Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Ghi các kết quả vào ô trống:

    + Số nhóm của mẫu dữ liệu: 8

    + Độ dài nhóm số liệu: 10

    Đáp án là:

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Ghi các kết quả vào ô trống:

    + Số nhóm của mẫu dữ liệu: 8

    + Độ dài nhóm số liệu: 10

    + Mẫu số liệu trên được chia thành 8 nhóm.

    + Độ dài nhóm số liệu là 10

  • Câu 2: Nhận biết

    Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Có thể lập được số các số tự nhiên có 4 chữ số với các chữ số khác nhau là 4! = 24 số

  • Câu 3: Thông hiểu

    Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt xuất hiện là một số nguyên tố nhỏ hơn 9?

    Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{6}^{1}.C_{6}^{1}.C_{6}^{1} =
216

    Gọi B là biến cố '' Tổng số chấm trên các mặt của ba lần gieo là một số nguyên tố nhỏ hơn 9 ''

    Ta có các số nguyên tố nhỏ hơn 9 gồm: 2, 3, 5, 7.

    Bộ các số tương ứng với số chấm có tổng bằng 2: không có.

    Bộ các số tương ứng với số chấm có tổng bằng 3: (1,1,1): 1 cách

    Bộ các số tương ứng với số chấm có tổng bằng 5: (1,1,3): 3 cách; (1,2,2): 3 cách

    Bộ các số tương ứng với số chấm có tổng bằng 7: (1,1,5): 3 cách; (1,2,4): 6 cách; (1,3,3): 3 cách; (2,3,2): 3 cách.

    Do đó số phần tử của biến cố B là \left|
\Omega_{B} ight| = 22

    Vậy xác suất cần tìm là: P(B) =
\frac{\left| \Omega_{B} ight|}{|\Omega|} = \frac{22}{216} =
\frac{11}{108}

  • Câu 4: Nhận biết

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Đáp án là:

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Ta có:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40 ≤ x < 50

    45

    4

    50 ≤ x < 60

    55

    5

    60 ≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

  • Câu 5: Thông hiểu

    Tính số tuổi trung bình của những người trong khu vực thể hiện dưới bảng số liệu sau đây:

    Nhóm tuổi

    Số lượng người

    [0; 10)

    6

    [10; 20)

    12

    [20; 30)

    10

    [30; 40)

    32

    [40; 50)

    22

    [50; 60)

    18

    [60; 70)

    15

    [70; 80)

    5

    [80; 90)

    4

    [90; 100)

    3

    Trong mỗi nhóm tuổi, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:

    Nhóm tuổi

    Số lượng người

    5

    6

    15

    12

    25

    10

    35

    32

    45

    22

    55

    18

    65

    15

    75

    5

    85

    4

    95

    3

     

    N = 127

    Tuổi trung bình là:

    \overline{x} = \frac{5.6 + 15.12 + 25.10+ 35.32 + 45.22 + 55.18 + 65.15 + 75.5 + 85.4 + 95.3}{127}

    \overline{x} = \frac{5535}{127} \approx44

  • Câu 6: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 7: Nhận biết

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

  • Câu 8: Nhận biết

    Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.

    Khoảng chiều cao (cm)

    [145; 150)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    Số học sinh

    6

    12

    13

    9

    10

    Mẫu số liệu trên có bao nhiêu nhóm?

    Quan sát bảng số liệu ta thấy mẫu số liệu có 5 nhóm.

  • Câu 9: Vận dụng

    Biết rằng xác suất để thắng một trận game là 30\%. Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn 0,95?

    Gọi n là số trận người đó chơi.

    A là biến cố người đó thắng ít nhất 1 trận

    Suy ra \overline A là biến cố người đó không thắng trận nào.

    \overline A  = \overline {{A_1}} .\overline {{A_2}} .\overline {{A_3}} ...\overline {{A_n}} trong đó \overline {{A_i}} là biến cố người đó thắng trận thứ i và P\left( {\overline {{A_i}} } ight) = 0,7;i = \overline {1,n}

    \Rightarrow \left\{ \begin{matrix}
P\left( \overline{A} ight) = P\left( \overline{A_{1}} ight).P\left(
\overline{A_{2}} ight).P\left( \overline{A_{3}} ight)...P\left(
\overline{A_{n}} ight) = 0,7^{n} \\
P(A) = 1 - P\left( \overline{A} ight) = 1 - 0,7^{n} \\
\end{matrix} ight.

    Ta có bất phương trình

    1 - 0,7^{n} > 0,95

    \Leftrightarrow 0,7^{n} <
0,05

    \Leftrightarrow n >\log_{0,7}0,05

    Vậy giá trị nhỏ nhất của n bằng 9.

  • Câu 10: Nhận biết

    Từ các số 1, 3, 5 có thể lập được bao nhiêu số tự nhiên khác nhau có ít hơn 4 chữ số

    Số các số có 1 chữ số là: 3

    Số các số có 2 chữ số là: 32 = 9

    Số các số có 3 chữ số là: 33 = 27

    => Số các số tự nhiên khác nhau có ít hơn 4 chữ số được tạo thành là: 3 + 9 + 27 = 39

  • Câu 11: Thông hiểu

    Cho tập hợp E = {0; 1; 2; 3; 4; 5; 6; 7} có thể lập được bao nhiêu số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn?

    Số các chữ số có 5 chữ số khác nhau được tạo thành từ các chữ số đã cho có dạng: 

    \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Do E là số chẵn => e \in \left\{ {0;2;4;6} ight\}

    Trường hợp 1: e = 0

    Số cách chọn a là 7 cách

    Số cách chọn b là 6 cách

    Số cách chọn c là 5 cách

    Số cách chọn d là 4 cách

    => Số các chữ số được tạo thành là: 7.6.5.4.1 = 840 (số)

    Trường hợp 2: e \in \left\{ {2;4;6} ight\}

    Số cách chọn e là 3 cách

    Số cách chọn a là 6 cách (vì a khác 0)

    Số cách chọn e là 6 cách

    Số cách chọn e là 5 cách

    Số cách chọn e là 4 cách

    => Số các chữ số được tạo thành là: 3.6.6.5.4 = 2160 (số)

    Vậy số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn có thể lập được là:

    840 + 2160 = 3000 số

  • Câu 12: Thông hiểu

    Tìm số trung bình của mẫu dữ liệu ghép nhóm dưới đây:

    Nhóm

    Tần số

    (2; 4]

    3

    (4; 6]

    4

    (6; 8]

    2

    (8; 10]

    1

    Ta có:

    Giá trị đại diện

    Tần số

    Tích các giá trị

    3

    3

    9

    5

    4

    20

    7

    2

    14

    9

    1

    9

    Tổng

    N = 10

    52

    Số trung bình là:

    \overline{x} = \frac{52}{10} =5,2

  • Câu 13: Thông hiểu

    Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất đúng với người nhận?

    Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.

    Do đó số phần tử của không gian mẫu là: 5! = 120

    Gọi B là biến cố “Lá thứ nhất đúng với người nhận”.

    Lá thứ nhất có đúng 1 cách chọn.

    Lá thứ 2 có 4 cách chọn.

    Lá thứ 3 có 3 cách chọn

    Lá thứ 4 có 2 cách chọn

    Lá thứ 5 có 1 cách chọn

    Suy ra n(B) = 24 \Rightarrow P(B) =
\frac{24}{120} = \frac{1}{5}

  • Câu 14: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{2} = 50=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    \Rightarrow \Delta Q = Q_{3} - Q_{1}
\approx 7

  • Câu 15: Vận dụng

    Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?

    Đáp án: 396

    Đáp án là:

    Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?

    Đáp án: 396

    Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.

    Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ

    Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.

    Ta có các trường hợp như sau:

    TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn

    C_{6}^{1}.C_{6}^{4} = 90

    TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn

    C_{6}^{2}.C_{6}^{3} = 300

    TH3: 5 thẻ đều ghi số lẻ C_{6}^{5} =
6

    \Rightarrow n(A) = 90 + 300 + 6 =
396

  • Câu 16: Thông hiểu

    Kết quả đo chiều cao một nhóm các học sinh nam lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Khi chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 5 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau ta được các nhóm là:

    Ta có:

    Khoảng biến thiên là 174 - 160 =14

    Để chia số liệu thành 5 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 3

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 175.

    Khi đó ta có các nhóm là: \lbrack160;163),\lbrack 163;166),\lbrack 166;169),\lbrack 169;172),\lbrack172;175)

  • Câu 17: Thông hiểu

    Kết quả chạy 50m của học sinh lớp 11A (đơn vị: giây) được liệt kê như sau:

    7,8

    7,7

    7,5

    7,8

    7,7

    7,6

    8,7

    7,6

    7,5

    7,5

    7,3

    7,1

    8,1

    8,4

    7,0

    7,1

    7,2

    7,3

    7,4

    8,5

    8,3

    7,2

    7,1

    7,0

    6,7

    6,6

    8,6

    8,2

    6,9

    6,8

    6,5

    6,2

    6,3

      

    Tính phần trăm số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây?

    Từ số liệu thống kê đã cho, ta xác định được tần số của các lớp như sau:

    Thời gian (giây)

    Tần suất (%)

    [6,0; 6,5)

    6,06

    [6,5; 7,0)

    15,15

    [7,0; 7,5)

    30,3

    [7,5; 8,0)

    27,27

    [8,0; 8,5)

    12,12

    [8,5; 9)

    9,1

    Tổng

    100%

    Suy ra số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây chiếm số phần trăm là:

    30,3\% + 27,27\% + 12,12\% =69,69\%

  • Câu 18: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Nhóm chứa tứ phân vị thứ nhất và nhóm chứa tứ phân vị thứ ba lần lượt là:

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

  • Câu 19: Thông hiểu

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

     Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Nếu a = 9 => Số cách chọn b là 9 cách => Số các số tạo thành là 9 số

    Nếu a = 8 => Số cách chọn b là 8 cách => Số các số tạo thành là 8 số

    Nếu a = 7 => Số cách chọn b là 7 cách => Số các số tạo thành là 7 số

    Nếu a = 6 => Số cách chọn b là 6 cách => Số các số tạo thành là 6 số

    Nếu a = 5 => Số cách chọn b là 5 cách => Số các số tạo thành là 5 số

    Nếu a = 4 => Số cách chọn b là 4 cách => Số các số tạo thành là 4 số

    Nếu a = 3 => Số cách chọn b là 3 cách => Số các số tạo thành là 3 số

    Nếu a = 2 => Số cách chọn b là 2 cách => Số các số tạo thành là 2 số

    Nếu a = 1 => Số cách chọn b là 1 cách => Số các số tạo thành là 1 số

    => Số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 9 + 8 + ... + 2 + 1 = 45 số

  • Câu 20: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 50 lượt xem
Sắp xếp theo