Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số f(x) xác định trên tập số thực và có đồ thị như hình vẽ:

    Hỏi hàm số f(x) không liên tục tại điểm nào sau đây?

    Quan sát đồ thị hàm số ta thấy: \left\{
\begin{matrix}
\lim_{x ightarrow 1^{-}}f(x) = 3 \\
\lim_{x ightarrow 1^{+}}f(x) = 0 \\
\end{matrix} ight.

    Vậy \lim_{x ightarrow 1^{-}}f(x) eq
\lim_{x ightarrow 1^{+}}f(x) nên không tồn tại \lim_{x ightarrow 1}f(x). Do đó hàm số gián đoạn tại x_{0} = 1.

  • Câu 2: Nhận biết

    Hàm số y =
\frac{- 5}{x\left( x^{2} - 4 ight)} liên tục tại điểm nào dưới đây?

    Hàm số y = \frac{- 5}{x\left( x^{2} - 4
ight)} có tập xác định D\mathbb{=
R}\backslash\left\{ - 2;0;2 ight\}

    Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định D.

    Khi đó x = 1 \in D suy ra hàm số đã cho liên tục tại điểm x = 1.

  • Câu 3: Thông hiểu

    Tính giới hạn \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}}.

    Ta có:

    \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}} = \lim\dfrac{\dfrac{4^{n + 1} + 6^{n + 2}}{8^{n}}}{\dfrac{5^{n} +8^{n}}{8^{n}}}

    = \lim\dfrac{4.\left( \dfrac{1}{2}ight)^{n} + 36.\left( \dfrac{3}{4} ight)^{n}}{\left( \dfrac{5}{8}ight)^{n} + 1} = 0

  • Câu 4: Vận dụng cao

    Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

    Ta có:

    Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m, q
= \frac{1}{10}

    Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.

    Từ đó tổng quãng đường mà quả bóng đã di chuyển là

    \begin{matrix}
  {u_1} + 2{u_2} + 2{u_3} + .... \hfill \\
   = {u_1} + 2{u_1}q + 2{u_1}{q^2} + ... \hfill \\
   = {u_1} + \dfrac{{2{u_1}q}}{{1 - q}} = \dfrac{{11}}{9}{u_1} = 68,2m \hfill \\ 
\end{matrix}

    Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng (67m;69m).

  • Câu 5: Vận dụng

    Cho số thực m thỏa mãn \lim_{x ightarrow + \infty}\frac{m\sqrt{2x^{2} +
3} + 2017}{2x + 2018} = \frac{1}{2}. Khi đó giá trị của m là bao nhiêu?

    Ta có:

    \lim_{x ightarrow +
\infty}\frac{m\sqrt{2x^{2} + 3} + 2017}{2x + 2018} =
\frac{1}{2}

    \Leftrightarrow \lim_{x ightarrow +\infty}\dfrac{mx\sqrt{2 + \dfrac{3}{x^{2}}} + 2017}{x\left( 2 +\dfrac{2018}{x} ight)} = \dfrac{1}{2}

    \Leftrightarrow \lim_{x ightarrow +\infty}\dfrac{m\sqrt{2 + \dfrac{3}{x^{2}}} + \dfrac{2017}{x}}{\left( 2 +\dfrac{2018}{x} ight)} = \dfrac{1}{2}

    \Leftrightarrow \frac{m\sqrt{2}}{2} =
\frac{1}{2} \Leftrightarrow m = \frac{\sqrt{2}}{2}

  • Câu 6: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.

    Hàm số y = \sin xác định trên tập số thực suy ra hàm số liên tục trên \mathbb{R}

    Hàm số y = \cos\sqrt{x} xác định trên D = \lbrack 0; + \infty)

    Hàm sốy = \tan x xác định trên D\mathbb{= R}\backslash\left\{ \frac{\pi}{2}
+ k\pi|k\mathbb{\in Z} ight\}

    Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.

    b) Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x ight) - \lim_{x ightarrow -
\infty}1

    = \lim_{x ightarrow - \infty}\left(
\frac{1}{\sqrt{x^{2} + 1} - x} ight) - 1 = \lim_{x ightarrow -
\infty}\left( \frac{\frac{1}{x}}{- \sqrt{1 + \frac{1}{x}} - 1} ight) -
1 = - 1

    c) Xét hàm số 2x^{4} - 5x^{2} + x + 1 =
f(x) liên tục trên \mathbb{R}

    Ta có: \left\{ \begin{matrix}
f( - 2) = 11;f( - 1) = - 3 \\
f(0) = 1;f(1) = - 1;f(2) = 15 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0).f( - 1) < 0 \\
f(1).f(2) < 0 \\
\end{matrix} ight. nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng (0;2).

    d) Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{-}}\left( x^{2} + 1 ight) = 2 > 0 \\
\lim_{x ightarrow 1^{-}}(1 - x) = 0 \\
\end{matrix} ight.. Khi x
ightarrow 1^{-} \Leftrightarrow x < 1 \Leftrightarrow 1 - x >
0

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} + 1}{1 - x} = + \infty.

  • Câu 7: Thông hiểu

    Kết quả của giới hạn \lim \frac{{3\sin n + 4\cos n}}{{n + 1}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}} \hfill \\   = \lim \left( {\dfrac{{3\sin n}}{{n + 1}} + \dfrac{{4\cos n}}{{n + 1}}} ight) \hfill \\   = \lim \left( {\dfrac{{3\sin n}}{{n + 1}}} ight) + \lim \left( {\dfrac{{4\cos n}}{{n + 1}}} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {0 \leqslant \left| {\dfrac{{3\sin n}}{{n + 1}}} ight| \leqslant \dfrac{3}{{n + 1}} \to 0} \\   {0 \leqslant \left| {\dfrac{{4\cos n}}{{n + 1}}} ight| \leqslant \dfrac{3}{{n + 1}} \to 0} \end{array}} ight. \hfill \\   \Rightarrow \lim f\left( x ight) = 0 \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } (x + 50)\sqrt {\frac{x}{{{x^3} - 6}}} bằng:

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } (x + 50)\sqrt {\dfrac{x}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{x{{\left( {x + 50} ight)}^2}}}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{{x^3} + 100{x^2} + 50x}}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{1 + \dfrac{{100}}{{{x^2}}} + \dfrac{{50}}{{{x^3}}}}}{{1 - \dfrac{6}{{{x^3}}}}}}  = 1 \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Biết rằng hàm số f(x) = \left\{
\begin{matrix}
\frac{x^{2} - 1}{\sqrt{x} - 1}\ \ \ khi\ \ \ x eq 1 \\
\ \ \ \ \ \ \ m\ \ \ \ \ \ \ khi\ \ \ x = 1 \\
\end{matrix} ight. liên tục trên đoạn \lbrack 0;2brack (với m là tham số). Giá trị của m bằng bao nhiêu ?

    Đáp án: 4

    Đáp án là:

    Biết rằng hàm số f(x) = \left\{
\begin{matrix}
\frac{x^{2} - 1}{\sqrt{x} - 1}\ \ \ khi\ \ \ x eq 1 \\
\ \ \ \ \ \ \ m\ \ \ \ \ \ \ khi\ \ \ x = 1 \\
\end{matrix} ight. liên tục trên đoạn \lbrack 0;2brack (với m là tham số). Giá trị của m bằng bao nhiêu ?

    Đáp án: 4

    Hàm số xác định trên \lbrack
0;2brack và liên tục trên \lbrack0;1) và (1;2brack.

    Khi đó để f(x) liên tục trên đoạn \lbrack 0;2brack thì hàm số liên tục tại x = 1.

    Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1}f(x) = \lim_{x ightarrow 1}\frac{x^{2} -
1}{\sqrt{x} - 1} = \lim_{x ightarrow 1}\left\lbrack (x + 1)\left(
\sqrt{x} + 1 ight) ightbrack = 4 \\
f(1) = m \\
\end{matrix} ight. .

    Để hàm số liên tục tại x = 1 thì m = 4.

  • Câu 10: Vận dụng cao

    Tính \lim_{x
ightarrow 1}\frac{x^{2018} + x^{2017} + .... + x - 2018}{x^{2018} +
1}

    Ta có:

    \lim_{x ightarrow 1}\dfrac{x^{2018} +x^{2017} + .... + x - 2018}{x^{2018} + 1}

    = \lim_{x ightarrow 1}\dfrac{(x -1)\left( x^{2017} + 2x^{2016} + 3.x^{2015} + .... + 2017x + 2018ight)}{(x - 1)\left( x^{2017} + x^{2016} + x^{2015} + .... + x + 1ight)}

    = \dfrac{\dfrac{2018.2019}{2}}{2018} =\dfrac{2019}{2}

    Vậy \lim_{x ightarrow 1}\dfrac{x^{2018}+ x^{2017} + .... + x - 2018}{x^{2018} + 1} =\frac{2019}{2}

  • Câu 11: Vận dụng

    Cho hàm số f(x)
= x^{3} - 3x - 1. Số nghiệm của phương trình f(x) = 0 trên tập số thực là:

    Hàm số f(x) = x^{3} - 3x - 1 là hàm đa thức có tập xác định \mathbb{R}

    => Hàm số liên tục trên \mathbb{R}

    => Hàm số liên tục trên các khoảng ( -
2; - 1),( - 1;0),(0;2)

    Ta có:

    \left\{ \begin{matrix}
f( - 2) = - 3 < 0 \\
f( - 1) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f( - 2).f( - 1) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
2; - 1)

    \left\{ \begin{matrix}
f( - 1) = 1 > 0 \\
f(0) = - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
1;0)

    \left\{ \begin{matrix}
f(0) = - 1 < 0 \\
f(2) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f(0).f(2) < 0 vậy phương trình có ít nhất một nghiệm trên (0;2)

    Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng ( - 2;2). Tuy nhiên phương trình f(x) = 0 là phương trình bậc ba có nhiều nhất ba nghiệm

    Vậy phương trình f(x) = 0 có đúng ba nghiệm.

  • Câu 12: Nhận biết

    \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 2x - 15}}{{2x - 10}} bằng

     \begin{matrix}  \mathop {\lim }\limits_{x \to 5} \dfrac{{{x^2} - 2x - 15}}{{2x - 10}} \hfill \\   = \mathop {\lim }\limits_{x \to 5} \dfrac{{\left( {x - 5} ight)\left( {x + 3} ight)}}{{2\left( {x - 5} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 5} \dfrac{{x + 3}}{2} = 4 \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = 1. Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = + \infty. Đúng||Sai

    c) \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight) = - \infty. Đúng||Sai

    d) \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = - \infty. Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = 1. Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = + \infty. Đúng||Sai

    c) \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight) = - \infty. Đúng||Sai

    d) \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = - \infty. Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = \sqrt{2 + 2} - 1 = 1.

    b) Ta có:

    \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (4x - 3) \cdot
\frac{1}{x - 1} ightbrack = + \infty\lim_{x ightarrow 1^{+}}(4x - 3) = 1,\lim_{x
ightarrow 1^{+}}\frac{1}{x - 1} = + \infty.

    c) Ta có:

    \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight)

    = \lim_{x ightarrow 2^{-}}\frac{x + 2
- 1}{(x - 2)(x + 2)} = \lim_{x ightarrow 2^{-}}\frac{x + 1}{(x - 2)(x
+ 2)}

    = \lim_{x ightarrow 2^{-}}\left\lbrack
\frac{x + 1}{x + 2} \cdot \frac{1}{(x - 2)} ightbrack = -
\infty, do \left\{ \begin{matrix}\lim_{x ightarrow 2^{-}}\dfrac{x + 1}{x + 2} = \dfrac{3}{4} \\\lim_{x ightarrow 2^{-}}\dfrac{1}{x - 2} = - \infty \\\end{matrix} ight.

    d) Ta có:

    \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = \lim_{x ightarrow - 1^{-}}\frac{- x - 1}{(x - 1)(x +
1)} = \lim_{x ightarrow - 1^{-}}\frac{- 1}{x - 1} =
\frac{1}{2}.

  • Câu 14: Vận dụng

    Biết rằng \lim\frac{\sqrt[3]{an^{3} +
5n^{2} - 7}}{\sqrt{3n^{2} - n + 2}} = b\sqrt{3} + c với a,b,c là các tham số. Tính giá trị của biểu thức P = \frac{a + c}{b^{3}} .

    Ta có:

    \lim\frac{\sqrt[3]{an^{3} + 5n^{2} -
7}}{\sqrt{3n^{2} - n + 2}}

    = \lim\dfrac{\sqrt[3]{a + \dfrac{5}{n} -\dfrac{7}{n^{3}}}}{\sqrt{3 - \dfrac{1}{n} + \dfrac{2}{n^{2}}}} =\dfrac{\sqrt[3]{a}}{\sqrt{3}} =\dfrac{\sqrt{3}.\sqrt[3]{a}}{3}

    \begin{matrix}
   \Rightarrow \dfrac{{\sqrt 3 .\sqrt[3]{a}}}{3} = b\sqrt 3  + c \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {\sqrt[3]{a} = \dfrac{b}{3}} \\ 
  {c = 0} 
\end{array}} ight. \Rightarrow P = \dfrac{1}{3} \hfill \\ 
\end{matrix}

  • Câu 15: Nhận biết

    Giá trị của \lim_{x ightarrow 1}\left( 2x^{2} - 3x + 1ight) bằng:

    Ta có: \lim_{x ightarrow 1}\left( 2x^{2} - 3x+ 1 ight) = 0

  • Câu 16: Vận dụng

    Biết \lim_{x
ightarrow 1}\frac{f(x) - 10}{x - 1} = 5. Hỏi giá trị giới hạn \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack} bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5

    \Rightarrow f(1) = 10

    Khi đó: \lim_{x ightarrow 1}\frac{f(x)
- 10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{\left( \sqrt{x} - 1
ight)\left( \sqrt{x} + 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{(x - 1)\left\lbrack
\sqrt{4f(x) + 9} + 3 ightbrack}

    = \frac{5.\left( \sqrt{1} + 1
ight)}{\left\lbrack \sqrt{4f(1) + 9} + 3 ightbrack} =
1

  • Câu 17: Thông hiểu

    Cho dãy số \left(
u_{n} ight) với u_{n} =
\frac{n}{4^{n}}\frac{u_{n +
1}}{u_{n}} < \frac{1}{2}. Chọn giá trị đúng của \lim u_{n} trong các số sau:

    Áp dụng phương pháp quy nạp toán học ta có n \leq 2^{n},\ \forall n \in N

    Nên ta có :

    n \leq 2^{n} \Leftrightarrow
\frac{n}{2^{n}} \leq 1 \Leftrightarrow \frac{n}{2^{n}.2^{n}} \leq
\frac{1}{2^{n}} \Leftrightarrow \frac{n}{4^{n}} \leq \left( \frac{1}{2}
ight)^{n}

    Suy ra : 0 < u_{n} \leq \left(
\frac{1}{2} ight)^{n}, mà \lim\left( \frac{1}{2} ight)^{n} = 0

    Vậy \lim u_{n} = 0.

  • Câu 18: Nhận biết

    Nếu các dãy số \left( u_{n}
ight),\left( v_{n} ight) thỏa mãn \lim u_{n} = 4 và \lim v_{n} = 3 thì \lim\left( u_{n} + v_{n} ight) bằng:

    Ta có \lim\left( u_{n} + v_{n} ight) =
\lim u_{n} + \lim v_{n} = 7.

  • Câu 19: Thông hiểu

    Cho hàm số y =
f(x)y = g(x) là hai hàm số liên tục tại điểm x_{0}. Mệnh đề nào dưới đây sai?

    Xét trường hợp y = g(x) liên tục tại x_{0}g\left( x_{0} ight) = 0 thì hàm số y = \frac{f(x)}{g(x)} không xác định tại x_{0}.

  • Câu 20: Nhận biết

    Giá trị của \lim\frac{3n^{3} + n}{n^{2}} bằng:

    Với mọi M >0 lớn tùy ý, ta chọn n_{M}
= \left\lbrack \frac{M}{3} ightbrack + 1

    Ta có:

    \frac{3n^{3} + n}{n^{2}} = 3n +
\frac{1}{n} > M với mọi n >
n_{M}

    Vậy \lim\frac{3n^{3} + n}{n^{2}} = +
\infty.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo