Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:

    7,3

    7,8

    7,5

    6,6

    8,5

    8,3

    8,3

    7,5

    8,4

    8,6

    7,4

    8,2

    8,0

    8,1

    8,7

    8,2

    8,8

    8,1

    7,7

    7,8

    8,5

    7,0

    7,9

    6,9

    9,4

    9,0

    8,0

    8,7

    8,9

    7,6

    8,0

    8,2

    7,9

    7,7

    7,2

    Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:

    Khoảng biến thiên: 9,4 – 6,6 = 2,8

    Ta chia thành các nhóm sau:

    \lbrack 6,5;7),\lbrack 7;7,5),\lbrack7,5;8),\lbrack 8;8,5),\lbrack 8,5;9),\lbrack 9;9,5)

    Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:

    Chiều cao (m)

    Số cây

    [6,5; 7)

    2

    [7; 7,5)

    4

    [7,5; 8)

    9

    [8; 8,5)

    11

    [8,5; 9)

    7

    [9; 9,5)

    2

    Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).

  • Câu 2: Thông hiểu

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

     Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Nếu a = 9 => Số cách chọn b là 9 cách => Số các số tạo thành là 9 số

    Nếu a = 8 => Số cách chọn b là 8 cách => Số các số tạo thành là 8 số

    Nếu a = 7 => Số cách chọn b là 7 cách => Số các số tạo thành là 7 số

    Nếu a = 6 => Số cách chọn b là 6 cách => Số các số tạo thành là 6 số

    Nếu a = 5 => Số cách chọn b là 5 cách => Số các số tạo thành là 5 số

    Nếu a = 4 => Số cách chọn b là 4 cách => Số các số tạo thành là 4 số

    Nếu a = 3 => Số cách chọn b là 3 cách => Số các số tạo thành là 3 số

    Nếu a = 2 => Số cách chọn b là 2 cách => Số các số tạo thành là 2 số

    Nếu a = 1 => Số cách chọn b là 1 cách => Số các số tạo thành là 1 số

    => Số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 9 + 8 + ... + 2 + 1 = 45 số

  • Câu 3: Nhận biết

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tứ phân vị thứ nhất thuộc nhóm chiều cao nào?

    Ta có: N = 100

    =>N/4=100/4=25

    => Nhóm chứa tứ phân vị thứ nhất là: [115; 125)

  • Câu 4: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 5: Thông hiểu

    Cho các số 1, 2, 3, 4, 5, 6, 7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Số các số tự nhiên gồm 5 chữ số có chữ số 3 đứng đầu tiên có dạng là: \overline {3bcde}

    Do không có điều kiện về các chữ số còn lại

    => Số cách chọn các chữ số b, c, d, e là {7^4} = 2401 cách

    => Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là: 1 . 2401 = 2401 số

  • Câu 6: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 7: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tần số tích lũy

    8

    20

    34

    44

    50

    Ta có: \frac{3.N}{4} = \frac{3.50}{4} =37,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 34,f = 10;c =5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c= 25 + \dfrac{37,5 - 34}{10}.5 =26,75

  • Câu 8: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6 lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần và các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Theo bài ra ta có:

    Số các số có dạng hoán vị của 10 chữ số, trong đó mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{10!}}{{3!.2!}}

    Những số có chữ số 0 đứng tận cùng bên trái ví dụ 0222443156 ta phải bỏ đi

    Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{9!}}{{3!.2!}}

    Vậy số các số được tạo thành là: \frac{{10!}}{{3!.2!}} -\frac{{9!}}{{3!.2!}} =272160

     

  • Câu 9: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 10: Vận dụng

    Biết rằng xác suất để thắng một trận game là 30\%. Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn 0,95?

    Gọi n là số trận người đó chơi.

    A là biến cố người đó thắng ít nhất 1 trận

    Suy ra \overline A là biến cố người đó không thắng trận nào.

    \overline A  = \overline {{A_1}} .\overline {{A_2}} .\overline {{A_3}} ...\overline {{A_n}} trong đó \overline {{A_i}} là biến cố người đó thắng trận thứ i và P\left( {\overline {{A_i}} } ight) = 0,7;i = \overline {1,n}

    \Rightarrow \left\{ \begin{matrix}
P\left( \overline{A} ight) = P\left( \overline{A_{1}} ight).P\left(
\overline{A_{2}} ight).P\left( \overline{A_{3}} ight)...P\left(
\overline{A_{n}} ight) = 0,7^{n} \\
P(A) = 1 - P\left( \overline{A} ight) = 1 - 0,7^{n} \\
\end{matrix} ight.

    Ta có bất phương trình

    1 - 0,7^{n} > 0,95

    \Leftrightarrow 0,7^{n} <
0,05

    \Leftrightarrow n >\log_{0,7}0,05

    Vậy giá trị nhỏ nhất của n bằng 9.

  • Câu 11: Thông hiểu

    Hai cung thủ thực hiện bắn mỗi người một mũi tên vào bia điểm. Biết xác suất bắn trúng 10 điểm của người thứ nhất và người thứ hai lần lượt là 0,750,85. Tính xác suất để có ít nhất một cung thủ bắn trúng 10 điểm?

    Gọi A là biến cố có ít nhất một cung thủ bắn trúng 10 điểm

    Suy ra \overline{A} là biến cố không có cung thủ nào trúng 10 điểm

    \Rightarrow P\left( \overline{A} ight)
= (1 - 0,75).(1 - 0,85) = 0,0375

    \Rightarrow P(A) = 1 - P\left(
\overline{A} ight) = 1 - 0,0375 = 0,9625

  • Câu 12: Nhận biết

    Chọn ngẫu nhiên một số nguyên dương không vượt quá 20. Giả sử biến cố M là biến cố số được chọn là số nguyên tố. Mô tả nào sau đây đúng?

    Các số nguyên dương không lớn hơn 20 là: 1;2;3;4;....;20

    Các số nguyên tố không vượt quá 20 là: 2;3;5;7;11;13;17;19

    Vậy M = \left\{ 2;3;5;7;11;13;17;19ight\}

  • Câu 13: Nhận biết

    Giá trị đại diện của nhóm \lbrack
58;60)

    Giá trị đại diện của mẫu là: \frac{58 +
60}{2} = 59.

  • Câu 14: Nhận biết

    Gieo ngẫu nhiên một con xúc xắc. Hãy liệt kê các phần tử của biến cố mặt xuất hiện có số chấm chẵn?

    Ta có:

    \Omega = \left\{ 1,2,3,4,5,6
ight\}

    Vì mặt xuất hiện có số chấm chẵn nên các phần tử của biến cố cần tìm là: \left\{ 2;4;6 ight\}

  • Câu 15: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 174)

    Tần số

    8

    x

    12

    6

    Biết rằng nhóm dữ liệu có giá trị đại diện là 166 chiếm 60% tổng tần số của mẫu dữ liệu. Tìm giá trị của x?

    Nhóm số liệu có độ dài 166 là: [164; 168)

    Theo bài ra ta có:

    \frac{x.100\%}{8 + 12 + x + 6} = 60\%\Rightarrow x = 39

  • Câu 16: Nhận biết

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Đáp án là:

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Ta có:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40 ≤ x < 50

    45

    4

    50 ≤ x < 60

    55

    5

    60 ≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

  • Câu 17: Nhận biết

    Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm như sau:

    Thời gian (phút)

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số học sinh

    7

    13

    9

    18

    22

    6

    Nhóm chứa trung vị là:

    Cỡ mẫu của bảng số liệu này là n =
75, nên nhóm chứa trung vị là nhóm chứa giá trị thứ 38, suy ra đó là nhóm \lbrack 30;40)

  • Câu 18: Vận dụng

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    161

    150

    154

    165

    168

    161

    154

    162

    150

    151

    162

    164

    171

    165

    158

    154

    156

    172

    160

    170

    153

    159

    161

    170

    162

    165

    166

    168

    165

    164

    154

    152

    153

    156

    158

    162

    160

    161

    173

    166

    161

    159

    162

    167

    168

    159

    158

    153

    154

    159

    Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?

    Độ dài nhóm: 170 – 165 = 5

    Khoảng biến thiên: 173 – 150 = 23

    Ta có: \frac{23}{5} = 4,6 vậy ta chia thành 5 nhóm như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Tổng

    50

    Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.

  • Câu 19: Thông hiểu

    Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả như nhau là:

    Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất ta có:

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = {6^2} = 36

    Giả sử B là biến cố "sau hai lần gieo kết quả như nhau"

    => B = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}

    => n\left( B ight) = 6

    => Xác suất để sau hai lần gieo kết quả như nhau là: P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{6}{{36}} = \frac{1}{6}

  • Câu 20: Thông hiểu

    Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm 10) của 50 học sinh tham dự kỳ thi giữa kỳ 1 của lớp 11A, ta có bảng số liệu sau:

    Điểm

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh

    5

    7

    13

    18

    7

    Tìm mốt của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)

    Từ bảng số liệu, nhóm chứa mốt sẽ là \lbrack 6\ ;\ 8).

    Khi đó mốt là

    M_{0} = 6 + \frac{18 - 13}{(18 - 13) +
(18 - 7)}.(8 - 6) = 6,625 \approx 6,63.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo