Tính giới hạn ![]()
Ta có:
Tính giới hạn ![]()
Ta có:
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Biết giới hạn
,
là số thực,
là các số nguyên dương và
tối giản.
Tính tổng:
.
Đáp án: 0
Biết giới hạn ,
là số thực,
là các số nguyên dương và
tối giản.
Tính tổng: .
Đáp án: 0
Vì nên
.
Suy ra .
Với ta được
.
Vậy .
Suy ra .
Hàm số nào trong các hàm số sau liên tục tại
?
Xét hàm số có:
Vậy hàm số liên tục tại .
Biết
với
. Tính giá trị của biểu thức
.
Ta có:
Vậy
bằng:
Ta có:
Tìm giới hạn ![]()
Ta có:
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục tại
. Sai||Đúng
b) Cho hàm số liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết khi đó
Sai||Đúng
d) Trong các hàm số , có 3 hàm số liên tục trên tập số thực. Đúng||Sai
a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.
b) Xét phương trình
Đặt ta có:
Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng .
c) Ta có:
d) Các hàm số liên tục trên tập số thực là .
Cho hàm số
có đồ thị như hình dưới đây. Chọn khẳng định đúng.

Dựa vào đồ thị ta thấy hàm số liên tục trên
Cho hàm số
liên tục tại
. Tính giá trị biểu thức
.
Ta có:
Từ điều kiện hàm số liên tục tại ta có hệ phương trình:
Tính ![]()
Ta có:
Tính giới hạn ![]()
Ta có:
Hàm số
liên tục tại điểm nào dưới đây?
Hàm số có tập xác định
Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định .
Khi đó suy ra hàm số đã cho liên tục tại điểm
.
Giá trị của
bằng:
Chia cả tử và mẫu cho ta có được.
Tính giới hạn ![]()
Ta có:
Tính giới hạn của hàm số
.
Ta có:
Giá trị của giới hạn
là:
Ta có:
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi
dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có
Tính tổng S gồm tất cả các giá trị của tham số m để hàm số
liên tục tại
.
Tập xác định
Điều kiện để bài toán trở thành
Ta có:
Cho hai dãy số
với
và
. Khi đó
bằng:
Ta có: