Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Xác định số nhóm trong mẫu số liệu ghép nhóm sau?
Khoảng thời gian học (phút) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
Tần số | 2 | 3 | 14 | 8 | 3 | 8 | 2 |
Mẫu dữ liệu ghép nhóm đã cho có 7 nhóm.
Mẫu số liệu có bao nhiêu nhóm?
Mẫu số liệu đã cho có 5 nhóm.
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Đáp án đúng là: 5.
Bảng số liệu dưới đây cho biết khoảng chi tiêu hàng tháng của 200 hộ gia đình.
Khoảng chi tiêu (USD) | [0; 1000) | [1000; 2000) | [2000; 3000) | [3000; 4000) | [4000; 5000) |
Số hộ gia đình | 28 | 46 | 54 | 42 | 30 |
Tính trung vị của mẫu số liệu ghép nhóm này.
Ta có:
Khoảng chi tiêu (USD) | [0; 1000) | [1000; 2000) | [2000; 3000) | [3000; 4000) | [4000; 5000) |
|
Số hộ gia đình | 28 | 46 | 54 | 42 | 30 | N = 200 |
Tần số tích lũy | 28 | 74 | 128 | 170 | 200 |
|
Ta có:
=> Nhóm chứa trung vị là [2000; 3000) (vì 100 nằm giữa hai tần số tích lũy là 74 và 128)
Do đó:
Khi đó trung vị là:
Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:
Thời gian (phút) | [0; 5) | [5; 10) | [10; 15) | [15; 20) | [20; 25) |
Số học sinh | 8 | 16 | 4 | 7 | 12 |
Hỏi số học sinh tập thể dục ít nhất 10 phút mỗi ngày chiếm bao nhiêu phần trăm?
Số học sinh tập thể dục ít nhất 10 phút mỗi ngày là:
(học sinh) chiếm
Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:
Chiều cao (cm) | Số học sinh |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | x |
[165; 170) | 26 |
[170; 175) | y |
[175; 180) | 3 |
Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?
Đáp án:
40
5
Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:
Chiều cao (cm) | Số học sinh |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | x |
[165; 170) | 26 |
[170; 175) | y |
[175; 180) | 3 |
Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?
Đáp án:
40
5
Ta có 100 học sinh tham gia đo chiều cao khi đó:
5 + 18 + x + 26 + y + 3 = 100
=> x + y = 48 (*)
Mặt khác số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm suy ra x = 5y (**)
Từ (*) và (**) ta có hệ phương trình:
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tổng | N = 100 |
Mốt của mẫu số liệu thuộc nhóm số liệu nào?
Mốt của mẫu số liệu thuộc nhóm [160; 165).
Cho bảng dữ liệu như sau:
Đại diện | Tần số |
[1; 5) | 6 |
[5; 10) | 19 |
[10; 15) | 13 |
[15; 20) | 20 |
[20; 25) | 12 |
[25; 30) | 11 |
[30; 35) | 6 |
[35; 40) | 5 |
Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?
Ta có:
Đại diện | Tần số | Tần số tích lũy |
[1; 5) | 6 | 6 |
[5; 10) | 19 | 25 |
[10; 15) | 13 | 38 |
[15; 20) | 20 | 58 |
[20; 25) | 12 | 70 |
[25; 30) | 11 | 81 |
[30; 35) | 6 | 87 |
[35; 40) | 5 | 92 |
| N = 92 |
|
Ta có:
=> Nhóm chứa là
(vì 23 nằm giữa các tần số tích lũy 6 và 25).
Khi đó ta tìm được các giá trị:
Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:
1 | 6 | 2 | 3 | 5 | 12 | 5 | 8 | 4 | 8 |
10 | 3 | 4 | 12 | 2 | 8 | 15 | 1 | 17 | 6 |
3 | 2 | 8 | 5 | 9 | 6 | 8 | 7 | 14 | 12 |
Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?
Độ dài nhóm là
Khoảng biến thiên:
Ta có: => Số nhóm tạo thành là 4 nhóm.
Số giờ | Tần số |
Tổng cộng |
Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.
Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:
5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |
Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là
. Xác định tần suất nhóm
trong mẫu dữ liệu ghép nhóm thu được?
Ta chia thành các nhóm có độ dài là 5
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.
Ta có bảng ghép nhóm như sau:
Thời gian | Số học sinh |
[0; 5) | 6 |
[5; 10) | 10 |
[10; 15) | 11 |
[15; 20) | 9 |
[20; 25) | 1 |
[25; 30) | 1 |
[3; 35) | 2 |
Ta có tần suất của nhóm là:
Quan sát bảng sau và tìm mốt.
Khoảng dữ liệu | [10; 20) | [20; 30) | [30; 40) | [40; 50) |
Tần số | 8 | 12 | 22 | 17 |
Quan sát bảng dữ liệu ta thấy mốt của mẫu dữ liệu nằm trong khoảng [30; 40)
Khi đó:
Vậy mốt của dữ liệu là:
Nhóm chứa tứ phân vị thứ ba của mẫu số liệu đã cho là:
Ta có: ,
,
,
,
Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
161 | 150 | 154 | 165 | 168 | 161 | 154 | 162 | 150 | 151 |
162 | 164 | 171 | 165 | 158 | 154 | 156 | 172 | 160 | 170 |
153 | 159 | 161 | 170 | 162 | 165 | 166 | 168 | 165 | 164 |
154 | 152 | 153 | 156 | 158 | 162 | 160 | 161 | 173 | 166 |
161 | 159 | 162 | 167 | 168 | 159 | 158 | 153 | 154 | 159 |
Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?
Độ dài nhóm:
Khoảng biến thiên:
Ta có: vậy ta chia thành 5 nhóm như sau:
Chiều cao (tính bằng cm) | Tần số |
Tổng |
Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.
Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:
Chiều cao | Số cây |
[145; 150) | 25 |
[150; 155) | 50 |
[155; 160) | 200 |
[160; 165) | 175 |
[165; 170) | 50 |
Giá trị đại diện cho nhóm [155; 160) bằng:
Giá trị đại diện của nhóm [155; 160) là
Cho các bảng số liệu sau:
Bảng A | Số khách hàng | [35; 40) | [40; 45) | [45; 50) | [50; 55) |
Số ngày | 5 | 3 | 2 | 4 | |
Bảng B | Điểm | [0; 2,5) | [2,5; 5) | [5; 7,5) | [7,5; 10) |
Số học sinh | 4 | 6 | 10 | 12 | |
Bảng C | Chiều cao | [120; 150) | [150; 180) | [180; 210) | [210; 240) |
Số cây | 15 | 20 | 31 | 18 | |
Bảng D | Số sách | [0; 10) | [10; 20) | [20; 30) | [30; 40) |
Số khách hàng | 12 | 5 | 7 | 10 |
Chọn bảng số liệu có độ dài nhóm số liệu bằng 10?
Bảng A có độ dài nhóm số liệu là: 5
Bảng B có độ dài nhóm số liệu là: 2,5
Bảng C có độ dài nhóm số liệu là: 30
Bảng D có độ dài nhóm số liệu là: 10
Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.
Khoảng dữ liệu | Tần số |
[0; 20) | 16 |
[20; 40) | x |
[40; 60) | 25 |
[60; 80) | y |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Ta có:
Dữ liệu đại diện | Tần số | Tích các số liệu |
10 | 16 | 160 |
30 | x | 30x |
50 | 25 | 1250 |
70 | y | 70y |
90 | 12 | 1080 |
110 | 10 | 1100 |
Tổng | 63 + x + y | 3590 + 30x + 70y |
Theo bài ra ta có số trung bình bằng 56 nghĩa là:
Mặt khác
Từ (*) và (**) ta có hệ phương trình:
Tính chiều cao trung bình của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Ta có:
Chiều cao đại diện | Số học sinh | Tích các giá trị |
100 | 9 | 900 |
110 | 13 | 1430 |
120 | 26 | 3120 |
130 | 30 | 3900 |
140 | 12 | 1680 |
150 | 10 | 1500 |
Tổng | 100 | 12530 |
Chiều cao trung bình của các học sinh là:
Một tổ học sinh gồm 4 nam và 3 nữ. Điểm kiểm tra trung bình của nam và nữ lần lượt là 7 và 8. Tính điểm kiểm tra trung bình của cả tổ.
Ta có:
Khi đó điểm số trung bình của cả tổ là:
Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Cỡ mẫu của mẫu số liệu ghép nhóm là: