Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biết rằng hàm số y = f(x) = \left\{ \begin{matrix}\dfrac{3 - x}{\sqrt{x + 1} - 2}\ khi\ x eq 3 \\a\ \ \ \ \ \ khi\ x = 3 \\\end{matrix} ight. liên tục tại x = 3 (a là tham số. Khẳng định nào dưới đây đúng?

    Tập xác định D = ( - 1; +
\infty)

    Theo giả thiết ta có:

    a = f(3) = \lim_{x ightarrow
3}f(x)

    \Rightarrow a = \lim_{x ightarrow
3}\left( \frac{3 - x}{\sqrt{x + 1} - 2} ight)

    \Leftrightarrow a = \lim_{x ightarrow
3}\frac{(3 - x)\left( \sqrt{x + 1} + 2 ight)}{x - 3}

    \Leftrightarrow a = \lim_{x ightarrow
3}\left( \sqrt{x + 1} + 2 ight)

    \Leftrightarrow a = - 4 \Rightarrow a
\leq - 3

  • Câu 2: Thông hiểu

    Xác định khoảng liên tục của hàm số f(x) = \left\{ \begin{matrix}
\cos\frac{\pi x}{2}\ \ \ \ \ \ \ \ khi\ |x| \leq 1 \\
x - 1\ \ \ \ \ \ \ \ \ \ \ \ khi\ |x| > 1 \\
\end{matrix} ight.. Mệnh đề nào dưới đây sai?

    Hàm số liên tục trên các khoảng ( -
\infty; - 1),(1; + \infty);( - 1;1)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 1} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 1} ight)}^ - }} \left( {x - 1} ight) =  - 2 \hfill \\
  f\left( { - 1} ight) = 0 \hfill \\ 
\end{gathered}  ight.

    => Hàm số gián đoạn tại x = -
1

    Ta lại có: \left\{ \begin{matrix}
  \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} ight) = 0 \hfill \\
  f\left( 1 ight) = 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \cos \dfrac{{\pi x}}{2} = 0 \hfill \\ 
\end{matrix}  ight.

    => Hàm số liên tục tại x =
1

  • Câu 3: Vận dụng

    Có bao nhiêu giá trị nguyên của a thỏa mãn \lim\left( \sqrt{n^{2} - 8n} - n + a^{2} ight) =
0?

    Ta có:

    \lim\left( \sqrt{n^{2} - 8n} - n + a^{2}
ight)

    = \lim\left( \frac{- 8n}{\sqrt{n^{2} -
8n} + n} + a^{2} ight)

    = \lim\left( \dfrac{- 8}{\sqrt{1 -\dfrac{8}{n}} + 1} + a^{2} ight) = a^{2} - 4

    Do đó:

    a^{2} - 4 = 0 \Leftrightarrow a = \pm
2

    Vậy có hai giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.

  • Câu 4: Vận dụng

    Hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  { - x\cos x{\text{       }}khi{\text{ }}x < 0} \\   {\dfrac{{{x^2}}}{{1 + x}}{\text{        }}khi{\text{ }}0 \leqslant x < 1} \\   {{x^3}{\text{             }}khi{\text{ x}} \geqslant {\text{1}}} \end{array}} ight.

    Ta có: f(x) liên tục tại x e 0; x e 1

    Tại x=0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x\cos x} ight) = 0 \hfill \\  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\dfrac{{{x^2}}}{{1 + x}}} ight) = 0 \hfill \\  f\left( 0 ight) = 0 \hfill \\ \end{matrix}

    \Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight)

    Vậy hàm số liên tục tại x=0

    Tại x=1 ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\dfrac{{{x^2}}}{{1 + x}}} ight) = \dfrac{1}{2} \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^3}} ight) = 1 \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) e \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số bị gián đoạn tại x=1

    Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.

  • Câu 5: Nhận biết

    Xét tính liên tục của hàm số f(x) = \left\{ \begin{matrix}
1 - \cos x\ \ \ khi\ x \leq 0 \\
\sqrt{x + 1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x > 0 \\
\end{matrix} ight.. Khẳng định nào sau đây đúng?

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: f(x) liên tục trên ( - \infty;0)(0; + \infty)

    Mặt khác

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\sqrt{x + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( 1 - \cos x ight) = 0

    Vậy hàm số gián đoạn tại x = 1

  • Câu 6: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Ta có: \lim_{t ightarrow 10}\frac{g(t)
- g(10)}{t - 10} = \lim_{t ightarrow 10}\frac{45t^{2} - t^{3} - 45
\cdot 10^{2} + 10^{3}}{t - 10}

    \begin{matrix}= \lim_{t ightarrow 10}\dfrac{45(t - 10)(t + 10) - (t - 10)\left( t^{2}+ 10t + 100 ight)}{t - 10}  \\\end{matrix}

    = \lim_{t ightarrow 10}\left( - t^{2} + 35t + 350 ight) = 600

    Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm t = 10 (ngày) là 600 người/ngày.

  • Câu 7: Nhận biết

    \lim \frac{{\sqrt[3]{{{n^3} + n}}}}{{6n + 2}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{\sqrt[3]{{{n^3} + n}}}}{{6n + 2}} = \lim \dfrac{{\sqrt[3]{{{n^3}\left( {1 + \dfrac{1}{{{n^3}}}} ight)}}}}{{n\left( {6 + \dfrac{2}{n}} ight)}} \hfill \\   = \lim \dfrac{{n\sqrt[3]{{1 + \dfrac{1}{{{n^3}}}}}}}{{n\left( {6 + \dfrac{2}{n}} ight)}} = \dfrac{1}{6} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng cao

    Cho giới hạn I = \lim_{x ightarrow
0}\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}}. Tính giá trị của 100I?

    Đáp án: -600||- 600

    Đáp án là:

    Cho giới hạn I = \lim_{x ightarrow
0}\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}}. Tính giá trị của 100I?

    Đáp án: -600||- 600

    Ta có:

    I = \lim_{x ightarrow 0}\frac{\sqrt{2x
+ 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} - \sqrt[3]{8 +
x}}

    = \lim_{x ightarrow 0}\left(
\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{x}.\frac{x}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}} ight)

    = \lim_{x ightarrow 0}\left\{ \left(
\frac{\sqrt{2x + 1} - 1}{x} + \frac{1 - \sqrt[3]{x^{2} + 1}}{x}
ight).\frac{x}{\sqrt[3]{8 - x} - \sqrt[3]{8 + x}}
ight\}

    Ta có:

    +) \lim_{x ightarrow 0}\frac{\sqrt{2x +
1} - 1}{x} = \lim_{x ightarrow 0}\frac{2x}{\left( \sqrt{2x + 1} + 1
ight).x} = \lim_{x ightarrow 0}\frac{2}{\left( \sqrt{2x + 1} + 1
ight)} = 1

    +) \lim_{x ightarrow 0}\frac{1 -
\sqrt[3]{x^{2} + 1}}{x} = \lim_{x ightarrow 0}\frac{-
x^{2}}{\left\lbrack 1 + \sqrt[3]{x^{2} + 1} + \sqrt[3]{\left( x^{2} + 1
ight)^{2}} ightbrack.x}

    = \lim_{x ightarrow 0}\frac{-
x}{\left\lbrack 1 + \sqrt[3]{x^{2} + 1} + \sqrt[3]{\left( x^{2} + 1
ight)^{2}} ightbrack} = 0.

    +) \lim_{x ightarrow
0}\frac{x}{\sqrt[3]{8 - x} - \sqrt[3]{8 + x}}

    = \lim_{x ightarrow
0}\frac{x\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2}
ightbrack}{\left( \sqrt[3]{8 - x} ight)^{3} - \left( \sqrt[3]{8 +
x} ight)^{3}}

    = \lim_{x ightarrow
0}\frac{x\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2} ightbrack}{-
2x}

    = \lim_{x ightarrow
0}\frac{\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2} ightbrack}{-
2} = - 6.

    Vậy I = (1 + 0).( - 6) = - 6 \Rightarrow
100I = - 600.

  • Câu 9: Thông hiểu

    Tìm giá trị của a để hàm số y = f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{x + 2} - 2}{x - 2}\ \ khi\ x eq 2 \\2x + a\ \ \ \ \ \ \ \ \ \ khi\ x = 2 \\\end{matrix} ight. liên tục tại x = 2.

    Ta có:

    f(2) = a + 4

    \lim_{x ightarrow 2}f(x) = \lim_{x
ightarrow 2}\frac{\sqrt{x + 2} - 2}{x - 2}

    = \lim_{x ightarrow 2}\frac{x + 2 -
4}{(x - 2)\left( \sqrt{x + 2} + 2 ight)}

    = \lim_{x ightarrow 2}\frac{1}{\sqrt{x
+ 2} + 2} = \frac{1}{4}

    Hàm số f(x) liên tục tại x = 2 khi và chỉ khi

    \lim_{x ightarrow 2}f(x) =
f(2)

    \Leftrightarrow \frac{1}{4} = a +
4

    \Leftrightarrow a = -
\frac{15}{4}

  • Câu 10: Thông hiểu

    Mệnh đề nào dưới đây đúng?

    Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + x} - x ight) = + \infty

    \lim_{x ightarrow + \infty}\left(
\sqrt{x^{2} + x} - 2x ight) = - \infty

    \lim_{x ightarrow + \infty}\left(
\sqrt{x^{2} + x} - x ight) = \frac{1}{2}

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + x} - 2x ight) = + \infty

  • Câu 11: Thông hiểu

    Tính giới hạn F =\lim_{x ightarrow \frac{\pi}{2}}\dfrac{\cos x}{x -\dfrac{\pi}{2}}

    Ta có:

    F = \lim_{x ightarrow\frac{\pi}{2}}\dfrac{\cos x}{x - \dfrac{\pi}{2}} = \lim_{x ightarrow\frac{\pi}{2}}\dfrac{\sin\left( \dfrac{\pi}{2} - x ight)}{x -\dfrac{\pi}{2}}

    = \lim_{x ightarrow \frac{\pi}{2}}\dfrac{- \sin\left( x- \dfrac{\pi}{2} ight)}{x - \dfrac{\pi}{2}} = - 1

  • Câu 12: Nhận biết

    Tính A = \lim_{x
ightarrow - 1}\left( x^{2} - x + 7 ight).

    Ta có: A = \lim_{x ightarrow - 1}\left(
x^{2} - x + 7 ight) = 1 + 1 + 7 = 9

  • Câu 13: Thông hiểu

    Tính \lim\frac{2n + 1}{1 + n} được kết quả là:

    Ta có

    \lim\frac{2n + 1}{1 + n} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( \frac{1}{n} + 1
ight)} = \lim\frac{2 + \frac{1}{n}}{\frac{1}{n} + 1} = \frac{2 + 0}{0
+ 1} = 2.

  • Câu 14: Nhận biết

    Giá trị của A =
\lim\frac{2n + 1}{n - 2} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{5}{a} + 2 > 2

    Ta có:

    \left| \frac{2n + 1}{n - 2} - 2
ight| = \frac{5}{|n - 2|} < \frac{5}{n_{a} - 2} < a\ với\ mọi\ n
> n_{a}

    Vậy A=2.

  • Câu 15: Nhận biết

    Hàm số nào dưới đây gián đoạn tại x = 1?

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2}}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2}}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. nên hàm số y
= \frac{x^{2} + 2}{x - 1} gián đoạn tại điểm x = 1

  • Câu 16: Vận dụng cao

    Rút gọn S = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {( - 1)^n}.{\sin ^{2n}}x + ... với \sin x e  \pm 1

    Ta có: 

     S = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {( - 1)^n}.{\sin ^{2n}}x + ... là một dãy cấp số nhân với {u_1} = 1,q =  - {\sin ^2}x nên

    S = \frac{1}{{1 + {{\sin }^2}x}}

  • Câu 17: Thông hiểu

    \lim\left( 2^{n}
+ 3^{n} ight) bằng:

    Ta có:

    \lim\left( 2^{n} + 3^{n} ight) =
\lim\left\{ 3^{n}.\left\lbrack \left( \frac{2}{3} ight)^{n} + 1
ightbrack ight\} = + \infty

  • Câu 18: Vận dụng

    Cho \lim_{x ightarrow 1}\frac{f(x) -
10}{x - 1} = 5. Giới hạn \lim_{x
ightarrow 1}\frac{f(x) - 10}{\left( \sqrt{x} - 1 ight)\left(
\sqrt{4f(x) + 9} + 3 ight)}bằng

    Đáp án: 1

    Đáp án là:

    Cho \lim_{x ightarrow 1}\frac{f(x) -
10}{x - 1} = 5. Giới hạn \lim_{x
ightarrow 1}\frac{f(x) - 10}{\left( \sqrt{x} - 1 ight)\left(
\sqrt{4f(x) + 9} + 3 ight)}bằng

    Đáp án: 1

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5nên f(x) - 10\overset{x
ightarrow 1}{ightarrow}5(x - 1)hay f(x)\overset{x ightarrow 1}{ightarrow}5x +
5

    Do đó

    \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left( \sqrt{4f(x) + 9} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5x + 5 -
10}{\left( \sqrt{x} - 1 ight)\left( \sqrt{4(5x + 5) + 9} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5(x -
1)\left( \sqrt{x} + 1 ight)}{(x - 1)\left( \sqrt{20x + 29} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5\left(
\sqrt{x} + 1 ight)}{\left( \sqrt{20x + 29} + 3 ight)} =
1.

  • Câu 19: Nhận biết

    Cho c là hằng số, k là số nguyên dương khác không. Tìm khẳng định sai.

    Mệnh đề \lim_{x ightarrow -
\infty}x^{k} = - \infty sai khi k là số chẵn.

  • Câu 20: Thông hiểu

    Giá trị của C =\lim\ \frac{n^{3} + 1}{n(2n + 1)^{2}} bằng:

    C = \lim\ \frac{n^{3} + 1}{n(2n +1)^{2}}

    = \lim\frac{n^{3} + 1}{n(4n^{2} + 4n +1)} = \lim\frac{n^{3} + 1}{4n^{3} + 4n^{2} + n}

    = \lim\frac{1 + \dfrac{1}{n^{3}}}{4 +\dfrac{4}{n} + \dfrac{1}{n^{2}}} = \frac{1}{4}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 38 lượt xem
Sắp xếp theo