Tính tổng tần số của bảng số liệu:
Khoảng thời gian (giờ) | Tần số |
|
|
|
|
|
|
|
|
Tổng tần số của mẫu số liệu là:
Tính tổng tần số của bảng số liệu:
Khoảng thời gian (giờ) | Tần số |
|
|
|
|
|
|
|
|
Tổng tần số của mẫu số liệu là:
Tuổi thọ (tính bằng giờ) của 100 bóng đèn được quan sát trong thử nghiệm kiểm tra chất lượng được đưa ra hiển thị trong bảng dưới đây:
Tuổi thọ (giờ) | [600; 650) | [650; 700) | [700; 750) | [750; 800) | [800; 850) |
Số bóng đèn | 6 | 14 | 40 | 34 | 6 |
Tính trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
Tuổi thọ (giờ) | [600; 650) | [650; 700) | [700; 750) | [750; 800) | [800; 850) |
Số bóng đèn | 6 | 14 | 40 | 34 | 6 |
Tần số tích lũy | 6 | 20 | 60 | 94 | 100 |
Ta có:
=> Trung vị nằm trong nhóm (vì 50 nằm giữa hai tần số tích lũy là 20 và 60)
(giờ)
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
Chiều cao (tính bằng cm) | Tần số |
[150; 155) | 12 |
[155; 160) | 9 |
[160; 165) | 14 |
[165; 170) | 10 |
[170; 175) | 5 |
Độ dài nhóm dữ liệu là: 5
Đáp án đúng là: 5.
Độ tuổi của 112 cư dân được ghi như bảng sau:
Tuổi | Số học sinh |
[0; 9] | 20 |
[10; 19] | 21 |
[20; 29] | 23 |
[30; 39] | 16 |
[40; 49] | 11 |
[50; 59] | 10 |
[60; 69] | 7 |
[70; 79] | 3 |
[80; 89] | 1 |
Hoàn thành bảng số liệu dưới đây?
Tuổi | Số đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20)||[10;20)||[10,20)||[10, 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40)||[30;40)||[30,40)||[30, 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60)||[50;60)||[50,60)||[50, 60) | 55 | 10 |
[60; 70)||[60;70)||[60, 70)||[60,70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90)||[80;90)||[80,90)||[80, 90) | 85 | 1 |
Độ tuổi của 112 cư dân được ghi như bảng sau:
Tuổi | Số học sinh |
[0; 9] | 20 |
[10; 19] | 21 |
[20; 29] | 23 |
[30; 39] | 16 |
[40; 49] | 11 |
[50; 59] | 10 |
[60; 69] | 7 |
[70; 79] | 3 |
[80; 89] | 1 |
Hoàn thành bảng số liệu dưới đây?
Tuổi | Số đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20)||[10;20)||[10,20)||[10, 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40)||[30;40)||[30,40)||[30, 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60)||[50;60)||[50,60)||[50, 60) | 55 | 10 |
[60; 70)||[60;70)||[60, 70)||[60,70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90)||[80;90)||[80,90)||[80, 90) | 85 | 1 |
Ta có:
Tuổi | Đại diện tuổi | Số học sinh |
[0; 10) | 5 | 20 |
[10; 20) | 15 | 21 |
[20; 30) | 25 | 23 |
[30; 40) | 35 | 16 |
[40; 50) | 45 | 11 |
[50; 60) | 55 | 10 |
[60; 70) | 65 | 7 |
[70; 80) | 75 | 3 |
[80; 90) | 85 | 1 |
Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:
Lớp 11A | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 8 | 12 | 10 | 6 | |
Lớp 11B | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 5 | 12 | 10 | 8 | 4 | |
Lớp 11C | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 10 | 15 | 9 | 3 | |
Lớp 11D | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 9 | 16 | 11 | 3 |
Lớp nào có số học sinh đạt điểm (6; 8] nhiều nhất?
Số học sinh lớp 11A đạt điểm từ (6; 8] là:
12 + 10 = 22 (học sinh)
Số học sinh lớp 11B đạt điểm từ (6; 8] là:
10 + 8 = 18 (học sinh)
Số học sinh lớp 11C đạt điểm từ (6; 8] là:
15 + 9 = 24 (học sinh)
Số học sinh lớp 11D đạt điểm từ (6; 8] là:
16 + 11 = 27 (học sinh)
Vậy lớp 11D có nhiều học sinh đạt điểm từ (6; 8] nhất.
Minh và Quân học ở hai ngôi trường khác nhau. Gọi A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”. Biết rằng xác suất để hai bạn Minh và Quân được điểm giỏi môn Vật lý lần lượt là và .
a) Biến cố A và biến cố B là hai biến cố xung khắc. Sai||Đúng
b) Xác suất để cả Minh và Quân đều đạt điểm giỏi môn Vật Lý là
Đúng||Sai
c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi môn Vật Lý là
Sai||Đúng
d) Xác suất để có ít nhất một trong hai bạn Minh và Quân đều đạt điểm giỏi là
Đúng||Sai
Minh và Quân học ở hai ngôi trường khác nhau. Gọi A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”. Biết rằng xác suất để hai bạn Minh và Quân được điểm giỏi môn Vật lý lần lượt là và .
a) Biến cố A và biến cố B là hai biến cố xung khắc. Sai||Đúng
b) Xác suất để cả Minh và Quân đều đạt điểm giỏi môn Vật Lý là Đúng||Sai
c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi môn Vật Lý là Sai||Đúng
d) Xác suất để có ít nhất một trong hai bạn Minh và Quân đều đạt điểm giỏi là Đúng||Sai
Ta có:
A là biến cố “Minh đạt điểm giỏi môn Vật Lý” và B là biến cố “Quân đạt điểm giỏi môn Vật lý”.
a) Biến cố A và B là hai biến cố độc lập.
b) Vì hai biến cố A và B là hai biến cố độc lập nên .
c) Xác suất để cả Minh và Quân đều không đạt điểm giỏi là:
.
d) Xác suất để có ít nhất một trong hai bạn đạt điểm giỏi là:
Một công ty xây dựng khảo sát 300 khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát ghi lại ở bảng sau:
|
Mức giá |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Số khách hàng |
55 |
78 |
110 |
45 |
12 |
Mức giá mua nhà trung bình là
Ta có:
|
Mức giá |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Giá trị đại diện |
12 |
16 |
20 |
24 |
28 |
|
Số khách hàng |
55 |
78 |
110 |
45 |
12 |
Mức giá mua nhà trung bình là:
.
Vậy mức giá mua nhà trung bình là: (triệu đồng/
).
Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?
Số cách chọn 2 học sinh từ 30 học sinh là cách
Vậy số phần tử không gian mẫu là 345 cách.
Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu
Khi đó số kết quả thuận lợi cho biến cố A là:
Vậy xác suất để cần tìm là:
Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số được chọn là số chẵn => c = {2; 4}
=> Số cách chọn c là 2 cách
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
=> Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số
Chọn ngẫu nhiên một biển số xe gắn máy cùng một họ F1, mỗi biển số có 4 chữ số. Tính xác suất để biển số có hai chữ số đầu giống nhau và hai chữ số sau giống nhau, biết 4 chữ số đó không hoàn toàn giống nhau?
Gọi A là biến cố "Biển số có hai chữ số đầu giống nhau, hai chữ số sau giống nhau và 4 chữ số đó không hoàn toàn giống nhau"
Tìm
Ta tìm "số" có 4 chữ số, chữ số đầu tiên có thể bằng 0
Giả sử có bốn chữ số chữ số đầu tiên có thể bằng 0.
Có 10 cách chọn a, 10 cách chọn b, 10 cách chọn c và 10 cách chọn d.
Vậy có 104 số có 4 chữ số, chữ số đầu tiên có thể bằng
Tìm
Ta tìm "số" các số có 4 chữ số, trong đó hai chữ số đầu giống nhau, hai chữ số sau giống nhau và 4 chữ số đó không hoàn toàn giống nhau, chữ số đầu tiên có thể bằng 0.
Giả sử là một số như mô tả
Có 10 cách chọn m và 9 cách chọn p
Khi đó phần tử.
Xác suất cần tính là: .
Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
|
Điểm |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
[60; 70) |
|
Số trường |
4 |
19 |
6 |
2 |
3 |
1 |
Các mệnh đề sau đúng hay sai
a) Số liệu đã cho cho có
mẫu số liệu. Đúng||Sai
b) Số trung vị của mẫu số liệu là
Sai||Đúng
c) Số trung bình của mẫu số liệu đã cho là
. Sai||Đúng
d) Ngưỡng điểm đề đưa ra danh sách
trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai
Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
|
Điểm |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
[60; 70) |
|
Số trường |
4 |
19 |
6 |
2 |
3 |
1 |
Các mệnh đề sau đúng hay sai
a) Số liệu đã cho cho có mẫu số liệu. Đúng||Sai
b) Số trung vị của mẫu số liệu là Sai||Đúng
c) Số trung bình của mẫu số liệu đã cho là . Sai||Đúng
d) Ngưỡng điểm đề đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai
a) Ta có cỡ mẫu . Vậy đáp án a) đúng.
b) Gọi được sắp xếp theo thứ tự không giảm.
Khi đó, trung vị là . Do
thuộc nhóm
nên nhóm này chứa trung vị.
Suy ra ,
,
,
,
,
.
.
Vậy đáp án b) sai.
c) Số trung bình của mẫu số liệu là
.
Vậy đáp án c) sai.
d) Điểm ngưỡng để đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.
Cỡ mẫu
Tứ phân vị thứ ba là
mà
thuộc nhóm [30;40) nên nhóm này chứa
.
Do đó, và ta có:
.
Vậy để đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam ta lấy các trường có điểm chuẩn hóa trên 35.42.
Vậy đáp án d) đúng.
Cho bảng dữ liệu như sau:
Đại diện A | [15,5; 20,5) | [20,5; 25,5) | [25,5; 30,5) | [30,5; 35,5) | [35,5; 40,5) | [40,5; 45,5) | [45,5; 50,5) | [50,5; 55,5) |
Tần số | 5 | 6 | 12 | 14 | 26 | 12 | 16 | 9 |
Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?
Ta có:
Đại diện X | Tần số | Tần số tích lũy |
[15,5; 20,5) | 5 | 5 |
[20,5; 25,5) | 6 | 11 |
[25,5; 30,5) | 12 | 23 |
[30,5; 35,5) | 14 | 37 |
[35,5; 40,5) | 26 | 63 |
[40,5; 45,5) | 12 | 75 |
[45,5; 50,5) | 16 | 91 |
[50,5; 55,5) | 9 | 100 |
| N = 100 |
|
Ta lại có:
=> Nhóm chứa là
(vì 25 nằm giữa các tần số tích lũy 23 và 37).
Khi đó ta tìm được các giá trị:
Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:
Số cách chọn bạn An là 1 cách.
=> Số cách chọn 3 bạn đi trực (không có An) là: cách
Vậy có 165 cách chọn 4 em đi trực trong đó phải có An.
Sơ đồ phân phối điện như hình vẽ:

Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C lần lượt là
. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).
Gọi Q là biến cố nơi tiêu thụ Q không mất điện
A, B, C là biến cố các trạm tải nhỏ A, B, C gặp sự cố kĩ thuật.
Ta có:
Suy ra
Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Thăm một bạn không quá một ngày).
Ta có: 1 tuần = 7 ngày
Mà mỗi ngày A đến thăm một bạn.
Ngày thứ nhất có 12 cách chọn
Ngày thứ hai có 11 cách chọn
Ngày thứ ba có 10 cách chọn
Ngày thứ tư có 9 cách chọn
Ngày thứ năm có 8 cách chọn
Ngày thứ sáu có 7 cách chọn
Ngày thứ bảy có 6 cách chọn
=> Số kế hoạch có thể lập được là: 12 . 11 . 10 . 9 . 8 . 7 . 6 = 3 991 680 kế hoạch
Xét phép thử: “Gieo hai con xúc xắc 2 lần sau đó gieo một đồng tiền xu”. Gọi
là một biến cố. Đáp án nào dưới đây mô tả đúng biến cố
?
Mô tả đúng là: “Hai lần gieo xúc xắc kết quả như nhau và đồng xu xuất hiện mặt sấp”.
Giả sử
là hai biến cố xung khắc. Khẳng định nào sau đây đúng?
Ta có:
Vì M và N là hai biến cố xung khắc nên
Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?
Gọi số cạnh của đa giác là n (cạnh)
Điều kiện
=> Số đỉnh tương ứng của đa giác là n đỉnh
Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)
=> Số đoạn thẳng tạo thành là đoạn
Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n
Ta có phương trình:
Vậy đa giác đó có 7 cạnh.
Chọn đáp án có độ dài nhóm khác với các đáp án còn lại.
Ta có độ dài nhóm bằng giới hạn trên - giới hạn dưới khi đó:
Các đáp án có độ dài bằng 5 ngoại trừ nhóm có độ dài nhóm là 6.
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra