Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Quan sát bảng sau và tìm mốt.

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Quan sát bảng dữ liệu ta thấy mốt của mẫu dữ liệu nằm trong khoảng [30; 40)

    Khi đó: \left\{ \begin{matrix}l = 30;f_{0} = 12;f_{1} = 22;f_{2} = 17 \\c = 40 - 30 = 10 \\\end{matrix} ight.

    Vậy mốt của dữ liệu là: M_{0} = 30 +\frac{22 - 12}{2.22 - 12 - 17}.10 \approx 30,7

  • Câu 2: Nhận biết

    Đại diện hai đội bóng rổ X và Y cùng thực hiện ném một bóng 3 điểm một cách độc lập. Biết xác suất ném bóng vào rổ của hai tuyển thủ A và B lần lượt là \frac{1}{5}\frac{2}{7}. Tính xác suất của biến cố cả hai cùng ném bóng trúng rổ?

    Do hai tuyển thủ ném bóng rổ một cách độc lập nên xác suất của biến cố cả hai cùng ném bóng trúng rổ là:

    P(A).P(B) = \frac{1}{5}.\frac{2}{7} =
\frac{2}{35}

  • Câu 3: Nhận biết

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Độ dài nhóm dữ liệu là: 5

    Đáp án là:

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Tần số

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

    Độ dài nhóm dữ liệu là: 5

     Đáp án đúng là: 5.

  • Câu 4: Thông hiểu

    Lẫy ngẫu nhiên 5 viên bi trong hộp có 13 viên bi gồm 6 bi xanh, 7 bi đỏ. Tính xác suất để 5 viên bi lấy được có số bi xanh nhiều hơn số bi đỏ?

    Gọi A là biến cố lấy số bi xanh nhiều hơn bi đỏ

    Khi đó ta có: n(\Omega) =
C_{13}^{5}

    TH1: lấy được 5 viên bi xanh C_{6}^{5} cách

    TH2: lấy được 4 viên bi xanh; 1 viên bi đỏ C_{6}^{4}.C_{7}^{1} cách

    TH3: lấy được 3 viên bi xanh; 2 viên bi đỏ C_{6}^{3}.C_{7}^{2} cách

    Do đó xác suất của biến cố A là:

    \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{59}{143}

  • Câu 5: Nhận biết

    Gieo hai lần liên tiếp một con xúc xắc. Giả sử H là biến cố kết quả ít nhất một lần xuất hiện mặt 3 chấm. Biến cố đối của biến cố H là:

    H là biến cố kết quả ít nhất một lần xuất hiện mặt 3 chấm thì biến cố đối của biến cố H là không xuất hiện mặt 3 chấm.

  • Câu 6: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm nào chứa mốt của mẫu số liệu?

    Nhóm chứa mốt của dấu hiệu là: [100; 150)

  • Câu 7: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Giá trị đại diện của nhóm thứ tư là:

    Giá trị đại diện của nhóm thứ tư (hay nhóm [60; 80)) là \frac{60 + 80}{2} = 70.

  • Câu 8: Nhận biết

    Nhóm số liệu ghép nhóm có dạng \lbrack m;n). Khi đó giá trị đại diện của nhóm tính bằng công thức nào sau đây?

    Giá trị đại diện của một nhóm số liệu là trung bình cộng giá trị hai đầu mút của nhóm số liệu.

    Công thức tính giá trị đại diện của nhóm \lbrack m;n)\frac{m + n}{2}

  • Câu 9: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 10: Vận dụng

    Gọi P là tập hợp các số tự nhiên có 5 chữ số khác nhau được tạo thành từ các phần tử của tập A = \left\{ 0;1;2;3;4;5;6
ight\}. Chọn ngẫu nhiên một số từ tập P. Tính số phần tử của biến cố H “chọn được số tự nhiên chia hết cho 15”.

    Ta có H là biến cố số tự nhiên được chọn chia hết cho 15.

    Số tự nhiên có 5 chữ số khác nhau và chia hết cho 15 được tạo thành từ tập A có dạng \overline{abcde}

    Ta có: \left\{ \begin{matrix}
15 = 3.5 \\
(3,5) = 1 \\
\end{matrix} ight. do đó \overline{abcde} \vdots 15 \Leftrightarrow \left\{
\begin{matrix}
\overline{abcde} \vdots 5 \\
\overline{abcde} \vdots 3 \\
\end{matrix} ight. suy ra (a +
b + c + d) \vdots 3 khi và chỉ khi

    TH1: e = 1 khi đó \overline{abcde} \vdots 3 \Rightarrow (a + b + c +
d) \vdots 3 khi và chỉ khi \left\lbrack \begin{matrix}
a;b;c;d \in \left\{ 1;2;3;6 ight\} \\
a;b;c;d \in \left\{ 1;2;4;5 ight\} \\
a;b;c;d \in \left\{ 1;3;5;6 ight\} \\
a;b;c;d \in \left\{ 2;3;5;6 ight\} \\
a;b;c;d \in \left\{ 3;4;5;6 ight\} \\
\end{matrix} ight.

    Vậy trong trường hợp này có 5.4! = 120 số tự nhiên

    TH2: e = 5 khi đó \overline{abcde} \vdots 3 \Rightarrow (a + b + c +
d + 5) \vdots 3

    \Rightarrow (a + b + c + d) \vdots
3 dư 1 khi và chỉ khi \left\lbrack
\begin{matrix}
a;b;c;d \in \left\{ 0;1;2;4 ight\} \\
a;b;c;d \in \left\{ 0;1;3;6 ight\} \\
a;b;c;d \in \left\{ 0;3;4;6 ight\} \\
a;b;c;d \in \left\{ 1;2;3;4 ight\} \\
a;b;c;d \in \left\{ 1;2;4;6 ight\} \\
\end{matrix} ight.

    Vậy trong trường hợp này có 3.3.3.2.1 + 2.4! = 102 số tự nhiên

    Do đó n(H) = 120 + 102 = 222

  • Câu 11: Vận dụng

    Cho dãy số liệu:

    30, 32, 45, 54, 74, 78, 108, 112, 66, 76, 88,

    40, 34, 30, 35, 35, 44, 66, 75, 84, 95, 96.

    Chuyển mẫu số liệu trên thành dạng ghép nhóm, các nhóm có độ dài bằng nhau, trong đó có nhóm [63; 72). Tính số nhóm dữ liệu tối đa được tạo thành.

    Trong các nhóm số liệu có nhóm [63; 72) thì độ dài của nhóm là: 10 

    Khoảng dữ liệu đã cho là: 112 – 30 = 82

    Ta có \frac{82}{10} \approx8,2

    Vậy số nhóm tối đa là 9 nhóm.

  • Câu 12: Thông hiểu

    Trong một trò chơi điện tử, có 38 con cá đói. Một con cá gọi là no nếu nó ăn được 3 con cá khác (con này có thể no hoặc không no). Một con cá no không ăn thêm con cá nào khác. Trò chơi kết thúc khi không còn con cá nào đói. Hỏi sau khi kết thúc trò chơi thì có tối đa bao nhiêu con cá no?

    Đáp án: 8

    Đáp án là:

    Trong một trò chơi điện tử, có 38 con cá đói. Một con cá gọi là no nếu nó ăn được 3 con cá khác (con này có thể no hoặc không no). Một con cá no không ăn thêm con cá nào khác. Trò chơi kết thúc khi không còn con cá nào đói. Hỏi sau khi kết thúc trò chơi thì có tối đa bao nhiêu con cá no?

    Đáp án: 8

     Đầu tiên, 9 con cá đói, mỗi con sẽ ăn 3 con cá đói khác để tạo thành 1 con cá no. Khi đó trong trò chơi còn lại 2 con cá đói và 9 con cá no.

    Để số con cá no là tối đa thì 1 con cá đói sẽ ăn 1 con cá đói còn lại và 2 con cá no khác.

    Khi đó, trong trò chơi sẽ không còn cá đói và có 8 con cá no.

  • Câu 13: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Tổng

    N = 100

    Xác định giá trị đại diện của nhóm thứ tư?

    Giá trị đại diện của nhóm thứ tư là \frac{165 + 170}{2} = 167,5

  • Câu 14: Thông hiểu

    Hai cung thủ cùng bắn mũi tên vào mục tiêu một cách độc lập. Tính xác suất của biến cố hai cung thủ cùng bắn trúng mục tiêu. Biết rằng xác suất bắn trúng của người thứ nhất và người thứ hai lần lượt là 80\%70\%?

    Giả sử Ai là biến cố người thứ i bắn trúng với i = 1; 2

    A là biến cố cả hai người cùng bắn trúng.

    Lúc đó A = A_{1} \cap A_{2}

    A_{1};A_{2} là hai biến cố độc lập nên

    \Rightarrow P(A) = P\left( A_{1} \cap
A_{2} ight) = P\left( A_{1} ight).P\left( A_{2} ight)

    = 0,8.0,7 = 0,56 = 56\%

  • Câu 15: Nhận biết

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48

    Đáp án là:

    Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:

    Cân nặng

    Số học sinh

    [40,5; 45,5)

    7

    [45,5; 50,5)

    16

    [50,5; 55,5)

    10

    [55,5; 60,5)

    5

    [60,5; 65,5)

    4

    [65,5; 70,5)

    2

    Số học sinh lớp 11A kiểm tra cân nặng là: 44||50||52||48

    Số học sinh lớp 11A kiểm tra cân nặng là

    7 + 16 + 10 + 5 + 4 + 2 = 44 (học sinh)

  • Câu 16: Thông hiểu

    Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:

    Chiều cao (tính bằng cm)

    Số học sinh

    [150; 155)

    12

    [155; 160)

    9

    [160; 165)

    14

    [165; 170)

    10

    [170; 175)

    5

     

    N = 50

    Tính mốt của mẫu dữ liệu đã cho?

    Quan sát bảng thống kê ta thấy tần số cao nhất là 14 nằm trong nhóm [160; 165)

    Chiu cao (tính bng cm)

    Số học sinh

    [150; 155)

    12

     

    [155; 160)

    9

    {f_0}

    [160; 165)

    14

    {f_1}

    [165; 170)

    10

    {f_2}

    [170; 175)

    5

     

     

    N = 50

     

    \Rightarrow l = 160;f_{0} = 9;f_{1} =14;f_{2} = 10;c = 165 - 160 = 5

    Khi đó ta tính mốt như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    \Rightarrow M_{0} = 160 + \frac{14 -9}{2.14 - 9 - 10}.5 \approx 162,8

  • Câu 17: Vận dụng

    Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính P(H)?

    Gọi số tự nhiên có 9 chữ số có dạng \overline{a_{1}a_{2}...a_{9}};\left( a_{1} eq 0
ight)

    Ta có: n(A) = 9.10^{8} khi đó số phần tử không gian mẫu là n(\Omega) =
C_{n(A)}^{1} = 9.10^{8}

    H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.

    Số a_{9} có 5 cách chọn

    Các số từ a_{2} ightarrow
a_{8}mỗi số có 10 cách chọn

    Xét tổng a_{2} + a_{3} + ... +
a_{9}. Vì số dư của a_{2} + a_{3} +
... + a_{9} khi chia cho 9 thuộc tập \left\{ 0;1;2;...;8 ight\} nên luôn tồn tại một cách chọn số a_{1} eq 0 để S = a_{2} + a_{3} + ... + a_{9} chia hết cho 9 hay \overline{a_{1}a_{2}...a_{9}} \vdots
9

    Do đó n(H) = 5.10^{7}

    Xác suất của biến cố H là P(H) =
\frac{n(H)}{n(\Omega)} = \frac{1}{18}

  • Câu 18: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 19: Thông hiểu

    Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là:

    Chọn nhóm có 2 thành viên: C_{10}^2

    Chọn nhóm có 3 thành viên từ 8 thành viên còn lại: C_8^3

    Chọn nhóm có 5 thành viên từ 5 thành viên còn lại: C_5^5

    => Số cách chia 10 học sinh thành 3 nhóm lần lượt gồm 2, 3, 5 học sinh là: C_{10}^2.C_8^3.C_5^5

  • Câu 20: Nhận biết

    Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Chọn tên 4 học sinh để cho đi du lịch. Hỏi có bao nhiêu cách chọn các học sinh:

     Số cách chọn 4 học sinh là tổ hợp chập 4 của 15 học sinh: C_{15}^4 = 1365

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo