Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50000 +
105x. Tính \lim_{x ightarrow +
\infty}\mspace{2mu}\bar{C}(x) và cho biết ý nghĩa của kết quả.

    Đáp án: 105

    Đáp án là:

    Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50000 +
105x. Tính \lim_{x ightarrow +
\infty}\mspace{2mu}\bar{C}(x) và cho biết ý nghĩa của kết quả.

    Đáp án: 105

    Ta có:

    {\lim}_{x ightarrow +\infty}\mspace{2mu}\bar{C}(x) = \lim_{x ightarrow +\infty}\mspace{2mu}\frac{50000 + 105x}{x}

    = \lim_{x ightarrow +\infty}\mspace{2mu}\dfrac{x\left( \dfrac{50000}{x} + 105ight)}{x}

    = \lim_{x ightarrow +
\infty}\mspace{2mu}\left( \frac{50000}{x} + 105 ight) =
105

  • Câu 2: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{3{x^4} - 2{x^5}}}{{5{x^4} + 3{x^6} + 1}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{3{x^4} - 2{x^5}}}{{5{x^4} + 3{x^6} + 1}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{3}{{{x^2}}} - \dfrac{2}{x}}}{{\dfrac{5}{{{x^2}}} + 3 + \dfrac{1}{{{x^6}}}}} = 0 \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 4: Vận dụng cao

    Biết \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} =
\frac{a}{b}, trong đó a, b\in\mathbb{ Z}. Tính - 106a + b.

    Đáp án: -100||- 100

    Đáp án là:

    Biết \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} =
\frac{a}{b}, trong đó a, b\in\mathbb{ Z}. Tính - 106a + b.

    Đáp án: -100||- 100

    Ta có:

    \lim_{x ightarrow 1}\frac{\sqrt[3]{x +
7} - \sqrt{x + 3}}{x^{2} - 3x + 2} = \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - 2}{(x - 1)(x - 2)} + \lim_{x ightarrow
1}\frac{2 - \sqrt{x + 3}}{(x - 1)(x - 2)}.

    Ta có:

    \lim_{x ightarrow 1}\frac{\sqrt[3]{x +
7} - 2}{(x - 1)(x - 2)}

    = \lim_{x ightarrow 1}\frac{x + 7 -
2^{3}}{(x - 1)(x - 2)\left\lbrack \sqrt[3]{(x + 7)^{2}} + 2\sqrt[3]{x +
7} + 4 ightbrack}.

    = \lim_{x ightarrow 1}\frac{1}{(x -
2)\left( \sqrt[3]{(x + 7)^{2}} + 2\sqrt[3]{x + 7} + 4 ight)} = -
\frac{1}{12}.

    Đồng thời:

    \lim_{x ightarrow 1}\frac{2 - \sqrt{x
+ 3}}{(x - 1)(x - 2)} = \lim_{x ightarrow 1}\frac{2^{2} - (x + 3)}{(x
- 1)(x - 2)(2 + \sqrt{x + 3})}

    = \lim_{x ightarrow 1}\frac{- 1}{(x -
2)(2 + \sqrt{x + 3})} = \frac{1}{4}

    \Rightarrow \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} = - \frac{1}{12}
+ \frac{1}{4} = \frac{1}{6}

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 6 \\
\end{matrix} ight..

    Vậy - 106a + b = - 106 + 6 = -
100.

  • Câu 5: Thông hiểu

    Cho hàm số f(x) =
\frac{\sqrt{4x^{2} + x + 1} - \sqrt{x^{2} - x + 3}}{3x + 2}. Tính \lim_{x ightarrow -
\infty}f(x).

    Ta có:

    \lim_{x ightarrow -
\infty}f(x)

    = \lim_{x ightarrow -
\infty}\frac{\sqrt{4x^{2} + x + 1} - \sqrt{x^{2} - x + 3}}{3x +
2}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{4 + \dfrac{1}{x} + \dfrac{1}{x^{2}}} + \sqrt{1 - \dfrac{1}{x} +\dfrac{3}{x^{2}}}}{3 + \dfrac{2}{x}}

    = \frac{- 2 + 1}{3} = -
\frac{1}{3}

  • Câu 6: Thông hiểu

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Mệnh đề nào sau đây đúng?

    Xét hàm số f(x) = 2x^{4} - 5x^{2} + x +1 là đa thực có tập xác định \mathbb{R} nên liên tục trên \mathbb{R}.

    Ta có:

    \left\{ \begin{matrix}f(0) = 1 \\f( - 1) = - 3 \\\end{matrix} ight.\  \Rightarrow f(0).f( - 1) < 0 => Phương trình (*) có ít nhất một nghiệm thuộc ( - 1;1).

    \left\{ \begin{matrix}f(0) = 1 \\f(1) = - 1 \\\end{matrix} ight.\  \Rightarrow f(0).f(1) < 0 => Phương trình (*) có ít nhất một nghiệm thuộc (0;1).

    \left\{ \begin{matrix}f(1) = - 1 \\f(2) = 15 \\\end{matrix} ight.\  \Rightarrow f(1).f(2) < 0 => Phương trình (*) có ít nhất một nghiệm thuộc (1;2).

    Vậy phương trình (*) đã cho có các nghiệm x_{1};x_{2};x_{3} thỏa mãn - 1 < x_{1} < 0 < x_{2} < 1 < x_{3}< 2.

  • Câu 7: Thông hiểu

    Dãy số nào dưới đây có giới hạn bằng 0?

    Ta có: \lim {(0,999)^n} = 0

    Do (0,999)^{n} là dãy cấp số nhân có \left| q ight| < 1

  • Câu 8: Vận dụng

    Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi t dần về dương vô cùng?

    Đáp án: 30

    Đáp án là:

    Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi t dần về dương vô cùng?

    Đáp án: 30

    Sau t phút bơm nước vào hồ thì lượng nước là 600 + 15t (lít) và lượng muối có được là 30.15t (gam).

    Nồng độ muối của nước là

    C(t) = \frac{30.15t}{600 + 15t} =
\frac{30t}{40 + t} (gam/lít).

    Khi t dần về dương vô cùng, ta có

    \lim_{t ightarrow + \infty}C(t) =
\lim_{t ightarrow + \infty}\frac{30t}{40 + t} = \lim_{t ightarrow +
\infty}\frac{30t}{t\left( \frac{40}{t} + 1 ight)}

    = \lim_{t ightarrow +
\infty}\frac{30}{\frac{40}{t} + 1} = 30\ (gam/lít).

  • Câu 9: Thông hiểu

    Cho hàm số f(x) xác định và liên tục tại x = 0 với y =
f(x) = \left\{ \begin{matrix}
x^{2}\sin\frac{1}{x}\ khi\ x eq 0 \\
m\ \ \ \ \ \ khi\ x = 0 \\
\end{matrix} ight.. Xác định giá trị tham số m thỏa mãn điều kiện đề bài.

    Với mọi x eq 0 ta có:

    0 \leq \left| f(x) ight| = \left|
x^{2}\sin\frac{1}{x} ight| \leq x^{2} \mapsto 0

    \Rightarrow \lim_{x ightarrow 0}f(x) =
0

    Theo giả thiết ta phải có m = f(0) =
\lim_{x ightarrow 0}f(x) = 0

  • Câu 10: Vận dụng cao

    Dãy số (un) xác định bởi \left\{ \begin{matrix}u_{1} = \dfrac{1}{3} \\u_{n + 1} = \dfrac{n + 1}{3n}.u_{n} \\\end{matrix} ight. và dãy số (vn) xác định bởi \left\{ \begin{matrix}v_{1} = u_{1} \\v_{n + 1} = v_{n} + \dfrac{u_{n}}{n} \\\end{matrix} ight.. Tính \lim
v_{n}.

    Ta có:

    u_{n + 1} = \frac{n + 1}{3n}.u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} =
\frac{1}{3}.\frac{u_{n}}{3n} nên dãy \left( \frac{u_{n}}{n} ight)là cấp số nhân với công bội q =
\frac{1}{3}

    Lại có: v_{n + 1} = v_{n} +
\frac{u_{n}}{n} \Leftrightarrow v_{n + 1} - v_{n} =
\frac{u_{n}}{n}, khi đó ta có:

    \begin{matrix}
  {v_2} - {v_1} = \dfrac{{{u_1}}}{1} \hfill \\
  {v_3} - {v_2} = \dfrac{{{u_2}}}{2} \hfill \\
  ..... \hfill \\
  {v_{n + 1}} - {v_n} = \dfrac{{{u_n}}}{n} \hfill \\ 
\end{matrix}

    Cộng vế theo vế ta được

    \begin{matrix}
  {v_{n + 1}} - {v_n} = \dfrac{{{u_1}}}{1} + \dfrac{{{u_2}}}{2} + ... + \dfrac{{{u_n}}}{n} \hfill \\
   = \dfrac{{{u_1}\left[ {1 - {{\left( {\dfrac{1}{3}} ight)}^n}} ight]}}{{1 - \dfrac{1}{3}}} \hfill \\ 
\end{matrix}

    Do đó: v_{n + 1} =
\frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n} ightbrack
+ v_{1} = \frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n}
ightbrack + \frac{1}{3}

    => \lim v_{n} = \lim\left\{
\frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n} ightbrack
+ \frac{1}{3} ight\} = \frac{5}{6}

  • Câu 11: Vận dụng

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Đáp án là:

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Tại x = 0,7 ta có:

    T(0,7) = 10000 + a.

    \lim_{x ightarrow 0,7^{-}}T(x) =
\lim_{x ightarrow 0,7^{-}}10\ 000 + a = 10\ 000 + a

     \lim_{x ightarrow 0,7^{+}}T(x) = \lim_{x
ightarrow 0,7^{+}}\left( 11\ 000 + 15100(x - 0,7) ight) = 11\
000.

    Hàm số liên tục tại x = 0,7 thì \lim_{x ightarrow 0,7^{-}}T(x) = \lim_{x
ightarrow 0,7^{+}}T(x) = T(0,7) \Leftrightarrow a = 1000.

  • Câu 12: Thông hiểu

    Biết giới hạn \lim\frac{2n^{2} +
1}{3n^{3} - 3n + 3} = a\lim\frac{n\sqrt{n^{2} + 1}}{\sqrt{4n^{4} - n^{2}
+ 3}} = b. Khi đó:

    a) Giá trị a nhỏ hơn 0. Sai||Đúng

    b) Giá trị b lớn hơn 0. Đúng||Sai

    c) Phương trình lượng giác \cos x =
a có một nghiệm là x =
\frac{\pi}{2}. Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d = bu_{1} = a, thì u_{3} = \frac{3}{2}. Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\frac{2n^{2} +
1}{3n^{3} - 3n + 3} = a\lim\frac{n\sqrt{n^{2} + 1}}{\sqrt{4n^{4} - n^{2}
+ 3}} = b. Khi đó:

    a) Giá trị a nhỏ hơn 0. Sai||Đúng

    b) Giá trị b lớn hơn 0. Đúng||Sai

    c) Phương trình lượng giác \cos x =
a có một nghiệm là x =
\frac{\pi}{2}. Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d = bu_{1} = a, thì u_{3} = \frac{3}{2}. Sai||Đúng

    a) Ta có:

    \lim\dfrac{2n^{2} + 1}{3n^{3} - 3n + 3} =\lim\dfrac{n^{3}\left( \dfrac{2}{n} + \dfrac{1}{n^{3}} ight)}{n^{3}\left(3 - \dfrac{3}{n^{2}} + \dfrac{3}{n^{3}} ight)}

    = \lim\dfrac{\dfrac{2}{n} +\dfrac{1}{n^{3}}}{3 - \dfrac{3}{n^{2}} + \dfrac{3}{n^{3}}} = \dfrac{0}{3} =0

    b) Ta có:

    \lim\dfrac{n\sqrt{n^{2} +1}}{\sqrt{4n^{4} - n^{2} + 3}} = \lim\dfrac{n^{2}\sqrt{1 +\dfrac{1}{n^{2}}}}{n^{2}\sqrt{4 - \dfrac{1}{n^{2}} +\dfrac{3}{n^{4}}}}

    = \lim\dfrac{\sqrt{1 +\dfrac{1}{n^{2}}}}{\sqrt{4 - \dfrac{1}{n^{2}} + \dfrac{3}{n^{4}}}} =\dfrac{1}{2}.

    c) Phương trình lượng giác \cos x =
0 có một nghiệm là x =
\frac{\pi}{2}

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = 0, thì u_{3} = 0 + 2.\frac{1}{2} =
1

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 13: Thông hiểu

    \lim\sqrt{4-\frac{\cos2n}{n}} bằng số nào sau đây?

    Ta có: 0 \leqslant \left| {\frac{{\cos 2n}}{n}} ight| \leqslant \frac{1}{n} \to 0

    \Rightarrow \lim \sqrt {4 - \frac{{\cos 2n}}{n}}  = 2

  • Câu 14: Nhận biết

    Tính A = \lim_{x
ightarrow - 1}\left( x^{2} - x + 7 ight).

    Ta có: A = \lim_{x ightarrow - 1}\left(
x^{2} - x + 7 ight) = 1 + 1 + 7 = 9

  • Câu 15: Nhận biết

    Giá trị của {D =
\lim}\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}} bằng:

    Ta có:

    \lim\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}}= \lim \dfrac{4+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{n}+\dfrac{2}{n^2}}}=4

  • Câu 16: Vận dụng

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{2} + \left( \sqrt{2}
ight)^{2} + ... + \left( \sqrt{2} ight)^{n}. Chọn mệnh đề đúng trong các mệnh đề dưới đây?

    Ta có:

    \sqrt{2};\left( \sqrt{2}
ight)^{2};...;\left( \sqrt{2} ight)^{n}lập thành một cấp số nhân có nên

    u_{n} = \sqrt{2}.\frac{1 - \left(
\sqrt{2} ight)^{n}}{1 - \sqrt{2}}

    = \left( 2 - \sqrt{2}
ight).\left\lbrack \left( \sqrt{2} ight)^{n} - 1
ightbrack

    \Rightarrow \lim u_{n} = +
\infty\left\{ \begin{matrix}
a = 2 - \sqrt{2} > 0 \\
q = \sqrt{2} > 1 \\
\end{matrix} ight.

  • Câu 17: Nhận biết

    \lim \frac{{\sqrt[3]{{{n^3} + n}}}}{{6n + 2}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{\sqrt[3]{{{n^3} + n}}}}{{6n + 2}} = \lim \dfrac{{\sqrt[3]{{{n^3}\left( {1 + \dfrac{1}{{{n^3}}}} ight)}}}}{{n\left( {6 + \dfrac{2}{n}} ight)}} \hfill \\   = \lim \dfrac{{n\sqrt[3]{{1 + \dfrac{1}{{{n^3}}}}}}}{{n\left( {6 + \dfrac{2}{n}} ight)}} = \dfrac{1}{6} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Xác định \lim_{x
ightarrow 0}\frac{|x|}{x^{2}}.

    Ta có: \lim_{x ightarrow 0}\frac{|x|}{x^{2}}
= \lim_{x ightarrow 0}\frac{1}{|x|} = + \infty.

  • Câu 19: Thông hiểu

    Tìm giá trị của tham số m để hàm số f(x) = \left\{ \begin{matrix}
\frac{x^{2} - x - 2}{x - 2} & \ khi\ x eq 2 \\
m & \ khi\ x = 2 \\
\end{matrix} ight. liên tục trên \mathbb{R}.

    Đáp án: 3

    Đáp án là:

    Tìm giá trị của tham số m để hàm số f(x) = \left\{ \begin{matrix}
\frac{x^{2} - x - 2}{x - 2} & \ khi\ x eq 2 \\
m & \ khi\ x = 2 \\
\end{matrix} ight. liên tục trên \mathbb{R}.

    Đáp án: 3

    Phần giải chi tiết

    Tập xác định \mathcal{D} =
\mathbb{R}.

    Hàm số f(x) liên tục trên các khoảng ( - \infty;2),(2; +
\infty).

    Ta có \left\{ \begin{matrix}
f(2) = m \\
\lim_{x ightarrow 2}f(x) = \lim_{x ightarrow 2}\frac{x^{2} - x -
2}{x - 2} = \lim_{x ightarrow 2}(x + 1) = 3. \\
\end{matrix} ight.

    Hàm số f(x) liên tục trên \mathbb{R} khi và chỉ khi f(2) = \lim_{x ightarrow 2}f(x) \Leftrightarrow
m = 3.

  • Câu 20: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo