Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Chọn mô tả đúng dưới đây?
Mô tả không gian mẫu đúng là:
Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Chọn mô tả đúng dưới đây?
Mô tả không gian mẫu đúng là:
Cho dãy số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có chẵn, mỗi số có 5 chữ số trong đó có đúng hai số lẻ, 2 số lẻ đó đứng cạnh nhau.
Gọi số tự nhiên có hai chữ số lẻ khác nhau từ các số 0, 1, 2, 3, 4, 5, 6 là m
Số cách chọn được m là:
Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa M và ba trong bốn chữ số 0; 2; 4; 6
Gọi là số thỏa mãn yêu cầu bài toán
Trường hợp 1: Nếu a = m ta có:
Số cách chọn a là 1 cách
Số cách chọn b, c, d là cách
Trướng hợp 2: Nếu a khác m thì ta có:
Số cách chọn a là 3 cách
Nếu b = m thì có 1 cách chọn b và cách chọn c, d
Nếu c = m thì có 1 cách chọn c và cach chọn b, d
=> Số các số được tạo thành là:
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Xác định giá trị đại diện của nhóm dữ liệu thứ ba?
Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.
Nhóm dữ liệu thứ ba là [4; 6)
=> Giá trị đại diện của nhóm dữ liệu thứ ba là:
Trong một phép thử có không gian mẫu kí hiệu là
và
là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?
Khẳng định sai là: “ khi và chỉ khi
chắc chắn”.
Vì B là biến cố chắc chắn thì P(B) = 1.
Một bình đựng 5 quả cầu xanh và 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu khác màu là:
Số quả cầu có trong bình là: 5 + 4 + 3 = 12 quả
Số phần tử không gian mẫu là:
Giả sử A là biến cố "3 quả cầu khác màu"
=> Số phần tử của biến cố A là:
=> Xác suất để được 3 quả cầu khác màu là
Giả sử có bảy bông hoa khác nhau và ba lọ hoa khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?
Số cách xếp bảy bông hoa khác nhau vào ba lọ hoa khác nhau là số chỉnh hợp chập 3 của 7 phần tử.
=> Có cách.
Cho hai thùng giấy đựng các viên bi trong đó:
Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88
Cho hai thùng giấy đựng các viên bi trong đó:
Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88
Ta có các kết quả thuận lợi cho biến cố A như sau:
Thùng 1 lấy ra 1 viên bi trắng, thùng 2 lấy được 1 viên bi trắng có: cách.
Thùng 1 lấy ra 1 viên bi đỏ, thùng 2 lấy được 1 viên bi đỏ có: cách.
Thùng 1 lấy ra 1 viên bi xanh, thùng 2 lấy được 1 viên bi xanh có: cách.
Suy ra số phần tử của biến cố A là:
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Số cách chọn 2 nữ trong 4 nữ là do đó xác suất của biến cố này là
.
Cho hai biến cố A và B có
ta kết luận hai biến cố A và B là:
Ta có: P(A) + P(B) = 1/3 + 1/4 = 7/12 ≠ 1/2 = P(A ∪ B)
Suy ra P(A) + P(B) ≠ P(A ∪ B)
=> Hai biến cố A và B không xung khắc
Áp dụng công thức xác suất tổng hai biến cố ta có:
Mà
=> Hai biến cố A và B là hai biến cố độc lập.
Hoàn thành bảng số liệu sau:
Cân nặng | Giá trị đại diện | Số học sinh |
[40,5; 45,5) | 43 | 7 |
[45,5; 50,5) | 48 | 16 |
[50,5; 55,5) | 53 | 10 |
[55,5; 60,5) | 58 | 5 |
[60,5; 65,5) | 63 | 4 |
[65,5; 70,5) | 68 | 2 |
Hoàn thành bảng số liệu sau:
Cân nặng | Giá trị đại diện | Số học sinh |
[40,5; 45,5) | 43 | 7 |
[45,5; 50,5) | 48 | 16 |
[50,5; 55,5) | 53 | 10 |
[55,5; 60,5) | 58 | 5 |
[60,5; 65,5) | 63 | 4 |
[65,5; 70,5) | 68 | 2 |
Trong mỗi khoảng cân nặng, giá trị đại diện là giá trị trung bình của giá trị hai đầu mút nên ta hoàn thành bảng số liệu như sau:
Cân nặng | Giá trị đại diện | Số học sinh |
[40,5; 45,5) | 7 | |
[45,5; 50,5) | 16 | |
[50,5; 55,5) | 10 | |
[55,5; 60,5) | 5 | |
[60,5; 65,5) | 4 | |
[65,5; 70,5) | 2 |
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Cỡ mẫu của mẫu số liệu là:
Cỡ mẫu của mẫu số liệu là:
Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:
5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |
Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là
. Xác định tần suất nhóm
trong mẫu dữ liệu ghép nhóm thu được?
Ta chia thành các nhóm có độ dài là 5
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.
Ta có bảng ghép nhóm như sau:
Thời gian | Số học sinh |
[0; 5) | 6 |
[5; 10) | 10 |
[10; 15) | 11 |
[15; 20) | 9 |
[20; 25) | 1 |
[25; 30) | 1 |
[3; 35) | 2 |
Ta có tần suất của nhóm là:
Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?
Lấy hai đội bất kỳ trong 15 đội bóng tham gia thi đấu ta được một trận đấu. Vậy số trận đấu chính là một tổ hợp chập 2 của 15 phần tử (đội bóng đá).
Như vậy, ta có trận đấu.
Bảng số liệu sau đây thể hiện tuổi thọ của các bóng đèn (đơn vị: giờ):
1144 | 1134 | 1162 | 1130 | 1120 | 1160 | 1116 |
1179 | 1165 | 1150 | 1155 | 1177 | 1109 | 1142 |
1121 | 1103 | 1145 | 1131 | 1133 | 1170 | 1127 |
1164 | 1147 | 1157 | 1136 | 1166 | 1111 | 1168 |
1115 | 1150 | 1101 | 1125 | 1152 | 1132 | 1140 |
Từ mẫu số liệu trên, nếu ghép các số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau thì độ dài của mỗi nhóm số liệu bằng bao nhiêu?
Khoảng biến thiên là 1179 – 1101 = 78
Để số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia thành các nhóm có độ dài là 20.
Ta chia thành các nhóm sau: [1100; 1120), [1120; 1140), [1140; 1160), [1160; 1180).
Xác suất sút bóng phạt đền 11m của hai cầu thủ A và B lần lượt là
và
. Biết rằng mỗi cầu thủ sút một quả phạt đền và hai người sút độc lập. Tìm xác suất để ít nhất 1 người sút bóng thành công?
Xác suất sút không thành công của cầu thủ A là
Xác suất sút không thành công của cầu thủ B là
Xác suất cả hai cầu thủ sút không thành công là
=> Xác suất để ít nhất 1 người sút bóng thành công là:
Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.
Khoảng chiều cao (cm) | [150; 155) | [155; 160) | [160; 165) | [165; 170) |
Số học sinh | 12 | 13 | 9 | 10 |
Mẫu số liệu trên có bao nhiêu nhóm?
Quan sát bảng số liệu ta thấy mẫu số liệu có 4 nhóm.
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa mốt và tính giá trị mốt?
Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:
Xét nhóm [7; 9) ta có:
Xét nhóm [9; 11) ta có:
Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.
Biến cố B là biến cố chọn trong T một số chia hết cho 5
Biến cố số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.
Gọi số tự nhiên có 4 chữ số có dạng:
Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.
Do đó số phần tử của A là
Số chia hết cho 5 có hai dạng . Do đó số phần tử của B là
Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: . Do đó số phần tử của
là:
Vậy số phần tử biến cố P là:
Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Cỡ mẫu của mẫu số liệu ghép nhóm là:
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tổng | N = 100 |
Tính trung vị của mẫu số liệu ghép nhóm?
Ta có:
Đối tượng | Tần số | Tần số tích lũy |
[150; 155) | 15 | 15 |
[155; 160) | 11 | 26 |
[160; 165) | 39 | 65 |
[165; 170) | 27 | 92 |
[170; 175) | 5 | 97 |
[175; 180) | 3 | 100 |
Cỡ mẫu là:
=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)
Do đó:
Khi đó trung vị là: