Đề kiểm tra 15 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    “Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm

    Đáp án là:

    “Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm

    Hoàn thành câu: Mẫu số liệu ghép nhóm là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.

  • Câu 2: Nhận biết

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Tần số

    2

    7

    7

    3

    1

    Đáp án là:

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Tần số

    2

    7

    7

    3

    1

  • Câu 3: Vận dụng

    Bảng dưới đây cho biết số điểm trong kì kiểm tra của học sinh lớp 11.

    Điểm

    Số học sinh

    [0; 10)

    2

    [10; 20)

    6

    [20; 30)

    8

    [30; 40)

    x

    [40; 50)

    30

    [50; 60)

    22

    [60; 70)

    18

    [70; 80)

    8

    [80; 90)

    4

    [90; 100)

    2

    Biết trung vị bằng 47. Tìm tổng số học sinh.

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    [0; 10)

    2

    2

    [10; 20)

    6

    8

    [20; 30)

    8

    16

    [30; 40)

    x

    16 + x

    [40; 50)

    30

    46 + x

    [50; 60)

    22

    68 + x

    [60; 70)

    18

    86 + x

    [70; 80)

    8

    94 + x

    [80; 90)

    4

    98 + x

    [90; 100)

    2

    100 + x

     

    N = 100 + x

     

    Trung vị là 47 => Nhóm chứa trung vị là [40; 50)

    \Rightarrow \left\{ \begin{matrix}l = 40;\dfrac{N}{2} = \dfrac{100 + x}{2} \\m = 16 + x;f = 30,c = 50 - 40 = 10 \\\end{matrix} ight.

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 47 = 40 + \dfrac{\left(\dfrac{100 + x}{2} - 16 - x ight)}{30}.10

    \Leftrightarrow 21 = \frac{100 + x - 32- 2x}{2}

    \Leftrightarrow x = 26

    Vậy số học sinh là 126 học sinh.

  • Câu 4: Thông hiểu

    Một tổ học sinh gồm 4 nam và 3 nữ. Điểm kiểm tra trung bình của nam và nữ lần lượt là 7 và 8. Tính điểm kiểm tra trung bình của cả tổ.

    Ta có:\left\{ \begin{gathered}  {n_1} = 4;\overline {{x_1}}  = 7 \hfill \\  {n_2} = 3;\overline {{x_2}}  = 8 \hfill \\ \end{gathered}  ight.

    Khi đó điểm số trung bình của cả tổ là:

    \overline{x_{12}} =\frac{n_{1}\overline{x_{1}} + n_{2}\overline{x_{2}}}{n_{1} + n_{2}} =\frac{4.7 + 3.8}{4 + 3} \approx 7,4

  • Câu 5: Nhận biết

    Giá trị đại diện của nhóm \lbrack
60;80)

    Ta có giá trị đại diện là \frac{60 +
80}{2} = 70.

  • Câu 6: Vận dụng

    Bảng sau đây cho thấy sự phân bố tuổi của những người trong một khu vực (đơn vị: nghìn người) cụ thể như sau:

    Tuổi

    Nhỏ hơn 10

    Nhỏ hơn 20

    Nhỏ hơn 30

    Nhỏ hơn 40

    Nhỏ hơn 50

    Nhỏ hơn 60

    Nhỏ hơn 70

    Nhỏ hơn 80

    Tần số tích lũy

    2

    5

    9

    12

    14

    15

    15,5

    15,6

    Tính trung vị của mẫu số liệu ghép nhóm trên.

    Ta có:

    Tuổi (năm)

    (0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

     

    Số người (nghìn người)

    2

    3

    4

    3

    2

    1

    0,5

    0,1

    N = 15,6

    Tần số tích lũy

    2

    5

    9

    12

    14

    15

    15,5

    15,6

     

    Ta có: \frac{N}{2} = \frac{15,6}{2} =7,8

    => Trung vị nằm trong nhóm \lbrack20;30)(vì 7,8 nằm giữa hai tần số tích lũy là 5 và 9)

    \Rightarrow l = 20;\frac{N}{2} = 7,8;m =5;f = 4,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\frac{N}{2} - m ight)}{f}.c= 20 + \frac{7,8 - 5}{4}.10 =27

  • Câu 7: Thông hiểu

    Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó mốt của dấu hiệu thuộc nhóm số liệu nào?

    Ta có:

    Khoảng biến thiên là 174 - 160 =14

    Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.

    Khi đó ta có các nhóm là: \lbrack160;164),\lbrack 164;168),\lbrack 168;172),\lbrack 172;176)

    Vậy bảng dữ liệu ghép nhóm đúng là:

    Quan sát bảng dữ liệu ghép nhóm ta thấy mốt của dấu hiệu thuộc nhóm số liệu \lbrack 164;168).

  • Câu 8: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Mốt của dữ liệu bằng bao nhiêu?

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

     

    f_{0}f_{1}f_{2}

     

    \Rightarrow l = 40;f_{0} = 9;f_{1} =12;f_{2} = 10;c = 60 - 40 = 20

    Khi đó mốt của dữ liệu được tính như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{\left(f_{1} - f_{0} ight) + \left( f_{1} - f_{2} ight)}.c

    \Rightarrow M_{0} = 40 + \frac{12 -9}{12 - 9 + 12 - 10}.20 = 52

  • Câu 9: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:

    Khoảng

    Tần số

    Nhỏ hơn 10

    10

    Nhỏ hơn 20

    20

    Nhỏ hơn 30

    30

    Nhỏ hơn 40

    40

    Nhỏ hơn 50

    50

    Nhỏ hơn 60

    30

    Tính giá trị tứ phân vị thứ nhất.

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 10]

    10

    10

    (10; 20]

    20

    30

    (20; 30]

    30

    60

    (30; 40]

    50

    110

    (40; 50]

    40

    150

    (50; 60]

    30

    180

    Tổng

    N = 180

     

    Ta có: \frac{N}{4} = \frac{180}{4} =45

    => Nhóm chứa tứ phân vị thứ nhất là: (20; 30]

    Khi đó: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 45 \\m = 30,f = 30,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{45 -30}{30}.10 = 25

  • Câu 10: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính mức doanh thu trung bình của cửa hàng?

    Đáp án: 9,4 (triệu đồng)

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính mức doanh thu trung bình của cửa hàng?

    Đáp án: 9,4 (triệu đồng)

    (Kết quả ghi dưới dạng số thập phân)

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Giá trị đại diện

    6

    8

    10

    12

    14

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Do đó doanh thu trung bình của cửa hàng là:

    \overline{x} = \frac{6.2 + 8.7 + 10.7 +12.3 + 14.1}{20} = 9,4 (triệu đồng)

    Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.

  • Câu 11: Nhận biết

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Đáp án là:

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Ta có:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40 ≤ x < 50

    45

    4

    50 ≤ x < 60

    55

    5

    60 ≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

  • Câu 12: Vận dụng

    Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:

    1

    6

    2

    3

    5

    12

    5

    8

    4

    8

    10

    3

    4

    12

    2

    8

    15

    1

    17

    6

    3

    2

    8

    5

    9

    6

    8

    7

    14

    12

    Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?

    Độ dài nhóm là 10 - 5 = 5

    Khoảng biến thiên: 17 - 1 = 16

    Ta có: \frac{16}{5} = 3,2 => Số nhóm tạo thành là 4 nhóm.

    Số gi

    Tần số

    [0; 5)

    10

    [5; 10)

    13

    [10; 15)

    5

    [15; 20)

    2

    Tổng cộng

    30

    Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.

  • Câu 13: Nhận biết

    Mỗi ngày, bạn Chi đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bạn Chi được thống kê lại ở bảng sau:

    Quãng đường trung bình mà bạn Chi chạy được là?

    Ta có bảng tần số ghép nhóm chứa giá trị đại diện như sau:

    Cỡ mẫu là: n = 3 + 6 + 5 + 4 + 2 = 20.

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

  • Câu 14: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 15: Vận dụng

    Cho bảng dữ liệu dưới đây:

    Khoảng dữ liệu

    Tần số

    [0; 20)

    16

    [20; 40)

    x

    [40; 60)

    25

    [60; 80)

    y

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Biết số trung bình là 56. Tính giá trị biểu thức T = 2x – y.

    Ta có:

    Dữ liệu đại diện

    Tần số

    Tích các số liệu

    10

    16

    160

    30

    x

    30x

    50

    25

    1250

    70

    y

    70y

    90

    12

    1080

    110

    10

    1100

    Tổng

    63 + x + y

    3590 + 30x + 70y

    Theo bài ra ta có số trung bình bằng 56 nghĩa là:

    \overline{x} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56(*)

    Mặt khác 63 + x + y = 90 \Rightarrow x +y = 27(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}x + y = 27 \\3x + 7y = 145 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 11 \\y = 16 \\\end{matrix} ight.\  \Rightarrow T = 2x - y = 6

  • Câu 16: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính tứ phân vị thứ nhất của mẫu số liệu ghép nhóm?

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

  • Câu 17: Thông hiểu

    Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:

    7,3

    7,8

    7,5

    6,6

    8,5

    8,3

    8,3

    7,5

    8,4

    8,6

    7,4

    8,2

    8,0

    8,1

    8,7

    8,2

    8,8

    8,1

    7,7

    7,8

    8,5

    7,0

    7,9

    6,9

    9,4

    9,0

    8,0

    8,7

    8,9

    7,6

    8,0

    8,2

    7,9

    7,7

    7,2

    Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:

    Khoảng biến thiên: 9,4 – 6,6 = 2,8

    Ta chia thành các nhóm sau:

    \lbrack 6,5;7),\lbrack 7;7,5),\lbrack7,5;8),\lbrack 8;8,5),\lbrack 8,5;9),\lbrack 9;9,5)

    Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:

    Chiều cao (m)

    Số cây

    [6,5; 7)

    2

    [7; 7,5)

    4

    [7,5; 8)

    9

    [8; 8,5)

    11

    [8,5; 9)

    7

    [9; 9,5)

    2

    Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).

  • Câu 18: Thông hiểu

    Biết k là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \frac{n}{2}, r, d, nk lần lượt là đầu mút trái, độ dài, tần số của nhóm k khi đó công thức r + \left( \dfrac{\dfrac{n}{2} -cf_{k - 1}}{n_{k}} ight).d dùng để tính:

    Trung vị được tính theo công thức r +\left( \frac{\frac{n}{2} - cf_{k - 1}}{n_{k}} ight).d.

  • Câu 19: Nhận biết

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Tần số

    7

    13

    9

    18

    22

    6

    Mẫu số liệu có bao nhiêu nhóm?

    Mẫu số liệu đã cho có 6 nhóm.

  • Câu 20: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa trung vị của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo