Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26

    Đáp án là:

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là 28||20||24||26

    Số học sinh có thời gian vui chơi ít hơn 6 tiếng là:

    8 + 16 + 4 = 28 (học sinh)

  • Câu 2: Vận dụng

    Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

    Điểm

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số trường

    4

    19

    6

    2

    3

    1

    Các mệnh đề sau đúng hay sai

    a) Số liệu đã cho cho có 35 mẫu số liệu. Đúng||Sai

    b) Số trung vị của mẫu số liệu là M_{e} =
12. Sai||Đúng

    c) Số trung bình của mẫu số liệu đã cho là 28. Sai||Đúng

    d) Ngưỡng điểm đề đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai

    Đáp án là:

    Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:

    Điểm

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Số trường

    4

    19

    6

    2

    3

    1

    Các mệnh đề sau đúng hay sai

    a) Số liệu đã cho cho có 35 mẫu số liệu. Đúng||Sai

    b) Số trung vị của mẫu số liệu là M_{e} =
12. Sai||Đúng

    c) Số trung bình của mẫu số liệu đã cho là 28. Sai||Đúng

    d) Ngưỡng điểm đề đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai

    a) Ta có cỡ mẫu n = 4 + 19 + 6 + 2 + 3 +
1 = 35. Vậy đáp án a) đúng.

    b) Gọi x_{1},x_{2},...,x_{35} được sắp xếp theo thứ tự không giảm.

    Khi đó, trung vị là x_{18}. Do x_{18} thuộc nhóm \lbrack 20;30) nên nhóm này chứa trung vị.

    Suy ra p = 2, a_{2} = 20, a_{3} = 30, m_{2} = 19, m_{1} = 4, a_{3} - a_{2} = 10.

    M_{e} = a_{p} + \dfrac{\dfrac{n}{2} -\left( m_{1} + ... + m_{p - 1} ight)}{m_{p}}.\left( a_{p + 1} - a_{p}ight)

    = 20 + \dfrac{\dfrac{35}{2} - 4}{19}.10 =\frac{515}{19} \approx 27,1.

    Vậy đáp án b) sai.

    c) Số trung bình của mẫu số liệu là

    \overline{x} = \frac{15 \times 4 + 25
\times 19 + 35 \times 6 + 45 \times 2 + 55 \times 3 + 65}{35} =
\frac{213}{7} \approx 30,4.

    Vậy đáp án c) sai.

    d) Điểm ngưỡng để đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.

    Cỡ mẫu n = 35

    Tứ phân vị thứ ba Q_{3}x_{27}x_{27} thuộc nhóm [30;40) nên nhóm này chứa Q_{3}.

    Do đó, \left\{ \begin{matrix}
p = 3,a_{3} = 30,m_{3} = 6 \\
m_{1} + m_{2} = 4 + 19 = 23 \\
a_{4} - a_{3} = 10 \\
\end{matrix} ight. và ta có:

    Q_{3} = 30 + \dfrac{\dfrac{3 \times 35}{4}- 23}{6}.10 = 35,42.

    Vậy để đưa ra danh sách 25\% trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam ta lấy các trường có điểm chuẩn hóa trên 35.42.

    Vậy đáp án d) đúng.

  • Câu 3: Nhận biết

    Cho dãy số liệu thống kê: 21, 23, 24,25, 22, 20. Số trung bình cộng của dãy số liệu thống kê đã cho là

    Số trung bình là:

    \overline{x} =
\frac{21 + 23 + 24 + 25 + 22 + 20}{6} = 22,5

  • Câu 4: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm chứa trung vị của mẫu số liệu là: [100; 150)||[200; 250)||[150; 200)||[50; 100)

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm chứa trung vị của mẫu số liệu là: [100; 150)||[200; 250)||[150; 200)||[50; 100)

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{2}= 30

    => Nhóm chứa trung vị là [100; 150) (vì 30 nằm giữa hai tần số tích lũy 17 và 40)

  • Câu 5: Nhận biết

    Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi đội khác hai lần, một lần ở sân nhà và một lần ở sân khách. Số trận đấu được sắp xếp là:

    Cứ hai đội đá với nhau lượt đi, lượt về sẽ có hai trận đấu diễn ra nên số trận đấu là:2.C_{10}^2 = 90

  • Câu 6: Thông hiểu

    Điểm kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:

    Lớp 11A

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    8

    12

    10

    6

    Lớp 11B

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    5

    12

    10

    8

    4

    Lớp 11C

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    10

    15

    9

    3

    Lớp 11D

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    9

    16

    11

    3

    Lớp nào có tỉ lệ học sinh giỏi thấp nhất?

    Số học sinh lớp 11A là:

    4 + 8 + 12 + 10 + 6 = 40 (học sinh)

    Số học sinh giỏi lớp 11A là 6 học sinh

    => Tỉ lệ học sinh giỏi lớp 11A là: \frac{6}{40}.100\% = 15\%

    Số học sinh lớp 11B là:

    5 + 12 + 10 + 8 + 4 = 39 (học sinh)

    Số học sinh giỏi lớp 11B là 4 học sinh

    => Tỉ lệ học sinh giỏi lớp 11B là: \frac{4}{39}.100\% \approx 10,3\%

    Số học sinh lớp 11C là:

    4 + 10 + 15 + 9 + 3 = 41 (học sinh)

    Số học sinh giỏi lớp 11C là 3 học sinh

    => Tỉ lệ học sinh giỏi lớp 11C là: \frac{3}{41}.100\% \approx 7,3\%

    Số học sinh lớp 11D là:

    4 + 9 + 16 + 11 + 3 = 43 (học sinh)

    Số học sinh giỏi lớp 11D là 3 học sinh

    => Tỉ lệ học sinh giỏi lớp 11D là: \frac{3}{43}.100\% \approx 7\%

    Vậy lớp 11D có tỉ lệ học sinh giỏi thấp nhất.

  • Câu 7: Nhận biết

    Có bao nhiêu số tự nhiên có 3 chữ số:

    Ta có:

    Các số tự nhiên có ba chữ số là 100; 101; ...; 998; 999

    => Có 999 − 100 + 1 = 900 số tự nhiên có ba chữ số.

  • Câu 8: Thông hiểu

    Trong một mẫu dữ liệu ghép nhóm có nhóm (0; 10]; (10; 20]; … độ dài một nhóm là 10. Khi đó giới hạn dưới của mẫu thuộc vào nhóm thứ tư là:

    Theo cách chia nhóm như đề bài đã cho ta có được các nhóm như sau:

    (0; 10]; (10; 20]; (20; 30]; (30; 40]; …

    Mẫu nhóm thứ tư là (30; 40]

    => Giới hạn dưới của nhóm thứ tư là 30.

  • Câu 9: Thông hiểu

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 3 và 2:

    Số chia hết cho 2 và 3 là 6k, với k là số tự nhiên.

    Theo đề bài ta có:

    0 ≤ 6k < 100

    => 0 ≤ k < 16,7

    Vậy có 17 chữ số thỏa mãn.

  • Câu 10: Nhận biết

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Đáp án là:

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    45

    65

    72

    48

    74

    67

    68

    46

    56

    53

    58

    68

    72

    64

    62

    49

    72

    55

    67

    51

    Điền số thích hợp vào bảng sau:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40≤ x <50

    45

    4

    50≤ x < 60

    55

    5

    60≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

    Ta có:

    Tốc độ

    Đại diện tốc độ

    Tần số

    40 ≤ x < 50

    45

    4

    50 ≤ x < 60

    55

    5

    60 ≤ x < 70

    65

    7

    70 ≤ x < 80

    75

    4

  • Câu 11: Nhận biết

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 12: Nhận biết

    Trong một phép thử có không gian mẫu kí hiệu là \OmegaB là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?

    Khẳng định sai là: “P(B) = 0 khi và chỉ khi B chắc chắn”.

    Vì B là biến cố chắc chắn thì P(B) = 1.

  • Câu 13: Vận dụng

    Cho ba chiếc hộp A, B, C. Hộp A chứa 4 viên bi đỏ, 3 viên bi trắng. Hộp B chứa 3 viên bi đỏ, 2 viên bi vàng. Hộp C chứa 2 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên một hộp rồi lấy ngẫu nhiên 1 viên bi từ chiếc hộp đó. Tính xác suất để lấy được một viên bi đỏ.

    Gọi A là biến cố chọn được hộp A

    B là biến cố chọn được hộp B

    C là biến cố chọn được hộp C

    E là biến cố bi chọn ra là bi màu đỏ.

    Ta có:\left\{ \begin{matrix}P(A) = P(B) = P(C) = \dfrac{1}{3} \\P\left( E|A ight) = \dfrac{4}{7} \\P\left( E|B ight) = \dfrac{3}{5} \\P\left( E|C ight) = \dfrac{1}{2} \\\end{matrix} ight.

    Theo công thức

    P(E) = P(A).P\left( E|A ight) +
P(B).P\left( E|B ight) + P(C).P\left( E|C ight)

    = \frac{1}{3}.\frac{4}{7} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{1}{2} =
\frac{39}{70}

  • Câu 14: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tần số tích lũy

    8

    20

    34

    44

    50

    Ta có: \frac{3.N}{4} = \frac{3.50}{4} =37,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 34,f = 10;c =5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c= 25 + \dfrac{37,5 - 34}{10}.5 =26,75

  • Câu 15: Thông hiểu

    Cho P(A) =
0,5;P(B) = 0,4;P(AB) = 0,2. Chọn khẳng định đúng?

    Theo giả thiết ta có:

    P(A.B) = P(A).P(B)

    = 0,5.0,4 = 0,2 = P(AB)

    Vậy hai biến cố A và B là hai biến cố độc lập.

  • Câu 16: Thông hiểu

    Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?

    Gọi Y là biến cố “Trong đoàn cả 3 giáo viên đều là nữ”.

    \overline{Y} là biến cố “Trong đoàn công tác có ít nhất một giáo viên nam”

    Ta có Y = HTS với H;S;T là 3 biến cố độc lập.

    Suy ra P(Y) = P(HTS) =
\frac{1}{2}.\frac{2}{5}.\frac{1}{3} = \frac{1}{15}

    P\left( \overline{Y} ight) = 1 - P(Y)
= 1 - \frac{1}{15} = \frac{14}{15}

  • Câu 17: Thông hiểu

    Có hai hộp, hộp thứ nhất đựng 3 bi đỏ, 2 bi xanh và 5 bi vàng, hộp thứ hai đựng 2 bi đỏ, 3 bi xanh và 2 bi vàng. Lấy ngẫu nhiên 2 bi, mỗi hộp một bi. Tính xác suất để trong một lần lấy ra được đúng một bi đỏ?

    Gọi A là biến cố “Trong một lần lấy ra được đúng một bi đỏ”, A_{1} là biến cố “Lấy được bi đỏ ở hộp thứ nhất”, A_{2} là biến cố “Lấy được bi đỏ ở hộp thứ hai”.

    Ta có: \left\{ \begin{matrix}A = A_{1}\overline{A_{2}} \cup \overline{A_{1}}A_{2} \\P\left( A_{1} ight) = \dfrac{3}{10};P\left( \overline{A_{1}} ight) =\dfrac{7}{10} \\P\left( A_{2} ight) = \dfrac{2}{7};P\left( \overline{A_{2}} ight) =\dfrac{5}{7} \\\end{matrix} ight.

    Suy ra

    P(A) = P\left( A_{1}\overline{A_{2}}
\cup \overline{A_{1}}A_{2} ight) = P\left( A_{1}\overline{A_{2}}
ight) + P\left( \overline{A_{1}}A_{2} ight)

    = \frac{3}{10}.\frac{5}{7} +
\frac{7}{10}.\frac{2}{7} = \frac{29}{70}

    = P\left( A_{1} ight)P\left(
\overline{A_{2}} ight) + P\left( \overline{A_{1}} ight)P\left( A_{2}
ight)

  • Câu 18: Nhận biết

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Tần số

    7

    13

    9

    18

    22

    6

    Mẫu số liệu có bao nhiêu nhóm?

    Mẫu số liệu đã cho có 6 nhóm.

  • Câu 19: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 20: Vận dụng

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Đáp án là:

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Gọi A là biến cố học sinh được chọn giỏi môn Toán, B là biến cố học sinh được chọn giỏi môn Vật lí.

    Ta có:

    A \cup B là biến cố học sinh được chọn giỏi môn Toán hoặc Vật lí

    A \cap B là biến cố học sinh được chọn giỏi cả 2 môn Toán và Vật lí

    Ta có:

    \left\{ \begin{matrix}
n(A \cup B) = 0,5.40 = 20 \\
n(A \cup B) = n(A) + n(B) - n(A.B) \\
\end{matrix} ight.

    n(A.B) = n(A) + n(B) - n(A \cup
B)

    = 12 + 13 - 20 = 5

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 52 lượt xem
Sắp xếp theo