Trong không gian có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?
Trong không gian có 3 vị trí tương đối giữa đường thẳng và mặt phẳng
Trong không gian có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?
Trong không gian có 3 vị trí tương đối giữa đường thẳng và mặt phẳng
Cho hai đường thẳng phân biệt
và mặt phẳng
. Giả sử
. Mệnh đề nào sau đây đúng?
Ta có:
Theo giả thiết m, n là hai đường thẳng phân biệt.
Nếu m song song với n thì m’ // n’.
Nếu m’, n’ cắt nhau thì m, n cắt nhau hoặc chéo nhau.
Tìm mệnh đề sai trong các mệnh đề sau.
Cho điểm M nằm ngoài mặt phẳng (α). Khi đó tồn tại vô số đường thẳng a chứa M và song song với (α).
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
là trung điểm của cạnh
. Mặt phẳng
chứa
và song song với
cắt các cạnh
lần lượt tại
. Tìm khẳng định đúng dưới dây?
Hình vẽ minh họa:
Ta có: là giao điểm của AI và SO, kẻ đường thẳng qua E song song với BD và cắt SB, SD lần lượt tại M và N. Khi đó:
Dễ thấy E là trọng tâm tam giác SAC nên
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: "Hai đường thẳng có một điểm chung thì chúng có vô số điểm chung khác." sai. Vì trong trường hợp 2 đường thẳng cắt nhau thì chúng chỉ có 1 điểm chung.
Mệnh đề: "Hai đường thẳng song song khi và chỉ khi chúng không điểm chung." và "Hai đường thẳng song song khi và chỉ khi chúng không đồng phẳng." sai. Vì hai đường thẳng song song khi và chỉ khi chúng đồng phẳng và không có điểm chung.
Vậy mệnh đề đúng là: "Hai đường thẳng chéo nhau khi và chỉ khi chúng không đồng phẳng."
Cho hình chóp
có đáy
là hình bình hành. Lấy điểm
, mặt phẳng
đi qua
và song song với
. Giao điểm của mặt phẳng
với các cạnh
lần lượt tại
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Cho hai đường thẳng song song a và b. Có bao nhiêu mặt phẳng chứa a và song song với b?
Tất cả những mặt phẳng chứa a và không chứa b đều là những mặt phẳng song song với b.
Trong hình học không gian
Qua ba điểm phân biệt không thẳng hàng xác định một và chỉ một mặt phẳng. Nếu ba điểm phân biệt thẳng hàng thì có vô số mặt phẳng chứa ba điểm.
Thiết diện của hình chóp tứ giác (cắt bởi một mặt phẳng) không thể là hình nào dưới đây?
Vì hình chóp tứ giác có tối đa 5 mặt nên thiết diện không thể là lục giác.
Hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên cạnh AC lấy điểm M và trên cạnh BF lấy điểm N sao cho
. Tìm k để
.
Ta có: MN // DE => DM, NE cắt nhau tại điểm I và
Lại có
Mặt khác:
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho hình chóp
có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a)
. Đúng||Sai
b) Đường
và
cắt nhau. Sai||Đúng
c)
. Đúng||Sai
d) Tỉ số
. Sai||Đúng
Cho hình chóp có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a) . Đúng||Sai
b) Đường và
cắt nhau. Sai||Đúng
c) . Đúng||Sai
d) Tỉ số . Sai||Đúng
Hình vẽ minh họa
a) Xét tứ giác có
.
Suy ra tứ giác là hình bình hành
Nên . Vậy khẳng định a đúng
b) Vì là trung điểm
,
là trung điểm
nên
(tính chất đường trung bình).
Vậy khẳng định b sai.
c)
Vậy khẳng định c đúng.
d) Áp dụng định lí Talet cho, ta có:
(1)
Gọi là trung điểm của
, vì
là trung điểm của
nên theo tính chất đường trung
bình, , vậy theo định lí Talet:
. (2)
Từ (1) và (2), ta có .
Vậy khẳng định d sai.
Cho tứ diện
. Trên
,
lần lượt lấy hai điểm
sao cho
cắt
tại
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa:
Ta có: là điểm chung của hai mặt phẳng
và
Ta lại có: nên
là điểm chung thứ hai.
Vậy giao tuyến của hai mặt phẳng và
là
Cho hình chóp
. Gọi
lần lượt là trung điểm
. Bốn điểm nào sau đây đồng phẳng?
Hình vẽ minh họa

Ta có: là đường trung bình của tam giác
nên.
là đường trung bình của tam giác
nên
.
=>
=> đồng phẳng.
Cho tứ diện đều ABCD cạnh a. Gọi G là trọng tâm tam giác ABC. Giả sử mặt phẳng (P) đi qua G và song song với mặt phẳng (BCD). Xác định các giao tuyến của (P) với các mặt của tứ diện đều. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa:
Trong mặt phẳng (ABC) kẻ đường thẳng qua G và song song với BC cắt AC, AB lần lượt tại H, K.
Trong mặt phẳng (ACD) kẻ đường thẳng qua H và song song với CD cắt AD tại I.
Hình tạo bởi các giao tuyến cần tìm là KHI.
theo tỉ số đồng dạng bằng
Cho hình chóp
có
là trung điểm của đoạn thẳng
. Tìm khẳng định sai dưới đây.
Hình vẽ minh họa
Ta có: và
không đồng phẳng nên khẳng định
và
cắt nhau là sai.
Trong các mệnh đề sau, những mệnh đề nào đúng? (Có thể chọn nhiều đáp án)
"Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau." sai vì hai mặt phẳng đó có thể cắt nhau.
"Hai mặt phẳng cùng song song với một mặt phảng thứ ba thì song song với nhau." sai vì hai mặt phẳng có thể trùng nhau.
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho hình chóp
có đáy
là hình bình hành. Trung điểm của các cạnh
lần lượt là
. Chọn đáp án đúng.
Ta có:
Cho mặt phẳng
và đường thẳng
. Khẳng định nào sau đây sai?
Nếu song song với
và đường thẳng
thì
và
hoặc song song với nhau hoặc chéo nhau.