Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho tứ diện ABCD. Các cạnh AC,BD,AB,CD,AD,BC có trung điểm lần lượt là M,N,P,Q,R,S. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Ta có:

    MP // BC // NQ, MP = \frac{1}{2}BC =
NQ

    => MPNQ là hình bình hành

    => M, N, P, Q thuộc một mặt phẳng.

    MR // CD // SN, MR = \frac{1}{2}CD =
SN

    => MRNS là hình bình hành

    => M, R, S, N thuộc một mặt phẳng.

    PS // AC // RQ, PS = \frac{1}{2}AC =
RQ

    => PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.

    Vậy M,P,R,S không thuộc cùng một mặt phẳng.

  • Câu 2: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 3: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D', gọi I là trung điểm của AB. Xác định hình tạo bởi các giao tuyến của mặt phẳng (B'D'I) với hình hộp.

    Hình vẽ minh họa

    Ta có: \left\{
\begin{matrix}
B'D' \subset (B'D'I) \\
BD \subset (ABCD) \\
BD//B'D' \\
\end{matrix} ight.

    Suy ra giao tuyến của (B'D'I)(ABCD) là đường thẳng IE qua I song song với BD; (E \in
AD).

    IE//B'D' nên hình tạo bởi các giao tuyến của mặt phẳng (B'D'I) với hình hộp ABCD.A'B'C'D' là hình thang IED'B'.

  • Câu 4: Nhận biết

    Khẳng định nào sau đây đúng?

    Đáp án: “Qua hai điểm phân biệt xác định duy nhất một mặt phẳng” sai vì có vô số mặt phẳng đi qua hai điểm đã cho.

    Đáp án: “Qua ba điểm phân biệt bất kì xác định duy nhất một mặt phẳng” sai vì có vô số mặt phẳng đi qua ba điểm phân biệt thẳng hàng.

    Đáp án: “Qua bốn điểm phân biệt bất kì chỉ xác định được duy nhất một mặt phẳng” sai vì trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì không có mặt phẳng nào đi qua 4 điểm đó.

    Vậy khẳng định đúng là: “Qua ba điểm không thẳng hàng xác định duy nhất một mặ

  • Câu 5: Thông hiểu

    Cho hai đường thẳng chéo nhau a và b. Lấy A, B thuộc a và C, D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?

     Ta có:

    Hai đường thẳng a và b chéo nhau nên A, B, C, D không đồng phẳng.

    => Hai đường thẳng AD và BC chéo nhau.

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành. Qua S kẻ Sx\ ;\ Sy lần lượt song song với AB\ ,\ \ AD. Gọi O là giao điểm của ACBD. Các mệnh đề sau đúng hay sai?

    a) Giao tuyến của (SAC)(SBD) là đường thẳng Sx. Sai||Đúng

    b) Giao tuyến của (SBD)(SAC) là đường thẳng Sy. Sai||Đúng

    c) Giao tuyến của (SAB)(SCD) là đường thẳng Sx. Đúng||Sai

    d) Giao tuyến của (SAD)(SBC) là đường thẳng Sx. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Qua S kẻ Sx\ ;\ Sy lần lượt song song với AB\ ,\ \ AD. Gọi O là giao điểm của ACBD. Các mệnh đề sau đúng hay sai?

    a) Giao tuyến của (SAC)(SBD) là đường thẳng Sx. Sai||Đúng

    b) Giao tuyến của (SBD)(SAC) là đường thẳng Sy. Sai||Đúng

    c) Giao tuyến của (SAB)(SCD) là đường thẳng Sx. Đúng||Sai

    d) Giao tuyến của (SAD)(SBC) là đường thẳng Sx. Sai||Đúng

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAB) \cap (SCD)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
\begin{matrix}
AB \subset (SAB)\ ;\ \ CD \subset (SCD) \\
AB \parallel CD \\
\end{matrix} \\
\end{matrix} ight.

    \Rightarrow Sx = (SAB) \cap
(SCD) với Sx \parallel AB \parallel
CD.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Sai

  • Câu 7: Nhận biết

    Chọn mệnh đề sai. Trong không gian:

    Trong không gian hai đường thẳng không có điểm chung thì chéo nhau hoặc song song với nhau.

  • Câu 8: Nhận biết

    Cho hai đường thẳng a và b cắt nhau. Đường thẳng c song song với a. Khẳng định nào sau đây là đúng?

    Cho hai đường thẳng a và b cắt nhau. Đường thẳng c song song với a khi đó b và c chéo nhau hoặc cắt nhau.

  • Câu 9: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 10: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có tất cả các cạnh bằng nhau. Mặt phẳng (\beta) bất kì song song với mặt phẳng (ABC). Hình tạo bởi các giao tuyến giữa hai mặt phẳng trên là:

    Hình vẽ minh họa

    Gọi M,N,P lần lượt là giao điểm của (\beta) với các cạnh AA',BB',CC'.

    Khi đó ta có: \left\{ \begin{matrix}
MN = AB \\
NP = BC \\
PM = AC \\
\end{matrix} ight.

    Vậy hình tạo bởi các giao tuyến giữa hai mặt phẳng là tam giác đều

  • Câu 11: Nhận biết

    Hình chóp lục giác có bao nhiêu mặt?

    Hình chóp có 7 mặt trong đó có 6 mặt bên và 1 mặt đáy.

  • Câu 12: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân đáy nhỏ BC. Lấy M,N,P lần lượt là trung điểm của AB,DC,SB. Giao tuyến của mặt phẳng (MNP) với các mặt của hình chóp S.ABCD là hình:

    Hình vẽ minh họa

    Xét mặt phẳng (MNP) và (SBC) có

    \left\{ \begin{matrix}\begin{matrix}P \in (MNP) \cap (SCD) \\MN \subset (MNP) \\BC \subset (SBC) \\\end{matrix} \\MN//BC \\\end{matrix} ight. (1)

    = > (MNP) \cap (SCD) = PQ//BC,(Q \inSD) (2)

    Từ (1) và (2) = > MN//BC.

    Xét tứ giác MNQPMN//BC

    => MNQP là hình thang.

    Vậy giao điểm của mặt phẳng (MNP) với các mặt của hình chóp S.ABCD là hình thang.

  • Câu 13: Thông hiểu

    Cho tứ diện MNPQ. Gọi I;J theo thứ tự là trọng tâm của tam giác MNP và MNQ (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi K;H lần lượt là trung điểm của NP,NQ

    I;J theo thứ tự là trọng tâm của tam giác MNP, và MNQ nên ta có:

    \frac{MI}{MK} = \frac{MJ}{MH} =\frac{2}{3}

    = > \ IJ\ //\ HK. Mà HK//PQ (do KH là đường trung bình của tam giác NPQ).

    = > \ IJ//\ PQ

  • Câu 14: Thông hiểu

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Hình vẽ minh họa

    a) Xét tứ giác AMDC\left\{ \begin{matrix}
AM//DC \\
AM = DC( = AB) \\
\end{matrix} ight..

    Suy ra tứ giác AMDC là hình bình hành

    Nên MD//AC. Vậy khẳng định a đúng

    b) Vì O là trung điểm AC,N là trung điểm SC nên ON\ //\ SA (tính chất đường trung bình).

    Vậy khẳng định b sai.

    c) \left\{ \begin{matrix}
ON\ //\ SA \\
ON \subset (OMN) \\
SA \subset (SAD) \\
(OMN) \cap (SAD) = GK \\
\end{matrix} ight.\  \Rightarrow GK//ON//SA

    Vậy khẳng định c đúng.

    d) Áp dụng định lí Talet choGK\ //\
ON, ta có:

    \frac{GM}{GN} = \frac{KM}{KO} (1)

    Gọi I là trung điểm của AB, vì O là trung điểm của BD nên theo tính chất đường trung

    bình, OI\ //\ AD, vậy theo định lí Talet:

    \frac{KM}{KO} = \frac{AM}{AI} =
\frac{AB}{AI} = 2. (2)

    Từ (1) và (2), ta có \frac{GM}{GN} =
2.

    Vậy khẳng định d sai.

  • Câu 15: Vận dụng

    Cho hình hộp ABCD.A'B'C'D' và điểm M nằm giữa AB. Giả sử (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB'D'). Xác định các giao tuyến của mặt phẳng (P) tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?

    Hình vẽ minh họa

    Tìm hình xác định bởi các giao tuyến

    Nhận thấy (BC’D) // (AB’D’)

    => (BC’D) // (AB’D’) // (P). (1)

    Do (1), ta giả sử (P) cắt BB’ tại N, suy ra (P) ∩ (ABB’A’) ≡ MN, kết hợp với (AB’D’) ∩ (ABB’A’) ≡ AB’ suy ra MN // AB’, suy ra N thuộc cạnh BB’.

    Tương tự, giả sử (P) ∩ (B’C’) ≡ P suy ra (P) ∩ (BCC’B’) ≡ NP.

    Kết hợp với (1) suy ra NP // BC’

    Tương tự, (P) ∩ (C’D’) ≡ Q sao cho PQ // B’D’; (P) ∩ DD’≡ G sao cho QG // C’D; (P) ∩ AD ≡ H sao cho GH // AD’.

    Từ đó suy ra thiết diện là lục giác MNPQGH.

  • Câu 16: Thông hiểu

    Cho tứ diện ABCD, điểm M thuộc AC. Mặt phẳng (\alpha) đi qua M, song song với AB và AD. Thiết diện (\alpha) với tứ diện ABCD là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    (\alpha) // (AB) => Giao tuyến của (\alpha) với (ABC) là đường thẳng qua M, song song với AB, cắt BC tại P.

    (\alpha) // AD => Giao tuyến của (\alpha) với (ADC) là đường thẳng qua M, song song với AD, cắt DC tại N.

    Vậy thiết diện là tam giác MNP.

  • Câu 17: Nhận biết

    Chọn mệnh đề sai.

    Qua phép chiếu song song không thể biến một tứ diện thành một đường thẳng vì các cạnh của tứ diện đều là đoạn thẳng.

    Nó cũng không thể biến tứ diện thành một đoạn thẳng vì khi đó các cạnh của tứ diện nằm trong một mặt phẳng.

  • Câu 18: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấyM \in BC;MC =
MB. Giả sử (\gamma) là mặt phẳng đi qua M song song với hai đường thẳng BDSC. Xác định giao tuyến của (\gamma) với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình

    Hình vẽ minh họa

    Gọi trung điểm CD,SD,SB lần lượt là N,P,R.

    Gọi I = AC \cap MN

    Từ I kẻ QI song song với SC.

    Ta có: MR//QI//NP//SC

    \Rightarrow (MNPQR)//SC (1)

    Ta có MN//DB \Rightarrow
(MNPQR)//BD (2)

    Từ (1) và (2) => Các giao tuyến của (\gamma) với các cạnh của hình chóp là hình ngũ giác MNPQR.

  • Câu 19: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Giả sử (\alpha) song song với (\beta). Một đường thẳng a song song với (\beta) có thể nằm trên (\alpha).

  • Câu 20: Nhận biết

    Có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?

    Có ba vị trí tương đối giữa đường thẳng và mặt phẳng là:

    + Đường thẳng song song với mặt phẳng.

    + Đường thẳng cắt mặt phẳng.

    + Đường thẳng nầm trên mặt phẳng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 103 lượt xem
Sắp xếp theo