Biết rằng hàm số
liên tục tại
(a là tham số. Khẳng định nào dưới đây đúng?
Tập xác định
Theo giả thiết ta có:
Biết rằng hàm số
liên tục tại
(a là tham số. Khẳng định nào dưới đây đúng?
Tập xác định
Theo giả thiết ta có:
Xác định khoảng liên tục của hàm số
. Mệnh đề nào dưới đây sai?
Hàm số liên tục trên các khoảng
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Có bao nhiêu giá trị nguyên của a thỏa mãn
?
Ta có:
Do đó:
Vậy có hai giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.
Hàm số 
Ta có: liên tục tại
Tại ta có:
Vậy hàm số liên tục tại
Tại ta có:
Vậy hàm số bị gián đoạn tại
Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.
Xét tính liên tục của hàm số
. Khẳng định nào sau đây đúng?
Hàm số xác định với mọi
Ta có: liên tục trên
và
Mặt khác
Vậy hàm số gián đoạn tại x = 1
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là
(người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Ta có:
Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm (ngày) là 600 người/ngày.
bằng:
Ta có:
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Tìm giá trị của a để hàm số
liên tục tại
.
Ta có:
Hàm số liên tục tại
khi và chỉ khi
Mệnh đề nào dưới đây đúng?
Ta có:
Tính giới hạn 
Ta có:
Tính
.
Ta có:
Tính
được kết quả là:
Ta có
.
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A=2.
Hàm số nào dưới đây gián đoạn tại
?
Ta có: nên hàm số
gián đoạn tại điểm
Rút gọn
với ![]()
Ta có:
là một dãy cấp số nhân với
nên
bằng:
Ta có:
Cho
. Giới hạn
bằng
Đáp án: 1
Cho . Giới hạn
bằng
Đáp án: 1
Ta có:
nên
hay
Do đó
.
Cho
là hằng số,
là số nguyên dương khác không. Tìm khẳng định sai.
Mệnh đề sai khi
là số chẵn.
Giá trị của
bằng: