Khẳng định nào sau đây là đúng?
Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."
Khẳng định nào sau đây là đúng?
Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."
Trong các khẳng định sau khẳng định nào sai?
Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại hoặc nằm trong mặt phẳng còn lại.
Vậy câu sai là: “Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại”.
Cho tứ diện
có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Phát biểu đúng là: "MP và NQ chéo nhau"
Cho các đường thẳng
và các mặt phẳng
. Giả thiết nào sau đây đủ để kết luận đường thẳng
song song với đường thẳng
?
Nếu thì a // b hoặc a, b chéo nhau.
Nếu thì a // b hoặc a ≡ b.
Nếu thì không kết luận được quan hệ giữa a và b.
Cho hình chóp S.ABCD, M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa

Gọi F, G, H, I lần lượt là trung điểm của AB; BC; CD và DA
Vì M, N, P, Q lần lượt là trọng tâm của các tam giác
=>
Khi đó:
Xét tam giác ABD có FI là đường trung bình (vì F và I lần lượt là trung điểm của AB và AD)
=>
Chứng minh tương tự ta có: GH // BD
=>
Tương tự
=> và
Vậy tứ giác MNPQ là hình bình hành.
Có bao nhiêu hình chóp tứ giác trong các hình sau?

Có 2 hình chóp tứ giác
Cho hình hộp
. Lấy
sao cho
và
. Mặt phẳng
chứa đường thẳng
và song song với
. Xác định các giao tuyến của
với các mặt của hình hộp. Cho biết hình tạo bởi các giao tuyến đó là hình gì?
Hình vẽ minh họa
Giao tuyến của với mặt phẳng (ABCD) là đường thẳng qua M và song song với AC, đường thẳng này cắt CD tại P là trung điểm CD.
Giao tuyến của với mặt phẳng (BCC’B’) là đường thẳng qua N và song song với B’C, đường thẳng này cắt B’C’ tại E là trung điểm B’C’.
Giao tuyến của (α) với mặt phẳng (A’B’C’D’) là đường thẳng qua E và song song với A’C’, đường thẳng này cắt A’B’ tại F là trung điểm A’B’.
Giao tuyến của (α) với mặt phẳng (ABB’A’) là đường thẳng qua F và song song với AB’, đường thẳng này cắt AA’ tại G là trung điểm AA’.
=> Hình lục giác MPNEFG là hình tạo bởi các giao tuyến của với các mặt của hình hộp.
Cho hình hộp
. Ảnh của
qua phép chiếu song song với phương
mặt phẳng chiếu
lần lượt là:
Hình vẽ minh họa
Do
Nên phương chiếu không cắt mặt phẳng chiếu
.
Vì vậy ta không xác định được ảnh của A, B’ qua phép chiếu song song phương mặt phẳng chiếu
.
Giả sử tứ giác ABCD là hình biểu diễn của một hình vuông. Nếu ABCD là một hình bình hành, thì đường tròn ngoại tiếp hình vuông cho trước được biểu diễn là hình gì, có tính chất như thế nào với hình bình hành ABCD:
Hình biểu diễn của hình vuông thành hình bình hành nên sẽ hình biểu diễn của đường tròn ngoại tiếp hình vuông đó là đường elip đồng thời giữ nguyên mối quan hệ liên thuộc của đỉnh hình vuông với đường tròn ngoại tiếp nên hình biểu diễn của đường tròn ngoại tiếp hình vuông là đường elip đi qua các đỉnh của hình bình hành ABCD.
Cho hình chóp
có đáy
là hình bình hành. Đường thẳng nào dưới đây song song với giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa:
Ta có:
,
đi qua
và
.
Vậy giao tuyến của hai mặt phẳng và
song song với đường thẳng
.
Cho hình chóp
có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hình chóp có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Sai||Đúng
Hình vẽ minh họa
Ta có:
Do
.
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho hai đường thẳng phân biệt a và b trong không gian. Có bao nhiêu vị trí tương đối giữa a và b?
Có 3 vị trí tương đối có thể có giữa a và b là:
a cắt b
a song song với b
a chéo nhau với b
Cho hai hình bình hành ABCD và ABEF không đồng phẳng có tâm lần lượt là I và J. Chọn
khẳng định sai.
Hình vẽ minh họa
Do và
là trung điểm của
và
, nên
mà
, suy ra IJ / /(ADF) và IJ / / DF đúng.
Do và
là trung điểm của
và
, nên
mà
, suy ra IJ / /(CEB) đúng.
Vậy IJ / / ADsai
Gọi
là giao tuyến của mặt phẳng
và
. Nếu đường thẳng
song song với cả hai mặt phẳng thì:
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Cho hình chóp
có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Cho hình chóp có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Hình vẽ minh họa
Ta có EF là đường trung bình tam giác SAD nên EF // SD
Ta có:
Xét tứ giác BFDC có: suy ra tứ giác BFDC là hình bình hành
=> BF // DC
Ta có:
Ta có:
Do AD // BC nên theo định lí Ta- let ta có:
Mặt khác
Xét tam giác SAC có
Ta có:
Cho tứ diện
có
lần lượt là trọng tâm tam giác
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi M, N lần lượt là trung điểm của BD và BC
Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)
Do I, J là trọng tâm tam giác ABC và ABD suy ra
Từ (*) và (**) suy ra TH
1
Cho tứ diện
. Gọi
là trọng tâm tam giác
là trung điểm
là điểm ở trên đoạn thẳng
cắt mặt phẳng
tại
. Khẳng định nào sau đây sai?
Ta có là điểm chung thứ nhất giữa hai mặt phẳng
và
.
Do
là điểm chung thứ hai giữa hai mặt phẳng
và
nên
đúng.
thẳng hàng nên
thẳng hàng đúng
Ta có nên
đúng.
Điểm di động trên
nên
có thể không phải là trung điểm của
Nên là trung điểm của
sai.
Hình chiếu của hình lập phương
qua phép chiếu song song phương
lên mặt phẳng chiếu
là:
Phép chiếu song song phương lên mặt phẳng
sẽ biến
thành
, biến
thành
, biến
thành
, biến
thành
.
Nên hình chiếu song song của hình lập phương là hình vuông.