Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?

    Số học sinh tham gia khảo sát là: 40 học sinh.

    Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm \frac{19.100\%}{40} = 47,5\%

  • Câu 2: Thông hiểu

    Biểu đồ dưới đây thể hiện điểm kiểm tra của 20 học sinh:

    Tính điểm trung bình của 20 học sinh trên?

    Ta có bảng sau:

    Khoảng điểm

    Điểm đại diện

    Tần số

    Tích các giá trị

    (0; 10]

    5

    2

    10

    (10; 20]

    15

    5

    75

    (20; 30]

    25

    6

    150

    (30; 40]

    35

    4

    140

    (40; 50]

    45

    3

    135

    Tổng

     

    N = 20

    510

    Số điểm trung bình:

    \overline{x} = \frac{510}{20} =25,5

  • Câu 3: Nhận biết

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 4: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ:

    Chọn vị trí cho hai nhóm 3 nam và 3 nữ có 2 cách chọn (1 nhóm ở vị trí chẵn và nhóm còn lại ở vị trí lẻ)

    Xếp 3 nam có: 3.2.1 = 6 cách xếp

    Xếp 3 nữ có: 3.2.1 = 6 cách xếp

    Vậy có 2.(3.2.1)2 = 72 cách xếp

  • Câu 5: Vận dụng

    Gọi P là tập hợp các số tự nhiên có 5 chữ số khác nhau được tạo thành từ các phần tử của tập A = \left\{ 0;1;2;3;4;5;6
ight\}. Chọn ngẫu nhiên một số từ tập P. Tính số phần tử của biến cố H “chọn được số tự nhiên chia hết cho 15”.

    Ta có H là biến cố số tự nhiên được chọn chia hết cho 15.

    Số tự nhiên có 5 chữ số khác nhau và chia hết cho 15 được tạo thành từ tập A có dạng \overline{abcde}

    Ta có: \left\{ \begin{matrix}
15 = 3.5 \\
(3,5) = 1 \\
\end{matrix} ight. do đó \overline{abcde} \vdots 15 \Leftrightarrow \left\{
\begin{matrix}
\overline{abcde} \vdots 5 \\
\overline{abcde} \vdots 3 \\
\end{matrix} ight. suy ra (a +
b + c + d) \vdots 3 khi và chỉ khi

    TH1: e = 1 khi đó \overline{abcde} \vdots 3 \Rightarrow (a + b + c +
d) \vdots 3 khi và chỉ khi \left\lbrack \begin{matrix}
a;b;c;d \in \left\{ 1;2;3;6 ight\} \\
a;b;c;d \in \left\{ 1;2;4;5 ight\} \\
a;b;c;d \in \left\{ 1;3;5;6 ight\} \\
a;b;c;d \in \left\{ 2;3;5;6 ight\} \\
a;b;c;d \in \left\{ 3;4;5;6 ight\} \\
\end{matrix} ight.

    Vậy trong trường hợp này có 5.4! = 120 số tự nhiên

    TH2: e = 5 khi đó \overline{abcde} \vdots 3 \Rightarrow (a + b + c +
d + 5) \vdots 3

    \Rightarrow (a + b + c + d) \vdots
3 dư 1 khi và chỉ khi \left\lbrack
\begin{matrix}
a;b;c;d \in \left\{ 0;1;2;4 ight\} \\
a;b;c;d \in \left\{ 0;1;3;6 ight\} \\
a;b;c;d \in \left\{ 0;3;4;6 ight\} \\
a;b;c;d \in \left\{ 1;2;3;4 ight\} \\
a;b;c;d \in \left\{ 1;2;4;6 ight\} \\
\end{matrix} ight.

    Vậy trong trường hợp này có 3.3.3.2.1 + 2.4! = 102 số tự nhiên

    Do đó n(H) = 120 + 102 = 222

  • Câu 6: Nhận biết

    Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?

    Vì các quả cầu trắng hoặc đen đều được đánh số phân biệt nên mỗi lần lấy ra một quả cầu bất kì là một lần chọn.

    Nếu chọn một quả trắng có 6 cách.

    Nếu chọn một quả đen có 3 cách.

    Theo quy tắc cộng, ta có 6 + 3 = 9 cách chọn.

  • Câu 7: Thông hiểu

    Cho P(A) =
0,5;P(B) = 0,4;P(AB) = 0,2. Chọn khẳng định đúng?

    Theo giả thiết ta có:

    P(A.B) = P(A).P(B)

    = 0,5.0,4 = 0,2 = P(AB)

    Vậy hai biến cố A và B là hai biến cố độc lập.

  • Câu 8: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Nhóm chứa tứ phân vị thứ nhất và nhóm chứa tứ phân vị thứ ba lần lượt là:

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

  • Câu 9: Thông hiểu

    Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở. Tìm mốt của mẫu dữ liệu.

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

    [100; 200)

    7

    [200; 300)

    12

    [300; 400)

    18

    [400; 500)

    16

    [500; 600)

    10

    [600; 700)

    5

    Quan sát bảng thống kê ta thấy tần số cao nhất là 18 nằm trong nhóm [300; 400)

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

     

    [100; 200)

    7

     

    [200; 300)

    12

    {f_0}

    [300; 400)

    18

    {f_1}

    [400; 500)

    16

    {f_2}

    [500; 600)

    10

     

    [600; 700)

    5

     

    \Rightarrow l = 300;f_{0} = 12;f_{1} =18;f_{2} = 16;c = 400 - 300 = 100

    Khi đó ta tính mốt như sau:

    \begin{matrix}  {M_0} = l + \dfrac{{{f_1} - {f_0}}}{{2{f_1} - {f_0} - {f_2}}}.c \hfill \\   \Rightarrow {M_0} = 300 + \dfrac{{18 - 12}}{{2.18 - 12 - 16}}.100 = 375 \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Chọn ngẫu nhiên một biển số xe gắn máy cùng một họ F1, mỗi biển số có 4 chữ số. Tính xác suất để biển số có hai chữ số đầu giống nhau và hai chữ số sau giống nhau, biết 4 chữ số đó không hoàn toàn giống nhau?

    Gọi A là biến cố "Biển số có hai chữ số đầu giống nhau, hai chữ số sau giống nhau và 4 chữ số đó không hoàn toàn giống nhau"

    Tìm |\Omega|

    Ta tìm "số" có 4 chữ số, chữ số đầu tiên có thể bằng 0

    Giả sử \overline{abcd} có bốn chữ số chữ số đầu tiên có thể bằng 0.

    Có 10 cách chọn a, 10 cách chọn b, 10 cách chọn c và 10 cách chọn d.

    Vậy có 104 số có 4 chữ số, chữ số đầu tiên có thể bằng

    \Rightarrow |\Omega| =
10^{4}

    Tìm \left| \Omega_{A}
ight|

    Ta tìm "số" các số có 4 chữ số, trong đó hai chữ số đầu giống nhau, hai chữ số sau giống nhau và 4 chữ số đó không hoàn toàn giống nhau, chữ số đầu tiên có thể bằng 0.

    Giả sử \overline{mmpp} là một số như mô tả

    Có 10 cách chọn m và 9 cách chọn p

    Khi đó \left| \Omega_{A} ight| = 10.9 =
90 phần tử.

    Xác suất cần tính là: P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{10.9}{10^{4}} = \frac{9}{1000} =
0,009.

  • Câu 11: Nhận biết

    Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.

    Chiều cao (h)

    Số học sinh

    130 < h ≤ 140

    2

    140 < h ≤ 150

    4

    150 < h ≤ 160

    9

    160 < h ≤ 170

    13

    170 < h ≤ 180

    8

    180 < h ≤ 190

    3

    190 < h ≤ 200

    1

    Tìm khoảng chứa trung vị?

    Ta có:

    Chiều cao (h)

    Số học sinh

    Tần số tích lũy

    130 < h ≤ 140

    2

    2

    140 < h ≤ 150

    4

    6

    150 < h ≤ 160

    9

    15

    160 < h ≤ 170

    13

    28

    170 < h ≤ 180

    8

    36

    180 < h ≤ 190

    3

    39

    190 < h ≤ 200

    1

    40

    Ta lại có: N = 40 \Rightarrow \frac{N}{2}= 20

    => Nhóm chứa trung vị là: (160; 170]

  • Câu 12: Thông hiểu

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26

    Đáp án là:

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là:

    8 + 16 + 4 = 28 (học sinh)

  • Câu 13: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 14: Nhận biết

    Lượng nước tiêu thụ trong một tháng của các hộ gia đình trong một khu chung cư được ghi lại như sau:

    Lượng nước (m3)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    [100; 120)

    Số hộ gia đỉnh

    6

    12

    10

    7

    4

    2

    Giá trị đại diện của nhóm chứa mốt của mẫu số liệu trên là.

    Vì nhóm chứa mốt của mẫu số liệu là nhóm \lbrack 20;40)nên giá trị đại diện của nhóm này là 30.

  • Câu 15: Vận dụng

    Trong một thí nghiệm lai tạo cây bơ, biết rằng quả tròn là tính trạng trội hoàn toàn so với quả dài. Cho cây quả tròn thuần chủng thụ phấn với cây quả dài ta được đời cây F1 toàn là cây quả tròn. Tiếp tục cho cây đời F1 thụ phấn với nhau và thu hoạch được các cây con mới. Lần lượt chọn ngẫu nhiên 2 cây con mới. Tính xác suất của biến cố trong 2 cây con mới được chọn có đúng 1 cây quả tròn?

    Quy ước gene A: quả tròn và gene a: quả dài

    Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ quả tròn so với quả dài là 3 : 1

    Gọi A_{1} là biến cố cây được chọn lần thứ nhất là quả tròn

    A_{2} là biến cố cây được chọn lần thứ hai là quả tròn.

    Ta có: A_{1};A_{2} độc lập và P\left( A_{1} ight) = P\left( A_{2}
ight) = \frac{3}{4}

    Xác suất của biến cố có đúng 1 quả tròn trong 2 cây được lấy ra:

    P\left( A_{1}\overline{A_{2}} \cup
\overline{A_{1}}A_{2} ight) = P\left( A_{1}\overline{A_{2}} ight) +
P\left( \overline{A_{1}}A_{2} ight)

    = P\left( A_{1} ight)P\left(
\overline{A_{2}} ight) + P\left( \overline{A_{1}} ight)P\left( A_{2}
ight)

    = \frac{3}{4}.\frac{1}{4} +
\frac{1}{4}.\frac{3}{4} = \frac{3}{8}

  • Câu 16: Thông hiểu

    Chọn ngẫu nhiên ba người, biết rằng không có ai sinh vào năm nhuận. Hãy tính xác suất để có ít nhất hai người có sinh nhật trùng nhau (cùng ngày, cùng tháng).

    Gọi A là biến cố “Trong 3 người được chọn, có ít nhất 2 người cùng sinh nhật”.

    Khi đó biến cố \overline{A} là “Ba người được chọn có ngày sinh đôi một khác nhau”.

    Số trường hợp có thể là 365^{3}

    Số trường hợp thuận lợi là cho biến cố \overline{A} là 365 364 363

    Vậy P\left( \overline{A} ight) =
\frac{365.3634.363}{365^{3}} \Rightarrow P(A) = 1 -
\frac{365.3634.363}{365^{3}} \approx 0,0082

  • Câu 17: Nhận biết

    Thời gian chạy trung bình cự li 1000m (giây) của các bạn học sinh là

    Thời gian chạy trung bình cự li 1000m (giây) của các bạn học sinh là:

    \overline{x} = \frac{126.3 + 128.7 +
130.15 + 132.10 + 134.5}{40} = 130,35(giây)

  • Câu 18: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong lớp?

    Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: C_{40}^3 = 9880 cách

  • Câu 19: Vận dụng

    Cho dãy số liệu:

    30, 32, 45, 54, 74, 78, 108, 112, 66, 76, 88,

    40, 34, 30, 35, 35, 44, 66, 75, 84, 95, 96.

    Chuyển mẫu số liệu trên thành dạng ghép nhóm, các nhóm có độ dài bằng nhau, trong đó có nhóm [63; 72). Tính số nhóm dữ liệu tối đa được tạo thành.

    Trong các nhóm số liệu có nhóm [63; 72) thì độ dài của nhóm là: 10 

    Khoảng dữ liệu đã cho là: 112 – 30 = 82

    Ta có \frac{82}{10} \approx8,2

    Vậy số nhóm tối đa là 9 nhóm.

  • Câu 20: Nhận biết

    Gieo đồng thười hai con xúc xắc cân đối và đồng chất. Xét biến cố sau:

    M: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 7”.

    N: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 4”.

    T: “Tổng số chấm xuất hiện trên hai con xúc xắc là số nguyên tố”.

    Hai biến cố nào xung khắc với nhau?

    Cặp biến cố M và N là xung khắc vì M, N không đồng thời xảy ra.

    Cặp biến cố M, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 thì cả M, T xảy ra.

    Cặp biến cố N, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 thì cả N, T đều xảy ra.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo