Ba mặt phẳng phân biệt cắt nhau từng đôi một thì ba giao tuyến của chúng sẽ có bao nhiêu vị trí tương đối?
Ba mặt phẳng phân biệt cắt nhau từng đôi một thì ba giao tuyến song song hoặc đồng quy.
Ba mặt phẳng phân biệt cắt nhau từng đôi một thì ba giao tuyến của chúng sẽ có bao nhiêu vị trí tương đối?
Ba mặt phẳng phân biệt cắt nhau từng đôi một thì ba giao tuyến song song hoặc đồng quy.
Để kết luận đường thẳng
song song với đường thẳng
ta cần giả thiết nào dưới đây?
Ta có tính chất:
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy
Trong các khẳng định sau, khẳng định nào đúng?
“Hai đường thẳng không có điểm chung thì chéo nhau” là sai vì hai đường thẳng đó có thể song song.
“Hai đường thẳng phân biệt không cắt nhau thì song song” là sai vì hai đường thẳng đó có thể chéo nhau.
“Hai đường thẳng không cùng nằm trên một mặt phẳng thì chéo nhau” là đúng.
“Hai đường thẳng không có điểm chung thì song song với nhau” là sai vì hai đường thẳng đó có thể chéo nhau.
Cho hình chóp S.ABCD, O là giao điểm của AC và BD, phát biểu nào sau đây là đúng?
Phương án "Giao tuyến của (SAC) và (SBD) là SO." đúng vì O là giao điểm của AC và BD nên O là điểm chung của (SAC) và (SBD). Hơn nữa, S là điểm chung của (SAC) và (SBD).
Phương án "Giao tuyến của (SAB) và (SCD) là điểm S." sai vì giao tuyến của hai mặt phẳng không thể là điểm
Phương án "Giao tuyến của (SBC) và (SCD) là SK, với K là giao điểm của SD và B" sai vì SD và BC không cắt nhau
Phương án "Giao tuyến của (SOC) và (SAD) là SM, với M là giao điểm của AC và S." sai vì AC và SD không cắt nhau
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Có bao nhiêu vị trí tương đối của hai mặt phẳng tùy ý?
Có 3 vị trí tương đối của hai mặt phẳng trong không gian, đó là “cắt nhau”, “trùng nhau ”và “song song nhau”.
Một hình chóp có tổng số đỉnh và số cạnh bằng
. Tìm số cạnh của đa giác đáy?
Một hình chóp có đáy là đa giác cạnh thì có
đỉnh và
cạnh
Tổng số đỉnh và số cạnh bằng 14
=> Số cạnh đáy của hình chóp là: 4.
Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
chéo nhau.
Cho hai hình bình hành ABCD và ABEF có tâm lần lượt là O, O’ và không cùng nằm trong một mặt phẳng. Gọi M là trung điểm của AB.
(I) (ADF) // (BCE)
(II) (MOO’) // (ADF)
(III) (MOO’) // (BCE)
(IV) (AEC) // (BDF)
Khẳng định nào sau đây là đúng
Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)
=> BC // (ADF); BE // (ADF)
Mà BC ∩∩ BE = B
=. (ADF) // (BEC).
O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD
Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF
MO’ // (ADF) (1)
Tương tự MO là đường trung bình của tam giác ABD nên MO // AD
MO // (ADF) (2)
Từ (1) và (2) suy ra (MOO’) // (ADF)
Chứng minh tương tự ta cũng có (MOO’) // (BCE).
Hai mặt phẳng (AEC) và (BDF) có:
AC ∩ DB = O ; AE ∩ BF = O’
Suy ra (AEC) ∩ (BDF) = OO’.
Vậy khẳng định (I); (II); (III) đúng.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Trong không gian cho hai đường thẳng song song a và b. Chọn mệnh đề đúng.
Cho hai đường thẳng a và b song song, nếu đường thẳng c song song với a thì c song song hoặc trùng với b.
Cho 4 điểm không cùng thuộc một mặt phẳng. Trong các phát biểu sau đây, phát biểu nào là sai?
Phương án "Trong 4 điểm đã cho không có ba điểm nào thẳng hàng." đúng vì nếu có ba điểm thẳng hàng ( giả sử là A; B; C) thì bốn điểm đã cho luôn thuộc mặt phẳng chứa điểm D còn lại và đường thẳng AB. (mâu thuẫn giả thiết)
Phương án "Số mặt phẳng đi qua 3 trong 4 điều đã cho là 4." đúng. Số mặt phẳng đi qua 3 trong 4 điểm đã cho là:
Phương án "Số đoạn thẳng nối hai điểm trong 4 điểm đã cho là 6." đúng. Số đoạn thẳng nối 2 điểm trong 4 điểm đã cho là:
Vậy phát biểu sai là: "Trong 4 điểm đã cho luôn luôn tồn tại 3 điểm thẳng hàng."
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của hai tam giác
và
lần lượt là trung điểm của
và
. Khi đó:
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
song song với mặt phẳng
. Đúng||Sai
d)
cắt mặt phẳng
. Sai||Đúng
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của hai tam giác
và
lần lượt là trung điểm của
và
. Khi đó:
a) . Đúng||Sai
b) . Đúng||Sai
c) song song với mặt phẳng
. Đúng||Sai
d) cắt mặt phẳng
. Sai||Đúng
Hình vẽ minh họa
a) Đúng.
Do lần lượt là trọng tâm của tam giác
và
nên
.
b) Đúng.
Do lần lượt là trọng tâm của tam giác
và
nên
Mà
c) Đúng.
Vì .
Vì là đường trung bình của hình bình hành
nên
d) Sai.
Ta có: mà
.
Cho hình chóp
có đáy là hình bình hành. Hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm nào sau đây?
Hình vẽ minh họa
Do suy ra hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm
.
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Khẳng định nào sau đây là sai?
Khẳng định sai là: "Phép chiếu song song có thể biến trọng tâm tam giác thành một điểm không phải là trọng tâm tam giác hình chiếu." vì phép chiếu song song bảo toàn tỉ lệ các đoạn thẳng cùng nằm trên một đoạn thẳng.
Cho hình chóp
có đáy
là hình bình hành. Lấy
, mặt phẳng
đi qua
và song song với mặt phẳng
. Khi đó các giao tuyến của mặt phẳng
với các mặt của
là hình gì?
Hình vẽ minh họa
Giao tuyến của với
là
.
Giao tuyến của với
là
.
Từ đó suy ra các giao tuyến của mặt phẳng với các mặt của
là hình thang MNPQ.
Cho hình chóp
có đáy
là hình bình hành. Giả sử
lần lượt là trọng tâm của tam giác
. Cho các khẳng định sau:
i) ![]()
ii) ![]()
iii) ![]()
iv) ![]()
Hỏi có bao nhiêu khẳng định đúng?
Hình vẽ minh họa
Gọi lần lượt là trung điểm của AB và CD
Do lần lượt là trọng tâm của tam giác SAB và tam giác SCD nên
Mà
Ta có:
Mà
Vậy có 3 khẳng định đúng.
Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.
a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S
b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S
c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S
d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S
Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.
a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S
b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S
c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S
d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S
Xét từng mệnh đề ta có
a) “Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau” là mệnh đề sai, vì hai đường thẳng có thể chéo nhau.
b) “Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó” là mệnh đề sai, vì hai mặt phẳng đó có thể song song nhau.
c) “Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P)” là mệnh đề sai, vì đường thẳng a vẫn có thể nằm trong mặt phẳng (P).
d) “Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α)” là mệnh đề sai, vì có vô số đường thẳng đi qua điểm A và song song với (α).
Vậy không có mệnh đề nào đúng trong các mệnh đề nêu trên