Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số được chọn là số chẵn => c = {2; 4}

    => Số cách chọn c là 2 cách

    Số cách chọn a là 4 cách 

    Số cách chọn b là 3 cách

    => Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số

  • Câu 2: Thông hiểu

    Một công ty xây dựng khảo sát 300 khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát ghi lại ở bảng sau:

    Mức giá

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Số khách hàng

    55

    78

    110

    45

    12

    Mức giá mua nhà trung bình là

    Ta có:

    Mức giá

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Giá trị đại diện

    12

    16

    20

    24

    28

    Số khách hàng

    55

    78

    110

    45

    12

    Mức giá mua nhà trung bình là:

    \overline{x} = \frac{55.12 + 78.16 +
110.20 + 45.24 + 12.28}{55 + 78 + 110 + 45 + 12} \approx
18,41.

    Vậy mức giá mua nhà trung bình là: 18,41(triệu đồng/m^{2}).

  • Câu 3: Nhận biết

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Độ dài nhóm dữ liệu là: 5

    Đáp án là:

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Độ dài nhóm dữ liệu là: 5

     Đáp án đúng là: 5.

  • Câu 4: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Có bao nhiêu học sinh có thời gian vui chơi từ 2 đến 8 tiếng?

    Số học sinh có thời gian vui chơi từ 2 đến 8 tiếng là:

    16 + 4 + 2 = 22 (học sinh)

  • Câu 5: Nhận biết

    Quan sát bảng sau và tìm khoảng chứa tứ phân vị thứ ba:

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Ta có:

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tổng

    Tần số

    8

    12

    22

    17

    N = 59

    Tần số tích lũy

    8

    20

    42

    59

     

    Ta có: N = 59

    \Rightarrow \frac{3N}{4} =\frac{3.59}{4} = 44,25

    Vậy nhóm chứa tứ phân vị thứ ba là: [40; 50)

  • Câu 6: Nhận biết

    Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số:

    Số tự nhiên có 4 chữ số có dạng: \overline {abcd}

    Số cách chọn a là 4 cách 

    Số cách chọn b là 4 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 4 cách

    => Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số là 44 = 256 số

  • Câu 7: Thông hiểu

    Ba xạ thủ cùng bắn vào một bia đỡ một cách độc lập. Xác suất để người thứ nhất, người thứ hai và người thứ ba bắn trúng hồng tâm lần lượt là 0,5;0,6;0,8 . Xác suất để có đúng hai người bắn trúng hồng tâm là: 0,46||0,24||0,92||0,96

    Đáp án là:

    Ba xạ thủ cùng bắn vào một bia đỡ một cách độc lập. Xác suất để người thứ nhất, người thứ hai và người thứ ba bắn trúng hồng tâm lần lượt là 0,5;0,6;0,8 . Xác suất để có đúng hai người bắn trúng hồng tâm là: 0,46||0,24||0,92||0,96

    Từ giả thiết suy ra xác suất để người thứ nhất, người thứ hai và người thứ ba không bắn trúng hồng tâm lần lượt là 0,5;0,4;0,2.

    Để có đúng 2 người bắn trúng hồng tâm ta có các trường hợp sau:

    Trường hợp 1

    + Người thứ nhất bắn trúng

    + Người thứ hai bắn trúng

    + Người thứ ba không trúng

    Xác suất: 0,5.0,6.0,2

    Trường hợp 2

    + Người thứ nhất bắn trúng

    + Người thứ hai không bắn trúng

    + Người thứ ba bắn trúng

    Xác suất: 0,5.0,4.0,8

    Trường hợp 3

    + Người thứ nhất không bắn trúng

    + Người thứ hai bắn trúng

    + Người thứ ba bắn trúng

    Xác suất: 0,5.0,6.0,8

    Vậy xác suất để có đúng 2 người bắn trúng đích là

    0,5.0,6.0,2 + 0,5.0,4.0,8 + 0,5.0,6.0,8
= 0,46

  • Câu 8: Nhận biết

    Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:

    Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là: C_{16}^4 = 1820

  • Câu 9: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Ta có: Số tự nhiên chẵn => e ∈ {0; 2; 4; 6}

    Trướng hợp 1: e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Ta có: {a e 0} => Có 5 cách chọn a

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số được tạo thành là: 3 . 5 . 5 . 4 . 3 = 900 số

    Trường hợp 2: e = 0 => Có 1 cách chọn e

    Ta có: {a e 0} => Có 6 cách chọn a

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 3 cách

    => Số các số được tạo thành là: 6 . 5 . 4 . 3 = 360 số

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 900 + 360 = 1260 số

  • Câu 10: Vận dụng

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 11: Thông hiểu

    Tính khoảng biến thiên của mẫu dữ liệu cho dưới đây:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Khoảng biến thiên mẫu dữ liệu ghép nhóm được đưa ra bởi công thức:

    Khoảng biến thiên = Giới hạn trên của khoảng cao nhất – Giới hạn dưới của khoảng thấp nhất

    Giới hạn trên của khoảng cao nhất là: 80

    Giới hạn dưới của khoảng thấp nhất là: 10

    => Khoảng biến thiên là: 80 – 10 = 70

  • Câu 12: Vận dụng

    Cho dãy số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có chẵn, mỗi số có 5 chữ số trong đó có đúng hai số lẻ, 2 số lẻ đó đứng cạnh nhau.

    Gọi số tự nhiên có hai chữ số lẻ khác nhau từ các số 0, 1, 2, 3, 4, 5, 6 là m

    Số cách chọn được m là: A_3^2

    Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa M và ba trong bốn chữ số 0; 2; 4; 6

    Gọi \overline {abcd} ;\left( {a,b,c,d \in \left\{ {m,0;2;4;6} ight\}} ight) là số thỏa mãn yêu cầu bài toán

    Trường hợp 1:  Nếu a = m ta có:

    Số cách chọn a là 1 cách

    Số cách chọn b, c, d là A_4^3 cách

    Trướng hợp 2: Nếu a khác m thì ta có:

    Số cách chọn a là 3 cách

    Nếu b = m thì có 1 cách chọn b và A_3^2 cách chọn c, d

    Nếu c = m thì có 1 cách chọn c và A_3^2 cach chọn b, d

    => Số các số được tạo thành là: A_3^2.\left[ {A_4^3 + 3\left( {1.A_3^2 + 1.A_3^2} ight)} ight] = 360

  • Câu 13: Nhận biết

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu

    Khi đó số kết quả thuận lợi cho biến cố A là: C_{3}^{2} = 3

    Vậy xác suất để cần tìm là: \frac{3}{345}

  • Câu 14: Vận dụng

    Hai tuyển thủ A và B đấu với nhau trong một trận bóng bàn với quy tắc người thắng trước 3 hiệp sẽ chiến thắng chung cuộc. Tính xác suất tuyển thủ B thắng chung cuộc, biết xác suất tuyển thủ B chiến thắng mỗi hiệp là 0,4?

    Gọi số hiệp hai tuyển thủ thi đấu là x;\left( {x \in {\mathbb{N}^*}} ight)

    Để tuyển thủ B chiến thắng chung cuộc thì tuyển thủ B phải thắng 3 trận trước, do đó 3 \leqslant x \leqslant 5

    Gọi H là biến cố tuyển thủ B thắng chung cuộc. Ta có các trường hợp:

    TH1: tuyển thủ B thắng sau khi thi đấu 3 hiệp đầu, khi đó xác suất của trường hợp này là:

    P_{1} = (0,4)^{3} = 0,064

    TH2: tuyển thủ B thắng sau khi thi đấu 4 hiệp, khi đó xác suất của trường hợp này là:

    P_{2} = 3.0,6.(0,4)^{3} =
0,1152

    TH3: tuyển thủ B thắng sau khi thi đấu 5 hiệp, khi đó xác suất của trường hợp này là:

    P_{3} = C_{4}^{2}.(0,6)^{2}.(0,4)^{3} =
0,13824

    Vậy xác suất để tuyển thủ B thắng chung cuộc là

    P = P_{1} + P_{2} + P_{3} = 0,064 +
0,1152 + 0,13824 = 0,31744

  • Câu 15: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Số cách chọn 2 nữ trong 4 nữ là C_{4}^{2}
= 6 do đó xác suất của biến cố này là \frac{6}{15} = \frac{2}{5}.

  • Câu 16: Thông hiểu

    Biểu đồ dưới đây thể hiện điểm kiểm tra của 20 học sinh:

    Tính điểm trung bình của 20 học sinh trên?

    Ta có bảng sau:

    Khoảng điểm

    Điểm đại diện

    Tần số

    Tích các giá trị

    (0; 10]

    5

    2

    10

    (10; 20]

    15

    5

    75

    (20; 30]

    25

    6

    150

    (30; 40]

    35

    4

    140

    (40; 50]

    45

    3

    135

    Tổng

     

    N = 20

    510

    Số điểm trung bình:

    \overline{x} = \frac{510}{20} =25,5

  • Câu 17: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 18: Thông hiểu

    Điểm kiểm tra của 30 học sinh được ghi trong bảng sau:

    Điểm

    Số học sinh

    (20; 30]

    1

    (30; 40]

    1

    (40; 50]

    10

    (50; 60]

    11

    (60; 70]

    5

    (70; 80]

    2

    Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên.

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    (20; 30]

    1

    1

    (30; 40]

    1

    2

    (40; 50]

    10

    12

    (50; 60]

    11

    23

    (60; 70]

    5

    28

    (70; 80]

    2

    30

    Ta có: \frac{N}{4} = \frac{30}{4} =7,5

    => Nhóm chứa tứ phân vị thứ nhất là (40; 50]

    Khi đó: \left\{ \begin{matrix}l = 40,\dfrac{N}{4} = 7,5 \\m = 2,f = 10,d = 50 - 40 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất của mẫu số liệu là:

    Q_{1} = L + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 40 + \frac{7,5 -2}{10}.10 = 45,5

  • Câu 19: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ cùng màu?

    Gọi A là biến cố lấy được 3 thẻ trắng \Rightarrow P(A) =
\frac{C_{10}^{3}}{C_{25}^{3}}

    B là biến cố lấy được 3 thẻ đỏ \Rightarrow P(B) =
\frac{C_{8}^{3}}{C_{25}^{3}}

    C là biến cố lấy được 3 thẻ xanh \Rightarrow P(C) =
\frac{C_{7}^{3}}{C_{25}^{3}}

    Gọi D là biến cố lấy được 3 thẻ cùng màu

    Khi đó D = A \cup B \cup C

    \Rightarrow P(D) = P(A) + P(B) + P(C)
\approx 0,092

  • Câu 20: Nhận biết

    “Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm

    Đáp án là:

    “Mẫu số liệu … là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.”. Cụm từ thích hợp để điền vào “…” là: Ghép nhóm||Không ghép nhóm|| Ghép nhóm và không ghép nhóm

    Hoàn thành câu: Mẫu số liệu ghép nhóm là mẫu số liệu cho dưới dạng bảng tần số của các nhóm số liệu.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo