Trong lớp có 20 học sinh nữ, 15 học sinh nam. Hỏi giáo viên có bao nhiêu cách chọn 3 học sinh làm ban cán sự lớp?
Số học sinh của lớp là 20 + 15 = 35 (học sinh)
Số cách chọn 3 học sinh làm ban cán sự lớp là: (cách chọn)
Trong lớp có 20 học sinh nữ, 15 học sinh nam. Hỏi giáo viên có bao nhiêu cách chọn 3 học sinh làm ban cán sự lớp?
Số học sinh của lớp là 20 + 15 = 35 (học sinh)
Số cách chọn 3 học sinh làm ban cán sự lớp là: (cách chọn)
Dưới đây là điểm đánh giá tổng kết của các học sinh:
Khoảng điểm | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
Số học sinh | 2 | 7 | 15 | 10 | 11 | 5 |
Tính trung vị.
Ta có:
Khoảng điểm | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
|
Số học sinh | 2 | 7 | 15 | 10 | 11 | 5 | N = 50 |
Tần số tích lũy | 2 | 9 | 24 | 34 | 45 | 50 |
|
Cỡ mẫu: 50
Ta có:
=> Nhóm chứa trung vị là (vì 25 nằm giữa hai tần số tích lũy là 24 và 34)
Do đó:
Khi đó trung vị là:
Nếu [0; 5), [5; 10); [10; 15), … là các nhóm số liệu của mẫu dữ liệu ghép nhóm thì độ dài của nhóm là:
Độ dài của nhóm là 4
Hai cung thủ thực hiện bắn mỗi người một mũi tên vào bia điểm. Biết xác suất bắn trúng 10 điểm của người thứ nhất và người thứ hai lần lượt là
và
. Tính xác suất để có ít nhất một cung thủ bắn trúng 10 điểm?
Gọi A là biến cố có ít nhất một cung thủ bắn trúng 10 điểm
Suy ra là biến cố không có cung thủ nào trúng 10 điểm
Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:
Nhóm dữ liệu | Tần số |
(0; 15] | 4 |
(15; 30] | 12 |
(30; 45] | 17 |
(45; 60] | 7 |
Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm. (Làm tròn đến chữ số thập phân thứ hai)
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
[95; 105) | 9 | 9 |
[105; 115) | 13 | 22 |
[115; 125) | 26 | 48 |
[125; 135) | 30 | 78 |
[135; 145) | 12 | 90 |
[145; 155) | 10 | 100 |
Tổng | N = 100 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Khi đó:
Tứ phân vị thứ nhất là:
Hoàn thành bảng số liệu sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 152 | 12 |
[154; 158) | 156 | 18 |
[158; 162) | 160 | 30 |
[162; 166) | 164 | 24 |
[166; 170) | 168 | 10 |
Hoàn thành bảng số liệu sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 152 | 12 |
[154; 158) | 156 | 18 |
[158; 162) | 160 | 30 |
[162; 166) | 164 | 24 |
[166; 170) | 168 | 10 |
Hoàn thành bảng như sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 12 | |
[154; 158) | 18 | |
[158; 162) | 30 | |
[162; 166) | 24 | |
[166; 170) | 10 |
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là:
Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử
là biến cố lấy được tấm thẻ màu xanh từ hộp thứ
. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?
Biểu diễn đúng là:
Cho
là các biến cố đôi một xung khắc và
là biến cố chắc chắn. Biết
. Tính xác suất của biến cố
?
Gọi theo giả thiết ta có:
Vì là biến cố chắc chắn nên
Mặt khác là các biến cố đôi một xung khắc nên
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?
Ta có:
Giá trị lớn nhất: 25
Giá trị nhỏ nhất: 4
Khoảng biến thiên là: 25 – 4 = 21
Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:
Nhóm dữ liệu | Tần số |
(0; 15] | 4 |
(15; 30] | 12 |
(30; 45] | 17 |
(45; 60] | 7 |
Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.
Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau:
Số tự nhiên có 4 chữ số khác nhau có dạng:
Do số cần tìm là số chẵn => d = {0; 2; 4}
Trường hợp 1: d = 0 => Có 1 cách chọn d
Số cách chọn a là 5 cách
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
=> Trường hợp 1 lập được 5 . 4 . 3 . 1 = 60 số
Trường hợp 2: d ∈ {2; 4} => Có 2 cách chọn d
Số cách chọn a là 4 cách
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
=> Trường hợp 2 lập được 4 . 4 . 3 . 2 = 96 số
=> Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau: 60 + 96 = 156 số
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d)
Đúng||Sai
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d) Đúng||Sai
Ta có:
|
Đối tượng |
Tần số |
Tần số tích lũy |
|
[150; 155) |
15 |
15 |
|
[155; 160) |
11 |
26 |
|
[160; 165) |
39 |
65 |
|
[165; 170) |
27 |
92 |
|
[170; 175) |
5 |
97 |
|
[175; 180) |
3 |
100 |
Cỡ mẫu là:
=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)
=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)
Do đó:
Khi đó tứ phân vị thứ ba là:
Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10.
Gọi A là. biến cố: "Trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10".
Tìm
Chọn 10 tấm thẻ trong 30 tấm thẻ: có cách chọn
Tìm
Chọn 5 tấm thẻ mang số lẻ trong 15 tấm thẻ mang số lẻ có cách chọn.
Chọn 1 tấm thẻ mang số chia hết cho 10 trong 3 tấm thẻ mang số chia hết cho 10 có 3 cách chọn.
Chọn 4 tấm thẻ mang số chẵn nhưng không chia hết cho 10 trong 12 tấm thẻ như vậy có cách chọn.
Vậy số kết quả thuận lợi cho biến cố A là
Vậy xác suất cần tìm là:
Hỏi từ 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập thành bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các số đó có mặt chữ số 0 và 1.
Gọi số có 6 chữ số có dạng
Xếp chữ số 0 vào 1 trong 5 vị trí từ b đến f => Có 5 cách xếp
Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn) => Có 5 cách xếp
Chọn 4 chữ số trong 8 chữ số{2, 3, 4, 5, 6, 7, 8, 9}để xếp vào 4 vị trí còn lại => Có cách
Theo quy tắc nhân lập được số
Vậy có tất cả 42000 số thỏa mãn yêu cầu đề bài
Giả sử
là hai biến cố xung khắc. Khẳng định nào sau đây đúng?
Ta có:
Vì M và N là hai biến cố xung khắc nên
Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:
Chiều cao | Số cây |
[145; 150) | 25 |
[150; 155) | 50 |
[155; 160) | 200 |
[160; 165) | 175 |
[165; 170) | 50 |
Mẫu số liệu ghép nhóm đã cho có tất cả bao nhiêu nhóm?
Mẫu số liệu ghép nhóm đã cho có tất cả 5 nhóm.
Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a: 4 cách
Số cách chọn b: 3 cách
Số cách chọn c: 2 cách
Số cách chọn d: 1 cách
=> Số các số có 4 chữ số khác nhau được tạo thành là 4! = 24 cách