Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Tập xác định của hàm số f(x)\mathbb{R}.

    Ta có f(1) = \frac{a +
15}{4}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x + 3} - 2}{x - 1} = \lim_{x ightarrow
1^{+}}\frac{1}{\left( \sqrt{x + 3} + 2 ight)} =
\frac{1}{4}

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( \frac{ax + 15}{4} ight) = \frac{a +
15}{4}

    Hàm số đã cho liên tục tại x =
1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow \frac{1}{4} = \frac{a +
15}{4} \Leftrightarrow a = - 14.

  • Câu 2: Nhận biết

    Cho hàm số f(x) xác định trên tập số thực và có đồ thị như hình vẽ:

    Hỏi hàm số f(x) không liên tục tại điểm nào sau đây?

    Quan sát đồ thị hàm số ta thấy: \left\{
\begin{matrix}
\lim_{x ightarrow 1^{-}}f(x) = 3 \\
\lim_{x ightarrow 1^{+}}f(x) = 0 \\
\end{matrix} ight.

    Vậy \lim_{x ightarrow 1^{-}}f(x) eq
\lim_{x ightarrow 1^{+}}f(x) nên không tồn tại \lim_{x ightarrow 1}f(x). Do đó hàm số gián đoạn tại x_{0} = 1.

  • Câu 3: Nhận biết

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{c}}  {2{x^3} - 2x{\text{  }}khi{\text{ }}x \geqslant 1} \\   {{x^3} - 2x{\text{   }}khi{\text{ }}x < 1} \end{array}} ight.. Khi đó \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) bằng:

    Ta có:

    \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^3} - 2x} ight) =  - 1

  • Câu 4: Vận dụng cao

    Tính \lim_{x
ightarrow 1}\frac{x^{2018} + x^{2017} + .... + x - 2018}{x^{2018} +
1}

    Ta có:

    \lim_{x ightarrow 1}\dfrac{x^{2018} +x^{2017} + .... + x - 2018}{x^{2018} + 1}

    = \lim_{x ightarrow 1}\dfrac{(x -1)\left( x^{2017} + 2x^{2016} + 3.x^{2015} + .... + 2017x + 2018ight)}{(x - 1)\left( x^{2017} + x^{2016} + x^{2015} + .... + x + 1ight)}

    = \dfrac{\dfrac{2018.2019}{2}}{2018} =\dfrac{2019}{2}

    Vậy \lim_{x ightarrow 1}\dfrac{x^{2018}+ x^{2017} + .... + x - 2018}{x^{2018} + 1} =\frac{2019}{2}

  • Câu 5: Vận dụng

    Xét tính đúng sai của các khẳng định sau:

    a) \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 9. Đúng||Sai

    b) Biết rằng \lim_{x ightarrow 1}f(x) =
2, \lim_{x ightarrow 1}g(x) =
4. Khi đó \lim_{x ightarrow
1}\left( 3f(x) - 5g(x) ight) = - 13. Sai||Đúng

    c) \lim_{x ightarrow 2}\frac{\sqrt{4x +1} - 3}{x^{2} - 4} = 1. Sai||Đúng

    d) Biết \lim_{x ightarrow
2}\frac{2x^{2} - ax + 4}{x^{2} - 3x + 2} = b(với a;b\mathbb{\in R}). Khi đó a^{2} + b^{2} = 40. Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của các khẳng định sau:

    a) \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 9. Đúng||Sai

    b) Biết rằng \lim_{x ightarrow 1}f(x) =
2, \lim_{x ightarrow 1}g(x) =
4. Khi đó \lim_{x ightarrow
1}\left( 3f(x) - 5g(x) ight) = - 13. Sai||Đúng

    c) \lim_{x ightarrow 2}\frac{\sqrt{4x +1} - 3}{x^{2} - 4} = 1. Sai||Đúng

    d) Biết \lim_{x ightarrow
2}\frac{2x^{2} - ax + 4}{x^{2} - 3x + 2} = b(với a;b\mathbb{\in R}). Khi đó a^{2} + b^{2} = 40. Đúng||Sai

    a) Đúng.

    \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 3^{2} - 3 + 3 = 9

    b) Sai.

    \lim_{x ightarrow 1}\left( 3f(x) -
5g(x) ight) = 3.2 - 5.4 = - 14

    c) Sai.

    \lim_{x ightarrow 2}\frac{\sqrt{4x +
1} - 3}{x^{2} - 4} = \lim_{x ightarrow 2}\frac{4x + 1 - 9}{(x - 2)(x +
2)(\sqrt{4x + 1} + 3)}

    = \lim_{x ightarrow 2}\frac{4}{(x +
2)(\sqrt{4x + 1} + 3)} = \frac{1}{6}

    d) Đúng.

    Xét thấy x = 2 là nghiệm của phương trình x^{2} - 3x + 2 = 0 (mẫu số) nên x = 2 cũng là một nghiệm của phương trình 2x^{2} - ax + 4 =
0 (tử số) \Rightarrow a = 6.

    Khi đó:

    \lim_{x ightarrow 2}\frac{2x^{2} - ax +4}{x^{2} - 3x + 2} = \lim_{x ightarrow 2}\frac{2x^{2} - 6x + 4}{x^{2}- 3x + 2} = 2.

    Vậy a = 6;b = 2 \Rightarrow a^{2} + b^{2}
= 36 + 4 = 40.

  • Câu 6: Vận dụng

    Kết quả của giới hạn \lim\frac{2^{n + 1} + 3n + 10}{3n^{2} - n +
2}

    Ta có: 2^{n} = \sum_{k =
0}^{n}C_{n}^{k}

    \Rightarrow 2^{n} \geq C_{n}^{3} =
\frac{n(n - 1)(n - 2)}{6}\sim\frac{n^{3}}{6}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.. Khi đó:

    \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2} -n + 2} = \lim\left\lbrack \dfrac{2^{n}}{n^{2}}.\dfrac{2 + 3\left(\dfrac{n}{2^{n}} ight) + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} ightbrack = + \infty

    (vì \left\{ \begin{matrix}\lim\left\lbrack 2 + 3\left( \dfrac{n}{2^{n}} ight) + 10.\left(\dfrac{1}{2} ight)^{n} ightbrack = \dfrac{2}{3} > 0 \\\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\end{matrix} ight.)

  • Câu 7: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.

    Hàm số y = \sin xác định trên tập số thực suy ra hàm số liên tục trên \mathbb{R}

    Hàm số y = \cos\sqrt{x} xác định trên D = \lbrack 0; + \infty)

    Hàm sốy = \tan x xác định trên D\mathbb{= R}\backslash\left\{ \frac{\pi}{2}
+ k\pi|k\mathbb{\in Z} ight\}

    Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.

    b) Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x ight) - \lim_{x ightarrow -
\infty}1

    = \lim_{x ightarrow - \infty}\left(
\frac{1}{\sqrt{x^{2} + 1} - x} ight) - 1 = \lim_{x ightarrow -
\infty}\left( \frac{\frac{1}{x}}{- \sqrt{1 + \frac{1}{x}} - 1} ight) -
1 = - 1

    c) Xét hàm số 2x^{4} - 5x^{2} + x + 1 =
f(x) liên tục trên \mathbb{R}

    Ta có: \left\{ \begin{matrix}
f( - 2) = 11;f( - 1) = - 3 \\
f(0) = 1;f(1) = - 1;f(2) = 15 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0).f( - 1) < 0 \\
f(1).f(2) < 0 \\
\end{matrix} ight. nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng (0;2).

    d) Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{-}}\left( x^{2} + 1 ight) = 2 > 0 \\
\lim_{x ightarrow 1^{-}}(1 - x) = 0 \\
\end{matrix} ight.. Khi x
ightarrow 1^{-} \Leftrightarrow x < 1 \Leftrightarrow 1 - x >
0

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} + 1}{1 - x} = + \infty.

  • Câu 8: Thông hiểu

    Tính \lim\frac{2n + 1}{1 + n} được kết quả là:

    Ta có

    \lim\frac{2n + 1}{1 + n} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( \frac{1}{n} + 1
ight)} = \lim\frac{2 + \frac{1}{n}}{\frac{1}{n} + 1} = \frac{2 + 0}{0
+ 1} = 2.

  • Câu 9: Thông hiểu

    Xác định \lim_{x
ightarrow - 2}\frac{x + 1}{(x + 2)^{2}}.

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - 2} \left( {x + 1} ight) =  - 1 < 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - 2} {\left( {x + 2} ight)^2} = 0 \hfill \\
  {\left( {x + 2} ight)^2} > 0,\forall x e  - 2 \hfill \\ 
\end{gathered}  ight. \Rightarrow \mathop {\lim }\limits_{x \to  - 2} \frac{{x + 1}}{{{{\left( {x + 2} ight)}^2}}} =  - \infty

  • Câu 10: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Ta có: \lim_{x ightarrow\infty}\dfrac{2n + 5}{3n + 7} = \lim_{x ightarrow\infty}\dfrac{\dfrac{2n}{n} + \dfrac{5}{n}}{\dfrac{3n}{n} + \dfrac{7}{n}} =\dfrac{2}{3}

    Ta có: Khi a = - 2 thì \lim_{x ightarrow - 2}\left( x^{2} + 4x + 3 + 4
ight) = \lim_{x ightarrow - 2}\left( x^{2} + 4x + 7 ight) =
3

    Ta có: \left\{ \begin{gathered}
  f\left( {\sqrt 3 } ight) = 2\sqrt 3  \hfill \\
  \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {\frac{{{x^2} - 3}}{{x - \sqrt 3 }}} ight) = \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {x + \sqrt 3 } ight) = 2\sqrt 3  \hfill \\ 
\end{gathered}  ight.

    Vậy hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{{{x^2} - 3}}{{x - \sqrt 3 }}{\text{   khi x }} e \sqrt 3  \hfill \\
  2\sqrt 3 {\text{   khi x  =  }}\sqrt 3  \hfill \\ 
\end{gathered}  ight. liên túc tại x = \sqrt{3}

    Ta có: \left\{ \begin{gathered}
  \left| {\frac{{\cos n}}{n}} ight| \leqslant \frac{1}{n} \hfill \\
  \lim \frac{1}{n} = 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \lim \frac{{\cos n}}{n} = 0

  • Câu 11: Thông hiểu

    Giá trị của C =
\lim\frac{\left( 2n^{2} + 1 ight)^{4}(n + 2)^{9}}{n^{17} + 1} bằng:

    Ta có:

    C = \lim\frac{n^{8}\left( 2 +
\frac{1}{n^{2}} ight)^{4}.n^{9}.\left( 1 + \frac{2}{n}
ight)^{9}}{n^{17}.\left( 1 + \frac{1}{n^{17}} ight)} =
\lim\frac{\left( 2 + \frac{1}{n^{2}} ight)^{4}.\left( 1 + \frac{2}{n}
ight)^{9}}{1 + \frac{1}{n^{17}}} = 16

  • Câu 12: Nhận biết

    Hàm số nào sau đây gián đoạn tại x = 1?

    Xét hàm số y = \frac{x}{x^{2} -
1} hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.

  • Câu 13: Thông hiểu

    Tính \lim_{x
ightarrow + \infty}\left( \sqrt{x^{2} + 2x - 1} - x - 1
ight)

    Ta có:

    \lim_{x ightarrow + \infty}\left(
\sqrt{x^{2} + 2x - 1} - x - 1 ight)

    = \lim_{x ightarrow +
\infty}\frac{\left( \sqrt{x^{2} + 2x - 1} + x + 1 ight)\left(
\sqrt{x^{2} + 2x - 1} - x - 1 ight)}{\sqrt{x^{2} + 2x - 1} + x +
1}

    = \lim_{x ightarrow + \infty}\frac{-
2}{\sqrt{x^{2} + 2x - 1} + x + 1} = 0

  • Câu 14: Thông hiểu

    Cho hàm số y =f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x} - 1}{x - 1}\ khi\ x eq 1 \\k + 1\ \ \ \ \ \ khi\ x = 2 \\\end{matrix} ight.liên tục tại x = 1. Xác định giá trị thực của tham số k.

    Tập xác định D = \lbrack 0; +
\infty)

    Theo giả thiết ta có:

    k + 1 = f(1) = \lim_{x ightarrow
1}f(x)

    \Rightarrow k + 1 = \lim_{x ightarrow
1}\left( \frac{\sqrt{x} - 1}{x - 1} ight)

    \Leftrightarrow k + 1 = \lim_{x
ightarrow 1}\left( \frac{1}{\sqrt{x} + 1} ight)

    \Leftrightarrow k + 1 = \frac{1}{2}
\Leftrightarrow k = - \frac{1}{2}

  • Câu 15: Nhận biết

    Với k là số nguyên dương, c là hằng số, giới hạn \lim_{x ightarrow +
\infty}\frac{c}{x^{k}} bằng

    Ta có \lim_{x ightarrow + \infty}c =
c\lim_{x ightarrow +
\infty}x^{k} = + \infty nên \lim_{x
ightarrow + \infty}\frac{c}{x^{k}} = 0

  • Câu 16: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản \frac{m}{n}. Tính tổng T = m + n.

    Ta có:

    0,5111... = 0,5 + 10^{- 2} + 10^{- 3} +
... + 10^{- n} + ...

    Dãy số 10^{- 2};10^{- 3};...;10^{-
n};,,, là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = 10^{- 2}, công sai là q = 10^{- 1}

    => S = \frac{u_{1}}{1 - q} =
\frac{10^{- 2}}{1 - 10^{- 1}} = \frac{1}{90}

    Vậy 0,5111... = 0,5 + S = \frac{46}{90} =
\frac{23}{45}

    \Rightarrow \left\{ \begin{matrix}
m = 23 \\
n = 45 \\
\end{matrix} ight.\  \Rightarrow T = 68

  • Câu 17: Nhận biết

    Giá trị của \lim(2n + 1) bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} > \frac{M - 1}{2}

    Ta có:

    2n + 1 > 2n_{M} + 1 > M\ ,\
\ \ \forall n > n_{M}.

    = > \lim(2n + 1) = +
\infty

  • Câu 18: Nhận biết

    Tính giới hạn của hàm số \lim_{x ightarrow + \infty}\frac{3}{x^{2} - 2x +
6}

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{{x^2} - 2x + 6}} = 0\mathop {\lim }\limits_{x \to  + \infty } \left( {{x^2} - 2x + 6} ight) =  + \infty

  • Câu 19: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{3} - x^{2} + 2x - 2}{x - 1}\ khi\ x eq 1 \\3x + m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 2 \\\end{matrix} ight.liên tục tại x = 1.

    Tập xác định D\mathbb{= R}

    Theo giả thiết ta có:

    3 + m = f(1) = \lim_{x ightarrow
1}f(x)

    \Rightarrow 3 + m = \lim_{x ightarrow
1}\left( \frac{x^{3} - x^{2} + 2x - 2}{x - 1} ight)

    \Leftrightarrow 3 + m = \lim_{x
ightarrow 1}\frac{(x - 1)\left( x^{2} + 2 ight)}{x - 1}

    \Leftrightarrow 3 + m = \lim_{x
ightarrow 1}\left( x^{2} + 2 ight)

    \Leftrightarrow 3 + m = 3

    \Leftrightarrow m = 0

  • Câu 20: Vận dụng

    Biết \lim_{x
ightarrow - \infty}\frac{\sqrt{4x^{2} + x + 1} + 4}{ax - 2} =
\frac{1}{2}. Hỏi giá trị a thuộc tập hợp nào dưới đây?

    Ta có:

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{4x^{2} + x + 1} + 4}{ax - 2} =\dfrac{1}{2}

    \Leftrightarrow \lim_{x ightarrow -\infty}\dfrac{- x\left( \sqrt{4 + \dfrac{1}{x} + \dfrac{1}{x^{2}}} +\dfrac{4}{x} ight)}{x\left( a - \dfrac{2}{x} ight)} =\dfrac{1}{2}

    \Leftrightarrow \frac{- 2}{a} =
\frac{1}{2}

    \Leftrightarrow a = - 4 \Rightarrow a
\in \lbrack - 6; - 3brack

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 33 lượt xem
Sắp xếp theo