Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Cho dãy số
với
trong đó a là tham số thực. tìm a để ![]()
Ta có:
Ta có:
Nếu hàm số
thỏa mãn
thì
bằng
Ta có:
.
Cho hàm số
xác định trên
thỏa mãn
. Tính giới hạn
?
Cho hàm số xác định trên
thỏa mãn
. Tính giới hạn
?
Biết
. Giá trị
bằng
Đáp án: -13||- 13
Biết . Giá trị
bằng
Đáp án: -13||- 13
Vì là hữu hạn nên phương trình
có nghiệm
Khi đó
Vậy .
Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

Ta có:
Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m,
Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.
Từ đó tổng quãng đường mà quả bóng đã di chuyển là
Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng .
Cho dãy số
với
, trong đó
là tham số thực.
a) Khi
thì
Đúng||Sai
b) Khi
thì
. Sai||Đúng
c) Khi
thì
. Đúng||Sai
d) Khi
thì
Đúng||Sai
Cho dãy số với
, trong đó
là tham số thực.
a) Khi thì
Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Đúng||Sai
d) Khi thì
Đúng||Sai
Ta có
Nhận lượng liên hợp :
Giá trị của
với
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy .
Cho hàm số f(x) liên tục trên đoạn
sao cho
. Có thể nói gì về số nghiệm của phương trình
trên đoạn
:
Ta có:
Ta có f(x) = 5 ⇔ f(x) − 5 = 0. Đặt g(x) = f(x) − 5.
Khi đó
Vậy phương trình g(x) = 0 có ít nhất một nghiệm thuộc khoảng (1; 4) hay phương trình f(x) = 5 có ít nhất một nghiệm thuộc khoảng (1; 4)
Tìm giá trị nhỏ nhất của a để hàm số
liên tục tại
.
Điều kiện bài toán trở thành
Ta có:
Khi đó
Cho
và
. Công thức nào sau đây sai?
Ta có: chỉ đúng nếu
.
Cho hàm số
hàm số f(x) liên tục tại:
Tập xác định:
Vậy hàm số liên tục tại
Hàm số liên tục khi
hàm số liên tục khi
Tại x = 1 ta có:
Vậy hàm số liên tục tại
Hàm số liên tục trên
Hàm số nào dưới đây gián đoạn tại
?
Ta có: nên hàm số
gián đoạn tại điểm
Cho hàm số
. Mệnh đề nào sai?
Ta có:
là hàm đa thức nên liên tục trên
.
Ta có: có nghiệm trên
Mà
Vậy phương trình có nghiệm trên khoảng
Ta có: có nghiệm trên
Vậy mệnh đề sai là “Phương trình không có nghiệm trên khoảng
”
Giá trị của giới hạn
là:
Ta có:
Kết quả đúng của
là:
Xét:
Ta có:
Suy ra
.
bằng
Ta có:
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Cho hàm số
xác định trên tập số thực và có đồ thị như hình vẽ:

Hỏi hàm số
không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Biết giới hạn
và
. Khi đó:
a)
Đúng||Sai
b)
là hoành độ giao điểm của đường thẳng
với trục hoành Đúng||Sai
c)
Đúng||Sai
d) Cho cấp số cộng
với công sai
và
, thì
Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Đúng||Sai
b) là hoành độ giao điểm của đường thẳng
với trục hoành Đúng||Sai
c) Đúng||Sai
d) Cho cấp số cộng với công sai
và
, thì
Sai||Đúng
Ta có:
Do
Kết luận:
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |