Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ song song trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tứ diện ABCD. Lấy I\in AD,J \in BC sao cho AI = 2DI;BJ= 2CJ. Giả sử (\beta) là mặt phẳng qua IJ song song với AB. Xác định các giao tuyến của tứ diện ABCD và mặt phẳng (\beta). Hình tạo bởi các giao tuyến đó là hình gì?

    Giả sử (\beta) cắt các mặt của tứ diện (ABC)(ABD) theo hai giao tuyến JHIK.

    Ta có: \left\{ \begin{matrix}(\beta) \cap (ABC) = JH \\(\beta) \cap (ABD) = IK \\(ABC) \cap (ABD) = AB \\(\beta)//AB \\\end{matrix} ight.

    \Rightarrow JH//IK//AB

    Theo định lí Ta – lét ta có:

    \left\{ \begin{matrix}\dfrac{HJ}{AB} = \dfrac{CJ}{CB} = \dfrac{1}{3} \Rightarrow HJ =\dfrac{1}{3}AB \\\dfrac{IK}{AB} = \dfrac{DJ}{DA} = \dfrac{1}{3} \Rightarrow KI =\dfrac{1}{3}AB \\\end{matrix} ight.

    \Rightarrow HJ = KI

    => HIKJ là hình bình hành

    Do đó hình tạo bởi các giao tuyến của tứ diện ABCD và mặt phẳng (\beta) là hình bình hành HIKJ.

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCD. Trên các cạnh ABAD lần lượt lấy các điểm M,N sao cho \frac{AM}{AB} = \frac{1}{2};\frac{AN}{ND} =
1. Hỏi MN song song với mặt phẳng nào dưới đây?

    Hình vẽ minh họa:

    Ta có: MN là đường trung bình của tam giác ABD suy ra MN//BD

    Mặt khác BD \subset (SBD) \Rightarrow
MN//(SBD)

  • Câu 3: Thông hiểu

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Hình vẽ minh họa

    (SAD),(SCF),(SBE)có chung giao tuyến SO.

  • Câu 4: Nhận biết

    Cho tứ diện S.\  ABC. Trên SA,SC lần lượt lấy các điểm MN sao cho MN cắt AC tại E. Điểm E không thuộc mặt phẳng nào trong các mặt phẳng sau?

    Hình vẽ minh họa

    Do E \in AC \Rightarrow E \in
(SAC)E \in (ABC).

    Do E \in MN \Rightarrow E \in
(BMN).

  • Câu 5: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau.

    Khẳng định đúng là:

    Nếu a\ \ //\ (P) thì tồn tại trong (P) đường thẳng b để b\ //\
a.

  • Câu 6: Vận dụng

    Cho hộp chữ nhật ABCD.A'B'C'D'. Các điểm M,N tương ứng trên AC',B'D' sao cho MN song song với BA'. Tính tỉ số \frac{MA}{MC'}?

    Xét phép chiếu song song lên mặt phẳng (A'B'C'D') theo phương chiếu BA'.

    Ta có: N là ảnh của M hay M chính là giao điểm của B'D' và ảnh AC' qua phép chiếu này.

    Do đó ta xác định M,N như sau:

    Trên A'B' kéo dài lấy điểm K sao cho A'K = B'A' suy ra K là ảnh của A trên AC' qua phép chiếu song song.

    Gọi N = B'D' \cap
KC'. Đường thẳng qua N và song song với AK cắt AC' tại M. Ta có: M,N là các điểm cần xác định.

    Theo định lí Thales ta có:

    \frac{MA}{MC'} = \frac{NK}{NC'}
= \frac{KB'}{C'D'} = 2

  • Câu 7: Nhận biết

    Khẳng định nào sau đây là sai?

    Khẳng định sai là: "Phép chiếu song song có thể biến trọng tâm tam giác thành một điểm không phải là trọng tâm tam giác hình chiếu." vì phép chiếu song song bảo toàn tỉ lệ các đoạn thẳng cùng nằm trên một đoạn thẳng.

  • Câu 8: Thông hiểu

    Cho hai hình bình hành ABCDABEF không đồng phẳng có tâm lần lượt là IJ. Chọn

    khẳng định sai.

    Hình vẽ minh họa

    Do IJ là trung điểm của BDBF, nên IJ//DFDF
\subset (ADF) \Rightarrow IJ//(ADF), suy ra IJ / /(ADF) và IJ / / DF đúng.

    Do IJ là trung điểm của ACAE, nên IJ//ECEC
\subset (CBE) \Rightarrow IJ//(CEB), suy ra IJ / /(CEB) đúng.

    Vậy IJ / / ADsai

  • Câu 9: Thông hiểu

    Cho tứ diện ABCD, M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, BC, AD, BD, AC. Phát biểu nào sau đây là sai?

    Trong tam giác CAD có S và N lần lượt là trung điểm của AC và CD

    Suy ra SN là đường trung bình của tam giác CAD

    => SN // AD (1)

    Tương tự MR cũng là đường trung bình của tam giác ABD

    => MR // AD (2)

    Từ (1) và (2) suy ra: SN // MR nên đáp án "MN, SN song song với nhau"

    Chứng minh tương tự ta cũng có: SM // NR //BC

    Do đó tứ giác MRNS là hình bình hành nên đáp án "MRNS là hình bình hành"

    Hai đường chéo SR và MN cắt nhau tại G với G là trung điểm của mỗi đường chéo.

    Lại có: NQ // MP (//AC) và MQ // NP //BD

    => Tứ giác MQNP là hình bình hành

    => Hai đường chéo QP và MN cắt nhau tại trung điểm của mỗi đường

    Mà G là trung điểm của MN

    Do đó G cũng là trung điểm của QP

    Vậy ba đường thẳng MN, PQ, SR đồng quy tại G.

    Đáp án "MN, PQ, RS đồng quy'

    Đáp án "6 điểm M, N, P, Q, R, S đồng phẳng" sai vì P và Q cùng thuộc một mặt phẳng với M và N nhưng không cùng thuộc một mặt phẳng với hai điểm S và R.

  • Câu 10: Vận dụng

    Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

     Phát biểu nào sau đây là đúng

    Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.

    Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.

    Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.

    => H là giao điểm của MN và mặt phẳng (SBD).

  • Câu 11: Thông hiểu

    Khẳng định nào sau đây là đúng?

    Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."

  • Câu 12: Thông hiểu

    Cho hình chóp A.BCDH,K lần lượt là trọng tâm của tam giác ABCABD tam giác. Chọn mệnh đề đúng.

    Gọi I là trung điểm AB.

    Xét tam giác MCD có:

    \frac{IH}{IC} = \frac{IK}{ID} =
\frac{1}{3} (do H,K lần lượt là trọng tâm của tam giác ABD và tam giác ABC)

    \  = > HK//CD

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của SA. Thiết diện của mặt phẳng (MCD) với hình chóp S.ABCD là hình gì?

    Hình vẽ minh họa

    Tìm thiết diện

    Tìm giao tuyến của 2 mp (MCD) và (SAB)

    CD// AB; CD ⊂ (MCD); AB ⊂ (SAB)

    Điểm M chung

    => Giao tuyến của (MCD) và (SAB) là đường thẳng qua M và song song với AB, cắt SB tại N là trung điểm của SB.

    Vậy MN // CD

    Mặt khác MN ≠ CD ( vì MN= 1/2AB ; AB = CD)

    Vậy thiết diện là hình thang CNMD.

  • Câu 14: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song hoặc đồng quy.

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là trung điểm của cạnh SC. Mặt phẳng (\alpha) chứa AI và song song với BD cắt các cạnh SB,SD lần lượt tại M,N. Tìm khẳng định đúng dưới dây?

    Hình vẽ minh họa:

    Ta có: E là giao điểm của AI và SO, kẻ đường thẳng qua E song song với BD và cắt SB, SD lần lượt tại M và N. Khi đó: (\alpha) \equiv
(AMIN)

    Dễ thấy E là trọng tâm tam giác SAC nên \frac{OS}{OE} = \frac{1}{3}

    MN//BD \Rightarrow \frac{MB}{SB} =
\frac{OE}{SO} = \frac{1}{3}

  • Câu 16: Thông hiểu

    Cho tứ diện ABCD. Trên các cạnh AD,BC theo thứ tự lấy các điểm M,N sao cho AD = 3AM,CB = 3CN. Giả sử mặt phẳng (\alpha) chứa MN và song song với CD. Tìm các giao tuyến của tứ diện và mặt phẳng (\alpha). Xác định hình tạo bởi các giao tuyến này.

    Hình vẽ minh họa:

    Qua M, kẻ đường thẳng song song với CD cắt AC tại E.

    Qua N, kẻ đường thẳng song song với CD cắt BD tại F.

    Khi đó ME // NF // CD và (\alpha) \equiv(MENF)

    Ta có: \left\{ \begin{matrix}\dfrac{NF}{CD} = \dfrac{BN}{BC} = \dfrac{2}{3} \\\dfrac{ME}{CD} = \dfrac{AM}{AD} = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow NF = 2ME

    Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng (\alpha) là hình thang MENF với đáy lớn gấp đôi đáy nhỏ.

  • Câu 17: Nhận biết

    Cho hai đường thẳng a và b cắt nhau. Đường thẳng c song song với a. Khẳng định nào sau đây là đúng?

    Cho hai đường thẳng a và b cắt nhau. Đường thẳng c song song với a khi đó b và c chéo nhau hoặc cắt nhau.

  • Câu 18: Nhận biết

    Hình tứ diện có bao nhiêu cạnh?

    Hình tứ diện có 6 cạnh.

  • Câu 19: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 20: Nhận biết

    Cho đường thẳng a nằm trong mặt phẳng (\alpha) và đường thẳng b nằm trong mặt phẳng (\beta). Mệnh đề nào sau đây sai?

    Nếu (\alpha)//(\beta) thì ngoài trường hợp a//b thì a,b có thể chéo nhau.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 4 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 99 lượt xem
Sắp xếp theo