Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

  • Câu 2: Thông hiểu

    Tìm giá trị của a để hàm số y = f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x + 2} - 2}{x - 2}\ \ khi\ x eq 2 \\2x + a\ \ \ \ \ \ \ \ \ \ khi\ x = 2 \\\end{matrix} ight. liên tục tại x = 2.

    Ta có:

    f(2) = a + 4

    \lim_{x ightarrow 2}f(x) = \lim_{x
ightarrow 2}\frac{\sqrt{x + 2} - 2}{x - 2}

    = \lim_{x ightarrow 2}\frac{x + 2 -
4}{(x - 2)\left( \sqrt{x + 2} + 2 ight)}

    = \lim_{x ightarrow 2}\frac{1}{\sqrt{x
+ 2} + 2} = \frac{1}{4}

    Hàm số f(x) liên tục tại x = 2 khi và chỉ khi

    \lim_{x ightarrow 2}f(x) =
f(2)

    \Leftrightarrow \frac{1}{4} = a +
4

    \Leftrightarrow a = -
\frac{15}{4}

  • Câu 3: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 4: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}- \dfrac{x}{2}\ \ khi\ \ x \leq 1 \\\dfrac{x^{2} - 3x + 2}{x^{2} - 1}\ \ khi\ \ x > 1 \\\end{matrix} ight.. Các kết luận dưới đây đúng hay sai?

    a)\ \lim_{x ightarrow 0}f(x) = - \
2. Sai||Đúng

    b)\ \lim_{x ightarrow 3}f(x) = + \
\infty. Sai||Đúng

    c)\lim_{x ightarrow + \ \infty}f(x) =
1. Đúng||Sai

    d) Hàm số f(x) liên tục tại x_{0} = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}- \dfrac{x}{2}\ \ khi\ \ x \leq 1 \\\dfrac{x^{2} - 3x + 2}{x^{2} - 1}\ \ khi\ \ x > 1 \\\end{matrix} ight.. Các kết luận dưới đây đúng hay sai?

    a)\ \lim_{x ightarrow 0}f(x) = - \
2. Sai||Đúng

    b)\ \lim_{x ightarrow 3}f(x) = + \
\infty. Sai||Đúng

    c)\lim_{x ightarrow + \ \infty}f(x) =
1. Đúng||Sai

    d) Hàm số f(x) liên tục tại x_{0} = 1. Đúng||Sai

    a) Sai

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\left( - \frac{x}{2} ight) = 0.

    b) Sai

    \lim_{x ightarrow 3}f(x) = \lim_{xightarrow 3}\left( \frac{x^{2} - 3x + 2}{x^{2} - 1} ight) =\frac{1}{4}.

    c) Đúng

    \lim_{x ightarrow + \ \infty}f(x) =
\lim_{x ightarrow + \ \infty}\left( \frac{x^{2} - 3x + 2}{x^{2} - 1}
ight)

    = \lim_{x ightarrow + \ \infty}\left(
\frac{x - 2}{x + 1} ight) = \lim_{x ightarrow + \ \infty}\left( 1 -
\frac{3}{x + 1} ight) = 1.

    d) Đúng

    Ta có:

    f(1) = - \frac{1}{2}\lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( - \frac{x}{2} ight) = -
\frac{1}{2}.

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\left( \frac{x^{2} - 3x + 2}{x^{2} - 1} ight) =
\lim_{x ightarrow 1^{+}}\left( \frac{x - 2}{x + 1} ight) = -
\frac{1}{2}.

    Vậy f(1) = \lim_{x ightarrow 1^{-}}f(x)
= \lim_{x ightarrow 1^{+}}f(x) nên hàm số f(x) liên tục tại x_{0} = 1.

  • Câu 5: Nhận biết

    \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 1}}{{{x^2} + x}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^3} + 1}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} ight)\left( {{x^2} - x + 1} ight)}}{{x\left( {x + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} - x + 1}}{x} =  - 3 \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    \lim_{x ightarrow 2}\frac{ax^{2} +
bx - 2}{x - 2} = 5 là 1 số hữu hạn và \lim_{x ightarrow 2}(x - 2) = 0 nên \lim_{x ightarrow 2}\left( ax^{2} + bx - 2
ight) = 0 hay 4a + 2b - 2 = 0
\Leftrightarrow b = 1 - 2a.

    Khi đó:

    \lim_{x ightarrow 2}\frac{ax^{2} + bx
- 2}{x - 2} = \lim_{x ightarrow 2}\frac{ax^{2} + (1 - 2a)x - 2}{x -
2}

    = \lim_{x ightarrow 2}\frac{ax^{2} + x
- 2ax - 2}{x - 2} = \lim_{x ightarrow 2}\frac{(ax^{2} - 2ax) + (x -
2)}{x - 2}

    = \lim_{x ightarrow 2}\frac{(x - 2)(ax
+ 1)}{x - 2} = \lim_{x ightarrow 2}(ax + 1)

    = 2a + 1 = 5 \Rightarrow a =
2

    Suy ra b = - 3.

    Vậy S = - 4.

  • Câu 7: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau:

    Theo nội dung định lý tìm giới hạn, ta có:

    Nếu \lim u_{n} = 0, thì \lim{|u_{n}|} = 0

  • Câu 8: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } (x + 50)\sqrt {\frac{x}{{{x^3} - 6}}} bằng:

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } (x + 50)\sqrt {\dfrac{x}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{x{{\left( {x + 50} ight)}^2}}}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{{x^3} + 100{x^2} + 50x}}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{1 + \dfrac{{100}}{{{x^2}}} + \dfrac{{50}}{{{x^3}}}}}{{1 - \dfrac{6}{{{x^3}}}}}}  = 1 \hfill \\ \end{matrix}

  • Câu 9: Vận dụng

    \lim \frac{{{{( - 1)}^n}}}{{n + 5}} bằng:

    Ta có:

    0 \leqslant \left| {\frac{{{{( - 1)}^n}}}{{n + 5}}} ight| \leqslant \frac{1}{{n + 5}} < \frac{1}{n}

    Do \lim \frac{1}{n} = 0 => \lim \frac{{{{\left( { - 1} ight)}^n}}}{{n + 5}} = 0

  • Câu 10: Vận dụng cao

    Tính \lim_{xightarrow 0}\dfrac{(1 + x)(1 + 2x)(1 + 3x)...(1 + 2018x) -1}{x}.

    Ta chứng minh bằng phương pháp quy nạp, với \forall n \geq 1;n\mathbb{\in N} thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + nx) - 1}{x} = \frac{n(n + 1)}{2}(*)

    Với n = 1 thì \left\{ \begin{gathered}
  VT = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + x - 1}}{x} = \mathop {\lim }\limits_{x \to 0} 1 = 1 \hfill \\
  VP = \dfrac{{1\left( {1 + 1} ight)}}{2} = 1 \hfill \\ 
\end{gathered}  ight. \Rightarrow VT = VP nên (*) đúng với n = 1

    Giả sử (*) đúng với n = k,k \geq
1;k\mathbb{\in N} nghĩa là:

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + kx) - 1}{x} = \frac{k(k + 1)}{2}

    Xét n = k + 1 ta có:

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx + x) - 1}{x}

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx) - 1}{x}

    + \lim_{x ightarrow 0}\frac{(1 + x)(1
+ 2x)(1 + 3x)...(x + kx) - 1}{x}

    VT = \frac{k(k + 1)}{2} + \lim_{x
ightarrow 0}\left\lbrack (1 + x)(1 + 2x)(1 + 3x)...(1 + k)
ightbrack

    VT = \frac{k(k + 1)}{2} + k + 1 =
\frac{(k + 1)(k + 2)}{2} = VP

    Vậy (*) đúng với n = k + 1;k \geq
1;k\mathbb{\in N}

    Bây giờ ta áp dụng với n = 2018 thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + 2018x) - 1}{x}

    = \frac{2018.(2018 + 1)}{2} =
1009.2019

  • Câu 11: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.

    b) Xét phương trình f(x) = 7 \Rightarrow
f(x) - 7 = 0

    Đặt g(x) = f(x) - 7 ta có:

    \left\{ \begin{matrix}
g(1) = f(1) - 7 = - 5 \\
g(5) = f(5) - 7 = 3 \\
\end{matrix} ight.\  \Rightarrow g(1).g(5) < 0

    Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng (1;5).

    c) Ta có:

    I = \lim_{x ightarrow 1}\frac{xf(x) +
1}{x - 1} = \lim_{x ightarrow 1}\frac{xf(x) + x - x + 1}{x -
1}

    = \lim_{x ightarrow
1}\frac{x\left\lbrack f(x) + 1 ightbrack - (x - 1)}{x - 1} = \lim_{x
ightarrow 1}\left\{ \frac{x\left\lbrack f(x) + 1 ightbrack}{x - 1}
ight\} - 1

    = 1.( - 1) - 1 = - 2

    d) Các hàm số liên tục trên tập số thực là y = x^{2};y = \sin x;y = \frac{x^{2} - 1}{x^{2} +
x + 1}.

  • Câu 12: Thông hiểu

    \lim\left( 2^{n}
+ 3^{n} ight) bằng:

    Ta có:

    \lim\left( 2^{n} + 3^{n} ight) =
\lim\left\{ 3^{n}.\left\lbrack \left( \frac{2}{3} ight)^{n} + 1
ightbrack ight\} = + \infty

  • Câu 13: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}
x^{2} + mx + n\ \ \ khi\ \ \ \ x < - 5\ \  \\
x + 17\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ \  - 5 \leq x \leq 10 \\
mx + n + 10\ \ \ \ khi\ \ \ \ x > 10 \\
\end{matrix} ight. liên tục trên \mathbb{R}. Khi đó

    a) f( - 5) = 12;f(10) = 27. Đúng||Sai

    b) m > 0,\ \  n > 0. Sai||Đúng

    c) 2m + n là số nguyên tố. Sai||Đúng

    d) Giá trị lớn nhất của hàm số y = m.\sin x+ n.\cos x là \sqrt{12}. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
x^{2} + mx + n\ \ \ khi\ \ \ \ x < - 5\ \  \\
x + 17\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ \  - 5 \leq x \leq 10 \\
mx + n + 10\ \ \ \ khi\ \ \ \ x > 10 \\
\end{matrix} ight. liên tục trên \mathbb{R}. Khi đó

    a) f( - 5) = 12;f(10) = 27. Đúng||Sai

    b) m > 0,\ \  n > 0. Sai||Đúng

    c) 2m + n là số nguyên tố. Sai||Đúng

    d) Giá trị lớn nhất của hàm số y = m.\sin x+ n.\cos x là \sqrt{12}. Sai||Đúng

    a) Đúng.

    Ta có : f( - 5) = - 5 + 17 = 12, f(10) = 10 + 17 = 27 (mệnh đề a) đúng)

    b) Sai.

    Với x < - 5 ta có f(x) = x^{2} + mx + n, là hàm đa thức nên liên tục trên ( - \infty; - 5).

    Với - 5 < x < 10 ta có f(x) = x + 17, là hàm đa thức nên liên tục trên (-5; 10).

    Với x > 10 ta có f(x) = mx + n + 10, là hàm đa thức nên liên tục trên (10 ;+\infty).

    Để hàm số liên tục trên \mathbb{R} thì hàm số phải liên tục tại x = - 5x = 10.

    Ta có:

    f( - 5) = 12;f(10) = 27.

    \lim_{x ightarrow - 5^{-}}f(x) =\lim_{x ightarrow - 5^{-}}\left( x^{2} + mx + n ight) = - 5m + n + 25.

    \lim_{x ightarrow - 5^{+}}f(x) =
\lim_{x ightarrow - 5^{+}}(x + 17) = 12.

    \lim_{x ightarrow 10^{-}}f(x) = \lim_{x
ightarrow 10^{-}}(x + 17) = 27.

    \lim_{x ightarrow 10^{+}}f(x) = \lim_{x
ightarrow 10^{+}}(mx + n + 10) = 10m + n + 10.

    Hàm số liên tục tại x = - 5x = 10 khi

    \left\{ \begin{matrix}- 5m + n + 25 = 12 \\10m + n + 10 = 27 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}- 5m + n = - 13 \\10m + n = 17 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 2 \ = - 3 \\\end{matrix} ight. (mệnh đề b) sai).

    c) Sai.

    Ta có 2m + n = 1 không phải số nguyên tố (mệnh đề c) sai).

    d) Sai.

    Ta có: y = m.sinx + n.cosx\ \
\  \Rightarrow \ \ \ y = 2sinx - 3cosx

    Xét phương trình ẩn x:

    2\sin x - 3\cos x = y

    \Leftrightarrow \sin x.\frac{2}{\sqrt{13}} - \cos x.\frac{3}{\sqrt{13}} =\frac{y}{\sqrt{13}}

    \Leftrightarrow \sin x.\cos\alpha - \cos x.\sin\alpha = \frac{y}{\sqrt{13}}, với \cos\alpha = \frac{2}{\sqrt{13}},\ \sin\alpha =
\frac{3}{\sqrt{13}}.

    \Leftrightarrow \sin(x - \alpha) =
\frac{y}{\sqrt{13}}

    Ta có

    \left| \sin(x - \alpha) ight| \leq
1

    \begin{matrix}
\Rightarrow \left| \frac{y}{\sqrt{13}} ight| \leq 1 \\
\Leftrightarrow - \sqrt{13} \leq y \leq \sqrt{13} \\
\end{matrix}

    Suy ra GTLN của y bằng \sqrt{13} khi \sin(x - \alpha) = 1 hay x = \alpha + \frac{\pi}{2} + k2\pi, với \cos\alpha = \frac{2}{\sqrt{13}},\
\sin\alpha = \frac{3}{\sqrt{13}}

    Vậy khẳng định d) sai.

  • Câu 14: Nhận biết

    Tính A = \lim_{x
ightarrow - 1}\left( x^{2} - x + 7 ight).

    Ta có: A = \lim_{x ightarrow - 1}\left(
x^{2} - x + 7 ight) = 1 + 1 + 7 = 9

  • Câu 15: Thông hiểu

    Giá trị của A =
\lim\frac{2n + 1}{1 - 3n} bằng:

    A = \lim\frac{2n + 1}{1 - 3n} =
\lim\frac{2 + \frac{1}{n}}{\frac{1}{n} - 3} = - \frac{2}{3}

  • Câu 16: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

  • Câu 17: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    \lim_{x ightarrow 1}\frac{ax^{2} +
bx - 2}{x - 1} = 3 là 1 số hữu hạn và \lim_{x ightarrow 1}(x - 1) = 0 nên \lim_{x ightarrow 1}\left( ax^{2} + bx - 2
ight) = 0 hay a + b - 2 = 0
\Leftrightarrow b = 2 - a.

    Khi đó:

    \lim_{x ightarrow 1}\frac{ax^{2} + bx
- 2}{x - 1} = \lim_{x ightarrow 1}\frac{ax^{2} + (2 - a)x - 2}{x -
1}

    = \lim_{x ightarrow 1}\frac{(x - 1)(ax
+ 2)}{x - 1} = \lim_{x ightarrow 1}(ax + 2)

    = a + 2 = 3

    \Rightarrow a = 1 suy ra b = 1.

    Vậy S = 1 + \frac{1}{4} =
1,25.

  • Câu 18: Vận dụng

    Hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  { - x\cos x{\text{       }}khi{\text{ }}x < 0} \\   {\dfrac{{{x^2}}}{{1 + x}}{\text{        }}khi{\text{ }}0 \leqslant x < 1} \\   {{x^3}{\text{             }}khi{\text{ x}} \geqslant {\text{1}}} \end{array}} ight.

    Ta có: f(x) liên tục tại x e 0; x e 1

    Tại x=0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x\cos x} ight) = 0 \hfill \\  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\dfrac{{{x^2}}}{{1 + x}}} ight) = 0 \hfill \\  f\left( 0 ight) = 0 \hfill \\ \end{matrix}

    \Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight)

    Vậy hàm số liên tục tại x=0

    Tại x=1 ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\dfrac{{{x^2}}}{{1 + x}}} ight) = \dfrac{1}{2} \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^3}} ight) = 1 \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) e \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số bị gián đoạn tại x=1

    Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.

  • Câu 19: Thông hiểu

    Hàm số nào dưới đây không liên tục trên khoảng ( - 1;1)?

    Xét hàm số y = \left\{ \begin{matrix}
\sin x\ \ \ \ khi\ x \geq 0 \\
\cos x\ \ \ \ khi\ x < 0 \\
\end{matrix} ight. với x \in (
- 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sin x = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \cos x = 1 \hfill \\ 
\end{gathered}  ight.

    Suy ra không tồn tại \lim_{x ightarrow
0}f(x) nên hàm số không liên tục tại x = 0

    Vậy hàm số không liên tục trên ( -
1;1).

  • Câu 20: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.

    Hàm số y = \sin xác định trên tập số thực suy ra hàm số liên tục trên \mathbb{R}

    Hàm số y = \cos\sqrt{x} xác định trên D = \lbrack 0; + \infty)

    Hàm sốy = \tan x xác định trên D\mathbb{= R}\backslash\left\{ \frac{\pi}{2}
+ k\pi|k\mathbb{\in Z} ight\}

    Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.

    b) Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x ight) - \lim_{x ightarrow -
\infty}1

    = \lim_{x ightarrow - \infty}\left(
\frac{1}{\sqrt{x^{2} + 1} - x} ight) - 1 = \lim_{x ightarrow -
\infty}\left( \frac{\frac{1}{x}}{- \sqrt{1 + \frac{1}{x}} - 1} ight) -
1 = - 1

    c) Xét hàm số 2x^{4} - 5x^{2} + x + 1 =
f(x) liên tục trên \mathbb{R}

    Ta có: \left\{ \begin{matrix}
f( - 2) = 11;f( - 1) = - 3 \\
f(0) = 1;f(1) = - 1;f(2) = 15 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0).f( - 1) < 0 \\
f(1).f(2) < 0 \\
\end{matrix} ight. nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng (0;2).

    d) Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{-}}\left( x^{2} + 1 ight) = 2 > 0 \\
\lim_{x ightarrow 1^{-}}(1 - x) = 0 \\
\end{matrix} ight.. Khi x
ightarrow 1^{-} \Leftrightarrow x < 1 \Leftrightarrow 1 - x >
0

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} + 1}{1 - x} = + \infty.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 35 lượt xem
Sắp xếp theo