Đề kiểm tra 15 phút Toán 11 Chương 3 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giá trị của B =
\frac{\sqrt{n^{2} + 2n}}{n - \sqrt{3n^{2} + 1}}bằng:

    Ta có:

    B = \lim\dfrac{\dfrac{\sqrt{n^{2} +n}}{n}}{\dfrac{n - \sqrt{3n^{2} + 1}}{n}}

    = \lim\frac{\sqrt{1 +\frac{1}{n}}}{1 - \sqrt{3 + \frac{1}{n^{2}}}} = \frac{1}{1 -\sqrt{3}}

  • Câu 2: Vận dụng cao

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Đáp án là:

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Ta có:

    \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}

    = \lim\left\lbrack \frac{2n^{2} - n^{3}
+ n^{3}}{n^{2} + n - n^{2}} \cdot \frac{\sqrt{n^{2} + n} +
n}{\sqrt[3]{\left( 2n^{2} - n^{3} ight)^{2}} + n^{2} -
n\sqrt[3]{2n^{2} - n^{3}}} ightbrack

    = \lim\dfrac{\sqrt{\left( n\sqrt{1 +\dfrac{1}{n}} + n ight)}}{\sqrt[3]{n^{6} \cdot \left( \dfrac{2}{n} - 1ight)^{2}} + n^{2} - n \cdot \sqrt[3]{n^{3}\left( \dfrac{2}{n} - 1ight)}}

    = \lim\dfrac{\sqrt{1 + \dfrac{1}{n}} +1}{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1}}

    Khi n ightarrow \infty thì \ lim\frac{1}{n} = 0.

    \Rightarrow \left\{ \begin{matrix}\lim\left( \left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1} ight) = - 1 + 1 + 1 = 1 \\\lim\left( \sqrt{1 + \dfrac{1}{n}} + 1 ight) = 1 \\\end{matrix} ight.

    \Rightarrow \lim\dfrac{\left( \sqrt{1 +\dfrac{1}{n}} + 1 ight.\ }{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}}+ 1 - \sqrt[3]{\dfrac{2}{n} - 1}} = 1

    \Rightarrow \lim\frac{\sqrt[3]{2n^{2} -
n^{3}} + n}{\sqrt{n^{2} + n} - n} = 1

  • Câu 3: Nhận biết

    Hàm số nào sau đây gián đoạn tại x = 1?

    Xét hàm số y = \frac{x}{x^{2} -
1} hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.

  • Câu 4: Thông hiểu

    Giá trị của C =
\lim\frac{\left( 2n^{2} + 1 ight)^{4}(n + 2)^{9}}{n^{17} + 1} bằng:

    Ta có:

    C = \lim\frac{n^{8}\left( 2 +
\frac{1}{n^{2}} ight)^{4}.n^{9}.\left( 1 + \frac{2}{n}
ight)^{9}}{n^{17}.\left( 1 + \frac{1}{n^{17}} ight)} =
\lim\frac{\left( 2 + \frac{1}{n^{2}} ight)^{4}.\left( 1 + \frac{2}{n}
ight)^{9}}{1 + \frac{1}{n^{17}}} = 16

  • Câu 5: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 2}  - \sqrt {x + 3} }}{{2x - 3}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 2}  - \sqrt {x + 3} }}{{2x - 3}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{2}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{3}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{3}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{2}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{3}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{3}{x}} ight)}} \hfill \\   = 1 \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Giả sử a,b là các giá trị để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2} + ax + b}}{{{x^2} - 4}}{\text{   , khi }}x <  - 2} \\ 
  {x + 1{\text{   , khi }}x \geqslant  - 2} 
\end{array}} ight. có giới hạn hữu hạn khi x dần tới -
2. Tính giá trị biểu thức 3a -
b

    Ta có: \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}(x + 1) = - 1

    Suy ra f(x) hữu hạn khi x dần tới -
2 khi và chỉ khi

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{+}}f(x)

    \Leftrightarrow \lim_{x ightarrow
2^{-}}f(x) = - 1

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{x^{2} + ax + b}{x^{2} - 4} = - 1

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x^{2} + ax + b - 4}{x^{2} - 4} = 0(*)

    Do \lim_{x ightarrow 2^{-}}\left( x^{2}
- 4 ight) = 0 nên điều kiện cần để có (*) là

    \lim_{x ightarrow 2^{-}}\left( 2x^{2}
+ ax + b - 4 ight) = 0

    \Rightarrow 2a - b = 4

    Ngược lại với 2a - b = 4 ta có:

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x^{2} + ax + b - 4}{x^{2} - 4} = 0

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x^{2} + ax + 2a - 8}{x^{2} - 4} = 0

    \Leftrightarrow \lim_{x ightarrow
2^{-}}\frac{2x + a - 4}{x - 2} = 0

    \Leftrightarrow a = 8

    => f(x) có giới hạn hữu hạn khi x dần tới - 2 \Leftrightarrow \left\{ \begin{matrix}
a = 8 \\
b = 12 \\
\end{matrix} ight.

    \Leftrightarrow 3a - b = 12

  • Câu 7: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    a) Ta có:

    f(x) = \frac{x + 1}{x^{2} + 7x +
12} có điều kiện xác định

    ( - \infty; - 4) \cup ( - 4; - 3) \cup (
- 3; + \infty)

    Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.

    b) Đặt 3x^{4} + 5x^{3} + 10 =
f(x)

    f(x) liên tục trên tập số thực nên f(x) liên tục trên \lbrack - 2; - 1brack\ \ (*)

    Ta có: f( - 2) = - 126;f( - 1) =
2

    \Rightarrow f( - 2).f( - 1) <
0(**)

    Từ (*) và (**) suy ra phương trình f(x) =
0 có nghiệm thuộc ( - 2; -
1).

    c) Ta có:

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left( x^{2} - 3x ight) = - 2

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}(x - 1) = 1

    Vậy không tồn tại giới hạn của hàm số khi x ightarrow 2

    d) Ta có: với n chẵn

    \lim u_{n} = \lim\left\lbrack ( -
1)^{n}\sqrt{n} ightbrack = + \infty

    Với n lẻ \lim u_{n} = \lim\left\lbrack (
- 1)^{n}\sqrt{n} ightbrack = - \infty

    Suy ra dãy số không bị chặn.

  • Câu 8: Vận dụng

    Biết \lim_{x
ightarrow 0}\frac{\sin x}{x} = 1. Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\tan x}{x}\ khi\ x eq 0 \\0\ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. liên tục trên khoảng nào sau đây?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}có nghĩa là

    D = \underset{k\mathbb{\in
Z}}{\cup}\left( \frac{\pi}{2} + k\pi;\frac{3\pi}{2} + k\pi ight) = ...
\cup \left( - \frac{\pi}{2};\frac{\pi}{2} ight) \cup \left(
\frac{\pi}{2};\frac{3\pi}{2} ight) \cup ...

    Khi đó

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\tan x}{x}

    = \lim_{x ightarrow 0}\frac{\sin
x}{x}.\frac{1}{\cos x} = 1.\frac{1}{cos0} = 1 eq 0 = f(0)

  • Câu 9: Thông hiểu

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    Đáp án là:

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    a) \lim(\sqrt{3})^{n} = +\infty (do \sqrt{3} >
1)

    b) \lim\pi^{n} = + \infty( do \pi > 1)

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= \lim n^{3}.\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = +
\infty.

    \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = 1 > 0 \\
\end{matrix} ight.

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = \lim n^{4}.\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight)
= - \infty.

    \left\{ \begin{matrix}
\lim n^{4} = + \infty \\
\lim\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight) = - 1 < 0 \\
\end{matrix} ight.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 10: Nhận biết

    Cho f(x)=\frac{x^{2}+5x}{7x} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

     Ta có: 

    Với xeq 0 hàm số xác định => Hàm số liên tục khi x > 0 và x < 0

    Với x = 0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + 5x}}{{7x}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x + 5}}{7} = \dfrac{5}{7} \hfill \\ \end{matrix}

    Để hàm số liên tục tại x = 0 thì

    \Leftrightarrow \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) \Rightarrow f\left( 0 ight) = \frac{5}{7}

  • Câu 11: Vận dụng

    Kết quả của giới hạn \lim\frac{2^{n + 1} + 3n + 10}{3n^{2} - n +
2}

    Ta có: 2^{n} = \sum_{k =
0}^{n}C_{n}^{k}

    \Rightarrow 2^{n} \geq C_{n}^{3} =
\frac{n(n - 1)(n - 2)}{6}\sim\frac{n^{3}}{6}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.. Khi đó:

    \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2} -n + 2} = \lim\left\lbrack \dfrac{2^{n}}{n^{2}}.\dfrac{2 + 3\left(\dfrac{n}{2^{n}} ight) + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} ightbrack = + \infty

    (vì \left\{ \begin{matrix}\lim\left\lbrack 2 + 3\left( \dfrac{n}{2^{n}} ight) + 10.\left(\dfrac{1}{2} ight)^{n} ightbrack = \dfrac{2}{3} > 0 \\\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\end{matrix} ight.)

  • Câu 12: Thông hiểu

    Cho hàm số f(x)
= \frac{x - 2}{3 - x}. Mệnh đề nào sau đây đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}
  {\mathop {\lim }\limits_{x \to {3^ + }} \left( {x - 2} ight) = 1 > 0} \\ 
  \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left( {3 - x} ight) = 0 \hfill \\
  x \mapsto {3^ + } \Rightarrow \left( {3 - x} ight) < 0 \hfill \\ 
\end{gathered}  
\end{array}} ight. \Rightarrow \mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - \infty

    \lim_{x ightarrow - \infty}f(x) =\lim_{x ightarrow - \infty}\dfrac{x - 2}{3 - x} = \lim_{x ightarrow -\infty}\dfrac{1 - \dfrac{2}{x}}{\dfrac{3}{x} - 1} = - 1

    Vậy đáp án đúng là \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight.

  • Câu 13: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}\sin \dfrac{1}{x}}&{{\text{ }}khi{\text{ }}x e 0} \\   m&{{\text{ }}khi{\text{ }}x = 0} \end{array}} ight. liên tục tại x = 0

    Với mọi x e 0 ta có:

    0 \leqslant \left| {f(x)} ight| \leqslant \left| {{x^2}\sin \frac{1}{x}} ight| \leqslant {x^2} \to 0 khi x \to 0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = 0

    Theo giả thiết ta phải có: \mathop {m = f\left( 0 ight) = \lim }\limits_{x \to 0} f\left( x ight) = 0

  • Câu 14: Nhận biết

    Giới hạn \lim\frac{2}{n - 3} bằng

    Ta có:

    \lim\frac{2}{n - 3} =\lim\dfrac{\dfrac{2}{n}}{1 - \dfrac{3}{n}} = \dfrac{0}{0 - 0} =0

  • Câu 15: Thông hiểu

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Mệnh đề nào sau đây đúng?

    Xét hàm số f(x) = 2x^{4} - 5x^{2} + x +1 là đa thực có tập xác định \mathbb{R} nên liên tục trên \mathbb{R}.

    Ta có:

    \left\{ \begin{matrix}f(0) = 1 \\f( - 1) = - 3 \\\end{matrix} ight.\  \Rightarrow f(0).f( - 1) < 0 => Phương trình (*) có ít nhất một nghiệm thuộc ( - 1;1).

    \left\{ \begin{matrix}f(0) = 1 \\f(1) = - 1 \\\end{matrix} ight.\  \Rightarrow f(0).f(1) < 0 => Phương trình (*) có ít nhất một nghiệm thuộc (0;1).

    \left\{ \begin{matrix}f(1) = - 1 \\f(2) = 15 \\\end{matrix} ight.\  \Rightarrow f(1).f(2) < 0 => Phương trình (*) có ít nhất một nghiệm thuộc (1;2).

    Vậy phương trình (*) đã cho có các nghiệm x_{1};x_{2};x_{3} thỏa mãn - 1 < x_{1} < 0 < x_{2} < 1 < x_{3}< 2.

  • Câu 16: Vận dụng cao

    Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

    \begin{matrix}
  P = 1 + a + {a^2} + {a^3} + ... \hfill \\
  Q = 1 + b + {b^2} + {b^3} + ... \hfill \\
  H = 1 + ab + {a^2}{b^2} + {a^3}{b^3} + ... \hfill \\ 
\end{matrix}

    Chọn khẳng định đúng.

    Ta có: \left\{ \begin{matrix}P = \dfrac{1}{1 - a} \\Q = \dfrac{1}{1 - b} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1 - \dfrac{1}{P} \\b = 1 - \dfrac{1}{Q} \\\end{matrix} ight. khi đó:

    \begin{matrix}
  H = \dfrac{1}{{1 - ab}} \hfill \\
   = \dfrac{1}{{1 - \left( {1 - \dfrac{1}{P}} ight).\left( {1 - \dfrac{1}{Q}} ight)}} \hfill \\
   = \dfrac{{PQ}}{{P + Q - 1}} \hfill \\ 
\end{matrix}

  • Câu 17: Thông hiểu

    Cho a,b là các số thực khác 0. Tìm điều kiện của a,b để giới hạn \lim_{x ightarrow - \infty}\frac{\sqrt{x^{2} -
3x} + ax}{bx - 1} = 3

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{\sqrt{x^{2} - 3x} + ax}{bx - 1} = 3

    \Leftrightarrow \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 - \dfrac{3}{x}} + a}{b - \dfrac{1}{x}} =3

    \Leftrightarrow \frac{- 1 + a}{b} =
3

    \Leftrightarrow \frac{a - 1}{b} =
3

  • Câu 18: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{3 - x}{2x + 3}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{3 - x}{2x + 3} ight) = \lim_{x ightarrow +\infty}\dfrac{\dfrac{3}{x} - 1}{2 + \dfrac{3}{x}} = -\dfrac{1}{2}

  • Câu 19: Nhận biết

    Hàm số y =
\frac{- 5}{x\left( x^{2} - 4 ight)} liên tục tại điểm nào dưới đây?

    Hàm số y = \frac{- 5}{x\left( x^{2} - 4
ight)} có tập xác định D\mathbb{=
R}\backslash\left\{ - 2;0;2 ight\}

    Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định D.

    Khi đó x = 1 \in D suy ra hàm số đã cho liên tục tại điểm x = 1.

  • Câu 20: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 3 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo