Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận ở sân nhà và 2 trận ở sân khách. Số trận đấu được sắp xếp là:

    Mỗi đội sẽ gặp 9 đội khác trong hai lượt trận sân nhà và sân khách

    => Có 10 . 9 = 90 trận

    Mỗi đội đá 2 trận sân nhà, 2 trận sân khách

    => Số trận đấu là 2.90 =180 trận

  • Câu 2: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{2} = 50=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    \Rightarrow \Delta Q = Q_{3} - Q_{1}
\approx 7

  • Câu 3: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = \overline{M_{1}} \cap
\overline{M_{2}} \cap \overline{M_{3}} \cap M_{4}

  • Câu 4: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Số học sinh lớp 11H là:

    Số học sinh lớp 11H là:

    5 + 12 + 10 + 6 + 5 + 8 = 46 (học sinh)

  • Câu 5: Nhận biết

    Quan sát bảng sau và tìm khoảng chứa tứ phân vị thứ ba:

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Ta có:

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tổng

    Tần số

    8

    12

    22

    17

    N = 59

    Tần số tích lũy

    8

    20

    42

    59

     

    Ta có: N = 59

    \Rightarrow \frac{3N}{4} =\frac{3.59}{4} = 44,25

    Vậy nhóm chứa tứ phân vị thứ ba là: [40; 50)

  • Câu 6: Nhận biết

    Gieo ngẫu nhiên một đồng xu cân đối và đồng chất 5 lần. Không gian mẫu của phép thử có bao nhiêu phần tử?

    Mỗi lần gieo đồng xu có hai khả năng xảy ra nên khi tung đồng xu đó 5 lần thì theo quy tắc nhân ta có: {2^5} = 32

    Vậy số phần tử của không gian mẫu là n\left( \Omega  ight) = 32

  • Câu 7: Vận dụng

    Rút ngẫu nhiên 3 tấm thẻ từ một hộp chứa 12 thẻ được đánh số từ 1 đến 12. Tính số kết quả thuận lợi của biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{12}^{3} = 220

    Biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”

    Suy ra biến cố \overline{M} “trong ba tấm thẻ chọn ra có ít nhất hai tâm thẻ ghi hai số tự nhiên liên tiếp”

    Bộ ba có dạng \left( 1;2;a_{1}
ight) với a_{1} \in
A\backslash\left\{ 1;2 ight\} có 10 bộ

    Bộ ba số có dạng \left( 2;3;a_{2}
ight) với a_{2} \in
A\backslash\left\{ 1;2;3 ight\} có 9 bộ

    Tương tự mỗi bộ ba số có dạng \left(
3;4;a_{3} ight),\left( 4;5;a_{4} ight),\left( 5;6;a_{4}
ight),...\left( 11;12;a_{11} ight) đều có 9 bộ

    \Rightarrow n\left( \overline{M} ight)
= 10 + 10.9 = 100

    \Rightarrow n(M) = 220 - 110 =
120

  • Câu 8: Thông hiểu

    Tìm số trung bình của mẫu dữ liệu ghép nhóm dưới đây:

    Nhóm

    Tần số

    (2; 4]

    3

    (4; 6]

    4

    (6; 8]

    2

    (8; 10]

    1

    Ta có:

    Giá trị đại diện

    Tần số

    Tích các giá trị

    3

    3

    9

    5

    4

    20

    7

    2

    14

    9

    1

    9

    Tổng

    N = 10

    52

    Số trung bình là:

    \overline{x} = \frac{52}{10} =5,2

  • Câu 9: Thông hiểu

    Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả như nhau là:

    Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất ta có:

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = {6^2} = 36

    Giả sử B là biến cố "sau hai lần gieo kết quả như nhau"

    => B = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}

    => n\left( B ight) = 6

    => Xác suất để sau hai lần gieo kết quả như nhau là: P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{6}{{36}} = \frac{1}{6}

  • Câu 10: Thông hiểu

    Bảng số liệu sau đây thể hiện tuổi thọ của các bóng đèn (đơn vị: giờ):

    1144

    1134

    1162

    1130

    1120

    1160

    1116

    1179

    1165

    1150

    1155

    1177

    1109

    1142

    1121

    1103

    1145

    1131

    1133

    1170

    1127

    1164

    1147

    1157

    1136

    1166

    1111

    1168

    1115

    1150

    1101

    1125

    1152

    1132

    1140

    Từ mẫu số liệu trên, nếu ghép các số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau thì độ dài của mỗi nhóm số liệu bằng bao nhiêu?

    Khoảng biến thiên là 1179 – 1101 = 78

    Để số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia thành các nhóm có độ dài là 20.

    Ta chia thành các nhóm sau: [1100; 1120), [1120; 1140), [1140; 1160), [1160; 1180).

  • Câu 11: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 12: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 13: Thông hiểu

    Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:

    Chiều cao (cm)

    Số học sinh

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    x

    [165; 170)

    26

    [170; 175)

    y

    [175; 180)

    3

    Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?

    Đáp án:

    x = 40

    y = 5

    Đáp án là:

    Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:

    Chiều cao (cm)

    Số học sinh

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    x

    [165; 170)

    26

    [170; 175)

    y

    [175; 180)

    3

    Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?

    Đáp án:

    x = 40

    y = 5

    Ta có 100 học sinh tham gia đo chiều cao khi đó:

    5 + 18 + x + 26 + y + 3 = 100

    => x + y = 48 (*)

    Mặt khác số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm suy ra x = 5y (**)

    Từ (*) và (**) ta có hệ phương trình: \left\{ \begin{matrix}x + y = 48 \\x = 5y \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 40 \\y = 5 \\\end{matrix} ight.

  • Câu 14: Thông hiểu

    Sản lượng xoài (tính bằng kg) được ghi lại trong bảng sau:

    Sản lượng

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

    Số cây

    10

    15

    17

    14

    12

    2

    Tính trung vị của mẫu dữ liệu ghép nhóm.

    Ta có:

    Sản lượng

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

     

    Số cây

    10

    15

    17

    14

    12

    2

    N = 70

    Tần số tích lũy

    10

    25

    42

    56

    68

    70

     

    Ta có: \frac{N}{2} = \frac{70}{2} =35

    => Nhóm chứa trung vị là: [60; 70) (vì 35 nằm giữa hai tần số tích lũy là 25 và 56)

    \Rightarrow l = 60;\frac{N}{2} =\frac{70}{2} = 35;m = 25;f = 17,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    = 60 + \dfrac{(35 - 25)}{17}.10 \approx 66

  • Câu 15: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn khẳng định đúng?

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    f_{0}

    [50; 55)

    12

    f_{1}

    [55; 60)

    10

    f_{2}

    [60; 65)

    6

     

    [65; 70)

    5

     

    [70; 75)

    8

     

    => Nhóm chứa mốt là: [50; 55)

  • Câu 16: Thông hiểu

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn không có nữ nào cả.

     Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn không có nữ"

    => n\left( A ight) = C_7^2 = 21

    => Xác suất sao cho 2 người được chọn không có nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{21}{{45}} = \frac{7}{{15}}

  • Câu 17: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số?

     Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Do số đang xét là số chẵn => e ∈ \{2; 4; 6\}

    => Có 3 cách chọn e

    => Số cách chọn a, b, c, d là: {6^4} = 1296

    => Từ tập A có thể lập được số các số chẵn có 5 chữ số là: 3 . 1296 = 3888 số

  • Câu 18: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Biết rằng nếu học sinh có điểm thi dưới 40 điểm sẽ không đạt yêu cầu vượt qua kì thi. Hỏi số học sinh không đạt yêu cầu là bao nhiêu?

    Quan sát bảng số liệu ghép nhóm ta thấy:

    Nhóm [20; 30) có 4 học sinh

    Nhóm [30; 40) có 6 học sinh

    => Số học sinh không đạt yêu cầu là 6 + 4 = 10 (học sinh)

  • Câu 19: Vận dụng

    Xác suất để thắng một trận game là \frac{2}{5} . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn \frac{19}{20} ?

    Đáp án: 6 trận

    Đáp án là:

    Xác suất để thắng một trận game là \frac{2}{5} . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn \frac{19}{20} ?

    Đáp án: 6 trận

    Gọi n là số trận người đó chơi.

    A là biến cố người đó thắng ít nhất 1 trận

    Suy ra \overline{A} là biến cố người đó không thắng trận nào.

    \overline{A} =
\overline{A_{1}}.\overline{A_{2}}.\overline{A_{3}}...\overline{A_{n}} trong đó \overline{A_{i}} là biến cố người đó thắng trận thứ i và P\left(
\overline{A_{i}} ight) = 0,6;i = \overline{1,n}

    \Rightarrow \left\{ \begin{matrix}
P\left( \overline{A} ight) = P\left( \overline{A_{1}} ight).P\left(
\overline{A_{2}} ight).P\left( \overline{A_{3}} ight)...P\left(
\overline{A_{n}} ight) = 0,6^{n} \\
P(A) = 1 - P\left( \overline{A} ight) = 1 - 0,6^{n} \\
\end{matrix} ight.

    Ta có bất phương trình

    1 - 0,6^{n} > 0,95

    \Leftrightarrow 0,6^{n} <
0,05

    \Leftrightarrow n >\log_{0,6}0,05

    Vậy giá trị nhỏ nhất của n bằng 6.

  • Câu 20: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 52 lượt xem
Sắp xếp theo