Chọn mệnh đề sai. Trong không gian:
Trong không gian hai đường thẳng không có điểm chung thì chéo nhau hoặc song song với nhau.
Chọn mệnh đề sai. Trong không gian:
Trong không gian hai đường thẳng không có điểm chung thì chéo nhau hoặc song song với nhau.
Cho hình lăng trụ
. Gọi
là trung điểm của
. Điểm
là ảnh của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có phép chiếu song song phương , biến
thành
, biến
thành
.
Do là trung điểm của
suy ra
là trung điểm của
vì phép chiếu song song bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số của hai đoạn thẳng nằm trên cùng một đường thẳng hoặc trên hai đường thẳng song song.
Vậy khẳng định đúng là:
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho hình chóp
có đáy
là hình bình hành. Xác định giao tuyến của hai mặt phẳng
và
:
Hình vẽ minh họa
Gọi
Khi đó đi qua
.
Xét ba mặt phẳng .
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho hình chóp
có đáy
là hình bình hành. Lấy một điểm
trên cạnh
. Thiết diện tạo bởi mặt phẳng
với hình chóp là:
Hình vẽ minh họa
Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.
Ta có: MN // BC // AD nên thiết diện AMND là hình thang.
Cho hình hộp
có
là trung điểm của
,
. Tính tỉ số độ dài hai cạnh
và
.
Hình vẽ minh họa
Ba mặt phẳng phân biệt đôi một cắt nhau theo ba giao tuyến
và
.
Theo tính chất hình hộp ta có nên
Lại có M là trung điểm của AB nên MN là đường trung bình trong tam giác ABC.
Vậy hay
.
Mệnh đề nào sau đây đúng?
Mệnh đề “Nếu ba đường thẳng đồng quy thì chúng nằm trên một mặt phẳng” không đúng, vì chúng có thể không đồng phẳng.
Mệnh đề “Nếu một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng cùng nằm trong một mặt phẳng”, không đúng khi ba đường thẳng cắt nhau và đồng qui nhưng không đồng phẳng.
Mệnh đề “Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại” không đúng, vì chúng có thể chéo nhau.
Vậy khẳng định đúng là: “Nếu một đường thẳng cắt hai đường thẳng cắt nhau tại hai điểm phân biệt thì cả ba đường thẳng cùng nằm trong một mặt phẳng.”
Cho tứ diện
. Lấy
sao cho
,
là trọng tâm tam giác
. Xác định mặt phẳng song song với đường thẳng
?
Hình vẽ minh họa
Gọi là trung điểm của
.
Xét tam giác ta có:
Cho điểm A thuộc mặt phẳng (P), mệnh đề nào sau đây đúng:
Mệnh đề đúng .
Cho mặt phẳng
và điểm
không thuộc mặt phẳng
. Số đường thẳng đi qua
và song song với
là:
Có vô số đường thẳng đi qua và song song với
với điểm
không thuộc mặt phẳng
.
Cho hình chóp
có đáy
là hình bình hành tâm
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm. Biết rằng
. Khi đó điểm E là giao điểm của hai đường thẳng:
Hình vẽ minh họa:
Ta có:
Cho hình chóp
có các mặt bên là tam giác đều. Gọi
là trung điểm của
, lấy
sao cho
. Hình chiếu của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
là:
Hình vẽ minh họa
Do các mặt bên của hình chóp là các tam giác đều nên tam giác
đều.
Gọi là trọng tâm tam giác
.
Ta có
Nên là hình chiếu song song theo phương
của
trên
.
Lại do tam giác đều nên
vừa là trọng tâm, vừa là tâm đường tròn ngoại tiếp, vừa là tâm đường tròn nội tiếp của tam giác
.
Cho tứ diện
. Các cạnh
có trung điểm lần lượt là
. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Ta có:
,
=> MPNQ là hình bình hành
=> thuộc một mặt phẳng.
,
=> MRNS là hình bình hành
=> thuộc một mặt phẳng.
,
=> PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.
Vậy không thuộc cùng một mặt phẳng.
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: “Hai đường thẳng không song song thì chéo nhau” sai vì có thể cắt nhau.
Mệnh đề: “Hai đường thẳng chéo nhau thì không có điểm chung” đúng.
Mệnh đề: “Hai đường thẳng không cắt nhau và không song song thì chéo nhau” sai vì có thể trùng nhau.
Mệnh đề: “Hai đường thẳng không có điểm chung thì chéo nhau” sai vì có thể song song.
Có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?
Có ba vị trí tương đối giữa đường thẳng và mặt phẳng là:
+ Đường thẳng song song với mặt phẳng.
+ Đường thẳng cắt mặt phẳng.
+ Đường thẳng nầm trên mặt phẳng.
Cho tứ diện ABCD. Lấy M là một điểm thuộc miền trong của tam giác ABC. Gọi (∝) là mặt phẳng qua M và song song với các đường thẳng AB và CD. Thiết diện tạo bởi (∝) và tứ diện ABCD là hình gì?
Hình vẽ minh họa

Ta có: (∝) //AB nên giao tuyến (∝) và (ABC) là đường thẳng song song với AB.
Xét (ABC) ta có:
Qua M kẻ EF // AB (1)
Ta có: Giao tuyến của (ABC) và (∝) là EF
Tương tự xét (BCD) qua E kẻ EH // CD (2) suy ra giao tuyến của (∝) và (BCD) là HE
Xét mặt phẳng (ABD) kẻ HG // AB (3)
=> Giao tuyến của (∝) và (ABD) là HG
Thiết diện tạo bởi (∝) và hình chóp ABCD là tứ giác EFGH
Ta có:
Từ (1), (2), (3), (4) =>
=> EFGH là hình bình hành
Cho hình chóp
có đáy
là hình bình hành tâm
. Trung điểm của các cạnh
lần lượt là
. Chọn khẳng định đúng.
Hình vẽ minh họa:
Xét hai mặt phẳng và
.
Ta có: và
.
Mà và
.
Do đó
Khẳng định nào sau đây là đúng.
Khẳng định đúng là: " Hình biểu diễn của một hình bình hành là một hình bình hành."
Cho tứ diện
. Lấy
lần lượt là trung điểm của
và
và
là trọng tâm của tam giác
. Khi đó giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng đi qua điểm
Hình vẽ minh họa
Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.
Gọi
Ta có:
Suy ra d đi qua G và song song với CD,.