Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Một số yếu tố thống kê và xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong lớp có 20 học sinh nữ, 15 học sinh nam. Hỏi giáo viên có bao nhiêu cách chọn 3 học sinh làm ban cán sự lớp?

    Số học sinh của lớp là 20 + 15 = 35 (học sinh)

    Số cách chọn 3 học sinh làm ban cán sự lớp là: C_{35}^3 = 6545 (cách chọn)

  • Câu 2: Thông hiểu

    Dưới đây là điểm đánh giá tổng kết của các học sinh:

    Khoảng điểm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số học sinh

    2

    7

    15

    10

    11

    5

    Tính trung vị.

    Ta có:

    Khoảng điểm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

     

    Số học sinh

    2

    7

    15

    10

    11

    5

    N = 50

    Tần số tích lũy

    2

    9

    24

    34

    45

    50

     

    Cỡ mẫu: 50

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là [30; 40) (vì 25 nằm giữa hai tần số tích lũy là 24 và 34)

    Do đó: l = 30;\frac{N}{2} = 25;m = 24;f =10,c = 40 - 30 = 10

    Khi đó trung vị là:

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c = 30 + \dfrac{25 - 24}{10}.10 = 31

  • Câu 3: Nhận biết

    Nếu [0; 5), [5; 10); [10; 15), … là các nhóm số liệu của mẫu dữ liệu ghép nhóm thì độ dài của nhóm là:

    Độ dài của nhóm là 4

  • Câu 4: Thông hiểu

    Hai cung thủ thực hiện bắn mỗi người một mũi tên vào bia điểm. Biết xác suất bắn trúng 10 điểm của người thứ nhất và người thứ hai lần lượt là 0,750,85. Tính xác suất để có ít nhất một cung thủ bắn trúng 10 điểm?

    Gọi A là biến cố có ít nhất một cung thủ bắn trúng 10 điểm

    Suy ra \overline{A} là biến cố không có cung thủ nào trúng 10 điểm

    \Rightarrow P\left( \overline{A} ight)
= (1 - 0,75).(1 - 0,85) = 0,0375

    \Rightarrow P(A) = 1 - P\left(
\overline{A} ight) = 1 - 0,0375 = 0,9625

  • Câu 5: Nhận biết

    Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 15]

    4

    (15; 30]

    12

    (30; 45]

    17

    (45; 60]

    7

    Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.

  • Câu 6: Thông hiểu

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm. (Làm tròn đến chữ số thập phân thứ hai)

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    [95; 105)

    9

    9

    [105; 115)

    13

    22

    [115; 125)

    26

    48

    [125; 135)

    30

    78

    [135; 145)

    12

    90

    [145; 155)

    10

    100

    Tổng

    N = 100

     

    Ta có: N = 100 \Rightarrow \frac{N}{4} =\frac{100}{4} = 25

    => Nhóm chứa tứ phân vị thứ nhất là: [115; 125)

    Khi đó: \left\{ \begin{matrix}l = 115;\dfrac{N}{4} = 25;m = 22 \\f = 26,d = 125 - 115 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 115 + \frac{25 -22}{26}.10 \approx 116,15

  • Câu 7: Thông hiểu

    Hoàn thành bảng số liệu sau:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 154)

    152

    12

    [154; 158)

    156

    18

    [158; 162)

    160

    30

    [162; 166)

    164

    24

    [166; 170)

    168

    10

    Đáp án là:

    Hoàn thành bảng số liệu sau:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 154)

    152

    12

    [154; 158)

    156

    18

    [158; 162)

    160

    30

    [162; 166)

    164

    24

    [166; 170)

    168

    10

    Hoàn thành bảng như sau:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 154)

    \frac{150 + 154}{2} = 152

    12

    [154; 158)

    \frac{154 + 158}{2} = 156

    18

    [158; 162)

    \frac{158 + 162}{2} = 160

    30

    [162; 166)

    \frac{162 + 166}{2} = 164

    24

    [166; 170)

    \frac{166 + 170}{2} = 168

    10

  • Câu 8: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 9: Thông hiểu

    Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử Q_{i} là biến cố lấy được tấm thẻ màu xanh từ hộp thứ i;i \in \left\{ 1;2;3
ight\}. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?

    Biểu diễn đúng là: \overline{Q_{1}} \cup
\overline{Q_{2}} \cup \overline{Q_{3}}

  • Câu 10: Vận dụng

    Cho A,B,C,D là các biến cố đôi một xung khắc và A \cup B \cup C \cup D là biến cố chắc chắn. Biết P(A) = 3P(B);P(B) =
3P(C);P(C) = 3P(D). Tính xác suất của biến cố D?

    Gọi P(D) = x theo giả thiết ta có: \left\{ \begin{matrix}
P(C) = 3x \\
P(B) = 9x \\
P(A) = 27x \\
\end{matrix} ight.

    A \cup B \cup C \cup D là biến cố chắc chắn nên P(A \cup B \cup C \cup
D) = 1

    Mặt khác A,B,C,D là các biến cố đôi một xung khắc nên

    P(A \cup B \cup C \cup D) = P(A) + P(B)
+ P(C) + P(D)

    \Leftrightarrow P(A) + P(B) + P(C) +
P(D) = 1

    \Leftrightarrow 27x + 9x + 3x + x = 1
\Leftrightarrow x = \frac{1}{40}

    \Rightarrow P(D) =
\frac{1}{40}

  • Câu 11: Vận dụng cao

    Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?

    Gọi A_{1}A_{2}...A_{19}A_{20} là đa giác cần tìm nội tiếp đường tròn tâm I

    Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là n(\Omega) = C_{20}^{3}

    Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.

    Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.

    Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.

    Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.

    Khi đó, số cách chọn ba điểm A, B và C là 20.2.C_{9}^{2} cách

    Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra n(P) = \frac{1}{2}.20.2.C_{9}^{2} =
720

  • Câu 12: Thông hiểu

    Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?

    Ta có:

    Giá trị lớn nhất: 25

    Giá trị nhỏ nhất: 4

    Khoảng biến thiên là: 25 – 4 = 21

  • Câu 13: Nhận biết

    Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 15]

    4

    (15; 30]

    12

    (30; 45]

    17

    (45; 60]

    7

    Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.

  • Câu 14: Thông hiểu

    Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Do số cần tìm là số chẵn => d = {0; 2; 4}

    Trường hợp 1: d = 0 => Có 1 cách chọn d

    Số cách chọn a là 5 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    => Trường hợp 1 lập được 5 . 4 . 3 . 1 = 60 số

    Trường hợp 2: d ∈ {2; 4} => Có 2 cách chọn d

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    => Trường hợp 2 lập được 4 . 4 . 3 . 2 = 96 số

    => Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau: 60 + 96 = 156 số

  • Câu 15: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Xác định tính đúng sai của các phát biểu sau:

    a) Nhóm chứa trung vị là [160; 165) Đúng||Sai

    b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng

    d) \Delta Q = Q_{3} - Q_{1} \approx
7 Đúng||Sai

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{2} = 50=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    \Rightarrow \Delta Q = Q_{3} - Q_{1}
\approx 7

  • Câu 16: Thông hiểu

    Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10.

    Gọi A là. biến cố: "Trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10".

    Tìm |\Omega|

    Chọn 10 tấm thẻ trong 30 tấm thẻ: có C_{30}^{10} cách chọn \Rightarrow |\Omega| = C_{30}^{10}

    Tìm \left| \Omega_{A}
ight|

    Chọn 5 tấm thẻ mang số lẻ trong 15 tấm thẻ mang số lẻ có C_{15}^{5} cách chọn.

    Chọn 1 tấm thẻ mang số chia hết cho 10 trong 3 tấm thẻ mang số chia hết cho 10 có 3 cách chọn.

    Chọn 4 tấm thẻ mang số chẵn nhưng không chia hết cho 10 trong 12 tấm thẻ như vậy có C_{12}^{4} cách chọn.

    Vậy số kết quả thuận lợi cho biến cố A là \left| \Omega_{A} ight| =
3.C_{15}^{5}C_{12}^{4}

    Vậy xác suất cần tìm là: P(A) =
\frac{3.C_{15}^{5}C_{12}^{4}}{C_{30}^{10}} = \frac{99}{667}

  • Câu 17: Vận dụng

    Hỏi từ 10 chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập thành bao nhiêu số gồm 6 chữ số khác nhau sao cho trong các số đó có mặt chữ số 0 và 1.

    Gọi số có 6 chữ số có dạng \overline {abcdef} ,\left( {a e 0} ight)

    Xếp chữ số 0 vào 1 trong 5 vị trí từ b đến f => Có 5 cách xếp

    Xếp chữ số 1 vào 1 trong 5 vị trí còn lại (bỏ 1 vị trí chữ số 0 đã chọn) => Có 5 cách xếp

    Chọn 4 chữ số trong 8 chữ số{2, 3, 4, 5, 6, 7, 8, 9}để xếp vào 4 vị trí còn lại => Có A_8^4 cách

    Theo quy tắc nhân lập được 5.5.A_8^4 = 42000 số

    Vậy có tất cả 42000 số thỏa mãn yêu cầu đề bài

  • Câu 18: Nhận biết

    Giả sử M,N là hai biến cố xung khắc. Khẳng định nào sau đây đúng?

    Ta có:

    P(M \cup N) = P(M) + P(N) - P(M \capN)

    Vì M và N là hai biến cố xung khắc nên M\cap N = \varnothing

    \Rightarrow P(M \cup N) = P(M) +P(N)

  • Câu 19: Nhận biết

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Mẫu số liệu ghép nhóm đã cho có tất cả bao nhiêu nhóm?

    Mẫu số liệu ghép nhóm đã cho có tất cả 5 nhóm.

  • Câu 20: Nhận biết

    Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a: 4 cách

    Số cách chọn b: 3 cách

    Số cách chọn c: 2 cách

    Số cách chọn d: 1 cách

    => Số các số có 4 chữ số khác nhau được tạo thành là  4! = 24  cách

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo