Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính A = \lim_{x
ightarrow - 1}\left( x^{2} - x + 7 ight).

    Ta có: A = \lim_{x ightarrow - 1}\left(
x^{2} - x + 7 ight) = 1 + 1 + 7 = 9

  • Câu 2: Thông hiểu

    Giá trị của B =
\frac{\sqrt{n^{2} + 2n}}{n - \sqrt{3n^{2} + 1}}bằng:

    Ta có:

    B = \lim\dfrac{\dfrac{\sqrt{n^{2} +n}}{n}}{\dfrac{n - \sqrt{3n^{2} + 1}}{n}}

    = \lim\frac{\sqrt{1 +\frac{1}{n}}}{1 - \sqrt{3 + \frac{1}{n^{2}}}} = \frac{1}{1 -\sqrt{3}}

  • Câu 3: Thông hiểu

    Cho a,b là các số thực khác 0. Tìm điều kiện của a,b để giới hạn \lim_{x ightarrow - \infty}\frac{\sqrt{x^{2} -
3x} + ax}{bx - 1} = 3

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{\sqrt{x^{2} - 3x} + ax}{bx - 1} = 3

    \Leftrightarrow \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 - \dfrac{3}{x}} + a}{b - \dfrac{1}{x}} =3

    \Leftrightarrow \frac{- 1 + a}{b} =
3

    \Leftrightarrow \frac{a - 1}{b} =
3

  • Câu 4: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên [-3;3] với f(x)=\frac{ \sqrt{x+3}-\sqrt{3-x}}{x} với xeq 0. Tính f(0)

    Ta có: Hàm số f(x) xác định và liên tục trên [-3;3]

    => Hàm số liên tục tại x=0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {x + 3}  - \sqrt {3 - x} }}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {x + 3}  - \sqrt {3 - x} } ight)\left( {\sqrt {x + 3}  + \sqrt {3 - x} } ight)}}{{x\left( {\sqrt {x + 3}  + \sqrt {3 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2x}}{{x\left( {\sqrt {x + 3}  + \sqrt {3 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{2}{{\sqrt {x + 3}  + \sqrt {3 - x} }} = \dfrac{1}{{\sqrt 3 }} \hfill \\ \end{matrix}

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) = \frac{1}{{\sqrt 3 }}

  • Câu 5: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2}}}{x}{\text{           khi }}x < 1,x e 0} \\ 
  \begin{gathered}
  {\text{0      khi }}x = 0 \hfill \\
  \sqrt x {\text{   khi }}x \geqslant 1 \hfill \\ 
\end{gathered}  
\end{array}} ight.. Hàm số f(x) liên tục tại:

    Tập xác định D\mathbb{= R}

    Dễ thấy hàm số y = f(x) liên tục trên mỗi khoảng ( - \infty;0),(0;1);(1; +
\infty)

    Ta có:

    f(0) = 0

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\frac{x^{2}}{x} = \lim_{x ightarrow 0^{-}}(x) =
0

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{x^{2}}{x} = \lim_{x ightarrow 0^{+}}(x) =
0

    Vậy hàm số liên tục tại x = 0

    Tương tự ta có:

    f(1) = 1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2}}{x} = \lim_{x ightarrow 1^{-}}(x) =
1

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\sqrt{x} = 1

    Vậy hàm số liên tục tại x = 1

    Vậy hàm số đã cho liên tục trên tập số thực.

  • Câu 6: Nhận biết

    Hàm số nào không liên tục tại x = 2?

    Ta có hàm số y = \frac{x^{2}}{x -
2} không xác định tại x =
2 nên hàm số không liên tục tại x =
2

    NB

  • Câu 7: Thông hiểu

    Giá trị của D =
\lim\frac{n^{3} - 3n^{2} + 2}{n^{4} + 4n^{3} + 1} bằng:

    D = \lim\frac{n^{3} - 3n^{2} + 2}{n^{4}
+ 4n^{3} + 1}

    = \dfrac{\dfrac{1}{n} - \dfrac{3}{n^{2}} +\dfrac{2}{n^{4}}}{1 + \dfrac{4}{n} + \dfrac{1}{n^{4}}} = \dfrac{0}{1} =0

  • Câu 8: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Biết rằng \lim_{x ightarrow 1}f(x)
= 1;\lim_{x ightarrow 1}g(x) = - 2 khi đó \lim_{x ightarrow 1}\left\lbrack f(x) + g(x)
ightbrack = - 1 Đúng||Sai

    b) Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack
a;bbrack\mathop {\lim }\limits_{x \to {a^ - }} f\left( x ight) = f\left( a ight);\mathop {\lim }\limits_{x \to {b^ + }} f\left( x ight) = f\left( b ight). Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{3x^{4} - 2x}{5x + 1} = + \infty Sai||Đúng

    d) Cho hàm số f(x) xác định với mọi x eq 0 thỏa mãn f(x) + 2f\left( \frac{1}{x} ight) = 3x;(x eq
0). Khi đó \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{f\left( x ight)}}{{x - \sqrt 2 }} = 0 Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Biết rằng \lim_{x ightarrow 1}f(x)
= 1;\lim_{x ightarrow 1}g(x) = - 2 khi đó \lim_{x ightarrow 1}\left\lbrack f(x) + g(x)
ightbrack = - 1 Đúng||Sai

    b) Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack
a;bbrack\mathop {\lim }\limits_{x \to {a^ - }} f\left( x ight) = f\left( a ight);\mathop {\lim }\limits_{x \to {b^ + }} f\left( x ight) = f\left( b ight). Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{3x^{4} - 2x}{5x + 1} = + \infty Sai||Đúng

    d) Cho hàm số f(x) xác định với mọi x eq 0 thỏa mãn f(x) + 2f\left( \frac{1}{x} ight) = 3x;(x eq
0). Khi đó \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{f\left( x ight)}}{{x - \sqrt 2 }} = 0 Sai||Đúng

    a) Ta có: \lim_{x ightarrow
1}\left\lbrack f(x) + g(x) ightbrack = \lim_{x ightarrow 1}f(x) +
\lim_{x ightarrow 1}g(x) = - 1

    b) Ta có:

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack\lim_{x ightarrow a^{+}}f(x) = f(a);\lim_{x
ightarrow b^{-}}f(x) = f(b)

    c) \lim_{x ightarrow -\infty}\dfrac{3x^{4} - 2x}{5x + 1} = \lim_{x ightarrow -\infty}\dfrac{x^{4}\left( 3 - \dfrac{2}{x^{3}} ight)}{x\left( 5 +\dfrac{1}{x} ight)} = \lim_{x ightarrow - \infty}\left( x^{3}.\dfrac{3- \dfrac{2}{x^{3}}}{5 + \dfrac{1}{x}} ight)

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{{3 - \frac{2}{{{x^3}}}}}{{5 + \frac{1}{x}}}} ight) = \frac{3}{5} > 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^4} - 2x}}{{5x + 1}} =  - \infty

    d) Ta có:

    f(x) + 2f\left( \frac{1}{x} ight) =
3x;(x eq 0)(*)

    \Rightarrow f\left( \frac{1}{x} ight)
+ 2f(x) = \frac{3}{x};(x eq 0)(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}f(x) + 2f\left( \dfrac{1}{x} ight) = 3x \\f\left( \dfrac{1}{x} ight) + 2f(x) = \dfrac{3}{x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}f(x) + 2f\left( \dfrac{1}{x} ight) = 3x \\2f\left( \dfrac{1}{x} ight) + 4f(x) = \dfrac{6}{x} \\\end{matrix} ight.

    \Rightarrow f(x) = - x +
\frac{2}{x}

    Do đó: \lim_{x ightarrow\sqrt{2}}\dfrac{f(x)}{x - \sqrt{2}} = \lim_{x ightarrow \sqrt{2}}\left(\dfrac{- x + \dfrac{2}{x}}{x - \sqrt{2}} ight)

    = \lim_{x ightarrow \sqrt{2}}\frac{-
\left( x - \sqrt{2} ight)\left( x + \sqrt{2} ight)}{x\left( x -
\sqrt{2} ight)} = \lim_{x ightarrow \sqrt{2}}\frac{- \left( x -
\sqrt{2} ight)}{x} = - 2

  • Câu 9: Thông hiểu

    \lim\left( 2^{n}
+ 3^{n} ight) bằng:

    Ta có:

    \lim\left( 2^{n} + 3^{n} ight) =
\lim\left\{ 3^{n}.\left\lbrack \left( \frac{2}{3} ight)^{n} + 1
ightbrack ight\} = + \infty

  • Câu 10: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 7}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 7}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{1}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{5}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{7}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt 4  - 0}}{2} = 1 \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{1 - {x^3}}}{{1 - x}}{\text{        khi }}x < 1} \\ 
  {{\text{1            khi }}x \geqslant 1} 
\end{array}} ight. . Hãy chọn kết luận đúng.

    Ta có: f(x) = \left\{ \begin{matrix}
1 + x + x^{2}\ \ \ \ \ \ \ \ khi\ x < 1 \\
1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 1 \\
\end{matrix} ight.

    Lại có:

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( 1 + x + x^{2} ight) = 3

    \lim_{x ightarrow 1^{+}}f(x) = 1 eq
3

    => Hàm số liên tục phải tại x = 1

  • Câu 12: Nhận biết

    Giá trị của C =
lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} bằng:

    Ta có theo tính chất giới hạn, ta có:

    lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} =
0

  • Câu 13: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 14: Vận dụng

    Biết \lim_{x
ightarrow 1}\frac{f(x) - 10}{x - 1} = 5. Hỏi giá trị giới hạn \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack} bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5

    \Rightarrow f(1) = 10

    Khi đó: \lim_{x ightarrow 1}\frac{f(x)
- 10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{\left( \sqrt{x} - 1
ight)\left( \sqrt{x} + 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{(x - 1)\left\lbrack
\sqrt{4f(x) + 9} + 3 ightbrack}

    = \frac{5.\left( \sqrt{1} + 1
ight)}{\left\lbrack \sqrt{4f(1) + 9} + 3 ightbrack} =
1

  • Câu 15: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{\sqrt {x + 4}  - 2}}{x};x > 0} \\ 
  {mx + m + \dfrac{1}{4};x \leqslant 0} 
\end{array}} ight. với m là tham số. Tính giá trị của tham số m để hàm số có giới hạn tại x = 0.

    Hàm số có giới hạn tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0^{+}}f(x) = \lim_{x ightarrow 0^{-}}f(x)

    \Leftrightarrow \lim_{x ightarrow
0^{+}}\frac{\sqrt{x + 4} - 2}{x} = \lim_{x ightarrow 0^{-}}\left( mx +
m + \frac{1}{4} ight)

    \Leftrightarrow \frac{1}{4} = m +
\frac{1}{4} \Leftrightarrow m = 0

  • Câu 16: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x + 6}}{1 - x}\ ,x > 1 \\ax + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,x \leq 1 \\\end{matrix} ight.. Tìm a để hàm số liên tục tại x = 1

    Đáp án: -3||- 3

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x + 6}}{1 - x}\ ,x > 1 \\ax + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,x \leq 1 \\\end{matrix} ight.. Tìm a để hàm số liên tục tại x = 1

    Đáp án: -3||- 3

    Xét \lim_{x ightarrow 1^{+}}f(x) =
\lim_{x ightarrow 1^{+}}\frac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x +
6}}{1 - x}

    = \lim_{x ightarrow1^{+}}\frac{\sqrt{5x - 1} - 2 + 2 - \sqrt[3]{x^{2} + x + 6}}{1 -x}

    = \lim_{x ightarrow 1^{+}}\left(\frac{\sqrt{5x - 1} - 2}{1 - x} + \frac{2 - \sqrt[3]{x^{2} + x + 6}}{1 -x} ight)

    = \lim_{x ightarrow 1^{+}}\left( \frac{5x - 5}{(1 -x)\left( \sqrt{5x - 1} + 2 ight)} + \frac{8 - \left( x^{2} + x + 6ight)}{(1 - x)\left( 4 + 2\sqrt[3]{x^{2} + x + 6} + \left(\sqrt[3]{x^{2} + x + 6} ight)^{2} ight)} ight)

    = \lim_{xightarrow 1^{+}}\left( \frac{- 5}{\left( \sqrt{5x - 1} + 2 ight)} +\frac{x + 2}{4 + 2\sqrt[3]{x^{2} + x + 6} + \left( \sqrt[3]{x^{2} + x +6} ight)^{2}} ight)

    = - \frac{5}{4} + \frac{1}{4} = -
1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}(ax + 2) = a + 2

    f(1) = a + 2

    Hàm số liên tục tại x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow a + 2 = - 1
\Leftrightarrow a = - 3.

  • Câu 17: Vận dụng

    \lim \frac{{{{( - 1)}^n}}}{{n + 5}} bằng:

    Ta có:

    0 \leqslant \left| {\frac{{{{( - 1)}^n}}}{{n + 5}}} ight| \leqslant \frac{1}{{n + 5}} < \frac{1}{n}

    Do \lim \frac{1}{n} = 0 => \lim \frac{{{{\left( { - 1} ight)}^n}}}{{n + 5}} = 0

  • Câu 18: Vận dụng cao

    Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

    Ta có:

    Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m, q
= \frac{1}{10}

    Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.

    Từ đó tổng quãng đường mà quả bóng đã di chuyển là

    \begin{matrix}
  {u_1} + 2{u_2} + 2{u_3} + .... \hfill \\
   = {u_1} + 2{u_1}q + 2{u_1}{q^2} + ... \hfill \\
   = {u_1} + \dfrac{{2{u_1}q}}{{1 - q}} = \dfrac{{11}}{9}{u_1} = 68,2m \hfill \\ 
\end{matrix}

    Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng (67m;69m).

  • Câu 19: Nhận biết

    \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1}}{{x - 1}} bằng

    Ta có: \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1}}{{x - 1}} =  + \infty

    Do \left\{ \begin{gathered}  \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 1} ight) = 2 > 0 \hfill \\  x \to {1^ + } \Rightarrow x - 1 > 0 \hfill \\ \end{gathered}  ight.

  • Câu 20: Vận dụng cao

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Đáp án là:

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Ta có:

    \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}

    = \lim\left\lbrack \frac{2n^{2} - n^{3}
+ n^{3}}{n^{2} + n - n^{2}} \cdot \frac{\sqrt{n^{2} + n} +
n}{\sqrt[3]{\left( 2n^{2} - n^{3} ight)^{2}} + n^{2} -
n\sqrt[3]{2n^{2} - n^{3}}} ightbrack

    = \lim\dfrac{\sqrt{\left( n\sqrt{1 +\dfrac{1}{n}} + n ight)}}{\sqrt[3]{n^{6} \cdot \left( \dfrac{2}{n} - 1ight)^{2}} + n^{2} - n \cdot \sqrt[3]{n^{3}\left( \dfrac{2}{n} - 1ight)}}

    = \lim\dfrac{\sqrt{1 + \dfrac{1}{n}} +1}{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1}}

    Khi n ightarrow \infty thì \ lim\frac{1}{n} = 0.

    \Rightarrow \left\{ \begin{matrix}\lim\left( \left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1} ight) = - 1 + 1 + 1 = 1 \\\lim\left( \sqrt{1 + \dfrac{1}{n}} + 1 ight) = 1 \\\end{matrix} ight.

    \Rightarrow \lim\dfrac{\left( \sqrt{1 +\dfrac{1}{n}} + 1 ight.\ }{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}}+ 1 - \sqrt[3]{\dfrac{2}{n} - 1}} = 1

    \Rightarrow \lim\frac{\sqrt[3]{2n^{2} -
n^{3}} + n}{\sqrt{n^{2} + n} - n} = 1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 38 lượt xem
Sắp xếp theo