Tính giá trị ![]()
Ta có:
Tính giá trị ![]()
Ta có:
Tìm giới hạn ![]()
Ta có:
Tính giới hạn
.
Ta có:
Vì nên
Do đó
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
suy ra
.
Vậy .
Cho dãy số
thỏa mãn
. Biết dãy số
là dãy tăng và không bị chặn trên. Đặt
. Tính ![]()
Ta có:
Tính được các giới hạn sau, khi đó:
a)
Sai||Đúng
b)
Sai||Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
a) (do
b) do
c) .
Vì
d) .
Vì
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Giá trị của giới hạn
là:
Ta có:
Cho
và
. Công thức nào sau đây sai?
Ta có: chỉ đúng nếu
.
Tìm giá trị của tham số
để hàm số
liên tục trên
.
Đáp án: 3
Tìm giá trị của tham số để hàm số
liên tục trên
.
Đáp án: 3
Phần giải chi tiết
Tập xác định .
Hàm số liên tục trên các khoảng
.
Ta có
Hàm số liên tục trên
khi và chỉ khi
.
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Tính giới hạn của hàm số
.
Ta có:
Trong các giới hạn dưới đây, giới hạn nào không tồn tại?
Ta có:
không xác định.
Biết
liên tục trên
. Khẳng định nào sau đây đúng?
Dễ thấy liên tục trên mỗi khoảng
và
. Khi đó hàm số liên tục trên đoạn
khi và chỉ khi hàm số liên tục tại
Tức là ta cần có:
Ta có:
Khi đó (*) trở thành
Hàm số nào sau đây không liên tục tại
?
Hàm số có tập xác định
nên không liên tục tại
.
Giới hạn
bằng
Ta có:
Cho
là một đa thức thỏa mãn
. Tính giá trị

Ta có:
Khi đó
Biết rằng hàm số
liên tục tại
(a là tham số. Khẳng định nào dưới đây đúng?
Tập xác định
Theo giả thiết ta có:
Cho dãy số
với
, trong đó
là tham số thực.
a) Khi
thì
Đúng||Sai
b) Khi
thì
. Sai||Đúng
c) Khi
thì
. Đúng||Sai
d) Khi
thì
Đúng||Sai
Cho dãy số với
, trong đó
là tham số thực.
a) Khi thì
Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Đúng||Sai
d) Khi thì
Đúng||Sai
Ta có
Nhận lượng liên hợp :
Trong các mệnh đề sau, mệnh đề nào sai?
Ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình
vô nghiệm. Sai||Đúng
b) Hàm số
có 4 điểm gián đoạn. Đúng||Sai
c)
Đúng||Sai
d) Để hàm số
liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình vô nghiệm. Sai||Đúng
b) Hàm số có 4 điểm gián đoạn. Đúng||Sai
c) Đúng||Sai
d) Để hàm số liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
a) Xét hàm số có tập xác định
Hàm số liên tục trên ta có:
Vì nên phương trình
có ít nhất một nghiệm trên
.
b) Ta có:
Vậy hàm số đã cho có 4 điểm gián đoạn.
c) Ta có:
d) Ta có:
với thì
là hàm phân thức hữu tỉ xác định với mọi
. Do đó hàm số liên tục trên các khoảng
Tại ta có:
Để hàm số liên tục trên khoảng thì hàm số phải liên tục tại x = 0 khi đó:
.
Vậy để hàm số liên tục trên khoảng
thì
nhận giá trị là
.