Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O, M \in
SC,SM = MC. Mệnh đề nào sau đây là mệnh đề sai?

    Hình vẽ minh họa

    Ta có:

    OM//SA \Rightarrow
OM//(SAB)

    OM//SA \Rightarrow
OM//(SAD)

    (BDM) \cap (SAC) = OM

    OM//(SBD) là đáp án sai.

  • Câu 2: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Ta có:

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau hoặc đồng quy tại một điểm.

    => Phương án “Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau” là khẳng định sai.

  • Câu 3: Vận dụng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của các cạnh ABCD. Mặt phẳng qua MN cắt AD,BC lần lượt tại P,Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
I \in MP \subset (ABD) \\
I \in NQ \subset (BCD) \\
\end{matrix} ight.

    \Rightarrow I \in (BCD) \cap
(ABD)

    BD = (BCD) \cap (ABD)

    Vậy ba điểm I,B,D thẳng hàng.

  • Câu 4: Nhận biết

    Trong hình học không gian

    Qua ba điểm phân biệt không thẳng hàng xác định một và chỉ một mặt phẳng. Nếu ba điểm phân biệt thẳng hàng thì có vô số mặt phẳng chứa ba điểm.

  • Câu 5: Thông hiểu

    Cho ba mặt phẳng (\alpha);(\beta);(\gamma) đôi một song song. Hai đường thẳng m,n lần lượt cắt ba mặt phẳng tại  A,B,C A',B',C', (B nằm giữa A C, B' nằm giữa A'C'). Biết rằng AB = 5;BC = 4;A'C' = 8. Tính A'B'.B'C'.

    Ta có: \frac{AB}{A'B'} =
\frac{BC}{B'C'} = \frac{AB + BC}{A'B' + B'C'} =
\frac{AC}{A'C}

    \Rightarrow A'B' =
10;B'C' = 8

    \Rightarrow A'B'.B'C' =
80

  • Câu 6: Thông hiểu

    Cho hình chóp ABCD có đáy ABCD là hình thang (AB//CD). Gọi M;N;Q lần lượt là trung điểm của BC;AD;SB. Giao tuyến của mặt phẳng (SAB)(MNQ) là:

    Hình vẽ minh họa

    Ta có: Q \in SB;SB \subset
(SAB)

    Q \in (MNQ) nên Q là điểm chung thứ nhất của mặt phẳng (SAB)(MNQ)

    Mặt khác MN//AB

    Vậy giao tuyến của mặt phẳng (SAB)(MNQ) là đường thẳng qua Q và song song với AB.

  • Câu 7: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh bên BC = 2, đáy AB = 6;DC = 4. Mặt phẳng (P) song song với \left( {ABCD} ight) và cắt các cạnh SA tại M sao cho \frac{{SA}}{{SM}} = 3. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh bên BC = 2, đáy AB = 6;DC = 4. Mặt phẳng (P) song song với \left( {ABCD} ight) và cắt các cạnh SA tại M sao cho \frac{{SA}}{{SM}} = 3. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của SA. Thiết diện của mặt phẳng (MCD) với hình chóp S.ABCD là hình gì?

    Hình vẽ minh họa

    Tìm thiết diện

    Tìm giao tuyến của 2 mp (MCD) và (SAB)

    CD// AB; CD ⊂ (MCD); AB ⊂ (SAB)

    Điểm M chung

    => Giao tuyến của (MCD) và (SAB) là đường thẳng qua M và song song với AB, cắt SB tại N là trung điểm của SB.

    Vậy MN // CD

    Mặt khác MN ≠ CD ( vì MN= 1/2AB ; AB = CD)

    Vậy thiết diện là hình thang CNMD.

  • Câu 9: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Từ hình vẽ ta thấy DC'//AB' => "DC', AB' chéo nhau" sai.

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là

    Hình vẽ minh họa

    Gọi d = (GMN) \cap (BCD)

    Khi đó d đi qua G. Xét ba mặt phẳng (GMN),(BCD),(ACD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,CD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,CD,MN đồng quy hoặc đôi một song song.

    MN//CD\  = > \ d//CD

    Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.

  • Câu 11: Nhận biết

    Cho hai mặt phẳng (P), (Q) cắt nhau theo giao tuyến là đường thẳng d. Đường thẳng a song song với cả hai mặt phẳng (P), (Q). Khẳng định nào sau đây đúng?

    Sử dụng hệ quả: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

    Vậy a song song d

  • Câu 12: Nhận biết

    Cho \Delta
ABC. Số mặt phẳng chứa tất cả các đỉnh của tam giác ABC là:

    Do ba điểm A,B,C không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.

  • Câu 13: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm ADAC, G là trọng tâm tam giác BCD. Tìm giao tuyến d của hai mặt phẳng (GMN)(BCD).

    Hình vẽ minh họa

    Hai mặt phẳng phân biệt (GMN) và (BCD) chứa hai đường thẳng song song MN và CD, đồng thời có điểm chung là G

    => Giao tuyến của chúng là đường thẳng d qua G và song song với CD (cắt BC, BD lần lượt tại P và Q).

  • Câu 14: Thông hiểu

    Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?

    Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.

  • Câu 15: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có tất cả các cạnh bằng nhau. Mặt phẳng (\beta) bất kì song song với mặt phẳng (ABC). Hình tạo bởi các giao tuyến giữa hai mặt phẳng trên là:

    Hình vẽ minh họa

    Gọi M,N,P lần lượt là giao điểm của (\beta) với các cạnh AA',BB',CC'.

    Khi đó ta có: \left\{ \begin{matrix}
MN = AB \\
NP = BC \\
PM = AC \\
\end{matrix} ight.

    Vậy hình tạo bởi các giao tuyến giữa hai mặt phẳng là tam giác đều

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCDG,E lần lượt là trọng tâm tam giác SADSCD. Lấy các điểm H,K lần lượt là trung điểm của ABBC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi I là trung điểm của SD.

    Xét tam giác ACI có: \frac{IG}{IA} = \frac{IE}{IC} =
\frac{1}{3}

    Theo định lí đảo của định lí Thales, ta có GE//AC (1).

    Mặt khác HK là đường trung bình của tam giác ABC

    => HK//AC (2)

    Từ (1) và (2) ta có HK//GE.

  • Câu 17: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 18: Nhận biết

    Chọn mệnh sai trong các mệnh đề dưới đây.

    Mệnh đề sai: “Cho điểm A nằm ngoài mặt phẳng (\alpha). Khi đó tồn tại duy nhất một đường thẳng d chứa điểm A và song song với mặt phẳng (\alpha).”

    Sửa lại mệnh đề: “Cho điểm A nằm ngoài mặt phẳng (\alpha). Khi đó tồn tại vô số đường thẳng d chứa điểm A và song song với mặt phẳng (\alpha).

  • Câu 19: Nhận biết

    Cho tứ diện MNPQ. Gọi GE lần lượt là trọng tâm của tam giác MNQMNP. Mệnh đề nào dưới đây đúng?

    Hình vẽ minh họa

    Giả sử O là trung điểm của MN.

    Ta có: \frac{GO}{OQ} = \frac{OE}{OC} =
\frac{1}{3}

    \Rightarrow GE//PQ

  • Câu 20: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đường thẳng nào dưới đây song song với giao tuyến của hai mặt phẳng (SAD)(SBC)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD//BC \\
AD \subset (SAD);BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d, d đi qua Sd//AD//BC.

    Vậy giao tuyến của hai mặt phẳng (SAD)(SBC) song song với đường thẳng AD.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 103 lượt xem
Sắp xếp theo