Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ:

    Chọn vị trí cho hai nhóm 3 nam và 3 nữ có 2 cách chọn (1 nhóm ở vị trí chẵn và nhóm còn lại ở vị trí lẻ)

    Xếp 3 nam có: 3.2.1 = 6 cách xếp

    Xếp 3 nữ có: 3.2.1 = 6 cách xếp

    Vậy có 2.(3.2.1)2 = 72 cách xếp

  • Câu 2: Vận dụng cao

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Đáp án là:

    Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478

    Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.

    Biến cố B là biến cố chọn trong T một số chia hết cho 5

    Biến cố A \cap B số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline{abcd};(a eq 0)

    Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.

    Do đó số phần tử của A là n(A) = 1.9.8.7
+ 8.1.8.7 + 8.8.1.7 + 8.8.7.1 = 1848

    Số chia hết cho 5 có hai dạng \overline{abc0};\overline{abc5}. Do đó số phần tử của B là n(B) = 9.8.7 + 8.8.7 =
952

    Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: \overline{1bc0};\overline{a1c0};\overline{ab10};\overline{1bc5};\overline{a1c5};\overline{ab15}. Do đó số phần tử của A \cap
Blà:

    n(A \cap B) = 3.8.7 + 8.7 + 7.7.2 =
322

    Vậy số phần tử biến cố P là:

    n(P) = n(A \cup B) = n(A) + n(B) - n(A
\cap B) = 2478

  • Câu 3: Nhận biết

    Chiều cao một số cây được ghi lại trong bảng số liệu dưới đây:

    Chiều cao h (cm)

    Số cây

    130 < h ≤ 140

    3

    140 < h ≤ 150

    7

    150 < h ≤ 160

    5

    Nhóm chứa trung vị là:

    Ta có:

    Chiều cao h (cm)

    Số cây

    Tần số tích lũy

    130 < h ≤ 140

    3

    3

    140 < h ≤ 150

    7

    10

    150 < h ≤ 160

    5

    15

    Tổng

    N = 15

     

    Ta có: \frac{N}{2} = \frac{15}{2} =7,5

    => Nhóm chứa trung vị là: 140 < h ≤ 150

  • Câu 4: Vận dụng

    Trong công xưởng có một nhóm công nhân gồm 15 nữ và 5 nam. Chủ quản muốn chọn một nhóm gồm 5 công nhân để lập thành một tổ gồm 1 tổ trưởng nữ, 1 tổ phó nữ và có ít nhất 1 công nhân nam. Hãy xác định số cách lập tổ công nhân theo yêu cầu?

    Ta có:

    Số cách chọn 2 nữ làm tổ trưởng và tổ phó là A_{15}^{2} cách.

    Số cách chọn 3 công nhân còn lại là nữ là: C_{13}^{3} cách.

    Số cách chọn 3 công nhân còn lại trong 18 công nhân là C_{18}^{3} cách.

    Vậy số cách chọn 1 tổ trưởng nữ, 1 tổ phó và có ít nhất 1 nam là:

    A_{15}^{2}.\left( C_{18}^{3} - C_{13}^{3}
ight) = 111300.

  • Câu 5: Nhận biết

    Một phép thử có không gian mẫu là: \Omega = \left\{ 1;2;3;4;5;6 ight\}. Cặp biến cố nào sau đây không đối nhau?

    Cặp biến cố không đối nhau là: E =
\left\{ 1;4;6 ight\},F = \left\{ 2;3 ight\}\left\{ \begin{matrix}
E \cap F = \varnothing \\
E \cup F eq \Omega \\
\end{matrix} ight.

  • Câu 6: Nhận biết

    Cho dãy số liệu thống kê: 21, 23, 24,25, 22, 20. Số trung bình cộng của dãy số liệu thống kê đã cho là

    Số trung bình là:

    \overline{x} =
\frac{21 + 23 + 24 + 25 + 22 + 20}{6} = 22,5

  • Câu 7: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Giá trị tứ phân vị thứ ba thuộc nhóm số liệu nào?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow\frac{3N}{4} = 45

    => Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)

  • Câu 8: Nhận biết

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 9: Thông hiểu

    Trong một buổi lễ kỉ niệm nhân ngày 20/10 có 20 đại biểu nữ và 10 đại biểu nam. Ban tổ chức mời 5 đại biểu phát biểu ý kiến. Tính xác suất để trong 5 phát biểu mời có một hoặc hai phát biểu là của đại biểu nam?

    Gọi A là biến cố "Trong 5 phát biểu mời có đúng một phát biểu là của đại biểu nam".

    Gọi B là biến cố "Trong 5 phát biểu mời có đúng hai phát biểu là của đại biểu nam".

    Biến cố P(A \cup B) là "Trong 5 phát biểu mời có một hoặc hai phát biểu là của đại biểu nam".

    Vì A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B)

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{C_{10}^{1}.C_{20}^{4}}{C_{30}^{5}} \\P(B) = \dfrac{C_{10}^{2}.C_{20}^{3}}{C_{30}^{5}} \\\end{matrix} ight.\  \Rightarrow P(A \cup B) \approx 0,7

  • Câu 10: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: B = \left\{
(3;6),(6;3),(4;6),(6;4),(5;6),(6;5),(6;6) ight\}

    \Rightarrow n(B) = 7 \Rightarrow P(B) =
\frac{n(B)}{n(\Omega)} = \frac{7}{36}

  • Câu 11: Thông hiểu

    Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số đôi một khác nhau

    Gọi số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số cách chọn a là 6 cách

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    => Số các số tự nhiên có ba chữ số khác nhau được tạo thành là: 6 . 5 . 4 = 120 số

  • Câu 12: Thông hiểu

    Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?

    Số học sinh tham gia khảo sát là: 40 học sinh.

    Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm \frac{19.100\%}{40} = 47,5\%

  • Câu 13: Vận dụng

    Sơ đồ phân phối điện như hình vẽ:

    Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C lần lượt là \frac{1}{10};\frac{1}{10};\frac{1}{20}. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).

    Gọi Q là biến cố nơi tiêu thụ Q không mất điện

    A, B, C là biến cố các trạm tải nhỏ A, B, C gặp sự cố kĩ thuật.

    Ta có:

    Q = (A \cap B) \cup (C)

    Suy ra P(Q) = P(AB) + P(C) -
P(ABC)

    P(Q) = P(A).P(B) + P(C) -
P(A).P(B).P(C)

    = 0,1.0,1 + 0,05 - 0,1.0,1.0,05 =
0,0595

  • Câu 14: Thông hiểu

    Gieo đồng tiền 2 lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:

    Gieo đồng tiền 2 lần nên ta có:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = {2^2} = 4

    Giả sử C là biến cố "sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần"

    => \overline C biến cố "sau hai lần gieo thì không có mặt sấp xuất hiện"

    => \overline C  = \left\{ {N,N} ight\}

    => P\left( {\overline C } ight) = \frac{{n\left( {\overline C } ight)}}{{n\left( \Omega  ight)}} = \frac{1}{4}

    => Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:

    P\left( C ight) = 1 - P\left( {\overline C } ight) = 1 - \frac{1}{4} = \frac{3}{4}

  • Câu 15: Thông hiểu

    Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:

    Kích thước (gram)

    [410; 420)

    [420; 430)

    [430; 440)

    [440; 450)

    [450; 460)

    [460; 470)

    [470; 480)

    Số lượng táo

    14

    20

    42

    54

    45

    18

    7

    Tính giá trị tứ phân vị thứ nhất của mẫu dữ liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Kích thước (gram)

    Số lượng táo

    Tần số tích lũy

    [410; 420)

    14

    14

    [420; 430)

    20

    34

    [430; 440)

    42

    76

    [440; 450)

    54

    130

    [450; 460)

    45

    175

    [460; 470)

    18

    193

    [470; 480)

    7

    200

    Tổng

    N = 200

     

    Ta có: \frac{N}{4} = \frac{200}{4} =50

    => Nhóm chứa tứ phân vị thứ nhất là: [430; 440)

    Khi đó ta có: \left\{ \begin{matrix}l = 430;\dfrac{N}{4} = 50;m = 34 \\f = 42,d = 440 - 430 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất được tính như sau:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 430 + \frac{50 -34}{42}.10 \approx 433,8

  • Câu 16: Vận dụng

    Cho dãy số liệu:

    30, 32, 45, 54, 74, 78, 108, 112, 66, 76, 88,

    40, 34, 30, 35, 35, 44, 66, 75, 84, 95, 96.

    Chuyển mẫu số liệu trên thành dạng ghép nhóm, các nhóm có độ dài bằng nhau, trong đó có nhóm [63; 72). Tính số nhóm dữ liệu tối đa được tạo thành.

    Trong các nhóm số liệu có nhóm [63; 72) thì độ dài của nhóm là: 10 

    Khoảng dữ liệu đã cho là: 112 – 30 = 82

    Ta có \frac{82}{10} \approx8,2

    Vậy số nhóm tối đa là 9 nhóm.

  • Câu 17: Thông hiểu

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 11

    Đáp án là:

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 11

    Goi x_{ 1 }, x_{2}, ... ,x_{ 20 } là doanh thu bán hàng trong 20 ngày xếp theo thứ tự không giảm.

    Khi đó: x_{1},x_{2} \in \lbrack 5; 7), x_{3},...,x_{9} \in \lbrack7;\ 9), x_{9},...,x_{16} \in\lbrack 9;\ 11), x_{17},...,x_{19}\in \lbrack 11;\ 13), x_{20} \in\lbrack 13;\ 15)

    Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \lbrack 9;11)

    n = \ 20,n_{m} = \ 7,C = \ 9,u_{m} = \9,u_{m + 1} = 11

    Q_{3} = 9 + \frac{\frac{3.20}{4} -9}{7}(11 - 9) \approx 10,71 \approx 11

  • Câu 18: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Giá trị đại diện của nhóm thứ tư là:

    Giá trị đại diện của nhóm thứ tư (hay nhóm [60; 80)) là \frac{60 + 80}{2} = 70.

  • Câu 19: Nhận biết

    Tính tổng tần số của bảng số liệu:

    Khoảng thời gian

    (giờ)

    Tần số

    [0; 5)

    8

    [6; 11)

    1

    [12; 17)

    4

    [18; 23)

    2

    Tổng tần số của mẫu số liệu là: 8 + 1 + 4 + 2 = 15

  • Câu 20: Nhận biết

    Có thể tạo thành bao nhiêu đoạn thẳng trong mặt mà 2 đầu mút thuộc tập hợp các điểm A;B;C;D;E;F phân biệt?

    Mỗi cách tạo ra một đoạn thẳng là một tổ hợp chập 2 của 7 phần tử.

    Số đoạn thẳng mà hai đầu mút thuộc tập hợp 7 điểm đã cho là: C_{7}^{2} = 21 (đoạn thẳng.

    Vậy đáp án là 21 đoạn thẳng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo