Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các mệnh đề sau đây, mệnh đề nào sai?

    Khẳng định sai: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất”.

    Sửa lại: “Hai mặt phẳng trùng nhau thì có vô số đường thẳng chung.”

  • Câu 2: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, có đáy là hình thang với AD là đáy lớn. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là

    Hình vẽ minh họa

    Ta có S là điểm chung thứ nhất.

    Gọi I là giao điểm của AB và CD suy ra I là điểm chung thứ hai.

    Vậy (SAB) ∩ (SCD) = SI

    Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng SI với I là giao điểm của AB và CD.

  • Câu 3: Thông hiểu

    Khẳng định nào sau đây là sai.

    Khẳng định sai: "Nếu 3 đường thẳng chắn trên hai cát tuyến những đoạn thẳng tương ứng tỉ lệ thì ba đường thẳng đó song song với nhau."

  • Câu 4: Vận dụng

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O. Các điểm A,D qua phép chiếu song song phương SO trên mặt phẳng (SBC) ta thu được ảnh lần lượt là M,N. Hình chóp S.ABCD cần thêm điều kiện gì để tứ giác BCMN là hình vuông?

    Hình vẽ minh họa

    Theo bài ra ta có: M,N lần lượt là ảnh của A,D qua phép chiếu song song phương SO trên mặt phẳng (SBC).

    Ta có: \left\{ \begin{matrix}
SO//AM \\
SO//DN \\
OA = OC \\
\end{matrix} ight.

    => SO là đường trung bình của các tam giác CAM,BDN

    => \left\{ \begin{matrix}
AM//DN \\
AM = DN \\
\end{matrix} ight.

    => ADMN là hình bình hành

    \Rightarrow \left\{ \begin{matrix}
MN//BC \\
MN = BC \\
\end{matrix} ight. => BCMN là hình bình hành.

    Để BCMN là hình vuông thì \left\{ \begin{matrix}
BN = CM \\
BN\bot CM \\
\end{matrix} ight. suy ra hình chóp S.ABCD có mặt bên SBC vuông cân tại S.

  • Câu 5: Nhận biết

    Tìm phát biểu sai trong các phát biểu sau?

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi nó đi qua 3 điểm." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết một điểm và một đường thẳng." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau." đúng.

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Lấy M là trung điểm của SC. Tìm hình chiếu của điểm M qua phép chiếu song song phương AB lên mặt phẳng chiếu (SAD).

    Giả sử N là ảnh của  M  theo phép chiếu song song phương  AB  lên mặt phẳng \left( {SAD} ight).

    Suy ra MN//AB =  > MN//CD

    Do  M  là trung điểm của SC=> N là trung điểm của  SD .

  • Câu 7: Nhận biết

    Hình lăng trụ tam giác có bao nhiêu mặt?

    Hình lăng trụ tam giác có 5 mặt.

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD tâm O. Gọi M,N lần lượt là trung điểm của SB,AB. Xác định các giao tuyến của (MNO) với các mặt của S.ABCD. Hình tạo bởi các giao tuyến đó là hình gì?

    Hình vẽ minh hoạ

    Ta dựng thiết diến của mặt phẳng (OMN) và hình chóp SABCD như sau

    Qua M kẻ PQ // NO với Q ∈ SC.

    Kéo dài NO cắt CD tại P.

    => Hình tạo bởi các giao tuyến đó là tứ giác MNPQ.

    Tứ giác MNPQ có MN // NP

    => Tứ giác MNPQ là hình thang.

  • Câu 9: Nhận biết

    Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.

  • Câu 10: Thông hiểu

    Trong không gian, cho 3 đường thẳng a, b, c, biết a//b, a và c chéo nhau. Khi đó hai đường thẳng b và c:

    Giả sử b//c

    => c // a (mâu thuẫn với giả thiết). 

    Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.

  • Câu 11: Nhận biết

    Cho hình chóp S.MNPQ. Có bao nhiêu cạnh của hình chóp chéo nhau với cạnh MN?

    Hình vẽ minh họa

    Các cạnh của hình chóp chéo nhau với cạnh MNSP;SQ.

  • Câu 12: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau.

    Hai đường thẳng song song là hai đường thẳng cùng nằm trên cùng một mặt phẳng và không có điểm chung.

    Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.

    Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trên một mặt phẳng (hai đường thẳng không có điểm chung thì hai đường thẳng có thể song song hoặc chéo nhau).

    Hai đường thẳng cắt nhau là hai đường thẳng có điểm chung duy nhất.

  • Câu 13: Vận dụng

    Cho mảnh bìa như hình vẽ sau, biết ABCD là hình vuông cạnh a. Các tam giác S_{1}AB;S_{2}BC;S_{3}CD;S_{4}DA là các tam giác cân bằng nhau. Gọi G;G' lần lượt là trọng tâm của hai tam giác S_{1}ABS_{3}CD. Người ta xếp mảnh bìa này thành hình chóp tứ giác S.ABCD (các điểm S_{1};S_{2};S_{3};S_{4}trùng vào đỉnh S). Khi đó tính độ dài đoạn thẳng GG'.

    Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:

    Từ giả thiết ta có:

    \frac{SG}{SM} = \frac{SG'}{SN} =
\frac{GG'}{MN} = \frac{2}{3}

    \Rightarrow GG' = \frac{2}{3}MN =
\frac{2a}{3}

  • Câu 14: Vận dụng

    Cho hình chóp O.ABC, A’ là trung điểm của OA; các điểm B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng.

    Phát biểu nào sau đây là đúng

    Phương án "Giao tuyến của (OBC) và (A’B’C’) là A’B’." sai vì A’ không phải là điểm chung của (OBC) và (A’B’C’).

    Phương án "Giao tuyến của (ABC) và (OC’A’) là CK, với K là giao điểm của C’B’ với CB." sai vì

    Xét giao tuyến của 2 mp (ABC ) và (OC'A') có:

    A chung

    C chung

    => Giao tuyến của mp(ABC) và mp (OC'A') là AC

    Phương án "(ABC) và (A’B’C’) không cắt nhau." sai vì:

    Trong (OAB), A’B’ không song song với AB nên sẽ cắt AB, do vậy (ABC) và (A’B’C’) có điểm chung

    Phương án "Giao tuyến của (ABC) và (A’B’C’) là MN, với M là giao điểm của AC và A’C’, N là giao điểm của BC và B’C’" đúng vì M là giao điểm của AC và A’C’ nên M là điểm chung của (ABC) và (A’B’C’).

    Tương tự N là điểm chung của (ABC) và (A’B’C’).

    Vì vậy MN là giao tuyến của (ABC) và (A’B’C’).

  • Câu 15: Thông hiểu

    Cho tứ diện ABCDG;G' lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Gọi M là trung điểm của CD

    Khi đó \frac{MG}{MB} = \frac{1}{3} =
\frac{MG'}{MA} (vì G;G' lần lượt là trọng tâm của hai tam giác BCDACD)

    Suy ra \left\{ \begin{matrix}\dfrac{GG'}{AB} = \dfrac{1}{3} \\GG'//AB \\\end{matrix} ight.\  \Rightarrow GG' = \frac{1}{3}AB

    Vậy khẳng định sai là GG' =
\frac{2}{3}AB.

    Mặt phẳng (ABG) và tứ diện theo một diện diện là tam giác

    Dễ thấy BG;AG';CD đồng quy tại điểm M.

  • Câu 16: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 17: Nhận biết

    Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: "Cho hai mặt phẳng (P), (Q) song song. Khi đó nếu đường thẳng a không nằm trong mặt phẳng (Q) và a song song với (P) thì a song song với (Q)."

  • Câu 18: Nhận biết

    Để kết luận đường thẳng a song song với đường thẳng b ta cần giả thiết nào dưới đây?

    Ta có tính chất:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

    Vậy \left\{ \begin{matrix}
a//(\alpha);a//(\beta) \\
(\alpha) \cap (\beta) = b \\
\end{matrix} ight.\  \Rightarrow a//b

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử G,G' lần lượt là trọng tâm của tam giác SAB;SCD. Cho các khẳng định sau:

    i) GG'//(SBC)

    ii) GG'//(SAD)

    iii) GG'//(SAC)

    iv) GG'//(ABD)

    Hỏi có bao nhiêu khẳng định đúng?

    Hình vẽ minh họa

    Gọi M,N lần lượt là trung điểm của AB và CD

    Do G,G' lần lượt là trọng tâm của tam giác SAB và tam giác SCD nên \frac{SG}{SM} = \frac{SG'}{SN} = \frac{2}{3}
\Rightarrow GG'//MN

    MN \subset (ABCD) \Rightarrow
GG'//(ABCD)

    Ta có: MN//AD//BC \Rightarrow
GG'//AD//BC

    \left\{ \begin{matrix}
BC \subset (SBC) \\
AD \subset (SAD) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
GG'//(SBC) \\
GG'//(SAD) \\
\end{matrix} ight.

    Vậy có 3 khẳng định đúng.

  • Câu 20: Thông hiểu

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

    Đáp án là:

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

     Hình vẽ minh họa

    Gọi I là trung điểm của AC_{1} .

    \Rightarrow \left\{ \begin{matrix}OI//CC_{1}//BB_{1}//DD_{1} \\OI = \dfrac{1}{2}CC_{1} = 3 \\\end{matrix} ight.

    \Rightarrow I \in \left( BB_{1}D_{1}D
ight) . Mà I \in AC_{1} \subset
(P) nên I \in
B_{1}D_{1}

    Hình thang BB_{1}D_{1}DOI là đường trung bình nên OI = \frac{1}{2}\left( BB_{1} + DD_{1} ight)
\Rightarrow DD_{1} = 2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo