Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.

    Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \\   {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{8}{2} = \dfrac{z}{8}} \\   {\dfrac{{128}}{z} = \dfrac{z}{8}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {z = 32} \\   {{z^2} = 1024} \end{array}} ight. \Rightarrow z = 32

  • Câu 2: Nhận biết

    Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?

    Từ định nghĩa cấp số nhân ta có các kết quả sau:

    \begin{matrix}  {u_{n + 1}} = {u_n}.q;\left( {n \geqslant 1} ight) \hfill \\  {u_n} = {u_1}.{q^{n - 1}};\left( {n \geqslant 2} ight) \hfill \\  {u_k}^2 = {u_{k - 1}}.{u_{k + 1}};\left( {k \geqslant 2} ight) \hfill \\ \end{matrix}

    Đáp án C sai

  • Câu 3: Thông hiểu

    Tìm x và y để dãy số 9;x; - 1;y là một cấp số cộng?

    Để dãy số 9;x; - 1;y là một cấp số cộng thì \left\{ \begin{matrix}x = \dfrac{9 - 1}{2} \\- 1 = \dfrac{x + y}{2} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 4 \\y = - 6 \\\end{matrix} ight.

  • Câu 4: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 5: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2n + 1,n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số hạng tổng quát un là?

    Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)

    Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được

    un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.

  • Câu 6: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6

    Ta có x = 6(x – 6) => x = 36/5

    Từ đó suy ra y = 6x = 216/5

  • Câu 7: Vận dụng cao

    Tính giá trị u2018 của dãy số (un) xác định bởi {u_1} = 1;{u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} ight);\left( {n \in {\mathbb{N}^*}} ight)

    Ta có:

    \begin{matrix}  {u_{n + 1}} = \dfrac{1}{3}\left( {2{u_n} + \dfrac{{n - 1}}{{{n^2} + 3n + 2}}} ight) \hfill \\  {u_{n + 1}} = \dfrac{1}{3}\left( {2{u_n} + \dfrac{3}{{n + 2}} - \dfrac{2}{{n + 1}}} ight) \hfill \\  {u_{n + 1}} = \dfrac{2}{3}{u_n} + \dfrac{1}{{n + 2}} - \dfrac{2}{3}.\dfrac{1}{{n + 1}} \hfill \\  {u_{n + 1}} - \dfrac{1}{{n + 2}} = \dfrac{2}{3}\left( {{u_n} - \dfrac{1}{{n + 1}}} ight)\left( * ight) \hfill \\ \end{matrix}

    Đặt {v_n} = {u_n} - \frac{1}{{n + 1}} \Rightarrow {v_{n + 1}} = \frac{2}{3}{v_n}

    => Dãy số (vn) là cấp số nhân với {v_1} = {u_1} - \frac{1}{2} = \frac{1}{2};q = \frac{2}{3}

    => {v_n} = {v_1}.{q^{n - 1}} = \frac{1}{2}.{\left( {\frac{2}{3}} ight)^{n - 1}}

    \begin{matrix}   \Rightarrow {u_n} - \dfrac{1}{{n + 1}} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{n - 1}} \hfill \\   \Rightarrow {u_n} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{n - 1}} + \dfrac{1}{{n + 1}} \hfill \\   \Rightarrow {u_{2018}} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{2017}} + \dfrac{1}{{2019}} = \dfrac{{{2^{2016}}}}{{{3^{2017}}}} + \dfrac{1}{{2019}} \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

    Mệnh đề A(n) đúng với n = k với k ≥ p.

  • Câu 9: Vận dụng

    Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?

    (1) (un) là dãy số tăng.

    (2) (un) là dãy số bị chặn dưới.

    (3) n ∈ ℕ* : un ≤ n.

    cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.

    Dãy không tăng, không giảm và không bị chặn dưới.

    Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.

  • Câu 10: Nhận biết

    Trong các dãy số sau dãy số nào là cấp số cộng?

    Ta có:

    u_{n + 1} - u_{n}

    = \left\lbrack 4 + 3(n + 1)
ightbrack - (4 + 3n)

    = 3

    => Dãy số \left( u_{n} ight):u_{n} =
4 + 3n là cấp số cộng.

  • Câu 11: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{( - 1)^{n}}{1 + n}. Khẳng định nào sau đây sai?

    Ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4}

    \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight.

    Vậy dãy số đã cho không tăng không giảm.

    Khẳng định sai là: “Dãy số \left( u_{n}
ight) là dãy giảm”

  • Câu 12: Nhận biết

    Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.

    Ta có: d = 6 - 1 = 5

    Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng

    => x = 6 + 5 = 11

    Vậy x = 11

  • Câu 13: Vận dụng cao

    Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số cộng. Biết \tan \frac{A}{2}.\tan \frac{C}{2} = \frac{x}{y};\left( {x,y \in \mathbb{N}} ight). Tính giá trị x + y.

    Ta có:

    \begin{matrix}  a + c = 2b \hfill \\   \Rightarrow \sin A + \sin C = 2\sin B \hfill \\   \Rightarrow 2\sin \dfrac{{A + C}}{2}.\cos \dfrac{{A - C}}{2} = 4\sin \dfrac{B}{2}.\cos \dfrac{B}{2} = 4\sin \dfrac{{A + C}}{2}.\cos \dfrac{{A + C}}{2} \hfill \\   \Rightarrow \cos \dfrac{{A - C}}{2} = 2\cos \dfrac{{A + C}}{2} \hfill \\   \Rightarrow \cos \dfrac{A}{2}.\cos \dfrac{C}{2} + \sin \dfrac{A}{2}.\sin \dfrac{C}{2} = 2\cos \dfrac{A}{2}.\cos \dfrac{C}{2} - 2\sin \dfrac{A}{2}.\sin \dfrac{C}{2} \hfill \\   \Rightarrow \cos \dfrac{A}{2}.\cos \dfrac{C}{2} = 3\sin \dfrac{A}{2}.\sin \dfrac{C}{2} \hfill \\   \Rightarrow 3\tan \dfrac{A}{2}.\tan \dfrac{C}{2} = 1 \hfill \\   \Rightarrow \tan \dfrac{A}{2}.\tan \dfrac{C}{2} = \dfrac{1}{3} \hfill \\ \end{matrix}

    => x + y = 4

  • Câu 14: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{1} = 2;u_{8} = 16. Tìm d;S_{10}?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{8} = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1} + 7d = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
d = 2 \\
\end{matrix} ight.

    \Rightarrow S_{10} = \frac{\left\lbrack
2u_{1} + 9d ightbrack.n}{2} = 110

  • Câu 15: Vận dụng

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Đáp án là:

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Gọi u_{n} là tiền lương anh Nam nhận được vào năm thứ n.

    Tại năm đầu tiên, lương anh Nam nhận được là u_{1} = 35000.

    Vì mỗi năm, anh Nam được tăng lương thêm 1400 đô, nên ta có u_{n} = u_{n - 1} + 1400

    Do đó \left( u_{n} ight) là cấp số cộng với u_{1} = 35000,\ d =
1400.

    Tổng lương mà anh Nam nhận được là 319200 đô, áp dụng công thức tính tổng n số hạng đầu của cấp số cộng:

    S_{n} = \frac{\left\lbrack 2u_{1} + (n -
1)d ightbrack.n}{2}

    \Leftrightarrow 319200 =
\frac{\left\lbrack 2.35000 + (n - 1).1400
ightbrack.n}{2}

    \Rightarrow n = 8.

    Vậy anh Nam mất 8 năm làm việc để được tổng lương là 319200.

  • Câu 16: Thông hiểu

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{6} = 17 \\
u_{2} + u_{4} = 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 5d = 17 \\
2u_{1} + 6d = 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 16 \\
d = - 3 \\
\end{matrix} ight.

  • Câu 17: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=7.3^n ta có: 

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{7.3}^{n + 1}}}}{{{{7.3}^n}}} = 3

    => Dãy số u_n=7.3^n là một cấp số nhân 

  • Câu 18: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi u_{n} = \frac{n - 1}{n^{2} + 2n
+ 3}. Giá trị u_{21}

    Ta có: u_{21} = \frac{21 - 1}{21^{2} +
2.21 + 3} = \frac{10}{243}.

  • Câu 19: Vận dụng

    Cho dãy số vô hạn (un) là cấp số cộng có công sai d, số hạng đầu u1. Hãy chọn khẳng định sai?

     Ta có:

    Công thức tổng n số hạng đầu tiên của cấp số cộng là:

    \begin{matrix}  {S_n} = n{u_1} + \dfrac{{n\left( {n - 1} ight)d}}{2} \hfill \\   \Rightarrow {S_{12}} = 12{u_1} + \dfrac{{12.11.d}}{2} = 6\left( {2{u_1} + 11d} ight) e \dfrac{n}{2}.\left( {2{u_1} + 11d} ight) \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = 2n - 1. Dãy số \left( u_{n} ight) là dãy số

    Ta có:

    u_{n + 1} - u_{n} = \left\lbrack 2(n +
1) - 1 ightbrack - (2n - 1)

    = 2n + 2 - 1 - 2n + 1 = 2 >
0

    Vậy dãy số \left( u_{n} ight) là dãy số tăng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 36 lượt xem
Sắp xếp theo