Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở.

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

    [100; 200)

    7

    [200; 300)

    12

    [300; 400)

    18

    [400; 500)

    16

    [500; 600)

    10

    [600; 700)

    5

    Tìm thu nhập trung bình của các hộ gia đình.

    Ta có:

    Thu nhập đại diện (nghìn đồng)

    Hộ gia đình

    Tích các giá trị

    50

    5

    250

    150

    7

    1050

    250

    12

    3000

    350

    18

    6300

    450

    16

    7200

    550

    10

    5500

    650

    5

    3250

    Tổng

    N = 73

    26550

    Thu nhập trung bình của các hộ gia đình là:

    \overline{x} = \frac{26550}{73} \approx364

  • Câu 2: Nhận biết

    Bạn muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy bạn có bao nhiêu cách chọn

    Số cách chọn một cây bút mực là tổ hợp chập 1 của 8: C_8^1 = 8 cách 

    Số cách chọn một cây bút chì là tổ hợp chập 1 của 8: C_8^1 = 8 cách

    => Số cách chọn một cây bút mực và một cây bút chì là: 8 . 8 = 64 cách

  • Câu 3: Thông hiểu

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm bao nhiêu phần trăm?

    Chuyển mẫu dữ liệu sang dạng ghép nhóm:

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm số phần trăm là: \frac{11 + 9 + 1}{40}.100\% =52,5\%

  • Câu 4: Thông hiểu

    Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:

    Chiều cao (cm)

    Số học sinh

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    x

    [165; 170)

    26

    [170; 175)

    y

    [175; 180)

    3

    Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?

    Đáp án:

    x = 40

    y = 5

    Đáp án là:

    Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:

    Chiều cao (cm)

    Số học sinh

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    x

    [165; 170)

    26

    [170; 175)

    y

    [175; 180)

    3

    Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?

    Đáp án:

    x = 40

    y = 5

    Ta có 100 học sinh tham gia đo chiều cao khi đó:

    5 + 18 + x + 26 + y + 3 = 100

    => x + y = 48 (*)

    Mặt khác số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm suy ra x = 5y (**)

    Từ (*) và (**) ta có hệ phương trình: \left\{ \begin{matrix}x + y = 48 \\x = 5y \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 40 \\y = 5 \\\end{matrix} ight.

  • Câu 5: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 6: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 9 cách

    Số cách chọn b là 9 cách

    Số cách chọn c là 8 cách

    Số cách chọn d là 7 cách

    => Số các số tự nhiên có 4 chữ số được tạo thành là: 9 . 9 . 8 . 7 = 4536 số

  • Câu 7: Thông hiểu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Tính cân nặng trung bình của học sinh lớp 11H?

    Ta có: N = 46

    Cân nặng (kg)

    Giá trị đại diện

    Số học sinh

    [45; 50)

    47,5

    5

    [50; 55)

    52,5

    12

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    5

    [70; 75)

    72,5

    8

    Cân nặng trung bình của học sinh lớp 11H là:

    \overline{x} = \frac{47,5.5 + 52,5.12 +57,5.10 + 62,5.6 + 67,5.5 + 72,5.8}{46} \approx 59,46(kg)

  • Câu 8: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 9: Thông hiểu

    Một người bỏ ngẫu nhiên ba lá thu vào vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư bỏ đúng phong bì của nó.

    Xét các bộ \left( x_{1};x_{2};x_{3}
ight) trong đó \left(
x_{1};x_{2};x_{3} ight) là một hoán vị của tập A = \left\{ 1;2;3 ight\}

    Ở đây x_{i} = i,(i = 1,2,3) tức là lá thư thứ i đã bỏ đúng địa chỉ.

    Gọi \Omega là tập họp tất cả các khả năng bỏ ba lá thư vào 3 phong bì, khi đó n_{\Omega} = 3! = 6

    Gọi A là biên cố "Có ít nhất một lá thư bő đúng phong bì".

    Các khả năng thuận lợi cho biến cố A là \Omega_{A} = \left\{
(1;2;3),(1;3;2),(3;2;1),(2,1,3) ight\}

    Vậy \left| \Omega_{A} ight| =
4 xác suất cần tính là P(A) =
\frac{2}{3}

  • Câu 10: Nhận biết

    Giả sử có bảy bông hoa khác nhau và ba lọ hoa khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?

    Số cách xếp bảy bông hoa khác nhau vào ba lọ hoa khác nhau là số chỉnh hợp chập 3 của 7 phần tử.

    => Có A_7^3 = 210 cách.

  • Câu 11: Thông hiểu

    Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:

     Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.

    Trường hợp 1: Số 9 đứng đầu

    Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.

    => Trường hợp 1 có 9 số được lập

    Trường hợp 2: Số 8 đứng đầu

    Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần

    Vậy cả 2 trường hợp có 9 + 1 = 10 số

  • Câu 12: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh tham gia khảo sát là:

    Số học sinh tham gia khảo sát là:

    8 + 16 + 4 + 2 + 2 = 32 (học sinh)

  • Câu 13: Vận dụng

    Gọi P là tập hợp các số tự nhiên có 5 chữ số khác nhau được tạo thành từ các phần tử của tập A = \left\{ 0;1;2;3;4;5;6
ight\}. Chọn ngẫu nhiên một số từ tập P. Tính số phần tử của biến cố H “chọn được số tự nhiên chia hết cho 15”.

    Ta có H là biến cố số tự nhiên được chọn chia hết cho 15.

    Số tự nhiên có 5 chữ số khác nhau và chia hết cho 15 được tạo thành từ tập A có dạng \overline{abcde}

    Ta có: \left\{ \begin{matrix}
15 = 3.5 \\
(3,5) = 1 \\
\end{matrix} ight. do đó \overline{abcde} \vdots 15 \Leftrightarrow \left\{
\begin{matrix}
\overline{abcde} \vdots 5 \\
\overline{abcde} \vdots 3 \\
\end{matrix} ight. suy ra (a +
b + c + d) \vdots 3 khi và chỉ khi

    TH1: e = 1 khi đó \overline{abcde} \vdots 3 \Rightarrow (a + b + c +
d) \vdots 3 khi và chỉ khi \left\lbrack \begin{matrix}
a;b;c;d \in \left\{ 1;2;3;6 ight\} \\
a;b;c;d \in \left\{ 1;2;4;5 ight\} \\
a;b;c;d \in \left\{ 1;3;5;6 ight\} \\
a;b;c;d \in \left\{ 2;3;5;6 ight\} \\
a;b;c;d \in \left\{ 3;4;5;6 ight\} \\
\end{matrix} ight.

    Vậy trong trường hợp này có 5.4! = 120 số tự nhiên

    TH2: e = 5 khi đó \overline{abcde} \vdots 3 \Rightarrow (a + b + c +
d + 5) \vdots 3

    \Rightarrow (a + b + c + d) \vdots
3 dư 1 khi và chỉ khi \left\lbrack
\begin{matrix}
a;b;c;d \in \left\{ 0;1;2;4 ight\} \\
a;b;c;d \in \left\{ 0;1;3;6 ight\} \\
a;b;c;d \in \left\{ 0;3;4;6 ight\} \\
a;b;c;d \in \left\{ 1;2;3;4 ight\} \\
a;b;c;d \in \left\{ 1;2;4;6 ight\} \\
\end{matrix} ight.

    Vậy trong trường hợp này có 3.3.3.2.1 + 2.4! = 102 số tự nhiên

    Do đó n(H) = 120 + 102 = 222

  • Câu 14: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Số cách chọn 2 nữ trong 4 nữ là C_{4}^{2}
= 6 do đó xác suất của biến cố này là \frac{6}{15} = \frac{2}{5}.

  • Câu 15: Vận dụng

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    161

    150

    154

    165

    168

    161

    154

    162

    150

    151

    162

    164

    171

    165

    158

    154

    156

    172

    160

    170

    153

    159

    161

    170

    162

    165

    166

    168

    165

    164

    154

    152

    153

    156

    158

    162

    160

    161

    173

    166

    161

    159

    162

    167

    168

    159

    158

    153

    154

    159

    Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?

    Độ dài nhóm: 170 – 165 = 5

    Khoảng biến thiên: 173 – 150 = 23

    Ta có: \frac{23}{5} = 4,6 vậy ta chia thành 5 nhóm như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Tổng

    50

    Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.

  • Câu 16: Thông hiểu

    Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?

    Gọi H là biến cố “Có một giáo viên nữ môn Hóa trong đoàn”

    S là biến cố “Có một giáo viên nữ môn Sinh trong đoàn”

    T là biến cố “Có một giáo viên nữ môn Thể dục trong đoàn”

    Ta có: \left\{ \begin{matrix}
P(H) = \frac{3}{6} = \frac{1}{2};P(S) = \frac{2}{5};P(T) = \frac{1}{3}
\\
P\left( \overline{H} ight) = \frac{1}{2};P\left( \overline{S} ight)
= \frac{3}{5};P\left( \overline{T} ight) = \frac{2}{3} \\
\end{matrix} ight.

    Gọi X là biến cố “Có đúng một giáo viên nữ trong đoàn”.

    Ta có X = H\overline{S}\overline{T} \cup
\overline{H}S\overline{T} \cup \overline{H}\overline{S}T

    \Rightarrow P(X) = P\left(
H\overline{S}\overline{T} \cup \overline{H}S\overline{T} \cup
\overline{H}\overline{S}T ight)

    = P\left( H\overline{S}\overline{T}
ight) + P\left( \overline{H}S\overline{T} ight) + P\left(
\overline{H}\overline{S}T ight)

    Lại có: \left\{ \begin{matrix}P\left( H\overline{S}\overline{T} ight) =\dfrac{3}{6}.\dfrac{3}{5}.\dfrac{2}{3} \\P\left( \overline{H}S\overline{T} ight) =\dfrac{3}{6}.\dfrac{2}{5}.\dfrac{2}{3} \\P\left( \overline{H}\overline{S}T ight) =\frac{3}{6}.\dfrac{3}{5}.\dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow P(X) = \frac{13}{30}

  • Câu 17: Nhận biết

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Độ dài nhóm dữ liệu là: 5

    Đáp án là:

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Độ dài nhóm dữ liệu là: 5

     Đáp án đúng là: 5.

  • Câu 18: Nhận biết

    Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm như sau:

    Thời gian (phút)

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số học sinh

    7

    13

    9

    18

    22

    6

    Nhóm chứa trung vị là:

    Cỡ mẫu của bảng số liệu này là n =
75, nên nhóm chứa trung vị là nhóm chứa giá trị thứ 38, suy ra đó là nhóm \lbrack 30;40)

  • Câu 19: Nhận biết

    Chiều cao một số cây được ghi lại trong bảng số liệu dưới đây:

    Chiều cao h (cm)

    Số cây

    130 < h ≤ 140

    3

    140 < h ≤ 150

    7

    150 < h ≤ 160

    5

    Nhóm chứa trung vị là:

    Ta có:

    Chiều cao h (cm)

    Số cây

    Tần số tích lũy

    130 < h ≤ 140

    3

    3

    140 < h ≤ 150

    7

    10

    150 < h ≤ 160

    5

    15

    Tổng

    N = 15

     

    Ta có: \frac{N}{2} = \frac{15}{2} =7,5

    => Nhóm chứa trung vị là: 140 < h ≤ 150

  • Câu 20: Vận dụng

    Biết rằng xác suất để thắng một trận game là 30\%. Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn 0,95?

    Gọi n là số trận người đó chơi.

    A là biến cố người đó thắng ít nhất 1 trận

    Suy ra \overline A là biến cố người đó không thắng trận nào.

    \overline A  = \overline {{A_1}} .\overline {{A_2}} .\overline {{A_3}} ...\overline {{A_n}} trong đó \overline {{A_i}} là biến cố người đó thắng trận thứ i và P\left( {\overline {{A_i}} } ight) = 0,7;i = \overline {1,n}

    \Rightarrow \left\{ \begin{matrix}
P\left( \overline{A} ight) = P\left( \overline{A_{1}} ight).P\left(
\overline{A_{2}} ight).P\left( \overline{A_{3}} ight)...P\left(
\overline{A_{n}} ight) = 0,7^{n} \\
P(A) = 1 - P\left( \overline{A} ight) = 1 - 0,7^{n} \\
\end{matrix} ight.

    Ta có bất phương trình

    1 - 0,7^{n} > 0,95

    \Leftrightarrow 0,7^{n} <
0,05

    \Leftrightarrow n >\log_{0,7}0,05

    Vậy giá trị nhỏ nhất của n bằng 9.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 53 lượt xem
Sắp xếp theo