Tính giới hạn
.
Ta có:
Tính giới hạn
.
Ta có:
Cho hàm số
. Với giá trị nào của m thì hàm số đã cho liên tục tại
?
Ta có:
Để hàm số liên tục tại thì
Biết giới hạn
và
. Khi đó:
a)
Đúng||Sai
b)
là hoành độ giao điểm của đường thẳng
với trục hoành Đúng||Sai
c)
Đúng||Sai
d) Cho cấp số cộng
với công sai
và
, thì
Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Đúng||Sai
b) là hoành độ giao điểm của đường thẳng
với trục hoành Đúng||Sai
c) Đúng||Sai
d) Cho cấp số cộng với công sai
và
, thì
Sai||Đúng
Ta có:
Do
Kết luận:
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Cho
và
. Công thức nào sau đây sai?
Ta có: chỉ đúng nếu
.
Nếu các dãy số
thỏa mãn
và
thì
bằng:
Ta có .
Giả sử
là các giá trị để hàm số
có giới hạn hữu hạn khi
dần tới
. Tính giá trị biểu thức ![]()
Ta có:
Suy ra hữu hạn khi
dần tới
khi và chỉ khi
Do nên điều kiện cần để có (*) là
Ngược lại với ta có:
=> có giới hạn hữu hạn khi
dần tới
Kết quả của giới hạn
bằng:
Ta có
Khi đó ta có:
Vậy
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số:
. Tính
và cho biết ý nghĩa của kết quả.
Đáp án: 105
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: . Tính
và cho biết ý nghĩa của kết quả.
Đáp án: 105
Ta có:
Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là:
Ta có:
Hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục trên là:
Chọn khẳng định đúng?
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
. Đúng||Sai
b) Biết rằng
khi đó
Đúng||Sai
c)
Sai||Đúng
d) Phương trình
có nghiệm thuộc khoảng
và
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
a) Hàm số có nghĩa khi
Vậy theo định lí ta có hàm số liên tục trên khoảng
.
b) Ta có:
Khi đó: .
Theo bài ra ta có:
c) Ta có:
s
d) Xét hàm số có tập xác định
Suy ra hàm số cũng liên tục trên các khoảng
và
.
Ta có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Lại có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Tính giới hạn ![]()
Ta có:
Tính giới hạn
?
Ta có:
.
Cho dãy số
với
. Chọn kết quả đúng của
là:
Ta có:
= 0
Hàm số 
Ta có: liên tục tại
Tại ta có:
Vậy hàm số liên tục tại
Tại ta có:
Vậy hàm số bị gián đoạn tại
Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.
Rút gọn
với ![]()
Ta có:
là một dãy cấp số nhân với
nên
Tính ![]()
Ta có:
Vậy
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy C=1.
Biết rằng hàm số
liên tục tại
(a là tham số. Khẳng định nào dưới đây đúng?
Tập xác định
Theo giả thiết ta có: