Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
và
. Mặt phẳng qua
cắt
lần lượt tại
. Biết
cắt
tại
. Ba điểm nào sau đây thẳng hàng?
Hình vẽ minh họa
Ta có:
Mà
Vậy ba điểm thẳng hàng.
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
và
. Mặt phẳng qua
cắt
lần lượt tại
. Biết
cắt
tại
. Ba điểm nào sau đây thẳng hàng?
Hình vẽ minh họa
Ta có:
Mà
Vậy ba điểm thẳng hàng.
Tìm mệnh đề sai trong các mệnh đề sau?
Phép chiếu song song không thể biến một tam giác thành một điểm vì khi đó các đoạn thẳng đó phải thẳng hàng và song song với phương chiếu.
Cho hình chóp
có
là hình bình hành tâm
,
là trung điểm
. Tìm mệnh đề sai.
Do nên
=> sai.
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho hình chóp
có đáy
là hình bình hành tâm
. Lấy điểm
sao cho
. Hình chiếu của điểm
qua phép chiếu song song phương
mặt phẳng chiếu
là điểm
. Khi đó tỉ số độ dài
bằng bao nhiêu?
Hình vẽ minh họa:
Phép chiếu song song phương phương mặt phẳng chiếu
biến điểm
thành điểm
.
Do đó:
Xét tam giác ta có:
=> là trung điểm của
Từ đó suy ra
Cho tứ diện
. Lấy
sao cho
. Giả sử
là mặt phẳng qua
song song với
. Xác định các giao tuyến của tứ diện
và mặt phẳng
. Hình tạo bởi các giao tuyến đó là hình gì?
Giả sử cắt các mặt của tứ diện
và
theo hai giao tuyến
và
.
Ta có:
Theo định lí Ta – lét ta có:
=> là hình bình hành
Do đó hình tạo bởi các giao tuyến của tứ diện và mặt phẳng
là hình bình hành
.
Cho hình hộp
. Ảnh của
qua phép chiếu song song với phương
mặt phẳng chiếu
lần lượt là:
Hình vẽ minh họa
Ta có: nên ảnh của điểm
qua phép chiếu song song phương
lên mặt phẳng
là điểm
.
Mặt khác điểm nên ảnh của
qua qua phép chiếu song song phương
lên mặt phẳng
là điểm
.
Cho hình chóp
có đáy
là hình bình hành tâm
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm. Biết rằng
. Khi đó điểm E là giao điểm của hai đường thẳng:
Hình vẽ minh họa:
Ta có:
Chọn mệnh đề sai.
Mệnh đề "Tồn tại duy nhất một đường thẳng qua một điểm và song song với một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì không tồn tại đường thẳng nào đi qua điểm đó và song song với đường thẳng cho trước
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O, gọi M là trung điểm của CD. Giao điểm của BM với mặt phẳng (SAD) là điểm:
Hình vẽ minh họa
Trong mặt phẳng (ABCD), gọi K = BM ∩ AD
Ta có: mà
nên K là giao điểm của BM với mặt phẳng (SAD).
Trong các mệnh đề sau, mệnh đề nào đúng?
Vị trí tương đối giữa hai đường thẳng chéo nhau thì không có điểm chung.
Cho hình chóp tứ giác
có đáy
là hình bình hành. Mặt phẳng
song song với
và
đồng thời cắt các đoạn
lần lượt tại
. Ta có các khẳng định sau:
![]()
![]()
: Tứ giác
là hình bình hành.
Có bao nhiêu khẳng định đúng?
Hình vẽ minh họa
Xét
Vì
Vì
Vì nên
đều song song với
điều này suy ra
là hình bình hành.
Vậy tất cả các khẳng định đều đúng.
Trong các khẳng định sau khẳng định nào sai?
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song hoặc đồng quy.
Khẳng định nào sau đây là sai?
Khẳng định sai là: "Phép chiếu song song có thể biến trọng tâm tam giác thành một điểm không phải là trọng tâm tam giác hình chiếu." vì phép chiếu song song bảo toàn tỉ lệ các đoạn thẳng cùng nằm trên một đoạn thẳng.
Cho hình chóp
có đáy
là hình thang cân đáy nhỏ
. Lấy
lần lượt là trung điểm của
. Giao tuyến của mặt phẳng
với các mặt của hình chóp
là hình:
Hình vẽ minh họa
Xét mặt phẳng (MNP) và (SBC) có
(1)
(2)
Từ (1) và (2) .
Xét tứ giác có
=> là hình thang.
Vậy giao điểm của mặt phẳng với các mặt của hình chóp
là hình thang.
Hình chóp ngũ giác có bao nhiêu cạnh?
Hình chóp ngũ giác có 10 cạnh.
Trong không gian, cho 3 đường thẳng
, biết
, a và c chéo nhau. Khi đó hai đường thẳng b và c:
Giả sử
(mâu thuẫn với giả thiết).
Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho mặt phẳng
và đường thẳng
. Khẳng định nào sau đây sai?
Nếu song song với
và đường thẳng
thì
và
hoặc song song với nhau hoặc chéo nhau.
Cho tứ diện
. Trung điểm của các đường thẳng
lần lượt là
. Tìm giao điểm của đường thẳng
với mặt phẳng
.
Hình vẽ minh họa
Gọi là trung điểm của
.
Ta có: (do
là đường trung bình của tam giác
)
Vậy