Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 2: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Số học sinh lớp 11A là:

    Số học sinh lớp 11A là:

    4 + 6 + 15 + 12 + 10 + 6 + 4 + 3 = 60 (học sinh)

  • Câu 3: Thông hiểu

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm bao nhiêu phần trăm?

    Chuyển mẫu dữ liệu sang dạng ghép nhóm:

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm số phần trăm là: \frac{11 + 9 + 1}{40}.100\% =52,5\%

  • Câu 4: Thông hiểu

    Từ các chữ số 9;1;5;7;2 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và nhỏ hơn 276?

    Gọi \overline{abc} là số tự nhiên có ba chữ số khác nhau và nhỏ hơn 276.

    Trường hợp 1: a = 1

    Số cách chọn \overline{abc}1.4.3 = 12 số.

    Trường hợp 2: a = 2;b = 7

    Số cách chọn \overline{abc} là: 1.1.2 = 2 số.

    Trường hợp 3: \left\lbrack \begin{matrix}
a = 2;b = 1 \\
a = 2;b = 5 \\
\end{matrix} ight.

    Số cách chọn \overline{abc} là: 1.2.3 = 6 số.

    Vậy có 20 số thỏa mãn yêu cầu bài toán.

  • Câu 5: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện

    Tần số

    [1; 5)

    6

    [5; 10)

    19

    [10; 15)

    13

    [15; 20)

    20

    [20; 25)

    12

    [25; 30)

    11

    [30; 35)

    6

    [35; 40)

    5

    Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?

    Ta có:

    Đại diện

    Tần số

    Tần số tích lũy

    [1; 5)

    6

    6

    [5; 10)

    19

    25

    [10; 15)

    13

    38

    [15; 20)

    20

    58

    [20; 25)

    12

    70

    [25; 30)

    11

    81

    [30; 35)

    6

    87

    [35; 40)

    5

    92

     

    N = 92

     

    Ta có: \frac{N}{4} = \frac{92}{4} =23

    => Nhóm chứa Q_{1}[5; 10) (vì 23 nằm giữa các tần số tích lũy 6 và 25).

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 5;m = 6,f = 19;c = 10 -5 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 5 + \dfrac{23 - 6}{19}.5 \approx9,47

  • Câu 6: Thông hiểu

    Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 cầu trắng, 7 quả cầu đỏ và 15 quả cầu xanh. Hộp thứ hai chứa 10 cầu trắng, 6 quả cầu đỏ và 9 quả cầu xanh. Từ mỗi hộp lấy ngẫu nhiên ra một quả cầu. Tính xác suất để hai quả lấy ra có màu giống nhau.

    Gọi A là biến cố “Quả cầu được lấy ra từ hộp thứ nhất là màu trắng”, B là biến cố “Quả cầu được lấy ra từ hộp thứ hai là màu trắng”

    Ta có: P(A) = \frac{3}{25};P(B) =
\frac{10}{25}

    Vì A và B là hai biến cố độc lập.

    Nên xác suất để hai quả cầu lấy ra đều màu trắng là

    P(AB) = P(A).P(B) = \frac{3}{25}.\frac{10}{25} =
\frac{30}{625}

    Tương tự xác suất để hai quả cầu lấy ra đều:

    Màu xanh: \frac{15}{25}.\frac{9}{25} =
\frac{135}{625}

    Mảu đỏ: \frac{7}{25}.\frac{6}{25} =
\frac{42}{625}

    Theo quy tắc cộng, xác suất để hai quả lấy ra có màu giống nhau:

    \frac{30}{625} + \frac{135}{625} + \frac{42}{625}
= \frac{207}{625}

  • Câu 7: Nhận biết

    Từ 7 chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số từ 4 chữ số khác nhau?

     Số tự nhiên có 4 chữ số khác nhau được tạo thành từ dãy số đã cho có dạng:

    \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a là: 7 cách

    Số cách chọn b là 6 cách

    Số cách chọn c là 5 cách

    Số cách chọn d là 4 cách

    Áp dụng quy tắc nhân ta có số các chữ số được tạo thành thỏa mãn yêu cầu bài toán là: 7 . 6 . 5 . 4 (số)

  • Câu 8: Nhận biết

    Một nhóm 11 học sinh tham gia một kỳ thi. Số điểm thi của 11 học sinh đó được sắp xếp từ thấp đến cao như sau (thang điểm 10): 0;0;3;6;6;7;7;8;8;8;9. Tìm số trung bình của mẫu số liệu (tính chính xác đến hàng phần trăm).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{0.2 + 3.1 + 6.2 +
7.2 + 8.3 + 9}{11} = 5,64

  • Câu 9: Nhận biết

    Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Có thể lập được số các số tự nhiên có 4 chữ số với các chữ số khác nhau là 4! = 24 số

  • Câu 10: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn khẳng định đúng?

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    f_{0}

    [50; 55)

    12

    f_{1}

    [55; 60)

    10

    f_{2}

    [60; 65)

    6

     

    [65; 70)

    5

     

    [70; 75)

    8

     

    => Nhóm chứa mốt là: [50; 55)

  • Câu 11: Thông hiểu

    Hai người cùng đi câu cá. Xác suất để X câu được (ít nhất một con) cá là 0,1; xác suất để Y câu được cá là 0,15. Sau buổi đi câu hai người cùng góp cá lại. Xác suất để hai bạn X và Y không trở về tay không bằng:

    Xác suất để X không câu được cá là 1 - 0,1 = 0,9

    Xác suất để Y không câu được cá là 1 - 0,15 = 0,85

    Xác xuất X và Y trở về tay không (không có con cá nào) là

    P = P(A.B) = P(A).P(B) = 0,9 . 0,85 = 0,765

    => Xác suất X và Y ko trở về tay ko là: 1 - 0,765 = 0,235

  • Câu 12: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Số cách chọn 2 nữ trong 4 nữ là C_{4}^{2}
= 6 do đó xác suất của biến cố này là \frac{6}{15} = \frac{2}{5}.

  • Câu 13: Thông hiểu

    Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:

    Chiều cao (cm)

    Số học sinh

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    x

    [165; 170)

    26

    [170; 175)

    y

    [175; 180)

    3

    Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?

    Đáp án:

    x = 40

    y = 5

    Đáp án là:

    Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:

    Chiều cao (cm)

    Số học sinh

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    x

    [165; 170)

    26

    [170; 175)

    y

    [175; 180)

    3

    Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?

    Đáp án:

    x = 40

    y = 5

    Ta có 100 học sinh tham gia đo chiều cao khi đó:

    5 + 18 + x + 26 + y + 3 = 100

    => x + y = 48 (*)

    Mặt khác số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm suy ra x = 5y (**)

    Từ (*) và (**) ta có hệ phương trình: \left\{ \begin{matrix}x + y = 48 \\x = 5y \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 40 \\y = 5 \\\end{matrix} ight.

  • Câu 14: Nhận biết

    Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 15]

    4

    (15; 30]

    12

    (30; 45]

    17

    (45; 60]

    7

    Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.

  • Câu 15: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Mốt của dữ liệu bằng bao nhiêu?

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

     

    f_{0}f_{1}f_{2}

     

    \Rightarrow l = 40;f_{0} = 9;f_{1} =12;f_{2} = 10;c = 60 - 40 = 20

    Khi đó mốt của dữ liệu được tính như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{\left(f_{1} - f_{0} ight) + \left( f_{1} - f_{2} ight)}.c

    \Rightarrow M_{0} = 40 + \frac{12 -9}{12 - 9 + 12 - 10}.20 = 52

  • Câu 16: Vận dụng

    Cho các chữ số 0;1;2;3;4;5;6;7. Giả sử tập hợp M là tập hợp các số tự nhiên có 4 chữ số phân biệt được chọn từ các chữ số đã cho. Lấy ngẫu nhiên một số x \in M. Xác suất để chọn được x > 2020?

    Gọi số phần tử của tập hợp M là n(M) =
7.A_{7}^{3} = 1470

    Số phần tử của không gian mẫu là: n(\Omega) = C_{1470}^{1} = 1470

    Gọi A là biến cố chọn được số lớn hơn 2020.

    Giả sử số tự nhiên có 4 chữ số là x =
\overline{abcd} \in M ta có: x >
2020 nên ta có các trường hợp sau:

    TH1: a = 2;b = 0 \Rightarrow c \in
\left\{ 3;4;5;6;7 ight\} nên c có 5 cách chọn và d có 5 cách chọn.

    Do đó trường hợp này có: 1.1.5.5 =
25 số.

    TH2: a = 2;b \in \left\{ 1;3;4;5;6;7
ight\} thì \overline{cd}A_{6}^{2} cách chọn và sắp xếp.

    Do đó trường hợp này có 1.6.A_{6}^{2} =
180 số.

    TH3: a \in \left\{ 3;4;5;6;7
ight\} thì \overline{bcd}A_{7}^{3} cách chọn và sắp xếp.

    Do đó trường hợp này có 5.A_{7}^{3} =
1050 số.

    Vậy xác suất cần tính là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1255}{1470} =
\frac{251}{294}.

  • Câu 17: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 18: Vận dụng

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 19: Vận dụng

    Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.

    Số tự nhiên có 7 chữ số có dạng: \overline {abcdefg}

    Xét trường hợp có chữ số 0 đứng đầu

    Số cách chọn vị trí cho chữ số 2 là: C_7^2

    Số cách chọn vị trí cho chữ số 3 là: C_5^3

    Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là A_8^2

    => Số các số được tạo thành là:  C_7^2.C_5^3.A_8^2 = 11760

    Xét trường hợp không có chữ số 0 đứng đầu

    Ta có:

    Vì a = 0 => a có 1 cách chọn

    Số cách chọn vị trí cho chữ số 2 là: C_6^2

    Số cách chọn vị trí cho chữ số 3 là: C_4^3

    Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách

    => Số các số được tạo thành là: C_2^6.C_4^3.7 = 420

    Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số

  • Câu 20: Thông hiểu

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Thăm một bạn không quá một ngày).

    Ta có: 1 tuần = 7 ngày

    Mà mỗi ngày A đến thăm một bạn.

    Ngày thứ nhất có 12 cách chọn

    Ngày thứ hai có 11 cách chọn

    Ngày thứ ba có 10 cách chọn

    Ngày thứ tư có 9 cách chọn

    Ngày thứ năm có 8 cách chọn

    Ngày thứ sáu có 7 cách chọn

    Ngày thứ bảy có 6 cách chọn

    => Số kế hoạch có thể lập được là: 12 . 11 . 10 . 9 . 8 . 7 . 6 = 3 991 680 kế hoạch

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 53 lượt xem
Sắp xếp theo