Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp tam giác S.ABC. Gọi điểm I là trung điểm của AB, lấy điểm M di động trên đoạn AI. Mặt phẳng (\alpha) qua M song song với (SIC). Xác định hình tạo bởi các giao tuyến của mặt phẳng (\alpha) với các mặt của tứ diện.

    Hình vẽ minh họa

    Trong mặt phẳng (SAB), qua M kẻ đường thẳng song song với SI cắt SA tại P.

    Trong mặt phẳng (ABC), qua M kẻ đường thẳng song song với IC cắt AC tại N.

    Thiết diện là tam giác MNP.

    Ta có: \frac{MP}{SI} = \frac{MN}{CI}
\Rightarrow MP = MN

    Vậy hình tạo bởi các giao tuyến của mặt phẳng (\alpha) với tứ diện là tam giác MNP cân tại M.

  • Câu 2: Vận dụng

    Cho hình chóp S.ABC có các mặt bên là tam giác đều. Gọi M là trung điểm của BC, lấy N \in
SA sao cho NA = 2NS. Hình chiếu của điểm N qua phép chiếu song song phương SM, mặt phẳng chiếu (ABC) là:

    Hình vẽ minh họa

    Do các mặt bên của hình chóp S.ABC là các tam giác đều nên tam giác ABC đều.

    Gọi G là trọng tâm tam giác ABC.

    Ta có NA = 2NS \Rightarrow \frac{NS}{NA}
= \frac{MG}{GA} = \frac{1}{2}

    \Rightarrow NG//SM

    Nên G là hình chiếu song song theo phương SM của N trên (ABC).

    Lại do tam giác ABC đều nên G vừa là trọng tâm, vừa là tâm đường tròn ngoại tiếp, vừa là tâm đường tròn nội tiếp của tam giác ABC.

  • Câu 3: Vận dụng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh ADBC; G là trọng tâm tam giác BCD. Khi đó giao điểm của đường thẳng MG(ABC)

    Hình vẽ minh họa

    Trong (ADN) gọi K = AN \cap MG, mà AN \subset (ABC)

    \Rightarrow K = MG \cap
(ABC)

  • Câu 4: Nhận biết

    Hình chiếu của hình chữ nhật không thể là hình nào trong các hình sau?

    Theo tính chất của phép chiếu song song ta thấy:

    Hình chiếu của hình chữ nhật không thể là hình thang có hai đáy không bằng nhau.

  • Câu 5: Thông hiểu

    Cho hình chóp S.MNPQ có đáy MNPQ là hình bình hành. Xác định giao tuyến của hai mặt phẳng (SMQ)(SNP):

    Hình vẽ minh họa

    Gọi (SMQ) \cap (SNP) = d

    Khi đó d đi qua S.

    Xét ba mặt phẳng (SMQ),(SNP);(MNPQ).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d;MQ;NP.

    Theo định lí về giao tuyến của ba mặt phẳng thì d;MQ;NP đồng quy hoặc đôi một song song.

    MQ//NP \Rightarrow d//MQ

  • Câu 6: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 7: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề: "Hai đường thẳng có một điểm chung thì chúng có vô số điểm chung khác." sai. Vì trong trường hợp 2 đường thẳng cắt nhau thì chúng chỉ có 1 điểm chung.

    Mệnh đề: "Hai đường thẳng song song khi và chỉ khi chúng không điểm chung." và "Hai đường thẳng song song khi và chỉ khi chúng không đồng phẳng." sai. Vì hai đường thẳng song song khi và chỉ khi chúng đồng phẳng và không có điểm chung.

    Vậy mệnh đề đúng là: "Hai đường thẳng chéo nhau khi và chỉ khi chúng không đồng phẳng."

  • Câu 8: Nhận biết

    Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    Trong không gian, yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.

  • Câu 9: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

    Khẳng định đúng là “Nếu đường thẳng d song song với mặt phẳng (P) thì trong (P) tồn tại đường thẳng a song song với d”.

  • Câu 10: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào là đúng?

    Đáp án: "Nếu (∝) // (β)d_1 ⊂ (∝); d_2 ⊂ (β) thì d_1 // d_2" và "Nếu d_1 // (∝)d_2 // (β) thì d_1 // d_2" sai vì hai đường thẳng d_1,d_2 có thể chéo nhau.

    Đáp án: "Nếu d_1 // d_2d_1⊂(∝), d_2⊂(β) thì (∝) //(β)" sai vì hai mặt phẳng (∝), (β) có thể cắt nhau.

  • Câu 11: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 12: Nhận biết

    Trong không gian, cho ba đường thẳng m,n,t không đồng phẳng đôi một cắt nhau. Tìm số giao điểm phân biệt của ba đường thẳng.

    Giả sử ba đường thẳng m,n,t đôi một cắt lần lượt M,N,T phân biệt và tạo thành mặt phẳng (MNT).

    => m,n,t cùng nằm trên một mặt phẳng (trái giả thiết).

    => M,N,T trùng nhau, tức là m,n,t đồng quy.

    Vậy có duy nhất một giao điểm phân biệt của ba đường thẳng đã cho.

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCDcó đáy ABCD là hình bình hành tâm O. Lấy G là trọng tâm tam giác SAD, M \in
SB sao cho MS = MB. Xác định tỉ số \frac{AJ}{DJ} với J = AD \cap (GOM).

    Hình vẽ minh họa:

    Gọi H là trung điểm SD.

    Ta có: \left\{ \begin{matrix}
OB = OD \\
MS = MD \\
\end{matrix} ight. => OM là đường trung bình tam giác SDB

    \Rightarrow OM//SD (tính chất đường trung bình).

    Do đó qua G kẻ đường thẳng song song SD cắt AD tại J

    => J = AD \cap (GOM).

    Mà theo giả thiết G là trọng tâm tam giác SAD

    \frac{AG}{GH} = \frac{AJ}{GJ} =
2

  • Câu 14: Thông hiểu

    Cho tứ diện ABCDE,F lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: E,F lần lượt là trọng tâm hai tam giác BCDACD

    Suy ra BE, AF cắt nhau tại điểm Q.

    Vậy BE,AF,CD đồng quy.

    Lại có: \frac{QF}{QA} = \frac{1}{3} =\dfrac{QE}{QB} \Rightarrow \left\{ \begin{matrix}EF//AB \\\dfrac{EF}{AB} = \dfrac{1}{3} \\\end{matrix} ight.

    Từ đó suy ra EF//(ABD)EF//(ABC).

  • Câu 15: Nhận biết

    Chọn khẳng định đúng?

    Xét đáp án “Hai đường thẳng phân biệt lần lượt chứa trong hai mặt phẳng khác nhau thì chéo nhau” hai đường thẳng đó có thể song song với nhau do đó đáp án sai.

    Xét đáp án “Hai đường thẳng phân biệt cùng nằm trong cùng một mặt phẳng thì không chéo nhau” hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không thể chéo nhau do đó đáp án đúng.

    Xét đáp án “Hai đường thẳng phân biệt không song song thì chéo nhau” hai đường thẳng đó có thể cắt nhau do đó đáp án sai.

    Xét đáp án “Hai đường thẳng phân biệt không cắt nhau thì chéo nhau” hai đường thẳng đó có thể song song với nhau do đó đáp án sai.

  • Câu 16: Nhận biết

    Qua phép chiếu song song, tính chất nào không được bảo toàn?

    Do hai đường thẳng qua phép chiếu song song ảnh của chúng sẽ cùng thuộc một mặt phẳng.

    Suy ra tính chất chéo nhau không được bảo toàn.

  • Câu 17: Nhận biết

    Mệnh đề nào sau đây là mệnh đề đúng?

    Mệnh đề “Hai đường thẳng phân biệt không song song thì chéo nhau” sai vì chúng có thể cắt nhau.

    Mệnh đề “Hai đường thẳng nằm trong hai mặt phẳng phân biệt thì chúng chéo nhau” sai vì chúng có thể song song nhau.

    Mệnh đề “Hai đường thẳng phân biệt không cắt nhau thì chéo nhau” sai vì chúng có thể song song nhau.

    Vậy mệnh đề đúng: “Hai đường thẳng nằm trong một mặt phẳng thì chúng không chéo nhau.”

  • Câu 18: Thông hiểu

    Cho tứ diện ABCD. Gọi M là trung điểm cạnh AB, lấy điểm N trên cạnh AC sao cho AN
= 2NC. Giao tuyến của hai mặt phẳng (DMN)(BCD) đi qua giao điểm của hai đường nào trong các cặp đường thẳng sau?

    Hình vẽ minh họa

    luyện tập điểm đường thẳng mặt phẳng trong không gian

    Gọi I là giao điểm của MN và BC.

    Giao tuyến cần tìm là DI.

    Do đó giao tuyến ấy đi qua giao điểm của MN và BC.

  • Câu 19: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
(ABCD)//(A’B’C’D’) \\
(AA’D’D)//(BCC’B’) \\
(ABB’A’)//(CDD’C’) \\
\end{matrix} ight. luôn đúng

    => Hai mặt phẳng (BDD'B');(ACC'A') không song song với nhau.

  • Câu 20: Nhận biết

    Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Chọn khẳng định sai?

    Hình vẽ minh họa

    Ta có: AB \cap (SAC) = A nên đường thẳng AB cắt mặt phẳng (SAC) tại điểm A.

    Vậy khẳng định sai là “AB//(SAC)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 94 lượt xem
Sắp xếp theo