Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Điểm kiểm tra của 50 học sinh được thể hiện như sau:

    23, 25, 36, 39, 37, 41, 42, 22, 26, 35,

    34, 30, 29, 27, 47, 40, 31, 32, 43, 45,

    34, 46, 23, 24, 27, 36, 41, 43, 39, 38,

    28, 32, 42, 33, 46, 23, 34, 41, 40, 30,

    45, 42, 39, 37, 38, 42, 44, 46, 29, 37.

    Chuyển mẫu dữ liệu trên thành dạng ghép nhóm. Điền kết quả còn thiếu vào ô trống.

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

    Đáp án là:

    Điểm kiểm tra của 50 học sinh được thể hiện như sau:

    23, 25, 36, 39, 37, 41, 42, 22, 26, 35,

    34, 30, 29, 27, 47, 40, 31, 32, 43, 45,

    34, 46, 23, 24, 27, 36, 41, 43, 39, 38,

    28, 32, 42, 33, 46, 23, 34, 41, 40, 30,

    45, 42, 39, 37, 38, 42, 44, 46, 29, 37.

    Chuyển mẫu dữ liệu trên thành dạng ghép nhóm. Điền kết quả còn thiếu vào ô trống.

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

    Hoàn thành bảng

    Khoảng điểm

    Số học sinh

    [20; 25)

    5

    [25; 30)

    7

    [30; 35)

    9

    [35; 40)

    11

    [40; 45)

    12

    [45; 50)

    6

  • Câu 2: Nhận biết

    Giá trị đại diện của nhóm \lbrack
58;60)

    Giá trị đại diện của mẫu là: \frac{58 +
60}{2} = 59.

  • Câu 3: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6 lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần và các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Theo bài ra ta có:

    Số các số có dạng hoán vị của 10 chữ số, trong đó mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{10!}}{{3!.2!}}

    Những số có chữ số 0 đứng tận cùng bên trái ví dụ 0222443156 ta phải bỏ đi

    Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{9!}}{{3!.2!}}

    Vậy số các số được tạo thành là: \frac{{10!}}{{3!.2!}} -\frac{{9!}}{{3!.2!}} =272160

     

  • Câu 4: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 5: Vận dụng cao

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Đáp án là:

    Lấy ngẫu nhiên 3 số từ tập T = \left\{ 1;2;3;4;6;8 ight\} . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5

    Giả sử lấy được ba số là: (a;b;c) với a
< b < c do đó c \geq 4
\Rightarrow c \in \left\{ 4;6;8 ight\}

    Lại có a;b;c là ba cạnh của tam giác ABC, với BC = a;AC = b;AB = a có góc C tù.

    \Rightarrow \left\{ \begin{gathered}
  \cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  {a^2} + {b^2} < {c^2} \hfill \\
  4 \leqslant c < a + b \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \sqrt{a^{2} + b^{2}} < c
< a + b với c \in \left\{ 4;6;8
ight\}

    Xét c = 4 thì bộ (a;b) = (2;3) thỏa mãn

    Xét c = 6 do \left\{ \begin{matrix}
a < b < c \\
6 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 4 \\
a = 3 \\
\end{matrix} ight.

    \Rightarrow (a;b) = 3;4 thỏa mãn

    Xét c = 8 do \left\{ \begin{matrix}
a < b < c \\
8 = c < a + b < 2b \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b = 6 \\
\left\lbrack \begin{matrix}
a = 3 \\
a = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}
(a;b) = (3;6) \\
(a;b) = (4;6) \\
\end{matrix} ight. thỏa mãn

    Vậy số phần tử của biến cố F là n(F) =
4

  • Câu 6: Nhận biết

    Biết hai biến cố A;B độc lập với nhau và P(A) = 0,4;P(B) = 0,3. Tính giá trị P(A.B)?

    Do A và B là hai biến cố độc lập với nhau nên P(AB) = P(A).P(B) = 0,4.0,3 = 0,12

  • Câu 7: Vận dụng

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack0;5). Xác định tần suất nhóm \lbrack 10;15) trong mẫu dữ liệu ghép nhóm thu được?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Ta có tần suất của nhóm \lbrack10;15) là: \frac{11.100}{40} =27,5\%

  • Câu 8: Thông hiểu

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Thăm một bạn không quá một ngày).

    Ta có: 1 tuần = 7 ngày

    Mà mỗi ngày A đến thăm một bạn.

    Ngày thứ nhất có 12 cách chọn

    Ngày thứ hai có 11 cách chọn

    Ngày thứ ba có 10 cách chọn

    Ngày thứ tư có 9 cách chọn

    Ngày thứ năm có 8 cách chọn

    Ngày thứ sáu có 7 cách chọn

    Ngày thứ bảy có 6 cách chọn

    => Số kế hoạch có thể lập được là: 12 . 11 . 10 . 9 . 8 . 7 . 6 = 3 991 680 kế hoạch

  • Câu 9: Nhận biết

    Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi X là biến cố “Ba lần liên tiếp kết quả như nhau” và Y là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp”. Chọn khẳng định đúng?

    Ta có:

    X = \left\{ SSS;NNN
ight\}

    Y = \left\{ SSS;SSN;NNN
ight\}

    \Rightarrow X \cup Y = \left\{
SSS;SSN;NSS;NNN ight\}

  • Câu 10: Thông hiểu

    Một nhóm học sinh gồm 2 nam và 2 nữ được được sắp xếp ngẫu nhiên vào một ghế dài. Hỏi biến cố A “xếp nam và nữ ngồi xen kẽ nhau” có bao nhiêu phần tử?

    Trường hợp 1: bạn nam ngồi đầu, khi đó 2 bạn nam xếp vào 2 chỗ, nữ xếp nốt vào hai chỗ còn lại

    Số cách sắp xếp là 2!.2! = 4

    Trường hợp 2: Bạn nữ ngồi đầu, tương tự ta có 4 cách sắp xếp.

    Vậy theo quy tắc cộng số phần tử của biến cố A là 4 + 4 = 8 cách

  • Câu 11: Thông hiểu

    Kết quả đo chiều cao một nhóm các học sinh nam lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Khi chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 5 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau ta được các nhóm là:

    Ta có:

    Khoảng biến thiên là 174 - 160 =14

    Để chia số liệu thành 5 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 3

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 175.

    Khi đó ta có các nhóm là: \lbrack160;163),\lbrack 163;166),\lbrack 166;169),\lbrack 169;172),\lbrack172;175)

  • Câu 12: Thông hiểu

    Dưới đây là sự phân bố một nhóm người theo mức thu nhập khác nhau:

    Thu nhập (triệu đồng)

    [0; 8)

    [8; 16)

    [16; 24)

    [24; 32)

    [32; 40)

    [40; 48)

    Số người

    8

    7

    16

    24

    15

    7

    Tính giá trị tứ phân vị thứ nhất. (Làm tròn giá trị đến chữ số thập phân thứ nhất).

    Ta có:

    Thu nhập (triệu đồng)

    [0; 8)

    [8; 16)

    [16; 24)

    [24; 32)

    [32; 40)

    [40; 48)

    Số người

    8

    7

    16

    24

    15

    7

    Tần số tích lũy

    8

    15

    31

    55

    70

    77

    Ta có: \frac{N}{4} = \frac{77}{4} =19,25

    => Nhóm chứa tứ phân vị thứ nhất là: [16; 24)

    Khi đó: \left\{ \begin{matrix}l = 16,\dfrac{N}{4} = 19,25,m = 15 \\f = 16,d = 24 - 16 = 8 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 16 + \frac{19,25 -15}{16}.8 = 18,125

  • Câu 13: Thông hiểu

    Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Bảng số liệu ghép nhóm nào sau đây đúng?

    Ta có:

    Khoảng biến thiên là 174 - 160 =14

    Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.

    Khi đó ta có các nhóm là: \lbrack160;164),\lbrack 164;168),\lbrack 168;172),\lbrack 172;176)

    Vậy bảng dữ liệu ghép nhóm đúng là:

  • Câu 14: Nhận biết

    Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    8

    9

    15

    12

    6

    Nhóm chứa mốt của mẫu số liệu đã cho là:

    Nhóm chứa mốt là nhóm có giá trị tần số lớn nhất

    Nên nhóm chứa mốt của mẫu số liệu là: \lbrack 40;60).

  • Câu 15: Nhận biết

    Cho 6 chữ số 2, 3, 4, 5, 6, 7. Số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số có dạng: \overline {abc}

    Do số tự nhiên cần tìm là số chẵn => c = {2; 4; 6}

    => Số cách chọn c là 3 cách

    Số cách chọn a là 6 cách

    Số cách chọn b là 6 cách

    => Số các số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đã cho là: 3 . 6 . 6 = 108 số

  • Câu 16: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm sau.

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Tính giá trị trung bình của mẫu dữ liệu ghép nhóm trên.

    Ta có:

    Đại diện

    Tần số

    Tích các giá trị

    5

    8

    40

    15

    14

    210

    25

    12

    300

    35

    9

    315

    45

    7

    315

    Tổng

    N = 50

    1180

    Giá trị trung bình là: \overline{x} =\frac{1180}{50} = 23,6

  • Câu 17: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm chứa trung vị của mẫu số liệu là: [100; 150)||[200; 250)||[150; 200)||[50; 100)

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm chứa trung vị của mẫu số liệu là: [100; 150)||[200; 250)||[150; 200)||[50; 100)

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{2}= 30

    => Nhóm chứa trung vị là [100; 150) (vì 30 nằm giữa hai tần số tích lũy 17 và 40)

  • Câu 18: Thông hiểu

    Có hai chiếc hộp chứa bi. Hộp thứ nhất chứa 4 viên bi đỏ và 3 viên bi trắng. Hộp thứ hai chứa 2 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra 1 viên bi, tính xác suất để 2 viên bi được lấy ra có cùng màu.?

    Gọi A;B;C;D lần lượt là các biến cố: “Lấy được bi đỏ từ hộp thứ nhất”, “Lấy được bi đỏ từ hộp thứ hai”; “Lấy được bi trắng từ hộp thứ nhất”, “Lấy được bi trắng từ hộp thứ hai”.

    Khi đó \left\{ \begin{matrix}P(A) = \dfrac{4}{7};P(B) = \dfrac{2}{6} = \dfrac{1}{3} \\P(C) = \dfrac{3}{7};P(D) = \dfrac{4}{6} = \dfrac{2}{3} \\\end{matrix} ight.

    Gọi E; F lần lượt là các biến cố: “Hai viên bi lấy ra cùng màu đỏ”, “Hai viên bi lấy ra cùng màu trắng”.

    Khi đó E = AB;F = CD

    Do A và B và hai biến cố độc lập nên P(E)
= P(AB) = P(A).P(B) = \frac{4}{21}

    Do C và D là hai biến cố độc lập nên P(F)
= P(CD) = P(C).P(D) = \frac{2}{7}

    Do E và F là hai biến cố xung khắc nên xác suất để lấy được hai viên bi cùng màu là

    P(E \cup F) = P(E) + P(F) =
\frac{4}{21} + \frac{2}{7} = \frac{10}{21}.

  • Câu 19: Vận dụng

    Cho hai biến cố A và B có P\left( A ight) = \frac{1}{3},P\left( B ight) = \frac{1}{4},P\left( {A \cup B} ight) = \frac{1}{2} ta kết luận hai biến cố A và B là:

    Ta có: P(A) + P(B) = 1/3 + 1/4 = 7/12 ≠ 1/2 = P(A ∪ B)

    Suy ra P(A) + P(B) ≠ P(A ∪ B)

    => Hai biến cố A và B không xung khắc

    Áp dụng công thức xác suất tổng hai biến cố ta có: 

    \begin{matrix}  P\left( A ight) + P\left( B ight) - P\left( {AB} ight) = P\left( {A \cup B} ight) \hfill \\   \Rightarrow P\left( {AB} ight) = \left[ {P\left( A ight) + P\left( B ight)} ight] - P\left( {A \cup B} ight) \hfill \\   \Rightarrow P\left( {AB} ight) = \left( {\dfrac{1}{3} + \dfrac{1}{4}} ight) - \dfrac{1}{2} = \dfrac{1}{2} \hfill \\ \end{matrix}

    P\left( A ight).P\left( B ight) = \frac{1}{3}.\frac{1}{4} = \frac{1}{{12}} = P\left( {AB} ight)

    => Hai biến cố A và B là hai biến cố độc lập.

  • Câu 20: Thông hiểu

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi B là biến cố: "Có một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu".

    Số cách chọn 1 học sinh đạt yêu cầu là 27.

    Số cách chọn 1 học sinh không đạt yêu cầu là 3.

    Chọn 2 học sinh mà trong đó có một học sinh đạt yêu cầu và một học sinh không đạt yêu cầu là: 27.3 =
81

    Khi đó số kết quả thuận lợi cho biến cố B là 81

    Vậy xác suất để cần tìm là: P(B) =
\frac{81}{435} = \frac{9}{145}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo