Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.
Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Khẳng định “Ba điểm phân biệt” là sai. Ba điểm phân biệt không thẳng hàng mới xác định một mặt phẳng duy nhất.
Khẳng định “Một điểm và một đường thẳng” sai. Điểm không nằm trên đường thẳng mới xác định một mặt phẳng duy nhất.
Khẳng định “Hai đường thẳng cắt nhau” đúng.
Khẳng định “Bốn điểm phân biệt” sai.
Cho hình hộp . Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó tỉ số độ dài
là:
Hình vẽ minh họa
Gọi lần lượt là tâm của các hình bình hành
Vì là hình bình hành nên
Từ đó ta có:
(*)
(**)
Từ (*) và (**) suy ra hay
Tìm số cạnh của một hình chóp có đáy là một bát giác:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề
nào dưới đây đúng?
Hình vẽ minh họa
Gọi M là trung điểm của AB.
Ta có:
=>
Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?
Hình vẽ minh họa
Xét tam giác SAB có:
M và N lần lượt là trung điểm của SA và SB
=> MN là đường trung bình của tam giác SAB
Mà (ABCD là hình bình hành)
=>
Mặt phẳng (MNC) và (ABD) (hay (ABCD)) lần lượt chứa hai đường thẳng MN và CD song song với nhau và điểm C chung
=> Giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung C và song song với AB là đường thẳng CD
Hay
Cho hình chóp có đáy
là hình bình hành tâm
,
là trung điểm của
. Các giao tuyến của hình chóp
với mặt phẳng đi qua điểm
và song song với
và
là hình gì?
Hình vẽ minh họa:
Gọi mặt phẳng đi qua điểm và song song với
và
là mặt phẳng
.
với
hay
là trung điểm của
.
Suy ra với NP//SB hay P là trung điểm của SA.
Suy ra với PQ//AC hay Q là trung điểm của SC.
Xét mặt phẳng (ABCD) gọi , trong (SCD) gọi
suy ra
Vậy các giao tuyến tạo bởi hình chóp và mặt phẳng là ngũ giác MNPHQ.
Cho tứ diện . Các cạnh
có trung điểm lần lượt là
. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Ta có:
,
=> MPNQ là hình bình hành
=> thuộc một mặt phẳng.
,
=> MRNS là hình bình hành
=> thuộc một mặt phẳng.
,
=> PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.
Vậy không thuộc cùng một mặt phẳng.
Giả sử đường thẳng cắt mặt phẳng chiếu
tại điểm
thì hình chiếu song song của
trên mặt phẳng
là:
Nếu phương chiếu song song hoặc trùng với đường thẳng thì hình chiếu là điểm
.
Nếu phương chiếu không song song hoặc không trùng với đường thẳng thì hình chiếu là đường thẳng đi qua điểm
.
Cho tứ diện , lấy
là trung điểm của
. Qua phép chiếu song song theo phương
lên mặt phẳng
biến điểm
thành điểm nào sau đây?
Hình vẽ minh họa
Gọi là trung điểm của
. Khi đó
là đường trung bình của tam giác
.
Do đó hình chiếu của điểm qua phép chiếu song song theo phương
lên mặt phẳng
là điểm
.
Cho tứ diện . Trên
,
lần lượt lấy các điểm
và
sao cho
cắt
tại
. Điểm
không thuộc mặt phẳng nào trong các mặt phẳng sau?
Hình vẽ minh họa
Do và
.
Do .
Cho tứ diện ABCD, điểm M thuộc AC. Mặt phẳng đi qua M, song song với AB và AD. Thiết diện
với tứ diện ABCD là hình gì?
Hình vẽ minh họa
=> Giao tuyến của
với (ABC) là đường thẳng qua M, song song với AB, cắt BC tại P.
=> Giao tuyến của
với (ADC) là đường thẳng qua M, song song với AD, cắt DC tại N.
Vậy thiết diện là tam giác MNP.
Cho hình lập phương cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?
Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho hình chóp , đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của các cạnh
và
. Tính tỉ số độ dài
và
Hình vẽ minh họa
Trong mặt phẳng , kẻ đường thẳng qua
và song song với
, cắt
,
lần lượt tại
=>
=> là trung điểm của
Trong mặt phẳng , gọi
=> là trung điểm của
.
Trong mặt phẳng , gọi
.
=> là giao điểm của
và
.
Xét tam giác có
vì
là đường trung bình của tam giác
.
Theo định lí Ta-lét (vì
là trung điểm của
và
là trung điểm
)
Cho tứ diện ,
là trọng tâm tam giác
. Trên đoạn
lấy điểm
sao cho
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì nên
.
Cho hình lăng trụ . Trọng tâm các tam giác
lần lượt là
. Tìm mặt phẳng song song với mặt phẳng
.
Theo bài ra ta có:
Các điểm lần lượt là trọng tâm các tam giác
.
.
Chứng minh tương tự
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
là trung điểm của
và
là giao điểm của
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Trong mặt phẳng gọi
mà
và
là trọng tâm tam giác
Cho hình chóp tứ giác , đáy
là hình bình hành tâm
,
. Mệnh đề nào sau đây là mệnh đề sai?
Hình vẽ minh họa
Ta có:
là đáp án sai.
Cho hình chóp . Gọi
lần lượt là trung điểm
. Bốn điểm nào sau đây đồng phẳng?
Hình vẽ minh họa
Ta có: là đường trung bình của tam giác
nên.
là đường trung bình của tam giác
nên
.
=>
=> đồng phẳng.
Tìm mệnh đề sai trong các mệnh đề sau.
Cho điểm M nằm ngoài mặt phẳng (α). Khi đó tồn tại vô số đường thẳng a chứa M và song song với (α).