Mẫu số liệu có bao nhiêu nhóm?
Mẫu số liệu đã cho có 5 nhóm.
Mẫu số liệu có bao nhiêu nhóm?
Mẫu số liệu đã cho có 5 nhóm.
Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là
và
. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.
a) Xác suất để bệnh nhân A không bị biến chứng suy thận là
Đúng||Sai
b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận
Đúng||Sai
c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là
Sai||Đúng
d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là
Sai||Đúng
Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là và
. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.
a) Xác suất để bệnh nhân A không bị biến chứng suy thận là Đúng||Sai
b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận Đúng||Sai
c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là Sai||Đúng
d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là Sai||Đúng
Gọi A là biến cố “Bệnh nhân A bị suy thận” ta có:
B là biến cố “Bệnh nhân B bị suy thận” ta có:
Khi đó là biến cố “Cả hai bệnh nhân đều bị biến chứng suy thận”
Khi đó là biến cố “Cả hai bệnh nhân đều không bị biến chứng suy thận.
Khi đó là biến cố “Bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận”.
b) Hai biến cố A, B độc lập nên ta có:
b) Hai biến cố độc lập nên ta có:
c) Hai biến cố độc lập nên ta có:
Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:
Đa giác đều có 12 cạnh tương ứng với 12 đỉnh
Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)
Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: đoạn thẳng
Mà số cạnh của đa giác là 12 cạnh
=> Số đường chéo thu được là: 66 - 12 = 54 đường chéo
Một công ty xây dựng khảo sát 300 khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát ghi lại ở bảng sau:
|
Mức giá |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Số khách hàng |
55 |
78 |
110 |
45 |
12 |
Mức giá mua nhà trung bình là
Ta có:
|
Mức giá |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Giá trị đại diện |
12 |
16 |
20 |
24 |
28 |
|
Số khách hàng |
55 |
78 |
110 |
45 |
12 |
Mức giá mua nhà trung bình là:
.
Vậy mức giá mua nhà trung bình là: (triệu đồng/
).
Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:
Lấy một số từ dãy số đã cho ta được:
Giả sử A là biến cố "lấy được một số nguyên tố"
Ta có: A = {2} =>
=> Xác suất để lấy được một số nguyên tố là:
Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?
Ta đánh số 3 quán cơm là
Gọi lần lượt là quán cơm sinh viên A; B; C chọn.
Như vậy không gian mẫu là
Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên
Gọi B là biến cố "2 sinh viên vào cùng một quán, còn người kia thì vào quán khác".
Các kết quả thuận lợi cho biến cố B là
và 2 hoán vị của nó,
và 2 hoán vị của nó,
và 2 hoán vị của nó,
và hai hoán vị của nó,
và 2 hoán vị của nó,
và 2 hoán vị của nó.
Khi đó các kết quả thuận lợi cho biến cố B là:
Vậy xác suất của biến cố này là
Cho ba chiếc hộp A, B, C. Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng. Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng. Hộp C chứa 2 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên một hộp rồi lấy ngẫu nhiên 1 viên bi từ chiếc hộp đó. Tính xác suất để lấy được một viên bi đỏ.
Gọi A là biến cố chọn được hộp A
B là biến cố chọn được hộp B
C là biến cố chọn được hộp C
E là biến cố bi chọn ra là bi màu đỏ.
Ta có:
Theo công thức
Nếu [0; 5), [5; 10); [10; 15), … là các nhóm số liệu của mẫu dữ liệu ghép nhóm thì độ dài của nhóm là:
Độ dài của nhóm là 4
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?
Gọi hai súc sắc là M; N
Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".
Ta có C là hợp của hai biến cố xung khắc tức là
Ta có
Vì A, B là hai biến cố độc lập với nhau
Nên và B độc lập với nhau;
và A độc lập với nhau
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
161 | 150 | 154 | 165 | 168 | 161 | 154 | 162 | 150 | 151 |
162 | 164 | 171 | 165 | 158 | 154 | 156 | 172 | 160 | 170 |
153 | 159 | 161 | 170 | 162 | 165 | 166 | 168 | 165 | 164 |
154 | 152 | 153 | 156 | 158 | 162 | 160 | 161 | 173 | 166 |
161 | 159 | 162 | 167 | 168 | 159 | 158 | 153 | 154 | 159 |
Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?
Độ dài nhóm:
Khoảng biến thiên:
Ta có: vậy ta chia thành 5 nhóm như sau:
Chiều cao (tính bằng cm) | Tần số |
Tổng |
Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.
Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?
Nếu đi bằng ô tô có 10 cách
Nếu đi bằng tàu hỏa có 5 cách
Nếu đi bằng tàu thủy có 3 cách
Nếu đi bằng máy bay có 2 cách
Theo quy tắc cộng, ta có 10 + 5 + 3 + 2 = 20 cách chọn
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị
của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [7; 9)
(Vì 5 nằm giữa hai tần số tích lũy 2 và 9)
Do đó:
Khi đó tứ phân vị thứ nhất là:
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Đáp án đúng là: 5.
Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?
Ta chia thành các trường hợp như sau:
TH1: Nếu số 234 đứng đầu thì có số
TH2: Nếu cố 432 đứng đầu thì có số
TH3: Nếu cố 234; 432 không đứng đầu
Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có cách chọn số còn lại. Do đó trường hợp này có
Suy ra số phần tử của tập hợp S là
Vậy số phần tử không gian mẫu là
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.
Biến cố B là biến cố chọn trong T một số chia hết cho 5
Biến cố số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.
Gọi số tự nhiên có 4 chữ số có dạng:
Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.
Do đó số phần tử của A là
Số chia hết cho 5 có hai dạng . Do đó số phần tử của B là
Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: . Do đó số phần tử của
là:
Vậy số phần tử biến cố P là:
Cho mẫu dữ liệu ghép nhóm kết quả đo chiều cao (đơn vị: cm) của một nhóm học sinh lớp 11 như sau:

Số học sinh có chiều cao không vượt quá 168 cm so với tất cả các học sinh chiếm bao nhiêu phần trăm?
Số học sinh tham gia đo chiều cao là 36 học sinh
Số học sinh cao không quá 168cm là: 9 + 15 = 24 học sinh chiếm
Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi bất kỳ?
Trong hộp có số viên bi là: 5 + 7 = 12 viên bi
Số cách lấy ra 6 viên bi bất kỳ là tổ hợp chập 6 của 12 phần tử:
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tứ phân vị thứ nhất thuộc nhóm chiều cao nào?
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Cho 5 chữ số 0; 1; 2; 3; 4. Từ 5 chữ số đó có thể lập được bao nhiêu chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần?
Số tự nhiên có năm chữ số có dạng:
Do mỗi số đó mỗi chữ số trên có mặt một lần =>
Số cần tìm là số chẵn => e ∈ {0; 2; 4}
Trường hợp 1: e = 0 => e có 1 cách chọn
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Số các số lập được ở trường hợp 1 là: 4.3.2 = 24 số
Trường hợp 2: e ∈ {2; 4} => Có 2 cách chọn e
Số cách chọn a là 3 cách (Do a khác 0)
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Số các số lập được ở trường hợp 2 là: 2.3.3.2 = 36 số
=> Có thể lập được số các chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần là 36 + 24 = 60 số
Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:
Kích thước (gram) | [410; 420) | [420; 430) | [430; 440) | [440; 450) | [450; 460) | [460; 470) | [470; 480) |
Số lượng táo | 14 | 20 | 42 | 54 | 45 | 18 | 7 |
Tính trung vị của mẫu dữ liệu ghép nhóm trên.
Ta có:
Kích thước (gram) | Số lượng táo | Tần số tích lũy |
[410; 420) | 14 | 14 |
[420; 430) | 20 | 34 |
[430; 440) | 42 | 76 |
[440; 450) | 54 | 130 |
[450; 460) | 45 | 175 |
[460; 470) | 18 | 193 |
[470; 480) | 7 | 200 |
| N = 200 |
|
Ta có:
=> Trung vị nằm trong nhóm (vì 100 nằm giữa hai tần số tịc lũy là 76 và 130)