Đề kiểm tra 15 phút Toán 11 Chương 2 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Dãy số Cấp số cộng Cấp số nhân gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy số 1; 2; 3; 4; 5 là một cấp số cộng với công sai là d = 1

    Dãy số 1; 2; 4; 8; 16 là một cấp số nhân với công bội q = 2

    Dãy số 1; -1; 1; -1; 1 là một cấp số nhân với công bội q = -1

    Dãy số 1; -2; 4; -8; 16 là một cấp số nhân với công bội q = -2

  • Câu 2: Nhận biết

    Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.

    Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:

    u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4

    Ta có:

    \begin{matrix}  {u_5} = {u_1} + 4d \Rightarrow d = \dfrac{{{u_5} - {u_1}}}{4} = \dfrac{{22 - 2}}{4} = 5 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 7} \\   {{u_3} = {u_1} + 2d = 12} \\   {{u_4} = {u_1} + 3d = 17} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?

    Ta có: \left\{ \begin{matrix}
u_{2} = 4 \\
u_{6} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1}q = 4 \\
u_{1}q^{5} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
q = 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} =
2.2^{n - 1} = 2^{n}

  • Câu 4: Thông hiểu

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    Đáp án là:

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    a) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{6} = u_{1} + 5d = 5 + 5.2 =
15.

    b) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{n} = u_{1} + (n - 1)d = 5 + (n - 1).2
= 2n + 3.

    c) Áp dụng công thức tính tổng nsố hạng đầu tiên của cấp số cộng ta có:

    S_{n} = nu_{1} + \frac{(n - 1)n}{2}d = 5n
+ \frac{(n - 1)n}{2}.2 = n^{2} + 4n.

    d) Ta viết lại

    S = u_{10} + u_{11} + .. +
u_{20}

    = \left( u_{1} + u_{2} + .. + u_{20}
ight) - \left( u_{1} + u_{2} + .. + u_{9} ight)

    = S_{20} - S_{9} = 480 - 117 =
363.

  • Câu 5: Vận dụng

    Biết các số C_{n}^{1};C_{n}^{2};C_{n}^{3} theo thứ tự lập thành một cấp số cộng với n > 3. Tìm n

    Ta có: 

    Các số C_{n}^{1};C_{n}^{2};C_{n}^{3} theo thứ tự lập thành một cấp số cộng với n > 3

    \begin{matrix}  C_n^1 + C_n^3 = 2C_n^2 \hfill \\   \Leftrightarrow \dfrac{{n!}}{{1!\left( {n - 1} ight)!}} + \dfrac{{n!}}{{3!\left( {n - 3} ight)!}} = 2.\dfrac{{n!}}{{2!\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow n + \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)}}{6} = n\left( {n - 1} ight) \hfill \\   \Leftrightarrow 6n + \left( {{n^2} - n} ight)\left( {n - 2} ight) = 6n\left( {n - 1} ight) \hfill \\   \Leftrightarrow 6n + {n^3} - 3{n^2} + 2n = 6{n^2} - 6n \hfill \\   \Leftrightarrow {n^3} - 9{n^2} + 14n = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 0\left( {ktm} ight)} \\   {n = 2\left( {ktm} ight)} \\   {n = 7\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Cho các dãy số sau. Dãy số nào là dãy số tăng?

    Xét đáp án 1;1;1;1;1;1... dãy là dãy hằng nên không tăng không giảm.

    Xét đáp án 1;\frac{-1}{2};\frac{1}{4};\frac{-1}{8};\frac{1}{16};... \Rightarrow {u_1} > {u_2} < {u_3} (Loại)

    Xét đáp án 1;3;5;7;9;.... \Rightarrow {u_n} < {u_{n + 1}};n \in {\mathbb{N}^*} (Chọn)

    Xét đáp án 1;\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{16};... Rightarrow {u_1} > {u_2} > {u_3}.... > {u_n} > ... (Loại)

  • Câu 7: Nhận biết

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = cos\alpha(0 < \alpha < \pi) \\
u_{n + 1} = \sqrt{\frac{1 + u_{n}}{2}},\forall n \geq 1 \\
\end{matrix} ight..

    Số hạng thứ 2020 của dãy số đã cho là?

    Do 0 < α < π nên
    u_{2} = \sqrt{\frac{1 + cos\alpha}{2}} =\sqrt{\cos^{2}\frac{\alpha}{2}} = cos\frac{\alpha}{2};

    u_{3} =\sqrt{\frac{1 + cos\frac{\alpha}{2}}{2}} =\sqrt{\cos^{2}\frac{\alpha}{2}} = cos\frac{\alpha}{4}

    Vậy u = cos\left( \frac{\alpha}{2^{n - 1}}
ight) với mọi n ∈ ℕ*. Ta sẽ chứng minh bằng quy nạp.

    Với n = 1 thì u1 = cosα (đúng).

    Giả sử với n = k ∈ ℕ* ta có u_{k} = cos\left( \frac{\alpha}{2^{k - 1}}
ight).

    Ta chứng minh u_{k + 1} =
cos\left( \frac{\alpha}{2^{k - 1}} ight)

    Thật vậy,

    u_{k + 1} = \sqrt{\frac{1 +u_{k}}{2}} = \sqrt{\frac{1 + cos\left( \frac{\alpha}{2^{k - 1}}ight)}{2}}

    = \sqrt{\cos^{2}\left( \frac{\alpha}{2^{k}} ight)} =cos\left( \frac{\alpha}{2^{k}} ight)

    Từ đó ta có u_{2020} = cos\left(
\frac{\alpha}{2^{2019}} ight)

  • Câu 8: Thông hiểu

    Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}u_{1} = 2 \\u_{6} = 486 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\u_{1}q^{5} = 486 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q^{5} = 243 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = 3 \\\end{matrix} ight.

  • Câu 9: Nhận biết

    Hãy liệt kê năm số hạng đầu của dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = 3^{n} + n - 2;\left( n \in
\mathbb{N}^{*} ight)?

    Ta có:

    u_{1} = 3^{1} + 1 - 2 = 2

    u_{2} = 3^{2} + 2 - 2 = 9

    u_{3} = 3^{3} + 3 - 2 = 28

    u_{4} = 3^{4} + 4 - 2 = 83

    u_{5} = 3^{5} + 5 - 2 = 246

    Vậy năm số hạng đầu tiên của dãy số là 2;9;28;83;246

  • Câu 10: Vận dụng

    Xét tính tăng, giảm và bị chặn của dãy số (un), biết u_{n} = \frac{1}{\sqrt{1 + n +n^{2}}}, ta thu được kết quả?

    Ta có un > 0, ∀n ≥ 1

    \frac{u_{n + 1}}{u_{n}} =\frac{\sqrt{n^{2} + n + 1}}{\sqrt{(n + 1)^{2} + (n + 1) +1}}

    = \sqrt{\frac{n^{2} + n + 1}{n^{2} + 3n+ 3}} < 1,\forall n \in \mathbb{N}^{*} \Rightarrow u_{n + 1} <u_{n},\forall n \geq 1

    dãy (un) là dãy số giảm.

    Mặt khác 0 < un < 1⇒ dãy (un) là dãy bị chặn.

  • Câu 11: Vận dụng

    Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:

    Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {y = x + m = xn} \\   {z = x + 2m = x{n^2}} \end{array}} ight. \hfill \\   \Rightarrow m = x{n^2} - xn \hfill \\   \Rightarrow x + x{n^2} - xn = xn \hfill \\   \Rightarrow {n^2} - 2n + 1 = 0 \hfill \\   \Leftrightarrow n = 1 \Rightarrow m = 0 \Rightarrow x = y = z \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{4} = - 12;u_{14} = 18. Tính số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

  • Câu 13: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 3;q = - 2. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.

    Ta có: \left\{ \begin{matrix}u_{1} = - 3 \\q = - 2 \\\end{matrix} ight.

    \Rightarrow S_{10} = u_{1}.\frac{1 -q^{10}}{1 - q} = ( - 3).\frac{1 - ( - 2)^{10}}{1 + 2} =1023

  • Câu 14: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=3^{n}. Tìm số hạng u_{2n-1}

    Ta có:

    \begin{matrix}  {u_n} = {3^n} \hfill \\   \Rightarrow {u_{2n - 1}} = {3^{2n - 1}} = {3^n}{.3^{n - 1}} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?

    Ta có:

    n2 − n + 1 < n2 + 2n + 2 (do n > 0)

    Suy ra u_{n} = \frac{n^{2} - n + 1}{n^{2}
+ 2n + 2} < 1, với mọi n.

  • Câu 16: Vận dụng cao

    Tính tổng {S_n} = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

     Ta có:

    \begin{matrix}  {S_n} = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  {S_n} = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {{4^2} + 2 + \dfrac{1}{{{4^2}}}} ight) + ... + \left( {\dfrac{1}{4} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{4^n}}}} ight) \hfill \\  {S_n} = 2n + \left( {4 + {4^2} + ... + {4^n}} ight) + \left( {\dfrac{1}{4} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{4^n}}}} ight) \hfill \\   = 2n + 4.\dfrac{{1 - {4^n}}}{{1 - 4}} + \frac{1}{4}\frac{{1 - \frac{1}{{{4^n}}}}}{{1 - \frac{1}{4}}} \hfill \\  {S_n} = 2n + \dfrac{4}{3}\left( {{4^n} - 1} ight) + \dfrac{{{4^{n - 1}}}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10

    Ta có: {u_{10}} = {u_1} + \left( {10 - 1} ight)d = {u_{10}} =  - 2 + 9.3 = 25

  • Câu 18: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \frac{{n + 1}}{{2n + 1}}. Số \frac{8}{15} là số hạng thứ mấy của dãy số?

    Ta có: 

    \begin{matrix}  {u_k} = \dfrac{8}{{15}} \hfill \\   \Leftrightarrow \dfrac{{k + 1}}{{2k + 1}} = \dfrac{8}{{15}};\left( {k \in {\mathbb{N}^*}} ight) \hfill \\   \Leftrightarrow 15\left( {k + 1} ight) = 8\left( {2k + 1} ight) \hfill \\   \Leftrightarrow 15k + 15 = 16k + 8 \hfill \\   \Leftrightarrow k = 7 \hfill \\ \end{matrix}

    Vậy số \frac{8}{15} là số hạng thứ 7 của dãy số.

  • Câu 19: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) biết u_{n} = 3 - 5n. Tìm công sai của cấp số cộng?

    Theo giả thiết ta có:

    u_{n + 1} = - 2 - 5n

    \Rightarrow u_{n + 1} - u_{n} = -
5;\forall n \geq 1

    Vậy d = - 5

  • Câu 20: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6;xy. Tìm y biết rằng công bội của cấp số nhân là 6?

    Ta có:

    Ba số hạng đầu của một cấp số nhân là x -
6;xy có công bội q = 6

    \Rightarrow \left\{ \begin{matrix}u_{1} = x - 6;q = 6 \\x = u_{2} = u_{1}q = 6(x - 6) \\y = u_{3} = u_{2}q^{2} = 36x \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{36}{5} \\y = 36.\dfrac{36}{5} = \dfrac{1296}{5} \\\end{matrix} ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 2 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo