Trong không gian, cho tam giác ABC, lấy điểm I trên cạnh AC kéo dài (xem hình bên). Mệnh đề nào sau đây là sai?

Ta có
=> BI nằm trong (ABC). Do đó, mệnh đề sai là BI không nằm trên mặt phẳng (ABC).
Trong không gian, cho tam giác ABC, lấy điểm I trên cạnh AC kéo dài (xem hình bên). Mệnh đề nào sau đây là sai?

Ta có
=> BI nằm trong (ABC). Do đó, mệnh đề sai là BI không nằm trên mặt phẳng (ABC).
Cho hình chóp
có
lần lượt là trọng tâm của tam giác
và
tam giác. Chọn mệnh đề đúng.
Gọi là trung điểm
.
Xét tam giác có:
(do
lần lượt là trọng tâm của tam giác
và tam giác
)
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
,
. Mệnh đề nào sau đây là mệnh đề sai?
Hình vẽ minh họa
Ta có:
là đáp án sai.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề sai: "Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì cắt mặt phẳng còn lại." vì hai mặt phẳng cùng vuông góc với một mặt phẳng có thể cắt nhau.
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
,
là trọng tâm tam giác
. Khi đó, giao điểm của
và
là:
Hình vẽ minh họa
Kéo dài cắt
tại
.
Khi đó là giao điểm của
và
.
Trong các mệnh đề sau mệnh đề nào sai?
Hai đường thẳng cắt nhau thì cùng nằm trong một mặt phẳng.
Khi mặt phẳng đó song song với phương chiếu thì hình chiếu của chúng trùng nhau hoặc là một điểm nằm trên một đường thẳng.
Khi mặt phẳng đó không song song với phương chiếu thì hình chiếu của chúng là hai đường thẳng cắt nhau.
Trong không gian cho hai đường thẳng song song a và b. Chọn mệnh đề đúng.
Cho hai đường thẳng a và b song song, nếu đường thẳng c song song với a thì c song song hoặc trùng với b.
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
“Ba điểm phân biệt” sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.
“Một điểm và một đường thẳng” sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ra chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.
“Bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì sẽ không tạo được mặt phẳng nào đi qua cả 4 điểm.
Cho hình chóp
có đáy
là hình bình hành tâm
. Trung điểm của các cạnh
lần lượt là
. Chọn khẳng định đúng.
Hình vẽ minh họa:
Xét hai mặt phẳng và
.
Ta có: và
.
Mà và
.
Do đó
Chọn mệnh đề sai trong các mệnh đề sau:
Nếu hình chiếu song song của hai đường thẳng là một đường thẳng thì hai đường thẳng đó phải nằm trong một mặt phẳng song song hoặc chứa phương chiếu.
Mặt khác hai đường thẳng chéo nhau không cùng nằm trong bất kì mặt phẳng nào.
Do đó mệnh đề sai là: “Hình chiếu song song của hai đường thẳng chéo nhau có thể trùng nhau.”.
Cho hình chóp
có đáy
tâm
. Gọi
lần lượt là trung điểm của
. Xác định các giao tuyến của
với các mặt của
. Hình tạo bởi các giao tuyến đó là hình gì?
Hình vẽ minh hoạ
Ta dựng thiết diến của mặt phẳng (OMN) và hình chóp SABCD như sau
Qua M kẻ PQ // NO với Q ∈ SC.
Kéo dài NO cắt CD tại P.
=> Hình tạo bởi các giao tuyến đó là tứ giác MNPQ.
Tứ giác MNPQ có MN // NP
=> Tứ giác MNPQ là hình thang.
Cho hình chóp
. Gọi
lần lượt là trung điểm của các đoạn thẳng
. Đường thẳng
song song với mặt phẳng nào trong các mặt phẳng dưới đây?
Hình vẽ minh họa
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm
. Trong các đường thẳng sau, đường thẳng nào không song song với
?
Hình vẽ minh họa

Ta có:
là đường trung bình tam giác SAB nên
là hình bình hành nên
=>
là đường trung bình tam giác
=> =>
Vậy không song song với
.
Cho hình chóp
. Gọi
lần lượt là trung điểm
. Khi đó khẳng định nào sai?
Hình vẽ minh họa
Qua phép chiếu song song theo phương lên mặt phẳng
biến: M thành P, N thành
.
Do đó
Qua phép chiếu song song theo phương lên mặt phẳng
biến:
thành
, R thành R, M thành Q, P thành P, L thành L, Q thành Q.
Vậy
Vậy khẳng định sai là:
Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
chéo nhau.
Mệnh đề nào trong các mệnh đề sau đây là sai?
Mệnh đề sai: "Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy."
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
và
. Mặt phẳng qua
cắt
lần lượt tại
. Biết
cắt
tại
. Ba điểm nào sau đây thẳng hàng?
Hình vẽ minh họa
Ta có:
Mà
Vậy ba điểm thẳng hàng.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD và BC; G là trọng tâm của tam giác BCD. Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC).
Hình vẽ minh họa
Giao điểm của đường thẳng MG và đường thẳng AN là giao điểm của đường thẳng MG và đường thẳng AN.
Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?
Hình vẽ minh họa

Vì I, J lần lượt là trung điểm của AC và BC nên IJ là đường trung bình của tam giác ABC
=>
2 mp( IJK) và mp ( ABD) chứa 2 đường thẳng song song là IJ; AB và có điểm K chung
=> Giao tuyến của (IJK) với (ABD) là đường thẳng đi qua K và song song với AB cắt AD tại H.
Vậy
Ta có
Mặt khác
Vậy thiết diện là hình thang cân IJKH.