Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Cỡ mẫu của mẫu số liệu ghép nhóm là:
Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Cỡ mẫu của mẫu số liệu ghép nhóm là:
Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số chẵn gồm 3 chữ số khác nhau?
Số tự nhiên có ba chữ số khác nhau có dạng:
Ta có: Số cần tạo là số chẵn => c ∈ {2; 4}
=> Có 2 cách chọn c
Số cách chọn a là 3 cách
Số cách chọn b là 2 cách
=> Số các số chẵn gồm 3 chữ số khác nhau được tạo thành là: 3 . 2 . 2 = 12 số
Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:
Số phần tử không gian mẫu là:
Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần
=> Xác suất thực nghiệm mặt ngửa là:
Từ các chữ số 1; 2; 5; 7; 8 lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và nhỏ hơn 278?
Số các chữ số có ba chữ số khác nhau được tạo thành từ các số 1; 2; 5; 7; 8 có dạng:
Do số tự nhiên tạo thành nhỏ hơn số 276 =>
Trường hợp 1: a = 2
Nếu b = 7 mà số tự nhiên có ba chữ số khác nhau => c có 2 cách chọn {1; 5}
=> Số các số được tạo thành là: 1 . 1 . 2 = 2 (số)
Nếu b khác 7, b có 2 cách chọn {1, 5} => c sẽ có: 5 - 1 - 1 = 3 (cách chọn)
=> Số các số được tạo thành là: 1.2.3 = 6 (số)
Vậy trường hợp 1 ta có tất cả 8 số được tạo thành
Trường hợp 2: a = 1
Khi đó b sẽ có 4 cách chọn {2, 5, 7, 8} và c có 3 cách chọn
=> Số các số được tạo thành là: 1 . 4 . 3 = 12 (số)
=> Vậy số các số tự nhiên có 3 chữ số khác nhau và nhỏ hơn 278 được tạo thành là: 8 + 12 = 20 số
Đề thi Hóa học thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Bạn Phong đã làm đúng 40 câu và trả lời ngẫu nhiên cho 10 câu hỏi còn lại. Hỏi xác suất để Phong đạt trên 8,5 điểm?
Vì mỗi câu có 4 phương án trả lời và chỉ có đúng 1 phương án đúng nên xác suất để chọn đúng đáp án là ; xác suất trả lời sai là
Gọi A là biến cố bạn Phong được trên 8,5 điểm thì là biến cố bạn Phong được dưới 8,5 điểm.
Vì bạn Phong đã làm chắc chắn đúng 40 câu nên để có xảy ra 2 trường hợp:
TH1: Bạn Phong chọn được một câu đúng trong 10 câu còn lại xác suất xảy ra là:
TH2: Bạn Phong chọn được hai câu đúng trong 10 câu còn lại xác suất xảy ra là:
Hai cung thủ cùng bắn mũi tên vào mục tiêu một cách độc lập. Tính xác suất của biến cố hai cung thủ cùng bắn trúng mục tiêu. Biết rằng xác suất bắn trúng của người thứ nhất và người thứ hai lần lượt là
và
?
Giả sử Ai là biến cố người thứ i bắn trúng với i = 1; 2
A là biến cố cả hai người cùng bắn trúng.
Lúc đó
Vì là hai biến cố độc lập nên
Cho bảng số liệu ghép nhóm sau:
Nhóm | Tần số |
[0; 20) | 16 |
[20; 40) | 12 |
[40; 60) | 25 |
[60; 80) | 15 |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Giá trị tứ phân vị thứ nhất là: 30,8 || 30.8 || 30 , 8 || 30 . 8
Giá trị tứ phân vị thứ ba là: 79,3 || 79.3 ||79 , 3|| 79 . 3
Cho bảng số liệu ghép nhóm sau:
Nhóm | Tần số |
[0; 20) | 16 |
[20; 40) | 12 |
[40; 60) | 25 |
[60; 80) | 15 |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Giá trị tứ phân vị thứ nhất là: 30,8 || 30.8 || 30 , 8 || 30 . 8
Giá trị tứ phân vị thứ ba là: 79,3 || 79.3 ||79 , 3|| 79 . 3
Ta có:
Nhóm | Tần số | Tần số tích lũy |
[0; 20) | 16 | 16 |
[20; 40) | 12 | 28 |
[40; 60) | 25 | 53 |
[60; 80) | 15 | 68 |
[80; 100) | 12 | 80 |
[100; 120) | 10 | 90 |
Tổng | N = 90 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [20; 40)
Khi đó ta có:
Tứ phân vị thứ nhất được tính như sau:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: [60; 80)
Khi đó ta có:
Tứ phân vị thứ ba được tính như sau:
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Ghi các kết quả vào ô trống:
+ Số nhóm của mẫu dữ liệu: 8
+ Độ dài nhóm số liệu: 10
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Ghi các kết quả vào ô trống:
+ Số nhóm của mẫu dữ liệu: 8
+ Độ dài nhóm số liệu: 10
+ Mẫu số liệu trên được chia thành 8 nhóm.
+ Độ dài nhóm số liệu là 10
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.
Biến cố B là biến cố chọn trong T một số chia hết cho 5
Biến cố số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.
Gọi số tự nhiên có 4 chữ số có dạng:
Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.
Do đó số phần tử của A là
Số chia hết cho 5 có hai dạng . Do đó số phần tử của B là
Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: . Do đó số phần tử của
là:
Vậy số phần tử biến cố P là:
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng:
Ta có: => Có 6 cách chọn a
Số cách chọn b, c, d, e là: cách
=> Số các số tự nhiên có 5 chữ số đôi một khác nhau được tạo thành là: số
Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau?
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số khác nhau là 4! = 24 số
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị
của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ ba là [9; 11)
(Vì 15 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó tứ phân vị thứ ba là:
Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:
A: “Cả hai tấm thẻ đều mang số chẵn”.
B “Chỉ có một tấm thẻ mang số chẵn”.
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”
Khẳng định nào sau đây đúng?
Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.
Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.
Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.
Vậy biến cố C là biến cố hợp của A và B.
Chiều cao của 50 học sinh đo chính xác đến centimet được biểu diễn như sau:
161 | 150 | 154 | 165 | 168 | 161 | 154 | 162 | 150 | 151 |
162 | 164 | 171 | 165 | 158 | 154 | 156 | 172 | 160 | 170 |
153 | 159 | 161 | 170 | 162 | 165 | 166 | 168 | 165 | 164 |
154 | 152 | 153 | 156 | 158 | 162 | 160 | 161 | 173 | 166 |
161 | 159 | 162 | 167 | 168 | 159 | 158 | 153 | 154 | 159 |
Biểu diễn dữ liệu trên thành bảng dữ liệu ghép nhóm, lấy các khoảng chiều cao [160; 165); [165; 170); ... Khi đó số học sinh trong nhóm có khoảng chiều cao cao nhất là bao nhiêu học sinh?
Độ dài nhóm:
Khoảng biến thiên:
Ta có: vậy ta chia thành 5 nhóm như sau:
Chiều cao (tính bằng cm) | Tần số |
Tổng |
Vậy số học sinh trong nhóm có khoảng chiều cao cao nhất là 5 học sinh.
Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:
Chiều cao (cm) | Số học sinh |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | x |
[165; 170) | 26 |
[170; 175) | y |
[175; 180) | 3 |
Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?
Đáp án:
40
5
Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:
Chiều cao (cm) | Số học sinh |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | x |
[165; 170) | 26 |
[170; 175) | y |
[175; 180) | 3 |
Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?
Đáp án:
40
5
Ta có 100 học sinh tham gia đo chiều cao khi đó:
5 + 18 + x + 26 + y + 3 = 100
=> x + y = 48 (*)
Mặt khác số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm suy ra x = 5y (**)
Từ (*) và (**) ta có hệ phương trình:
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Tìm khoảng chứa trung vị?
Ta có:
Chiều cao (h) | Số học sinh | Tần số tích lũy |
130 < h ≤ 140 | 2 | 2 |
140 < h ≤ 150 | 4 | 6 |
150 < h ≤ 160 | 9 | 15 |
160 < h ≤ 170 | 13 | 28 |
170 < h ≤ 180 | 8 | 36 |
180 < h ≤ 190 | 3 | 39 |
190 < h ≤ 200 | 1 | 40 |
Ta lại có:
=> Nhóm chứa trung vị là:
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Biết rằng nếu học sinh có điểm thi dưới 40 điểm sẽ không đạt yêu cầu vượt qua kì thi. Hỏi số học sinh không đạt yêu cầu là bao nhiêu?
Quan sát bảng số liệu ghép nhóm ta thấy:
Nhóm [20; 30) có 4 học sinh
Nhóm [30; 40) có 6 học sinh
=> Số học sinh không đạt yêu cầu là 6 + 4 = 10 (học sinh)
Chuyển đổi dữ liệu sau:
thành dạng ghép nhóm, chia thành 5 nhóm có độ dài bằng nhau:
Đại diện X | Tần số |
[0; 2) | 2 |
[2; 4) | 7 |
| 2 |
[6; 8) | 1 |
[8; 10) | 2 |
Chuyển đổi dữ liệu sau: thành dạng ghép nhóm, chia thành 5 nhóm có độ dài bằng nhau:
Đại diện X | Tần số |
[0; 2) | 2 |
[2; 4) | 7 |
2 | |
[6; 8) | 1 |
[8; 10) | 2 |
Để chia thành 5 nhóm với độ dài bằng nhau ta lấy điểm đầu mút phải trái của nhóm đầu tiên là 0 và đầu mút phải của nhóm cuối cùng là 10 với độ dài mỗi nhóm là 6 – 4 = 2.
Ta được mẫu số ghép nhóm như sau:
Đại diện X | Tần số |
Sơ đồ phân phối điện như hình vẽ:

Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C, D, V. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C là
và của các trạm D, V là
. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).
Gọi Q là biến cố nơi tiêu thụ Q không mất điện
A, B, C, D, V là biến cố các trạm tải nhỏ A, B, C, D, V gặp sự cố kĩ thuật.
Ta có:
Suy ra
Vậy
Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:
Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.
Trường hợp 1: Số 9 đứng đầu
Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.
=> Trường hợp 1 có 9 số được lập
Trường hợp 2: Số 8 đứng đầu
Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần
Vậy cả 2 trường hợp có 9 + 1 = 10 số