Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Tìm giá trị của a để hàm số
liên tục tại
.
Ta có:
Hàm số liên tục tại
khi và chỉ khi
Cho hàm số
. Khi đó hàm số đã cho liên tục trên khoảng nào?
Hàm số có nghĩa khi
Vậy hàm số liên tục trên các khoảng
Cho hàm số
. Các kết luận dưới đây đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c)
. Đúng||Sai
d) Hàm số
liên tục tại
. Đúng||Sai
Cho hàm số . Các kết luận dưới đây đúng hay sai?
a). Sai||Đúng
b). Sai||Đúng
c). Đúng||Sai
d) Hàm số liên tục tại
. Đúng||Sai
a) Sai
.
b) Sai
.
c) Đúng
.
d) Đúng
Ta có:
và
.
.
Vậy nên hàm số
liên tục tại
.
bằng:
Ta có:
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Chọn mệnh đề đúng trong các mệnh đề sau:
Theo nội dung định lý tìm giới hạn, ta có:
Nếu , thì
bằng:
Ta có:
bằng:
Ta có:
Do =>
Tính
.
Ta chứng minh bằng phương pháp quy nạp, với thì
Với thì
nên (*) đúng với
Giả sử (*) đúng với nghĩa là:
Xét ta có:
Vậy (*) đúng với
Bây giờ ta áp dụng với thì
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục tại
. Sai||Đúng
b) Cho hàm số liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết khi đó
Sai||Đúng
d) Trong các hàm số , có 3 hàm số liên tục trên tập số thực. Đúng||Sai
a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.
b) Xét phương trình
Đặt ta có:
Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng .
c) Ta có:
d) Các hàm số liên tục trên tập số thực là .
bằng:
Ta có:
Cho hàm số
liên tục trên
. Khi đó
a)
;
. Đúng||Sai
b)
. Sai||Đúng
c)
là số nguyên tố. Sai||Đúng
d) Giá trị lớn nhất của hàm số
là
. Sai||Đúng
Cho hàm số liên tục trên
. Khi đó
a) ;
. Đúng||Sai
b) . Sai||Đúng
c) là số nguyên tố. Sai||Đúng
d) Giá trị lớn nhất của hàm số là
. Sai||Đúng
a) Đúng.
Ta có : ,
(mệnh đề a) đúng)
b) Sai.
Với ta có
, là hàm đa thức nên liên tục trên
.
Với ta có
, là hàm đa thức nên liên tục trên
.
Với ta có
, là hàm đa thức nên liên tục trên
.
Để hàm số liên tục trên thì hàm số phải liên tục tại
và
.
Ta có:
;
.
.
.
.
.
Hàm số liên tục tại và
khi
(mệnh đề b) sai).
c) Sai.
Ta có không phải số nguyên tố (mệnh đề c) sai).
d) Sai.
Ta có:
Xét phương trình ẩn :
, với
.
Ta có
Suy ra GTLN của bằng
khi
hay
, với
Vậy khẳng định d) sai.
Tính
.
Ta có:
Giá trị của
bằng:
Kết quả của giới hạn
bằng
Có nếu
.
Vì nên
.
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
suy ra
.
Vậy .
Hàm số 
Ta có: liên tục tại
Tại ta có:
Vậy hàm số liên tục tại
Tại ta có:
Vậy hàm số bị gián đoạn tại
Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.
Hàm số nào dưới đây không liên tục trên khoảng
?
Xét hàm số với
Ta có:
Suy ra không tồn tại nên hàm số không liên tục tại x = 0
Vậy hàm số không liên tục trên .
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.