Tính ![\mathop {\lim }\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Vậy
Tính ![\mathop {\lim }\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Vậy
Dãy số nào sau đây có giới hạn bằng 0?
Ta có:
Kết quả của giới hạn
bằng
Có nếu
.
Vì nên
.
Giá trị của giới hạn
là:
Ta có:
Tìm giới hạn ![]()
Ta có:
bằng:
Ta có:
Hàm số nào dưới đây gián đoạn tại
?
Ta có: nên hàm số
gián đoạn tại điểm
Hàm số
liên tục tại điểm nào dưới đây?
Hàm số có tập xác định
Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định .
Khi đó suy ra hàm số đã cho liên tục tại điểm
.
Có bao nhiêu giá trị thực của tham số m để hàm số
liên tục trên
?
Tập xác định
Hàm số liên tục trên mỗi khoảng
Khi đó hàm số liên tục trên
khi và chỉ khi
liên tục tại
Hay
Ta lại có:
Khi đó
Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
Cho
là một đa thức thỏa mãn
. Tính giá trị

Ta có:
Khi đó
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
Sai||Đúng
b) Phương trình
có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số
khi
bằng -1. Sai||Đúng
d) Dãy số
với
là dãy số không bị chặn. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
Sai||Đúng
b) Phương trình có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số khi
bằng -1. Sai||Đúng
d) Dãy số với
là dãy số không bị chặn. Đúng||Sai
a) Ta có:
có điều kiện xác định
Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.
b) Đặt
f(x) liên tục trên tập số thực nên f(x) liên tục trên
Ta có:
Từ (*) và (**) suy ra phương trình có nghiệm thuộc
.
c) Ta có:
Vậy không tồn tại giới hạn của hàm số khi
d) Ta có: với n chẵn
Với n lẻ
Suy ra dãy số không bị chặn.
Cho hàm số
xác định và liên tục trên
với
với
. Tính ![]()
Ta có: Hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
=>
Tính giới hạn
.
Ta có: .
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng
khi đó
Đúng||Sai
b) Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c)
Sai||Đúng
d) Cho hàm số
xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng khi đó
Đúng||Sai
b) Cho hàm số liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c) Sai||Đúng
d) Cho hàm số xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
a) Ta có:
b) Ta có:
Điều kiện cần và đủ để hàm số liên tục trên là
c)
d) Ta có:
Từ (*) và (**) ta có:
Do đó:
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Cho dãy số
xác định bởi
. Tính
.
Giả sử khi đó ta có:
Xét tính đúng sai của các khẳng định sau:
a)
. Đúng||Sai
b) Biết rằng
,
. Khi đó
. Sai||Đúng
c)
. Sai||Đúng
d) Biết
(với
). Khi đó
. Đúng||Sai
Xét tính đúng sai của các khẳng định sau:
a) . Đúng||Sai
b) Biết rằng ,
. Khi đó
. Sai||Đúng
c) . Sai||Đúng
d) Biết (với
). Khi đó
. Đúng||Sai
a) Đúng.
Vì
b) Sai.
Vì
c) Sai.
Vì
d) Đúng.
Xét thấy là nghiệm của phương trình
(mẫu số) nên
cũng là một nghiệm của phương trình
(tử số)
.
Khi đó:
.
Vậy .
Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để![\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Mà
Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.
Giá trị của
bằng:
Với mọi a>0 nhỏ tùy ý, ta chọn
Suy ra
Giá trị của giới hạn
bằng:
Ta có: