Trong không gian cho hai đường thẳng song song a và b. Chọn mệnh đề đúng.
Cho hai đường thẳng a và b song song, nếu đường thẳng c song song với a thì c song song hoặc trùng với b.
Trong không gian cho hai đường thẳng song song a và b. Chọn mệnh đề đúng.
Cho hai đường thẳng a và b song song, nếu đường thẳng c song song với a thì c song song hoặc trùng với b.
Cho tứ diện ABCD. Giả sử M thuộc đoạn BC. Một mặt qua M song song với AB và CD. Thiết diện của
và hình tứ diện ABCD là hình gì?
Hình vẽ minh họa
=> Giao tuyến của
với (ABC) là đường thẳng đi qua M, song song với AB và cắt AC tại Q.
=> Giao tuyến của
với (BCD) là đường thẳng đi qua M, song song với CD và cắt BD tại N.
=> Giao tuyến của
với (ABD) là đường thẳng đi qua N, song song với AB và cắt AD tại P.
=> Thiết diện của hình chóp cắt bởi là tứ giác MNPQ.
Ta lại có:
Vậy thiết diện là hình bình hành MNPQ.
Cho tứ giác và một điểm
không thuộc mặt phẳng
. Trên đoạn
lấy một điểm
không trùng với
và
.Gọi
là giao điểm của đường thẳng
với mặt phẳng
. Khi đó
là giao tuyến của hai mặt phẳng nào sau đây?
Hình vẽ minh họa
Ta có (1)
Gọi .
Khi đó:
Từ (1) và (2) suy ra
Trong mặt phẳng . Gọi
.
Khi đó:
Dễ thấy
Cho tứ diện có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Cho hai mặt phẳng (P), (Q) song song. Khi đó nếu đường thẳng a không nằm trong mặt phẳng (Q) và a song song với (P) thì a song song với (Q)."
Cho hình chóp , đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của các cạnh
và
. Tính tỉ số độ dài
và
Hình vẽ minh họa
Trong mặt phẳng , kẻ đường thẳng qua
và song song với
, cắt
,
lần lượt tại
=>
=> là trung điểm của
Trong mặt phẳng , gọi
=> là trung điểm của
.
Trong mặt phẳng , gọi
.
=> là giao điểm của
và
.
Xét tam giác có
vì
là đường trung bình của tam giác
.
Theo định lí Ta-lét (vì
là trung điểm của
và
là trung điểm
)
Hình nào sau đây là hình biểu diễn của hình chóp với
là hình bình hành?
Hình biểu diễn của hình chóp đáy là hình bình hành là hình
Cho hình chóp có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là
Đáp án: 3
Cho hình chóp có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là
Đáp án: 3
Hình vẽ minh họa
có chung giao tuyến
.
Hình biểu diễn của một tam giác đều là hình nào sau đây?
Hình biểu diễn của một tam giác đều là hình tam giác.
Trong các mệnh đề sau, mệnh đề nào sai?
Hai đường thẳng không có điểm chung thì chúng có thể song song với nhau (khi chúng đồng phẳng) hoặc chéo nhau (khi chúng không đồng phẳng).
Vậy mệnh đề sai: "Hai đường thẳng không có điểm chung thì chéo nhau."
Cho hình lăng trụ . Gọi
là trung điểm của
. Điểm
là ảnh của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có phép chiếu song song phương , biến
thành
, biến
thành
.
Do là trung điểm của
suy ra
là trung điểm của
vì phép chiếu song song bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số của hai đoạn thẳng nằm trên cùng một đường thẳng hoặc trên hai đường thẳng song song.
Vậy khẳng định đúng là:
Cho hình chóp S.ABC có diện tích đáy bằng 9. Mặt phẳng song song với
cắt đoạn SA tại
sao cho
. Diện tích thiết diện của hình chóp S.ABC tạo bởi
bằng
Hình vẽ minh họa:
Gọi N, P lần lượt là giao điểm của mặt phẳng và các cạnh SB, SC.
Vì nên theo định lí Talet, ta có
.
Khi đó cắt hình chóp S.ABC theo thiết diện là tam giác MNP ðồng dạng với tam giác ABC theo tỉ số
.
Vậy .
Cho hình chóp tứ giác , đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Trong các mệnh đề sau, mệnh đề nào sai?
Ta có:
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau hoặc đồng quy tại một điểm.
=> Phương án “Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau” là khẳng định sai.
Trong các khẳng định sau, khẳng định nào đúng?
“Hai đường thẳng không có điểm chung thì chéo nhau” là sai vì hai đường thẳng đó có thể song song.
“Hai đường thẳng phân biệt không cắt nhau thì song song” là sai vì hai đường thẳng đó có thể chéo nhau.
“Hai đường thẳng không cùng nằm trên một mặt phẳng thì chéo nhau” là đúng.
“Hai đường thẳng không có điểm chung thì song song với nhau” là sai vì hai đường thẳng đó có thể chéo nhau.
Cho mảnh bìa như hình vẽ sau, biết là hình vuông cạnh
. Các tam giác
là các tam giác cân bằng nhau. Gọi
lần lượt là trọng tâm của hai tam giác
và
. Người ta xếp mảnh bìa này thành hình chóp tứ giác
(các điểm
trùng vào đỉnh
). Khi đó tính độ dài đoạn thẳng
.
Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:
Từ giả thiết ta có:
Trong các phát biểu sau đây, phát biểu nào sai?
Phát biểu sai: "Hai đường thẳng không có điểm chung thì chéo nhau."
Cho hình chóp S.ABCD với đáy là hình thang ABCD, đáy lớn BC gấp đôi đáy nhỏ AD. Gọi E là trung điểm AD và O là giao điểm của AC và BE, I là một điểm thuộc đoạn OC (I khác O và C). Mặt phẳng (α) qua I song song với (SBE). Xác định hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD.
Hình vẽ minh họa
Ta có:
=> => Ix cắt BC tại M, AD tại Q.
Ta có:
=>
=> Mx cắt SC tại N.
Ta có:
=>
=> Qx cắt SD tại P
Tứ giác BCDE là hình bình hành
=> CD // BE // MQ
=> CD // (α).
Ta có:
=>
Vậy hình tạo bởi các giao tuyến của mặt phẳng (α) với hình chóp S.ABCD là hình thang MNPQ.
Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.
Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?
Hình vẽ minh họa
Xét tam giác SAB có:
M và N lần lượt là trung điểm của SA và SB
=> MN là đường trung bình của tam giác SAB
Mà (ABCD là hình bình hành)
=>
Mặt phẳng (MNC) và (ABD) (hay (ABCD)) lần lượt chứa hai đường thẳng MN và CD song song với nhau và điểm C chung
=> Giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung C và song song với AB là đường thẳng CD
Hay