Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian cho hai đường thẳng song song a và b. Chọn mệnh đề đúng.

    Cho hai đường thẳng a và b song song, nếu đường thẳng c song song với a thì c song song hoặc trùng với b.

  • Câu 2: Thông hiểu

    Cho tứ diện ABCD. Giả sử M thuộc đoạn BC. Một mặt (\alpha) qua M song song với AB và CD. Thiết diện của (\alpha) và hình tứ diện ABCD là hình gì?

    Hình vẽ minh họa

    Tìm thiết diện

    (\alpha) //AB => Giao tuyến của (\alpha) với (ABC) là đường thẳng đi qua M, song song với AB và cắt AC tại Q.

    (\alpha) //CD => Giao tuyến của (\alpha) với (BCD) là đường thẳng đi qua M, song song với CD và cắt BD tại N.

    (\alpha) //AB => Giao tuyến của (\alpha) với (ABD) là đường thẳng đi qua N, song song với AB và cắt AD tại P.

    => Thiết diện của hình chóp cắt bởi (\alpha) là tứ giác MNPQ.

    Ta lại có: MN // PQ // CD, MQ // PN // AB.

    Vậy thiết diện là hình bình hành MNPQ.

  • Câu 3: Thông hiểu

    Cho tứ giác ABCD và một điểm S không thuộc mặt phẳng (ABCD). Trên đoạn SC lấy một điểm M không trùng với SC.Gọi N là giao điểm của đường thẳng SD với mặt phẳng (ABM). Khi đó AN là giao tuyến của hai mặt phẳng nào sau đây?

    Hình vẽ minh họa

    Ta có B \in (ABM) \cap (SBD) (1)

    Gọi O = AC \cap BD,K = AM \cap SO.

    Khi đó: \left\{ \begin{matrix}
K \in AM \subset (ABM) \\
K \in SO \subset (SBD) \\
\end{matrix} \Rightarrow K \in (ABM) \cap (SBD) ight.

    Từ (1) và (2) suy ra (ABM) \cap (SBD) = BK

    Trong mặt phẳng (SBD). Gọi N = BK \cap SD.

    Khi đó: \left\{ \begin{matrix}N \in SD \\N \in BK \subset (ABM) \\\end{matrix} \Rightarrow N = (ABM) \cap SDight.

    Dễ thấy AN = (ABM) \cap(SAD)

  • Câu 4: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 5: Nhận biết

    Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: "Cho hai mặt phẳng (P), (Q) song song. Khi đó nếu đường thẳng a không nằm trong mặt phẳng (Q) và a song song với (P) thì a song song với (Q)."

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O. Gọi M,N,P lần lượt là trung điểm của các cạnh SB,SC,BCE = (MNP) \cap SA. Tính tỉ số độ dài SESA

    Hình vẽ minh họa

    Trong mặt phẳng (ABCD), kẻ đường thẳng qua P và song song với BD, cắt AC, CD lần lượt tại I,Q

    => (MNP) \equiv (MNQP)

    => I là trung điểm của OC

    Trong mặt phẳng (SBD), gọi MN \cap SO = K

    => K là trung điểm của SO.

    Trong mặt phẳng (SAC), gọi IK \cap SA = E.

    => E là giao điểm của SA(MNP).

    Xét tam giác SACIE//SCIK là đường trung bình của tam giác SOC.

    Theo định lí Ta-lét \Rightarrow\frac{AE}{SA} = \frac{AI}{AC} = \frac{3}{4} (vì I là trung điểm của OCO là trung điểm AC)

    \Rightarrow \frac{SE}{SA} =\frac{1}{4}

  • Câu 7: Nhận biết

    Hình nào sau đây là hình biểu diễn của hình chóp S.ABCD với ABCD là hình bình hành?

    Hình biểu diễn của hình chóp đáy là hình bình hành là hình

  • Câu 8: Thông hiểu

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Hình vẽ minh họa

    (SAD),(SCF),(SBE)có chung giao tuyến SO.

  • Câu 9: Nhận biết

    Hình biểu diễn của một tam giác đều là hình nào sau đây?

     Hình biểu diễn của một tam giác đều là hình tam giác.

  • Câu 10: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hai đường thẳng không có điểm chung thì chúng có thể song song với nhau (khi chúng đồng phẳng) hoặc chéo nhau (khi chúng không đồng phẳng).

    Vậy mệnh đề sai: "Hai đường thẳng không có điểm chung thì chéo nhau."

  • Câu 11: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi M là trung điểm của BC. Điểm M' là ảnh của điểm M qua phép chiếu song song phương CC', mặt phẳng chiếu (A'B'C'). Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có phép chiếu song song phương CC', biến C thành C', biến B thành B'.

    Do M là trung điểm của BC suy ra M' là trung điểm của B'C' vì phép chiếu song song bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số của hai đoạn thẳng nằm trên cùng một đường thẳng hoặc trên hai đường thẳng song song.

    Vậy khẳng định đúng là: M'C' =
M'B'

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABC có diện tích đáy bằng 9. Mặt phẳng (P) song song với (ABC) cắt đoạn SA tại M sao cho SM
= 2MA. Diện tích thiết diện của hình chóp S.ABC tạo bởi (P) bằng

    Hình vẽ minh họa:

    Gọi N, P lần lượt là giao điểm của mặt phẳng (P) và các cạnh SB, SC.

    (P)//(ABC) nên theo định lí Talet, ta có \frac{SM}{SA} = \frac{SN}{SB} =
\frac{SP}{SC} = \frac{2}{3}.

    Khi đó (P) cắt hình chóp S.ABC theo thiết diện là tam giác MNP ðồng dạng với tam giác ABC theo tỉ số k = \frac{2}{3}.

    Vậy S_{\Delta MNP} = k^{2}.S_{\Delta ABC}
= \left( \frac{2}{3} ight)^{2}.9 = 4.

  • Câu 13: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 14: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Ta có:

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau hoặc đồng quy tại một điểm.

    => Phương án “Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau” là khẳng định sai.

  • Câu 15: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng?

    “Hai đường thẳng không có điểm chung thì chéo nhau” là sai vì hai đường thẳng đó có thể song song.

    “Hai đường thẳng phân biệt không cắt nhau thì song song” là sai vì hai đường thẳng đó có thể chéo nhau.

    “Hai đường thẳng không cùng nằm trên một mặt phẳng thì chéo nhau” là đúng.

    “Hai đường thẳng không có điểm chung thì song song với nhau” là sai vì hai đường thẳng đó có thể chéo nhau.

  • Câu 16: Vận dụng

    Cho mảnh bìa như hình vẽ sau, biết ABCD là hình vuông cạnh a. Các tam giác S_{1}AB;S_{2}BC;S_{3}CD;S_{4}DA là các tam giác cân bằng nhau. Gọi G;G' lần lượt là trọng tâm của hai tam giác S_{1}ABS_{3}CD. Người ta xếp mảnh bìa này thành hình chóp tứ giác S.ABCD (các điểm S_{1};S_{2};S_{3};S_{4}trùng vào đỉnh S). Khi đó tính độ dài đoạn thẳng GG'.

    Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:

    Từ giả thiết ta có:

    \frac{SG}{SM} = \frac{SG'}{SN} =
\frac{GG'}{MN} = \frac{2}{3}

    \Rightarrow GG' = \frac{2}{3}MN =
\frac{2a}{3}

  • Câu 17: Nhận biết

    Trong các phát biểu sau đây, phát biểu nào sai?

     Phát biểu sai: "Hai đường thẳng không có điểm chung thì chéo nhau."

  • Câu 18: Vận dụng

    Cho hình chóp S.ABCD với đáy là hình thang ABCD, đáy lớn BC gấp đôi đáy nhỏ AD. Gọi E là trung điểm AD và O là giao điểm của AC và BE, I là một điểm thuộc đoạn OC (I khác O và C). Mặt phẳng (α) qua I song song với (SBE). Xác định hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha)//(SBE) \\
(SBE) \cap (ABCD) = BE \\
(\alpha) \cap (ABCD) = Ix \\
\end{matrix} ight.

    => Ix//BE => Ix cắt BC tại M, AD tại Q.

    Ta có: \left\{ \begin{matrix}
(\alpha)//(SBE) \\
(\alpha) \cap (SBC) = Mx \\
(SBE) \cap (SBC) = SB \\
\end{matrix} ight.

    => Mx//SB

    => Mx cắt SC tại N.

    Ta có: \left\{ \begin{matrix}
(\alpha)//(SBE) \\
(\alpha) \cap (SAD) = Qx \\
(SBE) \cap (SAD) = SE \\
\end{matrix} ight.

    => Qx//SE

    => Qx cắt SD tại P

    Tứ giác BCDE là hình bình hành

    => CD // BE // MQ

    => CD // (α).

    Ta có: \left\{ \begin{matrix}
CD//\ (\alpha) \\
CD \subset (SCD) \\
(SCD) \cap (\alpha) = PN \\
\end{matrix} ight.

    => CD//P\ N \Rightarrow MQ//P\
N

    Vậy hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD là hình thang MNPQ.

  • Câu 19: Nhận biết

    Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?

    Hình vẽ minh họa

    Tìm giao tuyến giữa hai mặt phẳng

    Xét tam giác SAB có:

    M và N lần lượt là trung điểm của SA và SB

    => MN là đường trung bình của tam giác SAB

    MN // AB

    AB // CD (ABCD là hình bình hành)

    => MN // CD

    Mặt phẳng (MNC) và (ABD) (hay (ABCD)) lần lượt chứa hai đường thẳng MN và CD song song với nhau và điểm C chung

    => Giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung C và song song với AB là đường thẳng CD

    Hay (MNC) \cap (ABD) =CD

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 70 lượt xem
Sắp xếp theo