Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 2: Thông hiểu

    Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:

    Hình vẽ minh họa

    Tìm khẳng định đúng

    Xét ΔBFD có OO’ là đường trung bình => OO’ // DF

    Mà DF ⊂ (ADF)

    => OO' // (ADF)

  • Câu 3: Nhận biết

    Cho mặt phẳng (\alpha) và đường thẳng a\subset(\alpha). Khẳng định nào sau đây sai?

    Nếu a song song với (\alpha) và đường thẳng b \subset (\alpha) thì ba hoặc song song với nhau hoặc chéo nhau.

  • Câu 4: Thông hiểu

    Giả sử tứ giác ABCD là hình biểu diễn của một tứ diện ABCD’. Nếu ABCD là một hình vuông, tìm mệnh đề đúng trong các mệnh đề sau.

    Do ABCD là hình vuông nên tam giác ABC vuông cân tại B.

    Hình biểu diễn của tứ diện ABCD’ là tứ giác ABCD nên hình biểu diễn của tam giác ABC là tam giác ABC vuông cân tại B.

  • Câu 5: Vận dụng

    Cho hộp chữ nhật ABCD.A'B'C'D'. Các điểm M,N tương ứng trên AC',B'D' sao cho MN song song với BA'. Tính tỉ số \frac{MA}{MC'}?

    Xét phép chiếu song song lên mặt phẳng (A'B'C'D') theo phương chiếu BA'.

    Ta có: N là ảnh của M hay M chính là giao điểm của B'D' và ảnh AC' qua phép chiếu này.

    Do đó ta xác định M,N như sau:

    Trên A'B' kéo dài lấy điểm K sao cho A'K = B'A' suy ra K là ảnh của A trên AC' qua phép chiếu song song.

    Gọi N = B'D' \cap
KC'. Đường thẳng qua N và song song với AK cắt AC' tại M. Ta có: M,N là các điểm cần xác định.

    Theo định lí Thales ta có:

    \frac{MA}{MC'} = \frac{NK}{NC'}
= \frac{KB'}{C'D'} = 2

  • Câu 6: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 7: Vận dụng

    Cho tứ diện ABCD. Điểm Mlà trung điểm của BC, lấy N \in
AB;P \in CD sao cho BN = 2AN,CP =
3DP. Biết S = MP \cap BD,Q = AN
\cap AD, tính tỉ số độ dài của QDQA.

    Hình vẽ minh họa

    Trong mặt phẳng (BCD) qua D kẻ đường thẳng song song với BC cắt SM tại E.

    Theo định lí Talet ta có: \frac{DM}{CE} =
\frac{DP}{CP} = \frac{1}{3}MB =
MC

    \Rightarrow \frac{DE}{MB} =
\frac{1}{3}

    Mặt khác ta có: \frac{DE}{MB} =
\frac{SD}{SB} \Rightarrow \frac{SD}{SB} = \frac{1}{3}

    Trong mặt phẳng (ABD) qua D kẻ đường thẳng song song với AB cắt SN tại F.

    Theo định lí Talet ta có: \frac{SD}{SB} =
\frac{DF}{BN}. Theo chứng minh trên ta lại có \frac{SD}{SB} = \frac{1}{3}

    \frac{DF}{BN} = \frac{1}{3}.

    Theo giả thiết BN = 2AN \Rightarrow
\frac{DF}{2AN} = \frac{1}{3} \Rightarrow \frac{DF}{AN} =
\frac{2}{3}

    Mặt khác ta có: \frac{QD}{QA} =
\frac{DF}{AN} \Rightarrow \frac{QD}{QA} = \frac{2}{3}

  • Câu 8: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Theo tính chất của phép chiếu song song ta có:

    Phép chiếu song song có thể biến hình thoi thành hình bình hành.

  • Câu 9: Nhận biết

    Cho hình chóp S.ABC. Lấy M là trung điểm của các đoạn thẳng SA, N là trung điểm của SB, P \in
SC sao cho \frac{PS}{PC} =
2. Chọn khẳng định sai.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(MNP) \cap (SAC) = MP \\
(MNP) \cap (SAB) = MN \\
(MNP) \cap (SBC) = NP \\
\end{matrix} ight.

    Vậy các giao tuyến tạo bởi (MNP) và hình chóp S.ABC tạo thành là tam giác MNP.

  • Câu 10: Vận dụng

    Cho tứ diện ABCD. Trên AB, AC lần lượt lấy hai điểm M,N sao cho MN cắt BC tại I. Tìm giao tuyến của hai mặt phẳng (MND)(BCD).

    Hình vẽ minh họa:

    Ta có: D là điểm chung của hai mặt phẳng (MND)(BCD)

    Ta lại có: \left\{ \begin{matrix}
I \in MN \subset (MND) \\
I \in BC \subset (BCD) \\
\end{matrix} ight. nên I là điểm chung thứ hai.

    Vậy giao tuyến của hai mặt phẳng (MND)(BCD) DI

  • Câu 11: Nhận biết

    Cho hình chóp tứ giác S.ABCD. Giao tuyến của hai mặt phẳng (SAB)(SBC) là:

    Hai mặt phẳng (SAB)(SBC) có hai điểm chung là SB nên giao tuyến của chúng là đường thẳng SB.

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD, O là giao điểm của AC và BD, phát biểu nào sau đây là đúng?

    Phương án "Giao tuyến của (SAC) và (SBD) là SO." đúng vì O là giao điểm của AC và BD nên O là điểm chung của (SAC) và (SBD). Hơn nữa, S là điểm chung của (SAC) và (SBD).

    Phương án "Giao tuyến của (SAB) và (SCD) là điểm S." sai vì giao tuyến của hai mặt phẳng không thể là điểm

    Phương án "Giao tuyến của (SBC) và (SCD) là SK, với K là giao điểm của SD và B" sai vì SD và BC không cắt nhau

    Phương án "Giao tuyến của (SOC) và (SAD) là SM, với M là giao điểm của AC và S." sai vì AC và SD không cắt nhau

  • Câu 13: Thông hiểu

    Giả sử có ba đường thẳng a, b, c trong đó b // a và c //a. những phát biểu nào sau đây là sai?

    (1) Nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c chéo nhau.

    (2) Nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì ba đường thẳng a, b, c song song với nhau từng đôi một.

    (3) Dù cho hai mặt phẳng (a, b) và (a, c) có trùng nhau hay không, ta vẫn có b // c.

    Phát biểu (1) sai vì nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c song song

    Phát biểu (2) Sai vì nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì b trùng c

    Phát biểu (3) Sai vì có thể xảy ra b trùng c.

  • Câu 14: Thông hiểu

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD,M là trung điểm CD,I là điểm ở trên đoạn thẳng AG,BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?

    Ta có A là điểm chung thứ nhất giữa hai mặt phẳng (ACD)(GAB).

    Do BG \cap CD = M \Rightarrow \left\{
\begin{matrix}
M \in BG \subset (ABG) \Rightarrow M \in (ABG) \\
M \in CD \subset (ACD) \Rightarrow M \in (ACD) \\
\end{matrix} ight.

    \Rightarrow M là điểm chung thứ hai giữa hai mặt phẳng (ACD)(GAB)

    \Rightarrow (ABG) \cap (ACD) =
AM nên AM = (ACD) \cap
(ABG) đúng.

    \Rightarrow J = BI \cap AM \Rightarrow
A,J,M thẳng hàng nên A,J,M thẳng hàng đúng

    Ta có \left\{ \begin{matrix}
DJ \subset (ACD) \\
DJ \subset (BDJ) \\
\end{matrix} \Rightarrow DJ = (ACD) \cap (BDJ) ight. nên DJ = (ACD) \cap (BDJ) đúng.

    Điểm I di động trên AG nên J có thể không phải là trung điểm của AM

    Nên J là trung điểm của AM sai.

  • Câu 15: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD' mặt phẳng chiếu (ABB'A') lần lượt là:

    Hình vẽ minh họa

    Do CD'//\ BA' = >CD'//(ABB'A')

    Nên phương chiếu CD' không cắt mặt phẳng chiếu (ABB'A').

    Vì vậy ta không xác định được ảnh của A, B’ qua phép chiếu song song phương CD' mặt phẳng chiếu (ABB'A').

  • Câu 16: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình bình hành. Hình chiếu song song của điểm A theo phương CD lên mặt phẳng (SBC) là điểm nào sau đây?

    Hình vẽ minh họa

    Do AB \cap (SBC) = \left\{ B
ight\} suy ra hình chiếu song song của điểm A theo phương CD\ \ (CD//AB) lên mặt phẳng (SBC) là điểm B.

  • Câu 17: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N là hai điểm phân biệt cùng thuộc đường thẳng AB, hai điểm P,Q phân biệt thuộc đường thẳng CD. Khi đó vị trí tương đối của hai đoạn thẳng MPNQ là:

    Giả sử đường thẳng MPNQ không chéo nhau, tức là cùng thuộc một mặt phẳng.

    Khi đó ABCD cùng thuộc một mặt phẳng hay ABCD là một tứ giác (trái giả thiết).

    Vậy đường thẳng MPNQ chéo nhau.

  • Câu 18: Nhận biết

    Gọi d là giao tuyến của mặt phẳng (P)(Q). Nếu đường thẳng d' song song với cả hai mặt phẳng thì:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

  • Câu 19: Nhận biết

    Ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt. Khẳng định nào sau đây là đúng?

     Khẳng định đúng: "Ba giao tuyến này hoặc đồng quy hoặc đôi một song song."

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trung điểm của các cạnh SA,SB,SC,SD lần lượt là A',B',C',D'. Chọn đáp án đúng.

    Ta có: A'C'//AC \Rightarrow
(A'C'D')//(ABC)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 102 lượt xem
Sắp xếp theo