Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Mệnh đề nào dưới đây SAI?

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một song song.

  • Câu 2: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 3: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Trọng tâm các tam giác ABC,ACC',A'B'C' lần lượt là I,J,K. Tìm mặt phẳng song song với mặt phẳng (IJK).

    Theo bài ra ta có:

    Các điểm I,J,K lần lượt là trọng tâm các tam giác ABC,ACC',A'B'C' .

    \Rightarrow \frac{AI}{AM} = \frac{AJ}{AN}
= \frac{2}{3} \Rightarrow IJ//MN.

    \Rightarrow
IJ//(BCC'B')

    Chứng minh tương tự IK//(BCC'B')
\Rightarrow (IJK)//(BCC'B')

    \Rightarrow
(IJK)//(BC'B')

  • Câu 4: Nhận biết

    Cho mặt phẳng (P) và điểm A không thuộc mặt phẳng (P). Số đường thẳng đi qua A và song song với (P) là:

    Có vô số đường thẳng đi qua  A  và song song với  (P)  với điểm  A  không thuộc mặt phẳng  (P).

  • Câu 5: Nhận biết

    Cho đường thẳng d song song với mặt phẳng (∝), mặt phẳng (β) chứa d và cắt (∝) theo giao tuyến d’. Khẳng định nào sau đây là đúng?

    Cho đường thẳng d song song với mặt phẳng (∝), mặt phẳng (β) chứa d và cắt (∝) theo giao tuyến d’ => d’ // d

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Lấy điểm M
\in SA sao cho \frac{MA}{MS} =
2. Hình chiếu của điểm S qua phép chiếu song song phương MO mặt phẳng chiếu (ABCD) là điểm N. Khi đó tỉ số độ dài \frac{CN}{CA} bằng bao nhiêu?

    Hình vẽ minh họa:

    Phép chiếu song song phương phương MO mặt phẳng chiếu (ABCD) biến điểm S thành điểm N.

    Do đó: SN//MO \Rightarrow N \in
AC

    Xét tam giác SANta có: \frac{ON}{OA} = \frac{SM}{MA} =
\frac{1}{2}

    => N là trung điểm của OC

    Từ đó suy ra \frac{CN}{CA} =
\frac{1}{4}

  • Câu 7: Nhận biết

    Cho hình chóp S
\cdot ABCDAC \cap BD =
MAB \cap CD = N. Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng

    Hình vẽ minh họa

    Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng SM.

  • Câu 8: Nhận biết

    Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Vậy \left\{ \begin{matrix}
d//(\alpha) \\
d \subset (\beta) \\
(\alpha) \cap (\beta) = a \\
\end{matrix} ight.\  \Rightarrow d//a

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABC, đáy ABC cân tại A, tam giác SBC cân tại S. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC, G và F lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Điền Đ vào mệnh đề đúng, điền S vào mệnh đề sai.

    (I) AH, SK và BC đồng quy. Đ || Đ || D || đ

    (II) AG, SF cắt nhau tại một điểm trên BC. Đ || Đ || D || đ

    (III) HF và GK chéo nhau. S

    (IV) SH và AK cắt nhau. Đ || Đ || D || đ

    Đáp án là:

    Cho hình chóp S.ABC, đáy ABC cân tại A, tam giác SBC cân tại S. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC, G và F lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Điền Đ vào mệnh đề đúng, điền S vào mệnh đề sai.

    (I) AH, SK và BC đồng quy. Đ || Đ || D || đ

    (II) AG, SF cắt nhau tại một điểm trên BC. Đ || Đ || D || đ

    (III) HF và GK chéo nhau. S

    (IV) SH và AK cắt nhau. Đ || Đ || D || đ

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Ta có SM ⊥ BC và AM ⊥ BC.

    AH, SK và BC đồng qui tại M. Do đó (I) đúng.

    AG, SF cắt nhau tại M trên BC. Do đó (II) đúng.

    HF và GK cùng nằm trong mặt phẳng (SAM) nên có thể song song hoặc cắt nhau hoặc trùng nhau. Do đó (III) sai.

    SH và AK cắt nhau. Do đó (IV) đúng.

  • Câu 10: Thông hiểu

    Cho mặt phẳng (P)và hai đường thẳng a,\ \ b. Khẳng định nào sau đây đúng?

    Xét phương án “Nếu a\ //\ (P)b \subset (P) thì a\ //\ b” ta có:

    Nếu \left. \ \begin{matrix}
a//(P) \\
b \subset (P) \\
\end{matrix} ight\} thì a//b hoặc a chéo b, vậy phương án sai.

    Xét phương án “Nếu a\ //\ bb \subset (P) thì a\ //\ (P).” ta có:

    Nếu \left. \ \begin{matrix}
\ \ \ \ a//b \\
b \subset (P) \\
\end{matrix} ight\} thì a//(P) hoặc a
\subset (P), vậy phương án sai.

    Xét phương án “Nếu a\ //\ b\left\{ \begin{matrix}
b \subset (P) \\
a ⊄ (P) \\
\end{matrix} ight. thì a\ //\
(P).” ta có:

    Nếu \left. \ \begin{matrix}
\ \ \ \ a//b \\
b \subset (P) \\
a ⊄ (P) \\
\end{matrix} ight\} \Rightarrow a//(P), vậy phương án đúng.

    Xét phương án “Nếu a\ //\ (P)b // (P) thì a\ //\ b” ta có:

    Nếu \left. \ \begin{matrix}
a//(P) \\
b//(P) \\
\end{matrix} ight\} thì a//b hoặc a chéo b hoặc a cắt b, vậy phương án sai.

  • Câu 11: Thông hiểu

    Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?

    Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.

  • Câu 12: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N tương ứng là hai điểm bất kì trên các đoạn thẳng ACBD. Tìm giao tuyến của hai mặt phẳng (MBD)(NAC).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (MBD) \cap (NAC) \\
N \in (MBD) \cap (NAC) \\
\end{matrix} ight.

    \Rightarrow (MBD) \cap (NAC) =
MN

  • Câu 13: Nhận biết

    Cho hai đường thẳng ab lần lượt nằm trên hai mặt phẳng song song (P)(Q).

    Mệnh đề đúng là: "Nếu ab không song song với nhau, điểm M không nằm trên (P)(Q) thì luôn có duy nhất một đường thẳng đi qua M cắt cả ab ."

  • Câu 14: Thông hiểu

    Biết hai đường thẳng a,b là hai đường thẳng chéo nhau. Hỏi có bao nhiêu mặt phẳng chứa a và song song với b.

    Dựa vào lý thuyết đường thẳng song song với mặt phẳng.

    => Có duy nhất 1 mặt phẳng chứa a và song song với b.

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD, các điểm A’, B’, C’ lần lượt thuộc các cạnh SA, SB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Xác định phát biểu đúng

    Ta có: (SAB) ∩ (A’B’C’) = A’B’

    (SBC) ∩ (A’B’C’) = B’C’

    Gọi O là giao điểm của AC và BD

    Trong mặt phẳng (SAC) gọi I là giao điểm của A’C’ và SO

    Trong mặt phẳng (SBD) gọi D’ là giao điểm của B’I và SD

    Khi đó ta có: (SCD) ∩ (A’B’C’) = C’D’

    (SAD) ∩ (A’B’C’) = A’D’

    => Thiết diện của mặt phẳng (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D’.

  • Câu 16: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
(ABCD)//(A’B’C’D’) \\
(AA’D’D)//(BCC’B’) \\
(ABB’A’)//(CDD’C’) \\
\end{matrix} ight. luôn đúng

    => Hai mặt phẳng (BDD'B');(ACC'A') không song song với nhau.

  • Câu 17: Thông hiểu

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

    Đáp án là:

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

     Hình vẽ minh họa

    Gọi I là trung điểm của AC_{1} .

    \Rightarrow \left\{ \begin{matrix}OI//CC_{1}//BB_{1}//DD_{1} \\OI = \dfrac{1}{2}CC_{1} = 3 \\\end{matrix} ight.

    \Rightarrow I \in \left( BB_{1}D_{1}D
ight) . Mà I \in AC_{1} \subset
(P) nên I \in
B_{1}D_{1}

    Hình thang BB_{1}D_{1}DOI là đường trung bình nên OI = \frac{1}{2}\left( BB_{1} + DD_{1} ight)
\Rightarrow DD_{1} = 2

  • Câu 18: Nhận biết

    Cho các đường thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: "Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau."

  • Câu 19: Nhận biết

    Trong các phát biểu sau đây, phát biểu nào sai?

     Phát biểu sai: "Hai đường thẳng không có điểm chung thì chéo nhau."

  • Câu 20: Vận dụng

    Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí A,B,C,DE,F,G,H. Biết EF = 35\ cmA,B,C,D cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn HE.

    Đáp án: 105

    Đáp án là:

    Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí A,B,C,DE,F,G,H. Biết EF = 35\ cmA,B,C,D cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn HE.

    Đáp án: 105

    Áp dụng định lý Thales trong không gian, do A,B,C,D cách đều nhau nên E,F,G,H cũng cách đều nhau.

    Ta có EF = FG = GH = 35\ cmnên HE = 35.3 = 105\ cm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 103 lượt xem
Sắp xếp theo