Biết
(biết
là các số nguyên dương). Tính
?
Đáp án: 14
Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Ta có:
Do đó
Biết
(biết
là các số nguyên dương). Tính
?
Đáp án: 14
Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Ta có:
Do đó
Biết rằng hàm số
liên tục trên đoạn
(với
là tham số). Giá trị của
bằng bao nhiêu ?
Đáp án: 4
Biết rằng hàm số liên tục trên đoạn
(với
là tham số). Giá trị của
bằng bao nhiêu ?
Đáp án: 4
Hàm số xác định trên và liên tục trên
và
.
Khi đó để liên tục trên đoạn
thì hàm số liên tục tại
.
Ta có: .
Để hàm số liên tục tại thì
.
Rút gọn
với ![]()
Ta có:
là một dãy cấp số nhân với
nên
Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là:
Ta có:
Hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục trên là:
Giá trị của
bằng:
Ta có:
Cho dãy số
xác định bởi
. Tính
.
Giả sử khi đó ta có:
Nếu hàm số
thỏa mãn
thì
bằng
Ta có:
.
Tìm giá trị của a để hàm số
liên tục tại
.
Ta có:
Hàm số liên tục tại
khi và chỉ khi
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Dãy số nào dưới đây có giới hạn bằng 0?
Ta có:
Do là dãy cấp số nhân có
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của
(kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của (kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Để hàm số liên tục trên
thì hàm số phải liên tục tại
hay
Ta có:
Để tồn tại thì
.
Suy ra
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình
vô nghiệm. Sai||Đúng
b) Hàm số
có 4 điểm gián đoạn. Đúng||Sai
c)
Đúng||Sai
d) Để hàm số
liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình vô nghiệm. Sai||Đúng
b) Hàm số có 4 điểm gián đoạn. Đúng||Sai
c) Đúng||Sai
d) Để hàm số liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
a) Xét hàm số có tập xác định
Hàm số liên tục trên ta có:
Vì nên phương trình
có ít nhất một nghiệm trên
.
b) Ta có:
Vậy hàm số đã cho có 4 điểm gián đoạn.
c) Ta có:
d) Ta có:
với thì
là hàm phân thức hữu tỉ xác định với mọi
. Do đó hàm số liên tục trên các khoảng
Tại ta có:
Để hàm số liên tục trên khoảng thì hàm số phải liên tục tại x = 0 khi đó:
.
Vậy để hàm số liên tục trên khoảng
thì
nhận giá trị là
.
Tính giới hạn ![]()
Ta có:
Hàm số nào sau đây gián đoạn tại
?
Xét hàm số hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn thỏa mãn
.
Ta có:
Vậy .
Giá trị của giới hạn
là:
Ta có:
Cho hàm số
. Số nghiệm của phương trình
trên
là:
Hàm số là hàm đa thức có tập xác định là
nên liên tục trên
=> Hàm số liên tục trên mỗi khoảng
Ta có:
=> Hàm số có ít nhất một nghiệm thuộc khoảng
=> Hàm số có ít nhất một nghiệm thuộc khoảng
=> Hàm số có ít nhất một nghiệm thuộc khoảng
Vậy phương trình có ít nhất ba nghiệm thuộc khoảng
Mặt khác phương trình là phương trình bậc ba có nhiều nhất ba nghiệm
=> Phương trình có đúng ba nghiệm trên
Tính giá trị biểu thức ![]()
Tính giới hạn ![]()
Ta có:
Do đó
Tính giới hạn ![]()
Ta có: