Thời gian chạy trung bình cự li
(giây) của các bạn học sinh là
Thời gian chạy trung bình cự li (giây) của các bạn học sinh là:
(giây)
Thời gian chạy trung bình cự li
(giây) của các bạn học sinh là
Thời gian chạy trung bình cự li (giây) của các bạn học sinh là:
(giây)
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | x |
[15; 20) | 13 |
[20; 25) | 12 |
[25; 30) | y |
Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?
Ta có:
Lại có:
Thời gian (phút) | Số nhân viên | Tần số tích lũy |
[0; 5) | 25 | 25 |
[5; 10) | 14 | 39 |
[10; 15) | x | 39 + x |
[15; 20) | 13 | 52 + x |
[20; 25) | 12 | 64 + x |
[25; 30) | y | 64 + x + y |
Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)
Khi đó:
Bảng sau đây cho thấy sự phân bố tuổi của những người trong một khu vực (đơn vị: nghìn người) cụ thể như sau:
Tuổi | Nhỏ hơn 10 | Nhỏ hơn 20 | Nhỏ hơn 30 | Nhỏ hơn 40 | Nhỏ hơn 50 | Nhỏ hơn 60 | Nhỏ hơn 70 | Nhỏ hơn 80 |
Tần số tích lũy | 2 | 5 | 9 | 12 | 14 | 15 | 15,5 | 15,6 |
Tính trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
Tuổi (năm) | (0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
|
Số người (nghìn người) | 2 | 3 | 4 | 3 | 2 | 1 | 0,5 | 0,1 | N = 15,6 |
Tần số tích lũy | 2 | 5 | 9 | 12 | 14 | 15 | 15,5 | 15,6 |
|
Ta có:
=> Trung vị nằm trong nhóm (vì 7,8 nằm giữa hai tần số tích lũy là 5 và 9)
Dưới đây là sự phân bố một nhóm người theo mức thu nhập khác nhau:
Thu nhập (triệu đồng) | [0; 8) | [8; 16) | [16; 24) | [24; 32) | [32; 40) | [40; 48) |
Số người | 8 | 7 | 16 | 24 | 15 | 7 |
Tính giá trị tứ phân vị thứ nhất. (Làm tròn giá trị đến chữ số thập phân thứ nhất).
Ta có:
Thu nhập (triệu đồng) | [0; 8) | [8; 16) | [16; 24) | [24; 32) | [32; 40) | [40; 48) |
Số người | 8 | 7 | 16 | 24 | 15 | 7 |
Tần số tích lũy | 8 | 15 | 31 | 55 | 70 | 77 |
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [16; 24)
Khi đó:
Tứ phân vị thứ nhất là:
Cho bảng số liệu thống kê sau: Số khách hàng đến mua cà phê mỗi buổi sáng tại quầy trong 2 tuần
Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 2 | 4 |
Những ngày có không dưới 40 khách hàng đến mua cà phê chiếm bao nhiêu phần trăm?
Những ngày có không dưới 40 khách hàng đến mua cà phê là: 3 + 2 + 4 = 9 (khách hàng) chiếm
Cho bảng dữ liệu như sau:
Đại diện X | [10; 15) | [15; 20) | [20; 25) | [25; 30) | [30; 35) |
Tần số | 8 | 12 | 14 | 10 | 6 |
Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?
Đại diện X | [10; 15) | [15; 20) | [20; 25) | [25; 30) | [30; 35) |
Tần số | 8 | 12 | 14 | 10 | 6 |
Tần số tích lũy | 8 | 20 | 34 | 44 | 50 |
Ta có:
=> Nhóm chứa là [25; 30)
Khi đó ta tìm được các giá trị:
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng
b) Nhóm chứa trung vị của mẫu số liệu là:
Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là
(đúng)
d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng
b) Nhóm chứa trung vị của mẫu số liệu là: Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là (đúng)
d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng
Ta có:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
|
Giá trị đại diện |
6 |
8 |
10 |
12 |
14 |
|
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
N = 20 |
Do đó doanh thu trung bình của cửa hàng là:
(triệu đồng)
Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.
Ta có:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
N = 20 |
|
Tần số tích lũy |
2 |
9 |
16 |
19 |
20 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [9; 11)
(Vì 10 nằm giữa hai tần số tích lũy 9 và 16)
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [7; 9)
(Vì 5 nằm giữa hai tần số tích lũy 2 và 9)
Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:
Xét nhóm [7; 9) ta có:
Xét nhóm [9; 11) ta có:
Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.
Nếu [0; 5), [5; 10); [10; 15), … là các nhóm số liệu của mẫu dữ liệu ghép nhóm thì độ dài của nhóm là:
Độ dài của nhóm là 4
Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:
Chiều cao | Số cây |
[145; 150) | 25 |
[150; 155) | 50 |
[155; 160) | 200 |
[160; 165) | 175 |
[165; 170) | 50 |
Mẫu số liệu ghép nhóm đã cho có tất cả bao nhiêu nhóm?
Mẫu số liệu ghép nhóm đã cho có tất cả 5 nhóm.
Độ tuổi của 112 cư dân được ghi như bảng sau:
Tuổi | Số học sinh |
[0; 9] | 20 |
[10; 19] | 21 |
[20; 29] | 23 |
[30; 39] | 16 |
[40; 49] | 11 |
[50; 59] | 10 |
[60; 69] | 7 |
[70; 79] | 3 |
[80; 89] | 1 |
Hoàn thành bảng số liệu dưới đây?
Tuổi | Số đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20)||[10;20)||[10,20)||[10, 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40)||[30;40)||[30,40)||[30, 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60)||[50;60)||[50,60)||[50, 60) | 55 | 10 |
[60; 70)||[60;70)||[60, 70)||[60,70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90)||[80;90)||[80,90)||[80, 90) | 85 | 1 |
Độ tuổi của 112 cư dân được ghi như bảng sau:
Tuổi | Số học sinh |
[0; 9] | 20 |
[10; 19] | 21 |
[20; 29] | 23 |
[30; 39] | 16 |
[40; 49] | 11 |
[50; 59] | 10 |
[60; 69] | 7 |
[70; 79] | 3 |
[80; 89] | 1 |
Hoàn thành bảng số liệu dưới đây?
Tuổi | Số đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20)||[10;20)||[10,20)||[10, 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40)||[30;40)||[30,40)||[30, 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60)||[50;60)||[50,60)||[50, 60) | 55 | 10 |
[60; 70)||[60;70)||[60, 70)||[60,70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90)||[80;90)||[80,90)||[80, 90) | 85 | 1 |
Ta có:
Tuổi | Đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60) | 55 | 10 |
[60; 70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90) | 85 | 1 |
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
|
Cân nặng (kg) |
Số học sinh |
|
[45; 50) |
5 |
|
[50; 55) |
12 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
5 |
|
[70; 75) |
8 |
a) Cân nặng trung bình của học sinh lớp 11H bằng
. Đúng||Sai
b)
Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là:
Đúng||Sai
d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
|
Cân nặng (kg) |
Số học sinh |
|
[45; 50) |
5 |
|
[50; 55) |
12 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
5 |
|
[70; 75) |
8 |
a) Cân nặng trung bình của học sinh lớp 11H bằng . Đúng||Sai
b) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: Đúng||Sai
d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai
Ta có:
|
Cân nặng (kg) |
Giá trị đại diện |
Số học sinh |
|
[45; 50) |
47,5 |
5 |
|
[50; 55) |
52,5 |
12 |
|
[55; 60) |
57,5 |
10 |
|
[60; 65) |
62,5 |
6 |
|
[65; 70) |
67,5 |
5 |
|
[70; 75) |
72,5 |
8 |
Cân nặng trung bình của học sinh lớp 11H là:
Nhóm chứa mốt là: [50; 55) suy ra .
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
=> Nhóm chứa tứ phân vị thứ ba là: [65; 70)
|
Cân nặng (kg) |
Số học sinh |
Tần số tích lũy |
|
[45; 50) |
5 |
5 |
|
[50; 55) |
12 |
17 |
|
[55; 60) |
10 |
27 |
|
[60; 65) |
6 |
33 |
|
[65; 70) |
5 |
38 |
|
[70; 75) |
8 |
46 |
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:
Kích thước (gram) | [410; 420) | [420; 430) | [430; 440) | [440; 450) | [450; 460) | [460; 470) | [470; 480) |
Số lượng táo | 14 | 20 | 42 | 54 | 45 | 18 | 7 |
Tính giá trị tứ phân vị thứ nhất của mẫu dữ liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Kích thước (gram) | Số lượng táo | Tần số tích lũy |
[410; 420) | 14 | 14 |
[420; 430) | 20 | 34 |
[430; 440) | 42 | 76 |
[440; 450) | 54 | 130 |
[450; 460) | 45 | 175 |
[460; 470) | 18 | 193 |
[470; 480) | 7 | 200 |
Tổng | N = 200 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [430; 440)
Khi đó ta có:
Tứ phân vị thứ nhất được tính như sau:
Điểm kiểm tra của 50 học sinh được thể hiện như sau:
23, 25, 36, 39, 37, 41, 42, 22, 26, 35,
34, 30, 29, 27, 47, 40, 31, 32, 43, 45,
34, 46, 23, 24, 27, 36, 41, 43, 39, 38,
28, 32, 42, 33, 46, 23, 34, 41, 40, 30,
45, 42, 39, 37, 38, 42, 44, 46, 29, 37.
Chuyển mẫu dữ liệu trên thành dạng ghép nhóm. Điền kết quả còn thiếu vào ô trống.
Khoảng điểm | Số học sinh |
| 5 |
| 7 |
| 9 |
| 11 |
| 12 |
| 6 |
Điểm kiểm tra của 50 học sinh được thể hiện như sau:
23, 25, 36, 39, 37, 41, 42, 22, 26, 35,
34, 30, 29, 27, 47, 40, 31, 32, 43, 45,
34, 46, 23, 24, 27, 36, 41, 43, 39, 38,
28, 32, 42, 33, 46, 23, 34, 41, 40, 30,
45, 42, 39, 37, 38, 42, 44, 46, 29, 37.
Chuyển mẫu dữ liệu trên thành dạng ghép nhóm. Điền kết quả còn thiếu vào ô trống.
Khoảng điểm | Số học sinh |
5 | |
7 | |
9 | |
11 | |
12 | |
6 |
Hoàn thành bảng
Khoảng điểm | Số học sinh |
[20; 25) | 5 |
[25; 30) | 7 |
[30; 35) | 9 |
[35; 40) | 11 |
[40; 45) | 12 |
[45; 50) | 6 |
Cho bảng dữ liệu như sau:
Đại diện | Tần số |
[1; 5) | 6 |
[5; 10) | 19 |
[10; 15) | 13 |
[15; 20) | 20 |
[20; 25) | 12 |
[25; 30) | 11 |
[30; 35) | 6 |
[35; 40) | 5 |
Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?
Ta có:
Đại diện | Tần số | Tần số tích lũy |
[1; 5) | 6 | 6 |
[5; 10) | 19 | 25 |
[10; 15) | 13 | 38 |
[15; 20) | 20 | 58 |
[20; 25) | 12 | 70 |
[25; 30) | 11 | 81 |
[30; 35) | 6 | 87 |
[35; 40) | 5 | 92 |
| N = 92 |
|
Ta có:
=> Nhóm chứa là
(vì 23 nằm giữa các tần số tích lũy 6 và 25).
Khi đó ta tìm được các giá trị:
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Hoàn thành bảng dữ diệu dưới đây:
Chiều cao (cm) | Số học sinh |
(120; 125] | 3 |
(125; 130] | 5 |
(130; 135] | 11 |
(135; 140] | 6 |
(140; 145] | 5 |
Nhóm nào dưới đây chứa tứ phân vị thứ ba của mẫu dữ liệu ghép nhóm?
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
| Tổng | N = 30 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (135; 140]
Lượng nước tiêu thụ trong một tháng của các hộ gia đình trong một khu chung cư được ghi lại như sau:
|
Lượng nước (m3) |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
[100; 120) |
|
Số hộ gia đỉnh |
6 |
12 |
10 |
7 |
4 |
2 |
Giá trị đại diện của nhóm chứa mốt của mẫu số liệu trên là.
Vì nhóm chứa mốt của mẫu số liệu là nhóm nên giá trị đại diện của nhóm này là
.
Cho mẫu dữ liệu ghép nhóm sau đây:
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | x |
(30;40] | 9 |
(40;50] | 7 |
Biết
. Tìm cỡ mẫu?
Ta có:
Đại diện | Tần số | Tích các giá trị |
5 | 8 | 40 |
15 | 14 | 210 |
25 | x | 25x |
35 | 9 | 315 |
45 | 7 | 315 |
Tổng | N = 38 + x | 880 + 25x |
Theo bài ra ta có giá trị trung bình là:
Vậy số phần tử của mẫu dữ liệu là N = 38 + 12 = 50
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Tần số |
2 |
7 |
7 |
3 |
1 |
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Tần số |
2 |
7 |
7 |
3 |
1 |
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | [160; 164) | [164; 168) | [168; 172) | [172; 174) |
Tần số | 8 |
| 12 | 6 |
Biết rằng nhóm dữ liệu có giá trị đại diện là 166 chiếm 60% tổng tần số của mẫu dữ liệu. Tìm giá trị của
?
Nhóm số liệu có độ dài 166 là: [164; 168)
Theo bài ra ta có: