Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian, cho ba đường thẳng a,\
\ b,\ \ c. Trong các mệnh đề sau mệnh đề nào đúng?

    Nếu bc chéo nhau thì bc không cùng thuộc một mặt phẳng.

  • Câu 2: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (\alpha) song song với ACSB đồng thời cắt các đoạn SA,AB,BC,SC,SD,BD lần lượt tại M,N,E,F,I,J. Ta có các khẳng định sau:

    (i):IJ//AB

    (ii):MF//AC

    (iii): Tứ giác MNEF là hình bình hành.

    Có bao nhiêu khẳng định đúng?

    Hình vẽ minh họa

    Xét (\alpha) \equiv (MNEFI)

    (\alpha)//AC \Rightarrow
MF//AC

    (\alpha)//SB \Rightarrow
IJ//SB

    (\alpha)//SB nên MN,EF đều song song với SB điều này suy ra MNEF là hình bình hành.

    Vậy tất cả các khẳng định đều đúng.

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N,K lần lượt là trung điểm của CD,\ CB,\ SA, H = AC \cap MN. Giao điểm của đường thẳng SO với mặt phẳng (MNK) là giao điểm của hai đường thẳng nào?

    Hình vẽ minh họa

    Xét mặt phẳng (SAC) ta có:

    KH \cap SO \equiv E

    \Rightarrow SO \cap (MNK) \equivE

  • Câu 4: Nhận biết

    Hình chiếu của hình chữ nhật không thể là hình nào trong các hình sau?

    Theo tính chất của phép chiếu song song ta thấy:

    Hình chiếu của hình chữ nhật không thể là hình thang có hai đáy không bằng nhau.

  • Câu 5: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 6: Nhận biết

    Cho lăng trụ tam giác ABC.A'B'C'G,G' lần lượt là trọng tâm tam giác ABCA'B'C', M \in AC sao cho \frac{AM}{MC} = 2. Mệnh đề nào sai?

    Hình vẽ minh họa

    GA//(BCC'B') sai vì \left\{ \begin{matrix}
GA \cap BC = N \\
BC \subset (BCC'B') \\
\end{matrix} ight.

  • Câu 7: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Các điểm I;J lần lượt là trọng tâm các tam giác SAB, SAD, MC =
MD,(M \in CD). Mặt phẳng nào dưới đây song song với đường thẳng IJ?

    Hình vẽ minh họa

    Ta có:

    IJ//EF//BD \Rightarrow
IJ//(SBD)

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm AD và BC (xem hình vẽ bên). Giao tuyến của hai mặt phẳng (SMN) và (SAC) là

    Giao tuyến của hai mặt phẳng (SMN) và (SAC)

    Ta có: S là điểm chung thứ nhất giữa hai mặt phẳng (SMN) và (SAC).

    Ta có O = AC ∩ BD là tâm của hình hình hành

    => O = AC ∩ MN (do M, N lần lượt là trung điểm của AD và BC).

    Trong mặt phẳng (ABCD), ta có:

    \left\{ {\begin{array}{*{20}{l}}{O \in AC \subset \left( {SAC} ight) \Rightarrow O \in \left( {SAC} ight)} \\{O \in MN \subset \left( {SMN} ight) \Rightarrow O \in \left( {SMN} ight)}\end{array}} ight.

    => O là điểm chung thứ hai giữa hai mặt phẳng (SMN) và (SAC).

    Vậy (SMN) ∩ (SAC) = SO

  • Câu 9: Nhận biết

    Cho mặt phẳng (\alpha) và điểm H không thuộc mặt phẳng (\alpha). Số đường thẳng đi qua H và song song với (\alpha)

    Có vô số đường thẳng đi qua H và song song với (\alpha) với điểm H không thuộc mặt phẳng (\alpha).

  • Câu 10: Nhận biết

    Chọn mệnh đề sai. Trong không gian:

    Trong không gian hai đường thẳng không có điểm chung thì chéo nhau hoặc song song với nhau.

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,J lần lượt là trọng tâm của hai tam giác SABSCD;\ \ E,F lần lượt là trung điểm của ABCD. Khi đó:

    a) \frac{SJ}{SF} = \frac{2}{3}. Đúng||Sai

    b) IJ//\ (ABCD). Đúng||Sai

    c) BC song song với mặt phẳng (SAD),(SEF). Đúng||Sai

    d) BC cắt mặt phẳng (AIJ). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,J lần lượt là trọng tâm của hai tam giác SABSCD;\ \ E,F lần lượt là trung điểm của ABCD. Khi đó:

    a) \frac{SJ}{SF} = \frac{2}{3}. Đúng||Sai

    b) IJ//\ (ABCD). Đúng||Sai

    c) BC song song với mặt phẳng (SAD),(SEF). Đúng||Sai

    d) BC cắt mặt phẳng (AIJ). Sai||Đúng

    Hình vẽ minh họa

    a) Đúng.

    Do I,J lần lượt là trọng tâm của tam giác SABSCD nên \frac{SI}{SE} = \frac{SJ}{SF} =
\frac{2}{3}.

    b) Đúng.

    Do I,J lần lượt là trọng tâm của tam giác SABSCD nên

    \frac{SI}{SE} = \frac{SJ}{SF} =
\frac{2}{3} \Rightarrow IJ//EF

    \ EF \subset (ABCD) \Rightarrow
IJ//(ABCD).

    c) Đúng.

    BC//AD,AD \subset (SAD) \Rightarrow
BC//(SAD).

    EF là đường trung bình của hình bình hành ABCD nên

    BC//EF,EF \subset (SEF) \Rightarrow
BC//(SEF).

    d) Sai.

    Ta có: IJ//EF,EF//BC \Rightarrow
BC//IJIJ \subset (AIJ)
\Rightarrow BC//(AIJ).

  • Câu 12: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 13: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi, AC \cap BD = O. Gọi (\alpha) là mặt phẳng qua O song song với các đường thẳng AB,SC. Xác định các giao tuyến của (\alpha) với các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

    Hình vẽ minh hoạ

    Xét mặt phẳng (ABCD), kẻ đường thẳng qua O và song song với AB, cắt BC;AD lần lượt tại E,F.

    Trong mặt phẳng (SBC), kẻ đường thẳng song song với SC, cắt SB tại I.

    Trong mặt phẳng (SAB), kẻ đường thẳng song song với AB, cắt SA tại K.

    Vậy hình tạo bởi các giao tuyến là hình thang EFKI với IK//EF.

  • Câu 14: Thông hiểu

    Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABDM là điểm trên cạnh BC sao cho BM
= 2MC. Đường thẳng MG song song với

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Do G là trọng tâm của tam giác ABD và M là điểm trên cạnh BC sao cho BM =
2MC nên trong mặt phẳng (BCE) ta có:

    \frac{BG}{BE} = \frac{BM}{BC} =
\frac{2}{3}

    \Rightarrow MG//CE \subset
(ACD)

    \Rightarrow MG//(ACD)

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Đáp án là:

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Hình vẽ minh họa

    Xét (ABA')(SCD) ta có:

    \left\{ \begin{matrix}
A' \in SC,SC \subset (SCD) \\
A' \in (ABA') \\
\end{matrix} ight.\  \Rightarrow A' là điểm chung thứ nhất.

    Gọi I = AB \cap CD

    \left\{ \begin{matrix}
I \in AB,AB \subset (ABA') \\
I \in CD,CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I là điểm chung thứ hai.

    \Rightarrow (ABA') \cap (SCD) =
IA'

    Gọi M = IA' \cap SD. Ta có:

    (ABA') \cap (SCD) = A'M

    (ABA')\cap (SAD)=AM

    (ABA') \cap (ABCD) = AB

    (ABA') \cap (SBC) =
BA'

    Thiết diện là tứ giác ABA'M.

    Vậy thiết diện là đa giác có 4 cạnh.

  • Câu 16: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Lấy M \in AD,N \in CC' sao cho 2AM = AD2CN = CC'. Mặt phẳng (\alpha) chứa đường thẳng MN và song song với (ACB'). Xác định các giao tuyến của (\alpha) với các mặt của hình hộp. Cho biết hình tạo bởi các giao tuyến đó là hình gì?

    Hình vẽ minh họa

    Giao tuyến của (\alpha) với mặt phẳng (ABCD) là đường thẳng qua M và song song với AC, đường thẳng này cắt CD tại P là trung điểm CD.

    Giao tuyến của (\alpha) với mặt phẳng (BCC’B’) là đường thẳng qua N và song song với B’C, đường thẳng này cắt B’C’ tại E là trung điểm B’C’.

    Giao tuyến của (α) với mặt phẳng (A’B’C’D’) là đường thẳng qua E và song song với A’C’, đường thẳng này cắt A’B’ tại F là trung điểm A’B’.

    Giao tuyến của (α) với mặt phẳng (ABB’A’) là đường thẳng qua F và song song với AB’, đường thẳng này cắt AA’ tại G là trung điểm AA’.

    => Hình lục giác MPNEFG là hình tạo bởi các giao tuyến của (\alpha) với các mặt của hình hộp.

  • Câu 17: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau:

    Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳng.

    Do đó mệnh đề "Trong không gian hai đường thẳng chéo nhau thì không có điểm chung" đúng.

  • Câu 18: Vận dụng

    Cho 4 điểm không cùng thuộc một mặt phẳng. Trong các phát biểu sau đây, phát biểu nào là sai?

    Phương án "Trong 4 điểm đã cho không có ba điểm nào thẳng hàng." đúng vì nếu có ba điểm thẳng hàng ( giả sử là A; B; C) thì bốn điểm đã cho luôn thuộc mặt phẳng chứa điểm D còn lại và đường thẳng AB. (mâu thuẫn giả thiết)

    Phương án "Số mặt phẳng đi qua 3 trong 4 điều đã cho là 4." đúng. Số mặt phẳng đi qua 3 trong 4 điểm đã cho là: C_4^3 = 4

    Phương án "Số đoạn thẳng nối hai điểm trong 4 điểm đã cho là 6." đúng. Số đoạn thẳng nối 2 điểm trong 4 điểm đã cho là: C_4^2 = 6

    Vậy phát biểu sai là: "Trong 4 điểm đã cho luôn luôn tồn tại 3 điểm thẳng hàng."

  • Câu 19: Thông hiểu

    Cho hình chóp S.MNPQ có đáy MNPQ là hình bình hành. Xác định giao tuyến của hai mặt phẳng (SMQ)(SNP):

    Hình vẽ minh họa

    Gọi (SMQ) \cap (SNP) = d

    Khi đó d đi qua S.

    Xét ba mặt phẳng (SMQ),(SNP);(MNPQ).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d;MQ;NP.

    Theo định lí về giao tuyến của ba mặt phẳng thì d;MQ;NP đồng quy hoặc đôi một song song.

    MQ//NP \Rightarrow d//MQ

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Hình vẽ minh họa

    Ta có EF là đường trung bình tam giác SAD nên EF // SD

    Ta có: \left\{ \begin{matrix}
EF//SD \\
SD \subset (SCD) \\
EF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow EF//(SCD)

    Xét tứ giác BFDC có: \left\{
\begin{matrix}
BC//DF \\
BC = DF = \frac{1}{2}AD \\
\end{matrix} ight. suy ra tứ giác BFDC là hình bình hành

    => BF // DC

    Ta có: \left\{ \begin{matrix}
BF//CD \\
CD \subset (SCD) \\
BF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow BF//(SCD)

    Ta có: \left\{ \begin{matrix}
EF//(SCD) \\
BF//(SCD) \\
EF \cap BF \\
EF;BF \subset (BEF) \\
\end{matrix} ight.\  \Rightarrow (BEF)//(SCD)

    Do AD // BC nên theo định lí Ta- let ta có: \frac{OB}{OD} = \frac{OC}{OA} = \frac{BC}{AD} =
\frac{1}{2}

    \Rightarrow OA = 2OC \Rightarrow
\frac{CO}{CA} = \frac{1}{3}

    Mặt khác SK = 2CK \Rightarrow
\frac{CK}{CS} = \frac{1}{3}

    Xét tam giác SAC có \frac{CO}{CA} =
\frac{CK}{CS} = \frac{1}{3} \Rightarrow OK//SA

    Ta có: \left\{ \begin{matrix}
OK//SA \\
OK \subset (KBD) \\
SA ⊄ (KBD) \\
\end{matrix} ight.\  \Rightarrow SA//(KBD)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 100 lượt xem
Sắp xếp theo