Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 5}  - x) bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 5}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 5}  - x} ight)\left( {\sqrt {{x^2} + 5}  + x} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {{x^2} + 5 - {x^2}} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{5}{{\sqrt {1 + \dfrac{5}{{{x^2}}}}  + 1}} = \dfrac{5}{2} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{x^{3} - 4x^{2} + 3}{x - 1}\ \ \ \ khi\ x eq 1 \\ax + \dfrac{5}{2}\ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Xác định a để hàm số liên tục trên \mathbb{R}?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{(x - 1)\left( x^{2} - 3x - 3 ight)}{x -
1}

    = \lim_{x ightarrow 1}\left( x^{2} -
3x - 3 ight) = - 4

    f(1) = a + \frac{5}{2}

    Hàm số liên tục trên \mathbb{R} khi và chỉ khi hàm số liên tục tại x = 1

    \Leftrightarrow \lim_{x ightarrow
1}f(x) = f(1)

    \Leftrightarrow - 5 = a + \frac{5}{2}
\Rightarrow a = - \frac{15}{2}

  • Câu 3: Thông hiểu

    Biết giới hạn \lim\frac{2n + 1}{- 3n + 2}
= a. Khi đó:

    a) Giá trị a lớn hơn 0. Sai||Đúng

    b) Ba số -
\frac{5}{3};a;\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 2. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 3 nghiệm. Sai||Đúng

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6. Đúng||Sai

    Đáp án là:

    Biết giới hạn \lim\frac{2n + 1}{- 3n + 2}
= a. Khi đó:

    a) Giá trị a lớn hơn 0. Sai||Đúng

    b) Ba số -
\frac{5}{3};a;\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 2. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 3 nghiệm. Sai||Đúng

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6. Đúng||Sai

    a) Ta có: \lim\frac{2n + 1}{- 3n + 2} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( - 3 + \frac{2}{n}
ight)} = \lim\frac{2 + \frac{1}{n}}{- 3 + \frac{2}{n}} = \frac{-
2}{3}

    b) Ba số - \frac{5}{3}; -
\frac{2}{3};\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 1

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 2 nghiệm

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6

    Kết luận:

    a) Sai

    b) Sai

    c) Sai

    d) Đúng

  • Câu 4: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}\sin \dfrac{1}{x}}&{{\text{ }}khi{\text{ }}x e 0} \\   m&{{\text{ }}khi{\text{ }}x = 0} \end{array}} ight. liên tục tại x = 0

    Với mọi x e 0 ta có:

    0 \leqslant \left| {f(x)} ight| \leqslant \left| {{x^2}\sin \frac{1}{x}} ight| \leqslant {x^2} \to 0 khi x \to 0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = 0

    Theo giả thiết ta phải có: \mathop {m = f\left( 0 ight) = \lim }\limits_{x \to 0} f\left( x ight) = 0

  • Câu 5: Vận dụng

    Tính tổng S = 1 + \frac{2}{3} +
\frac{4}{9} + ... + \frac{2^{n}}{3^{n}} + ... .

    Ta có:

    S = 1 + \frac{2}{3} + \frac{4}{9} + ...
+ \frac{2^{n}}{3^{n}} + ...

    = \underbrace {1 + \frac{2}{3} + {{\left( {\frac{2}{3}} ight)}^2} + ... + {{\left( {\frac{2}{3}} ight)}^n} + ...}_{CSN:{u_1} = 1;q = \frac{2}{3}}

    = \dfrac{1}{1 - \dfrac{2}{3}} =3

  • Câu 6: Vận dụng

    Cho số thực m thỏa mãn \lim_{x ightarrow + \infty}\frac{m\sqrt{2x^{2} +
3} + 2017}{2x + 2018} = \frac{1}{2}. Khi đó giá trị của m là bao nhiêu?

    Ta có:

    \lim_{x ightarrow +
\infty}\frac{m\sqrt{2x^{2} + 3} + 2017}{2x + 2018} =
\frac{1}{2}

    \Leftrightarrow \lim_{x ightarrow +\infty}\dfrac{mx\sqrt{2 + \dfrac{3}{x^{2}}} + 2017}{x\left( 2 +\dfrac{2018}{x} ight)} = \dfrac{1}{2}

    \Leftrightarrow \lim_{x ightarrow +\infty}\dfrac{m\sqrt{2 + \dfrac{3}{x^{2}}} + \dfrac{2017}{x}}{\left( 2 +\dfrac{2018}{x} ight)} = \dfrac{1}{2}

    \Leftrightarrow \frac{m\sqrt{2}}{2} =
\frac{1}{2} \Leftrightarrow m = \frac{\sqrt{2}}{2}

  • Câu 7: Thông hiểu

    Tính giới hạn \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}}.

    Ta có:

    \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}} = \lim\dfrac{\dfrac{4^{n + 1} + 6^{n + 2}}{8^{n}}}{\dfrac{5^{n} +8^{n}}{8^{n}}}

    = \lim\dfrac{4.\left( \dfrac{1}{2}ight)^{n} + 36.\left( \dfrac{3}{4} ight)^{n}}{\left( \dfrac{5}{8}ight)^{n} + 1} = 0

  • Câu 8: Vận dụng cao

    Biết \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} =
\frac{a}{b}, trong đó a, b\in\mathbb{ Z}. Tính - 106a + b.

    Đáp án: -100||- 100

    Đáp án là:

    Biết \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} =
\frac{a}{b}, trong đó a, b\in\mathbb{ Z}. Tính - 106a + b.

    Đáp án: -100||- 100

    Ta có:

    \lim_{x ightarrow 1}\frac{\sqrt[3]{x +
7} - \sqrt{x + 3}}{x^{2} - 3x + 2} = \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - 2}{(x - 1)(x - 2)} + \lim_{x ightarrow
1}\frac{2 - \sqrt{x + 3}}{(x - 1)(x - 2)}.

    Ta có:

    \lim_{x ightarrow 1}\frac{\sqrt[3]{x +
7} - 2}{(x - 1)(x - 2)}

    = \lim_{x ightarrow 1}\frac{x + 7 -
2^{3}}{(x - 1)(x - 2)\left\lbrack \sqrt[3]{(x + 7)^{2}} + 2\sqrt[3]{x +
7} + 4 ightbrack}.

    = \lim_{x ightarrow 1}\frac{1}{(x -
2)\left( \sqrt[3]{(x + 7)^{2}} + 2\sqrt[3]{x + 7} + 4 ight)} = -
\frac{1}{12}.

    Đồng thời:

    \lim_{x ightarrow 1}\frac{2 - \sqrt{x
+ 3}}{(x - 1)(x - 2)} = \lim_{x ightarrow 1}\frac{2^{2} - (x + 3)}{(x
- 1)(x - 2)(2 + \sqrt{x + 3})}

    = \lim_{x ightarrow 1}\frac{- 1}{(x -
2)(2 + \sqrt{x + 3})} = \frac{1}{4}

    \Rightarrow \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} = - \frac{1}{12}
+ \frac{1}{4} = \frac{1}{6}

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 6 \\
\end{matrix} ight..

    Vậy - 106a + b = - 106 + 6 = -
100.

  • Câu 9: Nhận biết

    Tính \lim_{x ightarrow 1}\frac{x^{2} +
3x + 2}{- 2x^{2} + x + 3}.

    Ta có :

    \lim_{x ightarrow 1}\frac{x^{2} + 3x +
2}{- 2x^{2} + x + 3} = \lim_{x ightarrow 1}\frac{1^{2} + 3.1 + 2}{-
2.1^{2} + 1 + 3} = 3.

  • Câu 10: Thông hiểu

    Tính tổng S gồm tất cả các giá trị của tham số m để hàm số f(x) = \left\{ \begin{matrix}
x^{2} + x\ \ \ \ \ khi\ x < 1 \\
2\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\
m^{2}x + 1\ \ \ khi\ x > 1 \\
\end{matrix} ight. liên tục tại x = 1.

    Tập xác định D\mathbb{= R}

    Điều kiện để bài toán trở thành

    \lim_{x
ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)\
(*)

    Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{+}}\left( m^{2}x
+ 1 ight) = m^{2} + 1 \\
\lim_{x ightarrow 1^{-}}f(x) = \lim_{x ightarrow 1^{-}}\left( x^{2}
+ x ight) = 2 \\
f(1) = 2 \\
\end{matrix} ight.

    (*) \Leftrightarrow m^{2} + 1 = 2
\Leftrightarrow m = \pm 1

    S = - 1 + 1 = 0

  • Câu 11: Nhận biết

    \lim \frac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} \hfill \\   = \lim \dfrac{{3 - \dfrac{2}{{{n^3}}} + \dfrac{3}{{{n^4}}}}}{{4 + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}}} = \dfrac{3}{4} \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Tính giới hạn N =
\lim_{x ightarrow 0}\frac{\sqrt{4x + 1} - 1}{x^{2} - 3x}.

    Ta có:

    N = \lim_{x ightarrow 0}\frac{\sqrt{4x
+ 1} - 1}{x^{2} - 3x}

    N = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x + 1} - 1 ight)\left( \sqrt{4x + 1} + 1 ight)}{\left( x^{2}
- 3x ight)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4x}{x(x
- 3)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4}{(x -
3)\left( \sqrt{4x + 1} + 1 ight)}

    N = - \frac{2}{3}

  • Câu 13: Nhận biết

    Hàm số nào sau đây gián đoạn tại x = 1?

    Xét hàm số y = \frac{x}{x^{2} -
1} hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.

  • Câu 14: Nhận biết

    Giá trị của \lim_{x ightarrow 1}\left( 2x^{2} - 3x + 1ight) bằng:

    Ta có: \lim_{x ightarrow 1}\left( 2x^{2} - 3x+ 1 ight) = 0

  • Câu 15: Vận dụng

    Tìm giá trị thực của m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x^2} - x - 2}}{{x - 2}}{\text{ khi }}x e 2} \\   {{\text{m               khi }}x = 2} \end{array}} ight. liên tục tại x=2.

    Tập xác định của hàm số: D = \mathbb{R} chứa x=2

    Theo giả thiết thì ta phải có:

    \begin{matrix}  f\left( 2 ight) = \mathop {\lim }\limits_{x \to 2} f\left( x ight) \hfill \\   = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - x - 2}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} ight) = 3 \hfill \\ \end{matrix}

    Vậy m=3

  • Câu 16: Vận dụng cao

    Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

    Ta có:

    Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m, q
= \frac{1}{10}

    Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.

    Từ đó tổng quãng đường mà quả bóng đã di chuyển là

    \begin{matrix}
  {u_1} + 2{u_2} + 2{u_3} + .... \hfill \\
   = {u_1} + 2{u_1}q + 2{u_1}{q^2} + ... \hfill \\
   = {u_1} + \dfrac{{2{u_1}q}}{{1 - q}} = \dfrac{{11}}{9}{u_1} = 68,2m \hfill \\ 
\end{matrix}

    Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng (67m;69m).

  • Câu 17: Vận dụng

    Tính giới hạn \lim_{x ightarrow 2}\frac{\sqrt{x - 1} + x^{4} -
3x^{3} + x^{2} + 3}{\sqrt{2x} - 2}

    Ta có:

    \frac{\sqrt{x - 1} + x^{4} - 3x^{3} +
x^{2} + 3}{\sqrt{2x} - 2}

    = \frac{\sqrt{x - 1} - 1}{\sqrt{2x} - 2}
+ \frac{x^{4} - 3x^{3} + x^{2} + 4}{\sqrt{2x} - 2}

    = \frac{(x - 2)\left( \sqrt{2x} + 2
ight)}{(2x - 4)\left( \sqrt{x - 1} + 1 ight)} + \frac{(x - 2)\left(
x^{3} - x^{2} - x - 2 ight)\left( \sqrt{2x} + 2 ight)}{2x -
4}

    = \frac{\sqrt{2x} + 2}{2\left( \sqrt{x -
1} + 2 ight)} + \frac{\left( x^{3} - x^{2} - x - 2 ight)\left(
\sqrt{2x} + 2 ight)}{2}

    Do đó \lim_{x ightarrow 2}\frac{\sqrt{x
- 1} + x^{4} - 3x^{3} + x^{2} + 3}{\sqrt{2x} - 2} = 1

  • Câu 18: Nhận biết

    Giá trị của A =
\lim\frac{n - 2\sqrt{n}}{2n} bằng:

    Ta có:

    A = \lim\frac{n - 2\sqrt{n}}{2n} =
\lim\frac{1 - \frac{1}{\sqrt{n}}}{2} = \frac{1}{2}

  • Câu 19: Thông hiểu

    Tính giới hạn \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}}.

    Ta có:

    \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}} = \lim\dfrac{\dfrac{4.3^{n} + 7^{n + 1}}{7^{n}}}{\dfrac{2.5^{n} +7^{n}}{7^{n}}}

    = \lim\dfrac{4.\left( \dfrac{3}{7}ight)^{n} + 7}{2.\left( \dfrac{5}{7} ight)^{n} + 1} = 7

  • Câu 20: Nhận biết

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo