Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Hàm số nào trong các hàm số sau liên tục tại x = 1?

    Xét hàm số f(x) = \left\{ \begin{matrix}
x + 1\ khi\ x \geq 1 \\
3x - 1\ khi\ x < 1 \\
\end{matrix} ight. có:

    \left\{ \begin{matrix}
f(1) = 2 \\
\lim_{x ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{+}}(x + 1) = 2
\\
\lim_{x ightarrow 1^{-}}f(x) = \lim_{x ightarrow 1^{-}}(3x - 1) = 2
\\
\end{matrix} ight.

    Vậy hàm số liên tục tại x =
1.

  • Câu 2: Vận dụng

    Biết \lim_{x
ightarrow 1}\frac{f(x) - 10}{x - 1} = 5. Hỏi giá trị giới hạn \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack} bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5

    \Rightarrow f(1) = 10

    Khi đó: \lim_{x ightarrow 1}\frac{f(x)
- 10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{\left( \sqrt{x} - 1
ight)\left( \sqrt{x} + 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{(x - 1)\left\lbrack
\sqrt{4f(x) + 9} + 3 ightbrack}

    = \frac{5.\left( \sqrt{1} + 1
ight)}{\left\lbrack \sqrt{4f(1) + 9} + 3 ightbrack} =
1

  • Câu 3: Thông hiểu

    Cho hàm số f(x) xác định và liên tục tại x = 0 với y =
f(x) = \left\{ \begin{matrix}
x^{2}\sin\frac{1}{x}\ khi\ x eq 0 \\
m\ \ \ \ \ \ khi\ x = 0 \\
\end{matrix} ight.. Xác định giá trị tham số m thỏa mãn điều kiện đề bài.

    Với mọi x eq 0 ta có:

    0 \leq \left| f(x) ight| = \left|
x^{2}\sin\frac{1}{x} ight| \leq x^{2} \mapsto 0

    \Rightarrow \lim_{x ightarrow 0}f(x) =
0

    Theo giả thiết ta phải có m = f(0) =
\lim_{x ightarrow 0}f(x) = 0

  • Câu 4: Nhận biết

    Cho các giới hạn \lim_{x ightarrow x_{0}}f(x) = 2;\lim_{x
ightarrow x_{0}}g(x) = 3. Tính giá trị biểu thức T = \lim_{x ightarrow x_{0}}\left\lbrack 3f(x) -
4g(x) ightbrack

    Ta có:

    T = \lim_{x ightarrow
x_{0}}\left\lbrack 3f(x) - 4g(x) ightbrack

    \Rightarrow T = 3\lim_{x ightarrow
x_{0}}f(x) - 4\lim_{x ightarrow x_{0}}g(x) = 6 - 12 = - 6

  • Câu 5: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 6: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}\sin \dfrac{1}{x}}&{{\text{ }}khi{\text{ }}x e 0} \\   m&{{\text{ }}khi{\text{ }}x = 0} \end{array}} ight. liên tục tại x = 0

    Với mọi x e 0 ta có:

    0 \leqslant \left| {f(x)} ight| \leqslant \left| {{x^2}\sin \frac{1}{x}} ight| \leqslant {x^2} \to 0 khi x \to 0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = 0

    Theo giả thiết ta phải có: \mathop {m = f\left( 0 ight) = \lim }\limits_{x \to 0} f\left( x ight) = 0

  • Câu 7: Nhận biết

    Hàm số f(x) =
\frac{x + 1}{x^{2} - 5x + 4} liên tục trên khoảng nào sau đây?

    Ta có:

    Hàm số f(x) = \frac{x + 1}{x^{2} - 5x +
4} là hàm phân thứ hữu tỉ có tập xác định D\mathbb{= R}\backslash\left\{ 1;4
ight\} nên hàm số f(x) liên tục trên các khoảng ( -
\infty;1),(1;4),(4; + \infty).

    Do đó f(x) liên tục trên (2;3).

  • Câu 8: Vận dụng

    Xét tính đúng sai của các khẳng định sau:

    a) \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 9. Đúng||Sai

    b) Biết rằng \lim_{x ightarrow 1}f(x) =
2, \lim_{x ightarrow 1}g(x) =
4. Khi đó \lim_{x ightarrow
1}\left( 3f(x) - 5g(x) ight) = - 13. Sai||Đúng

    c) \lim_{x ightarrow 2}\frac{\sqrt{4x +1} - 3}{x^{2} - 4} = 1. Sai||Đúng

    d) Biết \lim_{x ightarrow
2}\frac{2x^{2} - ax + 4}{x^{2} - 3x + 2} = b(với a;b\mathbb{\in R}). Khi đó a^{2} + b^{2} = 40. Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của các khẳng định sau:

    a) \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 9. Đúng||Sai

    b) Biết rằng \lim_{x ightarrow 1}f(x) =
2, \lim_{x ightarrow 1}g(x) =
4. Khi đó \lim_{x ightarrow
1}\left( 3f(x) - 5g(x) ight) = - 13. Sai||Đúng

    c) \lim_{x ightarrow 2}\frac{\sqrt{4x +1} - 3}{x^{2} - 4} = 1. Sai||Đúng

    d) Biết \lim_{x ightarrow
2}\frac{2x^{2} - ax + 4}{x^{2} - 3x + 2} = b(với a;b\mathbb{\in R}). Khi đó a^{2} + b^{2} = 40. Đúng||Sai

    a) Đúng.

    \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 3^{2} - 3 + 3 = 9

    b) Sai.

    \lim_{x ightarrow 1}\left( 3f(x) -
5g(x) ight) = 3.2 - 5.4 = - 14

    c) Sai.

    \lim_{x ightarrow 2}\frac{\sqrt{4x +
1} - 3}{x^{2} - 4} = \lim_{x ightarrow 2}\frac{4x + 1 - 9}{(x - 2)(x +
2)(\sqrt{4x + 1} + 3)}

    = \lim_{x ightarrow 2}\frac{4}{(x +
2)(\sqrt{4x + 1} + 3)} = \frac{1}{6}

    d) Đúng.

    Xét thấy x = 2 là nghiệm của phương trình x^{2} - 3x + 2 = 0 (mẫu số) nên x = 2 cũng là một nghiệm của phương trình 2x^{2} - ax + 4 =
0 (tử số) \Rightarrow a = 6.

    Khi đó:

    \lim_{x ightarrow 2}\frac{2x^{2} - ax +4}{x^{2} - 3x + 2} = \lim_{x ightarrow 2}\frac{2x^{2} - 6x + 4}{x^{2}- 3x + 2} = 2.

    Vậy a = 6;b = 2 \Rightarrow a^{2} + b^{2}
= 36 + 4 = 40.

  • Câu 9: Nhận biết

    Giá trị của \lim\frac{3n^{3} + n}{n^{2}} bằng:

    Với mọi M >0 lớn tùy ý, ta chọn n_{M}
= \left\lbrack \frac{M}{3} ightbrack + 1

    Ta có:

    \frac{3n^{3} + n}{n^{2}} = 3n +
\frac{1}{n} > M với mọi n >
n_{M}

    Vậy \lim\frac{3n^{3} + n}{n^{2}} = +
\infty.

  • Câu 10: Nhận biết

    Giá trị của \lim\frac{2}{n + 1} bằng:

    Với mọi a>0 nhỏ tùy ý, ta chọn n_{a} =
\left\lbrack \frac{2}{a} - 1 ightbrack + 1

    Suy ra \frac{2}{n + 1} < a\ ,\ \
\forall n > n_{0} = > \lim\frac{2}{n + 1} = 0

  • Câu 11: Vận dụng

    Phương trình nào dưới đây có nghiệm trong khoảng (0;1)?

    Xét phương án 2x^{2} - 3x + 4 =
0: 2x^{2} - 3x + 4 = 0\Delta = 9 - 32 = - 23

    => Phương trình vô nghiệm.

    Xét phương án 3x^{4} - 4x^{2} + 5 =
0: 3x^{4} - 4x^{2} + 5 =
0

    Đặt t = x^{2}(t \geq 0), phương trình trở thành: 3t^{2} - 4t + 5 =
0.

    \Delta' = 4 - 15 = - 11

    => Phương trình vô nghiệm.

    Xét phương án (x - 1)^{5} - x^{7} - 2 =
0: (x - 1)^{5} - x^{7} - 2 = 0
\Leftrightarrow (x - 1)^{5} = x^{7} + 2

    \forall x \in (0;1) \Rightarrow \left\{
\begin{matrix}
x - 1 < 0 \Rightarrow (x - 1)^{5} < 0 \\
x^{7} + 2 > 2 \\
\end{matrix} ight.

    \Rightarrow Phương trình vô nghiệm.

    Xét phương án 3x^{2024} - 8x + 4 =
0: 3x^{2024} - 8x + 4 = 0, xét f(x) = 3x^{2024} - 8x + 4.

    \left\{ \begin{matrix}
f(0) = 3.0 - 8.0 + 4 = 4 \\
f(1) = 3.1 - 8.1 + 4 = - 1 \\
\end{matrix} ight.\  \Rightarrow f(0).f(1) < 0

    Mặc khác hàm số f(x) liên tục trên \mathbb{R} do đó liên tục trên \lbrack 0;1brack.

    Vậy phương trình 3x^{2024} - 8x + 4 =
0 có ít nhất một nghiệm trong khoảng (0;1).

  • Câu 12: Nhận biết

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

  • Câu 13: Nhận biết

    Tính giới hạn của hàm số \lim_{x ightarrow + \infty}\frac{3}{x^{2} - 2x +
6}

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{{x^2} - 2x + 6}} = 0\mathop {\lim }\limits_{x \to  + \infty } \left( {{x^2} - 2x + 6} ight) =  + \infty

  • Câu 14: Vận dụng cao

    Biết \lim_{xightarrow \frac{1}{2}}\dfrac{\sqrt{1 + ax^{2}} - bx - 2}{4x^{3} - 3x +1} = c với a,b,c\in\mathbb{R}. Tập nghiệm của phương trình ax^{4} + bx^{2} + c = 0 trên \mathbb{R} có số phần tử là:

    Ta có:

    \lim_{x ightarrow
\frac{1}{2}}\frac{\sqrt{1 + ax^{2}} - bx - 2}{4x^{3} - 3x +
1}

    = \lim_{x ightarrow
\frac{1}{2}}\frac{1 + ax^{2} - (bx + 2)^{2}}{\left( 4x^{3} - 3x + 1
ight)\left( \sqrt{1 + ax^{2}} + bx + 2 ight)}

    = \lim_{x ightarrow
\frac{1}{2}}\frac{\left( a - b^{2} ight)x^{2} - 4bx - 3}{(2x -
1)^{2}(x + 1)\left( \sqrt{1 + ax^{2}} + bx + 2 ight)}

    Theo đề I tồn tại hữu hạn nên phương trình \left( a - b^{2} ight)x^{2} - 4bx - 3 =
0phải có nghiệm kép x =
\frac{1}{2}. Tức là:

    \left\{ \begin{matrix}\Delta' = 0 \\\dfrac{2b}{a - b^{2}} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4b^{2} + 3\left( a - b^{2} ight) = 0 \\4b = a - b^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b^{2} + 3b = 0 \\
a = b^{2} + 4b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 3 \\
\end{matrix} ight.\ ;(a,b eq 0)

    Khi a = - 3;b = - 3 thì

    I = \lim_{x ightarrow
\frac{1}{2}}\frac{- 12x^{2} + 12x - 3}{(2x - 1)^{2}(x + 1)\left( \sqrt{1
+ ax^{2}} + bx + 2 ight)}

    I = \lim_{x ightarrow
\frac{1}{2}}\frac{- 3}{(x + 1)\left( \sqrt{1 - 3x^{2}} - 3x + 2
ight)}

    I = \dfrac{- 3}{\dfrac{3}{2}.\left(\sqrt{1 - \dfrac{3}{4}} - \dfrac{3}{2} + 2 ight)} = - 2

    Do đó a = - 3;b = - 3;c = - 2 nên phương trình - 3x^{4} - 3x^{2} - 2 =
0 vô nghiệm.

  • Câu 15: Thông hiểu

    Xác định \lim_{x
ightarrow - 2}\frac{x + 1}{(x + 2)^{2}}.

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - 2} \left( {x + 1} ight) =  - 1 < 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - 2} {\left( {x + 2} ight)^2} = 0 \hfill \\
  {\left( {x + 2} ight)^2} > 0,\forall x e  - 2 \hfill \\ 
\end{gathered}  ight. \Rightarrow \mathop {\lim }\limits_{x \to  - 2} \frac{{x + 1}}{{{{\left( {x + 2} ight)}^2}}} =  - \infty

  • Câu 16: Vận dụng cao

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Đáp án là:

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Ta có:

    \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}

    = \lim\left\lbrack \frac{2n^{2} - n^{3}
+ n^{3}}{n^{2} + n - n^{2}} \cdot \frac{\sqrt{n^{2} + n} +
n}{\sqrt[3]{\left( 2n^{2} - n^{3} ight)^{2}} + n^{2} -
n\sqrt[3]{2n^{2} - n^{3}}} ightbrack

    = \lim\dfrac{\sqrt{\left( n\sqrt{1 +\dfrac{1}{n}} + n ight)}}{\sqrt[3]{n^{6} \cdot \left( \dfrac{2}{n} - 1ight)^{2}} + n^{2} - n \cdot \sqrt[3]{n^{3}\left( \dfrac{2}{n} - 1ight)}}

    = \lim\dfrac{\sqrt{1 + \dfrac{1}{n}} +1}{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1}}

    Khi n ightarrow \infty thì \ lim\frac{1}{n} = 0.

    \Rightarrow \left\{ \begin{matrix}\lim\left( \left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1} ight) = - 1 + 1 + 1 = 1 \\\lim\left( \sqrt{1 + \dfrac{1}{n}} + 1 ight) = 1 \\\end{matrix} ight.

    \Rightarrow \lim\dfrac{\left( \sqrt{1 +\dfrac{1}{n}} + 1 ight.\ }{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}}+ 1 - \sqrt[3]{\dfrac{2}{n} - 1}} = 1

    \Rightarrow \lim\frac{\sqrt[3]{2n^{2} -
n^{3}} + n}{\sqrt{n^{2} + n} - n} = 1

  • Câu 17: Thông hiểu

    Kết quả của giới hạn \lim \frac{{3\sin n + 4\cos n}}{{n + 1}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}} \hfill \\   = \lim \left( {\dfrac{{3\sin n}}{{n + 1}} + \dfrac{{4\cos n}}{{n + 1}}} ight) \hfill \\   = \lim \left( {\dfrac{{3\sin n}}{{n + 1}}} ight) + \lim \left( {\dfrac{{4\cos n}}{{n + 1}}} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {0 \leqslant \left| {\dfrac{{3\sin n}}{{n + 1}}} ight| \leqslant \dfrac{3}{{n + 1}} \to 0} \\   {0 \leqslant \left| {\dfrac{{4\cos n}}{{n + 1}}} ight| \leqslant \dfrac{3}{{n + 1}} \to 0} \end{array}} ight. \hfill \\   \Rightarrow \lim f\left( x ight) = 0 \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    Đáp án là:

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    a) \lim(\sqrt{3})^{n} = +\infty (do \sqrt{3} >
1)

    b) \lim\pi^{n} = + \infty( do \pi > 1)

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= \lim n^{3}.\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = +
\infty.

    \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = 1 > 0 \\
\end{matrix} ight.

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = \lim n^{4}.\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight)
= - \infty.

    \left\{ \begin{matrix}
\lim n^{4} = + \infty \\
\lim\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight) = - 1 < 0 \\
\end{matrix} ight.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 19: Vận dụng

    Biết rằng \lim\frac{\sqrt[3]{an^{3} +
5n^{2} - 7}}{\sqrt{3n^{2} - n + 2}} = b\sqrt{3} + c với a,b,c là các tham số. Tính giá trị của biểu thức P = \frac{a + c}{b^{3}} .

    Ta có:

    \lim\frac{\sqrt[3]{an^{3} + 5n^{2} -
7}}{\sqrt{3n^{2} - n + 2}}

    = \lim\dfrac{\sqrt[3]{a + \dfrac{5}{n} -\dfrac{7}{n^{3}}}}{\sqrt{3 - \dfrac{1}{n} + \dfrac{2}{n^{2}}}} =\dfrac{\sqrt[3]{a}}{\sqrt{3}} =\dfrac{\sqrt{3}.\sqrt[3]{a}}{3}

    \begin{matrix}
   \Rightarrow \dfrac{{\sqrt 3 .\sqrt[3]{a}}}{3} = b\sqrt 3  + c \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {\sqrt[3]{a} = \dfrac{b}{3}} \\ 
  {c = 0} 
\end{array}} ight. \Rightarrow P = \dfrac{1}{3} \hfill \\ 
\end{matrix}

  • Câu 20: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2} +
5x + 6} có nghĩa khi x^{2} + 5x + 6
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq - 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy theo định lí ta có hàm số f(x) =
\frac{x^{2} + 1}{x^{2} + 5x + 6} liên tục trên khoảng ( - \infty; - 3),( - 3; - 2),( - 2; +
\infty).

    b) Ta có: \lim\frac{an + 4}{4n + 3} =
\lim\frac{a + \frac{4}{n}}{4 + \frac{3}{n}} = \frac{a}{4}

    Khi đó: 2a + 1 = - 15.

    Theo bài ra ta có:

    \lim\frac{an + 4}{4n + 3} = - 2
\Leftrightarrow \frac{a}{4} = - 2 \Leftrightarrow a = - 8

    c) Ta có: x ightarrow 1^{+} \Rightarrow
x > 1 \Rightarrow x - 1 > 0

    \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x^{2}(x - 1)}}{\sqrt{x - 1} - (x -
1)}

    = \lim_{x ightarrow
1^{+}}\frac{x\sqrt{x - 1}}{\sqrt{x - 1}\left( 1 - \sqrt{x - 1} ight)}
= \lim_{x ightarrow 1^{+}}\frac{x}{1 - \sqrt{x - 1}} = 1s

    d) Xét hàm số x^{2} - 1000x^{2} + 0,01 =
f(x) có tập xác định D\mathbb{=
R}

    Suy ra hàm số f(x) cũng liên tục trên các khoảng ( - 1;0)(0;1).

    Ta có:

    \left\{ \begin{matrix}
f( - 1) = - 1000,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng ( - 1;0).

    Lại có: \left\{ \begin{matrix}
f(1) = - 999,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f(1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo