Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?

    Ta có u2019 = 2.2019 + 1 = 4039

  • Câu 2: Thông hiểu

    Cho các dãy số sau. Dãy số nào là dãy số tăng?

    Xét đáp án 1;1;1;1;1;1... dãy là dãy hằng nên không tăng không giảm.

    Xét đáp án 1;\frac{-1}{2};\frac{1}{4};\frac{-1}{8};\frac{1}{16};... \Rightarrow {u_1} > {u_2} < {u_3} (Loại)

    Xét đáp án 1;3;5;7;9;.... \Rightarrow {u_n} < {u_{n + 1}};n \in {\mathbb{N}^*} (Chọn)

    Xét đáp án 1;\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{16};... Rightarrow {u_1} > {u_2} > {u_3}.... > {u_n} > ... (Loại)

  • Câu 3: Vận dụng

    Cho dãy số (un)u1 = 1u_{n + 1} = u_{n} = \frac{1}{(1 + n)^{2}},\forall n
\in \mathbb{N}^{*}.

    Trong các phát biểu sau, có bao nhiêu phát biểu đúng?

    (1) (un) là dãy số tăng.

    (2) (un) là dãy số bị chặn dưới.

    (3) (un) là dãy số bị chặn trên.

    Ta có \forall n \in \mathbb{N}^{*},u_{n +
1} - u_{n} = \frac{1}{(1 + n)^{2} > 0} nên dãy số tăng.

    Vậy phát biểu (1) đúng.

    Vì dãy số tăng nên dãy số bị chặn dưới bởi u1.

    Vậy phát biểu (2) đúng.

    Ta lại có u_{1} = 1;u_{2} = u_{1} +
\frac{1}{2^{2}};u_{3} = u_{2} + \frac{1}{3^{2}};u_{n} = u_{n - 1} +
\frac{1}{n^{2}}

    Cộng các đẳng thức trên theo từng vế, ta được:

    u_{n} = u_{1} + \frac{1}{2^{2}} +
\frac{1}{3^{2}} + \ldots + \frac{1}{n^{2}}

    Mặt khác \frac{1}{n^{2}} < \frac{1}{n(n
- 1)} = \frac{1}{n - 1} - \frac{1}{n} \Rightarrow (*)

    \Leftrightarrow u_{n} = 1 + \frac{1}{1}
- \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \ldots + \frac{1}{n - 1} -
\frac{1}{n}

    \Leftrightarrow u_{n} = 1 + \frac{1}{1}
- \frac{1}{n} < 2,\forall n \in \mathbb{N}^{*}

    Vậy dãy số bị chặn trên bởi 2 nên phát biểu (3) đúng.

  • Câu 4: Vận dụng

    Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:

    Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {y = x + m = xn} \\   {z = x + 2m = x{n^2}} \end{array}} ight. \hfill \\   \Rightarrow m = x{n^2} - xn \hfill \\   \Rightarrow x + x{n^2} - xn = xn \hfill \\   \Rightarrow {n^2} - 2n + 1 = 0 \hfill \\   \Leftrightarrow n = 1 \Rightarrow m = 0 \Rightarrow x = y = z \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm tất cả các số nguyên dương chia 32 theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là

    Các số nguyên dương chia 32 theo thứ tự tăng dần là 5, 8, 11, 14,…

    Ta có 5 = 3.1 + 2, 8 = 3.2 + 2, 11 = 3.3 + 2, 14 = 3.4 + 2, …

    Vậy u_{n} = 3n + 2

  • Câu 6: Nhận biết

    Trong các dãy số sau, dãy số nào không phải cấp số nhân?

    Xét đáp án 1^{2};2^{2};3^{2};4^{2};...\Leftrightarrow \frac{u_{2}}{u_{1}} = 4 eq
\frac{9}{4} = \frac{u_{3}}{u_{2}}

    => Dãy số 1^{2};2^{2};3^{2};4^{2};... không phải là cấp số nhân.

  • Câu 7: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu là u_{1} = 3;d = 5. Hỏi số hạng thứ tư là số nào dưới đây?

    Ta có: u_{4} = u_{1} + 3d = 3 + 3.5 =
18

    Vậy u_{4} = 18

  • Câu 8: Vận dụng

    Một cấp số cộng có số hạng đầu là 1, công sai là 4, tổng của n số hạng đầu là 561. Khi đó số hạng thứ n của cấp số cộng đó là u_{n} có giá trị là bao nhiêu?

    Ta có: \left\{ \begin{matrix}
u_{1} = 1;d = 4 \\
S_{m} = 561 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 1;d = 4 \.u_{1} + \dfrac{n(n - 1)}{2}.d = 561 \\\end{matrix} ight.

    \Leftrightarrow n + \frac{n^{2} -
n}{2}.4 = 561

    \Leftrightarrow 2n^{2} - n - 561 =
0

    \Leftrightarrow n = 17

    \Rightarrow u_{n} = u_{17} = u_{1} + 16d
= 1 + 16.4 = 65

  • Câu 9: Vận dụng cao

    Từ hình vuông có cạnh bằng 1, người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi S_{n}là diện tích của hình vuông được tạo thành ở bước thứ n \left( n \in \left\{ 1;2;3;... ight\}
ight). Tính tổng S = S_{1} +
S_{2} + S_{3} + ... + S_{n} + ...?

    Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Từ hình vuông có cạnh bằng 1, người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi S_{n}là diện tích của hình vuông được tạo thành ở bước thứ n \left( n \in \left\{ 1;2;3;... ight\}
ight). Tính tổng S = S_{1} +
S_{2} + S_{3} + ... + S_{n} + ...?

    Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)

    Giả sử cạnh hình vuông bằng a.

    Ta có cạnh của hình vuông được tạo ở bước 1 là \frac{a\sqrt{5}}{3} \Rightarrow S_{1} =
\frac{5a^{2}}{9}

    Tương tự như trên, ta có:

    S_{2} = \left(
\frac{5}{9} ight)^{2}a^{2},S_{3}
= \left( \frac{5}{9} ight)^{3}a^{2},…, S_{n} = \left( \frac{5}{9}
ight)^{n}a^{2}

    Nên S = S_{1} + S_{2} + S_{3} + ... +
S_{n} + ... là tổng của cấp số nhân lùi vô hạn với \left\{ \begin{matrix}
u_{1} = \frac{5}{9}a^{2} \\
q = \frac{5}{9} \\
\end{matrix} ight..

    Khi đó S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{5}{9}a^{2}}{1 - \dfrac{5}{9}} =\dfrac{5}{4}a^{2}.

    Với a = 1 suy ra S =
\frac{5}{4}.

  • Câu 10: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q. Đẳng thức nào sau đây đúng?

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q.

    Theo công thức số hạng tổng quát ta có u_{n} = u_{1}q^{n - 1}, (n \geq 2).

  • Câu 11: Thông hiểu

    Một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

    Ta có:

    u_{n} = 32805

    \Rightarrow u_{1}.q^{n - 1} =
32805

    \Rightarrow 3^{n - 1} =
6561

    \Rightarrow n = 9

    Vậy u_{9} là số hạng chính giữa của cấp số nhân nên cấp số nhân đã cho có 17 số hạng.

  • Câu 12: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 13: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight) biết u_{5} = 5, u_{10} = 15 Khi đó u_{7} bằng

    Ta có

    \left\{ \begin{matrix}
u_{5} = 5 \\
u_{10} = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 4d = 5 \\
u_{1} + 9d = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 3 \\
d = 2 \\
\end{matrix} ight.

    Vậy u_{7} = u_{1} + 6d = - 3 + 6.2 =
9

  • Câu 14: Nhận biết

    Cho cấp số cộng có số hạng đầu {u_1} =  - \frac{1}{2} công sai d = \frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số này là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d,\left( {{u_1} =  - \dfrac{1}{2};d = \dfrac{1}{2}} ight) \hfill \\   \Rightarrow {u_n} =  - \dfrac{1}{2} + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 0} \\   {{u_3} = {u_2} + d = \dfrac{1}{2}} \\   {{u_4} = {u_3} + d = 1} \\   {{u_5} = {u_4} + d = \dfrac{3}{2}} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm các số nguyên dương chia hết cho 7: 7, 14, 21, 28, …Công thức số hạng tổng quát của dãy số này là:

    Ta có u_{1} = 7 = 7.1, u_{2} = 14 = 7.2, u_{3} = 21 = 7.3, u_{4} = 28 = 7.4,…

    Suy ra u_{n} = 7n.

  • Câu 16: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n} = \frac{1}{2 - u_{n - 1}},\ \forall n \geq 2 \\
\end{matrix} ight.. Khi đó u_{3} có giá trị bằng

    Theo công thức truy hồi ta có

    u_{2} = \frac{1}{2 - \frac{1}{2}} =
\frac{2}{3} \Rightarrow u_{3} = \frac{1}{2 - \frac{2}{3}} =
\frac{3}{4}.

  • Câu 17: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = 2;u_{2} = - 8. Mệnh đề nào sau đây đúng?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = - 8 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1}.q = - 8 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\\begin{matrix}q = - 4 \\S_{5} = 2.\dfrac{1 - ( - 4)^{5}}{1 + 4} = 410 \\S_{6} = 2.\dfrac{1 - ( - 4)^{6}}{1 + 4} = - 1638 \\u_{5} = u_{1}.q^{4} = 512 \\\end{matrix} \\\end{matrix} ight.

  • Câu 18: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{4} = - 12;u_{14} = 18. Tính số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

  • Câu 19: Thông hiểu

    Cho cấp số nhân \frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{4096}. Hỏi số \frac{1}{4096} là số hạng thứ mấy trong cấp số nhân đã cho?

    Ta có: \frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{4096} là cấp số nhân với \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\q = \dfrac{u_{2}}{u_{1}} = \dfrac{1}{2} \\\end{matrix} ight.

    \Rightarrow u_{n} = \frac{1}{2}.\left(
\frac{1}{2} ight)^{n - 1} = \frac{1}{2^{n}} =
\frac{1}{4096}

    \Rightarrow \frac{1}{2^{n}} =
\frac{1}{2^{12}} \Rightarrow n = 12

  • Câu 20: Vận dụng cao

    Cho một dãy số có các số hạng đầu tiên là 1; 8; 22; 43; … Hiệu của hai số hạng liên tiếp của dãy số đó lập thành một cấp số cộng 7; 14; 21; …, 7n. Số 35351 là số hạng thứ mấy của cấp số đã cho?

    Theo đề bài ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} - {u_1} = 7} \\   {{u_3} - {u_2} = 14} \\   {{u_4} - {u_3} = 21} \\   \begin{gathered}  ..... \hfill \\  {u_n} - {u_{n - 1}} = 7\left( {n - 1} ight) \hfill \\ \end{gathered}  \end{array}} ight.

    Cộng các vế của các phương trình của hệ ta được:

    {u_n} - {u_1} = 7 + 14 + 21 + ... + 7\left( {n - 1} ight) = \frac{{7.n\left( {n - 1} ight)}}{2}\left( * ight)

    Đặt {u_n} = 35351

    Từ (*) suy ra:

    \begin{matrix}  35351 - 1 = \dfrac{{7n\left( {n - 1} ight)}}{2} \hfill \\   \Leftrightarrow {n^2} - n - 10100 = 0 \hfill \\   \Leftrightarrow n = 101 \hfill \\ \end{matrix}

    Do đó 35351 là số hạng thứ 101 của dãy số

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 54 lượt xem
Sắp xếp theo