Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khảo sát thời gian sử dụng điện thoại di động trong 1 ngày của một số học sinh khối 10 thu được mẫu số liệu ghép nhóm sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    3

    5

    14

    15

    5

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là:

    Mẫu số liệu trên có 3 + 5 + 14 + 15 + 5 =
42 (học sinh).

    Tứ phân vị thứ nhất là x_{11} \in \lbrack
40;\ 60).

    Vậy nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là: \lbrack 40;\ 60).

  • Câu 2: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Nhóm chứa tứ phân vị thứ nhất và nhóm chứa tứ phân vị thứ ba lần lượt là:

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

  • Câu 3: Nhận biết

    Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:

    Lấy một số từ dãy số đã cho ta được: n\left( \Omega  ight) =6

    Giả sử A là biến cố "lấy được một số nguyên tố"

    Ta có: A = {2} => n\left( A ight) = 1

    => Xác suất để lấy được một số nguyên tố là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 4: Nhận biết

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 5: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{1} \cup M_{2} \cup
M_{3} \cup M_{4}

  • Câu 6: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 60;80). Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40). Đúng||Sai

    d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là 52;71. Sai||Đúng

    Đáp án là:

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 60;80). Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40). Đúng||Sai

    d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là 52;71. Sai||Đúng

    a) Điểm trung bình của lớp 11A là:

    \overline{x} = \frac{5.10 + 9.30 + 12.50
+ 10.70 + 6.90}{42} \approx 51,43

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 40;60)

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =
31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80
- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{31,5 - 26}{10}.20 =71

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

     

    f_{0} f_{1} f_{2}

     

    \Rightarrow l = 40;f_{0} = 9;f_{1} =
12;f_{2} = 10;c = 60 - 40 = 20

    Khi đó mốt của dữ liệu được tính như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{\left(
f_{1} - f_{0} ight) + \left( f_{1} - f_{2} ight)}.c

    \Rightarrow M_{0} = 40 + \frac{12 -
9}{12 - 9 + 12 - 10}.20 = 52

  • Câu 7: Vận dụng

    Một hộp đựng 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ và nhân 2 số ghi trên 2 thẻ với nhau. Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_9^2 = 36

    Giả sử biến cố T: " Tích hai số ghi trên hai thẻ được rút là số lẻ"

    Nghĩa là cả hai thẻ rút được đều mang số lẻ

    => Số phần tử của biến cố T là n\left( A ight) = C_5^2 = 10

    => Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{10}}{{36}} = \frac{5}{{18}}

  • Câu 8: Nhận biết

    Xét phép thử: “Gieo hai con xúc xắc 2 lần sau đó gieo một đồng tiền xu”. Gọi C = \left\{
(1,1,S);(2,2,S);(3,3,S);(4,4,S);(5,5,S);(6,6,S) ight\} là một biến cố. Đáp án nào dưới đây mô tả đúng biến cố C?

    Mô tả đúng là: “Hai lần gieo xúc xắc kết quả như nhau và đồng xu xuất hiện mặt sấp”.

  • Câu 9: Nhận biết

    Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.

    Khoảng chiều cao (cm)

    [145; 150)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    Số học sinh

    6

    12

    13

    9

    10

    Mẫu số liệu trên có bao nhiêu nhóm?

    Quan sát bảng số liệu ta thấy mẫu số liệu có 5 nhóm.

  • Câu 10: Thông hiểu

    Trong một hộp có 7 quả cầu xanh, 5 quả cầu đỏ, 4 quả cầu vàng. Chọn ngẫu nhiên 4 quả trong hộp. Hỏi có bao nhiêu cách chọn sao cho trong 4 quả cầu chọn ra có đủ 3 màu?

    Số cách chọn 2 quả xanh, 1 quả đỏ, 1 quả vàng là: C_7^2.C_5^1.C_4^1 = 420 cách

    Số cách chọn 1 quả xanh, 2 quả đỏ, 1 quả vàng là: C_7^1.C_5^2.C_4^1 = 280 cách

    Số cách chọn 1 quả xanh, 1 quả đỏ, 2 quả vàng là: C_7^1.C_5^1.C_4^2 = 210 cách

    => Số cách chọn sao cho trong 4 quả cầu chọn ra có đủ 3 màu là 420 + 280 + 210 = 910 cách

  • Câu 11: Thông hiểu

    Quan sát bảng sau và tìm mốt.

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Quan sát bảng dữ liệu ta thấy mốt của mẫu dữ liệu nằm trong khoảng [30; 40)

    Khi đó: \left\{ \begin{matrix}l = 30;f_{0} = 12;f_{1} = 22;f_{2} = 17 \\c = 40 - 30 = 10 \\\end{matrix} ight.

    Vậy mốt của dữ liệu là: M_{0} = 30 +\frac{22 - 12}{2.22 - 12 - 17}.10 \approx 30,7

  • Câu 12: Thông hiểu

    Thực hiện một khảo sát nhỏ trong lớp 11A về việc tham gia câu lạc bộ A, B, C ta được số liệu ghi lại như sau:

    Có 20% học sinh tham gia câu lạc bộ A, 15% tham gia câu lạc bộ B; 10% tham gia câu lạc bộ C.

    Có 5% học sinh tham gia câu lạc bộ A và B, 3% tham gia câu lạc bộ B và C, 4% tham gia câu lạc bộ A và C.

    Có 2% tham gia cả 3 câu lạc bộ.

    Xác suất học sinh tham gia ít nhất một câu lạc bộ là:

    Gọi A, B, C lần lượt là các biến cố học sinh tham gia câu lạc bộ A, B, C.

    Ta có:

    P(A) = 0,2;P(B) = 0,15;P(C) =
0,1

    Ta có: \left\{ \begin{matrix}
P(AB) = 0,05 \\
P(BC) = 0,03 \\
P(AC) = 0,04 \\
P(ABC) = 0,02 \\
\end{matrix} ight.

    Gọi D là biến cố học sinh tham gia ít nhất một câu lạc bộ

    \Rightarrow D = A \cup B \cup
C

    \Rightarrow P(D) = P(A \cup B \cup
C)

    = P(A) + P(B) + P(C) - P(AB) - P(BC) -
P(AC) + P(ABC)

    = 0,35 = 35\%

  • Câu 13: Vận dụng

    Trong công xưởng có một nhóm công nhân gồm 15 nữ và 5 nam. Chủ quản muốn chọn một nhóm gồm 5 công nhân để lập thành một tổ gồm 1 tổ trưởng nữ, 1 tổ phó nữ và có ít nhất 1 công nhân nam. Hãy xác định số cách lập tổ công nhân theo yêu cầu?

    Ta có:

    Số cách chọn 2 nữ làm tổ trưởng và tổ phó là A_{15}^{2} cách.

    Số cách chọn 3 công nhân còn lại là nữ là: C_{13}^{3} cách.

    Số cách chọn 3 công nhân còn lại trong 18 công nhân là C_{18}^{3} cách.

    Vậy số cách chọn 1 tổ trưởng nữ, 1 tổ phó và có ít nhất 1 nam là:

    A_{15}^{2}.\left( C_{18}^{3} - C_{13}^{3}
ight) = 111300.

  • Câu 14: Thông hiểu

    Cho bảng số liệu thống kê sau:

    Số khách hàng đến mua cà phê mỗi buổi sáng tại quầy trong 2 tuần

    69

    37

    39

    65

    31

    33

    63

    51

    44

    62

    33

    47

    55

    42

    Bảng số liệu ghép nhóm nào sau đây đúng?

    Bảng M

    Số khách hàng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số ngày

    5

    3

    2

    4

    Bảng N

    Số khách hàng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số ngày

    5

    3

    4

    2

    Bảng P

    Số khách hàng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số ngày

    5

    2

    3

    4

    Bảng Q

    Số khách hàng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số ngày

    3

    5

    2

    4

    Khoảng biến thiên là 69 – 31 = 38

    Ta chia thành các nhóm sau: [30; 40), [40; 50), [50; 60), [60; 70)

    Đếm số giá trị mỗi nhóm ta có bảng ghép nhóm

    Số khách hàng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số ngày

    5

    3

    2

    4

  • Câu 15: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Tính độ dài nhóm số liệu trong mẫu số liệu ghép nhóm trên.

    Độ dài nhóm của mẫu số liệu ghép nhóm trên là 5.

  • Câu 16: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 17: Vận dụng

    Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

    Điểm

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số trường

    4

    19

    6

    2

    3

    1

    Các mệnh đề sau đúng hay sai

    a) Số liệu đã cho cho có 35 mẫu số liệu. Đúng||Sai

    b) Số trung vị của mẫu số liệu là M_{e} =
12. Sai||Đúng

    c) Số trung bình của mẫu số liệu đã cho là 28. Sai||Đúng

    d) Ngưỡng điểm đề đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai

    Đáp án là:

    Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

    Điểm

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số trường

    4

    19

    6

    2

    3

    1

    Các mệnh đề sau đúng hay sai

    a) Số liệu đã cho cho có 35 mẫu số liệu. Đúng||Sai

    b) Số trung vị của mẫu số liệu là M_{e} =
12. Sai||Đúng

    c) Số trung bình của mẫu số liệu đã cho là 28. Sai||Đúng

    d) Ngưỡng điểm đề đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai

    a) Ta có cỡ mẫu n = 4 + 19 + 6 + 2 + 3 +
1 = 35. Vậy đáp án a) đúng.

    b) Gọi x_{1},x_{2},...,x_{35} được sắp xếp theo thứ tự không giảm.

    Khi đó, trung vị là x_{18}. Do x_{18} thuộc nhóm \lbrack 20;30) nên nhóm này chứa trung vị.

    Suy ra p = 2, a_{2} = 20, a_{3} = 30, m_{2} = 19, m_{1} = 4, a_{3} - a_{2} = 10.

    M_{e} = a_{p} + \dfrac{\dfrac{n}{2} -\left( m_{1} + ... + m_{p - 1} ight)}{m_{p}}.\left( a_{p + 1} - a_{p}ight)

    = 20 + \dfrac{\dfrac{35}{2} - 4}{19}.10 =\frac{515}{19} \approx 27,1.

    Vậy đáp án b) sai.

    c) Số trung bình của mẫu số liệu là

    \overline{x} = \frac{15 \times 4 + 25
\times 19 + 35 \times 6 + 45 \times 2 + 55 \times 3 + 65}{35} =
\frac{213}{7} \approx 30,4.

    Vậy đáp án c) sai.

    d) Điểm ngưỡng để đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.

    Cỡ mẫu n = 35

    Tứ phân vị thứ ba Q_{3}x_{27}x_{27} thuộc nhóm [30;40) nên nhóm này chứa Q_{3}.

    Do đó, \left\{ \begin{matrix}
p = 3,a_{3} = 30,m_{3} = 6 \\
m_{1} + m_{2} = 4 + 19 = 23 \\
a_{4} - a_{3} = 10 \\
\end{matrix} ight. và ta có:

    Q_{3} = 30 + \dfrac{\dfrac{3 \times 35}{4}- 23}{6}.10 = 35,42.

    Vậy để đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam ta lấy các trường có điểm chuẩn hóa trên 35.42.

    Vậy đáp án d) đúng.

  • Câu 18: Nhận biết

    Có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1, 2, . . ., 9?

    Mỗi cách xếp số tự nhiên có 5 chữ số khác nhau từ các số 1, 2, . . . , 9 là một chỉnh hợp chập 5 của 9 phần tử.

    Vậy có A_9^5 = 15120 số được tạo thành.

  • Câu 19: Thông hiểu

    Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:

    Kích thước (gram)

    [410; 420)

    [420; 430)

    [430; 440)

    [440; 450)

    [450; 460)

    [460; 470)

    [470; 480)

    Số lượng táo

    14

    20

    42

    54

    45

    18

    7

    Tính giá trị tứ phân vị thứ nhất của mẫu dữ liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Kích thước (gram)

    Số lượng táo

    Tần số tích lũy

    [410; 420)

    14

    14

    [420; 430)

    20

    34

    [430; 440)

    42

    76

    [440; 450)

    54

    130

    [450; 460)

    45

    175

    [460; 470)

    18

    193

    [470; 480)

    7

    200

    Tổng

    N = 200

     

    Ta có: \frac{N}{4} = \frac{200}{4} =50

    => Nhóm chứa tứ phân vị thứ nhất là: [430; 440)

    Khi đó ta có: \left\{ \begin{matrix}l = 430;\dfrac{N}{4} = 50;m = 34 \\f = 42,d = 440 - 430 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất được tính như sau:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 430 + \frac{50 -34}{42}.10 \approx 433,8

  • Câu 20: Thông hiểu

    Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất và lá thứ hai đúng người nhận?

    Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.

    Do đó số phần tử của không gian mẫu là: 5! = 120

    Gọi C là biến cố “Lá thứ nhất và lá thứ hai đúng người nhận”.

    Vì mỗi lá thư chỉ được chọn duy nhất 1 phong bì nên số cách chọn cả 5 lá đều đúng người nhận là 1.

    Lá thứ nhất và lá thứ 2 có đúng 1 cách chọn.

    Lá thứ 3 có 3 cách chọn

    Lá thứ 4 có 2 cách chọn

    Lá thứ 5 có 1 cách chọn

    Suy ra n(C) = 6 \Rightarrow P(C) =
\frac{6}{120} = \frac{1}{20}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo