Giá trị của giới hạn
bằng:
Ta có:
Giá trị của giới hạn
bằng:
Ta có:
Tính giới hạn của ![]()
Ta có:
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi
dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có
Cho hàm số
liên tục trên đoạn
và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Giá trị của M.n là:

Hàm số liên tục trên
.
Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1
Vậy M.n = -3
Kết quả của giới hạn
bằng
Có nếu
.
Vì nên
.
Cho phương trình
. Mệnh đề nào sau đây đúng?
Xét hàm số là đa thực có tập xác định
nên liên tục trên
.
Ta có:
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
Vậy phương trình (*) đã cho có các nghiệm thỏa mãn
.
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
Cho hàm số 
Có bao nhiêu giá trị nguyên của
để hàm số gián đoạn tại ![]()
Đáp án: 2024
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại
Cho các giới hạn
. Tính giá trị biểu thức ![]()
Ta có:
Cho hàm số
. Hàm số
liên tục tại:
Tập xác định
Dễ thấy hàm số liên tục trên mỗi khoảng
Ta có:
Vậy hàm số liên tục tại x = 0
Tương tự ta có:
Vậy hàm số liên tục tại x = 1
Vậy hàm số đã cho liên tục trên tập số thực.
Xác định khoảng liên tục của hàm số
. Mệnh đề nào dưới đây sai?
Hàm số liên tục trên các khoảng
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Tính giới hạn ![]()
Ta có:
Do đó
bằng
Ta có:
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Cho hai dãy số
với
và
. Khi đó
bằng:
Ta có:
Tính giới hạn
.
Ta có:
Rút gọn biểu thức
với
?
Ta có:
Biết
, trong đó
là hai số nguyên dương và phân số
tối giản. Tính giá trị của biểu thức ![]()
Ta có:
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy C=1.
Giá trị của giới hạn
bằng:
Với mọi giá trị thì
Do đó: