Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một hộp chứa 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau và 5 viên bi xanh khác nhau. Gọi A là biến cố “Sắp xếp các viên bi thành một dãy sao cho các viên bi cùng màu nằm cạnh nhau”. Các kết quả thuận lợi của biến cố A là:

    Ta có:

    Số cách sắp xếp 3 viên bi đen thành một dãy bằng 3!

    Số cách sắp xếp 3 viên bi đỏ thành một dãy bằng 4!

    Số cách sắp xếp 3 viên bi xanh thành một dãy bằng 5!

    Số cách sắp xếp 3 viên bi nhóm thành một dãy bằng 3!

    Vậy số phần tử của tập hợp A là: n(A) =
3!.4!.5!.3! = 103680

  • Câu 2: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 3: Nhận biết

    Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    Số cách chọn c là 2 cách

    Số cách chọn d là 1 cách

    => Có thể lập được số các số tự nhiên có 4 chữ số với các chữ số khác nhau là 4! = 24 số

  • Câu 4: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Điểm trung bình môn của lớp 11A thuộc nhóm nào?

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Giá trị đại diện

    10

    30

    50

    70

    90

    Số học sinh

    5

    9

    12

    10

    6

    Điểm trung bình của lớp 11A là:

    \overline{x} = \frac{5.10 + 9.30 + 12.50+ 10.70 + 6.90}{42} \approx 51,43

    \Rightarrow \overline{x} \in \lbrack40;60)

  • Câu 5: Thông hiểu

    Một nhóm học sinh gồm 2 nam và 2 nữ được được sắp xếp ngẫu nhiên vào một ghế dài. Hỏi biến cố A “xếp nam và nữ ngồi xen kẽ nhau” có bao nhiêu phần tử?

    Trường hợp 1: bạn nam ngồi đầu, khi đó 2 bạn nam xếp vào 2 chỗ, nữ xếp nốt vào hai chỗ còn lại

    Số cách sắp xếp là 2!.2! = 4

    Trường hợp 2: Bạn nữ ngồi đầu, tương tự ta có 4 cách sắp xếp.

    Vậy theo quy tắc cộng số phần tử của biến cố A là 4 + 4 = 8 cách

  • Câu 6: Nhận biết

    Nhóm số liệu ghép nhóm có dạng \lbrack m;n). Khi đó giá trị đại diện của nhóm tính bằng công thức nào sau đây?

    Giá trị đại diện của một nhóm số liệu là trung bình cộng giá trị hai đầu mút của nhóm số liệu.

    Công thức tính giá trị đại diện của nhóm \lbrack m;n)\frac{m + n}{2}

  • Câu 7: Nhận biết

    Có bao nhiêu cách chọn một tổ trưởng và một tổ phó từ một nhóm 12 học sinh? Biết khả năng được chọn của mỗi học sinh trong nhóm là như nhau.

    Mỗi cách chọn 2 người từ 12 người để làm một tổ trưởng và một tổ phó là một chỉnh hợp chập 2 của 12

    Vậy số cách chọn là A_{12}^{2} =
132.

  • Câu 8: Nhận biết

    Gieo đồng thười hai con xúc xắc cân đối và đồng chất. Xét biến cố sau:

    M: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 7”.

    N: “Tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 4”.

    T: “Tổng số chấm xuất hiện trên hai con xúc xắc là số nguyên tố”.

    Hai biến cố nào xung khắc với nhau?

    Cặp biến cố M và N là xung khắc vì M, N không đồng thời xảy ra.

    Cặp biến cố M, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 thì cả M, T xảy ra.

    Cặp biến cố N, T không xung khắc vì nếu tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 thì cả N, T đều xảy ra.

  • Câu 9: Vận dụng

    Hai tuyển thủ A và B đấu với nhau trong một trận bóng bàn với quy tắc người thắng trước 3 hiệp sẽ chiến thắng chung cuộc. Tính xác suất tuyển thủ B thắng chung cuộc, biết xác suất tuyển thủ B chiến thắng mỗi hiệp là 0,4?

    Gọi số hiệp hai tuyển thủ thi đấu là x;\left( {x \in {\mathbb{N}^*}} ight)

    Để tuyển thủ B chiến thắng chung cuộc thì tuyển thủ B phải thắng 3 trận trước, do đó 3 \leqslant x \leqslant 5

    Gọi H là biến cố tuyển thủ B thắng chung cuộc. Ta có các trường hợp:

    TH1: tuyển thủ B thắng sau khi thi đấu 3 hiệp đầu, khi đó xác suất của trường hợp này là:

    P_{1} = (0,4)^{3} = 0,064

    TH2: tuyển thủ B thắng sau khi thi đấu 4 hiệp, khi đó xác suất của trường hợp này là:

    P_{2} = 3.0,6.(0,4)^{3} =
0,1152

    TH3: tuyển thủ B thắng sau khi thi đấu 5 hiệp, khi đó xác suất của trường hợp này là:

    P_{3} = C_{4}^{2}.(0,6)^{2}.(0,4)^{3} =
0,13824

    Vậy xác suất để tuyển thủ B thắng chung cuộc là

    P = P_{1} + P_{2} + P_{3} = 0,064 +
0,1152 + 0,13824 = 0,31744

  • Câu 10: Thông hiểu

    Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:

    Nữ

    6

    7

    9

    8

    10

    10

    Nam

    7

    9

    12

    14

    13

    17

    a) Khoảng biến thiên giá trị của nữ là: 4

    Khoảng biến thiên giá trị của nam là: 10

    b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11

    Đáp án là:

    Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:

    Nữ

    6

    7

    9

    8

    10

    10

    Nam

    7

    9

    12

    14

    13

    17

    a) Khoảng biến thiên giá trị của nữ là: 4

    Khoảng biến thiên giá trị của nam là: 10

    b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11

    a) Khoảng biến thiên giá trị của nữ là: 10 – 6 = 4

    Khoảng biến thiên giá trị của nam là: 17 – 7 = 10

    b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 17 -6 = 11

  • Câu 11: Vận dụng

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Biến cố nào sau đây biểu diễn biến cố chỉ bắn trúng mục tiêu 2 lần?

    Ta có: \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{i} \cap M_{j} \cap
\overline{M_{k}} \cap \overline{M_{m}} với i;j;k \in \left\{ 1;2;3;4 ight\} và đôi một khác nhau có ý nghĩa chỉ có lần thứ i; j bắn trúng bia và lần thứ k, m thì không bắn trúng.

  • Câu 12: Nhận biết

    Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?

    \left\{ \begin{matrix}H \cap K = \varnothing \\H \cup K = \Omega \\\end{matrix} ight. nên hai biến cố H và K là hai biến cố đối nhau.

  • Câu 13: Thông hiểu

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển có ít nhất một nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Chọn 2 người trong số 6 người nói trên sao cho có ít nhất một nữ là

    C_{4}^{1}.C_{2}^{1} + C_{4}^{2} = 8 + 6 =
14

    Do đó xác suất của biến cố này là \frac{14}{15}.

  • Câu 14: Thông hiểu

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Giá trị đại diện cho nhóm [155; 160) bằng:

    Giá trị đại diện của nhóm [155; 160) là \frac{155 + 160}{2} = 157,5

  • Câu 15: Nhận biết

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    21

    [15; 20)

    13

    [20; 25)

    8

    [25; 30)

    6

    Mẫu số liệu được chia thành bao nhiêu nhóm?

    Mẫu số liệu được chia thành 7 nhóm.

  • Câu 16: Thông hiểu

    Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?

    Gọi H là biến cố “Có một giáo viên nữ môn Hóa trong đoàn”

    S là biến cố “Có một giáo viên nữ môn Sinh trong đoàn”

    T là biến cố “Có một giáo viên nữ môn Thể dục trong đoàn”

    Ta có: \left\{ \begin{matrix}
P(H) = \frac{3}{6} = \frac{1}{2};P(S) = \frac{2}{5};P(T) = \frac{1}{3}
\\
P\left( \overline{H} ight) = \frac{1}{2};P\left( \overline{S} ight)
= \frac{3}{5};P\left( \overline{T} ight) = \frac{2}{3} \\
\end{matrix} ight.

    Gọi X là biến cố “Có đúng một giáo viên nữ trong đoàn”.

    Ta có X = H\overline{S}\overline{T} \cup
\overline{H}S\overline{T} \cup \overline{H}\overline{S}T

    \Rightarrow P(X) = P\left(
H\overline{S}\overline{T} \cup \overline{H}S\overline{T} \cup
\overline{H}\overline{S}T ight)

    = P\left( H\overline{S}\overline{T}
ight) + P\left( \overline{H}S\overline{T} ight) + P\left(
\overline{H}\overline{S}T ight)

    Lại có: \left\{ \begin{matrix}P\left( H\overline{S}\overline{T} ight) =\dfrac{3}{6}.\dfrac{3}{5}.\dfrac{2}{3} \\P\left( \overline{H}S\overline{T} ight) =\dfrac{3}{6}.\dfrac{2}{5}.\dfrac{2}{3} \\P\left( \overline{H}\overline{S}T ight) =\frac{3}{6}.\dfrac{3}{5}.\dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow P(X) = \frac{13}{30}

  • Câu 17: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Giá trị tứ phân vị thứ ba thuộc nhóm số liệu nào?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow\frac{3N}{4} = 45

    => Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)

  • Câu 18: Nhận biết

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tổng

    N = 100

    Mốt của mẫu số liệu thuộc nhóm số liệu nào?

    Mốt của mẫu số liệu thuộc nhóm [160; 165).

  • Câu 19: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{3} của mẫu dữ liệu ghép nhóm trên?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;m = 9,f = 7;c = 11 - 9 =2

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 9 + \frac{15 - 9}{7}.2 = \frac{75}{7}\approx 10,7

  • Câu 20: Vận dụng

    Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:

    1

    6

    2

    3

    5

    12

    5

    8

    4

    8

    10

    3

    4

    12

    2

    8

    15

    1

    17

    6

    3

    2

    8

    5

    9

    6

    8

    7

    14

    12

    Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?

    Độ dài nhóm là 10 - 5 = 5

    Khoảng biến thiên: 17 - 1 = 16

    Ta có: \frac{16}{5} = 3,2 => Số nhóm tạo thành là 4 nhóm.

    Số gi

    Tần số

    [0; 5)

    10

    [5; 10)

    13

    [10; 15)

    5

    [15; 20)

    2

    Tổng cộng

    30

    Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo