Cho lăng trụ tam giác
có
lần lượt là trọng tâm tam giác
và
,
sao cho
. Mệnh đề nào sai?
Hình vẽ minh họa
sai vì
Cho lăng trụ tam giác
có
lần lượt là trọng tâm tam giác
và
,
sao cho
. Mệnh đề nào sai?
Hình vẽ minh họa
sai vì
Cho mặt phẳng
và hai đường thẳng
. Khẳng định nào sau đây đúng?
“Nếu và
thì
đồng phẳng.” sai vì có thể chéo nhau.
“Nếu và
cắt
thì
cắt
.” sai vì có thể nằm trên
“Nếu và
thì
.” sai vì có thể nằm trên
.
Cho hình chóp
có
lần lượt là trọng tâm các tam giác
và
. Gọi
là trung điểm cạnh
. Mặt phẳng
cắt
tại
. Tỉ số
bằng:
Hình vẽ minh họa
Ta có: là trọng tâm tam giác
và
là trung điểm của
.
=> thẳng hàng hay
Ta lại có là trọng tâm tam giác
nên
kéo dài cắt
tại trung điểm của
.
Vậy là trung điểm của
suy ra
Cho hình lăng trụ
. Gọi
là trung điểm của
. Điểm
là ảnh của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có phép chiếu song song phương , biến
thành
, biến
thành
.
Do là trung điểm của
suy ra
là trung điểm của
vì phép chiếu song song bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số của hai đoạn thẳng nằm trên cùng một đường thẳng hoặc trên hai đường thẳng song song.
Vậy khẳng định đúng là:
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
. Các điểm
qua phép chiếu song song phương
trên mặt phẳng
ta thu được ảnh lần lượt là
. Khi đó tứ giác
là hình gì?
Hình vẽ minh họa
Theo bài ra ta có: lần lượt là ảnh của
qua phép chiếu song song phương
trên mặt phẳng
.
Ta có:
=> là đường trung bình của các tam giác
=>
=> là hình bình hành
=>
là hình bình hành.
Cho hình chóp
. Gọi
,
lần lượt là trung điểm của
và
,
là điểm trên cạnh
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính
( làm tròn đến hàng phần trăm)
Đáp án: 0,33
Cho hình chóp . Gọi
,
lần lượt là trung điểm của
và
,
là điểm trên cạnh
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính
( làm tròn đến hàng phần trăm)
Đáp án: 0,33
Hình vẽ minh họa
Tìm giao điểm của
với mặt phẳng
Chọn mặt phẳng phụ chứa
Trong gọi
Suy ra . Khi đó
là giao điểm của
và
.
Gọi là trung điểm
Ta có (vì
là trung điểm của
và
nên
)
Mà nên
Mặt khác ta có (vì
)
Mà nên
.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Khẳng định nào sau đây đúng khi nói về mặt phẳng?
Theo cách xác định mặt phẳng thì “Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau”.
Cho hình chóp
. Gọi
lần lượt là trung điểm
. Khi đó khẳng định nào sai?
Hình vẽ minh họa
Qua phép chiếu song song theo phương lên mặt phẳng
biến: M thành P, N thành
.
Do đó
Qua phép chiếu song song theo phương lên mặt phẳng
biến:
thành
, R thành R, M thành Q, P thành P, L thành L, Q thành Q.
Vậy
Vậy khẳng định sai là:
Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là

Hình vẽ minh họa
Gọi
Khi đó đi qua
. Xét ba mặt phẳng
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.
Cho hình chóp
có đáy
là hình bình hành tâm
. Giao tuyến của hai mặt phẳng
và
là:
Hình vẽ minh họa
Ta có:
Mặt khác
Từ (*) và (**) ta suy ra
Trong các mệnh đề sau mệnh đề nào sai?
Tính chất của phép chiếu song song: Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.
Cho hình chóp tứ giác
có đáy
là hình bình hành. Cặp đường thẳng nào dưới đây song song với nhau?
Ta có song song với
theo tính chất hình bình hành.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Cho hình chóp
đáy
là hình bình hành tâm
. Chọn khẳng định sai?
Hình vẽ minh họa
Ta có: nên đường thẳng
cắt mặt phẳng
tại điểm
.
Vậy khẳng định sai là “”
Cho ba mặt phẳng phân biệt cắt nhau từng đôi theo ba giao tuyến a, b, c, trong đó a song song với b. Khi đó vị trí tương đối của b và c là
Theo nội dung hệ quả của định lý về ba giao tuyến ta suy ra vị trí tương đối của b và c là song song.
Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
chéo nhau.
Cho hình chóp
có đáy
là hình thang
. Gọi
lần lượt là trung điểm của
. Giao tuyến của mặt phẳng
và
là:
Hình vẽ minh họa
Ta có:
nên Q là điểm chung thứ nhất của mặt phẳng
và
Mặt khác
Vậy giao tuyến của mặt phẳng và
là đường thẳng qua Q và song song với AB.
Trong không gian, cho ba đường thẳng
. Trong các mệnh đề sau mệnh đề nào đúng?
Nếu và
chéo nhau thì
và
không cùng thuộc một mặt phẳng.
Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Hình vẽ minh họa
Với 4 điểm không đồng phẳng có thể xác định được 4 mặt phẳng phân biệt từ các điểm đó là
.