Giả sử có bảy bông hoa khác nhau và ba lọ hoa khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?
Số cách xếp bảy bông hoa khác nhau vào ba lọ hoa khác nhau là số chỉnh hợp chập 3 của 7 phần tử.
=> Có cách.
Giả sử có bảy bông hoa khác nhau và ba lọ hoa khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?
Số cách xếp bảy bông hoa khác nhau vào ba lọ hoa khác nhau là số chỉnh hợp chập 3 của 7 phần tử.
=> Có cách.
Hai học sinh thi đấu chơi game với nhau. Người giành chiến thắng là người đầu tiên thắng được 5 hiệp. Tại thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp. Tính xác suất để bạn A giành chiến thắng?
Gọi thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp là hai người đá đánh được i hiệp và gọi là biến cố ở hiệp thứ I, người thứ j thắng
Vậy xác suất để bạn A giành chiến thắng là:
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa trung vị của mẫu số liệu.
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [9; 11)
(Vì 10 nằm giữa hai tần số tích lũy 9 và 16)
Gieo 3 lần đồng thời một con xúc xắc và một đồng xu. Ta có P là biến cố trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Tính số phần tử của biến cố đối của biến cố P?
Xét phép thử gieo ba lần một con xúc xắc và một đồng xu với không gian mẫu có số phần tử là
Xét biến cố P trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp.
TH1: trong cả ba lần gieo đều được kết quả: con súc sắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Có 1 khả năng xảy ra.
TH2: trong ba lần gieo có đúng 2 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có khả năng.
TH3: trong ba lần gieo có đúng 1 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có khả năng.
Cho bảng số liệu ghép nhóm sau:
Nhóm | Tần số |
[0; 20) | 16 |
[20; 40) | 12 |
[40; 60) | 25 |
[60; 80) | 15 |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Giá trị tứ phân vị thứ nhất là: 30,8 || 30.8 || 30 , 8 || 30 . 8
Giá trị tứ phân vị thứ ba là: 79,3 || 79.3 ||79 , 3|| 79 . 3
Cho bảng số liệu ghép nhóm sau:
Nhóm | Tần số |
[0; 20) | 16 |
[20; 40) | 12 |
[40; 60) | 25 |
[60; 80) | 15 |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Giá trị tứ phân vị thứ nhất là: 30,8 || 30.8 || 30 , 8 || 30 . 8
Giá trị tứ phân vị thứ ba là: 79,3 || 79.3 ||79 , 3|| 79 . 3
Ta có:
Nhóm | Tần số | Tần số tích lũy |
[0; 20) | 16 | 16 |
[20; 40) | 12 | 28 |
[40; 60) | 25 | 53 |
[60; 80) | 15 | 68 |
[80; 100) | 12 | 80 |
[100; 120) | 10 | 90 |
Tổng | N = 90 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [20; 40)
Khi đó ta có:
Tứ phân vị thứ nhất được tính như sau:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: [60; 80)
Khi đó ta có:
Tứ phân vị thứ ba được tính như sau:
Một công ty xây dựng khảo sát 300 khách hàng xem họ có nhu cầu mua nhà ở mức giá nào. Kết quả khảo sát ghi lại ở bảng sau:
|
Mức giá |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Số khách hàng |
55 |
78 |
110 |
45 |
12 |
Mức giá mua nhà trung bình là
Ta có:
|
Mức giá |
[10; 14) |
[14; 18) |
[18; 22) |
[22; 26) |
[26; 30) |
|
Giá trị đại diện |
12 |
16 |
20 |
24 |
28 |
|
Số khách hàng |
55 |
78 |
110 |
45 |
12 |
Mức giá mua nhà trung bình là:
.
Vậy mức giá mua nhà trung bình là: (triệu đồng/
).
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Một tổ học sinh gồm 9 em, trong đó có 3 nữ được chia thành ba nhóm, mỗi nhóm ba em. Tính xác suất để mỗi nhóm có một nữ?
Gọi A là biến cố: "Ở 3 nhóm học sinh, mỗi nhóm có một nữ".
Tìm
Chọn ngẫu nhiên 3 trong 9 em đưa vào nhóm thứ nhất có cách.
Chọn 3 trong 6 em còn lại đưa vào nhóm thứ hai có cách.
Còn 3 em, đưa vào nhóm thứ 3 có 1 cách.
Vậy số phần tử của không gian mẫu là
Tìm
Phân 3 nữ vào ba nhóm có cách khác nhau.
Phân 6 nam vào ba nhóm theo cách trên có khác nhau
Vậy số kết quả thuận lợi cho biến cố A là:
Vậy xác suất cần tìm là:
Thời gian xem tivi trong tuần của 30 học sinh tìm được như sau:
1 | 6 | 2 | 3 | 5 | 12 | 5 | 8 | 4 | 8 |
10 | 3 | 4 | 12 | 2 | 8 | 15 | 1 | 17 | 6 |
3 | 2 | 8 | 5 | 9 | 6 | 8 | 7 | 14 | 12 |
Chuyển dữ liệu về dạng mẫu dữ liệu theo nhóm, độ lớn các nhóm bằng nhau và trong đó có khoảng thời gian là [5; 10). Hãy cho biết có bao nhiêu học sinh xem tivi trong khoảng thời gian lớn nhất?
Độ dài nhóm là
Khoảng biến thiên:
Ta có: => Số nhóm tạo thành là 4 nhóm.
Số giờ | Tần số |
Tổng cộng |
Vậy có 2 học sinh xem tivi trong khoảng thời gian lớn nhất.
Biết
và
là hai biến cố đối nhau. Chọn khẳng định đúng?
Ta có:
Cho tập hợp E = {0; 1; 2; 3; 4; 5; 6; 7} có thể lập được bao nhiêu số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn?
Số các chữ số có 5 chữ số khác nhau được tạo thành từ các chữ số đã cho có dạng:
Do E là số chẵn =>
Trường hợp 1: e = 0
Số cách chọn a là 7 cách
Số cách chọn b là 6 cách
Số cách chọn c là 5 cách
Số cách chọn d là 4 cách
=> Số các chữ số được tạo thành là: 7.6.5.4.1 = 840 (số)
Trường hợp 2:
Số cách chọn e là 3 cách
Số cách chọn a là 6 cách (vì a khác 0)
Số cách chọn e là 6 cách
Số cách chọn e là 5 cách
Số cách chọn e là 4 cách
=> Số các chữ số được tạo thành là: 3.6.6.5.4 = 2160 (số)
Vậy số có 5 chữ số khác nhau đôi một lấy từ E là số chẵn có thể lập được là:
840 + 2160 = 3000 số
Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm
) của
học sinh tham dự kỳ thi giữa kỳ
của lớp
, ta có bảng số liệu sau:
|
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)
Ta có bảng số liệu:
|
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh |
5 |
7 |
13 |
18 |
7 |
|
Tần số tích lũy |
5 |
12 |
25 |
43 |
50 |
Vì nên nhóm chứa tứ phân vị thứ nhất là
.
Khi đó tứ phân vị thứ nhất là
.
Chọn ngẫu nhiên 2 học sinh trong một nhóm học sinh gồm 6 nam và 4 nữ. Gọi X là biến cố “Hai học sinh được chọn đều là nam”. Khẳng định nào sau đây đúng?
Sử dụng định nghĩa biến cố đối ta được:
là biến cố “Hai học sinh được chọn đều là nữ”.
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là
Vậy xác suất để Minh tô sai cả 5 câu là
Điểm kiểm tra môn Toán của một nhóm học sinh được thể hiện trong bảng dưới đây:
Điểm số | [0; 2) | [2; 4) | [4; 6) | [6; 8) | [8; 10) |
Số học sinh | 3 | 7 | 8 | 12 | 9 |
Mẫu dữ liệu trên có bao nhiêu nhóm?
Quan sát bảng dữ liệu ta thấy mẫu dữ liệu được chia thành 5 nhóm:
Nhóm có điểm số [0; 2) có 3 học sinh
Nhóm có điểm số [2; 4) có 7 học sinh
Nhóm có điểm số [4; 6) có 8 học sinh
Nhóm có điểm số [6; 8) có 12 học sinh
Nhóm có điểm số [8; 10) có 9 học sinh
Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau:
Số tự nhiên có 4 chữ số khác nhau có dạng:
Do số cần tìm là số chẵn => d = {0; 2; 4}
Trường hợp 1: d = 0 => Có 1 cách chọn d
Số cách chọn a là 5 cách
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
=> Trường hợp 1 lập được 5 . 4 . 3 . 1 = 60 số
Trường hợp 2: d ∈ {2; 4} => Có 2 cách chọn d
Số cách chọn a là 4 cách
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
=> Trường hợp 2 lập được 4 . 4 . 3 . 2 = 96 số
=> Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau: 60 + 96 = 156 số
Khảo sát thời gian sử dụng điện thoại di động trong 1 ngày của một số học sinh khối 10 thu được mẫu số liệu ghép nhóm sau:
|
Thời gian (phút) |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
3 |
5 |
14 |
15 |
5 |
Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là:
Mẫu số liệu trên có (học sinh).
Tứ phân vị thứ nhất là .
Vậy nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là: .
Hai cung thủ thực hiện bắn mỗi người một mũi tên vào mục tiêu. Biết xác suất bắn trúng bia của người thứ nhất
và người thứ hai lần lượt là
. Tính xác suất của biến cố A chỉ có đúng 1 người bắn trúng bia?
Gọi M là biến cố người thứ nhất bắn trúng mục tiêu
N là biến cố người thứ hai bắn trúng mục tiêu ( là các biến cố độc lập).
Từ giả thiết ta có:
Mà
Khi nào mẫu số liệu ghép nhóm thường được dùng để thuận lợi cho việc tổ chức, đọc và phân tích số liệu?
Mẫu số liệu ghép nhóm được dùng khi ta không thể thu thập được số liệu chính xác hoặc do yêu cầu bài toán mà ta phải biểu diễn mẫu số liệu dưới dạng ghép nhóm để thuận lợi cho việc tổ chức, đọc và phân tích số liệu.
Tính tứ phân vị thứ ba của mẫu dữ liệu ghép nhóm sau:
Nhóm dữ liệu | Tần số |
(10; 20] | 15 |
(20; 30] | 25 |
(30; 40] | 20 |
(40; 50] | 12 |
(50; 60] | 8 |
(60; 70] | 5 |
(70; 80] | 3 |
Ta có:
Nhóm dữ liệu | Tần số | Tần số tích lũy |
(10; 20] | 15 | 15 |
(20; 30] | 25 | 40 |
(30; 40] | 20 | 60 |
(40; 50] | 12 | 72 |
(50; 60] | 8 | 80 |
(60; 70] | 5 | 85 |
(70; 80] | 3 | 88 |
Tổng | N = 88 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (40; 50]
Khi đó:
Vậy tứ phân vị thứ ba là: