Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    "Cho hình hộp ABCD.EFHG, khẳng định nào sau đây là sai?

    Hình vẽ minh họa

    Tìm khẳng định sai

    Khẳng định sai là "CE song song với FH"

  • Câu 2: Thông hiểu

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD,M là trung điểm CD,I là điểm ở trên đoạn thẳng AG,BI cắt mặt phẳng (ACD) tại J. Khẳng định nào sau đây sai?

    Ta có A là điểm chung thứ nhất giữa hai mặt phẳng (ACD)(GAB).

    Do BG \cap CD = M \Rightarrow \left\{
\begin{matrix}
M \in BG \subset (ABG) \Rightarrow M \in (ABG) \\
M \in CD \subset (ACD) \Rightarrow M \in (ACD) \\
\end{matrix} ight.

    \Rightarrow M là điểm chung thứ hai giữa hai mặt phẳng (ACD)(GAB)

    \Rightarrow (ABG) \cap (ACD) =
AM nên AM = (ACD) \cap
(ABG) đúng.

    \Rightarrow J = BI \cap AM \Rightarrow
A,J,M thẳng hàng nên A,J,M thẳng hàng đúng

    Ta có \left\{ \begin{matrix}
DJ \subset (ACD) \\
DJ \subset (BDJ) \\
\end{matrix} \Rightarrow DJ = (ACD) \cap (BDJ) ight. nên DJ = (ACD) \cap (BDJ) đúng.

    Điểm I di động trên AG nên J có thể không phải là trung điểm của AM

    Nên J là trung điểm của AM sai.

  • Câu 3: Thông hiểu

    Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABDM là điểm trên cạnh BC sao cho BM
= 2MC. Đường thẳng MG song song với

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Do G là trọng tâm của tam giác ABD và M là điểm trên cạnh BC sao cho BM =
2MC nên trong mặt phẳng (BCE) ta có:

    \frac{BG}{BE} = \frac{BM}{BC} =
\frac{2}{3}

    \Rightarrow MG//CE \subset
(ACD)

    \Rightarrow MG//(ACD)

  • Câu 4: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề dưới đây:

    Theo định nghĩa về vị trí tương đối của hai đường thẳng trong không gian thì đáp án đúng là: " Hai đường thẳng chéo nhau thì không có điểm chung."

  • Câu 5: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi có AC \cap BD = MAB \cap CD = N. Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng:

    Hình vẽ minh họa

    Giao tuyến của mặt phẳng (SAC) và mặt phẳng (SBD) là đường thẳng SM.

  • Câu 6: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (A'BD) song song với mặt phẳng

    Hình vẽ minh họa

    BCD'A' là hình bình hành, ta có BA'\ //\ CD' (1)

    BDD'B' là hình bình hành, ta cóBD\ //\ B'D' (2)

    Mặt khác: BA' \cap BD = B,\ \ \
CD' \cap B'D' = D' (3)

    Từ (1); (2); (3) \Rightarrow(A'BD)//(CB'D'), suy ra phương án cần tìm là: (CB'D').

  • Câu 7: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng?

    Hình tứ diện có 4 mặt, 6 cạnh và 4 đỉnh.

    Vậy phát biểu đúng: "Hình tứ diện có 4 mặt."

  • Câu 8: Vận dụng

    Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

     Phát biểu nào sau đây là đúng

    Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.

    Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.

    Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.

    => H là giao điểm của MN và mặt phẳng (SBD).

  • Câu 9: Thông hiểu

    Cho tứ diện ABCD. Điểm M thuộc đoạn AC (M khác A, M khác C). Giả sử mặt phẳng (\alpha) đi qua M và song song với ABAD. Xác định các giao tuyến của mặt phẳng (\alpha) với tứ diện ABCD. Hình tạo bởi các giao tuyến là hình gì?

    Hình vẽ minh họa

    Trong mặt phẳng (ACD) kẻ MN//AD,\ N \in
CD.

    Trong mặt phẳng (ABC) kẻ MP//AB,\ P \in
BC.

    Từ đó suy ra (\alpha) \equiv
(MNP)

    Vậy hình tạo bởi các giao tuyến của (MNP) và tứ diện ABCD là tam giác MNP.

  • Câu 10: Nhận biết

    Cho bốn điểm không đồng phẳng trong không gian. Hỏi từ các điểm đã cho có thể xác định được bao nhiêu mặt phẳng phân biệt?

    Vì 4 điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có 4 mặt.

  • Câu 11: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 12: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O, M \in
SC,SM = MC. Mệnh đề nào sau đây là mệnh đề sai?

    Hình vẽ minh họa

    Ta có:

    OM//SA \Rightarrow
OM//(SAB)

    OM//SA \Rightarrow
OM//(SAD)

    (BDM) \cap (SAC) = OM

    OM//(SBD) là đáp án sai.

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD  là hình bình hành. Mặt phẳng (α) qua BD và song song với SA, mặt phẳng (\alpha) cắt SC tại K. Tính tỉ số \frac{SK}{KC}.

    Hình vẽ minh họa

    Gọi O = AC \cap BD.

    Trong (SAC), kẻ OK//SA\ \ (K \in SC).

    Do đó (\alpha) là mặt phẳng (KBD).

    Vì ABCD là hình bình hành nên O là trung điểm của AC \Rightarrow
\frac{OC}{OA} = 1.

    Do OK//SA \Rightarrow \frac{OC}{OA} =
\frac{KC}{KS} = 1 \Rightarrow \frac{SK}{KC} = 1.

  • Câu 14: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi M là trung điểm của BC. Điểm M' là ảnh của điểm M qua phép chiếu song song phương CC', mặt phẳng chiếu (A'B'C'). Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có phép chiếu song song phương CC', biến C thành C', biến B thành B'.

    Do M là trung điểm của BC suy ra M' là trung điểm của B'C' vì phép chiếu song song bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số của hai đoạn thẳng nằm trên cùng một đường thẳng hoặc trên hai đường thẳng song song.

    Vậy khẳng định đúng là: M'C' =
M'B'

  • Câu 15: Vận dụng

    Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí A,B,C,DE,F,G,H. Biết EF = 35\ cmA,B,C,D cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn HE.

    Đáp án: 105

    Đáp án là:

    Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí A,B,C,DE,F,G,H. Biết EF = 35\ cmA,B,C,D cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn HE.

    Đáp án: 105

    Áp dụng định lý Thales trong không gian, do A,B,C,D cách đều nhau nên E,F,G,H cũng cách đều nhau.

    Ta có EF = FG = GH = 35\ cmnên HE = 35.3 = 105\ cm.

  • Câu 16: Nhận biết

    Trong không gian cho hai mặt phẳng phân biệt (\alpha)(\beta), điều kiện nào sau đây không đủ để kết luận rằng mặt phẳng (\alpha) song song với mặt phẳng (\beta)?

    Mệnh đề: " (\alpha) chứa vô số đường thẳng song song với (\beta)." không đủ để chỉ ra hai mặt phẳng song song (khi các đường thẳng đó song song với nhau).

  • Câu 17: Nhận biết

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi M,N,P,Q lần lượt là trung điểm của BC,CD,SB,SD. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có MN là đường trung bình tam giác BDC \Rightarrow MN//BD (1)

    Ta có PQ là đường trung bình của tam giác SBD \Rightarrow
PQ//BD(2).

    \Rightarrow MN//PQ.

  • Câu 18: Vận dụng

    Cho hai hình bình hành ABCD và ABEF có tâm lần lượt là O, O’ và không cùng nằm trong một mặt phẳng. Gọi M là trung điểm của AB.

    (I) (ADF) // (BCE)

    (II) (MOO’) // (ADF)

    (III) (MOO’) // (BCE)

    (IV) (AEC) // (BDF)

    Khẳng định nào sau đây là đúng

    Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)

    => BC // (ADF); BE // (ADF)

    Mà BC ∩∩ BE = B

    =. (ADF) // (BEC).

    O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD

    Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF

    MO’ // (ADF) (1)

    Tương tự MO là đường trung bình của tam giác ABD nên MO // AD

    MO // (ADF) (2)

    Từ (1) và (2) suy ra (MOO’) // (ADF)

    Chứng minh tương tự ta cũng có (MOO’) // (BCE).

    Hai mặt phẳng (AEC) và (BDF) có:

    AC ∩ DB = O ; AE ∩ BF = O’

    Suy ra (AEC) ∩ (BDF) = OO’.

    Vậy khẳng định (I); (II); (III) đúng.

  • Câu 19: Nhận biết

    Cho các đoạn thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: "Phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng cùng nằm trên một đường thẳng hoặc nằm trên hai đường thẳng song song."

  • Câu 20: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

    Đáp án \left\{ \begin{matrix}
a//b \\
b//(\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//b \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//(\alpha) \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//b sai: Trường hợp a,b chéo nhau.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 100 lượt xem
Sắp xếp theo