Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là
và
. Tính xác suất của biến cố hợp hai biến cố đã cho?
Gọi hai biến cố là A, B có
Vì hai biến cố A và B là hai biến cố xung khắc nên
Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là
và
. Tính xác suất của biến cố hợp hai biến cố đã cho?
Gọi hai biến cố là A, B có
Vì hai biến cố A và B là hai biến cố xung khắc nên
Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:
160 | 161 | 161 | 162 | 162 | 162 |
163 | 163 | 163 | 164 | 164 | 164 |
164 | 165 | 165 | 165 | 165 | 165 |
166 | 166 | 166 | 166 | 167 | 167 |
168 | 168 | 168 | 168 | 169 | 169 |
170 | 171 | 171 | 172 | 172 | 174 |
Bảng số liệu ghép nhóm nào sau đây đúng?
Ta có:
Khoảng biến thiên là
Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.
Khi đó ta có các nhóm là:
Vậy bảng dữ liệu ghép nhóm đúng là:
Cho mẫu dữ liệu ghép nhóm như sau:
Mức lương (USD) | [60; 70) | [50; 60) | [40; 50) | [30; 40) | [20; 30) |
Nhân viên | 5 | 10 | 20 | 5 | 3 |
Điền đáp án vào ô trống
a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD
(Làm tròn kết quả đến số thập phân thứ nhất)
b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75
Cho mẫu dữ liệu ghép nhóm như sau:
Mức lương (USD) | [60; 70) | [50; 60) | [40; 50) | [30; 40) | [20; 30) |
Nhân viên | 5 | 10 | 20 | 5 | 3 |
Điền đáp án vào ô trống
a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD
(Làm tròn kết quả đến số thập phân thứ nhất)
b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75
Sắp xếp nhóm dữ liệu theo chiều tăng như sau:
Mức lương (USD) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Mức lương trung bình (USD) | 25 | 35 | 45 | 55 | 65 |
Nhân viên | 3 | 5 | 20 | 10 | 5 |
Tần số tích lũy | 3 | 8 | 28 | 38 | 43 |
Mức lương trung bình là:
Ta có:
Nên khoảng chứa trung vị là: [40; 50) vì 21,5 nằm giữa hai tần số tích lũy là 8 và 28.
Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.
Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346
Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
=> Số các số cần phải tìm thỏa mãn điều kiện là:
Một tổ học sinh gồm 9 em, trong đó có 3 nữ được chia thành ba nhóm, mỗi nhóm ba em. Tính xác suất để mỗi nhóm có một nữ?
Gọi A là biến cố: "Ở 3 nhóm học sinh, mỗi nhóm có một nữ".
Tìm
Chọn ngẫu nhiên 3 trong 9 em đưa vào nhóm thứ nhất có cách.
Chọn 3 trong 6 em còn lại đưa vào nhóm thứ hai có cách.
Còn 3 em, đưa vào nhóm thứ 3 có 1 cách.
Vậy số phần tử của không gian mẫu là
Tìm
Phân 3 nữ vào ba nhóm có cách khác nhau.
Phân 6 nam vào ba nhóm theo cách trên có khác nhau
Vậy số kết quả thuận lợi cho biến cố A là:
Vậy xác suất cần tìm là:
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng:
Ta có: => Có 6 cách chọn a
Số cách chọn b, c, d, e là: cách
=> Số các số tự nhiên có 5 chữ số đôi một khác nhau được tạo thành là: số
Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:
A: “Cả hai tấm thẻ đều mang số chẵn”.
B “Chỉ có một tấm thẻ mang số chẵn”.
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”
Khẳng định nào sau đây đúng?
Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.
Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.
Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.
Vậy biến cố C là biến cố hợp của A và B.
Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi:
Số bánh có trong hộp bánh là 6 + 4 = 10 chiếc
=> Số cách lấy ra 6 bánh để phát cho các em thiếu nhi là: cách
Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
|
Điểm |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
[60; 70) |
|
Số trường |
4 |
19 |
6 |
2 |
3 |
1 |
Các mệnh đề sau đúng hay sai
a) Số liệu đã cho cho có
mẫu số liệu. Đúng||Sai
b) Số trung vị của mẫu số liệu là
Sai||Đúng
c) Số trung bình của mẫu số liệu đã cho là
. Sai||Đúng
d) Ngưỡng điểm đề đưa ra danh sách
trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai
Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
|
Điểm |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
[60; 70) |
|
Số trường |
4 |
19 |
6 |
2 |
3 |
1 |
Các mệnh đề sau đúng hay sai
a) Số liệu đã cho cho có mẫu số liệu. Đúng||Sai
b) Số trung vị của mẫu số liệu là Sai||Đúng
c) Số trung bình của mẫu số liệu đã cho là . Sai||Đúng
d) Ngưỡng điểm đề đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai
a) Ta có cỡ mẫu . Vậy đáp án a) đúng.
b) Gọi được sắp xếp theo thứ tự không giảm.
Khi đó, trung vị là . Do
thuộc nhóm
nên nhóm này chứa trung vị.
Suy ra ,
,
,
,
,
.
.
Vậy đáp án b) sai.
c) Số trung bình của mẫu số liệu là
.
Vậy đáp án c) sai.
d) Điểm ngưỡng để đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.
Cỡ mẫu
Tứ phân vị thứ ba là
mà
thuộc nhóm [30;40) nên nhóm này chứa
.
Do đó, và ta có:
.
Vậy để đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam ta lấy các trường có điểm chuẩn hóa trên 35.42.
Vậy đáp án d) đúng.
Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là
Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).
Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là
Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).
Ta có:
Suy ra số các ước nguyên dương của 1605632 là .
Số phần tử của không gian mẫu: .
Trong đó, số các số chia hết cho 7 là: .
Xác xuất cần tìm là: .
Kết quả đo chiều cao một nhóm các học sinh nam lớp 11 được thống kê như sau:
160 | 161 | 161 | 162 | 162 | 162 |
163 | 163 | 163 | 164 | 164 | 164 |
164 | 165 | 165 | 165 | 165 | 165 |
166 | 166 | 166 | 166 | 167 | 167 |
168 | 168 | 168 | 168 | 169 | 169 |
170 | 171 | 171 | 172 | 172 | 174 |
Khi chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 5 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau ta được các nhóm là:
Ta có:
Khoảng biến thiên là
Để chia số liệu thành 5 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 3
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 175.
Khi đó ta có các nhóm là:
Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là:
Số phần tử không gian mẫu là:
Giả sử C là biến cố "được ít nhất một đồng tiền xuất hiện mặt sấp"
=> Biến cố " không có đồng tiền xuất hiện mặt sấp"
=>
=>
=>
Bảng dữ liệu dưới đây ghi lại chiều cao (h) của 40 học sinh.
Chiều cao (h) | Số học sinh |
130 < h ≤ 140 | 2 |
140 < h ≤ 150 | 4 |
150 < h ≤ 160 | 9 |
160 < h ≤ 170 | 13 |
170 < h ≤ 180 | 8 |
180 < h ≤ 190 | 3 |
190 < h ≤ 200 | 1 |
Tìm khoảng chứa trung vị?
Ta có:
Chiều cao (h) | Số học sinh | Tần số tích lũy |
130 < h ≤ 140 | 2 | 2 |
140 < h ≤ 150 | 4 | 6 |
150 < h ≤ 160 | 9 | 15 |
160 < h ≤ 170 | 13 | 28 |
170 < h ≤ 180 | 8 | 36 |
180 < h ≤ 190 | 3 | 39 |
190 < h ≤ 200 | 1 | 40 |
Ta lại có:
=> Nhóm chứa trung vị là:
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Mốt của dữ liệu thuộc nhóm nào trong mẫu dữ liệu trên?
Mốt thuộc nhóm
Gieo ngẫu nhiên một đồng tiền xu ba lần liên tiếp. Gọi D là biến cố có ít nhất hai lần gieo xuất hiện mặt sấp. Tìm biến cố đối của biến cố D?
Ta có:
Biến cố là biến cố có đúng một lần xuất hiện mặt sấp hoặc không có lần nào xuất hiện mặt sấp.
Một nhóm
học sinh tham gia một kỳ thi. Số điểm thi của
học sinh đó được sắp xếp từ thấp đến cao như sau (thang điểm 10):
. Tìm số trung bình của mẫu số liệu (tính chính xác đến hàng phần trăm).
Số trung bình của mẫu số liệu là:
Đa giác có 20 đỉnh nội tiếp đường tròn tâm I. Chọn ngẫu nhiên 3 đỉnh của đa giác. Tính số phần tử của biến cố ba đỉnh được chọn là ba đỉnh của một tam giác tù?
Gọi là đa giác cần tìm nội tiếp đường tròn tâm I
Chọn ngẫu nhiên 3 đỉnh bất kì của đa giác thì luôn tạo thành một tam giác nên số phần tử không gian mẫu là
Gọi P là biến cố 3 đỉnh được chọn tạo thành một tam giác tù.
Giả sử chọn được một tam giác tù ABC với A nhọn, B tù và C nhọn.
Chọn một đỉnh bất kì lấy làm đỉnh A có 20 cách. Kẻ đường kính AA’ thì A’ cũng là một đỉnh của đa giác.
Đường kính chia đường tròn thành hai nửa đường tròn, với mỗi cách chọn ra hai điểm B và C là hai đỉnh của đa giác cùng thuộc một nửa đường tròn ta được một tam giác tù ABC.
Khi đó, số cách chọn ba điểm A, B và C là cách
Tuy nhiên ứng với mỗi tam giác vai trò góc nhọn của A và C như nhau nên số tam giác được tính lặp 2 lần nên suy ra
Biết k là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng
, r, d, nk lần lượt là đầu mút trái, độ dài, tần số của nhóm k khi đó công thức
dùng để tính:
Trung vị được tính theo công thức .
Xác định số nhóm trong mẫu số liệu ghép nhóm sau?
Khoảng thời gian học (phút) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
Tần số | 2 | 3 | 14 | 8 | 3 | 8 | 2 |
Mẫu dữ liệu ghép nhóm đã cho có 7 nhóm.
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5?
Số tự nhiên có 3 chữ số đôi một khác nhau có dạng:
Do số cần tìm chia hết cho 5 => c = 5
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
=> Số các số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5 là: số