Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp S.ABCD, M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn khẳng định đúng

    Gọi F, G, H, I lần lượt là trung điểm của AB; BC; CD và DA

    Vì M, N, P, Q lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SDA.

    => \frac{{SM}}{{SF}} = \frac{{SN}}{{SG}} = \frac{{SP}}{{SH}} = \frac{{SQ}}{{SI}} = \frac{2}{3}

    Khi đó: MN // FG; NP // GH; QP // IH; MQ // FI

    Xét tam giác ABD có FI là đường trung bình (vì F và I lần lượt là trung điểm của AB và AD)

    =>  FI // BD

    Chứng minh tương tự ta có: GH // BD

    =>  FI // GH // BD

    Tương tự FG // IH // AC

    => MQ // NP // FI // GHMN // PQ // FG // IH

    Vậy tứ giác MNPQ là hình bình hành.

  • Câu 2: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 3: Thông hiểu

    Khẳng định nào sau đây là đúng?

    Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Gọi M
\in CD;(M eq C;M eq D). Giả sử mặt phẳng (\alpha) đi qua M và song song với SC;AC. Xác định các giao tuyến của mặt phẳng (\alpha) với hình chóp. Hình tạo bởi các giao tuyến trên là hình gì?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha) \cap (ABCD) = M \\
(\alpha)//AC \\
AC \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow (\alpha) \cap (ABCD) =
Mx//ACMx \cap AD =
N

    Tương tự ta cũng có (\alpha) \cap (SDC) =
MP//SC

    Khi đó (\alpha) \cap (SAD) =
NP

    => Hình tạo bởi các giao tuyến của (α) với hình chóp là tam giác MNP.

  • Câu 5: Vận dụng

    Cho tứ diện ABCD. Các điểm P , Q lần lượt là trung điểm của ABCD; điểm R nằm trên cạnh BC sao cho BR
= 2RC. Gọi S là giao điểm của mp(PQR) và cạnh AD. Tính tỉ số \frac{SA}{SD}.

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Các điểm P , Q lần lượt là trung điểm của ABCD; điểm R nằm trên cạnh BC sao cho BR
= 2RC. Gọi S là giao điểm của mp(PQR) và cạnh AD. Tính tỉ số \frac{SA}{SD}.

    Đáp án: 2

    Hình vẽ minh họa

    Trong mặt phẳng (BCD), gọi I = RQ \cap BD.

    Trong (ABD), gọi S = PI \cap AD \Rightarrow S = AD \cap (PQR).

    Trong mặt phẳng (BCD), dựng DE//BC \Rightarrow DE là đường trung bình của tam giác IBR.

    \Rightarrow \  D là trung điểm của BI.

    Trong (ABD), dựng DF//AB \Rightarrow \frac{DF}{BP} = \frac{1}{2}
\Rightarrow \frac{DF}{PA} = \frac{1}{2} \Rightarrow \frac{SA}{SD} =
2.

  • Câu 6: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai

    a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai

    b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng

    c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai

    d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai

    a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai

    b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng

    c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai

    d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng

    a) Đúng

    Đúng vì theo tính chất thừa nhận: Có một và chỉ một mặt phẳng đi qua 3 điểm không

    thẳng hàng.

    b) Sai

    Sai vì điểm cần thêm điều kiện điểm không thuộc đường thẳng.

    c) Đúng

    Đúng vì theo các cách xác định một mặt phẳng thì có duy nhất một mặt phẳng chứa hai

    đường thẳng cắt nhau.

    d) Sai

    Sai vì cần thêm điều kiện hai mặt phẳng phân biệt.

  • Câu 7: Nhận biết

    Khẳng định nào dưới đây đúng?

    Đáp án: “Không có mặt phẳng nào chứa cả hai đường thẳng a và b thì ta nói a và b chéo nhau” đúng vì theo định nghĩa hai đường thẳng chéo nhau.

    Đáp án: “Hai đường thẳng cùng song song với đường thẳng thứ ba thì song song với nhau” sai vì hai đường thẳng đó chưa chắc đã phân biệt.

    Đáp án: “Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau” sai vì hai đường thẳng đó có thể chéo nhau.

    Đáp án: “Hai đường thẳng song song với nhau nếu chúng không có điểm chung” sai vì hai đường thẳng đó có thể chéo nhau.

  • Câu 8: Nhận biết

    Có bao nhiêu vị trí tương đối của hai mặt phẳng tùy ý?

    Có 3 vị trí tương đối của hai mặt phẳng trong không gian, đó là “cắt nhau”, “trùng nhau ”và “song song nhau”.

  • Câu 9: Thông hiểu

    Cho hai hình bình hành ABCDABEF không đồng phẳng có tâm lần lượt là IJ. Chọn

    khẳng định sai.

    Hình vẽ minh họa

    Do IJ là trung điểm của BDBF, nên IJ//DFDF
\subset (ADF) \Rightarrow IJ//(ADF), suy ra IJ / /(ADF) và IJ / / DF đúng.

    Do IJ là trung điểm của ACAE, nên IJ//ECEC
\subset (CBE) \Rightarrow IJ//(CEB), suy ra IJ / /(CEB) đúng.

    Vậy IJ / / ADsai

  • Câu 10: Nhận biết

    Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Vậy \left\{ \begin{matrix}
d//(\alpha) \\
d \subset (\beta) \\
(\alpha) \cap (\beta) = a \\
\end{matrix} ight.\  \Rightarrow d//a

  • Câu 11: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD mặt phẳng chiếu (BCC'B') lần lượt là:

    Hình vẽ minh họa

    Ta có: AB//CD nên ảnh của điểm A qua phép chiếu song song phương CD lên mặt phẳng (BCC'B') là điểm B.

    Mặt khác điểm B' \in
(BCC'B') nên ảnh của B' qua qua phép chiếu song song phương CD lên mặt phẳng (BCC'B') là điểm B'.

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm AD và BC (xem hình vẽ bên). Giao tuyến của hai mặt phẳng (SMN) và (SAC) là

    Giao tuyến của hai mặt phẳng (SMN) và (SAC)

    Ta có: S là điểm chung thứ nhất giữa hai mặt phẳng (SMN) và (SAC).

    Ta có O = AC ∩ BD là tâm của hình hình hành

    => O = AC ∩ MN (do M, N lần lượt là trung điểm của AD và BC).

    Trong mặt phẳng (ABCD), ta có:

    \left\{ {\begin{array}{*{20}{l}}{O \in AC \subset \left( {SAC} ight) \Rightarrow O \in \left( {SAC} ight)} \\{O \in MN \subset \left( {SMN} ight) \Rightarrow O \in \left( {SMN} ight)}\end{array}} ight.

    => O là điểm chung thứ hai giữa hai mặt phẳng (SMN) và (SAC).

    Vậy (SMN) ∩ (SAC) = SO

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,J lần lượt là trọng tâm của hai tam giác SABSCD;\ \ E,F lần lượt là trung điểm của ABCD. Khi đó:

    a) \frac{SJ}{SF} = \frac{2}{3}. Đúng||Sai

    b) IJ//\ (ABCD). Đúng||Sai

    c) BC song song với mặt phẳng (SAD),(SEF). Đúng||Sai

    d) BC cắt mặt phẳng (AIJ). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,J lần lượt là trọng tâm của hai tam giác SABSCD;\ \ E,F lần lượt là trung điểm của ABCD. Khi đó:

    a) \frac{SJ}{SF} = \frac{2}{3}. Đúng||Sai

    b) IJ//\ (ABCD). Đúng||Sai

    c) BC song song với mặt phẳng (SAD),(SEF). Đúng||Sai

    d) BC cắt mặt phẳng (AIJ). Sai||Đúng

    Hình vẽ minh họa

    a) Đúng.

    Do I,J lần lượt là trọng tâm của tam giác SABSCD nên \frac{SI}{SE} = \frac{SJ}{SF} =
\frac{2}{3}.

    b) Đúng.

    Do I,J lần lượt là trọng tâm của tam giác SABSCD nên

    \frac{SI}{SE} = \frac{SJ}{SF} =
\frac{2}{3} \Rightarrow IJ//EF

    \ EF \subset (ABCD) \Rightarrow
IJ//(ABCD).

    c) Đúng.

    BC//AD,AD \subset (SAD) \Rightarrow
BC//(SAD).

    EF là đường trung bình của hình bình hành ABCD nên

    BC//EF,EF \subset (SEF) \Rightarrow
BC//(SEF).

    d) Sai.

    Ta có: IJ//EF,EF//BC \Rightarrow
BC//IJIJ \subset (AIJ)
\Rightarrow BC//(AIJ).

  • Câu 14: Nhận biết

    Trong không gian, đường thẳng a song song với mặt phẳng (P) nếu

    Đường thẳng  a  song song với mặt phẳng  (P)  khi và chỉ khi  a  không nằm trong (P), đồng thời  a  song song với một đường thẳng b nằm trong  (P) .

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, P,Q lần lượt là trung điểm của SA,SC. Tìm đặc điểm của giao tuyến d của hai mặt phẳng (BPQ)(ABCD).

    Hình vẽ minh họa

    Ta thấy B là một điểm chung của hai mặt phẳng (BMN)(ABCD).

    Do đó d đi qua B.

    Xét ba mặt phẳng (BMN),(ABCD),(SAC).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AC,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AC,MN đồng quy hoặc đôi một song song.

    MN//AC (do MN là đường trung bình của tam giác SAC) nên d//AC.

    Vậy giao tuyến của hai mặt phẳng (BPQ)(ABCD) là đường thẳng d đi qua B và song song với CD.

  • Câu 16: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Mệnh đề đúng là: "Hai đường thẳng cùng song song với một đường thẳng thứ ba thì song song với nhau hoặc trùng nhau."

  • Câu 17: Thông hiểu

    Cho hình chóp tứ giác S.ABCD. Gọi M,N lần lượt là trung điểm của SASC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Xét \Delta SACM,N lần lượt là trung điểm SA,SC

    => MN là đường trung bình của \Delta SAC

    => MN//ACAC \subset (ABCD)

    \Rightarrow MN//(ABCD)

  • Câu 18: Nhận biết

    Trong các mệnh đề sau mệnh đề nào sai:

    Mệnh đề sai: "Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song nhau".

  • Câu 19: Nhận biết

    Hình chiếu của hình lập phương ABCD.A'B'C'D' qua phép chiếu song song phương AA' lên mặt phẳng chiếu (ABCD) là:

    Phép chiếu song song phương AA' lên mặt phẳng (ABCD) sẽ biến A' thành A, biến B' thành B, biến C' thành C, biến D' thành D.

    Nên hình chiếu song song của hình lập phương ABCD.A'B'C'D'là hình vuông.

  • Câu 20: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Gọi G,G' lần lượt là trọng tâm của tam giác BDA'B'D'C. Khi đó tỉ số độ dài \frac{GG'}{AC'} là:

    Hình vẽ minh họa

    Gọi O,O' lần lượt là tâm của các hình bình hành ABCD,A'B'C'D'

    ACC'A' là hình bình hành nên A'O//O'C

    Từ đó ta có:

    \Delta AOG\sim\Delta
ACG'

    \Rightarrow \frac{AG}{AG'} =
\frac{AO}{AC} = \frac{1}{2} \Rightarrow AG = GG' (*)

    \Delta C'A'G\sim\Delta
C'O'G'

    \Rightarrow
\frac{C'O'}{C'A'} = \frac{C'G'}{C'G} =
\frac{1}{2} \Rightarrow C'G' = GG'(**)

    Từ (*) và (**) suy ra GG' =
\frac{1}{3}AC' hay \frac{GG'}{AC'} = \frac{1}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 98 lượt xem
Sắp xếp theo