Trong không gian, cho 3 đường thẳng
, biết
, a và c chéo nhau. Khi đó hai đường thẳng b và c:
Giả sử
(mâu thuẫn với giả thiết).
Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.
Trong không gian, cho 3 đường thẳng
, biết
, a và c chéo nhau. Khi đó hai đường thẳng b và c:
Giả sử
(mâu thuẫn với giả thiết).
Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
là trung điểm của
và
là giao điểm của
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Trong mặt phẳng gọi
mà
và
là trọng tâm tam giác
Cho hình chóp
có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hình chóp có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Sai||Đúng
Hình vẽ minh họa
Ta có:
Do
.
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Cho tứ diện
. Gọi
lần lượt là trung điểm các cạnh
và
;
là trọng tâm tam giác
. Khi đó giao điểm của đường thẳng
và
là
Hình vẽ minh họa
Trong gọi
, mà
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai
a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai
b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng
c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai
d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai
a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai
b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng
c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai
d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng
a) Đúng
Đúng vì theo tính chất thừa nhận: Có một và chỉ một mặt phẳng đi qua 3 điểm không
thẳng hàng.
b) Sai
Sai vì điểm cần thêm điều kiện điểm không thuộc đường thẳng.
c) Đúng
Đúng vì theo các cách xác định một mặt phẳng thì có duy nhất một mặt phẳng chứa hai
đường thẳng cắt nhau.
d) Sai
Sai vì cần thêm điều kiện hai mặt phẳng phân biệt.
Cho tứ diện đều ABCD cạnh a. Gọi G là trọng tâm tam giác ABC. Giả sử mặt phẳng (P) đi qua G và song song với mặt phẳng (BCD). Xác định các giao tuyến của (P) với các mặt của tứ diện đều. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa:
Trong mặt phẳng (ABC) kẻ đường thẳng qua G và song song với BC cắt AC, AB lần lượt tại H, K.
Trong mặt phẳng (ACD) kẻ đường thẳng qua H và song song với CD cắt AD tại I.
Hình tạo bởi các giao tuyến cần tìm là KHI.
theo tỉ số đồng dạng bằng
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề đúng là “Hai đường thẳng chéo nhau thì không có điểm chung ”.
Hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên cạnh AC lấy điểm M và trên cạnh BF lấy điểm N sao cho
. Tìm k để
.
Ta có: MN // DE => DM, NE cắt nhau tại điểm I và
Lại có
Mặt khác:
Cho tứ diện
. Gọi
và
lần lượt là trọng tâm các tam giác
và
. Tìm tỉ số
(làm tròn đến hàng phần trăm)
Đáp án: 0,33
Cho tứ diện . Gọi
và
lần lượt là trọng tâm các tam giác
và
. Tìm tỉ số
(làm tròn đến hàng phần trăm)
Đáp án: 0,33
Hình vẽ minh họa
Ta có:
và
lần lượt là trọng tâm các tam giác
và
nên
,
và
đồng qui tại
(là trung điểm của
) .
Vì nên
và
.
Lại có
Chọn mệnh đề đúng trong các mệnh đề dưới đây:
Theo định nghĩa về vị trí tương đối của hai đường thẳng trong không gian thì đáp án đúng là: " Hai đường thẳng chéo nhau thì không có điểm chung."
Để kết luận đường thẳng
song song với đường thẳng
ta cần giả thiết nào dưới đây?
Ta có tính chất:
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy
Cho hình chóp
có đáy
là hình bình hành. Gọi
là trọng tâm của tam giác
và
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 6
Cho hình chóp có đáy
là hình bình hành. Gọi
là trọng tâm của tam giác
và
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 6
Hình vẽ minh họa
Gọi là trung điểm của
,
là giao điểm của
và
trong mặt phẳng
.
Theo định lý Talet, ta có: là trung điểm của
Ta có:
.
Hình lăng trụ tam giác có bao nhiêu mặt?
Hình lăng trụ tam giác có 5 mặt.
Hình tứ diện có bao nhiêu cạnh?
Hình tứ diện có 6 cạnh.
Khẳng định nào sau đây là đúng.
Khẳng định đúng là: " Hình biểu diễn của một hình bình hành là một hình bình hành."
Trong các phát biểu sau, phát biểu nào đúng?
Hình tứ diện có 4 mặt, 6 cạnh và 4 đỉnh.
Vậy phát biểu đúng: "Hình tứ diện có 4 mặt."
Cho hình chóp
, đáy là hình bình hành. Gọi
là giao điểm của
và
,
là trung điểm
. Khằng định nào sau đây là đúng?
Hình vẽ minh họa
Ta có là đường trung bình tam giác
nên
, mà
và
suy ra
.
Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?
Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.
Cho tam giác
là hình biểu diễn của một tam giác đều. Hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là:
Tâm của đường tròn ngoại tiếp tam giác đều đồng thời là trọng tâm tam giác đó.
Do tam giác ABC là hình biểu diễn của tam giác đều, kết hợp với tính chất bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số hai đoạn thẳng nằm trên hai đường thẳng song song hoặc nằm trên cùng một đường thẳng ta được hình biểu diễn của tâm đường tròn ngoại tiếp tam giác đều là trọng tâm của tam giác .