Đề kiểm tra 15 phút Toán 11 Chương 3 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} - 2x + 1}
- \sqrt{1 - 2x}}{x}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{4x^{2}
- 2x + 1} - \sqrt{1 - 2x}}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x^{2} - 2x + 1} - \sqrt{1 - 2x} ight)\left( \sqrt{4x^{2} - 2x +
1} + \sqrt{1 - 2x} ight)}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 -
2x} ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x}{\sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}} = \frac{0}{1 + 1} =
0

  • Câu 2: Nhận biết

    Giá trị của \lim\frac{{(\sin n)}^{2}}{n + 2}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a}
> \frac{1}{a} - 2

    Suy ra

    \frac{\left( \sin n ight)^{2}}{n
+ 2} < \frac{1}{n + 2} < \frac{1}{n_{a} + 2} < a\ \forall n
> n_{a}

    Vậy:  \lim\frac{{{(sin}n)}^{2}}{n + 2} = 0 .

  • Câu 3: Vận dụng

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    Đáp án là:

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    \lim_{x ightarrow 2}(x - 2) =
0 nên \lim_{x ightarrow 2}\left(
\sqrt{3x + 3} + a ight) = 0.

    Suy ra a = - 3.

    Với a = - 3 ta được

    \lim_{x ightarrow 2}\frac{\sqrt{3x +
3} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{\left( \sqrt{3x + 3} - 3
ight)\left( \sqrt{3x + 3} + 3 ight)}{(x - 2)\left( \sqrt{3x + 3} + 3
ight)}

    = \lim_{x ightarrow 2}\frac{3x - 6}{(x
- 2)\left( \sqrt{3x + 3} + 3 ight)} = \lim_{x ightarrow
2}\frac{3}{\sqrt{3x + 3} + 3} = \frac{1}{2}.

    Vậy b = 1;c = 2.

    Suy ra a + b + c = 0.

  • Câu 4: Thông hiểu

    Hàm số nào trong các hàm số sau liên tục tại x = 1?

    Xét hàm số f(x) = \left\{ \begin{matrix}
x + 1\ khi\ x \geq 1 \\
3x - 1\ khi\ x < 1 \\
\end{matrix} ight. có:

    \left\{ \begin{matrix}
f(1) = 2 \\
\lim_{x ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{+}}(x + 1) = 2
\\
\lim_{x ightarrow 1^{-}}f(x) = \lim_{x ightarrow 1^{-}}(3x - 1) = 2
\\
\end{matrix} ight.

    Vậy hàm số liên tục tại x =
1.

  • Câu 5: Vận dụng cao

    Biết \lim\left( \frac{\left( \sqrt{5}
ight)^{n} - 2^{n + 1} + 1}{5.2^{n} + \left( \sqrt{5} ight)^{n + 1} -
3} + \frac{2n^{2} + 3}{n^{2} - 1} ight) = \frac{a\sqrt{5}}{b} +
cvới a,b,c \mathbb{\in Z}. Tính giá trị của biểu thức S = a^{2} + b^{2}
+ c^{2}.

    Ta có:

    \lim\left( \dfrac{\left( \sqrt{5}ight)^{n} - 2^{n + 1} + 1}{5.2^{n} + \left( \sqrt{5} ight)^{n + 1} -3} + \dfrac{2n^{2} + 3}{n^{2} - 1} ight)

    = \lim\left( \dfrac{1 - 2.\left(\dfrac{2}{\sqrt{5}} ight)^{n} + \left( \dfrac{1}{\sqrt{5}}ight)^{n}}{5.\left( d\frac{2}{\sqrt{5}} ight)^{2} + \sqrt{5} -3.\left( \dfrac{1}{\sqrt{5}} ight)^{n}} + \dfrac{2 + \dfrac{3}{n^{2}}}{1- \dfrac{1}{n^{2}}} ight)

    = \frac{1}{\sqrt{5} + 2} =
\frac{\sqrt{5}}{5} + 2

    Vậy S = a^{2} + b^{2} + c^{2} = 1^{2} +
5^{2} + 2^{2} = 30

  • Câu 6: Nhận biết

    \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 1}}{{{x^2} + x}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^3} + 1}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} ight)\left( {{x^2} - x + 1} ight)}}{{x\left( {x + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} - x + 1}}{x} =  - 3 \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Tìm giới hạn H =
\lim_{x ightarrow 1}\left( \frac{3x^{2} - x - 2}{x^{2} - 1}
ight)

    Ta có:

    H = \lim_{x ightarrow 1}\left(
\frac{3x^{2} - x - 2}{x^{2} - 1} ight)

    H = \lim_{x ightarrow 1}\frac{(x -
1)(3x + 2)}{(x - 1)(x + 1)}

    H = \lim_{x ightarrow 1}\frac{3x +
2}{x + 1} = \frac{5}{2}

  • Câu 8: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.

    b) Xét phương trình f(x) = 7 \Rightarrow
f(x) - 7 = 0

    Đặt g(x) = f(x) - 7 ta có:

    \left\{ \begin{matrix}
g(1) = f(1) - 7 = - 5 \\
g(5) = f(5) - 7 = 3 \\
\end{matrix} ight.\  \Rightarrow g(1).g(5) < 0

    Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng (1;5).

    c) Ta có:

    I = \lim_{x ightarrow 1}\frac{xf(x) +
1}{x - 1} = \lim_{x ightarrow 1}\frac{xf(x) + x - x + 1}{x -
1}

    = \lim_{x ightarrow
1}\frac{x\left\lbrack f(x) + 1 ightbrack - (x - 1)}{x - 1} = \lim_{x
ightarrow 1}\left\{ \frac{x\left\lbrack f(x) + 1 ightbrack}{x - 1}
ight\} - 1

    = 1.( - 1) - 1 = - 2

    d) Các hàm số liên tục trên tập số thực là y = x^{2};y = \sin x;y = \frac{x^{2} - 1}{x^{2} +
x + 1}.

  • Câu 9: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 10: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{x - \sqrt {x + 2} }}{{{x^2} - 4}}{\text{    khi }}x > 2} \\ 
  {{x^2} + ax + 3b{\text{    khi }}x < 2} \\ 
  {2x + b - 6{\text{    khi }}x = 2} 
\end{array}} ight. liên tục tại x = 2. Tính giá trị biểu thức H = a + b.

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) = \frac{3}{{16}} \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} f\left( x ight) = 2a + 3b + 4 \hfill \\ 
\end{gathered}  ight.

    Từ điều kiện hàm số liên tục tại x =
2ta có hệ phương trình:

    \left\{ \begin{matrix}2a + 3b = - \dfrac{61}{16} \\2a + b = \dfrac{99}{16} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{179}{32} \\b = - 5 \\\end{matrix} ight.

    \Rightarrow H = a + b =
\frac{19}{32}

  • Câu 11: Thông hiểu

    Tính K = \lim_{x
ightarrow + \infty}\left( \sqrt{4x^{2} + 3x + 1} - 2x
ight)

    Ta có:

    K = \lim_{x ightarrow + \infty}\left(
\sqrt{4x^{2} + 3x + 1} - 2x ight)

    K = \lim_{x ightarrow +\infty}\dfrac{4x^{2} + 3x + 1 - 4x^{2}}{\sqrt{4x^{2} + 3x + 1} +2x}

    K = \lim_{x ightarrow +\infty}\dfrac{3x + 1}{\sqrt{4x^{2} + 3x + 1} + 2x}

    K = \lim_{x ightarrow + \infty}\dfrac{3+ \dfrac{1}{x}}{\sqrt{4 + \dfrac{3}{x} + \dfrac{1}{x^{2}}} + 2} =\dfrac{3}{4}

  • Câu 12: Nhận biết

    Tính giới hạn \lim_{x ightarrow 2^{-}}\frac{3x + 1}{2 -
x}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {2^ - }} \left( {3x + 1} ight) = 7 > 0 \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} \left( {x - 2} ight) = 0 \hfill \\
  x - 2 < 0,x \mapsto 2 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \lim_{x ightarrow
2^{-}}\frac{3x + 1}{2 - x} = + \infty

  • Câu 13: Nhận biết

    Hàm số y =
\frac{- 5}{x\left( x^{2} - 4 ight)} liên tục tại điểm nào dưới đây?

    Hàm số y = \frac{- 5}{x\left( x^{2} - 4
ight)} có tập xác định D\mathbb{=
R}\backslash\left\{ - 2;0;2 ight\}

    Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định D.

    Khi đó x = 1 \in D suy ra hàm số đã cho liên tục tại điểm x = 1.

  • Câu 14: Thông hiểu

    Giá trị của C =\lim\frac{\sqrt[4]{3n^{3} + 1} - n}{\sqrt{2n^{4} + 3n + 1} + n} bằng:

    Chia cả tử và mẫu cho n^{2} ta có được.

    C = \lim\frac{\sqrt[4]{\dfrac{3}{n^{5}} +\dfrac{1}{n^{8}}} - \dfrac{1}{n}}{\sqrt{2 + \dfrac{3}{n^{3}} +\dfrac{1}{n^{4}}} + \dfrac{1}{n}} = 0

  • Câu 15: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{8n + 2}{2n - 1}}

    Ta có: \lim\sqrt{\dfrac{8n + 2}{2n - 1}} =\lim\sqrt{\dfrac{8 + \dfrac{2}{n}}{2 - \dfrac{1}{n}}} = \sqrt{\dfrac{8 +0}{2 - 0}} = 2

  • Câu 16: Vận dụng

    Tính giới hạn của hàm số \lim\left(
\frac{1}{n^{2}} + \frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}}
ight).

    Ta có:

    \frac{1}{n^{2}} + \frac{2}{n^{2}} + ...
+ \frac{n - 1}{n^{2}}

    = \frac{1}{n^{2}}(1 + 2 + .. + n -
1)

    = \frac{1}{n^{2}}.\frac{(n - 1)(1 + n -
1)}{2}

    = \frac{n^{2} - n}{2n^{2}}

    \Rightarrow \lim\left( \frac{1}{n^{2}} +
\frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}} ight) = \lim\frac{n^{2} -
n}{2n} = \frac{1}{2}

  • Câu 17: Thông hiểu

    Giá trị của giới hạn \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) là:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) \hfill \\   = \lim \dfrac{{\left( {\sqrt {{n^2} - n + 1}  - n} ight)\left( {\sqrt {{n^2} - n + 1}  + n} ight)}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\ \end{matrix}

    \begin{matrix}   = \lim \dfrac{{{n^2} - n + 1 - {n^2}}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\   = \lim \dfrac{{ - n + 1}}{{\sqrt {{n^2} - n + 1}  + n}} \hfill \\   = \lim \dfrac{{n\left( { - 1 + \dfrac{1}{n}} ight)}}{{n\left( {\sqrt {1 - \frac{1}{n} + \dfrac{1}{{{n^2}}}}  + 1} ight)}} =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 18: Vận dụng

    Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi t dần về dương vô cùng?

    Đáp án: 30

    Đáp án là:

    Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi t dần về dương vô cùng?

    Đáp án: 30

    Sau t phút bơm nước vào hồ thì lượng nước là 600 + 15t (lít) và lượng muối có được là 30.15t (gam).

    Nồng độ muối của nước là

    C(t) = \frac{30.15t}{600 + 15t} =
\frac{30t}{40 + t} (gam/lít).

    Khi t dần về dương vô cùng, ta có

    \lim_{t ightarrow + \infty}C(t) =
\lim_{t ightarrow + \infty}\frac{30t}{40 + t} = \lim_{t ightarrow +
\infty}\frac{30t}{t\left( \frac{40}{t} + 1 ight)}

    = \lim_{t ightarrow +
\infty}\frac{30}{\frac{40}{t} + 1} = 30\ (gam/lít).

  • Câu 19: Thông hiểu

    Tính tổng S gồm tất cả các giá trị của tham số m để hàm số f(x) = \left\{ \begin{matrix}
x^{2} + x\ \ \ \ \ khi\ x < 1 \\
2\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\
m^{2}x + 1\ \ \ khi\ x > 1 \\
\end{matrix} ight. liên tục tại x = 1.

    Tập xác định D\mathbb{= R}

    Điều kiện để bài toán trở thành

    \lim_{x
ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)\
(*)

    Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{+}}\left( m^{2}x
+ 1 ight) = m^{2} + 1 \\
\lim_{x ightarrow 1^{-}}f(x) = \lim_{x ightarrow 1^{-}}\left( x^{2}
+ x ight) = 2 \\
f(1) = 2 \\
\end{matrix} ight.

    (*) \Leftrightarrow m^{2} + 1 = 2
\Leftrightarrow m = \pm 1

    S = - 1 + 1 = 0

  • Câu 20: Thông hiểu

    Cho hai dãy số \left( u_{n}
ight);\left( v_{n} ight) với u_{n} = 2n + 1v_{n} = \frac{1}{1 - n}. Khi đó \lim_{n ightarrow + \infty}\left( u_{n}v_{n}
ight) bằng:

    Ta có:

    u_{n}v_{n} = (2n + 1).\frac{1}{1 - n} =
\frac{2n + 1}{1 - n}

    \Rightarrow \lim_{n ightarrow +
\infty}\left( u_{n}v_{n} ight) = \lim_{n ightarrow + \infty}\frac{2n
+ 1}{1 - n} = \lim_{n ightarrow + \infty}\frac{2 +
\frac{1}{n}}{\frac{1}{n} - 1} = - 2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 3 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 61 lượt xem
Sắp xếp theo