Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp S. ABCD. Gọi M, N, P, R, Q, L lần lượt là trung điểm SD, SB, DC, BC, AD, AB. Khi đó khẳng định nào sai?

    Hình vẽ minh họa

    Qua phép chiếu song song theo phương SC lên mặt phẳng (ABCD) biến: M thành P, N thành R.

    Do đó MP// NR

    => MP // (NLR)

    Qua phép chiếu song song theo phương SA lên mặt phẳng (ABCD) biến: N thành L, R thành R, M thành Q, P thành P, L thành L, Q thành Q.

    Vậy (NLR)//(MQP)

    Vậy khẳng định sai là: AD//(NLR)

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCD. Trong các khẳng định sau, khẳng định nào đúng?

    Hình vẽ minh họa

    Khẳng định đúng là “SACD là hai đường thẳng chéo nhau.”

  • Câu 3: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD' mặt phẳng chiếu (ABB'A') lần lượt là:

    Hình vẽ minh họa

    Do CD'//\ BA' = >CD'//(ABB'A')

    Nên phương chiếu CD' không cắt mặt phẳng chiếu (ABB'A').

    Vì vậy ta không xác định được ảnh của A, B’ qua phép chiếu song song phương CD' mặt phẳng chiếu (ABB'A').

  • Câu 4: Nhận biết

    Qua phép chiếu song song, tính chất nào không được bảo toàn?

    Do hai đường thẳng qua phép chiếu song song ảnh của chúng sẽ cùng thuộc một mặt phẳng.

    Suy ra tính chất chéo nhau không được bảo toàn.

  • Câu 5: Nhận biết

    Cho tam giác ABC. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác ABC?

    Có duy nhất một mặt phẳng chứa tất cả các đỉnh của tam giác ABC.

  • Câu 6: Nhận biết

    "Cho hình hộp ABCD.EFHG, khẳng định nào sau đây là sai?

    Hình vẽ minh họa

    Tìm khẳng định sai

    Khẳng định sai là "CE song song với FH"

  • Câu 7: Thông hiểu

    Cho hình chóp tứ giác S.ABCD đáy là hình bình hành, M là trung điểm của AB. Giả sử (\gamma) là mặt phẳng đi qua M đồng thời song song với SBCD. Xác định các giao tuyến của mặt phẳng (\gamma) và các mặt của hình chóp. Hỏi hình tạo bởi các giao tuyến trên là hình gì?

    Hình vẽ minh họa

    Ta có:

    (\gamma)//SB nên (\gamma) cắt mặt phẳng (SBC) theo giao tuyến MN đi qua M và song song với SB, với N là trung điểm của SC.

    (\gamma)//CD nên (\gamma) cắt mặt phẳng (SCD) theo giao tuyến NP đi qua N và song song với CD, với P là trung điểm của SD.

    (\gamma)//CD nên (\gamma) cắt mặt phẳng (ABCD) theo giao tuyến MQ đi qua M và song song với CD, với Q là trung điểm của AD.

    Các giao tuyến của mặt phẳng (\gamma) và hình chóp là tứ giác MNPQ

    Lại có MQ//CD//NP nên MNPQ là hình thang.

  • Câu 8: Nhận biết

    Chọn khẳng định đúng.

    Khẳng định đúng là: “Nếu hai đường thẳng không có điểm chung thì hai đường thẳng đó song song hoặc chéo nhau.”

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của SA. Thiết diện của mặt phẳng (MCD) với hình chóp S.ABCD là hình gì?

    Hình vẽ minh họa

    Tìm thiết diện

    Tìm giao tuyến của 2 mp (MCD) và (SAB)

    CD// AB; CD ⊂ (MCD); AB ⊂ (SAB)

    Điểm M chung

    => Giao tuyến của (MCD) và (SAB) là đường thẳng qua M và song song với AB, cắt SB tại N là trung điểm của SB.

    Vậy MN // CD

    Mặt khác MN ≠ CD ( vì MN= 1/2AB ; AB = CD)

    Vậy thiết diện là hình thang CNMD.

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,J lần lượt là trọng tâm của hai tam giác SABSCD;\ \ E,F lần lượt là trung điểm của ABCD. Khi đó:

    a) \frac{SJ}{SF} = \frac{2}{3}. Đúng||Sai

    b) IJ//\ (ABCD). Đúng||Sai

    c) BC song song với mặt phẳng (SAD),(SEF). Đúng||Sai

    d) BC cắt mặt phẳng (AIJ). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,J lần lượt là trọng tâm của hai tam giác SABSCD;\ \ E,F lần lượt là trung điểm của ABCD. Khi đó:

    a) \frac{SJ}{SF} = \frac{2}{3}. Đúng||Sai

    b) IJ//\ (ABCD). Đúng||Sai

    c) BC song song với mặt phẳng (SAD),(SEF). Đúng||Sai

    d) BC cắt mặt phẳng (AIJ). Sai||Đúng

    Hình vẽ minh họa

    a) Đúng.

    Do I,J lần lượt là trọng tâm của tam giác SABSCD nên \frac{SI}{SE} = \frac{SJ}{SF} =
\frac{2}{3}.

    b) Đúng.

    Do I,J lần lượt là trọng tâm của tam giác SABSCD nên

    \frac{SI}{SE} = \frac{SJ}{SF} =
\frac{2}{3} \Rightarrow IJ//EF

    \ EF \subset (ABCD) \Rightarrow
IJ//(ABCD).

    c) Đúng.

    BC//AD,AD \subset (SAD) \Rightarrow
BC//(SAD).

    EF là đường trung bình của hình bình hành ABCD nên

    BC//EF,EF \subset (SEF) \Rightarrow
BC//(SEF).

    d) Sai.

    Ta có: IJ//EF,EF//BC \Rightarrow
BC//IJIJ \subset (AIJ)
\Rightarrow BC//(AIJ).

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Hình vẽ minh họa

    Xét tam giác DBC có \frac{DO}{DB} =\frac{DK}{DC} = \frac{1}{3} \Rightarrow OK//BC

    Xét tam giác ABC có: \frac{AO}{AC} =\frac{AJ}{AB} = \frac{2}{3} \Rightarrow OJ//BC

    Suy ra ba điểm O; K; J thẳng hàng

    Suy ra (IJK) \cap (ABCD) = OK đúng

    Tương tự ta cũng chúng minh được OH//IJ (Vì OH//SB;IJ//SB)

    Suy ra H \in (IJO) \Rightarrow (IJO) \cap(SBD) = OH

    Gọi F là trung điểm của SA khi đó \frac{SI}{SF} = \frac{SH}{SD} = \frac{2}{3}\Rightarrow IH//DF

    Mà tứ giác CDEF là hình bình hành nên CE // DF. Từ đó suy ra IH // CE.

    Ta lại có: IJKH là thiết diện của hình chóp S.ABCD và (IJK) và nó không là hình thang.

  • Câu 12: Vận dụng

    Một hình chóp có tổng số đỉnh và số cạnh bằng 14. Tìm số cạnh của đa giác đáy?

    Một hình chóp có đáy là đa giác n cạnh thì có n + 1 đỉnh và 2n + 1 cạnh

    Tổng số đỉnh và số cạnh bằng 14

    \begin{matrix}
   \Leftrightarrow n + 1 + 2n + 1 = 14 \hfill \\
   \Leftrightarrow 3n + 2 = 14 \hfill \\
   \Leftrightarrow 3n = 12 \hfill \\
   \Leftrightarrow n = 4 \hfill \\ 
\end{matrix}

    => Số cạnh đáy của hình chóp là: 4.

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, P,Q lần lượt là trung điểm của SA,SC. Tìm đặc điểm của giao tuyến d của hai mặt phẳng (BPQ)(ABCD).

    Hình vẽ minh họa

    Ta thấy B là một điểm chung của hai mặt phẳng (BMN)(ABCD).

    Do đó d đi qua B.

    Xét ba mặt phẳng (BMN),(ABCD),(SAC).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AC,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AC,MN đồng quy hoặc đôi một song song.

    MN//AC (do MN là đường trung bình của tam giác SAC) nên d//AC.

    Vậy giao tuyến của hai mặt phẳng (BPQ)(ABCD) là đường thẳng d đi qua B và song song với CD.

  • Câu 14: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCDG,E lần lượt là trọng tâm tam giác SADSCD. Lấy các điểm H,K lần lượt là trung điểm của ABBC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi I là trung điểm của SD.

    Xét tam giác ACI có: \frac{IG}{IA} = \frac{IE}{IC} =
\frac{1}{3}

    Theo định lí đảo của định lí Thales, ta có GE//AC (1).

    Mặt khác HK là đường trung bình của tam giác ABC

    => HK//AC (2)

    Từ (1) và (2) ta có HK//GE.

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Hình vẽ minh họa

    Ta có EF là đường trung bình tam giác SAD nên EF // SD

    Ta có: \left\{ \begin{matrix}
EF//SD \\
SD \subset (SCD) \\
EF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow EF//(SCD)

    Xét tứ giác BFDC có: \left\{
\begin{matrix}
BC//DF \\
BC = DF = \frac{1}{2}AD \\
\end{matrix} ight. suy ra tứ giác BFDC là hình bình hành

    => BF // DC

    Ta có: \left\{ \begin{matrix}
BF//CD \\
CD \subset (SCD) \\
BF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow BF//(SCD)

    Ta có: \left\{ \begin{matrix}
EF//(SCD) \\
BF//(SCD) \\
EF \cap BF \\
EF;BF \subset (BEF) \\
\end{matrix} ight.\  \Rightarrow (BEF)//(SCD)

    Do AD // BC nên theo định lí Ta- let ta có: \frac{OB}{OD} = \frac{OC}{OA} = \frac{BC}{AD} =
\frac{1}{2}

    \Rightarrow OA = 2OC \Rightarrow
\frac{CO}{CA} = \frac{1}{3}

    Mặt khác SK = 2CK \Rightarrow
\frac{CK}{CS} = \frac{1}{3}

    Xét tam giác SAC có \frac{CO}{CA} =
\frac{CK}{CS} = \frac{1}{3} \Rightarrow OK//SA

    Ta có: \left\{ \begin{matrix}
OK//SA \\
OK \subset (KBD) \\
SA ⊄ (KBD) \\
\end{matrix} ight.\  \Rightarrow SA//(KBD)

  • Câu 17: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N tương ứng là hai điểm bất kì trên các đoạn thẳng ACBD. Tìm giao tuyến của hai mặt phẳng (MBD)(NAC).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (MBD) \cap (NAC) \\
N \in (MBD) \cap (NAC) \\
\end{matrix} ight.

    \Rightarrow (MBD) \cap (NAC) =
MN

  • Câu 18: Nhận biết

    Trong không gian cho các đường thẳng a, b và các mặt phẳng (α), (β). Trong các khẳng định sau đây, đâu là khẳng định đúng?

    Mệnh đề “a // (β) và (β) // b thì a // b” là sai vì a và b có thể cắt nhau.

    Mệnh đề “a // b và b ⊂ (α) thì a // (α)” là sai vì có thể a ⊂ (α).

    Mệnh đề “a // b và b // (α) thì a // (α)” là sai vì có thể a ⊂ (α).

  • Câu 19: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 20: Nhận biết

    Có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?

    Có ba vị trí tương đối giữa đường thẳng và mặt phẳng là:

    + Đường thẳng song song với mặt phẳng.

    + Đường thẳng cắt mặt phẳng.

    + Đường thẳng nầm trên mặt phẳng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 99 lượt xem
Sắp xếp theo