)}^n}}}{{{{10}^{n - 1}}}} \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = u_{n} + 5,n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Giá trị u10 là?

    Từ \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = u_{n} + 5,n \in \mathbb{N}^{*} \\
\end{matrix} ight. ta có un + 1 − un = 5

    dãy (un) là một cấp số cộng với công sai d = 5 nên

    u10 = u1 + 9d = 2 + 45 = 47

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 59 lượt xem
Sắp xếp theo