Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:
Độ dài của nhóm là:
Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:
Độ dài của nhóm là:
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
|
Cân nặng (kg) |
Số học sinh |
|
[45; 50) |
5 |
|
[50; 55) |
12 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
5 |
|
[70; 75) |
8 |
a) Cân nặng trung bình của học sinh lớp 11H bằng
. Đúng||Sai
b)
Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là:
Đúng||Sai
d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
|
Cân nặng (kg) |
Số học sinh |
|
[45; 50) |
5 |
|
[50; 55) |
12 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
5 |
|
[70; 75) |
8 |
a) Cân nặng trung bình của học sinh lớp 11H bằng . Đúng||Sai
b) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: Đúng||Sai
d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai
Ta có:
|
Cân nặng (kg) |
Giá trị đại diện |
Số học sinh |
|
[45; 50) |
47,5 |
5 |
|
[50; 55) |
52,5 |
12 |
|
[55; 60) |
57,5 |
10 |
|
[60; 65) |
62,5 |
6 |
|
[65; 70) |
67,5 |
5 |
|
[70; 75) |
72,5 |
8 |
Cân nặng trung bình của học sinh lớp 11H là:
Nhóm chứa mốt là: [50; 55) suy ra .
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
=> Nhóm chứa tứ phân vị thứ ba là: [65; 70)
|
Cân nặng (kg) |
Số học sinh |
Tần số tích lũy |
|
[45; 50) |
5 |
5 |
|
[50; 55) |
12 |
17 |
|
[55; 60) |
10 |
27 |
|
[60; 65) |
6 |
33 |
|
[65; 70) |
5 |
38 |
|
[70; 75) |
8 |
46 |
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:
Kích thước (gram) | [410; 420) | [420; 430) | [430; 440) | [440; 450) | [450; 460) | [460; 470) | [470; 480) |
Số lượng táo | 14 | 20 | 42 | 54 | 45 | 18 | 7 |
Tính trung vị của mẫu dữ liệu ghép nhóm trên.
Ta có:
Kích thước (gram) | Số lượng táo | Tần số tích lũy |
[410; 420) | 14 | 14 |
[420; 430) | 20 | 34 |
[430; 440) | 42 | 76 |
[440; 450) | 54 | 130 |
[450; 460) | 45 | 175 |
[460; 470) | 18 | 193 |
[470; 480) | 7 | 200 |
| N = 200 |
|
Ta có:
=> Trung vị nằm trong nhóm (vì 100 nằm giữa hai tần số tịc lũy là 76 và 130)
Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
|
Điểm |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
[60; 70) |
|
Số trường |
4 |
19 |
6 |
2 |
3 |
1 |
Các mệnh đề sau đúng hay sai
a) Số liệu đã cho cho có
mẫu số liệu. Đúng||Sai
b) Số trung vị của mẫu số liệu là
Sai||Đúng
c) Số trung bình của mẫu số liệu đã cho là
. Sai||Đúng
d) Ngưỡng điểm đề đưa ra danh sách
trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai
Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
|
Điểm |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
[60; 70) |
|
Số trường |
4 |
19 |
6 |
2 |
3 |
1 |
Các mệnh đề sau đúng hay sai
a) Số liệu đã cho cho có mẫu số liệu. Đúng||Sai
b) Số trung vị của mẫu số liệu là Sai||Đúng
c) Số trung bình của mẫu số liệu đã cho là . Sai||Đúng
d) Ngưỡng điểm đề đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai
a) Ta có cỡ mẫu . Vậy đáp án a) đúng.
b) Gọi được sắp xếp theo thứ tự không giảm.
Khi đó, trung vị là . Do
thuộc nhóm
nên nhóm này chứa trung vị.
Suy ra ,
,
,
,
,
.
.
Vậy đáp án b) sai.
c) Số trung bình của mẫu số liệu là
.
Vậy đáp án c) sai.
d) Điểm ngưỡng để đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.
Cỡ mẫu
Tứ phân vị thứ ba là
mà
thuộc nhóm [30;40) nên nhóm này chứa
.
Do đó, và ta có:
.
Vậy để đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam ta lấy các trường có điểm chuẩn hóa trên 35.42.
Vậy đáp án d) đúng.
Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 11
Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 11
Goi là doanh thu bán hàng trong 20 ngày xếp theo thứ tự không giảm.
Khi đó: ,
,
,
,
Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Xác định giá trị đại diện của nhóm dữ liệu thứ ba?
Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.
Nhóm dữ liệu thứ ba là [4; 6)
=> Giá trị đại diện của nhóm dữ liệu thứ ba là:
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tứ phân vị thứ nhất thuộc nhóm chiều cao nào?
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Độ dài nhóm số liệu ghép nhóm
là:
Độ dài của nhóm số liệu ghép nhóm là
.
Cho bảng dữ liệu như sau:
Đại diện A | [15,5; 20,5) | [20,5; 25,5) | [25,5; 30,5) | [30,5; 35,5) | [35,5; 40,5) | [40,5; 45,5) | [45,5; 50,5) | [50,5; 55,5) |
Tần số | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?
Ta có:
Đại diện X | Tần số | Tần số tích lũy |
[15,5; 20,5) | 5 | 5 |
[20,5; 25,5) | 6 | 11 |
[25,5; 30,5) | 12 | 23 |
[30,5; 35,5) | 14 | 37 |
[35,5; 40,5) | 26 | 63 |
[40,5; 45,5) | 12 | 75 |
[45,5; 50,5) | 16 | 91 |
[50,5; 55,5) | 9 | 100 |
| N = 100 |
|
Ta lại có:
=> Nhóm chứa là
(vì 25 nằm giữa các tần số tích lũy 23 và 37).
Khi đó ta tìm được các giá trị:
Cho bảng dữ liệu như sau
Đại diện A | Tần số |
[0; 10) | 6 |
[10; 20) | 24 |
[20; 30) | x |
[30; 40) | 16 |
[40; 50) | 9 |
Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.
Ta có:
Đại diện A | Tần số | Tần số tích lũy |
[0; 10) | 6 | 6 |
[10; 20) | 24 | 30 |
[20; 30) | x | 30 + x |
[30; 40) | 16 | 46 + x |
[40; 50) | 9 | 55 + x |
| N = 55 + x |
|
Trung vị là 24 => Nhóm chứa trung vị là
Sản lượng xoài (tính bằng kg) được ghi lại trong bảng sau:
Sản lượng | [40; 50) | [50; 60) | [60; 70) | [70; 80) | [80; 90) | [90; 100) |
Số cây | 10 | 15 | 17 | 14 | 12 | 2 |
Tìm mốt của mẫu dữ liệu trên?
Quan sát bảng thống kê ta thấy tần số cao nhất là 17 nằm trong nhóm [60; 70).
Sản lượng | [40; 50) | [50; 60) | [60; 70) | [70; 80) | [80; 90) | [90; 100) |
Số cây | 10 | 15 | 17 | 14 | 12 | 2 |
|
|
|
|
Khi đó ta tính mốt như sau:
Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:
5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |
Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là
. Xác định tần suất nhóm
trong mẫu dữ liệu ghép nhóm thu được?
Ta chia thành các nhóm có độ dài là 5
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.
Ta có bảng ghép nhóm như sau:
Thời gian | Số học sinh |
[0; 5) | 6 |
[5; 10) | 10 |
[10; 15) | 11 |
[15; 20) | 9 |
[20; 25) | 1 |
[25; 30) | 1 |
[3; 35) | 2 |
Ta có tần suất của nhóm là:
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | 21 |
[15; 20) | 13 |
[20; 25) | 8 |
[25; 30) | 6 |
Mẫu số liệu được chia thành bao nhiêu nhóm?
Mẫu số liệu được chia thành 7 nhóm.
Tính chiều cao trung bình của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Ta có:
Chiều cao đại diện | Số học sinh | Tích các giá trị |
100 | 9 | 900 |
110 | 13 | 1430 |
120 | 26 | 3120 |
130 | 30 | 3900 |
140 | 12 | 1680 |
150 | 10 | 1500 |
Tổng | 100 | 12530 |
Chiều cao trung bình của các học sinh là:
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.
Chiều cao (cm) | Số học sinh |
(120; 125] | 3 |
(125; 130] | 5 |
(130; 135] | 11 |
(135; 140] | 6 |
(140; 145] | 5 |
| Tổng | N = 30 |
Tính tứ phân vị thứ ba. (Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
| Tổng | N = 30 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là (135; 140]
Khi đó:
Vậy tứ phân vị thứ ba là:
Dưới đây là điểm đánh giá tổng kết của các học sinh:
Khoảng điểm | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
Số học sinh | 2 | 7 | 15 | 10 | 11 | 5 |
Tính trung vị.
Ta có:
Khoảng điểm | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
|
Số học sinh | 2 | 7 | 15 | 10 | 11 | 5 | N = 50 |
Tần số tích lũy | 2 | 9 | 24 | 34 | 45 | 50 |
|
Cỡ mẫu: 50
Ta có:
=> Nhóm chứa trung vị là (vì 25 nằm giữa hai tần số tích lũy là 24 và 34)
Do đó:
Khi đó trung vị là:
Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm
) của
học sinh tham dự kỳ thi giữa kỳ
của lớp
, ta có bảng số liệu sau:
|
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tìm mốt của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)
Từ bảng số liệu, nhóm chứa mốt sẽ là .
Khi đó mốt là
.
“Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm
“Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm
Hoàn thành câu: Mẫu số liệu ghép nhóm là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.
Giá trị đại diện của nhóm
là
Ta có giá trị đại diện là .