Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:
Hình vẽ minh họa

Xét ΔBFD có OO’ là đường trung bình => OO’ // DF
Mà DF ⊂ (ADF)
=> OO' // (ADF)
Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:
Hình vẽ minh họa

Xét ΔBFD có OO’ là đường trung bình => OO’ // DF
Mà DF ⊂ (ADF)
=> OO' // (ADF)
Cho hai hình bình hành
và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a)
. Sai||Đúng
b)
. Đúng||Sai
c)
. Sai||Đúng
d) Sáu điểm
là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Cho hai hình bình hành và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) Sáu điểm là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Hình vẽ minh họa
a) Sai: và
cắt nhau tại
.
b) Đúng.
Vì là hình bình hành nên
, suy ra
.
Vì là hình bình hành nên
, suy ra
.
Mà và
cắt nhau nên
.
c) Sai: Vì và
có điểm
chung.
d) Đúng:
Vì và
là hình bình hành nên
đôi một song song
Mặt khác (theo câu b)
Do đó 6 điểm là 6 đỉnh của một hình lăng trụ tam giác
Cho 4 điểm không cùng thuộc một mặt phẳng. Trong các phát biểu sau đây, phát biểu nào là sai?
Phương án "Trong 4 điểm đã cho không có ba điểm nào thẳng hàng." đúng vì nếu có ba điểm thẳng hàng ( giả sử là A; B; C) thì bốn điểm đã cho luôn thuộc mặt phẳng chứa điểm D còn lại và đường thẳng AB. (mâu thuẫn giả thiết)
Phương án "Số mặt phẳng đi qua 3 trong 4 điều đã cho là 4." đúng. Số mặt phẳng đi qua 3 trong 4 điểm đã cho là:
Phương án "Số đoạn thẳng nối hai điểm trong 4 điểm đã cho là 6." đúng. Số đoạn thẳng nối 2 điểm trong 4 điểm đã cho là:
Vậy phát biểu sai là: "Trong 4 điểm đã cho luôn luôn tồn tại 3 điểm thẳng hàng."
Cho hình chóp
có đáy
là hình bình hành. Giả sử
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Ta lại có: suy ra đường thẳng d đi qua S và song song với AB.
Mệnh đề nào sau đây sai?
Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.
Trong các khẳng định sau khẳng định nào sai?
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song hoặc đồng quy.
Cho lăng trụ tam giác
có
lần lượt là trọng tâm tam giác
và
,
sao cho
. Mệnh đề nào sai?
Hình vẽ minh họa
sai vì
Cho hình lập phương
. Số đường thẳng chứa cạnh của hình lập phương chéo nhau với đường thẳng
là:

Các đường thẳng chéo nhau với cạnh AB là .
Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Phát biểu đúng là: "MP và NQ chéo nhau"
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho hình chóp
có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Cho hình chóp có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Hình vẽ minh họa
Ta có EF là đường trung bình tam giác SAD nên EF // SD
Ta có:
Xét tứ giác BFDC có: suy ra tứ giác BFDC là hình bình hành
=> BF // DC
Ta có:
Ta có:
Do AD // BC nên theo định lí Ta- let ta có:
Mặt khác
Xét tam giác SAC có
Ta có:
Trong không gian, cho 3 đường thẳng
, biết
, a và c chéo nhau. Khi đó hai đường thẳng b và c:
Giả sử
(mâu thuẫn với giả thiết).
Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.
Cho hộp chữ nhật
. Các điểm
tương ứng trên
sao cho
song song với
. Tính tỉ số
?
Xét phép chiếu song song lên mặt phẳng theo phương chiếu
.
Ta có: là ảnh của
hay
chính là giao điểm của
và ảnh
qua phép chiếu này.
Do đó ta xác định như sau:
Trên kéo dài lấy điểm
sao cho
suy ra
là ảnh của
trên
qua phép chiếu song song.
Gọi . Đường thẳng qua
và song song với
cắt
tại
. Ta có:
là các điểm cần xác định.
Theo định lí Thales ta có:
Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Mặt phẳng song song với mặt phẳng
.
Vì và
.
Chọn mệnh đề sai. Trong không gian:
Trong không gian hai đường thẳng không có điểm chung thì chéo nhau hoặc song song với nhau.
Cho hình chóp
có đáy là hình bình hành. Điểm
thuộc cạnh
, điểm
và
lần lượt là trung điểm của
và
. Khi đó:
a)
Đúng||Sai
b) Giao tuyến của hai mặt phẳng
và
là đường thẳng qua
và song song với
. Sai||Đúng
c) Giao tuyến của hai mặt phẳng
và
đường thẳng qua
và song song với
. Đúng||Sai
d) Giao tuyến của hai mặt phẳng
và
là đường thẳng qua
và song song với
. Đúng||Sai
Cho hình chóp có đáy là hình bình hành. Điểm
thuộc cạnh
, điểm
và
lần lượt là trung điểm của
và
. Khi đó:
a) Đúng||Sai
b) Giao tuyến của hai mặt phẳng và
là đường thẳng qua
và song song với
. Sai||Đúng
c) Giao tuyến của hai mặt phẳng và
đường thẳng qua
và song song với
. Đúng||Sai
d) Giao tuyến của hai mặt phẳng và
là đường thẳng qua
và song song với
. Đúng||Sai
b) Xác định giao tuyến của hai mặt phẳng và
:
Ta có:
Suy ra , với
là đường thẳng qua
và
.
Hình vẽ minh họa
c) Xác định giao tuyến của hai mặt phẳng và
:
Ta có: .
Khi đó:
Suy ra là đường thẳng qua
và
.
d) Xác định giao tuyến của hai mặt phẳng và
:
Ta có .
Xét tam giác , ta có
là đường trung bình
.
Khi đó:
Suy ra là đường thẳng qua
và
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Cho hình chóp S.ABC, đáy ABC cân tại A, tam giác SBC cân tại S. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC, G và F lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Điền Đ vào mệnh đề đúng, điền S vào mệnh đề sai.
(I) AH, SK và BC đồng quy. Đ || Đ || D || đ
(II) AG, SF cắt nhau tại một điểm trên BC. Đ || Đ || D || đ
(III) HF và GK chéo nhau. S
(IV) SH và AK cắt nhau. Đ || Đ || D || đ
Cho hình chóp S.ABC, đáy ABC cân tại A, tam giác SBC cân tại S. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC, G và F lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Điền Đ vào mệnh đề đúng, điền S vào mệnh đề sai.
(I) AH, SK và BC đồng quy. Đ || Đ || D || đ
(II) AG, SF cắt nhau tại một điểm trên BC. Đ || Đ || D || đ
(III) HF và GK chéo nhau. S
(IV) SH và AK cắt nhau. Đ || Đ || D || đ
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Ta có SM ⊥ BC và AM ⊥ BC.
AH, SK và BC đồng qui tại M. Do đó (I) đúng.
AG, SF cắt nhau tại M trên BC. Do đó (II) đúng.
HF và GK cùng nằm trong mặt phẳng (SAM) nên có thể song song hoặc cắt nhau hoặc trùng nhau. Do đó (III) sai.
SH và AK cắt nhau. Do đó (IV) đúng.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy P sao cho PB = 2PD. Khi đó giao điểm của đường thẳng CD với (MNP) là:
Hình vẽ minh họa
Trong tam giác , gọi
Khi đó .
Vậy giao điểm của đường thẳng với
là giao điểm của
và
.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm của SA,SB,SC và SD. Khi đó
là đường thẳng nào?
Hình vẽ minh họa:
M ∈ (MNPQ); M ∈ SA; M ∈ (SAC)
Vậy M là điểm chung thứ nhất. P ∈ (MNPQ); P ∈ SC; P ∈ (SAC).
Vậy P là điểm chung thứ hai.
Vậy giao tuyến của (MNPQ) và (SAC) là: MP