Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hàm số f(x) =\dfrac{x^{2} + x\cos x + \sin x}{2sinx + 3} liên tục trên:

    Ta có: 2sinx + 3 eq 0,\forall
x\mathbb{\in R}

    => Tập xác định D\mathbb{=
R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 2: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 2}  - \sqrt {x + 3} }}{{2x - 3}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 2}  - \sqrt {x + 3} }}{{2x - 3}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{2}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{3}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{3}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{2}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{3}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{3}{x}} ight)}} \hfill \\   = 1 \hfill \\ \end{matrix}

  • Câu 3: Vận dụng

    Kết quả của giới hạn \lim\frac{2^{n + 1} + 3n + 10}{3n^{2} - n +
2}

    Ta có: 2^{n} = \sum_{k =
0}^{n}C_{n}^{k}

    \Rightarrow 2^{n} \geq C_{n}^{3} =
\frac{n(n - 1)(n - 2)}{6}\sim\frac{n^{3}}{6}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.. Khi đó:

    \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2} -n + 2} = \lim\left\lbrack \dfrac{2^{n}}{n^{2}}.\dfrac{2 + 3\left(\dfrac{n}{2^{n}} ight) + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} ightbrack = + \infty

    (vì \left\{ \begin{matrix}\lim\left\lbrack 2 + 3\left( \dfrac{n}{2^{n}} ight) + 10.\left(\dfrac{1}{2} ight)^{n} ightbrack = \dfrac{2}{3} > 0 \\\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\end{matrix} ight.)

  • Câu 4: Thông hiểu

    Hàm số nào dưới đây không liên tục trên khoảng ( - 1;1)?

    Xét hàm số y = \left\{ \begin{matrix}
\sin x\ \ \ \ khi\ x \geq 0 \\
\cos x\ \ \ \ khi\ x < 0 \\
\end{matrix} ight. với x \in (
- 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sin x = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \cos x = 1 \hfill \\ 
\end{gathered}  ight.

    Suy ra không tồn tại \lim_{x ightarrow
0}f(x) nên hàm số không liên tục tại x = 0

    Vậy hàm số không liên tục trên ( -
1;1).

  • Câu 5: Thông hiểu

    Tính giới hạn F =\lim_{x ightarrow \frac{\pi}{2}}\dfrac{\cos x}{x -\dfrac{\pi}{2}}

    Ta có:

    F = \lim_{x ightarrow\frac{\pi}{2}}\dfrac{\cos x}{x - \dfrac{\pi}{2}} = \lim_{x ightarrow\frac{\pi}{2}}\dfrac{\sin\left( \dfrac{\pi}{2} - x ight)}{x -\dfrac{\pi}{2}}

    = \lim_{x ightarrow \frac{\pi}{2}}\dfrac{- \sin\left( x- \dfrac{\pi}{2} ight)}{x - \dfrac{\pi}{2}} = - 1

  • Câu 6: Nhận biết

    Giá trị của  \lim\frac{1}{n^{k}} với k \in \mathbb{N^*}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\sqrt[k]{\frac{1}{a}}

    Suy ra:

    \frac{1}{n^{k}} < \frac{1}{n_{a}^{k}} < a\
\forall n > n_{a}

    Vậy \lim\frac{1}{n^{k}} = 0.

  • Câu 7: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 8: Thông hiểu

    Cho hai dãy số \left( u_{n}
ight);\left( v_{n} ight) với u_{n} = 2n + 1v_{n} = \frac{1}{1 - n}. Khi đó \lim_{n ightarrow + \infty}\left( u_{n}v_{n}
ight) bằng:

    Ta có:

    u_{n}v_{n} = (2n + 1).\frac{1}{1 - n} =
\frac{2n + 1}{1 - n}

    \Rightarrow \lim_{n ightarrow +
\infty}\left( u_{n}v_{n} ight) = \lim_{n ightarrow + \infty}\frac{2n
+ 1}{1 - n} = \lim_{n ightarrow + \infty}\frac{2 +
\frac{1}{n}}{\frac{1}{n} - 1} = - 2

  • Câu 9: Nhận biết

    Giá trị của A =
\lim\frac{n - 2\sqrt{n}}{2n} bằng:

    Ta có:

    A = \lim\frac{n - 2\sqrt{n}}{2n} =
\lim\frac{1 - \frac{1}{\sqrt{n}}}{2} = \frac{1}{2}

  • Câu 10: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    \lim_{x ightarrow 1}\frac{ax^{2} +
bx - 2}{x - 1} = 3 là 1 số hữu hạn và \lim_{x ightarrow 1}(x - 1) = 0 nên \lim_{x ightarrow 1}\left( ax^{2} + bx - 2
ight) = 0 hay a + b - 2 = 0
\Leftrightarrow b = 2 - a.

    Khi đó:

    \lim_{x ightarrow 1}\frac{ax^{2} + bx
- 2}{x - 1} = \lim_{x ightarrow 1}\frac{ax^{2} + (2 - a)x - 2}{x -
1}

    = \lim_{x ightarrow 1}\frac{(x - 1)(ax
+ 2)}{x - 1} = \lim_{x ightarrow 1}(ax + 2)

    = a + 2 = 3

    \Rightarrow a = 1 suy ra b = 1.

    Vậy S = 1 + \frac{1}{4} =
1,25.

  • Câu 11: Vận dụng cao

    Rút gọn biểu thức A = 1 + \cos^{2}x +\cos^{4}x + ... + \cos^{2n}x + ... với \cos x eq \pm 1

    Ta có:

    \begin{matrix}
  A = \underbrace {1 + {{\cos }^2}x + {{\cos }^4}x + ... + {{\cos }^{2n}}x + ...}_{CSN:{u_1} = 1;q = {{\cos }^2}x} \hfill \\
   = \dfrac{1}{{1 - {{\cos }^2}x}} = \dfrac{1}{{{{\sin }^2}x}} \hfill \\ 
\end{matrix}

  • Câu 12: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{\sqrt{2x + 1} - 1}{x}\ khi\ x eq 0 \\m^{2} - 2m + 2\ khi\ x eq 0 \\\end{matrix} ight.. Tìm tất cả các giá trị của tham số m để hàm số liên tục tại x = 0?

    Ta có: f(0) = m^{2} - 2m + 2

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\sqrt{2x + 1} - 1}{x}

    = \lim_{x ightarrow
0}\frac{2x}{x\left( \sqrt{2x + 1} + 1 ight)} = \lim_{x ightarrow
0}\frac{2}{\sqrt{2x + 1} + 1} = 1

    Hàm số liên tục tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0}f(x) = f(0)

    \Leftrightarrow m^{2} - 2m + 1 = 0
\Rightarrow m = 1

  • Câu 13: Vận dụng

    Biết \lim_{x
ightarrow 0}\frac{\sin x}{x} = 1. Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\tan x}{x}\ khi\ x eq 0 \\0\ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. liên tục trên khoảng nào sau đây?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}có nghĩa là

    D = \underset{k\mathbb{\in
Z}}{\cup}\left( \frac{\pi}{2} + k\pi;\frac{3\pi}{2} + k\pi ight) = ...
\cup \left( - \frac{\pi}{2};\frac{\pi}{2} ight) \cup \left(
\frac{\pi}{2};\frac{3\pi}{2} ight) \cup ...

    Khi đó

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\tan x}{x}

    = \lim_{x ightarrow 0}\frac{\sin
x}{x}.\frac{1}{\cos x} = 1.\frac{1}{cos0} = 1 eq 0 = f(0)

  • Câu 14: Nhận biết

    \mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} bằng:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} \frac{{x + 2}}{{x - 1}} =  - \infty

    Do \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 2} ight) = 3 \hfill \\  x \to {1^ - } \Rightarrow x - 1 < 0 \hfill \\ \end{gathered}  ight.

  • Câu 15: Vận dụng cao

    Tính \mathop {\lim }\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}

    Ta có:

    \begin{matrix}  f\left( x ight) = \sqrt[3]{{4x - 1}} - 3 \hfill \\   = \dfrac{{4x - 28}}{{{{\left( {\sqrt[3]{{4x - 1}}} ight)}^2} + 3\sqrt[3]{{4x - 1}} + 9}} \hfill \\ \end{matrix}

    = \frac{{4\left( {x - 7} ight)}}{{{{\left( {\sqrt[3]{{4x - 1}}} ight)}^2} + 3\sqrt[3]{{4x - 1}} + 9}}

    g\left( x ight) = \sqrt {x + 2}  - 3 = \frac{{x + 2 - 9}}{{\sqrt {x + 2}  + 3}} = \frac{{x - 7}}{{\sqrt {x + 2}  + 3}}

    \begin{matrix}  h\left( x ight) = \dfrac{1}{{\sqrt[4]{{2x + 2}} - 2}} \hfill \\   = \dfrac{{\sqrt[4]{{2x + 2}} + 2}}{{\left( {\sqrt[4]{{2x + 2}} - 2} ight)\left( {\sqrt[4]{{2x + 2}} + 2} ight)}} \hfill \\ \end{matrix}

    = \frac{{\sqrt[4]{{2x + 2}} + 2}}{{\sqrt {2x + 2}  - 4}} = \frac{{\left( {\sqrt[4]{{2x + 2}} + 2} ight)\left( {\sqrt {2x + 2}  + 4} ight)}}{{\left( {\sqrt {2x + 2}  - 4} ight)\left( {\sqrt {2x + 2}  + 4} ight)}}

    \begin{matrix}   = \dfrac{{\left( {\sqrt[4]{{2x + 2}} + 2} ight)\left( {\sqrt {2x + 2}  + 4} ight)}}{{2x - 14}} \hfill \\   = \dfrac{{\left( {\sqrt[4]{{2x + 2}} + 2} ight)\left( {\sqrt {2x + 2}  + 4} ight)}}{{2\left( {x - 7} ight)}} \hfill \\ \end{matrix}

    \Rightarrow \mathop {\lim }\limits_{x \to 7} \left\{ {\left[ {f\left( x ight) - g\left( x ight)} ight].h\left( x ight)} ight\}

    = \mathop {\lim }\limits_{x \to 7} \{ \left[ {\frac{4}{{{{\left( {\sqrt[3]{{4x - 1}}} ight)}^2} + 3\sqrt[3]{{4x - 1}} + 9}} - \frac{1}{{\sqrt {x + 2}  + 3}}} ight]

    .\frac{{\left( {\sqrt[4]{{2x + 2}} + 2} ight)\left( {\sqrt {2x + 2}  + 4} ight)}}{x}\}

    = \left( {\frac{4}{{27}} - \frac{1}{6}} ight).\frac{{32}}{2} =  - \frac{8}{{27}}

    Vậy \mathop {\lim Ư}\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}=\dfrac{-8}{27}

  • Câu 16: Thông hiểu

    Giá trị của giới hạn \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) là:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) \hfill \\   = \lim \dfrac{{\left( {\sqrt {{n^2} - n + 1}  - n} ight)\left( {\sqrt {{n^2} - n + 1}  + n} ight)}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\ \end{matrix}

    \begin{matrix}   = \lim \dfrac{{{n^2} - n + 1 - {n^2}}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\   = \lim \dfrac{{ - n + 1}}{{\sqrt {{n^2} - n + 1}  + n}} \hfill \\   = \lim \dfrac{{n\left( { - 1 + \dfrac{1}{n}} ight)}}{{n\left( {\sqrt {1 - \frac{1}{n} + \dfrac{1}{{{n^2}}}}  + 1} ight)}} =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Chọn kết quả đúng của \lim\frac{\sqrt{n^{3} - 2n + 5}}{3 +
5n}:

    Ta có :

    \lim\frac{\sqrt{n^{3} - 2n + 5}}{3 + 5n}
= \lim\sqrt{n}.\frac{\sqrt{(1 - \frac{2}{n^{2}} +
\frac{5}{n^{3}})}}{\frac{3}{n} + 5} = + \infty

    \lim\sqrt{n} = + \infty nên suy ra:

    \lim\frac{\sqrt{\left( 1 - \frac{2}{n^{2}} +
\frac{5}{n^{3}} ight)}}{\frac{3}{n} + 5} = \frac{1}{5}

  • Câu 18: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow - 2}\frac{2x^{4} + 9x^{3} +
11x^{2} - 4}{(x + 2)^{2}}.

    Ta có:

    \lim_{x ightarrow - 2}\frac{2x^{4} +
9x^{3} + 11x^{2} - 4}{(x + 2)^{2}}

    = \lim_{x ightarrow - 2}\frac{(x +
2)^{2}\left( 2x^{2} + x - 1 ight)}{(x + 2)^{2}}

    = \lim_{x ightarrow - 2}\left\lbrack
2x^{2} + x - 1 ightbrack = 5

  • Câu 19: Thông hiểu

    Cho hàm số f(x) xác định và liên tục tại x = 0 với y =
f(x) = \left\{ \begin{matrix}
x^{2}\sin\frac{1}{x}\ khi\ x eq 0 \\
m\ \ \ \ \ \ khi\ x = 0 \\
\end{matrix} ight.. Xác định giá trị tham số m thỏa mãn điều kiện đề bài.

    Với mọi x eq 0 ta có:

    0 \leq \left| f(x) ight| = \left|
x^{2}\sin\frac{1}{x} ight| \leq x^{2} \mapsto 0

    \Rightarrow \lim_{x ightarrow 0}f(x) =
0

    Theo giả thiết ta phải có m = f(0) =
\lim_{x ightarrow 0}f(x) = 0

  • Câu 20: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{\sqrt {x + 4}  - 2}}{x};x > 0} \\ 
  {mx + m + \dfrac{1}{4};x \leqslant 0} 
\end{array}} ight. với m là tham số. Tính giá trị của tham số m để hàm số có giới hạn tại x = 0.

    Hàm số có giới hạn tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0^{+}}f(x) = \lim_{x ightarrow 0^{-}}f(x)

    \Leftrightarrow \lim_{x ightarrow
0^{+}}\frac{\sqrt{x + 4} - 2}{x} = \lim_{x ightarrow 0^{-}}\left( mx +
m + \frac{1}{4} ight)

    \Leftrightarrow \frac{1}{4} = m +
\frac{1}{4} \Leftrightarrow m = 0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo