Tính giới hạn ![]()
Khi ta có:
Tính giới hạn ![]()
Khi ta có:
Cho
là các số thực khác
. Tìm điều kiện của
để giới hạn ![]()
Ta có:
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy = 0.
Cho hàm số
. Mệnh đề nào sau đây là sai?
Hàm số là hàm đa thức
=> Hàm số liên tục trên
Ta có:
=>
=> có nghiệm trên
Vậy khẳng định sai là khẳng định: "Phương trình f(x) = 0 không có nghiệm trên khoảng "
Ta có:
=>
=> có nghiệm trên
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Tính giới hạn
.
Ta có:
Giới hạn
bằng
Ta có:
.
Tính giá trị biểu thức ![]()
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Giá trị của giới hạn
bằng:
Ta có:
bằng:
Ta có:
Giá trị của
bằng:
Gọi m là số tự nhiên thỏa: m+1>|a|.
Khi đó với mọi n > m+1.
Ta có:
Mà .
Từ đó suy ra: .
Tính giới hạn ![]()
Ta có:
Cho hàm số
. Mệnh đề nào sai?
Ta có:
là hàm đa thức nên liên tục trên
.
Ta có: có nghiệm trên
Mà
Vậy phương trình có nghiệm trên khoảng
Ta có: có nghiệm trên
Vậy mệnh đề sai là “Phương trình không có nghiệm trên khoảng
”
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn thỏa mãn:
Ta có:
Suy ra .
Cho số thực m thỏa mãn
. Khi đó giá trị của m là bao nhiêu?
Ta có:
Cho hàm số
. Xác định
để hàm số liên tục trên
?
Ta có:
Hàm số liên tục trên khi và chỉ khi hàm số liên tục tại
Cho hàm số
xác định trên tập số thực và có đồ thị như hình vẽ:

Hỏi hàm số
không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Tìm giới hạn ![]()
Ta có: