Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' cạnh bằng a. Lấy các điểm M \in AD',N \in DB sao cho AM = DN = x;\left( 0 < x < a\sqrt{2}
ight). Khi giá trị x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?

    Hình vẽ minh họa

    Áp dụng định lí Ta – lét đảo cho D,N,B
\in DBA,M,D' \in
AD'. Từ tỉ lệ

    \frac{AM}{AD'} = \frac{DN}{DB}\left(
= \frac{x}{a\sqrt{2}} ight)

    Ta suy ra AD,MN,BD' cùng song song với một mặt phẳng (\alpha) nào đó.

    Ta chọn mặt phẳng (\beta) chứa BD' và song song với AD.

    Mặt phẳng (\beta) chính là mặt phẳng (BCD'A') và là mặt phẳng cố định.

    \Rightarrow
MN//(\alpha)//(BCD'A')

    Hay MN//(A'BC)

  • Câu 2: Nhận biết

    Một mặt phẳng hoàn toàn được xác định nếu biết điều nào sau đây?

    Phương án "Ba điểm mà nó đi qua" sai vì nếu ba điểm đó thẳng hàng thì chưa thể xác định được mặt phẳng.

    Phương án "Một điểm và một đường thẳng thuộc nó" sai vì nếu điểm đó nằm trên đường thẳng thì ta chưa thể xác định được.

    Phương án "Ba điểm không thẳng hàng" đúng (theo tính chất thừa nhận 2)

    Phương án "Hai đường thẳng thuộc mặt phẳng" sai vì hai đường thẳng có thể trùng nhau.

  • Câu 3: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm của BC. Mặt phẳng (\alpha) là mặt phẳng đi qua M song song với BDSC. Giao tuyến của (\alpha) với các mặt của hình chóp là hình:

    Hình vẽ minh họa

    Gọi trung điểm CD,SD,SB lần lượt là N,P,R.

    Gọi I = AC \cap MN

    Từ I kẻ QI song song với SC.

    Ta có:

    MR//QI//NP//SC

    \Rightarrow (MNPQR)//SC (1)

    Ta có:

    MN//DB \Rightarrow
(MNPQR)//BD (2)

    Từ (1) và (2)

    => Giao tuyến của (\alpha) với các cạnh của hình chóp là hình ngũ giác MNPQR.

  • Câu 4: Nhận biết

    Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    Khẳng định “Ba điểm phân biệt” là sai. Ba điểm phân biệt không thẳng hàng mới xác định một mặt phẳng duy nhất.

    Khẳng định “Một điểm và một đường thẳng” sai. Điểm không nằm trên đường thẳng mới xác định một mặt phẳng duy nhất.

    Khẳng định “Hai đường thẳng cắt nhau” đúng.

    Khẳng định “Bốn điểm phân biệt” sai.

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Trên các cạnh AB,CD lần lượt lấy các điểm M,N làm trung điểm. Xác định giao tuyến hai mặt phẳng (SAC)(SMN)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AM//NC;(AB//CD) \\AM = NC = \dfrac{AB}{2} = \dfrac{DC}{2} \\\end{matrix} ight. suy ra tứ giác AMCN là hình bình hành.

    Do đó AC và MN cắt nhau tại trung điểm của mỗi đường.

    Mà O là trung điểm của AC nên O cũng là trung điểm của MN, hay ba điểm M, O, N thẳng hàng.

    Ta có: S \in (SAC) \cap
(SMN)(*)

    Mặt khác \left\{ \begin{matrix}
O \in (SAC);AC \subset (SAC) \\
O \in (SMN);MN \subset (SMN) \\
\end{matrix} ight.

    \Leftrightarrow O \in (SAC) \cap
(SMN)(**)

    Từ (*)(**) \Rightarrow (SAC) \cap (SMN) =
SO

  • Câu 6: Thông hiểu

    Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:

    a) AD//(ABF). Sai||Đúng

    b) (AFD)//(BEC). Đúng||Sai

    c) (ABD)//(EFC). Sai||Đúng

    d) Sáu điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai

    Đáp án là:

    Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:

    a) AD//(ABF). Sai||Đúng

    b) (AFD)//(BEC). Đúng||Sai

    c) (ABD)//(EFC). Sai||Đúng

    d) Sáu điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai

    Hình vẽ minh họa

    a) Sai: AD và (ABF) cắt nhau tại A.

    b) Đúng.

    Vì ABCD là hình bình hành nên AD \parallel BC, suy ra AD \parallel (BEC).

    Vì ABEF là hình bình hành nên AF \parallel BE, suy ra AF \parallel (BEC).

    ADAFcắt nhau nên (AFD) \parallel (BEC).

    c) Sai: Vì (ABD) và (EFC) có điểm C chung.

    d) Đúng:

    Vì ABCDABEF là hình bình hành nên AB,\ CD,\ FE đôi một song song

    Mặt khác (AFD) \parallel (BEC) (theo câu b)

    Do đó 6 điểm A,B,C,D,E,F là 6 đỉnh của một hình lăng trụ tam giác

  • Câu 7: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
(ABCD)//(A’B’C’D’) \\
(AA’D’D)//(BCC’B’) \\
(ABB’A’)//(CDD’C’) \\
\end{matrix} ight. luôn đúng

    => Hai mặt phẳng (BDD'B');(ACC'A') không song song với nhau.

  • Câu 8: Nhận biết

    Phép chiếu song song biến ba đường thẳng song song thành:

    Theo tính chất của phép chiếu song song ta có:

    Phép chiếu song song biến ba đường thẳng song song thành ba đường thẳng đôi một song song.

    Vậy các đáp án đúng là:

    Ba đường thẳng đôi một song song với nhau.

    Một đường thẳng.

    Thành hai đường thẳng song song.

  • Câu 9: Nhận biết

    Cho hai đường thẳng phân biệt m,n và mặt phẳng (\beta). Giả sử m//(\beta);n//(\beta). Mệnh đề nào sau đây đúng?

    Ta có:

    m//(\beta) \Rightarrow \exists
m':\left\{ \begin{matrix}
m'//m \\
m' \subset (\beta) \\
\end{matrix} ight.

    n//(\beta) \Rightarrow \exists
n':\left\{ \begin{matrix}
n'//n \\
n' \subset (\beta) \\
\end{matrix} ight.

    Theo giả thiết m, n là hai đường thẳng phân biệt.

    Nếu m song song với n thì m’ // n’.

    Nếu m’, n’ cắt nhau thì m, n cắt nhau hoặc chéo nhau.

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD, G là trọng tâm tam giác ABD, N là trung điểm của AD, M là trung điểm trên cạnh BC sao cho MB = 2MC. Khẳng định nào sau đây là đúng?

    Chọn khẳng định đúng

    Ta có: G là trọng tâm giác ABD 

    => \frac{{BG}}{{GN}} = 2 = \frac{{BM}}{{MC}} \Rightarrow MG//CN

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD. Gọi M, N, P, Q, R, T lần lượt là trung điểm AC, BD, BC, CD, SA, SD. Bốn điểm nào sau đây đồng phẳng?

    Hình vẽ minh họa

    Tìm bốn điểm đồng phẳng

    Ta có: RT là đường trung bình của tam giác SAD nên.

    MQ là đường trung bình của tam giác ACD nên MQ{m{//}}AD.

    => RT{m{//}}MQ

    => M, Q, R, T đồng phẳng.

  • Câu 12: Thông hiểu

    Cho tứ diện ABCD. Lấy I\in AD,J \in BC sao cho AI = 2DI;BJ= 2CJ. Giả sử (\beta) là mặt phẳng qua IJ song song với AB. Xác định các giao tuyến của tứ diện ABCD và mặt phẳng (\beta). Hình tạo bởi các giao tuyến đó là hình gì?

    Giả sử (\beta) cắt các mặt của tứ diện (ABC)(ABD) theo hai giao tuyến JHIK.

    Ta có: \left\{ \begin{matrix}(\beta) \cap (ABC) = JH \\(\beta) \cap (ABD) = IK \\(ABC) \cap (ABD) = AB \\(\beta)//AB \\\end{matrix} ight.

    \Rightarrow JH//IK//AB

    Theo định lí Ta – lét ta có:

    \left\{ \begin{matrix}\dfrac{HJ}{AB} = \dfrac{CJ}{CB} = \dfrac{1}{3} \Rightarrow HJ =\dfrac{1}{3}AB \\\dfrac{IK}{AB} = \dfrac{DJ}{DA} = \dfrac{1}{3} \Rightarrow KI =\dfrac{1}{3}AB \\\end{matrix} ight.

    \Rightarrow HJ = KI

    => HIKJ là hình bình hành

    Do đó hình tạo bởi các giao tuyến của tứ diện ABCD và mặt phẳng (\beta) là hình bình hành HIKJ.

  • Câu 13: Nhận biết

    Trong các mệnh đề sau, những mệnh đề nào đúng? (Có thể chọn nhiều đáp án)

     "Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau." sai vì hai mặt phẳng đó có thể cắt nhau.

    "Hai mặt phẳng cùng song song với một mặt phảng thứ ba thì song song với nhau." sai vì hai mặt phẳng có thể trùng nhau.

  • Câu 14: Vận dụng

    Một hình chóp có tổng số đỉnh và số cạnh bằng 14. Tìm số cạnh của đa giác đáy?

    Một hình chóp có đáy là đa giác n cạnh thì có n + 1 đỉnh và 2n + 1 cạnh

    Tổng số đỉnh và số cạnh bằng 14

    \begin{matrix}
   \Leftrightarrow n + 1 + 2n + 1 = 14 \hfill \\
   \Leftrightarrow 3n + 2 = 14 \hfill \\
   \Leftrightarrow 3n = 12 \hfill \\
   \Leftrightarrow n = 4 \hfill \\ 
\end{matrix}

    => Số cạnh đáy của hình chóp là: 4.

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác BCD, H là trọng tâm tam giác SCD. M,N lần lượt là trung điểm của SA;SB. I là giao điểm của đường thẳng AN và mặt phẳng (SCD). Các khẳng định dưới đây là đúng hay sai?

    a) MN//CD Đúng||Sai

    b) Tứ giác CDSI là hình thang có đáy SI < CD Sai||Đúng

    c) ME // ( SBC ) Đúng||Sai

    d) HG//(SBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác BCD, H là trọng tâm tam giác SCD. M,N lần lượt là trung điểm của SA;SB. I là giao điểm của đường thẳng AN và mặt phẳng (SCD). Các khẳng định dưới đây là đúng hay sai?

    a) MN//CD Đúng||Sai

    b) Tứ giác CDSI là hình thang có đáy SI < CD Sai||Đúng

    c) ME // ( SBC ) Đúng||Sai

    d) HG//(SBD) Đúng||Sai

    Hình vẽ minh họa

    a) Đúng

    Ta có MN là đường trung bình của tam giác SAB \Rightarrow MN//ABAB//CD nên MN//CD

    b) Sai

    Ta có \left\{ \begin{matrix}
S \in (SAB) \cap (SCD) \\
AB//CD \\
AB \subset (SAB),CD \subset (SCD) \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
d = (SAB) \cap (SCD) \\
S \in d \\
d//AB//CD \\
\end{matrix} ight.

    Gọi I = AN \cap d \Rightarrow \left\{
\begin{matrix}
I \in AN \\
I \in d,d \subset (SCD) \\
\end{matrix} ight.

    \Rightarrow I = AN \cap
(SCD)

    Ta có SI//BA \Rightarrow \frac{SI}{AB} =
\frac{SN}{NB} = 1

    \Rightarrow SI = AB \Rightarrow SI =
CD

    Vậy SICD là hình bình hành

    c) Đúng

    Gọi F là giao điểm của AEBC trong (ABCD), ta có

    AD//CF \Rightarrow \frac{AE}{EF} =
\frac{ED}{CE} = 1

    \Rightarrow E là trung điểm AF

    Vậy ME là đường trung bình của tam giác SAF

    \Rightarrow EM//SF

    Ta có \left\{ \begin{matrix}
ME//SF \\
ME ⊄ (SCD) \\
SF \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow ME//(SCD)

    d) Đúng

    Gọi E là trung điểm CD ta có

    \frac{EH}{ES} = \frac{EG}{EB}\left( =
\frac{1}{3} ight) \Rightarrow GH//SB

    Ta có \left\{ \begin{matrix}
GH//SB \\
SB \subset (SBD) \\
GH ⊄ (SBD) \\
\end{matrix} ight.\  \Rightarrow GH//(SBD)

  • Câu 16: Thông hiểu

    Thiết diện của hình chóp tứ giác (cắt bởi một mặt phẳng) không thể là hình nào dưới đây?

    Vì hình chóp tứ giác có tối đa 5 mặt nên thiết diện không thể là lục giác.

  • Câu 17: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau.

    Hai đường thẳng song song là hai đường thẳng cùng nằm trên cùng một mặt phẳng và không có điểm chung.

    Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.

    Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trên một mặt phẳng (hai đường thẳng không có điểm chung thì hai đường thẳng có thể song song hoặc chéo nhau).

    Hai đường thẳng cắt nhau là hai đường thẳng có điểm chung duy nhất.

  • Câu 18: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 19: Nhận biết

    Trong không gian, cho ba đường thẳng m,n,t không đồng phẳng đôi một cắt nhau. Tìm số giao điểm phân biệt của ba đường thẳng.

    Giả sử ba đường thẳng m,n,t đôi một cắt lần lượt M,N,T phân biệt và tạo thành mặt phẳng (MNT).

    => m,n,t cùng nằm trên một mặt phẳng (trái giả thiết).

    => M,N,T trùng nhau, tức là m,n,t đồng quy.

    Vậy có duy nhất một giao điểm phân biệt của ba đường thẳng đã cho.

  • Câu 20: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
    các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là

    Hình vẽ minh họa

     Đường thẳng và mặt phẳng song song

    Ta có thiết diện của S.ABCD cắt bởi
    mặt phẳng (IJK) là ngũ giác

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 102 lượt xem
Sắp xếp theo