Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tung hai lần liên tiếp một đồng xu. Giả sử biến cố B là biến cố mặt sấp xuất hiện ít nhất một lần. Khi đó biến cố đối của biến cố B là:

    Biến cố đối của biến cố B là \overline{B}: “Mặt sấp không xuất hiện lần nào” nghĩa là mặt xuất hiện ở cả hai lần đều cho mặt ngửa”.

  • Câu 2: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện

    Tần số

    [1; 5)

    6

    [5; 10)

    19

    [10; 15)

    13

    [15; 20)

    20

    [20; 25)

    12

    [25; 30)

    11

    [30; 35)

    6

    [35; 40)

    5

    Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?

    Ta có:

    Đại diện

    Tần số

    Tần số tích lũy

    [1; 5)

    6

    6

    [5; 10)

    19

    25

    [10; 15)

    13

    38

    [15; 20)

    20

    58

    [20; 25)

    12

    70

    [25; 30)

    11

    81

    [30; 35)

    6

    87

    [35; 40)

    5

    92

     

    N = 92

     

    Ta có: \frac{3.N}{4} = \frac{3.92}{4} =69

    => Nhóm chứa Q_{3}[20; 25) (vì 69 nằm giữa các tần số tích lũy 58 và 70).

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 58,f = 12;c = 25- 20 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 20 + \dfrac{69 - 58}{12}.5 \approx24,6

  • Câu 3: Thông hiểu

    Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:

    Chiều cao (cm)

    Số học sinh

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    x

    [165; 170)

    26

    [170; 175)

    y

    [175; 180)

    3

    Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?

    Đáp án:

    x = 40

    y = 5

    Đáp án là:

    Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:

    Chiều cao (cm)

    Số học sinh

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    x

    [165; 170)

    26

    [170; 175)

    y

    [175; 180)

    3

    Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?

    Đáp án:

    x = 40

    y = 5

    Ta có 100 học sinh tham gia đo chiều cao khi đó:

    5 + 18 + x + 26 + y + 3 = 100

    => x + y = 48 (*)

    Mặt khác số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm suy ra x = 5y (**)

    Từ (*) và (**) ta có hệ phương trình: \left\{ \begin{matrix}x + y = 48 \\x = 5y \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 40 \\y = 5 \\\end{matrix} ight.

  • Câu 4: Vận dụng

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = {2^5} = 32

    Giả sử C là biến cố "được ít nhất một đồng tiền xuất hiện mặt sấp"

    => Biến cố \overline C " không có đồng tiền xuất hiện mặt sấp"

    => \overline C  = \left\{ {N,N,N,N,N} ight\}

    => n\left( {\overline C } ight) = 1 \Rightarrow P\left( {\overline C } ight) = \frac{1}{{32}}

    => P\left( C ight) = 1 - P\left( {\overline C } ight) = 1 - \frac{1}{{32}} = \frac{{31}}{{32}}

  • Câu 5: Thông hiểu

    Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?

    Số học sinh tham gia khảo sát là: 40 học sinh.

    Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm \frac{19.100\%}{40} = 47,5\%

  • Câu 6: Thông hiểu

    Một công ty xây dựng khảo sát khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát được ghi lại ở bảng sau:

    Mức giá (triệu đồng/m2)

    [10; 14)

    [14; 18)

    [18; 22)

    [22; 26)

    [26; 30)

    Số khách hàng

    54

    78

    120

    45

    12

    Mốt của mẫu số liệu ghép nhóm trên gần bằng giá trị nào sau đây?

    Nhóm chứa mốt của mẫu số liệu là nhóm [18;22).

    Do đó: u_{m} = 84;n_{m} = 24;n_{m - 1} =
20;n_{m + 1} = 15;u_{m + 1} = 86.

    Vậy mốt của mẫu số liệu là:

    M_{0} = 18 + \frac{120 - 78}{(120 - 78)
+ (120 - 45)}.(22 - 18) \approx 19,4.

  • Câu 7: Thông hiểu

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?

    Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.

    Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là C_{10}^{2}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{10}^{2}.1^{8}.3^{2}.

    Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.

    Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là C_{10}^{1}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{9}^{1}.1^{9}.3^{1}.

    Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.

    Trường hợp này có 1 khả năng xảy ra.

    Vậy số phần tử của biến cố B là:

    n(B) = C_{10}^{2}.1^{8}.3^{2} +
C_{9}^{1}.1^{9}.3^{1} + 1 = 436

  • Câu 8: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn khẳng định đúng?

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    f_{0}

    [50; 55)

    12

    f_{1}

    [55; 60)

    10

    f_{2}

    [60; 65)

    6

     

    [65; 70)

    5

     

    [70; 75)

    8

     

    => Nhóm chứa mốt là: [50; 55)

  • Câu 9: Thông hiểu

    Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất và lá thứ hai đúng người nhận?

    Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.

    Do đó số phần tử của không gian mẫu là: 5! = 120

    Gọi C là biến cố “Lá thứ nhất và lá thứ hai đúng người nhận”.

    Vì mỗi lá thư chỉ được chọn duy nhất 1 phong bì nên số cách chọn cả 5 lá đều đúng người nhận là 1.

    Lá thứ nhất và lá thứ 2 có đúng 1 cách chọn.

    Lá thứ 3 có 3 cách chọn

    Lá thứ 4 có 2 cách chọn

    Lá thứ 5 có 1 cách chọn

    Suy ra n(C) = 6 \Rightarrow P(C) =
\frac{6}{120} = \frac{1}{20}

  • Câu 10: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 11: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa tứ phân vị thứ ba của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

  • Câu 12: Thông hiểu

    Một lớp học sinh có 40 học sinh gồm 25 nam và 15 nữ. Chọn ngẫu nhiên 5 học sinh để trực nhật lớp. Hỏi số cách chọn 5 học sinh đó, biết rằng nhóm học sinh được chọn có 3 nam và 2 nữ?

    Chọn 3 học sinh nam từ 25 học sinh nam có C_{25}^{2} cách.

    Chọn 2 học sinh nam từ 15 học sinh nam có C_{15}^{2} cách.

    Vậy số cách chọn thỏa mãn yêu cầu đề bài là C_{25}^{2}.C_{15}^{2} = 241500 chọn.

  • Câu 13: Nhận biết

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

  • Câu 14: Vận dụng

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình thăm một bạn không quá một lần

    Một tuần có bảy ngày và mỗi ngày thăm một bạn.

    Có 12 cách chọn bạn vào ngày thứ nhất.

    Có 11 cách chọn bạn vào ngày thứ hai.

    Có 10 cách chọn bạn vào ngày thứ ba.

    Có 9 cách chọn bạn vào ngày thứ tư.

    Có 8 cách chọn bạn vào ngày thứ năm.

    Có 7 cách chọn bạn vào ngày thứ sáu.

    Có 6 cách chọn bạn vào ngày thứ bảy.

    Vậy theo quy tắc nhân ta có 12.11.10.9.8.7.6 = 3991680 cách.

  • Câu 15: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 16: Thông hiểu

    Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:

     Số phần tử không gian mẫu là: C_5^3 = 10

    Gọi A là biến cố " được ít nhất 1 bi trắng"

    => \overline A là biến cố không lấy được viên bi trắng nào

    => Số phần tử của \overline A là: C_3^3 =1

    => Xác suất lấy 3 viên bi không có viên bi trắng là: P\left( {\overline A } ight) = \frac{1}{{10}}

    => Xác suất để được ít nhất 1 bi trắng là: 

    P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{{10}} = \frac{9}{{10}}

  • Câu 17: Nhận biết

    Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường. không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D:

     Số cách đi từ A đến D bằng cách đi từ A đến B rồi đến D là 3.2 = 6

    Số cách đi từ A đến D bằng cách đi từ A đến C rồi đến D là 2.3 = 6

    => Số con đường đi từ thành phố A đến thành phố D là: 6 + 6 = 12 đường

  • Câu 18: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Tính độ dài nhóm số liệu trong mẫu số liệu ghép nhóm trên.

    Độ dài nhóm của mẫu số liệu ghép nhóm trên là 5.

  • Câu 19: Nhận biết

    Nếu [0; 5), [5; 10); [10; 15), … là các nhóm số liệu của mẫu dữ liệu ghép nhóm thì độ dài của nhóm là:

    Độ dài của nhóm là 4

  • Câu 20: Vận dụng

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    161

    150

    154

    165

    168

    161

    154

    162

    150

    151

    162

    164

    171

    165

    158

    154

    156

    172

    160

    170

    153

    159

    161

    170

    162

    165

    166

    168

    165

    164

    154

    152

    153

    156

    158

    162

    160

    161

    173

    166

    161

    159

    162

    167

    168

    159

    158

    153

    154

    159

    Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?

    Độ dài nhóm: 170 – 165 = 5

    Khoảng biến thiên: 173 – 150 = 23

    Ta có: \frac{23}{5} = 4,6 vậy ta chia thành 5 nhóm như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Tổng

    50

    Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 57 lượt xem
Sắp xếp theo