Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2} +
5x + 6} có nghĩa khi x^{2} + 5x + 6
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq - 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy theo định lí ta có hàm số f(x) =
\frac{x^{2} + 1}{x^{2} + 5x + 6} liên tục trên khoảng ( - \infty; - 3),( - 3; - 2),( - 2; +
\infty).

    b) Ta có: \lim\frac{an + 4}{4n + 3} =
\lim\frac{a + \frac{4}{n}}{4 + \frac{3}{n}} = \frac{a}{4}

    Khi đó: 2a + 1 = - 15.

    Theo bài ra ta có:

    \lim\frac{an + 4}{4n + 3} = - 2
\Leftrightarrow \frac{a}{4} = - 2 \Leftrightarrow a = - 8

    c) Ta có: x ightarrow 1^{+} \Rightarrow
x > 1 \Rightarrow x - 1 > 0

    \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x^{2}(x - 1)}}{\sqrt{x - 1} - (x -
1)}

    = \lim_{x ightarrow
1^{+}}\frac{x\sqrt{x - 1}}{\sqrt{x - 1}\left( 1 - \sqrt{x - 1} ight)}
= \lim_{x ightarrow 1^{+}}\frac{x}{1 - \sqrt{x - 1}} = 1s

    d) Xét hàm số x^{2} - 1000x^{2} + 0,01 =
f(x) có tập xác định D\mathbb{=
R}

    Suy ra hàm số f(x) cũng liên tục trên các khoảng ( - 1;0)(0;1).

    Ta có:

    \left\{ \begin{matrix}
f( - 1) = - 1000,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng ( - 1;0).

    Lại có: \left\{ \begin{matrix}
f(1) = - 999,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f(1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 2: Nhận biết

    Hàm số f(x) =
\sqrt{3 - x} + \frac{1}{\sqrt{x + 4}} liên tục trên:

    Điều kiện \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq - 3 \\
x > - 4 \\
\end{matrix} ight.

    Tập xác định D = ( -
4;3brack

    => Hàm số liên tục trên ( -
4;3brack

  • Câu 3: Thông hiểu

    Kết quả đúng của \lim\frac{- n^{2} + 2n + 1}{\sqrt{3n^{4} +
2}} là?

    Ta có:

    \lim\frac{- n^{2} + 2n + 1}{\sqrt{3n^{4}
+ 2}} = \lim\frac{- 1 + \frac{2}{n} + \frac{1}{n^{2}}\ }{\sqrt{3 +
\frac{2}{n^{2}}\ }}

    = \frac{- 1 + 0
+ 0}{\sqrt{3 + 0}} = - \frac{\sqrt{3}}{3}

  • Câu 4: Vận dụng cao

    Biết \lim_{xightarrow \frac{1}{2}}\dfrac{\sqrt{1 + ax^{2}} - bx - 2}{4x^{3} - 3x +1} = c với a,b,c\in\mathbb{R}. Tập nghiệm của phương trình ax^{4} + bx^{2} + c = 0 trên \mathbb{R} có số phần tử là:

    Ta có:

    \lim_{x ightarrow
\frac{1}{2}}\frac{\sqrt{1 + ax^{2}} - bx - 2}{4x^{3} - 3x +
1}

    = \lim_{x ightarrow
\frac{1}{2}}\frac{1 + ax^{2} - (bx + 2)^{2}}{\left( 4x^{3} - 3x + 1
ight)\left( \sqrt{1 + ax^{2}} + bx + 2 ight)}

    = \lim_{x ightarrow
\frac{1}{2}}\frac{\left( a - b^{2} ight)x^{2} - 4bx - 3}{(2x -
1)^{2}(x + 1)\left( \sqrt{1 + ax^{2}} + bx + 2 ight)}

    Theo đề I tồn tại hữu hạn nên phương trình \left( a - b^{2} ight)x^{2} - 4bx - 3 =
0phải có nghiệm kép x =
\frac{1}{2}. Tức là:

    \left\{ \begin{matrix}\Delta' = 0 \\\dfrac{2b}{a - b^{2}} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4b^{2} + 3\left( a - b^{2} ight) = 0 \\4b = a - b^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b^{2} + 3b = 0 \\
a = b^{2} + 4b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 3 \\
\end{matrix} ight.\ ;(a,b eq 0)

    Khi a = - 3;b = - 3 thì

    I = \lim_{x ightarrow
\frac{1}{2}}\frac{- 12x^{2} + 12x - 3}{(2x - 1)^{2}(x + 1)\left( \sqrt{1
+ ax^{2}} + bx + 2 ight)}

    I = \lim_{x ightarrow
\frac{1}{2}}\frac{- 3}{(x + 1)\left( \sqrt{1 - 3x^{2}} - 3x + 2
ight)}

    I = \dfrac{- 3}{\dfrac{3}{2}.\left(\sqrt{1 - \dfrac{3}{4}} - \dfrac{3}{2} + 2 ight)} = - 2

    Do đó a = - 3;b = - 3;c = - 2 nên phương trình - 3x^{4} - 3x^{2} - 2 =
0 vô nghiệm.

  • Câu 5: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{3 - x}{2x + 3}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{3 - x}{2x + 3} ight) = \lim_{x ightarrow +\infty}\dfrac{\dfrac{3}{x} - 1}{2 + \dfrac{3}{x}} = -\dfrac{1}{2}

  • Câu 6: Nhận biết

    Giá trị của  \lim\frac{1}{n^{k}} với k \in \mathbb{N^*}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\sqrt[k]{\frac{1}{a}}

    Suy ra:

    \frac{1}{n^{k}} < \frac{1}{n_{a}^{k}} < a\
\forall n > n_{a}

    Vậy \lim\frac{1}{n^{k}} = 0.

  • Câu 7: Vận dụng

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{2} + \left( \sqrt{2}
ight)^{2} + ... + \left( \sqrt{2} ight)^{n}. Chọn mệnh đề đúng trong các mệnh đề dưới đây?

    Ta có:

    \sqrt{2};\left( \sqrt{2}
ight)^{2};...;\left( \sqrt{2} ight)^{n}lập thành một cấp số nhân có nên

    u_{n} = \sqrt{2}.\frac{1 - \left(
\sqrt{2} ight)^{n}}{1 - \sqrt{2}}

    = \left( 2 - \sqrt{2}
ight).\left\lbrack \left( \sqrt{2} ight)^{n} - 1
ightbrack

    \Rightarrow \lim u_{n} = +
\infty\left\{ \begin{matrix}
a = 2 - \sqrt{2} > 0 \\
q = \sqrt{2} > 1 \\
\end{matrix} ight.

  • Câu 8: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 1}\frac{2x^{2} - 3x + 1}{1 -
x^{2}}

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{2} - 3x
+ 1}{1 - x^{2}} = \lim_{x ightarrow 1}\frac{1 - 2x}{x - 1} = -
\frac{1}{2}

  • Câu 9: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

  • Câu 10: Nhận biết

    \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 2x - 15}}{{2x - 10}} bằng

     \begin{matrix}  \mathop {\lim }\limits_{x \to 5} \dfrac{{{x^2} - 2x - 15}}{{2x - 10}} \hfill \\   = \mathop {\lim }\limits_{x \to 5} \dfrac{{\left( {x - 5} ight)\left( {x + 3} ight)}}{{2\left( {x - 5} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 5} \dfrac{{x + 3}}{2} = 4 \hfill \\ \end{matrix}

  • Câu 11: Vận dụng cao

    Tính \lim_{x
ightarrow 1}\frac{x^{2018} + x^{2017} + .... + x - 2018}{x^{2018} +
1}

    Ta có:

    \lim_{x ightarrow 1}\dfrac{x^{2018} +x^{2017} + .... + x - 2018}{x^{2018} + 1}

    = \lim_{x ightarrow 1}\dfrac{(x -1)\left( x^{2017} + 2x^{2016} + 3.x^{2015} + .... + 2017x + 2018ight)}{(x - 1)\left( x^{2017} + x^{2016} + x^{2015} + .... + x + 1ight)}

    = \dfrac{\dfrac{2018.2019}{2}}{2018} =\dfrac{2019}{2}

    Vậy \lim_{x ightarrow 1}\dfrac{x^{2018}+ x^{2017} + .... + x - 2018}{x^{2018} + 1} =\frac{2019}{2}

  • Câu 12: Vận dụng

    Tính  \lim_{x
ightarrow 0}\frac{\sqrt{1 + 2x} - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{\sqrt{1 + 2x} - (x + 1) + (x + 1) - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - (x + 1)}{x^{2}}

    = \lim_{x ightarrow 0}\frac{-
x^{2}}{x^{2}\left( \sqrt{1 + 2x} + x + 1 ight)} = -
\frac{1}{2}

    Ta cũng có:

    \lim_{x ightarrow 0}\frac{(x + 1) -
\sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{x^{3} + 3x^{2}}{x^{2}\left\lbrack (x + 1)^{2} + (x +
1)\sqrt[3]{1 + 3x} + \left( \sqrt[3]{1 + 3x} ight)^{2} ightbrack}
= 1

    Vậy  \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}} = \frac{1}{2}

  • Câu 13: Vận dụng

    Cho hàm số f(x) =
\frac{2\sqrt{1 + x} - \sqrt[3]{8 - x}}{x}. Tính \lim_{x ightarrow 0}f(x).

    Ta có:

    f(x) = \frac{2\sqrt{1 + x} - \sqrt[3]{8- x}}{x} = 2.\frac{\sqrt{1 + x} - 1}{x} + \frac{2 - \sqrt[3]{8 - x}}{x}= 2A + B

    Khi đó:

    \lim_{x ightarrow 0}A = \lim_{xightarrow 0}\frac{\sqrt{1 + x} - 1}{x}= \lim_{x ightarrow0}\frac{\left( \sqrt{1 + x} - 1 ight)\left( \sqrt{1 + x} + 1ight)}{x\left( \sqrt{1 + x} + 1 ight)}

    = \lim_{x ightarrow 0}\frac{x}{x\left(
\sqrt{1 + x} + 1 ight)} = \lim_{x ightarrow 0}\frac{1}{\sqrt{1 + x}
+ 1} = \frac{1}{2}

    Đồng thời

    \lim_{x ightarrow 0}B = \lim_{xightarrow 0}\frac{2 - \sqrt[3]{8 - x}}{x} = \lim_{x ightarrow0}\frac{x}{x\left\lbrack \left( 4 + 2\sqrt[3]{8 - x} ight) + \left(\sqrt[3]{8 - x} ight)^{2} ightbrack}

    = \lim_{x ightarrow 0}\frac{1}{\left(
4 + 2\sqrt[3]{8 - x} ight) + \left( \sqrt[3]{8 - x} ight)^{2}} =
\frac{1}{12}

    Vậy \lim_{x ightarrow 0}f(x) = 2\lim_{x
ightarrow 0}A + \lim_{x ightarrow 0}B = 2.\frac{1}{2} + \frac{1}{12}
= \frac{13}{12}

  • Câu 14: Thông hiểu

    Hàm số nào trong các hàm số sau liên tục tại x = 1?

    Xét hàm số f(x) = \left\{ \begin{matrix}
x + 1\ khi\ x \geq 1 \\
3x - 1\ khi\ x < 1 \\
\end{matrix} ight. có:

    \left\{ \begin{matrix}
f(1) = 2 \\
\lim_{x ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{+}}(x + 1) = 2
\\
\lim_{x ightarrow 1^{-}}f(x) = \lim_{x ightarrow 1^{-}}(3x - 1) = 2
\\
\end{matrix} ight.

    Vậy hàm số liên tục tại x =
1.

  • Câu 15: Thông hiểu

    Tính giá trị biểu thức \lim\left\lbrack n\left( \sqrt{n^{2} + 1} -
\sqrt{n^{2} - 3} ight) ightbrack

    \lim\left\lbrack n\left( \sqrt{n^{2} +
1} - \sqrt{n^{2} - 3} ight) ightbrack

    = \lim\frac{n\left( \sqrt{n^{2} + 1} -
\sqrt{n^{2} - 3} ight)\left( \sqrt{n^{2} + 1} + \sqrt{n^{2} - 3}
ight)}{\sqrt{n^{2} + 1} + \sqrt{n^{2} - 3}}

    = \lim\frac{4n}{\sqrt{n^{2} + 1} +
\sqrt{n^{2} - 3}}

    = \lim\dfrac{4}{\sqrt{1 +\dfrac{1}{n^{2}}} + \sqrt{1 - \dfrac{3}{n^{2}}}}

    = \frac{4}{1 + 1} = 2

  • Câu 16: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {3x - 5}&{{\text{ }}khi{\text{ }}x \leqslant  - 2} \\   {mx + 3}&{{\text{ }}khi{\text{ }}x >  - 2} \end{array}} ight.. Giá trị của m để hàm số đã cho liên tục tại x = -2 là:

    Ta có:

     \begin{matrix}  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3x - 5} ight) = -11 \hfill \\  f\left( { - 2} ight) = -11 \hfill \\  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \left( {mx + 3} ight) =  - 2m + 3 \hfill \\ \end{matrix}

    Để hàm số liên tục tại x=-2 thì 

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} f\left( x ight) = f\left( { - 2} ight)

    \Leftrightarrow  - 2m + 3 = -11 \Rightarrow m = 7

  • Câu 17: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x^2} - 3x + 2}}{{\left| {x - 1} ight|}}{\text{   khi }}x e 1} \\   {{\text{m                  khi }}x = 1} \end{array}} ight. liên tục trên \mathbb{R}?

    Ta có:

    Hàm số f(x) liên tục trên các khoảng ( - \infty;1),(1; + \infty). Khi đó hàm số đã cho liên tục trên \mathbb{R} khi và chỉ khi nó liên tục tại x = 1, tức là ta cần có:

    \lim_{x ightarrow 1}f(x) =f(1)

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)\ \ (*)

    Ta lại có:

    f(x) = \left\{ \begin{matrix}x - 2\ \ \ khi\ x > 1 \\m\ \ \ \ \ \ \ \ khi\ x < 1 \\2 - x\ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{+}}(x - 2) = - 1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{xightarrow 1^{-}}(2 - x) = 1

    Khi đó (*) không thỏa mãn với mọi m\mathbb{\in R}

    Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.

  • Câu 18: Thông hiểu

    Kết quả của giới hạn \lim \left( {\frac{{\sin 5n}}{{3n}} - 2} ight) bằng:

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  0 \leqslant \left| {\dfrac{{\sin 5n}}{{3n}}} ight| \leqslant \dfrac{1}{{3n}} \to 0 \hfill \\  \lim \left( { - 2} ight) =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim \left( {\dfrac{{\sin 5n}}{{3n}} - 2} ight) =  - 2 \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Cho hàm số f(x) xác định và liên tục tại x = 0 với y =
f(x) = \left\{ \begin{matrix}
x^{2}\sin\frac{1}{x}\ khi\ x eq 0 \\
m\ \ \ \ \ \ khi\ x = 0 \\
\end{matrix} ight.. Xác định giá trị tham số m thỏa mãn điều kiện đề bài.

    Với mọi x eq 0 ta có:

    0 \leq \left| f(x) ight| = \left|
x^{2}\sin\frac{1}{x} ight| \leq x^{2} \mapsto 0

    \Rightarrow \lim_{x ightarrow 0}f(x) =
0

    Theo giả thiết ta phải có m = f(0) =
\lim_{x ightarrow 0}f(x) = 0

  • Câu 20: Nhận biết

    Giá trị của \lim\frac{\sqrt{n + 1}}{n + 2} bằng:

    Với mọi số thực a>0 nhỏ tùy ý, ta chọn n_{a} = \left\lbrack \frac{1}{a^{2}} - 1
ightbrack + 1

    Ta có:

    \frac{\sqrt{n + 1}}{n + 2} <
\frac{1}{\sqrt{n + 1}} < a  với mọi n > n_{a}

    Suy ra \lim\frac{\sqrt{n + 1}}{n + 2} =
0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo