Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính giới hạn \lim\frac{5^{n + 1} - 4^{n} + 1}{2.5^{n} -6^{n}}.

    Ta có:

    \lim\dfrac{5^{n + 1} - 4^{n} + 1}{2.5^{n}- 6^{n}} = \lim\dfrac{\dfrac{5^{n + 1} - 4^{n} + 1}{6^{n}}}{\dfrac{2.5^{n}- 6^{n}}{6^{n}}}

    = \lim\dfrac{5.\left( \dfrac{5}{6}ight)^{n} - \left( \dfrac{2}{3} ight)^{n} + \left( \dfrac{1}{6}ight)^{n}}{2.\left( \dfrac{5}{6} ight)^{n} - 1} = 0

  • Câu 2: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 3: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x)=\frac{x^{3}-3x+2}{x-1} với mọi xeq 1. Tính f(1)

     Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 3x + 2}}{{x - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x + 2} ight){{\left( {x - 1} ight)}^2}}}{{x - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \left( {x + 2} ight)\left( {x - 1} ight) = 0 \hfill \\ \end{matrix}

    Do hàm số đã cho xác định và liên tục trên \mathbb{R}

    => Hàm số liên tục tại x = 1

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) = f\left( 1 ight) = 0

  • Câu 4: Thông hiểu

    Giá trị của giới hạn \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) là:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) \hfill \\   = \lim \dfrac{{\left( {\sqrt {{n^2} - n + 1}  - n} ight)\left( {\sqrt {{n^2} - n + 1}  + n} ight)}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\ \end{matrix}

    \begin{matrix}   = \lim \dfrac{{{n^2} - n + 1 - {n^2}}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\   = \lim \dfrac{{ - n + 1}}{{\sqrt {{n^2} - n + 1}  + n}} \hfill \\   = \lim \dfrac{{n\left( { - 1 + \dfrac{1}{n}} ight)}}{{n\left( {\sqrt {1 - \frac{1}{n} + \dfrac{1}{{{n^2}}}}  + 1} ight)}} =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Cho f(x)=\frac{x^{2}+5x}{7x} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

     Ta có: 

    Với xeq 0 hàm số xác định => Hàm số liên tục khi x > 0 và x < 0

    Với x = 0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + 5x}}{{7x}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x + 5}}{7} = \dfrac{5}{7} \hfill \\ \end{matrix}

    Để hàm số liên tục tại x = 0 thì

    \Leftrightarrow \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) \Rightarrow f\left( 0 ight) = \frac{5}{7}

  • Câu 6: Vận dụng

    Biết \lim_{x
ightarrow 0}\frac{\sin x}{x} = 1. Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\tan x}{x}\ khi\ x eq 0 \\0\ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. liên tục trên khoảng nào sau đây?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}có nghĩa là

    D = \underset{k\mathbb{\in
Z}}{\cup}\left( \frac{\pi}{2} + k\pi;\frac{3\pi}{2} + k\pi ight) = ...
\cup \left( - \frac{\pi}{2};\frac{\pi}{2} ight) \cup \left(
\frac{\pi}{2};\frac{3\pi}{2} ight) \cup ...

    Khi đó

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\tan x}{x}

    = \lim_{x ightarrow 0}\frac{\sin
x}{x}.\frac{1}{\cos x} = 1.\frac{1}{cos0} = 1 eq 0 = f(0)

  • Câu 7: Nhận biết

    Tính giới hạn \lim_{x ightarrow 1}\frac{x^{2} + 3x - 4}{x -
1}

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2} + 3x -
4}{x - 1} = \lim_{x ightarrow 1}\frac{(x - 1)(x + 4)}{x -
1}

    = \lim_{x ightarrow 1}(x + 4) =
5

  • Câu 8: Vận dụng cao

    Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

    Ta có:

    Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m, q
= \frac{1}{10}

    Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.

    Từ đó tổng quãng đường mà quả bóng đã di chuyển là

    \begin{matrix}
  {u_1} + 2{u_2} + 2{u_3} + .... \hfill \\
   = {u_1} + 2{u_1}q + 2{u_1}{q^2} + ... \hfill \\
   = {u_1} + \dfrac{{2{u_1}q}}{{1 - q}} = \dfrac{{11}}{9}{u_1} = 68,2m \hfill \\ 
\end{matrix}

    Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng (67m;69m).

  • Câu 9: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Ta có: \lim_{t ightarrow 10}\frac{g(t)
- g(10)}{t - 10} = \lim_{t ightarrow 10}\frac{45t^{2} - t^{3} - 45
\cdot 10^{2} + 10^{3}}{t - 10}

    \begin{matrix}= \lim_{t ightarrow 10}\dfrac{45(t - 10)(t + 10) - (t - 10)\left( t^{2}+ 10t + 100 ight)}{t - 10}  \\\end{matrix}

    = \lim_{t ightarrow 10}\left( - t^{2} + 35t + 350 ight) = 600

    Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm t = 10 (ngày) là 600 người/ngày.

  • Câu 10: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}
x^{2} + mx + n\ \ \ khi\ \ \ \ x < - 5\ \  \\
x + 17\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ \  - 5 \leq x \leq 10 \\
mx + n + 10\ \ \ \ khi\ \ \ \ x > 10 \\
\end{matrix} ight. liên tục trên \mathbb{R}. Khi đó

    a) f( - 5) = 12;f(10) = 27. Đúng||Sai

    b) m > 0,\ \  n > 0. Sai||Đúng

    c) 2m + n là số nguyên tố. Sai||Đúng

    d) Giá trị lớn nhất của hàm số y = m.\sin x+ n.\cos x là \sqrt{12}. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
x^{2} + mx + n\ \ \ khi\ \ \ \ x < - 5\ \  \\
x + 17\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ \  - 5 \leq x \leq 10 \\
mx + n + 10\ \ \ \ khi\ \ \ \ x > 10 \\
\end{matrix} ight. liên tục trên \mathbb{R}. Khi đó

    a) f( - 5) = 12;f(10) = 27. Đúng||Sai

    b) m > 0,\ \  n > 0. Sai||Đúng

    c) 2m + n là số nguyên tố. Sai||Đúng

    d) Giá trị lớn nhất của hàm số y = m.\sin x+ n.\cos x là \sqrt{12}. Sai||Đúng

    a) Đúng.

    Ta có : f( - 5) = - 5 + 17 = 12, f(10) = 10 + 17 = 27 (mệnh đề a) đúng)

    b) Sai.

    Với x < - 5 ta có f(x) = x^{2} + mx + n, là hàm đa thức nên liên tục trên ( - \infty; - 5).

    Với - 5 < x < 10 ta có f(x) = x + 17, là hàm đa thức nên liên tục trên (-5; 10).

    Với x > 10 ta có f(x) = mx + n + 10, là hàm đa thức nên liên tục trên (10 ;+\infty).

    Để hàm số liên tục trên \mathbb{R} thì hàm số phải liên tục tại x = - 5x = 10.

    Ta có:

    f( - 5) = 12;f(10) = 27.

    \lim_{x ightarrow - 5^{-}}f(x) =\lim_{x ightarrow - 5^{-}}\left( x^{2} + mx + n ight) = - 5m + n + 25.

    \lim_{x ightarrow - 5^{+}}f(x) =
\lim_{x ightarrow - 5^{+}}(x + 17) = 12.

    \lim_{x ightarrow 10^{-}}f(x) = \lim_{x
ightarrow 10^{-}}(x + 17) = 27.

    \lim_{x ightarrow 10^{+}}f(x) = \lim_{x
ightarrow 10^{+}}(mx + n + 10) = 10m + n + 10.

    Hàm số liên tục tại x = - 5x = 10 khi

    \left\{ \begin{matrix}- 5m + n + 25 = 12 \\10m + n + 10 = 27 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}- 5m + n = - 13 \\10m + n = 17 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 2 \ = - 3 \\\end{matrix} ight. (mệnh đề b) sai).

    c) Sai.

    Ta có 2m + n = 1 không phải số nguyên tố (mệnh đề c) sai).

    d) Sai.

    Ta có: y = m.sinx + n.cosx\ \
\  \Rightarrow \ \ \ y = 2sinx - 3cosx

    Xét phương trình ẩn x:

    2\sin x - 3\cos x = y

    \Leftrightarrow \sin x.\frac{2}{\sqrt{13}} - \cos x.\frac{3}{\sqrt{13}} =\frac{y}{\sqrt{13}}

    \Leftrightarrow \sin x.\cos\alpha - \cos x.\sin\alpha = \frac{y}{\sqrt{13}}, với \cos\alpha = \frac{2}{\sqrt{13}},\ \sin\alpha =
\frac{3}{\sqrt{13}}.

    \Leftrightarrow \sin(x - \alpha) =
\frac{y}{\sqrt{13}}

    Ta có

    \left| \sin(x - \alpha) ight| \leq
1

    \begin{matrix}
\Rightarrow \left| \frac{y}{\sqrt{13}} ight| \leq 1 \\
\Leftrightarrow - \sqrt{13} \leq y \leq \sqrt{13} \\
\end{matrix}

    Suy ra GTLN của y bằng \sqrt{13} khi \sin(x - \alpha) = 1 hay x = \alpha + \frac{\pi}{2} + k2\pi, với \cos\alpha = \frac{2}{\sqrt{13}},\
\sin\alpha = \frac{3}{\sqrt{13}}

    Vậy khẳng định d) sai.

  • Câu 11: Thông hiểu

    Biết giới hạn \lim\frac{2n + 1}{- 3n + 2}
= a. Khi đó:

    a) Giá trị a lớn hơn 0. Sai||Đúng

    b) Ba số -
\frac{5}{3};a;\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 2. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 3 nghiệm. Sai||Đúng

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6. Đúng||Sai

    Đáp án là:

    Biết giới hạn \lim\frac{2n + 1}{- 3n + 2}
= a. Khi đó:

    a) Giá trị a lớn hơn 0. Sai||Đúng

    b) Ba số -
\frac{5}{3};a;\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 2. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 3 nghiệm. Sai||Đúng

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6. Đúng||Sai

    a) Ta có: \lim\frac{2n + 1}{- 3n + 2} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( - 3 + \frac{2}{n}
ight)} = \lim\frac{2 + \frac{1}{n}}{- 3 + \frac{2}{n}} = \frac{-
2}{3}

    b) Ba số - \frac{5}{3}; -
\frac{2}{3};\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 1

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 2 nghiệm

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6

    Kết luận:

    a) Sai

    b) Sai

    c) Sai

    d) Đúng

  • Câu 12: Nhận biết

    Cho các mệnh đề:

    1) Nếu hàm số y = f(x) liên tục trên (a;b)f(a).f(b) < 0 thì tồn tại x_{0} \in (a;b) sao cho f\left( x_{0} ight) = 0.

    2) Nếu hàm số y = f(x) liên tục trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm.

    3) Nếu hàm số y = f(x) đơn điệu trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất trên (a;b).

    Trong các mệnh đề trên:

    Theo tính chất hàm số liên tục thì

    1) Nếu hàm số y = f(x) liên tục trên (a;b)f(a).f(b) < 0 thì tồn tại x_{0} \in (a;b) sao cho f\left( x_{0} ight) = 0. Mệnh đề sai.

    2) Nếu hàm số y = f(x) liên tục trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm. Mệnh đề đúng.

    3) Nếu hàm số y = f(x) đơn điệu trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất trên (a;b). Mệnh đề đúng.

  • Câu 13: Nhận biết

    Tính giới hạn \lim\frac{n^{2} - 4n^{3}}{2n^{3} + 5n -
2}

    Ta có:

    \lim\dfrac{n^{2} - 4n^{3}}{2n^{3} + 5n -2} = \lim\dfrac{\dfrac{1}{n} - 4}{2 + \dfrac{5}{n^{2}} - \dfrac{2}{n^{3}}} =\dfrac{0 - 4}{2 + 0 - 0} = - 2

  • Câu 14: Thông hiểu

    Cho hàm số f(x)=\begin{cases}\sqrt{6-2x}+1 & \text{ với } x\leq 3 \\ ax & \text{ với } x> 3 \end{cases}. Với giá trị nào của a thì hàm số f(x) liên tục tại x = 3?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) = 3a} \\   \begin{gathered}  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) = 1 \hfill \\  f\left( 3 ight) = 1 \hfill \\ \end{gathered}  \end{array}} ight.

    Hàm số liên tục tại x=3 khi và chỉ khi 

    \mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) = f\left( 3 ight) = 1

    \Leftrightarrow 3a = 1 \Leftrightarrow a = \frac{1}{3}

  • Câu 15: Thông hiểu

    Xác định \lim_{x
ightarrow + \infty}\left( \sqrt{x + 1} - \sqrt{x - 3}
ight)

    Ta có:

    \lim_{x ightarrow + \infty}\left(
\sqrt{x + 1} - \sqrt{x - 3} ight)

    = \lim_{x ightarrow +
\infty}\frac{\left( \sqrt{x + 1} - \sqrt{x - 3} ight)\left( \sqrt{x +
1} + \sqrt{x - 3} ight)}{\sqrt{x + 1} + \sqrt{x - 3}}

    = \lim_{x ightarrow + \infty}\frac{x +
1 - (x - 3)}{\sqrt{x + 1} + \sqrt{x - 3}}

    = \lim_{x ightarrow +
\infty}\frac{4}{\sqrt{x + 1} + \sqrt{x - 3}}

    = \lim_{x ightarrow +\infty}\dfrac{4}{\sqrt{x}\left( \sqrt{1 + \dfrac{1}{x}} + \sqrt{1 -\dfrac{3}{x}} ight)} = 0

  • Câu 16: Vận dụng

    Tính  \lim_{x
ightarrow 0}\frac{\sqrt{1 + 2x} - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{\sqrt{1 + 2x} - (x + 1) + (x + 1) - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - (x + 1)}{x^{2}}

    = \lim_{x ightarrow 0}\frac{-
x^{2}}{x^{2}\left( \sqrt{1 + 2x} + x + 1 ight)} = -
\frac{1}{2}

    Ta cũng có:

    \lim_{x ightarrow 0}\frac{(x + 1) -
\sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{x^{3} + 3x^{2}}{x^{2}\left\lbrack (x + 1)^{2} + (x +
1)\sqrt[3]{1 + 3x} + \left( \sqrt[3]{1 + 3x} ight)^{2} ightbrack}
= 1

    Vậy  \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}} = \frac{1}{2}

  • Câu 17: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số a thuộc khoảng (-10; 10) để

    A = \lim\left\lbrack 5n - 3\left( a^{2} - 2
ight)n^{3} ightbrack = - \infty.

    Ta có:

    A = \lim\left\lbrack 5n - 3\left( a^{2} -
2 ight)n^{3} ightbrack

    = \lim\left\{ n^{3}\left\lbrack
\frac{5}{n^{2}} - 3\left( a^{2} - 2 ight) ightbrack ight\} = -
\infty

    \Rightarrow \lim\left\lbrack
\frac{5}{n^{2}} - 3\left( a^{2} - 2 ight) ightbrack = a^{2} - 2
< 0

    \Leftrightarrow - \sqrt{2} < a <
\sqrt{2}

    a\mathbb{\in Z},a \in ( - 10;10)
\Rightarrow a = \left\{ - 1;0;1 ight\}

    Vậy có 3 giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.

  • Câu 18: Thông hiểu

    Tính giới hạn M =
\lim_{x ightarrow + \infty}\left( \frac{cx^{2} + a}{x^{2} + b}
ight).

    Ta có:

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

  • Câu 19: Nhận biết

    Tính giới hạn của hàm số \lim_{x ightarrow + \infty}\frac{3}{x^{2} - 2x +
6}

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{{x^2} - 2x + 6}} = 0\mathop {\lim }\limits_{x \to  + \infty } \left( {{x^2} - 2x + 6} ight) =  + \infty

  • Câu 20: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo