Đề kiểm tra 15 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Thời gian chạy trung bình cự li 1000m (giây) của các bạn học sinh là

    Thời gian chạy trung bình cự li 1000m (giây) của các bạn học sinh là:

    \overline{x} = \frac{126.3 + 128.7 +
130.15 + 132.10 + 134.5}{40} = 130,35(giây)

  • Câu 2: Vận dụng

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    x

    [15; 20)

    13

    [20; 25)

    12

    [25; 30)

    y

    Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?

    Ta có: N = 100 \Rightarrow x + y =36

    Lại có:

    Thời gian (phút)

    Số nhân viên

    Tần số tích lũy

    [0; 5)

    25

    25

    [5; 10)

    14

    39

    [10; 15)

    x

    39 + x

    [15; 20)

    13

    52 + x

    [20; 25)

    12

    64 + x

    [25; 30)

    y

    64 + x + y

    Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)

    Khi đó:

    \Rightarrow \left\{ \begin{matrix}l = 10;\dfrac{N}{2} = 50,m = 39,f = x \\c = 15 - 10 = 5 \\\end{matrix} ight.

    \Rightarrow M_{e} = l +\frac{\frac{N}{2} - m}{f}.c

    \Leftrightarrow 12,5 = 10 + \frac{50 -39}{x}.5 \Leftrightarrow x = 22

    \Rightarrow y = 36 - 22 =14

  • Câu 3: Vận dụng

    Bảng sau đây cho thấy sự phân bố tuổi của những người trong một khu vực (đơn vị: nghìn người) cụ thể như sau:

    Tuổi

    Nhỏ hơn 10

    Nhỏ hơn 20

    Nhỏ hơn 30

    Nhỏ hơn 40

    Nhỏ hơn 50

    Nhỏ hơn 60

    Nhỏ hơn 70

    Nhỏ hơn 80

    Tần số tích lũy

    2

    5

    9

    12

    14

    15

    15,5

    15,6

    Tính trung vị của mẫu số liệu ghép nhóm trên.

    Ta có:

    Tuổi (năm)

    (0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

     

    Số người (nghìn người)

    2

    3

    4

    3

    2

    1

    0,5

    0,1

    N = 15,6

    Tần số tích lũy

    2

    5

    9

    12

    14

    15

    15,5

    15,6

     

    Ta có: \frac{N}{2} = \frac{15,6}{2} =7,8

    => Trung vị nằm trong nhóm \lbrack20;30)(vì 7,8 nằm giữa hai tần số tích lũy là 5 và 9)

    \Rightarrow l = 20;\frac{N}{2} = 7,8;m =5;f = 4,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\frac{N}{2} - m ight)}{f}.c= 20 + \frac{7,8 - 5}{4}.10 =27

  • Câu 4: Thông hiểu

    Dưới đây là sự phân bố một nhóm người theo mức thu nhập khác nhau:

    Thu nhập (triệu đồng)

    [0; 8)

    [8; 16)

    [16; 24)

    [24; 32)

    [32; 40)

    [40; 48)

    Số người

    8

    7

    16

    24

    15

    7

    Tính giá trị tứ phân vị thứ nhất. (Làm tròn giá trị đến chữ số thập phân thứ nhất).

    Ta có:

    Thu nhập (triệu đồng)

    [0; 8)

    [8; 16)

    [16; 24)

    [24; 32)

    [32; 40)

    [40; 48)

    Số người

    8

    7

    16

    24

    15

    7

    Tần số tích lũy

    8

    15

    31

    55

    70

    77

    Ta có: \frac{N}{4} = \frac{77}{4} =19,25

    => Nhóm chứa tứ phân vị thứ nhất là: [16; 24)

    Khi đó: \left\{ \begin{matrix}l = 16,\dfrac{N}{4} = 19,25,m = 15 \\f = 16,d = 24 - 16 = 8 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 16 + \frac{19,25 -15}{16}.8 = 18,125

  • Câu 5: Thông hiểu

    Cho bảng số liệu thống kê sau: Số khách hàng đến mua cà phê mỗi buổi sáng tại quầy trong 2 tuần

    Số khách hàng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số ngày

    5

    3

    2

    4

    Những ngày có không dưới 40 khách hàng đến mua cà phê chiếm bao nhiêu phần trăm?

    Những ngày có không dưới 40 khách hàng đến mua cà phê là: 3 + 2 + 4 = 9 (khách hàng) chiếm \frac{9.100\%}{14} \approx64\%

  • Câu 6: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tần số tích lũy

    8

    20

    34

    44

    50

    Ta có: \frac{3.N}{4} = \frac{3.50}{4} =37,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 34,f = 10;c =5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c= 25 + \dfrac{37,5 - 34}{10}.5 =26,75

  • Câu 7: Vận dụng

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng

    b) Nhóm chứa trung vị của mẫu số liệu là: \left[ {11;13} ight) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là \left[ {7;9} ight) (đúng)

    d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng

    Đáp án là:

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng

    b) Nhóm chứa trung vị của mẫu số liệu là: \left[ {11;13} ight) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là \left[ {7;9} ight) (đúng)

    d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Giá trị đại diện

    6

    8

    10

    12

    14

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Do đó doanh thu trung bình của cửa hàng là:

    \overline{x} = \frac{6.2 + 8.7 + 10.7 +
12.3 + 14.1}{20} = 9,4 (triệu đồng)

    Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =
10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:

    Xét nhóm [7; 9) ta có:

    M_{0} = 7 + \frac{7 - 2}{(7 - 2) + (7 -
7)}.(9 - 7) = 9

    Xét nhóm [9; 11) ta có:

    M'_{0} = 9 + \frac{7 - 7}{(7 - 7) +
(7 - 3)}.(11 - 9) = 9

    Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.

  • Câu 8: Nhận biết

    Nếu [0; 5), [5; 10); [10; 15), … là các nhóm số liệu của mẫu dữ liệu ghép nhóm thì độ dài của nhóm là:

    Độ dài của nhóm là 4

  • Câu 9: Nhận biết

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Mẫu số liệu ghép nhóm đã cho có tất cả bao nhiêu nhóm?

    Mẫu số liệu ghép nhóm đã cho có tất cả 5 nhóm.

  • Câu 10: Nhận biết

    Độ tuổi của 112 cư dân được ghi như bảng sau:

    Tuổi

    Số học sinh

    [0; 9]

    20

    [10; 19]

    21

    [20; 29]

    23

    [30; 39]

    16

    [40; 49]

    11

    [50; 59]

    10

    [60; 69]

    7

    [70; 79]

    3

    [80; 89]

    1

    Hoàn thành bảng số liệu dưới đây?

    Tuổi

    Số đại diện tuổi

    Số học sinh 

    [0; 10)

    5

    20

    [10; 20)||[10;20)||[10,20)||[10, 20)

    15

    21

    [20; 30)

    25

    23

    [30; 40)||[30;40)||[30,40)||[30, 40)

    35

    16

    [40; 50)

    45

    11

    [50; 60)||[50;60)||[50,60)||[50, 60)

    55

    10

    [60; 70)||[60;70)||[60, 70)||[60,70)

    65

    7

    [70; 80)

    75

    3

    [80; 90)||[80;90)||[80,90)||[80, 90)

    85

    1

    Đáp án là:

    Độ tuổi của 112 cư dân được ghi như bảng sau:

    Tuổi

    Số học sinh

    [0; 9]

    20

    [10; 19]

    21

    [20; 29]

    23

    [30; 39]

    16

    [40; 49]

    11

    [50; 59]

    10

    [60; 69]

    7

    [70; 79]

    3

    [80; 89]

    1

    Hoàn thành bảng số liệu dưới đây?

    Tuổi

    Số đại diện tuổi

    Số học sinh 

    [0; 10)

    5

    20

    [10; 20)||[10;20)||[10,20)||[10, 20)

    15

    21

    [20; 30)

    25

    23

    [30; 40)||[30;40)||[30,40)||[30, 40)

    35

    16

    [40; 50)

    45

    11

    [50; 60)||[50;60)||[50,60)||[50, 60)

    55

    10

    [60; 70)||[60;70)||[60, 70)||[60,70)

    65

    7

    [70; 80)

    75

    3

    [80; 90)||[80;90)||[80,90)||[80, 90)

    85

    1

     Ta có:

    Tuổi

    Đại diện tuổi

    Số học sinh

    [0; 10)

    5

    20

    [10; 20)

    15

    21

    [20; 30)

    25

    23

    [30; 40)

    35

    16

    [40; 50)

    45

    11

    [50; 60)

    55

    10

    [60; 70)

    65

    7

    [70; 80)

    75

    3

    [80; 90)

    85

    1

  • Câu 11: Vận dụng

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    a) Cân nặng trung bình của học sinh lớp 11H bằng 59,46kg. Đúng||Sai

    b) 60 \leq M_{e} < 65 Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: \lbrack 50;55),\lbrack
65;70) Đúng||Sai

    d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai

    Đáp án là:

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    a) Cân nặng trung bình của học sinh lớp 11H bằng 59,46kg. Đúng||Sai

    b) 60 \leq M_{e} < 65 Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: \lbrack 50;55),\lbrack
65;70) Đúng||Sai

    d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai

    Ta có: N = 46

    Cân nặng (kg)

    Giá trị đại diện

    Số học sinh

    [45; 50)

    47,5

    5

    [50; 55)

    52,5

    12

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    5

    [70; 75)

    72,5

    8

    Cân nặng trung bình của học sinh lớp 11H là:

    \overline{x} = \frac{47,5.5 + 52,5.12 +
57,5.10 + 62,5.6 + 67,5.5 + 72,5.8}{46} \approx 59,46(kg)

    Nhóm chứa mốt là: [50; 55) suy ra 50 \leq
M_{e} < 55.

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -
5}{12}.5 \approx 53

  • Câu 12: Thông hiểu

    Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:

    Kích thước (gram)

    [410; 420)

    [420; 430)

    [430; 440)

    [440; 450)

    [450; 460)

    [460; 470)

    [470; 480)

    Số lượng táo

    14

    20

    42

    54

    45

    18

    7

    Tính giá trị tứ phân vị thứ nhất của mẫu dữ liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Kích thước (gram)

    Số lượng táo

    Tần số tích lũy

    [410; 420)

    14

    14

    [420; 430)

    20

    34

    [430; 440)

    42

    76

    [440; 450)

    54

    130

    [450; 460)

    45

    175

    [460; 470)

    18

    193

    [470; 480)

    7

    200

    Tổng

    N = 200

     

    Ta có: \frac{N}{4} = \frac{200}{4} =50

    => Nhóm chứa tứ phân vị thứ nhất là: [430; 440)

    Khi đó ta có: \left\{ \begin{matrix}l = 430;\dfrac{N}{4} = 50;m = 34 \\f = 42,d = 440 - 430 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất được tính như sau:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 430 + \frac{50 -34}{42}.10 \approx 433,8

  • Câu 13: Nhận biết

    Điểm kiểm tra của 50 học sinh được thể hiện như sau:

    23, 25, 36, 39, 37, 41, 42, 22, 26, 35,

    34, 30, 29, 27, 47, 40, 31, 32, 43, 45,

    34, 46, 23, 24, 27, 36, 41, 43, 39, 38,

    28, 32, 42, 33, 46, 23, 34, 41, 40, 30,

    45, 42, 39, 37, 38, 42, 44, 46, 29, 37.

    Chuyển mẫu dữ liệu trên thành dạng ghép nhóm. Điền kết quả còn thiếu vào ô trống.

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

    Đáp án là:

    Điểm kiểm tra của 50 học sinh được thể hiện như sau:

    23, 25, 36, 39, 37, 41, 42, 22, 26, 35,

    34, 30, 29, 27, 47, 40, 31, 32, 43, 45,

    34, 46, 23, 24, 27, 36, 41, 43, 39, 38,

    28, 32, 42, 33, 46, 23, 34, 41, 40, 30,

    45, 42, 39, 37, 38, 42, 44, 46, 29, 37.

    Chuyển mẫu dữ liệu trên thành dạng ghép nhóm. Điền kết quả còn thiếu vào ô trống.

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

    Hoàn thành bảng

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

  • Câu 14: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện

    Tần số

    [1; 5)

    6

    [5; 10)

    19

    [10; 15)

    13

    [15; 20)

    20

    [20; 25)

    12

    [25; 30)

    11

    [30; 35)

    6

    [35; 40)

    5

    Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?

    Ta có:

    Đại diện

    Tần số

    Tần số tích lũy

    [1; 5)

    6

    6

    [5; 10)

    19

    25

    [10; 15)

    13

    38

    [15; 20)

    20

    58

    [20; 25)

    12

    70

    [25; 30)

    11

    81

    [30; 35)

    6

    87

    [35; 40)

    5

    92

     

    N = 92

     

    Ta có: \frac{N}{4} = \frac{92}{4} =23

    => Nhóm chứa Q_{1}[5; 10) (vì 23 nằm giữa các tần số tích lũy 6 và 25).

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 5;m = 6,f = 19;c = 10 -5 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 5 + \dfrac{23 - 6}{19}.5 \approx9,47

  • Câu 15: Thông hiểu

    Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Hoàn thành bảng dữ diệu dưới đây:

    Chiều cao (cm)

    Số học sinh

    (120; 125]

    3

    (125; 130]

    5

    (130; 135]

    11

    (135; 140]

    6

    (140; 145]

    5

    Nhóm nào dưới đây chứa tứ phân vị thứ ba của mẫu dữ liệu ghép nhóm?

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (120; 125]

    3

    3

    (125; 130]

    5

    8

    (130; 135]

    11

    19

    (135; 140]

    6

    25

    (140; 145]

    5

    30

    Tổng

    N = 30

     

    Ta có: \frac{3N}{4} = \frac{3.30}{4} =22,5

    => Nhóm chứa tứ phân vị thứ ba là: (135; 140]

  • Câu 16: Nhận biết

    Lượng nước tiêu thụ trong một tháng của các hộ gia đình trong một khu chung cư được ghi lại như sau:

    Lượng nước (m3)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    [100; 120)

    Số hộ gia đỉnh

    6

    12

    10

    7

    4

    2

    Giá trị đại diện của nhóm chứa mốt của mẫu số liệu trên là.

    Vì nhóm chứa mốt của mẫu số liệu là nhóm \lbrack 20;40)nên giá trị đại diện của nhóm này là 30.

  • Câu 17: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm sau đây:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    x

    (30;40]

    9

    (40;50]

    7

    Biết \overline{x} = 23,6. Tìm cỡ mẫu?

    Ta có:

    Đại diện

    Tần số

    Tích các giá trị

    5

    8

    40

    15

    14

    210

    25

    x

    25x

    35

    9

    315

    45

    7

    315

    Tổng

    N = 38 + x

    880 + 25x

    Theo bài ra ta có giá trị trung bình là:

    \overline{x} = 23,6

    \Leftrightarrow \frac{880 + 25x}{38 + x}= 23,6

    \Leftrightarrow x = 12

    Vậy số phần tử của mẫu dữ liệu là N = 38 + 12 = 50

  • Câu 18: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 19: Nhận biết

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Tần số

    2

    7

    7

    3

    1

    Đáp án là:

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Tần số

    2

    7

    7

    3

    1

  • Câu 20: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 174)

    Tần số

    8

    x

    12

    6

    Biết rằng nhóm dữ liệu có giá trị đại diện là 166 chiếm 60% tổng tần số của mẫu dữ liệu. Tìm giá trị của x?

    Nhóm số liệu có độ dài 166 là: [164; 168)

    Theo bài ra ta có:

    \frac{x.100\%}{8 + 12 + x + 6} = 60\%\Rightarrow x = 39

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo