Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai mặt phẳng (P)(Q) song song với nhau. Mệnh đề nào sau đây sai?

    Đáp án “Đường thẳng a \subset
(P) và đường thẳng b \subset
(Q) thì a\ //\ b” sai vì nếu (P)//(Q)và đường thẳng a \subset (P);\ b \subset (Q) thì ab có thể chéo nhau.

  • Câu 2: Nhận biết

    Mệnh đề nào trong các mệnh đề sau đây là sai?

    Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.

  • Câu 3: Vận dụng

    Cho hình lăng trụ ABC.A'B'C'. Gọi M;M' lần lượt là trung điểm của BCB'C'. Giao của AM' với (A'BC) là:

    Hình vẽ minh họa

    M;M' là trung điểm của BCB'C' nên MM'//BB'//CC'//AA'

    Suy ra A;A';M';M cùng thuộc một mặt phẳng.

    Trong mặt phẳng (AA'M'M) gọi T là giao điểm của A'MAM'.

    Ta có: \left\{ \begin{matrix}
A'M \cap AM' \equiv T \\
A'M \subset (A'BC) \\
\end{matrix} ight.

    \Rightarrow AM' \cap (A'BC) =
A'M \cap AM' = T

    Vậy giao của AM' với (A'BC) là giao của AM' với A'M.

  • Câu 4: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

     Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng cho trước

    Mặt phẳng (AB’D’) song song với mặt phẳng (BDC’).

    AB’//DC’AD’// BC’.

  • Câu 5: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có tất cả các cạnh bằng nhau. Mặt phẳng (\beta) bất kì song song với mặt phẳng (ABC). Hình tạo bởi các giao tuyến giữa hai mặt phẳng trên là:

    Hình vẽ minh họa

    Gọi M,N,P lần lượt là giao điểm của (\beta) với các cạnh AA',BB',CC'.

    Khi đó ta có: \left\{ \begin{matrix}
MN = AB \\
NP = BC \\
PM = AC \\
\end{matrix} ight.

    Vậy hình tạo bởi các giao tuyến giữa hai mặt phẳng là tam giác đều

  • Câu 6: Nhận biết

    Cho tứ diện ABCD như hình vẽ.

    Khẳng định nào sau đây đúng?

    Khẳng định đúng là (MND) \cap (ABC) =
MN

  • Câu 7: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 8: Thông hiểu

    Cho tứ diện ABCD, G là trọng tâm tam giác ABD, N là trung điểm của AD, M là trung điểm trên cạnh BC sao cho MB = 2MC. Khẳng định nào sau đây là đúng?

    Chọn khẳng định đúng

    Ta có: G là trọng tâm giác ABD 

    => \frac{{BG}}{{GN}} = 2 = \frac{{BM}}{{MC}} \Rightarrow MG//CN

  • Câu 9: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
(ABCD)//(A’B’C’D’) \\
(AA’D’D)//(BCC’B’) \\
(ABB’A’)//(CDD’C’) \\
\end{matrix} ight. luôn đúng

    => Hai mặt phẳng (BDD'B');(ACC'A') không song song với nhau.

  • Câu 10: Thông hiểu

    Cho tứ giác ABCD và một điểm S không thuộc mặt phẳng (ABCD). Trên đoạn SC lấy một điểm M không trùng với SC.Gọi N là giao điểm của đường thẳng SD với mặt phẳng (ABM). Khi đó AN là giao tuyến của hai mặt phẳng nào sau đây?

    Hình vẽ minh họa

    Ta có B \in (ABM) \cap (SBD) (1)

    Gọi O = AC \cap BD,K = AM \cap SO.

    Khi đó: \left\{ \begin{matrix}
K \in AM \subset (ABM) \\
K \in SO \subset (SBD) \\
\end{matrix} \Rightarrow K \in (ABM) \cap (SBD) ight.

    Từ (1) và (2) suy ra (ABM) \cap (SBD) = BK

    Trong mặt phẳng (SBD). Gọi N = BK \cap SD.

    Khi đó: \left\{ \begin{matrix}N \in SD \\N \in BK \subset (ABM) \\\end{matrix} \Rightarrow N = (ABM) \cap SDight.

    Dễ thấy AN = (ABM) \cap(SAD)

  • Câu 11: Nhận biết

    Trong mặt phẳng (\alpha), cho tứ giác ABCDABcắt CDtại E, ACcắt BD tại F, S là điểm không thuộc (\alpha). Giao tuyến của (SAB) (SCD)

    Hai mặt phẳng (SAB) (SCD) có hai điểm chung là S E nên có giao tuyến là đường thẳng SE.

  • Câu 12: Thông hiểu

    Cho tứ diện ABCD. Trên các cạnh AD,BC theo thứ tự lấy các điểm M,N sao cho AD = 3AM,CB = 3CN. Giả sử mặt phẳng (\alpha) chứa MN và song song với CD. Tìm các giao tuyến của tứ diện và mặt phẳng (\alpha). Xác định hình tạo bởi các giao tuyến này.

    Hình vẽ minh họa:

    Qua M, kẻ đường thẳng song song với CD cắt AC tại E.

    Qua N, kẻ đường thẳng song song với CD cắt BD tại F.

    Khi đó ME // NF // CD và (\alpha) \equiv(MENF)

    Ta có: \left\{ \begin{matrix}\dfrac{NF}{CD} = \dfrac{BN}{BC} = \dfrac{2}{3} \\\dfrac{ME}{CD} = \dfrac{AM}{AD} = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow NF = 2ME

    Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng (\alpha) là hình thang MENF với đáy lớn gấp đôi đáy nhỏ.

  • Câu 13: Nhận biết

    Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.

  • Câu 14: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?

    Hình vẽ minh họa

    Tìm giao tuyến giữa hai mặt phẳng

    Xét tam giác SAB có:

    M và N lần lượt là trung điểm của SA và SB

    => MN là đường trung bình của tam giác SAB

    MN // AB

    AB // CD (ABCD là hình bình hành)

    => MN // CD

    Mặt phẳng (MNC) và (ABD) (hay (ABCD)) lần lượt chứa hai đường thẳng MN và CD song song với nhau và điểm C chung

    => Giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung C và song song với AB là đường thẳng CD

    Hay (MNC) \cap (ABD) =CD

  • Câu 16: Thông hiểu

    Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và BC, lấy điểm P trên cạnh BD sao cho BP = 3PD và I là giao điểm của NP và CD. Giao điểm của đường thẳng AD và mặt phẳng (MNP) là giao điểm của hai đường nào trong các cặp đường thẳng sau?

    Hình vẽ minh họa:

    Giao điểm của đường thẳng AD và mặt phẳng (MNP) là K.

    Vậy giao điểm của đường thẳng AD và mặt phẳng (MNP) là giao điểm của hai đường MI và AD.

  • Câu 17: Vận dụng

    Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí A,B,C,DE,F,G,H. Biết EF = 35\ cmA,B,C,D cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn HE.

    Đáp án: 105

    Đáp án là:

    Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí A,B,C,DE,F,G,H. Biết EF = 35\ cmA,B,C,D cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn HE.

    Đáp án: 105

    Áp dụng định lý Thales trong không gian, do A,B,C,D cách đều nhau nên E,F,G,H cũng cách đều nhau.

    Ta có EF = FG = GH = 35\ cmnên HE = 35.3 = 105\ cm.

  • Câu 18: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Mệnh đề đúng là: "Hai đường thẳng cùng song song với một đường thẳng thứ ba thì song song với nhau hoặc trùng nhau."

  • Câu 19: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Lấy điểm M
\in SA sao cho \frac{MA}{MS} =
2. Hình chiếu của điểm S qua phép chiếu song song phương MO mặt phẳng chiếu (ABCD) là điểm N. Khi đó tỉ số độ dài \frac{CN}{CA} bằng bao nhiêu?

    Hình vẽ minh họa:

    Phép chiếu song song phương phương MO mặt phẳng chiếu (ABCD) biến điểm S thành điểm N.

    Do đó: SN//MO \Rightarrow N \in
AC

    Xét tam giác SANta có: \frac{ON}{OA} = \frac{SM}{MA} =
\frac{1}{2}

    => N là trung điểm của OC

    Từ đó suy ra \frac{CN}{CA} =
\frac{1}{4}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Hình vẽ minh họa

    Xét tam giác DBC có \frac{DO}{DB} =\frac{DK}{DC} = \frac{1}{3} \Rightarrow OK//BC

    Xét tam giác ABC có: \frac{AO}{AC} =\frac{AJ}{AB} = \frac{2}{3} \Rightarrow OJ//BC

    Suy ra ba điểm O; K; J thẳng hàng

    Suy ra (IJK) \cap (ABCD) = OK đúng

    Tương tự ta cũng chúng minh được OH//IJ (Vì OH//SB;IJ//SB)

    Suy ra H \in (IJO) \Rightarrow (IJO) \cap(SBD) = OH

    Gọi F là trung điểm của SA khi đó \frac{SI}{SF} = \frac{SH}{SD} = \frac{2}{3}\Rightarrow IH//DF

    Mà tứ giác CDEF là hình bình hành nên CE // DF. Từ đó suy ra IH // CE.

    Ta lại có: IJKH là thiết diện của hình chóp S.ABCD và (IJK) và nó không là hình thang.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 102 lượt xem
Sắp xếp theo