Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Đáp án là:

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Hình vẽ minh họa

    Xét (ABA')(SCD) ta có:

    \left\{ \begin{matrix}
A' \in SC,SC \subset (SCD) \\
A' \in (ABA') \\
\end{matrix} ight.\  \Rightarrow A' là điểm chung thứ nhất.

    Gọi I = AB \cap CD

    \left\{ \begin{matrix}
I \in AB,AB \subset (ABA') \\
I \in CD,CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I là điểm chung thứ hai.

    \Rightarrow (ABA') \cap (SCD) =
IA'

    Gọi M = IA' \cap SD. Ta có:

    (ABA') \cap (SCD) = A'M

    (ABA')\cap (SAD)=AM

    (ABA') \cap (ABCD) = AB

    (ABA') \cap (SBC) =
BA'

    Thiết diện là tứ giác ABA'M.

    Vậy thiết diện là đa giác có 4 cạnh.

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Các điểm I;J lần lượt là trọng tâm các tam giác SAB, SAD, MC =
MD,(M \in CD). Mặt phẳng nào dưới đây song song với đường thẳng IJ?

    Hình vẽ minh họa

    Ta có:

    IJ//EF//BD \Rightarrow
IJ//(SBD)

  • Câu 3: Thông hiểu

    Cho ba đường thẳng a,b,c đôi một chéo nhau. Mệnh đề nào đúng trong các mệnh đề sau?

    Gọi M là điểm bất kì nằm trên a.

    Giả sử d là đường thẳng qua M cắt cả b và c.

    Khi đó, d là giao tuyến của mặt phẳng tạo bởi M và b với mặt phẳng tạo bởi M và c.

    Với mỗi điểm M ta được một đường thẳng d.

    Vậy có vô số đường thẳng cắt cả 3 đường thẳng a, b, c.

  • Câu 4: Vận dụng

    Hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên cạnh AC lấy điểm M và trên cạnh BF lấy điểm N sao cho \frac{AM}{AC}=\frac{BN}{BF} = k. Tìm k để MN // DE.

    Ta có: MN // DE => DM, NE cắt nhau tại điểm I và \frac{{IM}}{{DM}} = \frac{{IN}}{{NE}}

    Lại có

    \frac{{IM}}{{DM}} = \frac{{AI}}{{DC}} = \frac{{AM}}{{MC}} = \frac{k}{{1 - k}}

    \frac{{IN}}{{NE}} = \frac{{BI}}{{EF}} = \frac{{BN}}{{NF}} = \frac{k}{{1 - k}}

    Mặt khác:

    \begin{matrix}  \dfrac{{AI}}{{DC}} + \dfrac{{BI}}{{EF}} = \dfrac{{AI}}{{EF}} + \dfrac{{BI}}{{EF}} = 1 \hfill \\   \Rightarrow 2.\dfrac{k}{{1 - k}} = 1 \Rightarrow k = \dfrac{1}{3} \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in AD sao cho \frac{AD}{AM} = 3, G là trọng tâm tam giác SAB. Đường thẳng GM song song với mặt phẳng:

    Hình vẽ minh họa

    Gọi N là trung điểm của AB, lấy K \in
SA sao cho AS = 3AK

    Ta có: \frac{AK}{AS} = \frac{AM}{AD} =
\frac{1}{3} \Rightarrow KM//SD

    Mặt khác \frac{SK}{SA} = \frac{SG}{SM} =
\frac{2}{3} \Rightarrow GK//AN

    \Rightarrow GK//CD

    \Rightarrow (GMK)//(SCD) \Rightarrow
GM//(SCD)

  • Câu 6: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."

  • Câu 7: Nhận biết

    Cho hai mặt phẳng phân biệt (P) và (Q)

    (1) nếu hai mặt phẳng (P) và (Q) song song với nhay thì mọi đường thẳng nằm trên (P) đều song song với mọi đường thẳng nằm trên (Q).

    (2) nếu mọi đường thẳng nằm trong mặt phẳng (P) đều song song với (Q) thì (P) song song với (Q).

    Trong hai phát biểu trên.

    Theo định lý, nếu mặt phẳng (P) chứa hai đường thẳng cắt nhau và cùng song song với mặt phẳng (Q) thì (P) song song với (Q), do đó nếu lấy mọi đường thẳng nằm trong mặt phẳng (P) thì tồn tại hai đường thẳng cắt nhau thỏa mãn định lý, vậy phát biểu (2) đúng.

    Phát biểu (1) sai vì hai đường thẳng đó có thể chéo nhau.

  • Câu 8: Nhận biết

    Cho điểm A thuộc mặt phẳng (P), mệnh đề nào sau đây đúng:

    Mệnh đề đúng A \in (P).

  • Câu 9: Nhận biết

    Cho bốn điểm không đồng phẳng trong không gian. Hỏi từ các điểm đã cho có thể xác định được bao nhiêu mặt phẳng phân biệt?

    Vì 4 điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có 4 mặt.

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD. LấyM
\in BC sao cho BM = 2MC, G là trọng tâm tam giác ABD. Xác định mặt phẳng song song với đường thẳng MG?

    Hình vẽ minh họa

    Gọi N là trung điểm của AD.

    Xét tam giác BCN ta có:

    \frac{BG}{BN} = \frac{BM}{BC} =
\frac{2}{3}

    \Rightarrow MG//NC \Rightarrow
MG//(ACD)

  • Câu 11: Nhận biết

    Trong các phát biểu sau, phát biểu nào đúng?

    Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất." sai vì nếu hai mặt phẳng trùng nhau thì chúng có vô số đường thẳng chung.

    Phương án "Hai mặt phẳng có thể có đúng hai điểm chung." sai vì nếu hai mặt phẳng có hai điểm chung thì chúng có chung một đường thẳng.

    Phương án "Nếu hai mặt phẳng có một điểm chung thì chúng có chung một đường thẳng duy nhất hoặc mọi điểm thuộc mặt phẳng này đều thuộc mặt phẳng kia." đúng vì hai mặt phẳng có điểm chung thì chúng có thể cắt nhau hoặc trùng nhau.

    Phương án "Hai mặt phẳng luôn có điểm chung." sai vì hai mặt phẳng đáy của hình hộp thì không có điểm chung.

  • Câu 12: Thông hiểu

    Trong không gian, cho 3 đường thẳng a, b, c, biết a//b, a và c chéo nhau. Khi đó hai đường thẳng b và c:

    Giả sử b//c

    => c // a (mâu thuẫn với giả thiết). 

    Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.

  • Câu 13: Thông hiểu

    Khẳng định nào sau đây là sai.

    Khẳng định sai: "Nếu 3 đường thẳng chắn trên hai cát tuyến những đoạn thẳng tương ứng tỉ lệ thì ba đường thẳng đó song song với nhau."

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N,K lần lượt là trung điểm của CD,CB,SA. Gọi H là giao điểm của ACMN. Giao điểm của SO với (MNK) là điểm E. Hãy chọn cách xác định điểm E đúng nhất trong bốn phương án sau.

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi E = KH \cap SO.

    HK \subset (MNK) nên E = SO \cap (MNK)

  • Câu 15: Nhận biết

    Cho mặt phẳng (\alpha) và đường thẳng a\subset(\alpha). Khẳng định nào sau đây sai?

    Nếu a song song với (\alpha) và đường thẳng b \subset (\alpha) thì ba hoặc song song với nhau hoặc chéo nhau.

  • Câu 16: Vận dụng

    Cho tứ diện đều S.ABC. Gọi I là trung điểm của AB, M là một điểm lưu động trên đoạn AI. Qua M vẽ mặt phẳng (∝) // (SIC). Khi đó thiết diện của mặt phẳng (∝) và tứ diện S.ABC là:

    Qua M kẻ đường thẳng song song với IC cắt AC tại E và kẻ đường thẳng song song với SI cắt SA tại D.

    Khi đó thiết diện của mặt phẳng (α)) với tứ diện S.ABC là tam giác MED

    Lại có: MD // SI => \frac{{AM}}{{AI}} = \frac{{MD}}{{SI}} (1)

    ME // IC => \frac{{AM}}{{AI}} = \frac{{ME}}{{IC}} (2)

    Từ (1) và (2) suy ra: \frac{{ME}}{{IC}} = \frac{{MD}}{{SI}}

    Vì S.ABC là tứ diện đều nên SI = CI (vì hai tam giác SAB và CAB là hai tam giác bằng nhau nên hai đường trung tuyến tương ứng bằng nhau)

    Suy ra MD = ME

    Vậy tam giác MED cân tại M.

  • Câu 17: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác ABCE là điểm thuộc cạnh SA thỏa mãn SE = \frac{m}{n}.SA với \frac{m}{n} là phân số tối giản. Biết rằng GE song song với mặt phẳng (SCD). Giá trị của m.n bằng

    Đáp án: 6

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G là trọng tâm của tam giác ABCE là điểm thuộc cạnh SA thỏa mãn SE = \frac{m}{n}.SA với \frac{m}{n} là phân số tối giản. Biết rằng GE song song với mặt phẳng (SCD). Giá trị của m.n bằng

    Đáp án: 6

    Hình vẽ minh họa

    Gọi M là trung điểm của BC, F là giao điểm của AMCD trong mặt phẳng (ABCD).

    Theo định lý Talet, ta có: \frac{MA}{MF}
= \frac{MB}{MC} = 1 \Rightarrow MA = MF \Rightarrow M là trung điểm của AF

    \Rightarrow \frac{AG}{AF} =
\frac{AG}{2AM} = \frac{1}{3}

    Ta có:

    \left\{ \begin{matrix}
GE \subset (SAF) \\
GE//(SCD) \\
(SAF) \cap (SCD) = SF \\
\end{matrix} ight.\  \Rightarrow GE//SF

    \Rightarrow \frac{AE}{AS} =
\frac{AG}{AF} = \frac{1}{3} \Rightarrow AE = \frac{1}{3}AS

    \Rightarrow SE = \frac{2}{3}SA
\Rightarrow \frac{m}{n} = \frac{2}{3} \Rightarrow m.n = 6.

  • Câu 19: Nhận biết

    Cho hai đường thẳng song song ab. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Có vô số mặt phẳng chứa a và song song với b (đó là tất cả các mặt phẳng chứa a nhưng không chứa b).

  • Câu 20: Nhận biết

    Trong không gian cho ba mặt phẳng phân biệt (P), (Q)(R). Xét các mệnh đề sau

    1) Nếu mặt phẳng (P) chứa đường thẳng song song với (Q) thì (P) song song với (Q).

    2) Nếu mặt phẳng (P) chứa hai đường thẳng song song với (Q) thì (P) song song với (Q).

    3) Nếu hai mặt phẳng (P)(Q) song song (R) với thì (P) song song với (Q).

    4) Nếu hai mặt phẳng (P)(Q) cắt (R) với thì (P) song song với (Q).

    Số mệnh đề đúng là:

    Mệnh đề 1 và 2 là mệnh đề sai vì theo điều kiện để hai mặt phẳng song song mặt phẳng (P) chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với (Q) thì (P) song song với (Q)

    Mệnh đề 3 là mệnh đề đúng

    Mệnh đề 4 là mệnh đề sai

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 100 lượt xem
Sắp xếp theo