Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Phương trình nào dưới đây có nghiệm trong khoảng (0; 1)?

    Xét hàm số f(x) = 3x^{2017} - 8x +
4 liên tục trên \mathbb{R}.

    \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = - 1 \\
\end{matrix} ight.\  \Rightarrow f(0).f(1) = - 4 < 0

    => Phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 2: Thông hiểu

    Giới hạn \lim_{}\frac{2^{n} -
3^{n}}{2^{n} + 1} bằng

    Ta có:

    \lim\dfrac{2^{n} - 3^{n}}{2^{n} + 1} =\lim\dfrac{1 - \left( \dfrac{3}{2} ight)^{n}}{1 + \left( \dfrac{1}{2}ight)^{n}}

    = \dfrac{\lim\left( 1 - \left(\dfrac{3}{2} ight)^{n} ight)}{\lim\left( 1 + \left( \dfrac{1}{2}ight)^{n} ight)} = \lim\left( 1 - \left( \dfrac{3}{2} ight)^{n}ight) = - \infty

  • Câu 3: Vận dụng

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    Đáp án là:

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    \lim_{x ightarrow 2}(x - 2) =
0 nên \lim_{x ightarrow 2}\left(
\sqrt{3x + 3} + a ight) = 0.

    Suy ra a = - 3.

    Với a = - 3 ta được

    \lim_{x ightarrow 2}\frac{\sqrt{3x +
3} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{\left( \sqrt{3x + 3} - 3
ight)\left( \sqrt{3x + 3} + 3 ight)}{(x - 2)\left( \sqrt{3x + 3} + 3
ight)}

    = \lim_{x ightarrow 2}\frac{3x - 6}{(x
- 2)\left( \sqrt{3x + 3} + 3 ight)} = \lim_{x ightarrow
2}\frac{3}{\sqrt{3x + 3} + 3} = \frac{1}{2}.

    Vậy b = 1;c = 2.

    Suy ra a + b + c = 0.

  • Câu 4: Nhận biết

    Với k là số nguyên dương, c là hằng số, giới hạn \lim_{x ightarrow +
\infty}\frac{c}{x^{k}} bằng

    Ta có \lim_{x ightarrow + \infty}c =
c\lim_{x ightarrow +
\infty}x^{k} = + \infty nên \lim_{x
ightarrow + \infty}\frac{c}{x^{k}} = 0

  • Câu 5: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Biết rằng \lim_{x ightarrow 1}f(x)
= 1;\lim_{x ightarrow 1}g(x) = - 2 khi đó \lim_{x ightarrow 1}\left\lbrack f(x) + g(x)
ightbrack = - 1 Đúng||Sai

    b) Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack
a;bbrack\mathop {\lim }\limits_{x \to {a^ - }} f\left( x ight) = f\left( a ight);\mathop {\lim }\limits_{x \to {b^ + }} f\left( x ight) = f\left( b ight). Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{3x^{4} - 2x}{5x + 1} = + \infty Sai||Đúng

    d) Cho hàm số f(x) xác định với mọi x eq 0 thỏa mãn f(x) + 2f\left( \frac{1}{x} ight) = 3x;(x eq
0). Khi đó \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{f\left( x ight)}}{{x - \sqrt 2 }} = 0 Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Biết rằng \lim_{x ightarrow 1}f(x)
= 1;\lim_{x ightarrow 1}g(x) = - 2 khi đó \lim_{x ightarrow 1}\left\lbrack f(x) + g(x)
ightbrack = - 1 Đúng||Sai

    b) Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack
a;bbrack\mathop {\lim }\limits_{x \to {a^ - }} f\left( x ight) = f\left( a ight);\mathop {\lim }\limits_{x \to {b^ + }} f\left( x ight) = f\left( b ight). Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{3x^{4} - 2x}{5x + 1} = + \infty Sai||Đúng

    d) Cho hàm số f(x) xác định với mọi x eq 0 thỏa mãn f(x) + 2f\left( \frac{1}{x} ight) = 3x;(x eq
0). Khi đó \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{f\left( x ight)}}{{x - \sqrt 2 }} = 0 Sai||Đúng

    a) Ta có: \lim_{x ightarrow
1}\left\lbrack f(x) + g(x) ightbrack = \lim_{x ightarrow 1}f(x) +
\lim_{x ightarrow 1}g(x) = - 1

    b) Ta có:

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack\lim_{x ightarrow a^{+}}f(x) = f(a);\lim_{x
ightarrow b^{-}}f(x) = f(b)

    c) \lim_{x ightarrow -\infty}\dfrac{3x^{4} - 2x}{5x + 1} = \lim_{x ightarrow -\infty}\dfrac{x^{4}\left( 3 - \dfrac{2}{x^{3}} ight)}{x\left( 5 +\dfrac{1}{x} ight)} = \lim_{x ightarrow - \infty}\left( x^{3}.\dfrac{3- \dfrac{2}{x^{3}}}{5 + \dfrac{1}{x}} ight)

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{{3 - \frac{2}{{{x^3}}}}}{{5 + \frac{1}{x}}}} ight) = \frac{3}{5} > 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^4} - 2x}}{{5x + 1}} =  - \infty

    d) Ta có:

    f(x) + 2f\left( \frac{1}{x} ight) =
3x;(x eq 0)(*)

    \Rightarrow f\left( \frac{1}{x} ight)
+ 2f(x) = \frac{3}{x};(x eq 0)(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}f(x) + 2f\left( \dfrac{1}{x} ight) = 3x \\f\left( \dfrac{1}{x} ight) + 2f(x) = \dfrac{3}{x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}f(x) + 2f\left( \dfrac{1}{x} ight) = 3x \\2f\left( \dfrac{1}{x} ight) + 4f(x) = \dfrac{6}{x} \\\end{matrix} ight.

    \Rightarrow f(x) = - x +
\frac{2}{x}

    Do đó: \lim_{x ightarrow\sqrt{2}}\dfrac{f(x)}{x - \sqrt{2}} = \lim_{x ightarrow \sqrt{2}}\left(\dfrac{- x + \dfrac{2}{x}}{x - \sqrt{2}} ight)

    = \lim_{x ightarrow \sqrt{2}}\frac{-
\left( x - \sqrt{2} ight)\left( x + \sqrt{2} ight)}{x\left( x -
\sqrt{2} ight)} = \lim_{x ightarrow \sqrt{2}}\frac{- \left( x -
\sqrt{2} ight)}{x} = - 2

  • Câu 6: Nhận biết

    Tính giới hạn M
= \lim_{x ightarrow 2}\frac{x^{2} - 4}{x - 2}.

    Ta có:

    M = \lim_{x ightarrow 2}\frac{x^{2} -
4}{x - 2} = \lim_{x ightarrow 2}\frac{(x - 2)(x + 2)}{x - 2} = \lim_{x
ightarrow 2}(x + 2) = 4

  • Câu 7: Vận dụng cao

    Kết quả của giới hạn\lim\frac{2^{n + 1} +
3n + 10}{3n^{2} - n + 2} là:

    Ta có:

    \begin{matrix}
  {2^n} = \sum\limits_{k = 0}^n {C_n^k}  \hfill \\
   \Rightarrow {2^n} \geqslant C_n^3 = \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)}}{6} \sim \dfrac{{{n^3}}}{6} \hfill \\ 
\end{matrix}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.

    Khi đó:

    \begin{matrix}
  \lim \dfrac{{{2^{n + 1}} + 3n + 10}}{{3{n^2} - n + 2}} \hfill \\
   = \lim \dfrac{{{2^n}}}{{{n^2}}}.\dfrac{{2 + 3.\dfrac{n}{{{2^n}}} + 10.{{\left( {\dfrac{1}{2}} ight)}^n}}}{{3 - \dfrac{1}{n} + \dfrac{2}{{{n^2}}}}} \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\lim\dfrac{2 + 3.\dfrac{n}{2^{n}} + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} = \dfrac{2}{3} > 0 \\\end{matrix} ight.

    Vậy \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2}- n + 2} = + \infty

  • Câu 8: Vận dụng

    Có bao nhiêu số tự nhiên chẵn k để \lim \frac{{n - 2\sqrt {{n^k}} \cos \frac{1}{n}}}{{2n}} = \frac{1}{2}

    Ta có:

    \frac{{n - 2\sqrt {{n^k}} \cos \frac{1}{n}}}{{2n}} = \frac{1}{2} - \frac{{\sqrt n \sin 2n}}{{2n}}

    Bài toán trở thành \lim \frac{{\sqrt n \sin 2n}}{{2n}} = 0

    Ta có: \lim \cos \frac{1}{n} = \cos 0 = 1 nên bài toán trở thành tìm k sao cho

    \begin{matrix}  \lim \dfrac{{\sqrt {{n^k}} }}{n} = \lim \left( {{n^{\dfrac{k}{2} - 1}}} ight) = 0 \hfill \\   \Leftrightarrow \dfrac{k}{2} - 1 < 0 \Leftrightarrow k < 2 \hfill \\ \end{matrix}

    k \in {\mathbb{N}^*};k = 3l

    => Không tồn tại giá trị của k (do k nguyên dương và k chẵn).

  • Câu 9: Thông hiểu

    Biết giới hạn \lim\left( - 2n^{3} - 5n +
9 ight) = a\lim\frac{4^{n} +
3}{1 + 3 \cdot 4^{n + 1}} = b. Khi đó:

    a) Tích a.b = 3. Sai||Đúng

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D(a;1brack. Đúng||Sai

    c) Giá trị b là số lớn hơn 0. Đúng||Sai

    d) Phương trình lượng giác \cos x =
b vô nghiệm. Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\left( - 2n^{3} - 5n +
9 ight) = a\lim\frac{4^{n} +
3}{1 + 3 \cdot 4^{n + 1}} = b. Khi đó:

    a) Tích a.b = 3. Sai||Đúng

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D(a;1brack. Đúng||Sai

    c) Giá trị b là số lớn hơn 0. Đúng||Sai

    d) Phương trình lượng giác \cos x =
b vô nghiệm. Sai||Đúng

    Ta có: \lim\left( - 2n^{3} - 5n + 9
ight) = \lim n^{3}\left( - 2 - \frac{5}{n^{2}} + \frac{9}{n^{3}}
ight) = - \infty,

    Do \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( - 2 - \frac{5}{n^{2}} + \frac{9}{n^{3}} ight) = - 2 \\
\end{matrix} ight.

    \lim\frac{4^{n} + 3}{1 + 3 \cdot 4^{n +
1}} = \lim\frac{4^{n} + 3}{1 + 12 \cdot 4^{n}}

    = \lim\frac{4^{n}\left( 1 +
\frac{3}{4^{n}} ight)}{4^{n}\left( \frac{1}{4^{n}} + 12 ight)} =
\lim\frac{1 + \frac{3}{4^{n}}}{\frac{1}{4^{n}} + 12} =
\frac{1}{12}

    a) Tích a.b = - \infty

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D( -
\infty;1brack

    c) Giá trị \frac{1}{12} là số lớn hơn 0

    d) Phương trình lượng giác \cos x =
\frac{1}{12} có nghiệm

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 10: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 2}  - \sqrt {x + 3} }}{{2x - 3}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 2}  - \sqrt {x + 3} }}{{2x - 3}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{2}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{3}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{3}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{2}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{3}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{3}{x}} ight)}} \hfill \\   = 1 \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Hàm số nào dưới đây không liên tục trên khoảng ( - 1;1)?

    Xét hàm số y = \left\{ \begin{matrix}
\sin x\ \ \ \ khi\ x \geq 0 \\
\cos x\ \ \ \ khi\ x < 0 \\
\end{matrix} ight. với x \in (
- 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sin x = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \cos x = 1 \hfill \\ 
\end{gathered}  ight.

    Suy ra không tồn tại \lim_{x ightarrow
0}f(x) nên hàm số không liên tục tại x = 0

    Vậy hàm số không liên tục trên ( -
1;1).

  • Câu 12: Thông hiểu

    Xét tính liên tục của hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{x - 1}}{{\sqrt {2 - x}  - 1}}{\text{        khi }}x < 1} \\ 
  { - 2x{\text{   khi }}x \geqslant 1} 
\end{array}} ight.. Khẳng định nào dưới đây đúng?

    Hàm số liên tục trên các khoảng ( -
\infty;1),(1; + \infty)

    Ta có:

    f(1) = - 2

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}( - 2x) = - 2

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x - 1}{\sqrt{2 - x} - 1} = \lim_{x ightarrow
1^{-}}\left\lbrack - \left( \sqrt{2 - x} + 1 ight) ightbrack = -
2

    => Hàm số liên tục tại x =
1

    Vậy hàm số liên tục trên tập số thực.

  • Câu 13: Thông hiểu

    Cho {u_{n} = \dfrac{7^{n} + 2^{2n - 1}+ 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}}. Biết \lim u_{n} = \frac{a}{b} (với a, b\in \mathbb{ Z };\frac{ a}{ b } tối giản). Khi đó:

    a) a + b = 8 Đúng||Sai

    b) a - b = - 7 Sai||Đúng

    c) Bộ ba số a;b;13 tạo thành một cấp số cộng có công sai d = 7 Đúng||Sai

    d) Bộ ba số a;b;49 tạo thành một cấp số nhân có công bội q = 7 Đúng||Sai

    Đáp án là:

    Cho {u_{n} = \dfrac{7^{n} + 2^{2n - 1}+ 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}}. Biết \lim u_{n} = \frac{a}{b} (với a, b\in \mathbb{ Z };\frac{ a}{ b } tối giản). Khi đó:

    a) a + b = 8 Đúng||Sai

    b) a - b = - 7 Sai||Đúng

    c) Bộ ba số a;b;13 tạo thành một cấp số cộng có công sai d = 7 Đúng||Sai

    d) Bộ ba số a;b;49 tạo thành một cấp số nhân có công bội q = 7 Đúng||Sai

    Ta có

    \lim u_{n} = \lim\dfrac{7^{n} + 2^{2n -1} + 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}

    = \lim\dfrac{1 + \dfrac{1}{2}\left(\dfrac{4}{7} ight)^{n} + 3\left( \dfrac{3}{7} ight)^{n}}{7 +\dfrac{1}{5}\left( \dfrac{5}{7} ight)^{n}} = \dfrac{1}{7}.

    Do đó suy ra a = 1,b = 7 \Rightarrow a +
b = 8.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đ

    d) Đúng

  • Câu 14: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Tập xác định của hàm số f(x)\mathbb{R}.

    Ta có f(1) = \frac{a +
15}{4}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x + 3} - 2}{x - 1} = \lim_{x ightarrow
1^{+}}\frac{1}{\left( \sqrt{x + 3} + 2 ight)} =
\frac{1}{4}

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( \frac{ax + 15}{4} ight) = \frac{a +
15}{4}

    Hàm số đã cho liên tục tại x =
1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow \frac{1}{4} = \frac{a +
15}{4} \Leftrightarrow a = - 14.

  • Câu 15: Nhận biết

    \lim(5n-4n^{3}) bằng

    Ta có: 

    \begin{matrix}  \lim \left( {5n - 4{n^3}} ight) \hfill \\   = \lim \left[ {{n^3}\left( {\dfrac{5}{{{n^2}}} - 4} ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

  • Câu 16: Vận dụng cao

    Tính \lim_{x
ightarrow 1}\frac{x^{2018} + x^{2017} + .... + x - 2018}{x^{2018} +
1}

    Ta có:

    \lim_{x ightarrow 1}\dfrac{x^{2018} +x^{2017} + .... + x - 2018}{x^{2018} + 1}

    = \lim_{x ightarrow 1}\dfrac{(x -1)\left( x^{2017} + 2x^{2016} + 3.x^{2015} + .... + 2017x + 2018ight)}{(x - 1)\left( x^{2017} + x^{2016} + x^{2015} + .... + x + 1ight)}

    = \dfrac{\dfrac{2018.2019}{2}}{2018} =\dfrac{2019}{2}

    Vậy \lim_{x ightarrow 1}\dfrac{x^{2018}+ x^{2017} + .... + x - 2018}{x^{2018} + 1} =\frac{2019}{2}

  • Câu 17: Nhận biết

    Hàm số f(x) =
\sqrt{3 - x} + \frac{1}{\sqrt{x + 4}} liên tục trên:

    Điều kiện \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq - 3 \\
x > - 4 \\
\end{matrix} ight.

    Tập xác định D = ( -
4;3brack

    => Hàm số liên tục trên ( -
4;3brack

  • Câu 18: Thông hiểu

    Tính giới hạn N =
\lim_{x ightarrow 0}\frac{\sqrt{4x + 1} - 1}{x^{2} - 3x}.

    Ta có:

    N = \lim_{x ightarrow 0}\frac{\sqrt{4x
+ 1} - 1}{x^{2} - 3x}

    N = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x + 1} - 1 ight)\left( \sqrt{4x + 1} + 1 ight)}{\left( x^{2}
- 3x ight)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4x}{x(x
- 3)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4}{(x -
3)\left( \sqrt{4x + 1} + 1 ight)}

    N = - \frac{2}{3}

  • Câu 19: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 47 lượt xem
Sắp xếp theo