Đề kiểm tra 15 phút Toán 11 Chương 3 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các số đặc trưng đo xu thế trung tâm của mẫu nhóm dữ liệu ghép nhóm gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm là 32.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    25

    55

    [30; 40)

    x

    55 + x

    [40; 50)

    9

    64 + x

    Tổng

    N = 64 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow \left\{ \begin{matrix}l = 20;\dfrac{N}{2} = \dfrac{64 + x}{2} \\m = 30;f = 25,c = 10 \\\end{matrix} ight.

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    24 = 20 + \dfrac{\dfrac{64 + x}{2} -30}{25}.10

    \Leftrightarrow 16 = x

  • Câu 2: Vận dụng

    Số lượng từ trong mỗi câu trong N câu đầu tiên của một cuốn sách được đếm và kết quả được ghi trong bảng sau:

    Khoảng số từ

    Số câu

    [1; 5)

    2

    [5; 9)

    5

    [9; 13)

    x

    [13; 17)

    23

    [17; 21)

    21

    [21; 25)

    13

    [25; 29)

    4

    [29; 33)

    1

    Biết mốt của mẫu dữ liệu có giá trị là 16. Giá trị của N là:

    Ta có: Mốt của mẫu dữ liệu nằm trong nhóm [13; 17)

    Khoảng số từ

    Số câu

    [1; 5)

    2

     

    [5; 9)

    5

     

    [9; 13)

    x

    f_{0}

    [13; 17)

    23

    f_{1}

    [17; 21)

    21

    f_{2}

    [21; 25)

    13

     

    [25; 29)

    4

     

    [29; 33)

    1

     

    Do đó:

    \Rightarrow \left\{ \begin{matrix}l = 13;f_{0} = x;f_{1} = 23;f_{2} = 21 \\c = 17 - 13 = 4,M_{0} = 16 \\\end{matrix} ight.

    Khi đó ta có:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    \Leftrightarrow 16 = 13 + \frac{23 -x}{2.23 - x - 21}.4

    \Leftrightarrow x = 17

    Vậy cỡ mẫu N = 86.

  • Câu 3: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:

    Khoảng

    Tần số

    Nhỏ hơn 10

    10

    Nhỏ hơn 20

    20

    Nhỏ hơn 30

    30

    Nhỏ hơn 40

    40

    Nhỏ hơn 50

    50

    Nhỏ hơn 60

    30

    Tính giá trị tứ phân vị thứ nhất.

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 10]

    10

    10

    (10; 20]

    20

    30

    (20; 30]

    30

    60

    (30; 40]

    50

    110

    (40; 50]

    40

    150

    (50; 60]

    30

    180

    Tổng

    N = 180

     

    Ta có: \frac{N}{4} = \frac{180}{4} =45

    => Nhóm chứa tứ phân vị thứ nhất là: (20; 30]

    Khi đó: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 45 \\m = 30,f = 30,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{45 -30}{30}.10 = 25

  • Câu 4: Vận dụng cao

    Tìm số trung bình của mẫu dữ liệu ghép nhóm biết mốt bằng 65 và trung vị có giá trị là 61,6.

    Ta có:

    3M_{e} = M_{0} +2\overline{x}

    \Rightarrow 2\overline{x} = 3M_{e} -M_{0}

    \Rightarrow 2\overline{x} = 3.61,6 -65

    \Rightarrow \overline{x} =59,9

  • Câu 5: Nhận biết

    Dựa trên bảng số liệu về chiều cao của 100 học sinh một trường trung học phổ thông dưới đây.

    Chiều cao (m)

    [150; 153)

    [153; 156)

    [156; 159)

    [159; 162)

    [162; 165)

    [165; 168)

    Số học sinh

    10

    15

    28

    22

    14

    11

    Giá trị đại diện cho nhóm chứa mốt của mẫu số liệu ghép nhóm trên là

    Nhóm chứa mốt của mẫu số liệu ghép nhóm trên là \lbrack  156; 159 ).

    Giá trị đại diện cho nhóm là \frac{156 +
159}{2} = 157,5.

  • Câu 6: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Chọn đáp án đúng?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{4}= 15

    => Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 va 17)

    Khi đó \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 15;m = 5;f = 12 \\c = 100 - 50 = 50 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{15 -5}{12}.50 = \frac{275}{3}

  • Câu 7: Vận dụng

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của \Delta = \left|Q_{1} - Q_{3} ight|?

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -4}{5}.10 = 52

    Ta có: \frac{3N}{4} = \frac{3.20}{4} =15

    => Nhóm chứa tứ phân vị thứ ba là: [60; 70]

    Khi đó: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 15 \\m = 9,f = 7,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{15 -9}{7}.10 = \frac{480}{7}

    \Rightarrow \Delta = \left| Q_{1} -Q_{3} ight| = \left| 52 - \frac{480}{7} ight| \approx16,6

  • Câu 8: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Cỡ mẫu của mẫu số liệu là:

    Cỡ mẫu của mẫu số liệu là:

    N = 5 + 12 + 10 + 6 + 5 + 8 = 46

  • Câu 9: Thông hiểu

    Bảng tần số được nhóm chính xác cho tập hợp dữ liệu là bảng nào dưới đây?

    11

    23

    31

    17

    24

    38

    37

    7

    12

    5

    8

    15

    33

    19

    27

    Đáp án đúng là:

  • Câu 10: Thông hiểu

    Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?

    Số học sinh tham gia khảo sát là: 40 học sinh.

    Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm \frac{19.100\%}{40} = 47,5\%

  • Câu 11: Thông hiểu

    Số lượng người đi xem một bộ phim mới theo độ tuổi trong một rạp chiếu phim (sau 1\ h đầu công chiếu) được ghi lại theo bảng phân phối ghép nhóm sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số người

    30

    48

    11

    9

    2

    Độ tuổi được dự báo là thích xem phim đó nhiều nhất là

    Ta có mốt là:

    M_{0} = 20 + \frac{48 - 30}{(48 - 30) +
(48 - 11)} \cdot 10 = \frac{256}{11} \approx 23,27.

    Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 23 tuổi.

  • Câu 12: Thông hiểu

    Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:

    Lớp 11A

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    8

    12

    10

    6

    Lớp 11B

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    5

    12

    10

    8

    4

    Lớp 11C

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    10

    15

    9

    3

    Lớp 11D

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    9

    16

    11

    3

    Lớp nào có số học sinh đạt điểm (6; 8] nhiều nhất?

    Số học sinh lớp 11A đạt điểm từ (6; 8] là:

    12 + 10 = 22 (học sinh)

    Số học sinh lớp 11B đạt điểm từ (6; 8] là:

    10 + 8 = 18 (học sinh)

    Số học sinh lớp 11C đạt điểm từ (6; 8] là:

    15 + 9 = 24 (học sinh)

    Số học sinh lớp 11D đạt điểm từ (6; 8] là:

    16 + 11 = 27 (học sinh)

    Vậy lớp 11D có nhiều học sinh đạt điểm từ (6; 8] nhất.

  • Câu 13: Nhận biết

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Mẫu dữ liệu đã cho có bao nhiêu nhóm?

    Mẫu dữ liệu ghép nhóm đã cho có 6 nhóm.

  • Câu 14: Nhận biết

    Điểm kiểm tra của 50 học sinh được thể hiện như sau:

    23, 25, 36, 39, 37, 41, 42, 22, 26, 35,

    34, 30, 29, 27, 47, 40, 31, 32, 43, 45,

    34, 46, 23, 24, 27, 36, 41, 43, 39, 38,

    28, 32, 42, 33, 46, 23, 34, 41, 40, 30,

    45, 42, 39, 37, 38, 42, 44, 46, 29, 37.

    Chuyển mẫu dữ liệu trên thành dạng ghép nhóm. Điền kết quả còn thiếu vào ô trống.

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

    Đáp án là:

    Điểm kiểm tra của 50 học sinh được thể hiện như sau:

    23, 25, 36, 39, 37, 41, 42, 22, 26, 35,

    34, 30, 29, 27, 47, 40, 31, 32, 43, 45,

    34, 46, 23, 24, 27, 36, 41, 43, 39, 38,

    28, 32, 42, 33, 46, 23, 34, 41, 40, 30,

    45, 42, 39, 37, 38, 42, 44, 46, 29, 37.

    Chuyển mẫu dữ liệu trên thành dạng ghép nhóm. Điền kết quả còn thiếu vào ô trống.

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

    Hoàn thành bảng

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

  • Câu 15: Nhận biết

    Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Giá trị đại diện của nhóm \lbrack
40;60) là:

    Giá trị đại diện của nhóm \lbrack
40;60) là: c = \frac{40 + 60}{2} =
50

  • Câu 16: Vận dụng

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng

    b) Nhóm chứa trung vị của mẫu số liệu là: \left[ {11;13} ight) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là \left[ {7;9} ight) (đúng)

    d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng

    Đáp án là:

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    a) Mức doanh thu trung bình của cửa hàng là 8,4 (triệu đồng) Sai||Đúng

    b) Nhóm chứa trung vị của mẫu số liệu là: \left[ {11;13} ight) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là \left[ {7;9} ight) (đúng)

    d) Có hai nhóm chứa mốt của mẫu dữ liệu và giá trị của mốt đó bằng 8. Sai||Đúng

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Giá trị đại diện

    6

    8

    10

    12

    14

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Do đó doanh thu trung bình của cửa hàng là:

    \overline{x} = \frac{6.2 + 8.7 + 10.7 +
12.3 + 14.1}{20} = 9,4 (triệu đồng)

    Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =
10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:

    Xét nhóm [7; 9) ta có:

    M_{0} = 7 + \frac{7 - 2}{(7 - 2) + (7 -
7)}.(9 - 7) = 9

    Xét nhóm [9; 11) ta có:

    M'_{0} = 9 + \frac{7 - 7}{(7 - 7) +
(7 - 3)}.(11 - 9) = 9

    Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.

  • Câu 17: Thông hiểu

    Cho bảng số liệu ghép nhóm sau:

    Nhóm

    Tần số

    [0; 20)

    16

    [20; 40)

    12

    [40; 60)

    25

    [60; 80)

    15

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Giá trị tứ phân vị thứ nhất là: 30,8 || 30.8 || 30 , 8 || 30 . 8

    Giá trị tứ phân vị thứ ba là: 79,3 || 79.3 ||79 , 3|| 79 . 3

    Đáp án là:

    Cho bảng số liệu ghép nhóm sau:

    Nhóm

    Tần số

    [0; 20)

    16

    [20; 40)

    12

    [40; 60)

    25

    [60; 80)

    15

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Giá trị tứ phân vị thứ nhất là: 30,8 || 30.8 || 30 , 8 || 30 . 8

    Giá trị tứ phân vị thứ ba là: 79,3 || 79.3 ||79 , 3|| 79 . 3

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    [0; 20)

    16

    16

    [20; 40)

    12

    28

    [40; 60)

    25

    53

    [60; 80)

    15

    68

    [80; 100)

    12

    80

    [100; 120)

    10

    90

    Tổng

    N = 90

     

    Ta có: \frac{N}{4} = 22,5

    => Nhóm chứa tứ phân vị thứ nhất là: [20; 40)

    Khi đó ta có: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 22,5 \\m = 16,f = 12,d = 20 \\\end{matrix} ight.

    Tứ phân vị thứ nhất được tính như sau:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{22,5 -16}{12}.20 \approx 30,8

    Ta có: \frac{3N}{4} = \frac{3.90}{4} =67,5

    => Nhóm chứa tứ phân vị thứ ba là: [60; 80)

    Khi đó ta có: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 67,5 \\m = 53,f = 15,d = 20 \\\end{matrix} ight.

    Tứ phân vị thứ ba được tính như sau:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{67,5 -53}{15}.20 \approx 79,3

  • Câu 18: Thông hiểu

    Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.

    Chiều cao (h)

    Số học sinh

    130 < h ≤ 140

    2

    140 < h ≤ 150

    4

    150 < h ≤ 160

    9

    160 < h ≤ 170

    13

    170 < h ≤ 180

    8

    180 < h ≤ 190

    3

    190 < h ≤ 200

    1

    Chiều cao trung bình của học sinh trong bảng trên:

    Ta có:

    Chiều cao đại diện (h)

    Số học sinh

    Tích các giá trị

    135

    2

    270

    145

    4

    580

    155

    9

    1395

    165

    13

    2145

    175

    8

    1400

    185

    3

    555

    195

    1

    195

    Tổng

    N = 40

    6540

    Chiều cao trung bình là:

    \overline{x} = \frac{6540}{40} =163,5

  • Câu 19: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Xác định giá trị đại diện của nhóm dữ liệu thứ ba?

    Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.

    Nhóm dữ liệu thứ ba là [4; 6)

    => Giá trị đại diện của nhóm dữ liệu thứ ba là: \frac{4 + 6}{2} = 5

  • Câu 20: Nhận biết

    Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.

    Chiều cao (h)

    Số học sinh

    130 < h ≤ 140

    2

    140 < h ≤ 150

    4

    150 < h ≤ 160

    9

    160 < h ≤ 170

    13

    170 < h ≤ 180

    8

    180 < h ≤ 190

    3

    190 < h ≤ 200

    1

    Tìm khoảng chứa trung vị?

    Ta có:

    Chiều cao (h)

    Số học sinh

    Tần số tích lũy

    130 < h ≤ 140

    2

    2

    140 < h ≤ 150

    4

    6

    150 < h ≤ 160

    9

    15

    160 < h ≤ 170

    13

    28

    170 < h ≤ 180

    8

    36

    180 < h ≤ 190

    3

    39

    190 < h ≤ 200

    1

    40

    Ta lại có: N = 40 \Rightarrow \frac{N}{2}= 20

    => Nhóm chứa trung vị là: (160; 170]

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 3 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo