Tính giới hạn ![]()
Ta có:
Ta có:
=>
Tính giới hạn ![]()
Ta có:
Ta có:
=>
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Tính giới hạn ![]()
Ta có:
Giá trị của
bằng:
Ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình
vô nghiệm. Sai||Đúng
b) Hàm số
có 4 điểm gián đoạn. Đúng||Sai
c)
Đúng||Sai
d) Để hàm số
liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình vô nghiệm. Sai||Đúng
b) Hàm số có 4 điểm gián đoạn. Đúng||Sai
c) Đúng||Sai
d) Để hàm số liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
a) Xét hàm số có tập xác định
Hàm số liên tục trên ta có:
Vì nên phương trình
có ít nhất một nghiệm trên
.
b) Ta có:
Vậy hàm số đã cho có 4 điểm gián đoạn.
c) Ta có:
d) Ta có:
với thì
là hàm phân thức hữu tỉ xác định với mọi
. Do đó hàm số liên tục trên các khoảng
Tại ta có:
Để hàm số liên tục trên khoảng thì hàm số phải liên tục tại x = 0 khi đó:
.
Vậy để hàm số liên tục trên khoảng
thì
nhận giá trị là
.
Hàm số
liên tục tại điểm nào dưới đây?
Hàm số có tập xác định
Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định .
Khi đó suy ra hàm số đã cho liên tục tại điểm
.
Tính giới hạn ![]()
Ta có:
Biết rằng hàm số
liên tục trên đoạn
(với
là tham số). Giá trị của
bằng bao nhiêu ?
Đáp án: 4
Biết rằng hàm số liên tục trên đoạn
(với
là tham số). Giá trị của
bằng bao nhiêu ?
Đáp án: 4
Hàm số xác định trên và liên tục trên
và
.
Khi đó để liên tục trên đoạn
thì hàm số liên tục tại
.
Ta có: .
Để hàm số liên tục tại thì
.
Rút gọn
với ![]()
Ta có:
là một dãy cấp số nhân với
nên
Cho hàm số
. Mệnh đề nào sau đây là sai?
Hàm số là hàm đa thức
=> Hàm số liên tục trên
Ta có:
=>
=> có nghiệm trên
Vậy khẳng định sai là khẳng định: "Phương trình f(x) = 0 không có nghiệm trên khoảng "
Ta có:
=>
=> có nghiệm trên
Có bao nhiêu giá trị nguyên của tham số m để hàm số
liên tục trên
?
Ta có:
Hàm số liên tục trên các khoảng
. Khi đó hàm số đã cho liên tục trên
khi và chỉ khi nó liên tục tại
, tức là ta cần có:
Ta lại có:
Khi đó không thỏa mãn với mọi
Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.
Có bao nhiêu giá trị nguyên của m thuộc
sao cho
là:
Ta có:
Ta có:
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số:
. Tính
và cho biết ý nghĩa của kết quả.
Đáp án: 105
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: . Tính
và cho biết ý nghĩa của kết quả.
Đáp án: 105
Ta có:
Cho hàm số
. Số nghiệm của phương trình
trên
là:
Hàm số là hàm đa thức có tập xác định là
nên liên tục trên
=> Hàm số liên tục trên mỗi khoảng
Ta có:
=> Hàm số có ít nhất một nghiệm thuộc khoảng
=> Hàm số có ít nhất một nghiệm thuộc khoảng
=> Hàm số có ít nhất một nghiệm thuộc khoảng
Vậy phương trình có ít nhất ba nghiệm thuộc khoảng
Mặt khác phương trình là phương trình bậc ba có nhiều nhất ba nghiệm
=> Phương trình có đúng ba nghiệm trên
bằng
Ta có:
Cho dãy số
với
và
. Chọn giá trị đúng của
trong các số sau:
Áp dụng phương pháp quy nạp toán học ta có
Nên ta có :
Suy ra : , mà
Vậy .
bằng:
Ta có:
Tính giới hạn của ![]()
Ta có:
Cho hàm số
. Hãy chọn kết luận đúng.
Ta có:
Lại có:
=> Hàm số liên tục phải tại x = 1
Nhận định sự đúng sai của các kết luận sau?
a)
. Đúng||Sai
b) Phương trình
có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu
thì
bằng
. Sai||Đúng
d) Hàm số
gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.