Một nhóm học sinh gồm
học sinh nam và
học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?
Có cách chọn một học sinh.
Một nhóm học sinh gồm
học sinh nam và
học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?
Có cách chọn một học sinh.
Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:
5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |
Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là
. Xác định tần suất nhóm
trong mẫu dữ liệu ghép nhóm thu được?
Ta chia thành các nhóm có độ dài là 5
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.
Ta có bảng ghép nhóm như sau:
Thời gian | Số học sinh |
[0; 5) | 6 |
[5; 10) | 10 |
[10; 15) | 11 |
[15; 20) | 9 |
[20; 25) | 1 |
[25; 30) | 1 |
[3; 35) | 2 |
Ta có tần suất của nhóm là:
Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số được chọn là số chẵn => c = {2; 4}
=> Số cách chọn c là 2 cách
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
=> Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính
?
Đáp án: 164,7
(Kết quả ghi dưới dạng số thập phân làm tròn đến chữ số thập phân thứ nhất)
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính ?
Đáp án: 164,7
(Kết quả ghi dưới dạng số thập phân làm tròn đến chữ số thập phân thứ nhất)
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)
Khi đó
“Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm
“Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm
Hoàn thành câu: Mẫu số liệu ghép nhóm là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.
Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số cách chọn a là 4 cách (Do a khác 0)
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
=> Số các số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại là 4 . 4 . 3 = 48 số
Cho mẫu dữ liệu ghép nhóm kết quả đo chiều cao (đơn vị: cm) của một nhóm học sinh lớp 11 như sau:

Số học sinh có chiều cao không vượt quá 168 cm so với tất cả các học sinh chiếm bao nhiêu phần trăm?
Số học sinh tham gia đo chiều cao là 36 học sinh
Số học sinh cao không quá 168cm là: 9 + 15 = 24 học sinh chiếm
Rút ngẫu nhiên 3 tấm thẻ từ một hộp chứa 12 thẻ được đánh số từ 1 đến 12. Tính số kết quả thuận lợi của biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”?
Số phần tử không gian mẫu:
Biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”
Suy ra biến cố “trong ba tấm thẻ chọn ra có ít nhất hai tâm thẻ ghi hai số tự nhiên liên tiếp”
Bộ ba có dạng với
có 10 bộ
Bộ ba số có dạng với
có 9 bộ
Tương tự mỗi bộ ba số có dạng đều có 9 bộ
Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Một hộp đựng 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên 2 thẻ và nhân 2 số ghi trên 2 thẻ với nhau. Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là:
Số phần tử không gian mẫu là:
Giả sử biến cố T: " Tích hai số ghi trên hai thẻ được rút là số lẻ"
Nghĩa là cả hai thẻ rút được đều mang số lẻ
=> Số phần tử của biến cố T là
=> Xác suất để tích 2 số ghi trên 2 thẻ là số lẻ là:
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.
Biến cố B là biến cố chọn trong T một số chia hết cho 5
Biến cố số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.
Gọi số tự nhiên có 4 chữ số có dạng:
Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.
Do đó số phần tử của A là
Số chia hết cho 5 có hai dạng . Do đó số phần tử của B là
Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: . Do đó số phần tử của
là:
Vậy số phần tử biến cố P là:
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
45 | 65 | 72 | 48 | 74 | 67 | 68 | 46 | 56 | 53 |
58 | 68 | 72 | 64 | 62 | 49 | 72 | 55 | 67 | 51 |
Điền số thích hợp vào bảng sau:
Tốc độ | Đại diện tốc độ | Tần số |
| 45 | 4 |
50 | 55 | 5 |
60 | 65 | 7 |
| 75 | 4 |
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
45 | 65 | 72 | 48 | 74 | 67 | 68 | 46 | 56 | 53 |
58 | 68 | 72 | 64 | 62 | 49 | 72 | 55 | 67 | 51 |
Điền số thích hợp vào bảng sau:
Tốc độ | Đại diện tốc độ | Tần số |
| 45 | 4 |
50 | 55 | 5 |
60 | 65 | 7 |
75 | 4 |
Ta có:
Tốc độ | Đại diện tốc độ | Tần số |
40 ≤ x < 50 | 45 | 4 |
50 ≤ x < 60 | 55 | 5 |
60 ≤ x < 70 | 65 | 7 |
70 ≤ x < 80 | 75 | 4 |
Gieo ngẫu nhiên một đồng tiền xu ba lần liên tiếp. Gọi D là biến cố có ít nhất hai lần gieo xuất hiện mặt sấp. Tìm biến cố đối của biến cố D?
Ta có:
Biến cố là biến cố có đúng một lần xuất hiện mặt sấp hoặc không có lần nào xuất hiện mặt sấp.
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Giá trị đại diện của nhóm thứ tư là:
Giá trị đại diện của nhóm thứ tư (hay nhóm [60; 80)) là .
Rút đồng thời ngẫu nhiên 2 thẻ từ hộp có 9 thẻ được đánh số từ 1 đến 9. Tính xác suất để tích các số ghi trên thẻ rút được là số chẵn?
Ta có: 4 thẻ ghi số chẵn là {2; 4; 6; 8} và 5 thẻ ghi số lẻ là {1; 3; 5; 7; 9}
Rút ngẫu nhiên 2 thẻ từ 9 thẻ thì ta có số cách là
Số phần tử của không gian mẫu là
Gọi A là biến cố tích các số trên thẻ rút được là số chẵn
Số phần tử của biến cố A là:
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?
Gọi hai súc sắc là M; N
Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".
Ta có C là hợp của hai biến cố xung khắc tức là
Ta có
Vì A, B là hai biến cố độc lập với nhau
Nên và B độc lập với nhau;
và A độc lập với nhau
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Ghi các kết quả vào ô trống:
+ Số nhóm của mẫu dữ liệu: 8
+ Độ dài nhóm số liệu: 10
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Ghi các kết quả vào ô trống:
+ Số nhóm của mẫu dữ liệu: 8
+ Độ dài nhóm số liệu: 10
+ Mẫu số liệu trên được chia thành 8 nhóm.
+ Độ dài nhóm số liệu là 10
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Mốt của dữ liệu thuộc nhóm nào trong mẫu dữ liệu trên?
Mốt thuộc nhóm
Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A “có đúng 2 lần xuất hiện mặt sấp”?
Gieo một đồng tiền liên tiếp 3 lần
=> Số phần tử không gian mẫu là:
Ta có:
Tính số tuổi trung bình của những người trong khu vực thể hiện dưới bảng số liệu sau đây:
Nhóm tuổi | Số lượng người |
[0; 10) | 6 |
[10; 20) | 12 |
[20; 30) | 10 |
[30; 40) | 32 |
[40; 50) | 22 |
[50; 60) | 18 |
[60; 70) | 15 |
[70; 80) | 5 |
[80; 90) | 4 |
[90; 100) | 3 |
Trong mỗi nhóm tuổi, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:
Nhóm tuổi | Số lượng người |
5 | 6 |
15 | 12 |
25 | 10 |
35 | 32 |
45 | 22 |
55 | 18 |
65 | 15 |
75 | 5 |
85 | 4 |
95 | 3 |
| N = 127 |
Tuổi trung bình là: