Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 15]

    4

    (15; 30]

    12

    (30; 45]

    17

    (45; 60]

    7

    Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.

  • Câu 2: Thông hiểu

    Một tổ có 9 học sinh, trong đó có 5 nam và 4 nữ được xếp thành một hàng dọc. Tính xác suất sao cho không có 2 bạn nam nào đứng kề nhau.

    Gọi A là biến cố "Xếp 9 học sinh thành một hàng dọc trong đó không có 2 bạn nam nào đứng kề nhau".

    Tìm |\Omega|

    Xếp 9 học sinh thành môt hàng dọc, có 9! cách xếp \Rightarrow |\Omega| = 9!

    Tìm \left| \Omega_{A}
ight|

    Xếp 9 học sinh thành một hàng dọc trong đó không có 2 ban nam nào đứng kề nhau.

    Vì số nam lớn hơn số nữ nên ta phải xếp một học sinh nam đứng trước rồi đến một học sinh nữ, tiếp tục cứ xếp nam nữ xen kẽ nhau, học sinh xếp cuối cùng là nam.

    Vậy số cách xếp là 5!.4! cách xếp.

    Vậy xác suất cần tính là: P(A) =
\frac{\left| \Omega_{A} ight|}{|\Omega|} = \frac{5!.4!}{9!} =
\frac{1}{126}

  • Câu 3: Vận dụng

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 4: Thông hiểu

    Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:

    Thời gian (phút)

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    Số học sinh

    8

    16

    4

    7

    12

    Hỏi số học sinh tập thể dục ít nhất 10 phút mỗi ngày chiếm bao nhiêu phần trăm?

    Số học sinh tập thể dục ít nhất 10 phút mỗi ngày là:

    4 + 7 + 12 = 23 (học sinh) chiếm \frac{23.100\%}{47} \approx49\%

  • Câu 5: Nhận biết

    Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:

    Độ dài của nhóm là: 2 - 1,5 =0,5

  • Câu 6: Nhận biết

    Giả sử M,N là hai biến cố xung khắc. Khẳng định nào sau đây đúng?

    Ta có:

    P(M \cup N) = P(M) + P(N) - P(M \capN)

    Vì M và N là hai biến cố xung khắc nên M\cap N = \varnothing

    \Rightarrow P(M \cup N) = P(M) +P(N)

  • Câu 7: Thông hiểu

    Sắp xếm 4 bạn nam và 4 bạn nữ vào một bàn tròn. Biết mỗi bạn chỉ ngồi 1 chỗ và bàn có đủ 8 chỗ ngồi. Tính xác suất sao cho hai bạn cùng giới không ngồi cạnh nhau?

    Gọi A là biến cố 2 người không cùng giới ngồi cạnh nhau

    n là số cách sắp xếp người xung quanh bàn tròn

    Mỗi cách sắp xếm là hoán vị của 8 vị trí, khi đó số hoán vị cần tìm là 8!

    Mỗi hoán vị không đổi nếu ta thực hiện vòng quanh nên mỗi hoán vị đã được tính 8 lần.

    Vậy n = \frac{8!}{8} = 7!

    Xếp 4 nữ vào 4 vị trí ta có: \frac{4!}{4}
= 3! cách

    Xếp 4 nam vào 4 vị trí qua 4 khoảng, số cách sắp xếp 4!

    Vậy P(A) = \frac{3!.4!}{7!} =
\frac{1}{35}

  • Câu 8: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Số cách chọn 2 nữ trong 4 nữ là C_{4}^{2}
= 6 do đó xác suất của biến cố này là \frac{6}{15} = \frac{2}{5}.

  • Câu 9: Thông hiểu

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?

    Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.

    Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là C_{10}^{2}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{10}^{2}.1^{8}.3^{2}.

    Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.

    Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là C_{10}^{1}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{9}^{1}.1^{9}.3^{1}.

    Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.

    Trường hợp này có 1 khả năng xảy ra.

    Vậy số phần tử của biến cố B là:

    n(B) = C_{10}^{2}.1^{8}.3^{2} +
C_{9}^{1}.1^{9}.3^{1} + 1 = 436

  • Câu 10: Nhận biết

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Tần số

    7

    13

    9

    18

    22

    6

    Mẫu số liệu có bao nhiêu nhóm?

    Mẫu số liệu đã cho có 6 nhóm.

  • Câu 11: Vận dụng

    Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.

    Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.

    Số cách chọn 8 học sinh từ hai khối là: C_{13}^8 + C_{11}^8 + C_{12}^8 = 1947

    Số cách chọn 8 học sinh bất kì là: C_{18}^8

    Số cách chọn thỏa yêu cầu bài toán: C_{18}^8 -1947=41811

  • Câu 12: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính mức doanh thu trung bình của cửa hàng?

    Đáp án: 9,4 (triệu đồng)

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính mức doanh thu trung bình của cửa hàng?

    Đáp án: 9,4 (triệu đồng)

    (Kết quả ghi dưới dạng số thập phân)

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Giá trị đại diện

    6

    8

    10

    12

    14

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Do đó doanh thu trung bình của cửa hàng là:

    \overline{x} = \frac{6.2 + 8.7 + 10.7 +12.3 + 14.1}{20} = 9,4 (triệu đồng)

    Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.

  • Câu 13: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 14: Nhận biết

    Điểm kiểm tra của một nhóm học sinh được ghi trong bảng sau:

    Điểm

    Số học sinh

    (20; 30]

    1

    (30; 40]

    1

    (40; 50]

    10

    (50; 60]

    11

    (60; 70]

    5

    (70; 80]

    2

    Số phần tử của mẫu dữ liệu ghép nhóm là:

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    (20; 30]

    1

    1

    (30; 40]

    1

    2

    (40; 50]

    10

    12

    (50; 60]

    11

    23

    (60; 70]

    5

    28

    (70; 80]

    2

    30

    Tổng

    N = 30

     

    Vậy số phần tử mẫu là N = 30

  • Câu 15: Thông hiểu

    Ước tính cân nặng trung bình của 20 người được cho trong bảng dữ liệu dưới đây:

    Cân nặng (x, kg)

    Số người

    0 < x ≤ 20

    2

    20 < x ≤ 40

    6

    40 < x ≤ 60

    7

    60 < x ≤ 80

    4

    80 < x ≤ 100

    1

    Ta có:

    Cân nặng đại diện (x, kg)

    Số người

    Tích các giá trị

    10

    2

    20

    30

    6

    180

    50

    7

    350

    70

    4

    280

    90

    1

    90

    Tổng

    N = 20

    920

    Cân nặng trung bình của 20 người đó là:

    \overline{x} =\frac{920}{20} = 46(kg)

  • Câu 16: Thông hiểu

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm bao nhiêu phần trăm?

    Chuyển mẫu dữ liệu sang dạng ghép nhóm:

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm số phần trăm là: \frac{11 + 9 + 1}{40}.100\% =52,5\%

  • Câu 17: Nhận biết

    Có bao nhiêu biển đăng kí xe máy nếu mỗi biển chứa một dãy gồm 1 chữ cái tiếp đến một chữ số khác 0 và cuối cùng là 5 chữ số?

    Chọn một chữ cái trong 26 chữ cái có 26 cách

    Chọn 1 chữ số khác 0 từ 1 đến 9 có 9 cách

    Cuối cùng 5 chữ số còn lại mỗi số có 10 cách chọn

    Vậy số các biển số xe thỏa mãn là 26.9.105 = 24300000 biển.

  • Câu 18: Thông hiểu

    Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:

     Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.

    Trường hợp 1: Số 9 đứng đầu

    Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.

    => Trường hợp 1 có 9 số được lập

    Trường hợp 2: Số 8 đứng đầu

    Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần

    Vậy cả 2 trường hợp có 9 + 1 = 10 số

  • Câu 19: Nhận biết

    Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu?

    Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng - một bông hoa hồng đỏ - một bông hoa hồng vàng), ta có:

    Có 5 cách chọn hoa hồng trắng.

    Có 6 cách chọn hoa hồng đỏ.

    Có 7 cách chọn hoa hồng vàng.

    Vậy theo quy tắc nhân ta có 5 . 6 . 7 = 210 cách

  • Câu 20: Vận dụng

    Cho ba chiếc hộp đựng các viên bi được mô tả như sau:

    Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.

    Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.

    Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.

    Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{7} Đúng||Sai

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{2}{15} Đúng||Sai

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{1}{4} Sai||Đúng

    d) Xác suất để lấy được một viên bi đỏ là \frac{13}{30} Sai||Đúng

    Đáp án là:

    Cho ba chiếc hộp đựng các viên bi được mô tả như sau:

    Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng.

    Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng.

    Hộp C chứa 2 viên bi đỏ, 2 viên bi vàng.

    Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một viên bi từ hộp đó.

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{7} Đúng||Sai

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{2}{15} Đúng||Sai

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{1}{4} Sai||Đúng

    d) Xác suất để lấy được một viên bi đỏ là \frac{13}{30} Sai||Đúng

    Gọi A là biến cố: “Chọn được hộp A”

    B là biến cố: “Chọn được hộp B”

    C là biến cố: “Chọn được hộp C”

    Ta có:

    P(A) = P(B) = P(C) =
\frac{1}{3}

    a) Xác suất để lấy được một viên bi trắng từ hộp A là: \frac{1}{3}.\frac{3}{7} = \frac{1}{7}

    b) Xác suất để lấy được viên bi màu vàng trong hộp B là \frac{1}{3}.\frac{2}{5} =
\frac{2}{15}

    c) Xác suất để lấy được viên bi đỏ trong hộp C là \frac{C_{2}^{1}}{C_{4}^{1}} =
\frac{1}{2}

    d) E là biến cố: “Bi chọn ra có màu đỏ”.

    Xác suất để lấy được một viên bi đỏ là

    P\left( E|A ight) =
\frac{4}{7};P\left( E|B ight) = \frac{3}{5};P\left( E|C ight) =
\frac{1}{2}

    Áp dụng công thức ta có:

    P(E) = P(A).P\left( E|A ight) +
P(B).P\left( E|B ight) + P(C).P\left( E|C ight)

    \Rightarrow P(E) =
\frac{1}{3}.\frac{4}{7} + \frac{1}{3}.\frac{3}{5} +
\frac{1}{3}.\frac{1}{2} = \frac{39}{70}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo