Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau:
. Tính xác suất để tổng ba số được chọn là số lẻ?
Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau:
Do đó số phần tử của không gian mẫu là:
Gọi B là biến cố “Tổng ba số được chọn là số lẻ”
Tổng ba số được chọn tạo thành số lẻ thì ba số được chọn cần thỏa điều kiện: 3 số đều là số lẻ, hai số chẵn và 1 số lẻ.
TH1: 3 số đều là số lẻ:
TH2: số cách chọn hai số chẵn và 1 số lẻ là
Suy ra ta có
Vậy xác suất cần tìm là:
Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Thăm một bạn không quá một ngày).
Ta có: 1 tuần = 7 ngày
Mà mỗi ngày A đến thăm một bạn.
Ngày thứ nhất có 12 cách chọn
Ngày thứ hai có 11 cách chọn
Ngày thứ ba có 10 cách chọn
Ngày thứ tư có 9 cách chọn
Ngày thứ năm có 8 cách chọn
Ngày thứ sáu có 7 cách chọn
Ngày thứ bảy có 6 cách chọn
=> Số kế hoạch có thể lập được là: 12 . 11 . 10 . 9 . 8 . 7 . 6 = 3 991 680 kế hoạch
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | 21 |
[15; 20) | 13 |
[20; 25) | 8 |
[25; 30) | 6 |
Mẫu số liệu được chia thành bao nhiêu nhóm?
Mẫu số liệu được chia thành 7 nhóm.
Trong công xưởng có một nhóm công nhân gồm 15 nữ và 5 nam. Chủ quản muốn chọn một nhóm gồm 5 công nhân để lập thành một tổ gồm 1 tổ trưởng nữ, 1 tổ phó nữ và có ít nhất 1 công nhân nam. Hãy xác định số cách lập tổ công nhân theo yêu cầu?
Ta có:
Số cách chọn 2 nữ làm tổ trưởng và tổ phó là cách.
Số cách chọn 3 công nhân còn lại là nữ là: cách.
Số cách chọn 3 công nhân còn lại trong 18 công nhân là cách.
Vậy số cách chọn 1 tổ trưởng nữ, 1 tổ phó và có ít nhất 1 nam là:
.
Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi X là biến cố “Ba lần liên tiếp kết quả như nhau” và Y là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp”. Chọn khẳng định đúng?
Ta có:
Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:
|
Thời gian (phút) |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Giá trị đại diện của nhóm
là:
Giá trị đại diện của nhóm là:
Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

Biết xác suất hỏng của mỗi bóng đèn là
. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện sáng?
Gọi là biến cố bóng đèn thứ i sáng với
Gọi A là biến cố có ít nhất một bóng đèn sáng
Để không có bóng đèn nào sáng ta có các trường hợp như sau:
TH1: Cả 4 bóng đèn cùng hỏng
B là biến cố bốn bóng đèn bị hỏng
Khi đó xác suất để cả 4 bóng đèn bị hỏng là:
TH2: Cả 3 bóng đèn cùng hỏng
C là biến cố ba bóng đèn bị hỏng
Khi đó xác suất để có 3 bóng đèn bị hỏng là:
TH3: Hai bóng đèn phía trái hoặc phía bên phải bị hỏng
D là biến cố hai bóng đèn phía trái hoặc phía bên phải bị hỏng
Khi đó xác suất để cả 2 bóng đèn cùng phía bị hỏng là:
Vậy xác suất để có ít nhất 1 bóng đèn sáng là
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Cỡ mẫu của mẫu số liệu là:
Cỡ mẫu của mẫu số liệu là:
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Tính khoảng biến thiên của mẫu dữ liệu cho dưới đây:
Khoảng thời gian học (phút) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
Tần số | 2 | 3 | 14 | 8 | 3 | 8 | 2 |
Khoảng biến thiên mẫu dữ liệu ghép nhóm được đưa ra bởi công thức:
Khoảng biến thiên = Giới hạn trên của khoảng cao nhất – Giới hạn dưới của khoảng thấp nhất
Giới hạn trên của khoảng cao nhất là: 80
Giới hạn dưới của khoảng thấp nhất là: 10
=> Khoảng biến thiên là:
Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:
Khoảng thời gian học (phút) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
Tần số | 2 | 3 | 14 | 8 | 3 | 8 | 2 |
Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?
Số học sinh tham gia khảo sát là: 40 học sinh.
Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm
Một bình chứa 16 viên bi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ
Số phần tử không gian mẫu là:
B là biến cố "lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ"
=>
=> Xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ là:
Cho
. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?
Số tự nhiên có 6 chữ số có dạng:
Số tự nhiên chẵn => f ∈ {2; 4; 6}
=> Có 3 cách chọn f
Số cách chọn a, b, c, d, e là:
=> Số các số chẵn có 6 chữ số đôi một khác nhau là: số
Tìm số trung bình của mẫu số liệu sau:
Thời gian (s) | Thời gian đại diện (s) |
(50,5; 55,5] | 53 |
(55,5; 60,5] | 58 |
(60,5; 65,5] | 63 |
(65,5; 70,5] | 68 |
(Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Thời gian (s) | Thời gian đại diện (s) | Số vận động viên (người) | Tích các giá trị |
(50,5; 55,5] | 53 | 2 | 106 |
(55,5; 60,5] | 58 | 7 | 406 |
(60,5; 65,5] | 63 | 8 | 504 |
(65,5; 70,5] | 68 | 4 | 272 |
| Tổng | 21 | 1288 |
Số trung bình của mẫu dữ liệu ghép nhóm là:
Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?
Vì nên hai biến cố H và K là hai biến cố đối nhau.
Cho dãy số liệu:
![]()
![]()
Chuyển mẫu số liệu trên thành dạng ghép nhóm, các nhóm có độ dài bằng nhau, trong đó có nhóm
. Tính số nhóm dữ liệu tối đa được tạo thành.
Trong các nhóm số liệu có nhóm thì độ dài của nhóm là: 10
Khoảng dữ liệu đã cho là:
Ta có
Vậy số nhóm tối đa là 9 nhóm.
Kết quả kiểm tra cân nặng của học sinh lớp 11A được ghi trong bảng sau:
Cân nặng | Số học sinh |
[40,5; 45,5) | 7 |
[45,5; 50,5) | 16 |
[50,5; 55,5) | 10 |
[55,5; 60,5) | 5 |
[60,5; 65,5) | 4 |
[65,5; 70,5) | 2 |
Mẫu dữ liệu đã cho có bao nhiêu nhóm?
Mẫu dữ liệu ghép nhóm đã cho có 6 nhóm.
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm. (Làm tròn đến chữ số thập phân thứ hai)
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
[95; 105) | 9 | 9 |
[105; 115) | 13 | 22 |
[115; 125) | 26 | 48 |
[125; 135) | 30 | 78 |
[135; 145) | 12 | 90 |
[145; 155) | 10 | 100 |
Tổng | N = 100 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Khi đó:
Tứ phân vị thứ nhất là:
Trên bàn có 8 cây bút chì khác nhau, 6 cây bút bi khác nhau và 10 cuốn tập khác nhau. Số cách khác nhau để chọn được đồng thời một cây bút chì, một cây bút bi và một cuốn tập.
Để chọn “một cây bút chì - một cây bút bi - một cuốn tập”, ta có:
Có 8 cách chọn bút chì.
Có 6 cách chọn bút bi.
Có 10 cách chọn cuốn tập.
Vậy theo quy tắc nhân ta có 8 . 6 . 10 = 480 cách.