Hàm số nào trong các hàm số sau liên tục tại
?
Xét hàm số có:
Vậy hàm số liên tục tại .
Hàm số nào trong các hàm số sau liên tục tại
?
Xét hàm số có:
Vậy hàm số liên tục tại .
Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Cho hàm số
xác định và liên tục tại
với
. Xác định giá trị tham số m thỏa mãn điều kiện đề bài.
Với mọi ta có:
Theo giả thiết ta phải có
Cho các giới hạn
. Tính giá trị biểu thức ![]()
Ta có:
Nhận định sự đúng sai của các kết luận sau?
a)
. Đúng||Sai
b) Phương trình
có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu
thì
bằng
. Sai||Đúng
d) Hàm số
gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Tìm giá trị thực của tham số m để hàm số
liên tục tại ![]()
Với mọi ta có:
khi
=>
Theo giả thiết ta phải có:
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
Xét tính đúng sai của các khẳng định sau:
a)
. Đúng||Sai
b) Biết rằng
,
. Khi đó
. Sai||Đúng
c)
. Sai||Đúng
d) Biết
(với
). Khi đó
. Đúng||Sai
Xét tính đúng sai của các khẳng định sau:
a) . Đúng||Sai
b) Biết rằng ,
. Khi đó
. Sai||Đúng
c) . Sai||Đúng
d) Biết (với
). Khi đó
. Đúng||Sai
a) Đúng.
Vì
b) Sai.
Vì
c) Sai.
Vì
d) Đúng.
Xét thấy là nghiệm của phương trình
(mẫu số) nên
cũng là một nghiệm của phương trình
(tử số)
.
Khi đó:
.
Vậy .
Giá trị của
bằng:
Với mọi M >0 lớn tùy ý, ta chọn
Ta có:
với mọi
Vậy .
Giá trị của
bằng:
Với mọi a>0 nhỏ tùy ý, ta chọn
Suy ra
Phương trình nào dưới đây có nghiệm trong khoảng
?
Xét phương án :
có
=> Phương trình vô nghiệm.
Xét phương án :
Đặt , phương trình trở thành:
.
=> Phương trình vô nghiệm.
Xét phương án :
Phương trình vô nghiệm.
Xét phương án :
, xét
.
Mặc khác hàm số liên tục trên
do đó liên tục trên
.
Vậy phương trình có ít nhất một nghiệm trong khoảng
.
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Tính giới hạn của hàm số ![]()
Ta có: vì
Biết
với
. Tập nghiệm của phương trình
trên
có số phần tử là:
Ta có:
Theo đề I tồn tại hữu hạn nên phương trình phải có nghiệm kép
. Tức là:
Khi thì
Do đó nên phương trình
vô nghiệm.
Xác định
.
Ta có:
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Kết quả của giới hạn
bằng:
Ta có:
Tính được các giới hạn sau, khi đó:
a)
Sai||Đúng
b)
Sai||Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
a) (do
b) do
c) .
Vì
d) .
Vì
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Biết rằng
với
là các tham số. Tính giá trị của biểu thức
.
Ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
. Đúng||Sai
b) Biết rằng
khi đó
Đúng||Sai
c)
Sai||Đúng
d) Phương trình
có nghiệm thuộc khoảng
và
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
a) Hàm số có nghĩa khi
Vậy theo định lí ta có hàm số liên tục trên khoảng
.
b) Ta có:
Khi đó: .
Theo bài ra ta có:
c) Ta có:
s
d) Xét hàm số có tập xác định
Suy ra hàm số cũng liên tục trên các khoảng
và
.
Ta có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Lại có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .