Đề kiểm tra 15 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm chứa trung vị của mẫu số liệu là: [100; 150)||[200; 250)||[150; 200)||[50; 100)

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm chứa trung vị của mẫu số liệu là: [100; 150)||[200; 250)||[150; 200)||[50; 100)

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{2}= 30

    => Nhóm chứa trung vị là [100; 150) (vì 30 nằm giữa hai tần số tích lũy 17 và 40)

  • Câu 2: Vận dụng

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của \Delta = \left|Q_{1} - Q_{3} ight|?

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -4}{5}.10 = 52

    Ta có: \frac{3N}{4} = \frac{3.20}{4} =15

    => Nhóm chứa tứ phân vị thứ ba là: [60; 70]

    Khi đó: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 15 \\m = 9,f = 7,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{15 -9}{7}.10 = \frac{480}{7}

    \Rightarrow \Delta = \left| Q_{1} -Q_{3} ight| = \left| 52 - \frac{480}{7} ight| \approx16,6

  • Câu 3: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Số học sinh lớp 11H là:

    Số học sinh lớp 11H là:

    5 + 12 + 10 + 6 + 5 + 8 = 46 (học sinh)

  • Câu 4: Nhận biết

    Thời gian chạy 50m của 20 học sinh được ghi lại trong bảng dưới đây:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Tần số

    2

    3

    9

    5

    1

    Số trung bình cộng thời gian chạy của học sinh là:

    Số trung bình cộng thời gian chạy của học sinh là:

    \overline{x} = \frac{8,3.2 + 8,4.3 +
8,5.9 + 8,7.5 + 8,8.1}{20} = 8,53.

  • Câu 5: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Khi đó giá trị tứ phân vị thứ ba là: Q_{3} = 71

    Đáp án là:

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Khi đó giá trị tứ phân vị thứ ba là: Q_{3} = 71

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{31,5 - 26}{10}.20 =71

  • Câu 6: Vận dụng

    Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:

    Chiều cao (cm)

    Số học sinh

    [150; 154]

    5

    [155; 159]

    2

    [160; 164]

    6

    [165; 169]

    8

    [170; 174]

    9

    [175; 179]

    11

    [180; 184]

    6

    [185; 189]

    3

    Tìm trung vị của mẫu số liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (149,5; 154,5]

    5

    5

    (154,5; 159,5]

    2

    7

    (159,5; 164,5]

    6

    13

    (164,5; 169,5]

    8

    21

    (169,5; 174,5]

    9

    30

    (174,5; 179,5]

    11

    41

    (179,5; 184,5]

    6

    47

    (184,5; 189,5]

    3

    50

    Tổng

    N = 50

     

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là (169,5; 174,5]

    Khi đó: \left\{ \begin{matrix}l = 169,5,\dfrac{N}{2} = 25 \\m = 21,f = 9,d = 174,5 - 169,5 = 5 \\\end{matrix} ight.

    Trung vị của mẫu số liệu là:

    M_{e} = L + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Rightarrow M_{e} = 169,5 + \frac{25 -21}{9}.5 \approx 171,7

  • Câu 7: Nhận biết

    Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:

    Lớp 11A

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    8

    12

    10

    6

    Lớp 11B

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    5

    12

    10

    8

    4

    Lớp 11C

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    10

    15

    9

    3

    Lớp 11D

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    9

    16

    11

    3

    Lớp nào có nhiều học sinh nhất?

    Số học sinh lớp 11A là:

    4 + 8 + 12 + 10 + 6 = 40 (học sinh)

    Số học sinh lớp 11B là:

    5 + 12 + 10 + 8 + 4 = 39 (học sinh)

    Số học sinh lớp 11C là:

    4 + 10 + 15 + 9 + 3 = 41 (học sinh)

    Số học sinh lớp 11D là:

    4 + 9 + 16 + 11 + 3 = 43 (học sinh)

    Vậy lớp 11C có nhiều học sinh nhất.

  • Câu 8: Nhận biết

    Một nhóm 11 học sinh tham gia một kỳ thi. Số điểm thi của 11 học sinh đó được sắp xếp từ thấp đến cao như sau (thang điểm 10): 0;0;3;6;6;7;7;8;8;8;9. Tìm số trung bình của mẫu số liệu (tính chính xác đến hàng phần trăm).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{0.2 + 3.1 + 6.2 +
7.2 + 8.3 + 9}{11} = 5,64

  • Câu 9: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    x

    30 + x

    [30; 40)

    16

    46 + x

    [40; 50)

    9

    55 + x

     

    N = 55 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow l = 20;\frac{N}{2} =\frac{55 + x}{2};m = 30;f = x,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 24 = 20 + \dfrac{\left(\dfrac{55 + x}{2} - 30 ight)}{x}.10

    \Leftrightarrow 4 = \frac{5(x -5)}{x}

    \Leftrightarrow 4x = 5x -25

    \Leftrightarrow 25 = 5x -4x

    \Leftrightarrow 25 = x

  • Câu 10: Thông hiểu

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26

    Đáp án là:

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là:

    8 + 16 + 4 = 28 (học sinh)

  • Câu 11: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Ghi các kết quả vào ô trống:

    + Số nhóm của mẫu dữ liệu: 8

    + Độ dài nhóm số liệu: 10

    Đáp án là:

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Ghi các kết quả vào ô trống:

    + Số nhóm của mẫu dữ liệu: 8

    + Độ dài nhóm số liệu: 10

    + Mẫu số liệu trên được chia thành 8 nhóm.

    + Độ dài nhóm số liệu là 10

  • Câu 12: Thông hiểu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn đáp án đúng?

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -5}{12}.5 \approx 52,7

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    \Rightarrow \left\{ \begin{matrix}l = 65,\dfrac{3N}{4} = 34,5,m = 33,f = 5 \\c = 70 - 65 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 65 + \frac{34,5 -33}{5}.5 \approx 66,5

  • Câu 13: Thông hiểu

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tìm mốt của mẫu dữ liệu ghép nhóm. (Kết quả làm tròn đến chữ số thập phân thứ nhất)

    Ta có:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

     

    [105; 115)

    13

     

    [115; 125)

    26

    f_{0}

    [125; 135)

    30

    f_{1}

    [135; 145)

    12

    f_{2}

    [145; 155)

    10

     

    Tổng

    N = 100

     

    Ta có: Nhóm chứa mốt của mẫu dữ liệu ghép nhóm là: [125; 135)

    Khi đó: \left\{ \begin{matrix}l = 125;f_{0} = 26 \\f_{1} = 30,f_{2} = 12;d = 135 - 125 = 10 \\\end{matrix} ight.

    Mốt của mẫu dữ liệu ghép nhóm là:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.d

    \Rightarrow M_{0} = 125 + \frac{30 -26}{2.30 - 26 - 12}.10 = 126,8

  • Câu 14: Thông hiểu

    Biểu đồ dưới đây thể hiện điểm kiểm tra của 20 học sinh:

    Tính điểm trung bình của 20 học sinh trên?

    Ta có bảng sau:

    Khoảng điểm

    Điểm đại diện

    Tần số

    Tích các giá trị

    (0; 10]

    5

    2

    10

    (10; 20]

    15

    5

    75

    (20; 30]

    25

    6

    150

    (30; 40]

    35

    4

    140

    (40; 50]

    45

    3

    135

    Tổng

     

    N = 20

    510

    Số điểm trung bình:

    \overline{x} = \frac{510}{20} =25,5

  • Câu 15: Thông hiểu

    Thời gian lái xe của 25 nhân viên trong công ty được ghi lại trong bảng sau:

    Thời gian (phút)

    Số nhân viên

    (0; 10]

    3

    (10; 20]

    10

    (20; 30]

    6

    (30; 40]

    4

    (40; 50]

    2

    Tính thời gian lái xe trung bình của các nhân viên đó.

    Ta có:

    Thời gian đại diện (phút)

    Số nhân viên

    Tích các giá trị

    5

    3

    15

    15

    10

    150

    25

    6

    150

    35

    4

    140

    45

    2

    90

    Tổng

    N = 25

    545

    Thời gian lái xe trung bình là:

    \overline{x} = \frac{545}{25} =21,8(phút)

  • Câu 16: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Xác định số nhóm trong mẫu dữ liệu ghép nhóm trên?

    Mẫu dữ liệu ghép nhóm trên có 5 nhóm.

  • Câu 17: Vận dụng

    Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.

    Chiều cao (h)

    Số học sinh

    130 < h ≤ 140

    2

    140 < h ≤ 150

    4

    150 < h ≤ 160

    9

    160 < h ≤ 170

    13

    170 < h ≤ 180

    8

    180 < h ≤ 190

    3

    190 < h ≤ 200

    1

    Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba bằng bao nhiêu?

    Ta có:

    Chiều cao (h)

    Số học sinh

    Tần số tích lũy

    130 < h ≤ 140

    2

    2

    140 < h ≤ 150

    4

    6

    150 < h ≤ 160

    9

    15

    160 < h ≤ 170

    13

    28

    170 < h ≤ 180

    8

    36

    180 < h ≤ 190

    3

    39

    190 < h ≤ 200

    1

    40

    Tổng

    N = 40

     

    Ta có: \frac{N}{4} = \frac{40}{4} =10

    => Nhóm chứa tứ phân vị thứ nhất là: (150; 160]

    Khi đó: \left\{ \begin{matrix}l = 150;\dfrac{N}{4} = 10;m = 6 \\f = 9;d = 160 - 150 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \left( \dfrac{\dfrac{N}{4} -m}{f} ight).d

    \Rightarrow Q_{1} = 150 + \left(\frac{10 - 6}{9} ight).10 = \frac{1390}{9}

    Ta có: \frac{3N}{4} = \frac{3.40}{4} =30

    => Nhóm chứa tứ phân vị thứ ba là: (170; 180]

    Khi đó: \left\{ \begin{matrix}l = 170;\dfrac{3N}{4} = 30;m = 28 \\f = 8;d = 180 - 170 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ ba là:

    Q_{3} = l + \left( \frac{\frac{3N}{4} -m}{f} ight).d

    \Rightarrow Q_{3} = 170 + \left(\frac{30 - 28}{8} ight).10 = \frac{345}{2}

    => Độ lớn chênh lệch giữa tứ phân vị thứ nhất và tứ phân vị thứ ba là:

    \Delta = \left| Q_{1} - Q_{3} ight| =\left| \frac{1390}{9} - \frac{345}{2} ight| =\frac{325}{18}

  • Câu 18: Thông hiểu

    Dưới đây là sự phân bố một nhóm người theo mức thu nhập khác nhau:

    Thu nhập (triệu đồng)

    [0; 8)

    [8; 16)

    [16; 24)

    [24; 32)

    [32; 40)

    [40; 48)

    Số người

    8

    7

    16

    24

    15

    7

    Tính giá trị tứ phân vị thứ nhất. (Làm tròn giá trị đến chữ số thập phân thứ nhất).

    Ta có:

    Thu nhập (triệu đồng)

    [0; 8)

    [8; 16)

    [16; 24)

    [24; 32)

    [32; 40)

    [40; 48)

    Số người

    8

    7

    16

    24

    15

    7

    Tần số tích lũy

    8

    15

    31

    55

    70

    77

    Ta có: \frac{N}{4} = \frac{77}{4} =19,25

    => Nhóm chứa tứ phân vị thứ nhất là: [16; 24)

    Khi đó: \left\{ \begin{matrix}l = 16,\dfrac{N}{4} = 19,25,m = 15 \\f = 16,d = 24 - 16 = 8 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 16 + \frac{19,25 -15}{16}.8 = 18,125

  • Câu 19: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 20: Thông hiểu

    Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:

    Số tiền (nghìn đồng)

    [350; 400)

    [400; 450)

    [450; 500)

    [500; 550)

    [550; 600)

    Số hộ gia đình

    6

    14

    21

    17

    2

    Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)

    Đáp án: 471 nghìn đồng.

    Đáp án là:

    Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:

    Số tiền (nghìn đồng)

    [350; 400)

    [400; 450)

    [450; 500)

    [500; 550)

    [550; 600)

    Số hộ gia đình

    6

    14

    21

    17

    2

    Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)

    Đáp án: 471 nghìn đồng.

    Ta có giá trị đại diện của các nhóm lần lượt là: 375;\ \ 425;\ \ 475;\ \ 525;\ \ 575

    Trung bình cộng của bảng số liệu trên là:

    \frac{375 \times 6 + 425 \times 14 + 475
\times 21 + 525 \times 17 + 575 \times 2}{60}

    = 470,8(3) \simeq 471 (nghìn đồng).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo