Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 2: Nhận biết

    Hình chiếu của hình lập phương ABCD.A'B'C'D' qua phép chiếu song song phương AA' lên mặt phẳng chiếu (ABCD) là:

    Phép chiếu song song phương AA' lên mặt phẳng (ABCD) sẽ biến A' thành A, biến B' thành B, biến C' thành C, biến D' thành D.

    Nên hình chiếu song song của hình lập phương ABCD.A'B'C'D'là hình vuông.

  • Câu 3: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 4: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau.

    Hai đường thẳng song song là hai đường thẳng cùng nằm trên cùng một mặt phẳng và không có điểm chung.

    Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.

    Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trên một mặt phẳng (hai đường thẳng không có điểm chung thì hai đường thẳng có thể song song hoặc chéo nhau).

    Hai đường thẳng cắt nhau là hai đường thẳng có điểm chung duy nhất.

  • Câu 5: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại hoặc nằm trong mặt phẳng còn lại.

    Vậy câu sai là: “Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại”.

  • Câu 6: Thông hiểu

    Cho tứ diện ABCDI,J lần lượt là trọng tâm tam giác ABCABD. Chọn kết luận đúng?

    Hình vẽ minh họa

    Gọi M, N lần lượt là trung điểm của BD và BC

    Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)

    Do I, J là trọng tâm tam giác ABC và ABD suy ra \frac{AI}{AM} = \frac{AJ}{AN} = \frac{2}{3}
\Rightarrow JI//MN(**)

    Từ (*) và (**) suy ra TH

     

    1

  • Câu 7: Thông hiểu

    Cho tứ diện ABCD. Lấy I;J lần lượt là trung điểm của ADACG là trọng tâm của tam giác BCD. Khi đó giao tuyến của mặt phẳng (IJG) và mặt phẳng (BCD) là đường thẳng đi qua điểm

    Hình vẽ minh họa

    Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.

    Gọi d = (GIJ) \cap (BCD)

    Ta có: \left\{ \begin{matrix}
G \in (GIJ);G \in (BCD) \\
IJ \subset (GIJ);CD \subset (BCD) \\
IJ//CD \\
\end{matrix} ight.

    Suy ra d đi qua G và song song với CD,.

  • Câu 8: Thông hiểu

    Khẳng định nào sau đây là sai.

    Khẳng định sai: "Nếu 3 đường thẳng chắn trên hai cát tuyến những đoạn thẳng tương ứng tỉ lệ thì ba đường thẳng đó song song với nhau."

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?

    Phát biểu nào sau đây là đúng

    Đáp án "Giao điểm của (SMC) với BD là giao điểm của CN với BD, trong đó N là giao điểm của SM và AD." đúng.

    Đáp án "Giao điểm của (SAC) với BD là giao điểm của SA và BD." sai vì giao điểm của BD và (SAC) là giao điểm của BD và AC.

    Đáp án "Giao điểm của (SAB) với CM là giao điểm của SA và CM." sai vì CM không cắt SA.

    Đáp án "Đường thẳng DM không cắt mặt phẳng (SBC)." sai vì DM cắt mặt phẳng (SBC) tại giao điểm của DM và giao tuyến của hai mặt phẳng (SAD) và (SBC).

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N là hai điểm phân biệt cùng thuộc đường thẳng AB, hai điểm P,Q phân biệt thuộc đường thẳng CD. Khi đó vị trí tương đối của hai đoạn thẳng MPNQ là:

    Giả sử đường thẳng MPNQ không chéo nhau, tức là cùng thuộc một mặt phẳng.

    Khi đó ABCD cùng thuộc một mặt phẳng hay ABCD là một tứ giác (trái giả thiết).

    Vậy đường thẳng MPNQ chéo nhau.

  • Câu 11: Nhận biết

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Có bao nhiêu đường thẳng chứa cạnh của hình lập phương chéo nhau với đường thẳng chứa đường chéo AC_{1} của hình lập phương?

    Hình vẽ minh họa

    Có 6 đường thẳng là BB_{1},DD_{1},A_{1}D_{1},A_{1}B_{1},CB,CD.

  • Câu 12: Thông hiểu

    Chọn câu đúng:

    "Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau" đúng.

    Hai đường thẳng cùng song song với một mặt phẳng thì có thể cắt nhau, song song, trùng nhau hoặc chéo nhau => "Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau." sai.

    Hai mặt phẳng không cắt nhau thì song song hoặc trùng nhau => "Hai mặt phẳng không cắt nhau thì song song" sai.

    Hai mặt phẳng không song song thì trùng nhau hoặc cắt nhau => "Hai mặt phẳng không song song thì trùng nhau" sai.

  • Câu 13: Nhận biết

    Tính tất cả số cạnh của hình lăng trụ biết hình lăng trụ có đúng 11 cạnh bên?

    Hình lăng trụ có đúng 11 cạnh bên suy ra đáy là đa giác có 11 đỉnh và đa giác đáy có 11 cạnh.

    Vậy hình lăng trụ có đúng 11 cạnh bên thì có:

    11 + 11.2 = 33 (cạnh)

  • Câu 14: Nhận biết

    Cho hình chóp S.ABCD, đáy là hình bình hành. Gọi O là giao điểm của ACBD, M là trung điểm SC. Khằng định nào sau đây là đúng?

    Hình vẽ minh họa

    Ta có OM là đường trung bình tam giác SAC nên OM//SA, mà SA
\subset (SAD)OM ⊄
(SAD) suy ra OM//(SAD).

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD, M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn khẳng định đúng

    Gọi F, G, H, I lần lượt là trung điểm của AB; BC; CD và DA

    Vì M, N, P, Q lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SDA.

    => \frac{{SM}}{{SF}} = \frac{{SN}}{{SG}} = \frac{{SP}}{{SH}} = \frac{{SQ}}{{SI}} = \frac{2}{3}

    Khi đó: MN // FG; NP // GH; QP // IH; MQ // FI

    Xét tam giác ABD có FI là đường trung bình (vì F và I lần lượt là trung điểm của AB và AD)

    =>  FI // BD

    Chứng minh tương tự ta có: GH // BD

    =>  FI // GH // BD

    Tương tự FG // IH // AC

    => MQ // NP // FI // GHMN // PQ // FG // IH

    Vậy tứ giác MNPQ là hình bình hành.

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABC, gọi M là trung điểm của BC. Tìm giao tuyến của hai mặt phẳng (SAM)(SBC).

    Hình vẽ minh họa

    Ta có: S là điểm chung của mặt phẳng (SAM)(SBC) (*)

    Ta có: \left\{ \begin{matrix}
M \in BC \\
BC \subset (SBC) \\
\end{matrix} ight.\  \Rightarrow M \in (SBC)

    => M là điểm chung của mặt phẳng (SAM)(SBC) (**)

    Từ (*) và (**) suy ra (SAM) \cap (SBC) =
SM

  • Câu 17: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi có AC \cap BD = MAB \cap CD = N. Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng:

    Hình vẽ minh họa

    Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng SM.

  • Câu 18: Nhận biết

    Có một và chỉ một mặt phẳng đi qua

    Hoàn thiện mệnh đề: "Có một và chỉ một mặt phẳng đi qua một điểm và một đường thẳng không chứa điểm đó."

  • Câu 19: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Gọi G,G' lần lượt là trọng tâm của tam giác BDA'B'D'C. Khi đó tỉ số độ dài \frac{GG'}{AC'} là:

    Hình vẽ minh họa

    Gọi O,O' lần lượt là tâm của các hình bình hành ABCD,A'B'C'D'

    ACC'A' là hình bình hành nên A'O//O'C

    Từ đó ta có:

    \Delta AOG\sim\Delta
ACG'

    \Rightarrow \frac{AG}{AG'} =
\frac{AO}{AC} = \frac{1}{2} \Rightarrow AG = GG' (*)

    \Delta C'A'G\sim\Delta
C'O'G'

    \Rightarrow
\frac{C'O'}{C'A'} = \frac{C'G'}{C'G} =
\frac{1}{2} \Rightarrow C'G' = GG'(**)

    Từ (*) và (**) suy ra GG' =
\frac{1}{3}AC' hay \frac{GG'}{AC'} = \frac{1}{3}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với:

    Hình vẽ minh họa

    Vì hai mặt phẳng (SAB) và (SCD) cùng đi qua S lần lượt chứa 2 đường thẳng song song là ABCD nên giao tuyến của chúng là đường thẳng đi qua S và song song với ABCD tức song song với BI.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 69 lượt xem
Sắp xếp theo