Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong kho hàng có n sản phẩm công nghệ, trong đó có một số sản phẩm bị lỗi. Giả sử X_{i} là biến cố sản phẩm thứ i bị lỗi với i \in \overline{1,n}. Biến cố X cả n sản phẩm đều tốt là:

    Ta có:

    X_{i} là biến cố sản phẩm thứ i bị lỗi với i \in \overline{1,n}

    Nên \overline{X_{i}} là biến cố sản phẩm thứ i tốt với i \in \overline{1,n}

    Biến cố X cả n sản phẩm đều tốt là: X =
\overline{X_{1}}.\overline{X_{2}}....\overline{X_{n}}

  • Câu 2: Thông hiểu

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của Q_{1}?

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -4}{5}.10 = 52

  • Câu 3: Nhận biết

    Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 15]

    4

    (15; 30]

    12

    (30; 45]

    17

    (45; 60]

    7

    Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.

  • Câu 4: Vận dụng

    Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:

     Một con súc sắc cân đối đồng chất được gieo 5 lần

    => Số phần tử của không gian mẫu là: {6^5} = 7776

    Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"

    => Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}

    => n\left( H ight) = 15.6.6 = 540

    => Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:

    P\left( H ight) = \frac{{n\left( H ight)}}{{n\left( \Omega  ight)}} = \frac{{540}}{{7776}} = \frac{{15}}{{126}}

  • Câu 5: Nhận biết

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48

    Đáp án là:

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48

    Số học sinh lớp 11A kiểm tra cân nặng là

    7 + 16 + 10 + 5 + 4 + 2 = 44 (học sinh)

  • Câu 6: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm kết quả đo chiều cao (đơn vị: cm) của một nhóm học sinh lớp 11 như sau:

    Số học sinh có chiều cao không vượt quá 168 cm so với tất cả các học sinh chiếm bao nhiêu phần trăm?

    Số học sinh tham gia đo chiều cao là 36 học sinh

    Số học sinh cao không quá 168cm là: 9 + 15 = 24 học sinh chiếm \frac{24.100\%}{36} \approx 66,7\%

  • Câu 7: Thông hiểu

    Chọn ngẫu nhiên 2 quả cầu trong một hộp giấy có chứa 4 quả cầu xanh, 3 quả cầu đỏ và 2 quả cầu vàng. Giả sử T là biến cố chọn được 2 quả khác màu, Z là biến cố đối của biến cố T. Tính số kết quả thuận lợi cho biến cố Z?

    Ta có: T là biến cố chọn được 2 quả khác màu

    Khi đó \overline{T} là biến cố chọn được hai quả cùng màu.

    Ta có: n\left( \overline{T} ight) =
C_{4}^{2} + C_{3}^{2} + C_{2}^{2} = 10

    Mà Z là biến cố đối của biến cố T

    \Rightarrow n\left( \overline{T} ight)
= n(Z) = 10

  • Câu 8: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 9: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 10: Thông hiểu

    Một tổ học sinh gồm 9 em, trong đó có 3 nữ được chia thành ba nhóm, mỗi nhóm ba em. Tính xác suất để mỗi nhóm có một nữ?

    Gọi A là biến cố: "Ở 3 nhóm học sinh, mỗi nhóm có một nữ".

    Tìm |\Omega|

    Chọn ngẫu nhiên 3 trong 9 em đưa vào nhóm thứ nhất có C_{9}^{3} cách.

    Chọn 3 trong 6 em còn lại đưa vào nhóm thứ hai có C_{6}^{3} cách.

    Còn 3 em, đưa vào nhóm thứ 3 có 1 cách.

    Vậy số phần tử của không gian mẫu là |\Omega| = C_{9}^{3}.C_{6}^{3}.1 =
1680

    Tìm \left| \Omega_{A}
ight|

    Phân 3 nữ vào ba nhóm có P_{3} = 3! =
6 cách khác nhau.

    Phân 6 nam vào ba nhóm theo cách trên có C_{6}^{2}.C_{4}^{2}.1 khác nhau

    Vậy số kết quả thuận lợi cho biến cố A là: \left| \Omega_{A} ight| =
6.C_{6}^{2}.C_{4}^{2}.1 = 540

    Vậy xác suất cần tìm là: P(A) =
\frac{540}{1680} = \frac{9}{26} \approx 0,32

  • Câu 11: Thông hiểu

    Cho bảng thống kê kết quả đo chiều cao một số cây trong vườn như sau:

    Chiều cao

    [120; 150)

    [150; 180)

    [180; 210)

    [210; 240)

    Số cây

    15

    20

    31

    18

    Giá trị đại diện của nhóm [150; 180) là bao nhiêu?

    Giá trị đại diện của nhóm [150; 180) là: \frac{150 + 180}{2} = 165

  • Câu 12: Thông hiểu

    Có hai hòm, mỗi hòm chứa 5 tấm thẻ đánh số từ 1 đến 5. Rút ngẫu nhiên từ mỗi hòm một tấm thẻ. Tính xác suất để tổng các số ghi trên hai tấm thẻ rút ra không nhỏ hơn 3.

    Không gian mẫu \Omega = \left\{ (x;y)|x,y
\in \mathbb{N}^{*};1 \leq x \leq 5;1 \leq y \leq 5 ight\}

    Vì có 5 cách chọn x và có 5 cách chọn y nên |\Omega| = 5.5 = 25

    Gọi A là biến cố “Tổng hai số ghi trên hai tấm thẻ không nhỏ hơn 3”.

    Khi đó \overline{A} là biến cố “Tổng hai số ghi trên tấm thẻ nhỏ hơn 3”.

    Ta có: \Omega_{A} = \left\{ (1;1)
ight\} \Rightarrow \left| \Omega_{A} ight| = 1 \Rightarrow P\left(
\overline{A} ight) = \frac{1}{25}

    Xác suất cần tìm là P(A) = 1 - P\left(
\overline{A} ight) = 1 - \frac{1}{25} = 0,96

  • Câu 13: Vận dụng

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Đáp án là:

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Gọi A là biến cố học sinh được chọn giỏi môn Toán, B là biến cố học sinh được chọn giỏi môn Vật lí.

    Ta có:

    A \cup B là biến cố học sinh được chọn giỏi môn Toán hoặc Vật lí

    A \cap B là biến cố học sinh được chọn giỏi cả 2 môn Toán và Vật lí

    Ta có:

    \left\{ \begin{matrix}
n(A \cup B) = 0,5.40 = 20 \\
n(A \cup B) = n(A) + n(B) - n(A.B) \\
\end{matrix} ight.

    n(A.B) = n(A) + n(B) - n(A \cup
B)

    = 12 + 13 - 20 = 5

  • Câu 14: Nhận biết

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Đáp án là:

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Ta có:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40 ≤ x < 50

    45

    4

    50 ≤ x < 60

    55

    5

    60 ≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

  • Câu 15: Thông hiểu

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm. (Làm tròn đến chữ số thập phân thứ hai)

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    [95; 105)

    9

    9

    [105; 115)

    13

    22

    [115; 125)

    26

    48

    [125; 135)

    30

    78

    [135; 145)

    12

    90

    [145; 155)

    10

    100

    Tổng

    N = 100

     

    Ta có: N = 100 \Rightarrow \frac{N}{4} =\frac{100}{4} = 25

    => Nhóm chứa tứ phân vị thứ nhất là: [115; 125)

    Khi đó: \left\{ \begin{matrix}l = 115;\dfrac{N}{4} = 25;m = 22 \\f = 26,d = 125 - 115 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 115 + \frac{25 -22}{26}.10 \approx 116,15

  • Câu 16: Nhận biết

    Có bao nhiêu cách chọn một tổ tưởng tổ dân phố từ một nhóm cư dân gồm 25 nam và 20 nữ?

    Số cách chọn một người từ 45 người là: C_{45}^{1} = 45 (cách)

    Vậy có 45 cách chọn tổ trưởng tổ dân phố.

  • Câu 17: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 18: Vận dụng

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    161

    150

    154

    165

    168

    161

    154

    162

    150

    151

    162

    164

    171

    165

    158

    154

    156

    172

    160

    170

    153

    159

    161

    170

    162

    165

    166

    168

    165

    164

    154

    152

    153

    156

    158

    162

    160

    161

    173

    166

    161

    159

    162

    167

    168

    159

    158

    153

    154

    159

    Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?

    Độ dài nhóm: 170 – 165 = 5

    Khoảng biến thiên: 173 – 150 = 23

    Ta có: \frac{23}{5} = 4,6 vậy ta chia thành 5 nhóm như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Tổng

    50

    Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.

  • Câu 19: Nhận biết

    Một nhóm 11 học sinh tham gia một kỳ thi. Số điểm thi của 11 học sinh đó được sắp xếp từ thấp đến cao như sau (thang điểm 10): 0;0;3;6;6;7;7;8;8;8;9. Tìm số trung bình của mẫu số liệu (tính chính xác đến hàng phần trăm).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{0.2 + 3.1 + 6.2 +
7.2 + 8.3 + 9}{11} = 5,64

  • Câu 20: Nhận biết

    Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có 3 bạn nam và 2 bạn nữ?

    Số cách chọn 3 bạn nam là: C_6^3 = 20 cách

    Số cách chọn 2 bạn nữ là: C_5^2 = 10 cách

    Áp dụng quy tắc nhân ta có: 

    C_6^3.C_5^2 = 20.10 = 200 cách

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo