Đề kiểm tra 15 phút Toán 11 Chương 3 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giá trị của A =
\lim\frac{2n + 1}{n - 2} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{5}{a} + 2 > 2

    Ta có:

    \left| \frac{2n + 1}{n - 2} - 2
ight| = \frac{5}{|n - 2|} < \frac{5}{n_{a} - 2} < a\ với\ mọi\ n
> n_{a}

    Vậy A=2.

  • Câu 2: Thông hiểu

    Giới hạn \lim_{}\frac{2^{n} -
3^{n}}{2^{n} + 1} bằng

    Ta có:

    \lim\dfrac{2^{n} - 3^{n}}{2^{n} + 1} =\lim\dfrac{1 - \left( \dfrac{3}{2} ight)^{n}}{1 + \left( \dfrac{1}{2}ight)^{n}}

    = \dfrac{\lim\left( 1 - \left(\dfrac{3}{2} ight)^{n} ight)}{\lim\left( 1 + \left( \dfrac{1}{2}ight)^{n} ight)} = \lim\left( 1 - \left( \dfrac{3}{2} ight)^{n}ight) = - \infty

  • Câu 3: Vận dụng

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{2} + \left( \sqrt{2}
ight)^{2} + ... + \left( \sqrt{2} ight)^{n}. Chọn mệnh đề đúng trong các mệnh đề dưới đây?

    Ta có:

    \sqrt{2};\left( \sqrt{2}
ight)^{2};...;\left( \sqrt{2} ight)^{n}lập thành một cấp số nhân có nên

    u_{n} = \sqrt{2}.\frac{1 - \left(
\sqrt{2} ight)^{n}}{1 - \sqrt{2}}

    = \left( 2 - \sqrt{2}
ight).\left\lbrack \left( \sqrt{2} ight)^{n} - 1
ightbrack

    \Rightarrow \lim u_{n} = +
\infty\left\{ \begin{matrix}
a = 2 - \sqrt{2} > 0 \\
q = \sqrt{2} > 1 \\
\end{matrix} ight.

  • Câu 4: Nhận biết

    Giá trị của \lim\frac{1 - n^{2}}{n} bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} thỏa mãn \frac{n_{M}^{2} - 1}{n_{M}} > M

    \Rightarrow n_{M} > \frac{M +
\sqrt{M^{2} + 4}}{2}.

    Ta có:

    \frac{n^{2} - 1}{n} > M\ ,\ \
\forall n > n_{M} = > \lim\frac{n^{2} - 1}{n} = +
\infty

    Vậy \lim\frac{1 - n^{2}}{n} = -
\infty.

  • Câu 5: Nhận biết

    Tính \lim_{x ightarrow 1}\frac{x^{2} +
3x + 2}{- 2x^{2} + x + 3}.

    Ta có :

    \lim_{x ightarrow 1}\frac{x^{2} + 3x +
2}{- 2x^{2} + x + 3} = \lim_{x ightarrow 1}\frac{1^{2} + 3.1 + 2}{-
2.1^{2} + 1 + 3} = 3.

  • Câu 6: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2} +
5x + 6} có nghĩa khi x^{2} + 5x + 6
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq - 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy theo định lí ta có hàm số f(x) =
\frac{x^{2} + 1}{x^{2} + 5x + 6} liên tục trên khoảng ( - \infty; - 3),( - 3; - 2),( - 2; +
\infty).

    b) Ta có: \lim\frac{an + 4}{4n + 3} =
\lim\frac{a + \frac{4}{n}}{4 + \frac{3}{n}} = \frac{a}{4}

    Khi đó: 2a + 1 = - 15.

    Theo bài ra ta có:

    \lim\frac{an + 4}{4n + 3} = - 2
\Leftrightarrow \frac{a}{4} = - 2 \Leftrightarrow a = - 8

    c) Ta có: x ightarrow 1^{+} \Rightarrow
x > 1 \Rightarrow x - 1 > 0

    \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x^{2}(x - 1)}}{\sqrt{x - 1} - (x -
1)}

    = \lim_{x ightarrow
1^{+}}\frac{x\sqrt{x - 1}}{\sqrt{x - 1}\left( 1 - \sqrt{x - 1} ight)}
= \lim_{x ightarrow 1^{+}}\frac{x}{1 - \sqrt{x - 1}} = 1s

    d) Xét hàm số x^{2} - 1000x^{2} + 0,01 =
f(x) có tập xác định D\mathbb{=
R}

    Suy ra hàm số f(x) cũng liên tục trên các khoảng ( - 1;0)(0;1).

    Ta có:

    \left\{ \begin{matrix}
f( - 1) = - 1000,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng ( - 1;0).

    Lại có: \left\{ \begin{matrix}
f(1) = - 999,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f(1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 7: Nhận biết

    Cho hàm số y =
f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là:

    Ta có:

    Hàm số y = f(x) liên tục trên (a;b)

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {a^ + }} f\left( x ight) = f\left( a ight) \hfill \\
  \mathop {\lim }\limits_{x \to {b^ - }} f\left( x ight) = f\left( b ight) \hfill \\ 
\end{gathered}  ight.

  • Câu 8: Nhận biết

    Tính giới hạn L = \lim_{x ightarrow
3}\frac{x - 3}{x + 3}?

    Ta có:

    L = \lim_{x ightarrow 3}\frac{x - 3}{x
+ 3} = \frac{3 - 3}{3 + 3} = 0

  • Câu 9: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

  • Câu 10: Vận dụng cao

    Tính \lim_{xightarrow 0}\dfrac{(1 + x)(1 + 2x)(1 + 3x)...(1 + 2018x) -1}{x}.

    Ta chứng minh bằng phương pháp quy nạp, với \forall n \geq 1;n\mathbb{\in N} thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + nx) - 1}{x} = \frac{n(n + 1)}{2}(*)

    Với n = 1 thì \left\{ \begin{gathered}
  VT = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + x - 1}}{x} = \mathop {\lim }\limits_{x \to 0} 1 = 1 \hfill \\
  VP = \dfrac{{1\left( {1 + 1} ight)}}{2} = 1 \hfill \\ 
\end{gathered}  ight. \Rightarrow VT = VP nên (*) đúng với n = 1

    Giả sử (*) đúng với n = k,k \geq
1;k\mathbb{\in N} nghĩa là:

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + kx) - 1}{x} = \frac{k(k + 1)}{2}

    Xét n = k + 1 ta có:

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx + x) - 1}{x}

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx) - 1}{x}

    + \lim_{x ightarrow 0}\frac{(1 + x)(1
+ 2x)(1 + 3x)...(x + kx) - 1}{x}

    VT = \frac{k(k + 1)}{2} + \lim_{x
ightarrow 0}\left\lbrack (1 + x)(1 + 2x)(1 + 3x)...(1 + k)
ightbrack

    VT = \frac{k(k + 1)}{2} + k + 1 =
\frac{(k + 1)(k + 2)}{2} = VP

    Vậy (*) đúng với n = k + 1;k \geq
1;k\mathbb{\in N}

    Bây giờ ta áp dụng với n = 2018 thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + 2018x) - 1}{x}

    = \frac{2018.(2018 + 1)}{2} =
1009.2019

  • Câu 11: Vận dụng cao

    Cho giới hạn I = \lim_{x ightarrow
0}\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}}. Tính giá trị của 100I?

    Đáp án: -600||- 600

    Đáp án là:

    Cho giới hạn I = \lim_{x ightarrow
0}\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}}. Tính giá trị của 100I?

    Đáp án: -600||- 600

    Ta có:

    I = \lim_{x ightarrow 0}\frac{\sqrt{2x
+ 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} - \sqrt[3]{8 +
x}}

    = \lim_{x ightarrow 0}\left(
\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{x}.\frac{x}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}} ight)

    = \lim_{x ightarrow 0}\left\{ \left(
\frac{\sqrt{2x + 1} - 1}{x} + \frac{1 - \sqrt[3]{x^{2} + 1}}{x}
ight).\frac{x}{\sqrt[3]{8 - x} - \sqrt[3]{8 + x}}
ight\}

    Ta có:

    +) \lim_{x ightarrow 0}\frac{\sqrt{2x +
1} - 1}{x} = \lim_{x ightarrow 0}\frac{2x}{\left( \sqrt{2x + 1} + 1
ight).x} = \lim_{x ightarrow 0}\frac{2}{\left( \sqrt{2x + 1} + 1
ight)} = 1

    +) \lim_{x ightarrow 0}\frac{1 -
\sqrt[3]{x^{2} + 1}}{x} = \lim_{x ightarrow 0}\frac{-
x^{2}}{\left\lbrack 1 + \sqrt[3]{x^{2} + 1} + \sqrt[3]{\left( x^{2} + 1
ight)^{2}} ightbrack.x}

    = \lim_{x ightarrow 0}\frac{-
x}{\left\lbrack 1 + \sqrt[3]{x^{2} + 1} + \sqrt[3]{\left( x^{2} + 1
ight)^{2}} ightbrack} = 0.

    +) \lim_{x ightarrow
0}\frac{x}{\sqrt[3]{8 - x} - \sqrt[3]{8 + x}}

    = \lim_{x ightarrow
0}\frac{x\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2}
ightbrack}{\left( \sqrt[3]{8 - x} ight)^{3} - \left( \sqrt[3]{8 +
x} ight)^{3}}

    = \lim_{x ightarrow
0}\frac{x\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2} ightbrack}{-
2x}

    = \lim_{x ightarrow
0}\frac{\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2} ightbrack}{-
2} = - 6.

    Vậy I = (1 + 0).( - 6) = - 6 \Rightarrow
100I = - 600.

  • Câu 12: Thông hiểu

    Giá trị của giới hạn \lim_{x ightarrow 0}\frac{2\sqrt{1 + x} -
\sqrt[3]{8 - x}}{x} là:

    Ta có:

    \lim_{x ightarrow 0}\frac{2\sqrt{1 +
x} - \sqrt[3]{8 - x}}{x}

    = \lim_{x ightarrow 0}\left(
\frac{2\sqrt{1 + x} - 2}{x} + \frac{2 - \sqrt[3]{8 - x}}{x}
ight)

    = \lim_{x ightarrow 0}\left(
\frac{2}{\sqrt{x + 1} + 1} + \frac{1}{4 + 2\sqrt[3]{8 - x + \sqrt[3]{(8
- x)^{2}}}} ight)

    = 1 + \frac{1}{12} =
\frac{13}{12}

  • Câu 13: Thông hiểu

    Tính giới hạn \lim\frac{5^{n + 1} - 4^{n} + 1}{2.5^{n} -6^{n}}.

    Ta có:

    \lim\dfrac{5^{n + 1} - 4^{n} + 1}{2.5^{n}- 6^{n}} = \lim\dfrac{\dfrac{5^{n + 1} - 4^{n} + 1}{6^{n}}}{\dfrac{2.5^{n}- 6^{n}}{6^{n}}}

    = \lim\dfrac{5.\left( \dfrac{5}{6}ight)^{n} - \left( \dfrac{2}{3} ight)^{n} + \left( \dfrac{1}{6}ight)^{n}}{2.\left( \dfrac{5}{6} ight)^{n} - 1} = 0

  • Câu 14: Thông hiểu

    Cho L = \lim_{x ightarrow -
\infty}\left( \sqrt{x^{2} + ax + 5} + x ight) . Khi đó:

    a) Khi L = 3 thì a = - 6. Đúng||Sai

    b) Khi L > 0 thì a > 0. Sai||Đúng

    c) Khi L = 2 thì a = 4. Sai||Đúng

    d) L = - 6 thì giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 = 0. Đúng||Sai

    Đáp án là:

    Cho L = \lim_{x ightarrow -
\infty}\left( \sqrt{x^{2} + ax + 5} + x ight) . Khi đó:

    a) Khi L = 3 thì a = - 6. Đúng||Sai

    b) Khi L > 0 thì a > 0. Sai||Đúng

    c) Khi L = 2 thì a = 4. Sai||Đúng

    d) L = - 6 thì giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 = 0. Đúng||Sai

    Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + ax + 5} + x ight) = - 6

    \Leftrightarrow \lim_{x ightarrow -
\infty}\left( \frac{x^{2} + ax + 5 - x^{2}}{\sqrt{x^{2} + ax + 5} - x}
ight) = - 6

    \Leftrightarrow \lim_{x ightarrow -
\infty}\left( \frac{ax + 5}{\sqrt{x^{2} + ax + 5} - x} ight) = -
6

    \Leftrightarrow \lim_{x ightarrow -\infty}\left( \dfrac{a + \dfrac{5}{x}}{- \sqrt{1 + \dfrac{a}{x} +\dfrac{5}{x^{2}}} - 1} ight) = - 6

    \Leftrightarrow \frac{a}{- 2} = - 6
\Leftrightarrow a = 12.

    Vì vậy giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 =
0.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 15: Vận dụng

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Đáp án là:

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Hàm số y = f(x) có TXĐ D\mathbb{= R}.

    Hàm số f(x) = \frac{x(x + 1)}{x^{2} -
1} liên tục trên mỗi khoảng ( -
\infty; - 1), ( - 1;1)(1; + \infty).

    (i) Xét tại x = - 1, ta có \lim_{x ightarrow - 1}f(x) = \lim_{x ightarrow
- 1}\frac{x(x + 1)}{x^{2} - 1} = \lim_{x ightarrow - 1}\frac{x}{x - 1}
= \frac{1}{2} = f( - 1)\overset{}{ightarrow} Hàm số liên tục tại x = - 1.

    (ii) Xét tại x = 1, ta có 

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{x}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{x}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. \toHàm số y = f(x) gián đoạn tại x = 1.

    Vậy số điểm gián đoạn cần tìm là 1.

  • Câu 16: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.

    b) Xét phương trình f(x) = 7 \Rightarrow
f(x) - 7 = 0

    Đặt g(x) = f(x) - 7 ta có:

    \left\{ \begin{matrix}
g(1) = f(1) - 7 = - 5 \\
g(5) = f(5) - 7 = 3 \\
\end{matrix} ight.\  \Rightarrow g(1).g(5) < 0

    Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng (1;5).

    c) Ta có:

    I = \lim_{x ightarrow 1}\frac{xf(x) +
1}{x - 1} = \lim_{x ightarrow 1}\frac{xf(x) + x - x + 1}{x -
1}

    = \lim_{x ightarrow
1}\frac{x\left\lbrack f(x) + 1 ightbrack - (x - 1)}{x - 1} = \lim_{x
ightarrow 1}\left\{ \frac{x\left\lbrack f(x) + 1 ightbrack}{x - 1}
ight\} - 1

    = 1.( - 1) - 1 = - 2

    d) Các hàm số liên tục trên tập số thực là y = x^{2};y = \sin x;y = \frac{x^{2} - 1}{x^{2} +
x + 1}.

  • Câu 17: Thông hiểu

    Phương trình nào dưới đây có nghiệm trong khoảng (0; 1)?

    Xét hàm số f(x) = 3x^{2017} - 8x +
4 liên tục trên \mathbb{R}.

    \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = - 1 \\
\end{matrix} ight.\  \Rightarrow f(0).f(1) = - 4 < 0

    => Phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 18: Nhận biết

    Hàm số nào sau đây gián đoạn tại x = 1?

    Xét hàm số y = \frac{x}{x^{2} -
1} hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.

  • Câu 19: Thông hiểu

    Giới hạn dãy số (u_{n}) với u_{n} = \frac{\left( 3n - n^{4} ight)}{4n -
5} là?

    Ta có:

    \lim u_{n} = \lim\frac{\left( 3n - n^{4}
ight)}{4n - 5} = \lim{n^{3}\frac{\frac{3}{n^{3}} - 1}{4 -
\frac{5}{n}}} = - \infty

    \lim n^{3} = + \infty nên suy ra:

     \lim\frac{\frac{3}{n^{3}} - 1}{4 -
\frac{5}{n}} = - \frac{1}{4}.

  • Câu 20: Vận dụng

    Cho \lim_{x ightarrow 1}\frac{f(x) -
10}{x - 1} = 5. Giới hạn \lim_{x
ightarrow 1}\frac{f(x) - 10}{\left( \sqrt{x} - 1 ight)\left(
\sqrt{4f(x) + 9} + 3 ight)}bằng

    Đáp án: 1

    Đáp án là:

    Cho \lim_{x ightarrow 1}\frac{f(x) -
10}{x - 1} = 5. Giới hạn \lim_{x
ightarrow 1}\frac{f(x) - 10}{\left( \sqrt{x} - 1 ight)\left(
\sqrt{4f(x) + 9} + 3 ight)}bằng

    Đáp án: 1

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5nên f(x) - 10\overset{x
ightarrow 1}{ightarrow}5(x - 1)hay f(x)\overset{x ightarrow 1}{ightarrow}5x +
5

    Do đó

    \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left( \sqrt{4f(x) + 9} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5x + 5 -
10}{\left( \sqrt{x} - 1 ight)\left( \sqrt{4(5x + 5) + 9} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5(x -
1)\left( \sqrt{x} + 1 ight)}{(x - 1)\left( \sqrt{20x + 29} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5\left(
\sqrt{x} + 1 ight)}{\left( \sqrt{20x + 29} + 3 ight)} =
1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 3 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo