Trong các khẳng định sau khẳng định nào sai?
Giả sử song song với
. Một đường thẳng
song song với
có thể nằm trên
.
Trong các khẳng định sau khẳng định nào sai?
Giả sử song song với
. Một đường thẳng
song song với
có thể nằm trên
.
Cho hình chóp
có đáy
là hình bình hành. Giả sử
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Ta lại có: suy ra đường thẳng d đi qua S và song song với AB.
Cho hình chóp
có đáy là tứ giác
. Giả sử
là một mặt phẳng tùy ý. Giao tuyến của
với các mặt của hình chóp
không thể tạo thành hình nào dưới đây?
Hình chóp tứ giác đã cho có 5 mặt
Do đó có tối đa 5 giao tuyến được tạo thành bởi mặt phẳng tùy ý với các mặt của hình chóp
.
Vậy đáp án là hình lục giác.
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Cho hình chóp
, biết
và
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có là điểm chung của hai mặt phẳng
và
.
Vì nên
là điểm chung của hai mặt phẳng
và
.
Do đó giao tuyến của hai mặt phẳng và
là
.
Cho các đường thẳng
và các mặt phẳng
. Giả thiết nào sau đây đủ để kết luận đường thẳng
song song với đường thẳng
?
Nếu thì a // b hoặc a, b chéo nhau.
Nếu thì a // b hoặc a ≡ b.
Nếu thì không kết luận được quan hệ giữa a và b.
Chọn mệnh đề sai.
Qua phép chiếu song song không thể biến một tứ diện thành một đường thẳng vì các cạnh của tứ diện đều là đoạn thẳng.
Nó cũng không thể biến tứ diện thành một đoạn thẳng vì khi đó các cạnh của tứ diện nằm trong một mặt phẳng.
Trong các mệnh đề sau mệnh đề nào sai:
Mệnh đề sai: "Hình biểu diễn của hai đường cắt nhau có thể là hai đường song song nhau".
Cho tứ diện
. Gọi
là trọng tâm tam giác
là trung điểm
là điểm ở trên đoạn thẳng
cắt mặt phẳng
tại
. Khẳng định nào sau đây sai?
Ta có là điểm chung thứ nhất giữa hai mặt phẳng
và
.
Do
là điểm chung thứ hai giữa hai mặt phẳng
và
nên
đúng.
thẳng hàng nên
thẳng hàng đúng
Ta có nên
đúng.
Điểm di động trên
nên
có thể không phải là trung điểm của
Nên là trung điểm của
sai.
Hình chóp lục giác có bao nhiêu mặt?
Hình chóp có 7 mặt trong đó có 6 mặt bên và 1 mặt đáy.
Cho hình thang
và
. Lấy điểm
bất kì,
. Gọi
lần lượt là trung điểm của
,
là trọng tâm tam giác
. Khi đó giao tuyến được tạo bởi mặt phẳng
với các mặt của
là hình gì?

Hình vẽ minh họa
Gọi
Xét ba mặt phẳng .
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song. Mà
Giả sử: cắt
lần lượt tại
.
Khi đó thiết diện của hình chóp cắt bởi
là hình thang
.
Ta có:
Ta có: là trọng tâm tam giác
=> Hình thang là hình bình hành.
Cho hình hộp
. Gọi
lần lượt là trọng tâm của tam giác
và
. Khi đó tỉ số độ dài
là:
Hình vẽ minh họa
Gọi lần lượt là tâm của các hình bình hành
Vì là hình bình hành nên
Từ đó ta có:
(*)
(**)
Từ (*) và (**) suy ra hay
Trong các khẳng định sau khẳng định nào sai?
Giả sử song song với
. Một đường thẳng
song song với
có thể nằm trên
.
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Ta có:
(đường trung bình 4SAD)
(đường trung bình 4BAD)
=> O, N, M, P cùng nằm trong một mặt phẳng.
Trong các phát biểu sau đây, phát biểu nào sai?
Phát biểu sai: "Hai đường thẳng không có điểm chung thì chéo nhau."
Qua phép chiếu song song, tính chất nào không được bảo toàn?
Do hai đường thẳng qua phép chiếu song song ảnh của chúng sẽ cùng thuộc một mặt phẳng.
Suy ra tính chất chéo nhau không được bảo toàn.
Chọn câu đúng:
"Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau" đúng.
Hai đường thẳng cùng song song với một mặt phẳng thì có thể cắt nhau, song song, trùng nhau hoặc chéo nhau => "Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau." sai.
Hai mặt phẳng không cắt nhau thì song song hoặc trùng nhau => "Hai mặt phẳng không cắt nhau thì song song" sai.
Hai mặt phẳng không song song thì trùng nhau hoặc cắt nhau => "Hai mặt phẳng không song song thì trùng nhau" sai.
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho hình chóp O.ABC, A’ là trung điểm của OA, B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng?

Trong mặt phẳng (OAC) ta có: Điểm C’ không là trung điểm của OC nên A’C’ không song song với AC.
=> AC và A’C’ cắt nhau.
Phương án "Hai đường thẳng CB và C’B’ cắt nhau tại một điểm thuộc (OAB)." sai vì CB, C’B’ cắt nhau tại 1 điểm thuộc mặt phẳng (OBC).