Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình thang ABCD AD//BC,AD = 3BC. Lấy điểm S bất kì, S
otin (ABCD). Gọi M,N lần lượt là trung điểm của AB,AC, G là trọng tâm tam giác (SAD). Khi đó giao tuyến được tạo bởi mặt phẳng (GMN) với các mặt của S.ABCD là hình gì?

    Hình vẽ minh họa

    Gọi (GMN) \cap (SAD) = d

    Xét ba mặt phẳng (GMN);(SAD);(ABCD).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AD,MN đồng quy hoặc đôi một song song. Mà AD//MN \Rightarrow d//AD

    Giả sử: d cắt SA;SD lần lượt tại E;F.

    Khi đó thiết diện của hình chóp S.ABCD cắt bởi (GMN) là hình thang MNFE.

    Ta có:

    MN = \frac{AD + BC}{2} = \frac{AD +
\frac{1}{3}AD}{2} = \frac{2}{3}AD

    Ta có: G là trọng tâm tam giác SAD

    => MN = EF

    => Hình thang MNFE là hình bình hành.

  • Câu 2: Nhận biết

    Cho mặt phẳng (\alpha) và điểm H không thuộc mặt phẳng (\alpha). Số đường thẳng đi qua H và song song với (\alpha)

    Có vô số đường thẳng đi qua H và song song với (\alpha) với điểm H không thuộc mặt phẳng (\alpha).

  • Câu 3: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 4: Vận dụng

    Cho tứ diện ABCD. Trên AB, AC lần lượt lấy hai điểm M,N sao cho MN cắt BC tại I. Tìm giao tuyến của hai mặt phẳng (MND)(BCD).

    Hình vẽ minh họa:

    Ta có: D là điểm chung của hai mặt phẳng (MND)(BCD)

    Ta lại có: \left\{ \begin{matrix}
I \in MN \subset (MND) \\
I \in BC \subset (BCD) \\
\end{matrix} ight. nên I là điểm chung thứ hai.

    Vậy giao tuyến của hai mặt phẳng (MND)(BCD) DI

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD. Trên các cạnh AD,BC theo thứ tự lấy các điểm M,N sao cho AD = 3AM,CB = 3CN. Giả sử mặt phẳng (\alpha) chứa MN và song song với CD. Tìm các giao tuyến của tứ diện và mặt phẳng (\alpha). Xác định hình tạo bởi các giao tuyến này.

    Hình vẽ minh họa:

    Qua M, kẻ đường thẳng song song với CD cắt AC tại E.

    Qua N, kẻ đường thẳng song song với CD cắt BD tại F.

    Khi đó ME // NF // CD và (\alpha) \equiv(MENF)

    Ta có: \left\{ \begin{matrix}\dfrac{NF}{CD} = \dfrac{BN}{BC} = \dfrac{2}{3} \\\dfrac{ME}{CD} = \dfrac{AM}{AD} = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow NF = 2ME

    Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng (\alpha) là hình thang MENF với đáy lớn gấp đôi đáy nhỏ.

  • Câu 6: Vận dụng

    Cho hình hộp ABCD.A'B'C'D' và điểm M nằm giữa AB. Giả sử (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB'D'). Xác định các giao tuyến của mặt phẳng (P) tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?

    Hình vẽ minh họa

    Tìm hình xác định bởi các giao tuyến

    Nhận thấy (BC’D) // (AB’D’)

    => (BC’D) // (AB’D’) // (P). (1)

    Do (1), ta giả sử (P) cắt BB’ tại N, suy ra (P) ∩ (ABB’A’) ≡ MN, kết hợp với (AB’D’) ∩ (ABB’A’) ≡ AB’ suy ra MN // AB’, suy ra N thuộc cạnh BB’.

    Tương tự, giả sử (P) ∩ (B’C’) ≡ P suy ra (P) ∩ (BCC’B’) ≡ NP.

    Kết hợp với (1) suy ra NP // BC’

    Tương tự, (P) ∩ (C’D’) ≡ Q sao cho PQ // B’D’; (P) ∩ DD’≡ G sao cho QG // C’D; (P) ∩ AD ≡ H sao cho GH // AD’.

    Từ đó suy ra thiết diện là lục giác MNPQGH.

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, P,Q lần lượt là trung điểm của SA,SC. Tìm đặc điểm của giao tuyến d của hai mặt phẳng (BPQ)(ABCD).

    Hình vẽ minh họa

    Ta thấy B là một điểm chung của hai mặt phẳng (BMN)(ABCD).

    Do đó d đi qua B.

    Xét ba mặt phẳng (BMN),(ABCD),(SAC).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AC,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AC,MN đồng quy hoặc đôi một song song.

    MN//AC (do MN là đường trung bình của tam giác SAC) nên d//AC.

    Vậy giao tuyến của hai mặt phẳng (BPQ)(ABCD) là đường thẳng d đi qua B và song song với CD.

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCDcó đáy ABCD là hình bình hành tâm O. Gọi I,J lần lượt là trung điểm SA, SC. Đường thẳng IJ song song với đường thẳng nào trong các đường thẳng sau?

    Hình vẽ minh họa

    Do IJ là đường trung bình của tam giác SAC \Rightarrow
IJ//AC.

  • Câu 9: Nhận biết

    Khẳng định nào sau đây là đúng?

    Câu đúng là: “Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song”.

  • Câu 10: Nhận biết

    Tứ diện ABCD có thể xem là hình chóp tam giác bằng bao nhiêu cách?

    Có 4 cách là: A.BCD,B.ACD,C.ABD,D.ABC.

  • Câu 11: Thông hiểu

    Cho mặt phẳng (\alpha) và đường thẳng d ⊄ (\alpha). Khẳng định nào sau đây sai?

    Ta có khẳng định sai là: “Nếu d//(\alpha)b \subset (\alpha) thì b//d."

  • Câu 12: Thông hiểu

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Hình vẽ minh họa

    a) Xét tứ giác AMDC\left\{ \begin{matrix}
AM//DC \\
AM = DC( = AB) \\
\end{matrix} ight..

    Suy ra tứ giác AMDC là hình bình hành

    Nên MD//AC. Vậy khẳng định a đúng

    b) Vì O là trung điểm AC,N là trung điểm SC nên ON\ //\ SA (tính chất đường trung bình).

    Vậy khẳng định b sai.

    c) \left\{ \begin{matrix}
ON\ //\ SA \\
ON \subset (OMN) \\
SA \subset (SAD) \\
(OMN) \cap (SAD) = GK \\
\end{matrix} ight.\  \Rightarrow GK//ON//SA

    Vậy khẳng định c đúng.

    d) Áp dụng định lí Talet choGK\ //\
ON, ta có:

    \frac{GM}{GN} = \frac{KM}{KO} (1)

    Gọi I là trung điểm của AB, vì O là trung điểm của BD nên theo tính chất đường trung

    bình, OI\ //\ AD, vậy theo định lí Talet:

    \frac{KM}{KO} = \frac{AM}{AI} =
\frac{AB}{AI} = 2. (2)

    Từ (1) và (2), ta có \frac{GM}{GN} =
2.

    Vậy khẳng định d sai.

  • Câu 13: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD' mặt phẳng chiếu (ABB'A') lần lượt là:

    Hình vẽ minh họa

    Do CD'//\ BA' = >CD'//(ABB'A')

    Nên phương chiếu CD' không cắt mặt phẳng chiếu (ABB'A').

    Vì vậy ta không xác định được ảnh của A, B’ qua phép chiếu song song phương CD' mặt phẳng chiếu (ABB'A').

  • Câu 14: Nhận biết

    Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Vậy \left\{ \begin{matrix}
d//(\alpha) \\
d \subset (\beta) \\
(\alpha) \cap (\beta) = a \\
\end{matrix} ight.\  \Rightarrow d//a

  • Câu 15: Thông hiểu

    Thiết diện của hình chóp tứ giác (cắt bởi một mặt phẳng) không thể là hình nào dưới đây?

    Vì hình chóp tứ giác có tối đa 5 mặt nên thiết diện không thể là lục giác.

  • Câu 16: Nhận biết

    Chọn khẳng định đúng.

    Khẳng định đúng là: “Nếu hai đường thẳng không có điểm chung thì hai đường thẳng đó song song hoặc chéo nhau.”

  • Câu 17: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, có đáy là hình thang với AD là đáy lớn. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là

    Hình vẽ minh họa

    Ta có S là điểm chung thứ nhất.

    Gọi I là giao điểm của AB và CD suy ra I là điểm chung thứ hai.

    Vậy (SAB) ∩ (SCD) = SI

    Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng SI với I là giao điểm của AB và CD.

  • Câu 18: Thông hiểu

    Cho tứ diện ABCDE,F lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: E,F lần lượt là trọng tâm hai tam giác BCDACD

    Suy ra BE, AF cắt nhau tại điểm Q.

    Vậy BE,AF,CD đồng quy.

    Lại có: \frac{QF}{QA} = \frac{1}{3} =\dfrac{QE}{QB} \Rightarrow \left\{ \begin{matrix}EF//AB \\\dfrac{EF}{AB} = \dfrac{1}{3} \\\end{matrix} ight.

    Từ đó suy ra EF//(ABD)EF//(ABC).

  • Câu 19: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề: "Hai đường thẳng có một điểm chung thì chúng có vô số điểm chung khác." sai. Vì trong trường hợp 2 đường thẳng cắt nhau thì chúng chỉ có 1 điểm chung.

    Mệnh đề: "Hai đường thẳng song song khi và chỉ khi chúng không điểm chung." và "Hai đường thẳng song song khi và chỉ khi chúng không đồng phẳng." sai. Vì hai đường thẳng song song khi và chỉ khi chúng đồng phẳng và không có điểm chung.

    Vậy mệnh đề đúng là: "Hai đường thẳng chéo nhau khi và chỉ khi chúng không đồng phẳng."

  • Câu 20: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy một điểm M trên cạnh SB;(M eq S;M eq B). Thiết diện tạo bởi mặt phẳng (ADM) với hình chóp là:

    Hình vẽ minh họa

    Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.

    Ta có: MN // BC // AD nên thiết diện AMND là hình thang.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 99 lượt xem
Sắp xếp theo