Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là trọng tâm của tam giác
. Giao điểm của đường thẳng
và mặt phẳng
là:
Hình vẽ minh họa
Ta có:
=> Giao điểm của đường thẳng và mặt phẳng
là giao điểm của đường thẳng
và
.
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là trọng tâm của tam giác
. Giao điểm của đường thẳng
và mặt phẳng
là:
Hình vẽ minh họa
Ta có:
=> Giao điểm của đường thẳng và mặt phẳng
là giao điểm của đường thẳng
và
.
Cho tứ diện
,
sao cho
. Gọi
là trọng tâm tam giác
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Gọi P là trung điểm của AD.
Ta có:
Mà
Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.
Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.
Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.
=> H là giao điểm của MN và mặt phẳng (SBD).
Cho hình chóp
có đáy
là hình bình hành tâm
. Trung điểm của các cạnh
lần lượt là
. Chọn khẳng định đúng.
Hình vẽ minh họa:
Xét hai mặt phẳng và
.
Ta có: và
.
Mà và
.
Do đó
Cho tứ diện ABCD. Giả sử M thuộc đoạn BC. Một mặt
qua M song song với AB và CD. Thiết diện của
và hình tứ diện ABCD là hình gì?
Hình vẽ minh họa

=> Giao tuyến của
với (ABC) là đường thẳng đi qua M, song song với AB và cắt AC tại Q.
=> Giao tuyến của
với (BCD) là đường thẳng đi qua M, song song với CD và cắt BD tại N.
=> Giao tuyến của
với (ABD) là đường thẳng đi qua N, song song với AB và cắt AD tại P.
=> Thiết diện của hình chóp cắt bởi là tứ giác MNPQ.
Ta lại có:
Vậy thiết diện là hình bình hành MNPQ.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Cho hình chóp
. Gọi
lần lượt là trung điểm
. Khi đó khẳng định nào sai?
Hình vẽ minh họa
Qua phép chiếu song song theo phương lên mặt phẳng
biến: M thành P, N thành
.
Do đó
Qua phép chiếu song song theo phương lên mặt phẳng
biến:
thành
, R thành R, M thành Q, P thành P, L thành L, Q thành Q.
Vậy
Vậy khẳng định sai là:
Cho hình chóp
có đáy
là hình bình hành. Lấy
, mặt phẳng
đi qua
và song song với mặt phẳng
. Khi đó các giao tuyến của mặt phẳng
với các mặt của
là hình gì?
Hình vẽ minh họa
Giao tuyến của với
là
.
Giao tuyến của với
là
.
Từ đó suy ra các giao tuyến của mặt phẳng với các mặt của
là hình thang MNPQ.
Cho hai mặt phẳng
và
song song với nhau. Mệnh đề nào sau đây sai?
Đáp án “Đường thẳng và đường thẳng
thì
” sai vì nếu
và đường thẳng
thì
và
có thể chéo nhau.
Chọn mệnh đề đúng trong các mệnh đề dưới đây:
Theo định nghĩa về vị trí tương đối của hai đường thẳng trong không gian thì đáp án đúng là: " Hai đường thẳng chéo nhau thì không có điểm chung."
Cho hình chóp
có đáy
là hình thang
. Gọi
lần lượt là các điểm thuộc các cạnh
thỏa mãn ![]()
. Biết
và
là trung điểm của
. Phân tích sự đúng sai của các phát biểu dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d) Thiết diện tạo bởi mặt phẳng
và mặt phẳng
là một hình thang. Sai||Đúng
Cho hình chóp có đáy
là hình thang
. Gọi
lần lượt là các điểm thuộc các cạnh
thỏa mãn
. Biết
và
là trung điểm của
. Phân tích sự đúng sai của các phát biểu dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Thiết diện tạo bởi mặt phẳng và mặt phẳng
là một hình thang. Sai||Đúng
Hình vẽ minh họa
Xét tam giác DBC có
Xét tam giác ABC có:
Suy ra ba điểm O; K; J thẳng hàng
Suy ra đúng
Tương tự ta cũng chúng minh được (Vì
)
Suy ra
Gọi F là trung điểm của SA khi đó
Mà tứ giác CDEF là hình bình hành nên CE // DF. Từ đó suy ra IH // CE.
Ta lại có: IJKH là thiết diện của hình chóp S.ABCD và (IJK) và nó không là hình thang.
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Để kết luận đường thẳng
song song với đường thẳng
ta cần giả thiết nào dưới đây?
Ta có tính chất:
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Phép chiếu song song biến ba đường thẳng song song thành:
Theo tính chất của phép chiếu song song ta có:
Phép chiếu song song biến ba đường thẳng song song thành ba đường thẳng đôi một song song.
Vậy các đáp án đúng là:
Ba đường thẳng đôi một song song với nhau.
Một đường thẳng.
Thành hai đường thẳng song song.
Cho hình chóp
. Trong các khẳng định sau, khẳng định nào đúng?
Hình vẽ minh họa
Khẳng định đúng là “ và
là hai đường thẳng chéo nhau.”
Kí hiệu nào sau đây là tên của mặt phẳng
Kí hiệu tên của mặt phẳng là .
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành,
là trung điểm của
. Mặt phẳng
là mặt phẳng đi qua
song song với
và
. Giao tuyến của
với các mặt của hình chóp là hình:
Hình vẽ minh họa
Gọi trung điểm lần lượt là
.
Gọi
Từ kẻ
song song với
.
Ta có:
(1)
Ta có:
(2)
Từ (1) và (2)
=> Giao tuyến của với các cạnh của hình chóp là hình ngũ giác
.
Cho hình chóp
có
lần lượt là trọng tâm của tam giác
và
tam giác. Chọn mệnh đề đúng.
Gọi là trung điểm
.
Xét tam giác có:
(do
lần lượt là trọng tâm của tam giác
và tam giác
)
Cho hình lăng trụ
. Trọng tâm các tam giác
lần lượt là
. Tìm mặt phẳng song song với mặt phẳng
.
Theo bài ra ta có:
Các điểm lần lượt là trọng tâm các tam giác
.
.
Chứng minh tương tự