Trong các khẳng định sau khẳng định nào sai?
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song hoặc đồng quy.
Trong các khẳng định sau khẳng định nào sai?
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song hoặc đồng quy.
Cho hình lăng trụ
có đáy
và
là hình bình hành. Lấy trung điểm của các cạnh
lần lượt là các điểm
. Xét các khẳng định sau:
a)
cắt
.
b)
cắt
tại trung điểm của
.
c)
.
Số khẳng định đúng là:
Hình vẽ minh họa
Mặt phẳng cắt
tại trung điểm của
.
Từ đó thấy rằng ba khẳng định trong đề bài đều đúng.
Hình chiếu của hình vuông không thể là hình nào trong các hình sau?
Theo tính chất của phép chiếu song song ta được
Hình chiếu của hình vuông không thể là hình thang có hai cạnh đáy không bằng nhau.
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho hình chóp
. Trong các khẳng định sau, khẳng định nào đúng?
Hình vẽ minh họa
Khẳng định đúng là “ và
là hai đường thẳng chéo nhau.”
Cho tứ giác
có
là giao điểm của
. Lấy một điểm
bất kì không thuộc
, một điểm
bất kì thuộc cạnh
. Gọi
là giao điểm của
và
. Khi đó giao điểm của
và mặt phẳng
là:
Hình vẽ minh họa
Chọn mặt phẳng phụ (SBD) chứa SD.
Tìm giao tuyến của hai mặt phẳng (SBD) và ( ABM ).
Ta có B là điểm chung thứ nhất của (SBD) và ( ABM ).
Trong mặt phẳng ( ABCD) có
Trong mặt phẳng (SAC) có
Suy ra
Trong mặt phẳng (SBD) gọi và do
Cho hình lập phương
cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông
. Xác định các giao tuyến của hình lập phương
tạo với mặt phẳng
. Tính diện tích hình tạo bởi các giao tuyến.
Hình vẽ minh họa

Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.
Tứ giác là hình thang có
Ta có:
với
Thay giá trị các cạnh ta có
Cho hình chóp
có đáy
là hình bình hành. Trung điểm của các cạnh
lần lượt là
. Chọn đáp án đúng.
Ta có:
Cho tứ diện
. Lấy
lần lượt là trung điểm của
và
và
là trọng tâm của tam giác
. Khi đó giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng đi qua điểm
Hình vẽ minh họa
Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.
Gọi
Ta có:
Suy ra d đi qua G và song song với CD,.
Cho mặt phẳng
và đường thẳng
. Khẳng định nào sau đây sai?
Ta có khẳng định sai là: “Nếu và
thì
."
Cho hình chóp
. Gọi
lần lượt là trung điểm
. Bốn điểm nào sau đây đồng phẳng?
Hình vẽ minh họa

Ta có: là đường trung bình của tam giác
nên.
là đường trung bình của tam giác
nên
.
=>
=> đồng phẳng.
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
. Lấy các điểm
sao cho
. Hình chiếu của
qua phép chiếu song song phương
mặt phẳng chiếu
lần lượt là
. Tỉ số độ dài
bằng bao nhiêu?
Hình vẽ minh hoạ
Do là hình chiếu song song của
qua phép chiếu song song phương
Mà
Chứng minh tương tự ta có:
Ta có:
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O, gọi M là trung điểm của CD. Giao điểm của BM với mặt phẳng (SAD) là điểm:
Hình vẽ minh họa
Trong mặt phẳng (ABCD), gọi K = BM ∩ AD
Ta có: mà
nên K là giao điểm của BM với mặt phẳng (SAD).
Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?
Hình vẽ minh họa

Vì I, J lần lượt là trung điểm của AC và BC nên IJ là đường trung bình của tam giác ABC
=>
2 mp( IJK) và mp ( ABD) chứa 2 đường thẳng song song là IJ; AB và có điểm K chung
=> Giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H.
Vậy
Ta có
Mặt khác
Vậy thiết diện là hình thang cân IJKH.
Cho tứ diện
. Các điểm
lần lượt là trung điểm của
và
; điểm
nằm trên cạnh
sao cho
. Gọi
là giao điểm của
và cạnh
. Tính tỉ số
.
Đáp án: 2
Cho tứ diện . Các điểm
lần lượt là trung điểm của
và
; điểm
nằm trên cạnh
sao cho
. Gọi
là giao điểm của
và cạnh
. Tính tỉ số
.
Đáp án: 2
Hình vẽ minh họa
Trong mặt phẳng , gọi
.
Trong , gọi
.
Trong mặt phẳng , dựng
là đường trung bình của tam giác
.
là trung điểm của
.
Trong , dựng
.
Trong các khẳng định sau khẳng định nào sai?
Giả sử song song với
. Một đường thẳng
song song với
có thể nằm trên
.
Trong các phát biểu sau đây, phát biểu nào sai?
Phát biểu sai: "Hai đường thẳng không có điểm chung thì chéo nhau."
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề đúng là “Hai đường thẳng chéo nhau thì không có điểm chung ”.
Cho hai đường thẳng chéo nhau a và b. Lấy A, B thuộc a và C, D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?
Ta có:
Hai đường thẳng a và b chéo nhau nên A, B, C, D không đồng phẳng.
=> Hai đường thẳng AD và BC chéo nhau.
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.