Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:

    Lớp 11A

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    8

    12

    10

    6

    Lớp 11B

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    5

    12

    10

    8

    4

    Lớp 11C

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    10

    15

    9

    3

    Lớp 11D

    Điểm

    (0; 5]

    (5; 6]

    (6; 7]

    (7; 8]

    (8; 10]

    Số học sinh

    4

    9

    16

    11

    3

    Lớp nào có nhiều học sinh nhất?

    Số học sinh lớp 11A là:

    4 + 8 + 12 + 10 + 6 = 40 (học sinh)

    Số học sinh lớp 11B là:

    5 + 12 + 10 + 8 + 4 = 39 (học sinh)

    Số học sinh lớp 11C là:

    4 + 10 + 15 + 9 + 3 = 41 (học sinh)

    Số học sinh lớp 11D là:

    4 + 9 + 16 + 11 + 3 = 43 (học sinh)

    Vậy lớp 11C có nhiều học sinh nhất.

  • Câu 2: Nhận biết

    Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:

    Số cách chọn bạn An là 1 cách.

    => Số cách chọn 3 bạn đi trực (không có An) là: C_{11}^3 = 165 cách

    Vậy có 165 cách chọn 4 em đi trực trong đó phải có An.

  • Câu 3: Thông hiểu

    Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất đúng với người nhận?

    Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.

    Do đó số phần tử của không gian mẫu là: 5! = 120

    Gọi B là biến cố “Lá thứ nhất đúng với người nhận”.

    Lá thứ nhất có đúng 1 cách chọn.

    Lá thứ 2 có 4 cách chọn.

    Lá thứ 3 có 3 cách chọn

    Lá thứ 4 có 2 cách chọn

    Lá thứ 5 có 1 cách chọn

    Suy ra n(B) = 24 \Rightarrow P(B) =
\frac{24}{120} = \frac{1}{5}

  • Câu 4: Thông hiểu

    Bảng tần số được nhóm chính xác cho tập hợp dữ liệu là bảng nào dưới đây?

    11

    23

    31

    17

    24

    38

    37

    7

    12

    5

    8

    15

    33

    19

    27

    Đáp án đúng là:

  • Câu 5: Vận dụng

    Hai tuyển thủ A và B đấu với nhau trong một trận bóng bàn với quy tắc người thắng trước 3 hiệp sẽ chiến thắng chung cuộc. Tính xác suất tuyển thủ B thắng chung cuộc, biết xác suất tuyển thủ B chiến thắng mỗi hiệp là 0,4?

    Gọi số hiệp hai tuyển thủ thi đấu là x;\left( {x \in {\mathbb{N}^*}} ight)

    Để tuyển thủ B chiến thắng chung cuộc thì tuyển thủ B phải thắng 3 trận trước, do đó 3 \leqslant x \leqslant 5

    Gọi H là biến cố tuyển thủ B thắng chung cuộc. Ta có các trường hợp:

    TH1: tuyển thủ B thắng sau khi thi đấu 3 hiệp đầu, khi đó xác suất của trường hợp này là:

    P_{1} = (0,4)^{3} = 0,064

    TH2: tuyển thủ B thắng sau khi thi đấu 4 hiệp, khi đó xác suất của trường hợp này là:

    P_{2} = 3.0,6.(0,4)^{3} =
0,1152

    TH3: tuyển thủ B thắng sau khi thi đấu 5 hiệp, khi đó xác suất của trường hợp này là:

    P_{3} = C_{4}^{2}.(0,6)^{2}.(0,4)^{3} =
0,13824

    Vậy xác suất để tuyển thủ B thắng chung cuộc là

    P = P_{1} + P_{2} + P_{3} = 0,064 +
0,1152 + 0,13824 = 0,31744

  • Câu 6: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong lớp?

    Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: C_{40}^3 = 9880 cách

  • Câu 7: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh tham gia khảo sát là:

    Số học sinh tham gia khảo sát là:

    8 + 16 + 4 + 2 + 2 = 32 (học sinh)

  • Câu 8: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm nào chứa mốt của mẫu số liệu?

    Nhóm chứa mốt của dấu hiệu là: [100; 150)

  • Câu 9: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính mốt?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

     

    [50; 100)

    12

    f_{0}

    [100; 150)

    23

    f_{1}

    [150; 200)

    17

    f_{2}

    [200; 250)

    3

     

     

    N = 60

     

    Ta có: \left\{ \begin{matrix}l = 100,f_{0} = 12;f_{1} = 23,f_{2} = 17 \\c = 150 - 100 = 50 \\\end{matrix} ight.

    => Mốt của dấu hiệu là:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    = 100 + \frac{23 - 12}{2.23 - 12 -17}.50 \approx 132,35

  • Câu 10: Thông hiểu

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Giá trị đại diện cho nhóm [155; 160) bằng:

    Giá trị đại diện của nhóm [155; 160) là \frac{155 + 160}{2} = 157,5

  • Câu 11: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 12: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 13: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 14: Thông hiểu

    Trong một buổi lễ kỉ niệm nhân ngày 20/10 có 20 đại biểu nữ và 10 đại biểu nam. Ban tổ chức mời 5 đại biểu phát biểu ý kiến. Tính xác suất để trong 5 phát biểu mời có một hoặc hai phát biểu là của đại biểu nam?

    Gọi A là biến cố "Trong 5 phát biểu mời có đúng một phát biểu là của đại biểu nam".

    Gọi B là biến cố "Trong 5 phát biểu mời có đúng hai phát biểu là của đại biểu nam".

    Biến cố P(A \cup B) là "Trong 5 phát biểu mời có một hoặc hai phát biểu là của đại biểu nam".

    Vì A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B)

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{C_{10}^{1}.C_{20}^{4}}{C_{30}^{5}} \\P(B) = \dfrac{C_{10}^{2}.C_{20}^{3}}{C_{30}^{5}} \\\end{matrix} ight.\  \Rightarrow P(A \cup B) \approx 0,7

  • Câu 15: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{2} = 50=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    \Rightarrow \Delta Q = Q_{3} - Q_{1}
\approx 7

  • Câu 16: Nhận biết

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Mốt của dữ liệu thuộc nhóm nào trong mẫu dữ liệu trên?

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

  • Câu 17: Thông hiểu

    Người ta kiểm tra chiều cao của các cây thân gỗ trong rừng (đơn vị: mét), kết quả được ghi trong bảng sau:

    7,3

    7,8

    7,5

    6,6

    8,5

    8,3

    8,3

    7,5

    8,4

    8,6

    7,4

    8,2

    8,0

    8,1

    8,7

    8,2

    8,8

    8,1

    7,7

    7,8

    8,5

    7,0

    7,9

    6,9

    9,4

    9,0

    8,0

    8,7

    8,9

    7,6

    8,0

    8,2

    7,9

    7,7

    7,2

    Chuyển mẫu số liệu trên thành mẫu số liệu ghép nhóm. Biết mẫu số liệu được chia thành 6 nhóm theo các nửa khoảng có độ dài như nhau. Khi đó nhóm chiếm tỉ lên cao nhất là:

    Khoảng biến thiên: 9,4 – 6,6 = 2,8

    Ta chia thành các nhóm sau:

    \lbrack 6,5;7),\lbrack 7;7,5),\lbrack7,5;8),\lbrack 8;8,5),\lbrack 8,5;9),\lbrack 9;9,5)

    Đếm số giá trị của mỗi nhóm ta có bảng ghép nhóm như sau:

    Chiều cao (m)

    Số cây

    [6,5; 7)

    2

    [7; 7,5)

    4

    [7,5; 8)

    9

    [8; 8,5)

    11

    [8,5; 9)

    7

    [9; 9,5)

    2

    Từ bảng số liệu ta thấy nhóm chiếm tỉ lệ cao nhất là: [8,0; 8,5).

  • Câu 18: Vận dụng

    Từ tập hợp các chữ số 1;2;3;4;5;6;7;8;9 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau sao cho không có hai chữ số liên tiếp nào cùng lẻ?

    Gọi \left\{ \begin{matrix}
A = \left\{ 1;3;5;7;9 ight\} \\
B = \left\{ 2;4;6;8 ight\} \\
\end{matrix} ight.

    Gọi số có 4 chữ số là \overline{abcd} khi đó có 3 trường hợp xảy ra:

    TH1: Số cần tìm có 2 chữ số chẵn và 2 chữ số lẻ

    C_{4}^{2} cách chọn 2 chữ số chẵn.

    C_{5}^{2} cách chọn 2 chữ số lẻ.

    Có 2! cách xếp 2 chữ số chẵn (tạo ra 3 khoảng trống kể cả hai đầu)

    A_{3}^{2} cách sắp xếp 2 chữ số lẻ vào 3 khoảng trống.

    Vậy trường hợp này có: C_{4}^{2}.C_{5}^{2}.2!.A_{3}^{2} = 720 cách.

    TH2: Số cần tìm có 3 chữ số chẵn và 1 chữ số lẻ

    C_{4}^{3} cách chọn 3 chữ số chẵn.

    5 cách chọn 1 chữ số lẻ.

    Có 4! cách xếp các số sau khi chọn

    Vậy trường hợp này có: C_{4}^{3}.5.4! =
480 cách.

    TH3: Số cần tìm có 4 chữ số chẵn

    Có 4! = 24 cách xếp các số sau khi chọn

    Suy ra số các số thỏa mãn yêu cầu bài toán là 720 + 480 + 24 = 1224 số.

  • Câu 19: Thông hiểu

    Một tổ gồm 7 nam và 6 nữ. Hỏi có bao nhiêu cách chọn 4 em đi trực sao cho có ít nhất 2 nữ?

    Số cách chọn 4 học sinh trong đó có 2 học sinh nữ là: C_6^2.C_7^2 cách

    Số cách chọn 4 học sinh trong đó có 3 học sinh nữ là: C_6^3.C_7^1 cách

    Số cách chọn 4 học sinh trong đó có 4 học sinh nữ là: C_6^4 cách

    => Số cách chọn 4 em đi trực sao cho có ít nhất 2 nữ là: C_6^2.C_7^2 + C_6^3.C_7^1 + C_6^4 = 470 cách

  • Câu 20: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5:

    Số tự nhiên có 5 chữ số khác nhau có dạng: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Số cách chọn a là: 5 cách (vì a khác 0)

    Số cách chọn b là: 5 cách

    Số cách chọn c là: 4 cách

    Số cách chọn d là 3 cách

    Số cách chọn e là: 2 cách

    => Có thể lập được số các số tự nhiên gồm 5 chữ số khác nhau lấy từ dãy số là: 5 . 5 . 4 . 3 . 2 = 600 số

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo