Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    161

    150

    154

    165

    168

    161

    154

    162

    150

    151

    162

    164

    171

    165

    158

    154

    156

    172

    160

    170

    153

    159

    161

    170

    162

    165

    166

    168

    165

    164

    154

    152

    153

    156

    158

    162

    160

    161

    173

    166

    161

    159

    162

    167

    168

    159

    158

    153

    154

    159

    Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?

    Độ dài nhóm: 170 – 165 = 5

    Khoảng biến thiên: 173 – 150 = 23

    Ta có: \frac{23}{5} = 4,6 vậy ta chia thành 5 nhóm như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Tổng

    50

    Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.

  • Câu 2: Thông hiểu

    Tính khoảng biến thiên của mẫu dữ liệu cho dưới đây:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Khoảng biến thiên mẫu dữ liệu ghép nhóm được đưa ra bởi công thức:

    Khoảng biến thiên = Giới hạn trên của khoảng cao nhất – Giới hạn dưới của khoảng thấp nhất

    Giới hạn trên của khoảng cao nhất là: 80

    Giới hạn dưới của khoảng thấp nhất là: 10

    => Khoảng biến thiên là: 80 – 10 = 70

  • Câu 3: Vận dụng

    Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:

     Một con súc sắc cân đối đồng chất được gieo 5 lần

    => Số phần tử của không gian mẫu là: {6^5} = 7776

    Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"

    => Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}

    => n\left( H ight) = 15.6.6 = 540

    => Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:

    P\left( H ight) = \frac{{n\left( H ight)}}{{n\left( \Omega  ight)}} = \frac{{540}}{{7776}} = \frac{{15}}{{126}}

  • Câu 4: Nhận biết

    Thực hiện gieo con xúc xắc sau đó gieo một đồng tiền xu. Mô tả không gian mẫu.

    Mỗi kết quả của phép thử là cặp kết quả của phép thử gieo xúc xắc viết trước và gieo đồng tiền viết sau nên không gian mẫu là:

    \Omega =
\{(1,S);(1,N);(2,S);(2,N);(3,S);(3,N);(4,S);(4,N);(5,S);(5,N);(6,S);(6,N)\}

  • Câu 5: Thông hiểu

    Sắp xếm 4 bạn nam và 4 bạn nữ vào một bàn tròn. Biết mỗi bạn chỉ ngồi 1 chỗ và bàn có đủ 8 chỗ ngồi. Tính xác suất sao cho hai bạn cùng giới không ngồi cạnh nhau?

    Gọi A là biến cố 2 người không cùng giới ngồi cạnh nhau

    n là số cách sắp xếp người xung quanh bàn tròn

    Mỗi cách sắp xếm là hoán vị của 8 vị trí, khi đó số hoán vị cần tìm là 8!

    Mỗi hoán vị không đổi nếu ta thực hiện vòng quanh nên mỗi hoán vị đã được tính 8 lần.

    Vậy n = \frac{8!}{8} = 7!

    Xếp 4 nữ vào 4 vị trí ta có: \frac{4!}{4}
= 3! cách

    Xếp 4 nam vào 4 vị trí qua 4 khoảng, số cách sắp xếp 4!

    Vậy P(A) = \frac{3!.4!}{7!} =
\frac{1}{35}

  • Câu 6: Thông hiểu

    Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt không nhỏ hơn 16?

    Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{6}^{1}.C_{6}^{1}.C_{6}^{1} =
216

    Gọi A là biến cố '' Tổng số chấm trên các mặt của ba lần gieo không nhỏ hơn 16”.

    Ta có bộ các số tương ứng với số chấm có tổng không nhỏ hơn 16 là (4;6;6); (6;4;6), (6;6;4); (5;5;6), (6;5;5); (5;6;5); (5;6;6), (6;5;6), (6;6;5) và (6;6;6).

    Do đó số phần tử của biến cố A là: \left|
\Omega_{A} ight| = 10

    Vậy xác suất cần tìm là: P(A) =
\frac{\left| \Omega_{A} ight|}{|\Omega|} = \frac{5}{108}

  • Câu 7: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Giá trị đại diện cho nhóm số liệu thứ năm là:

    Nhóm thứ năm trong mẫu số liệu ghép nhóm là [60; 70) có giá trị đại diện là:

    \frac{60 + 70}{2} = 65

  • Câu 8: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 9: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 60;80). Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40). Đúng||Sai

    d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là 52;71. Sai||Đúng

    Đáp án là:

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 60;80). Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40). Đúng||Sai

    d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là 52;71. Sai||Đúng

    a) Điểm trung bình của lớp 11A là:

    \overline{x} = \frac{5.10 + 9.30 + 12.50
+ 10.70 + 6.90}{42} \approx 51,43

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 40;60)

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =
31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80
- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{31,5 - 26}{10}.20 =71

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

     

    f_{0} f_{1} f_{2}

     

    \Rightarrow l = 40;f_{0} = 9;f_{1} =
12;f_{2} = 10;c = 60 - 40 = 20

    Khi đó mốt của dữ liệu được tính như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{\left(
f_{1} - f_{0} ight) + \left( f_{1} - f_{2} ight)}.c

    \Rightarrow M_{0} = 40 + \frac{12 -
9}{12 - 9 + 12 - 10}.20 = 52

  • Câu 10: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa trung vị của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

  • Câu 11: Nhận biết

    Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:

    Độ dài của nhóm là: 2 - 1,5 =0,5

  • Câu 12: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tần số tích lũy

    8

    20

    34

    44

    50

    Ta có: \frac{3.N}{4} = \frac{3.50}{4} =37,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 34,f = 10;c =5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c= 25 + \dfrac{37,5 - 34}{10}.5 =26,75

  • Câu 13: Thông hiểu

    Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?

     Xếp 5 quyển sách Văn kề nhau có 5! cách

    Coi 5 quyển sách văn là một quyển sách và xếp cùng 7 quyển sách Toán khác có 8! cách

    Áp dụng quy tắc nhân ta có: 5! . 8! cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau.

  • Câu 14: Vận dụng

    Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?

    Đáp án: 396

    Đáp án là:

    Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?

    Đáp án: 396

    Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.

    Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ

    Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.

    Ta có các trường hợp như sau:

    TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn

    C_{6}^{1}.C_{6}^{4} = 90

    TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn

    C_{6}^{2}.C_{6}^{3} = 300

    TH3: 5 thẻ đều ghi số lẻ C_{6}^{5} =
6

    \Rightarrow n(A) = 90 + 300 + 6 =
396

  • Câu 15: Thông hiểu

    Cho B = \{1, 2, 3, 4, 5, 6\}. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?

    Số tự nhiên có 6 chữ số có dạng: \overline {abcdef}

    Số tự nhiên chẵn => f ∈ {2; 4; 6}

    => Có 3 cách chọn f

    Số cách chọn a, b, c, d, e là: A_5^5 = 120

    => Số các số chẵn có 6 chữ số đôi một khác nhau là: 3.120 = 360 số

  • Câu 16: Thông hiểu

    Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:

    7,3

    7,8

    7,5

    6,6

    8,5

    8,3

    8,3

    7,5

    8,4

    8,6

    7,4

    8,2

    8,0

    8,1

    8,7

    8,2

    8,8

    8,1

    7,7

    7,8

    8,5

    7,0

    7,9

    6,9

    9,4

    9,0

    8,0

    8,7

    8,9

    7,6

    8,0

    8,2

    7,9

    7,7

    7,2

    Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:

    Khoảng biến thiên: 9,4 – 6,6 = 2,8

    Ta chia thành các nhóm sau:

    \lbrack 6,5;7),\lbrack 7;7,5),\lbrack7,5;8),\lbrack 8;8,5),\lbrack 8,5;9),\lbrack 9;9,5)

    Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:

    Chiều cao (m)

    Số cây

    [6,5; 7)

    2

    [7; 7,5)

    4

    [7,5; 8)

    9

    [8; 8,5)

    11

    [8,5; 9)

    7

    [9; 9,5)

    2

    Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).

  • Câu 17: Nhận biết

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Mốt của dữ liệu thuộc nhóm nào trong mẫu dữ liệu trên?

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

  • Câu 18: Nhận biết

    Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?

    Chọn 1 người ngồi vào 1 vị trí bất kì.

    Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: 3! = 6 cách.

    Vậy số cách sắp xếp là 6 cách.

  • Câu 19: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 20: Nhận biết

    Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:

    Lấy một số từ dãy số đã cho ta được: n\left( \Omega  ight) =6

    Giả sử A là biến cố "lấy được một số nguyên tố"

    Ta có: A = {2} => n\left( A ight) = 1

    => Xác suất để lấy được một số nguyên tố là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 53 lượt xem
Sắp xếp theo