Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD mặt phẳng chiếu (BCC'B') lần lượt là:

    Hình vẽ minh họa

    Ta có: AB//CD nên ảnh của điểm A qua phép chiếu song song phương CD lên mặt phẳng (BCC'B') là điểm B.

    Mặt khác điểm B' \in
(BCC'B') nên ảnh của B' qua qua phép chiếu song song phương CD lên mặt phẳng (BCC'B') là điểm B'.

  • Câu 2: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N lần lượt là trọng tâm tam giác ABDACD. Xét các mệnh đề sau:

    \ (i):MN//(ABC)

    (ii):MN//(BCD)

    (iii):MN//(ACD)

    Các mệnh đề đúng là:

    Gọi E,F lần lượt là trung điểm CD,BD.

    Ta có \frac{AN}{AE} = \frac{AM}{AF} =
\frac{2}{3} \Rightarrow MN//EF

    \Rightarrow MN//(BCD)nên mệnh đề (ii):MN//(BCD) đúng.

    Ta lại có:

    EF//BC \Rightarrow MN//BC

    \Rightarrow MN//(ABC)

    => Mệnh đề\
(i):MN//(ABC) đúng

    Mặt khác MN \cap (ACD) = \left\{ N
ight\} nên mệnh đề (iii):MN//(ACD) sai.

  • Câu 3: Nhận biết

    Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCDA'B'C'D' là hình bình hành. Lấy trung điểm của các cạnh AD,BC,CC' lần lượt là các điểm M,N,P. Xét các khẳng định sau:

    a) (MNP) cắt A'D'.

    b) (MNP) cắt DD' tại trung điểm của DD'.

    c) (MNP)//(ABC'D').

    Số khẳng định đúng là:

    Hình vẽ minh họa

    Mặt phẳng(MNP) cắt DD' tại trung điểm của DD'.

    Từ đó thấy rằng ba khẳng định trong đề bài đều đúng.

  • Câu 4: Nhận biết

    Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Phát biểu đúng là: "MP và NQ chéo nhau"

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD, lấy M,N lần lượt là trung điểm của BCCD. Giả sử d
= (MNA) \cap (ABD). Khẳng định nào đúng về đặc điểm của đường thẳng d?

    Hình vẽ minh họa

    Xét ba mặt phẳng (AMN),(ABD),(BCD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,BD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,BD,MN đồng quy hoặc đôi một song song.

    BD//MN nên d//BD.

    Vậy đường thẳng d đi qua A và song song với BD.

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N là hai điểm phân biệt cùng thuộc đường thẳng AB, hai điểm P,Q phân biệt thuộc đường thẳng CD. Khi đó vị trí tương đối của hai đoạn thẳng MPNQ là:

    Giả sử đường thẳng MPNQ không chéo nhau, tức là cùng thuộc một mặt phẳng.

    Khi đó ABCD cùng thuộc một mặt phẳng hay ABCD là một tứ giác (trái giả thiết).

    Vậy đường thẳng MPNQ chéo nhau.

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là trung điểm của cạnh SC. Mặt phẳng (\alpha) chứa AI và song song với BD cắt các cạnh SB,SD lần lượt tại M,N. Tìm khẳng định đúng dưới dây?

    Hình vẽ minh họa:

    Ta có: E là giao điểm của AI và SO, kẻ đường thẳng qua E song song với BD và cắt SB, SD lần lượt tại M và N. Khi đó: (\alpha) \equiv
(AMIN)

    Dễ thấy E là trọng tâm tam giác SAC nên \frac{OS}{OE} = \frac{1}{3}

    MN//BD \Rightarrow \frac{MB}{SB} =
\frac{OE}{SO} = \frac{1}{3}

  • Câu 8: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 9: Thông hiểu

    Cho tứ diện ABCD. Trên các cạnh AD,BC theo thứ tự lấy các điểm M,N sao cho AD = 3AM,CB = 3CN. Giả sử mặt phẳng (\alpha) chứa MN và song song với CD. Tìm các giao tuyến của tứ diện và mặt phẳng (\alpha). Xác định hình tạo bởi các giao tuyến này.

    Hình vẽ minh họa:

    Qua M, kẻ đường thẳng song song với CD cắt AC tại E.

    Qua N, kẻ đường thẳng song song với CD cắt BD tại F.

    Khi đó ME // NF // CD và (\alpha) \equiv(MENF)

    Ta có: \left\{ \begin{matrix}\dfrac{NF}{CD} = \dfrac{BN}{BC} = \dfrac{2}{3} \\\dfrac{ME}{CD} = \dfrac{AM}{AD} = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow NF = 2ME

    Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng (\alpha) là hình thang MENF với đáy lớn gấp đôi đáy nhỏ.

  • Câu 10: Nhận biết

    Tính tất cả số cạnh của hình lăng trụ biết hình lăng trụ có đúng 11 cạnh bên?

    Hình lăng trụ có đúng 11 cạnh bên suy ra đáy là đa giác có 11 đỉnh và đa giác đáy có 11 cạnh.

    Vậy hình lăng trụ có đúng 11 cạnh bên thì có:

    11 + 11.2 = 33 (cạnh)

  • Câu 11: Nhận biết

    Cho biết mệnh đề nào sau đây sai?

    Trường hợp hai đường thẳng chéo nhau thì không xác định được mặt phẳng chứa cả hai đường thẳng đó. Hoặc 2 đường thẳng trùng nhau thì xác định được vô số mặt phẳng.

  • Câu 12: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy một điểm M trên cạnh SB;(M eq S;M eq B). Thiết diện tạo bởi mặt phẳng (ADM) với hình chóp là:

    Hình vẽ minh họa

    Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.

    Ta có: MN // BC // AD nên thiết diện AMND là hình thang.

  • Câu 13: Vận dụng

    Cho tứ diện ABCD. Các cạnh AC,BD,AB,CD,AD,BC có trung điểm lần lượt là M,N,P,Q,R,S. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Ta có:

    MP // BC // NQ, MP = \frac{1}{2}BC =
NQ

    => MPNQ là hình bình hành

    => M, N, P, Q thuộc một mặt phẳng.

    MR // CD // SN, MR = \frac{1}{2}CD =
SN

    => MRNS là hình bình hành

    => M, R, S, N thuộc một mặt phẳng.

    PS // AC // RQ, PS = \frac{1}{2}AC =
RQ

    => PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.

    Vậy M,P,R,S không thuộc cùng một mặt phẳng.

  • Câu 14: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 15: Vận dụng

    Cho hình lăng trụ tam giác ABC.A'B'C' , tâm của các mặt bên (ABB'A');(BCC'B');(ACC'A') lần lượt là M,N,P. Hình chiếu của điểm P qua phép chiếu song song phương BC', mặt phẳng chiếu (AB'C) là:

    Hình vẽ minh họa

    Gọi Q là ảnh của P qua phép chiếu song song phương BC' lên mặt phẳng (AB'C).

    Ta có PQ//BC'PQ \subset (ABC').

    AN là giao tuyến của hai mặt phẳng (ABC')(AB'C) nên Q \in AN.

    Lại có P là trung điểm của AC' nên PQ là đường trung bình của tam giác ANC'

    => P là trung điểm của AN.

  • Câu 16: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
    các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là

    Hình vẽ minh họa

     Đường thẳng và mặt phẳng song song

    Ta có thiết diện của S.ABCD cắt bởi
    mặt phẳng (IJK) là ngũ giác

  • Câu 17: Nhận biết

    Cho hình chóp S.ABCD. Trên các cạnh ABAD lần lượt lấy các điểm M,N sao cho \frac{AM}{AB} = \frac{1}{2};\frac{AN}{ND} =
1. Hỏi MN song song với mặt phẳng nào dưới đây?

    Hình vẽ minh họa:

    Ta có: MN là đường trung bình của tam giác ABD suy ra MN//BD

    Mặt khác BD \subset (SBD) \Rightarrow
MN//(SBD)

  • Câu 18: Vận dụng

    Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    Vì I, J lần lượt là trung điểm của AC và BC nên IJ là đường trung bình của tam giác ABC

    => IJ // AB

    2 mp( IJK) và mp ( ABD) chứa 2 đường thẳng song song là IJ; AB và có điểm K chung

    => Giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H.

    Vậy IJ // KH // AB.

    Ta có ∆BJK = ∆AIH ⇒ JK = IH

    Mặt khác KH ≠ IJ

    Vậy thiết diện là hình thang cân IJKH.

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SCI là giao điểm của AM và mặt phẳng (SBD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi SO \cap AM \equiv ISO \subset (SBD)

    \Rightarrow AM \cap (SBD) \equiv \left\{
I ight\} I là trọng tâm tam giác SAC

    \Rightarrow IS = 2IO \Rightarrow IS >
IO

  • Câu 20: Nhận biết

    Chọn khẳng định đúng.

    Khẳng định đúng là: “Nếu hai đường thẳng không có điểm chung thì hai đường thẳng đó song song hoặc chéo nhau.”

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 103 lượt xem
Sắp xếp theo