Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.
Ta có:
Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:
Lớp 11A | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 8 | 12 | 10 | 6 | |
Lớp 11B | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 5 | 12 | 10 | 8 | 4 | |
Lớp 11C | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 10 | 15 | 9 | 3 | |
Lớp 11D | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 9 | 16 | 11 | 3 |
Lớp nào có số học sinh đạt điểm (6; 8] nhiều nhất?
Số học sinh lớp 11A đạt điểm từ (6; 8] là:
12 + 10 = 22 (học sinh)
Số học sinh lớp 11B đạt điểm từ (6; 8] là:
10 + 8 = 18 (học sinh)
Số học sinh lớp 11C đạt điểm từ (6; 8] là:
15 + 9 = 24 (học sinh)
Số học sinh lớp 11D đạt điểm từ (6; 8] là:
16 + 11 = 27 (học sinh)
Vậy lớp 11D có nhiều học sinh đạt điểm từ (6; 8] nhất.
Giá trị đại diện của nhóm
là
Ta có giá trị đại diện là .
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
[0; 10) |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Tần số |
7 |
13 |
9 |
18 |
22 |
6 |
Mẫu số liệu có bao nhiêu nhóm?
Mẫu số liệu đã cho có 6 nhóm.
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Tính giá trị
?
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa là [20; 40)
(Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)
Khi đó ta tìm được các giá trị:
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tìm mốt của mẫu dữ liệu ghép nhóm. (Kết quả làm tròn đến chữ số thập phân thứ nhất)
Ta có:
Chiều cao (cm) | Số học sinh |
|
[95; 105) | 9 |
|
[105; 115) | 13 |
|
[115; 125) | 26 | |
[125; 135) | 30 | |
[135; 145) | 12 | |
[145; 155) | 10 |
|
Tổng | N = 100 |
|
Ta có: Nhóm chứa mốt của mẫu dữ liệu ghép nhóm là: [125; 135)
Khi đó:
Mốt của mẫu dữ liệu ghép nhóm là:
Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở. Tìm mốt của mẫu dữ liệu.
Thu nhập (nghìn đồng) | Hộ gia đình |
[0; 100) | 5 |
[100; 200) | 7 |
[200; 300) | 12 |
[300; 400) | 18 |
[400; 500) | 16 |
[500; 600) | 10 |
[600; 700) | 5 |
Quan sát bảng thống kê ta thấy tần số cao nhất là 18 nằm trong nhóm
Thu nhập (nghìn đồng) | Hộ gia đình |
|
[0; 100) | 5 |
|
[100; 200) | 7 |
|
[200; 300) | 12 | |
[300; 400) | 18 | |
[400; 500) | 16 | |
[500; 600) | 10 |
|
[600; 700) | 5 |
|
Khi đó ta tính mốt như sau:
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Hoàn thành bảng dữ diệu dưới đây:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
| Tổng | N = 30 |
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Hoàn thành bảng dữ diệu dưới đây:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
| Tổng | N = 30 |
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm
) của
học sinh tham dự kỳ thi giữa kỳ
của lớp
, ta có bảng số liệu sau:
|
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tìm mốt của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)
Từ bảng số liệu, nhóm chứa mốt sẽ là .
Khi đó mốt là
.
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Số học sinh lớp 11H là:
Số học sinh lớp 11H là:
5 + 12 + 10 + 6 + 5 + 8 = 46 (học sinh)
Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:
1 | 6 | 2 | 3 | 5 | 12 | 5 | 8 | 4 | 8 |
10 | 3 | 4 | 12 | 2 | 8 | 15 | 1 | 17 | 6 |
3 | 2 | 8 | 5 | 9 | 6 | 8 | 7 | 14 | 12 |
Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?
Độ dài nhóm là
Khoảng biến thiên:
Ta có: => Số nhóm tạo thành là 4 nhóm.
Số giờ | Tần số |
Tổng cộng |
Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu.
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [7; 9)
(Vì 5 nằm giữa hai tần số tích lũy 2 và 9)
Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.
Khoảng dữ liệu | Tần số |
[0; 20) | 16 |
[20; 40) | x |
[40; 60) | 25 |
[60; 80) | y |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Ta có:
Dữ liệu đại diện | Tần số | Tích các số liệu |
10 | 16 | 160 |
30 | x | 30x |
50 | 25 | 1250 |
70 | y | 70y |
90 | 12 | 1080 |
110 | 10 | 1100 |
Tổng | 63 + x + y | 3590 + 30x + 70y |
Theo bài ra ta có số trung bình bằng 56 nghĩa là:
Mặt khác
Từ (*) và (**) ta có hệ phương trình:
Khi nào mẫu số liệu ghép nhóm thường được dùng để thuận lợi cho việc tổ chức, đọc và phân tích số liệu?
Mẫu số liệu ghép nhóm được dùng khi ta không thể thu thập được số liệu chính xác hoặc do yêu cầu bài toán mà ta phải biểu diễn mẫu số liệu dưới dạng ghép nhóm để thuận lợi cho việc tổ chức, đọc và phân tích số liệu.
Bảng dưới đây cho biết số điểm trong kì kiểm tra của học sinh lớp 11.
Điểm | Số học sinh |
[0; 10) | 2 |
[10; 20) | 6 |
[20; 30) | 8 |
[30; 40) | x |
[40; 50) | 30 |
[50; 60) | 22 |
[60; 70) | 18 |
[70; 80) | 8 |
[80; 90) | 4 |
[90; 100) | 2 |
Biết trung vị bằng 47. Tìm tổng số học sinh.
Ta có:
Điểm | Số học sinh | Tần số tích lũy |
[0; 10) | 2 | 2 |
[10; 20) | 6 | 8 |
[20; 30) | 8 | 16 |
[30; 40) | x | 16 + x |
[40; 50) | 30 | 46 + x |
[50; 60) | 22 | 68 + x |
[60; 70) | 18 | 86 + x |
[70; 80) | 8 | 94 + x |
[80; 90) | 4 | 98 + x |
[90; 100) | 2 | 100 + x |
| N = 100 + x |
|
Trung vị là 47 => Nhóm chứa trung vị là [40; 50)
Vậy số học sinh là 126 học sinh.
Kết quả kiểm tra học kì 1 môn Toán của học sinh lớp 11A được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

Số học sinh có điểm dưới 7 điểm là:
Quan sát biểu đồ ta thấy số học sinh có điểm dưới 7 điểm là: học sinh.
Tính độ cao trung bình của một số cây trong bảng số liệu dưới đây:
Chiều cao h (cm) | Số cây |
130 < h ≤ 140 | 3 |
140 < h ≤ 150 | 7 |
150 < h ≤ 160 | 5 |
Ta có:
Chiều cao h đại diện (cm) | Số cây | Tích các giá trị |
135 | 3 | 405 |
145 | 7 | 1015 |
155 | 5 | 775 |
Tổng | 15 | 2195 |
Độ cao trung bình là:
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Nhóm nào chứa tứ phân vị thứ nhất của mẫu số liệu?
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 và 17)
Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng
?
| Đối tượng | Tần số |
[4; 8) | 11 |
[8; 12) | 13 |
[12; 16) | 16 |
[16; 20) | 14 |
[20; 24) | a |
[24; 28) | 9 |
[28; 32) | 17 |
[32; 36) | 6 |
[36; 40) | 4 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
6 | 11 | 66 |
10 | 13 | 130 |
14 | 16 | 224 |
18 | 14 | 252 |
22 | a | 22a |
26 | 9 | 234 |
30 | 17 | 510 |
34 | 6 | 204 |
38 | 4 | 152 |
Tổng |
Biết số trung bình bằng nên ta có:
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.
Chiều cao (cm) | Số học sinh |
(120; 125] | 3 |
(125; 130] | 5 |
(130; 135] | 11 |
(135; 140] | 6 |
(140; 145] | 5 |
| Tổng | N = 30 |
Tính tứ phân vị thứ ba. (Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(120; 125] | 3 | 3 |
(125; 130] | 5 | 8 |
(130; 135] | 11 | 19 |
(135; 140] | 6 | 25 |
(140; 145] | 5 | 30 |
| Tổng | N = 30 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là (135; 140]
Khi đó:
Vậy tứ phân vị thứ ba là: