Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD//BC \\
AD \subset (SAD) \\
BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d, d đi qua S và d // AD // BC.

  • Câu 2: Nhận biết

    Cho hai đường thẳng chéo nhau a và b. (P) chứa a và song song với b, Q chứa b và song song với a. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Hai đường thẳng chéo nhau a và b. (P) chứa a và song song với b, Q chứa b và song song với a thì (P) và (Q) song song với nhau.

     

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD  là hình bình hành. Mặt phẳng (α) qua BD và song song với SA, mặt phẳng (\alpha) cắt SC tại K. Tính tỉ số \frac{SK}{KC}.

    Hình vẽ minh họa

    Gọi O = AC \cap BD.

    Trong (SAC), kẻ OK//SA\ \ (K \in SC).

    Do đó (\alpha) là mặt phẳng (KBD).

    Vì ABCD là hình bình hành nên O là trung điểm của AC \Rightarrow
\frac{OC}{OA} = 1.

    Do OK//SA \Rightarrow \frac{OC}{OA} =
\frac{KC}{KS} = 1 \Rightarrow \frac{SK}{KC} = 1.

  • Câu 4: Thông hiểu

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Hình vẽ minh họa

    a) Xét tứ giác AMDC\left\{ \begin{matrix}
AM//DC \\
AM = DC( = AB) \\
\end{matrix} ight..

    Suy ra tứ giác AMDC là hình bình hành

    Nên MD//AC. Vậy khẳng định a đúng

    b) Vì O là trung điểm AC,N là trung điểm SC nên ON\ //\ SA (tính chất đường trung bình).

    Vậy khẳng định b sai.

    c) \left\{ \begin{matrix}
ON\ //\ SA \\
ON \subset (OMN) \\
SA \subset (SAD) \\
(OMN) \cap (SAD) = GK \\
\end{matrix} ight.\  \Rightarrow GK//ON//SA

    Vậy khẳng định c đúng.

    d) Áp dụng định lí Talet choGK\ //\
ON, ta có:

    \frac{GM}{GN} = \frac{KM}{KO} (1)

    Gọi I là trung điểm của AB, vì O là trung điểm của BD nên theo tính chất đường trung

    bình, OI\ //\ AD, vậy theo định lí Talet:

    \frac{KM}{KO} = \frac{AM}{AI} =
\frac{AB}{AI} = 2. (2)

    Từ (1) và (2), ta có \frac{GM}{GN} =
2.

    Vậy khẳng định d sai.

  • Câu 5: Nhận biết

    Trong các mệnh đề sau đây, mệnh đề nào sai?

    Khẳng định sai: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất”.

    Sửa lại: “Hai mặt phẳng trùng nhau thì có vô số đường thẳng chung.”

  • Câu 6: Nhận biết

    Cho ba mặt phẳng phân biệt cắt nhau từng đôi theo ba giao tuyến a, b, c, trong đó a song song với b. Khi đó vị trí tương đối của b và c là

    Theo nội dung hệ quả của định lý về ba giao tuyến ta suy ra vị trí tương đối của b và c là song song.

  • Câu 7: Nhận biết

    Cho hai đường thẳng song song a và b. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Tất cả những mặt phẳng chứa a và không chứa b đều là những mặt phẳng song song với b.

  • Câu 8: Nhận biết

    Cho hai đường thẳng mn chéo nhau. Có bao nhiêu mặt phẳng chứa m và song song với n?

    Ta có định lí: “Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia”.

  • Câu 9: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD' mặt phẳng chiếu (ABB'A') lần lượt là:

    Hình vẽ minh họa

    Do CD'//\ BA' = >CD'//(ABB'A')

    Nên phương chiếu CD' không cắt mặt phẳng chiếu (ABB'A').

    Vì vậy ta không xác định được ảnh của A, B’ qua phép chiếu song song phương CD' mặt phẳng chiếu (ABB'A').

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M \in SA, mặt phẳng (\alpha)đi qua M và song song với SB,AC. Giao điểm của mặt phẳng (\alpha) với các cạnh AB,BC,SC,SD,BD lần lượt tại N,E,F,I,J. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:\left\{ \begin{matrix}
IJ = (\alpha) \cap (SBD) \\
(\alpha)//SB \subset (SBD) \\
\end{matrix} ight.

    \Rightarrow (\alpha) \cap (SBD) =
IJ//SB

    SB \subset (SAB) \Rightarrow
IJ//(SAB)

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCDcó đáy ABCD là hình bình hành tâm O. Lấy G là trọng tâm tam giác SAD, M \in
SB sao cho MS = MB. Xác định tỉ số \frac{AJ}{DJ} với J = AD \cap (GOM).

    Hình vẽ minh họa:

    Gọi H là trung điểm SD.

    Ta có: \left\{ \begin{matrix}
OB = OD \\
MS = MD \\
\end{matrix} ight. => OM là đường trung bình tam giác SDB

    \Rightarrow OM//SD (tính chất đường trung bình).

    Do đó qua G kẻ đường thẳng song song SD cắt AD tại J

    => J = AD \cap (GOM).

    Mà theo giả thiết G là trọng tâm tam giác SAD

    \frac{AG}{GH} = \frac{AJ}{GJ} =
2

  • Câu 12: Thông hiểu

    Giả sử tứ giác ABCD là hình biểu diễn của một tứ diện ABCD’. Nếu ABCD là một hình vuông, tìm mệnh đề đúng trong các mệnh đề sau.

    Do ABCD là hình vuông nên tam giác ABC vuông cân tại B.

    Hình biểu diễn của tứ diện ABCD’ là tứ giác ABCD nên hình biểu diễn của tam giác ABC là tam giác ABC vuông cân tại B.

  • Câu 13: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông AA'D'D. Xác định các giao tuyến của hình lập phương ABCD.A'B'C'D' tạo với mặt phẳng (CMN). Tính diện tích hình tạo bởi các giao tuyến.

    Hình vẽ minh họa

    Tính diện tích hình tạo bởi các giao tuyến

    Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.

    Tứ giác CQPM là hình thang có

    CM = \frac{a\sqrt{5}}{2};OM =\frac{a\sqrt{13}}{6};PQ = \frac{a\sqrt{10}}{3};CQ =\frac{a\sqrt{13}}{3}

    \Rightarrow MF = PQ =\frac{a\sqrt{10}}{3};CF = PM = \frac{a\sqrt{13}}{6}

    Ta có: S_{CMPQ} = 3S_{CMF}

    S_{CMF} = \sqrt{p(p - CM)(p - CF)(p -MF)} với p = \frac{CM + MF +FC}{2}

    Thay giá trị các cạnh ta có S_{CMF} =\sqrt{\frac{7}{72}}a^{2} \Rightarrow S_{CMPQ} =\frac{a^{2}\sqrt{14}}{4}

  • Câu 14: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai

    a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai

    b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng

    c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai

    d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai

    a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai

    b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng

    c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai

    d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng

    a) Đúng

    Đúng vì theo tính chất thừa nhận: Có một và chỉ một mặt phẳng đi qua 3 điểm không

    thẳng hàng.

    b) Sai

    Sai vì điểm cần thêm điều kiện điểm không thuộc đường thẳng.

    c) Đúng

    Đúng vì theo các cách xác định một mặt phẳng thì có duy nhất một mặt phẳng chứa hai

    đường thẳng cắt nhau.

    d) Sai

    Sai vì cần thêm điều kiện hai mặt phẳng phân biệt.

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Hình vẽ minh họa

    Ta kẻ MN\ //\ AB\ \ (M \in SA), NP\ //BC\ \ (P \in SC), MQ\ //\ BC\ //\ AD\ \ (Q \in SD).

    Vì mặt phẳng (\alpha) đi qua N, song song với ABAD nên M,\ \
P,\ \ Q đều thuộc (\alpha) và thiết diện của hình chóp cắt bởi mặt phẳng (\alpha) là tứ giác MNPQ.

    Khi đó MN//AB \Rightarrow \frac{SM}{SA} = \frac{MN}{AB} =\frac{2}{3}.

    Tương tự, ta có được \frac{NP}{BC} =
\frac{PQ}{CD} = \frac{QM}{DA} = \frac{2}{3}.

    Suy ra MN = NP = PQ = QM = \frac{2}{3}AB
= \frac{20}{3}MNPQ là hình vuông.

    Suy ra S_{MNPQ} = \left( \frac{20}{3}
ight)^{2} = \frac{400}{9}.

    Khi đó a = 100,b = 9

    Vậy P = a + b + 1 = 110.

  • Câu 16: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau.

    Mệnh đề đúng: "Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với (β). "

  • Câu 17: Thông hiểu

    Cho tứ diện ABCD. Gọi I;J lần lượt là trọng tâm tam giác ABC;ABD. Khi đó đường thẳng IJ song song với đường thẳng:

    Hình vẽ minh họa

    Gọi M, N lần lượt là trung điểm các cạnh BD và BC nên ta có MN // CD (1)

    Vì I; J lần lượt là trọng tâm tam giác ABC và ABD nên ta có:

    \frac{AI}{AN} = \frac{AJ}{AM} =
\frac{2}{3} \Rightarrow IJ//MN\ (2)

    Từ (1) và (2) suy ra IJ//CD.

  • Câu 18: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 19: Thông hiểu

    Cho hai hình bình hành ABCDABEF không đồng phẳng có tâm lần lượt là IJ. Chọn

    khẳng định sai.

    Hình vẽ minh họa

    Do IJ là trung điểm của BDBF, nên IJ//DFDF
\subset (ADF) \Rightarrow IJ//(ADF), suy ra IJ / /(ADF) và IJ / / DF đúng.

    Do IJ là trung điểm của ACAE, nên IJ//ECEC
\subset (CBE) \Rightarrow IJ//(CEB), suy ra IJ / /(CEB) đúng.

    Vậy IJ / / ADsai

  • Câu 20: Thông hiểu

    Cho tứ diện ABCD. Điểm M thuộc đoạn AC (M khác A, M khác C). Giả sử mặt phẳng (\alpha) đi qua M và song song với ABAD. Xác định các giao tuyến của mặt phẳng (\alpha) với tứ diện ABCD. Hình tạo bởi các giao tuyến là hình gì?

    Hình vẽ minh họa

    Trong mặt phẳng (ACD) kẻ MN//AD,\ N \in
CD.

    Trong mặt phẳng (ABC) kẻ MP//AB,\ P \in
BC.

    Từ đó suy ra (\alpha) \equiv
(MNP)

    Vậy hình tạo bởi các giao tuyến của (MNP) và tứ diện ABCD là tam giác MNP.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 99 lượt xem
Sắp xếp theo