Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giá trị của giới hạn \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) là:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) \hfill \\   = \lim \dfrac{{\left( {\sqrt {{n^2} - n + 1}  - n} ight)\left( {\sqrt {{n^2} - n + 1}  + n} ight)}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\ \end{matrix}

    \begin{matrix}   = \lim \dfrac{{{n^2} - n + 1 - {n^2}}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\   = \lim \dfrac{{ - n + 1}}{{\sqrt {{n^2} - n + 1}  + n}} \hfill \\   = \lim \dfrac{{n\left( { - 1 + \dfrac{1}{n}} ight)}}{{n\left( {\sqrt {1 - \frac{1}{n} + \dfrac{1}{{{n^2}}}}  + 1} ight)}} =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 2: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 3: Vận dụng cao

    Biết \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} =
\frac{a}{b}, trong đó a, b\in\mathbb{ Z}. Tính - 106a + b.

    Đáp án: -100||- 100

    Đáp án là:

    Biết \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} =
\frac{a}{b}, trong đó a, b\in\mathbb{ Z}. Tính - 106a + b.

    Đáp án: -100||- 100

    Ta có:

    \lim_{x ightarrow 1}\frac{\sqrt[3]{x +
7} - \sqrt{x + 3}}{x^{2} - 3x + 2} = \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - 2}{(x - 1)(x - 2)} + \lim_{x ightarrow
1}\frac{2 - \sqrt{x + 3}}{(x - 1)(x - 2)}.

    Ta có:

    \lim_{x ightarrow 1}\frac{\sqrt[3]{x +
7} - 2}{(x - 1)(x - 2)}

    = \lim_{x ightarrow 1}\frac{x + 7 -
2^{3}}{(x - 1)(x - 2)\left\lbrack \sqrt[3]{(x + 7)^{2}} + 2\sqrt[3]{x +
7} + 4 ightbrack}.

    = \lim_{x ightarrow 1}\frac{1}{(x -
2)\left( \sqrt[3]{(x + 7)^{2}} + 2\sqrt[3]{x + 7} + 4 ight)} = -
\frac{1}{12}.

    Đồng thời:

    \lim_{x ightarrow 1}\frac{2 - \sqrt{x
+ 3}}{(x - 1)(x - 2)} = \lim_{x ightarrow 1}\frac{2^{2} - (x + 3)}{(x
- 1)(x - 2)(2 + \sqrt{x + 3})}

    = \lim_{x ightarrow 1}\frac{- 1}{(x -
2)(2 + \sqrt{x + 3})} = \frac{1}{4}

    \Rightarrow \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} = - \frac{1}{12}
+ \frac{1}{4} = \frac{1}{6}

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 6 \\
\end{matrix} ight..

    Vậy - 106a + b = - 106 + 6 = -
100.

  • Câu 4: Nhận biết

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{c}}  {2{x^3} - 2x{\text{  }}khi{\text{ }}x \geqslant 1} \\   {{x^3} - 2x{\text{   }}khi{\text{ }}x < 1} \end{array}} ight.. Khi đó \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) bằng:

    Ta có:

    \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^3} - 2x} ight) =  - 1

  • Câu 5: Vận dụng

    Cho hàm số f(x) =
\frac{2\sqrt{1 + x} - \sqrt[3]{8 - x}}{x}. Tính \lim_{x ightarrow 0}f(x).

    Ta có:

    f(x) = \frac{2\sqrt{1 + x} - \sqrt[3]{8- x}}{x} = 2.\frac{\sqrt{1 + x} - 1}{x} + \frac{2 - \sqrt[3]{8 - x}}{x}= 2A + B

    Khi đó:

    \lim_{x ightarrow 0}A = \lim_{xightarrow 0}\frac{\sqrt{1 + x} - 1}{x}= \lim_{x ightarrow0}\frac{\left( \sqrt{1 + x} - 1 ight)\left( \sqrt{1 + x} + 1ight)}{x\left( \sqrt{1 + x} + 1 ight)}

    = \lim_{x ightarrow 0}\frac{x}{x\left(
\sqrt{1 + x} + 1 ight)} = \lim_{x ightarrow 0}\frac{1}{\sqrt{1 + x}
+ 1} = \frac{1}{2}

    Đồng thời

    \lim_{x ightarrow 0}B = \lim_{xightarrow 0}\frac{2 - \sqrt[3]{8 - x}}{x} = \lim_{x ightarrow0}\frac{x}{x\left\lbrack \left( 4 + 2\sqrt[3]{8 - x} ight) + \left(\sqrt[3]{8 - x} ight)^{2} ightbrack}

    = \lim_{x ightarrow 0}\frac{1}{\left(
4 + 2\sqrt[3]{8 - x} ight) + \left( \sqrt[3]{8 - x} ight)^{2}} =
\frac{1}{12}

    Vậy \lim_{x ightarrow 0}f(x) = 2\lim_{x
ightarrow 0}A + \lim_{x ightarrow 0}B = 2.\frac{1}{2} + \frac{1}{12}
= \frac{13}{12}

  • Câu 6: Thông hiểu

    Giá trị của giới hạn \lim \left( {\sqrt {n + 5}  - \sqrt {n + 1} } ight) bằng: 

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {n + 5}  - \sqrt {n + 1} } ight) \hfill \\   = \lim \dfrac{{\left( {\sqrt {n + 5}  - \sqrt {n + 1} } ight)\left( {\sqrt {n + 5}  + \sqrt {n + 1} } ight)}}{{\sqrt {n + 5}  + \sqrt {n + 1} }} \hfill \\   = \lim \dfrac{{n + 5 - n - 1}}{{\sqrt {n + 5}  + \sqrt {n + 1} }} \hfill \\   = \lim \dfrac{4}{{\sqrt {n + 5}  + \sqrt {n + 1} }} = 0 \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Tính giới hạn của \lim\frac{1 + 3 + 5 + \ldots + (2n + 1)}{3n^{2} +
4}

    Ta có:

    \lim\frac{1 + 3 + 5 + \ldots + (2n +1)}{3n^{2} + 4}

    = \lim\dfrac{n^{2}}{3n^{2} + 4}

    = \lim\dfrac{1}{3 +\dfrac{4}{n^{2}}} = \frac{1}{3}

  • Câu 8: Thông hiểu

    Tính giới hạn M =
\lim_{x ightarrow + \infty}\left( \frac{cx^{2} + a}{x^{2} + b}
ight).

    Ta có:

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

  • Câu 9: Thông hiểu

    Tính giới hạn  \lim_{x ightarrow 2}\frac{\sqrt{x + 2} - 2}{x -
2}

    Ta có:

    \lim_{x ightarrow 2}\frac{\sqrt{x + 2}
- 2}{x - 2} = \lim_{x ightarrow 3}\frac{\left( \sqrt{x + 2} - 2
ight)\left( \sqrt{x + 2} + 2 ight)}{(x - 2)\left( \sqrt{x + 2} + 2
ight)}

    = \lim_{x ightarrow 2}\frac{x - 2}{(x
- 2)\left( \sqrt{x + 2} + 2 ight)}

    = \lim_{x ightarrow 2}\frac{1}{\sqrt{x
+ 2} + 2} = \frac{1}{4}

  • Câu 10: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.

    Hàm số y = \sin xác định trên tập số thực suy ra hàm số liên tục trên \mathbb{R}

    Hàm số y = \cos\sqrt{x} xác định trên D = \lbrack 0; + \infty)

    Hàm sốy = \tan x xác định trên D\mathbb{= R}\backslash\left\{ \frac{\pi}{2}
+ k\pi|k\mathbb{\in Z} ight\}

    Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.

    b) Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x ight) - \lim_{x ightarrow -
\infty}1

    = \lim_{x ightarrow - \infty}\left(
\frac{1}{\sqrt{x^{2} + 1} - x} ight) - 1 = \lim_{x ightarrow -
\infty}\left( \frac{\frac{1}{x}}{- \sqrt{1 + \frac{1}{x}} - 1} ight) -
1 = - 1

    c) Xét hàm số 2x^{4} - 5x^{2} + x + 1 =
f(x) liên tục trên \mathbb{R}

    Ta có: \left\{ \begin{matrix}
f( - 2) = 11;f( - 1) = - 3 \\
f(0) = 1;f(1) = - 1;f(2) = 15 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0).f( - 1) < 0 \\
f(1).f(2) < 0 \\
\end{matrix} ight. nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng (0;2).

    d) Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{-}}\left( x^{2} + 1 ight) = 2 > 0 \\
\lim_{x ightarrow 1^{-}}(1 - x) = 0 \\
\end{matrix} ight.. Khi x
ightarrow 1^{-} \Leftrightarrow x < 1 \Leftrightarrow 1 - x >
0

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} + 1}{1 - x} = + \infty.

  • Câu 11: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 12: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{x^{3} - 4x^{2} + 3}{x - 1}\ \ \ \ khi\ x eq 1 \\ax + \dfrac{5}{2}\ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Xác định a để hàm số liên tục trên \mathbb{R}?

    Ta có:

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{(x - 1)\left( x^{2} - 3x - 3 ight)}{x -
1}

    = \lim_{x ightarrow 1}\left( x^{2} -
3x - 3 ight) = - 4

    f(1) = a + \frac{5}{2}

    Hàm số liên tục trên \mathbb{R} khi và chỉ khi hàm số liên tục tại x = 1

    \Leftrightarrow \lim_{x ightarrow
1}f(x) = f(1)

    \Leftrightarrow - 5 = a + \frac{5}{2}
\Rightarrow a = - \frac{15}{2}

  • Câu 13: Nhận biết

    Tính giới hạn \lim_{x ightarrow 1}\frac{x^{2} + 3x - 4}{x -
1}

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2} + 3x -
4}{x - 1} = \lim_{x ightarrow 1}\frac{(x - 1)(x + 4)}{x -
1}

    = \lim_{x ightarrow 1}(x + 4) =
5

  • Câu 14: Thông hiểu

    Tìm a để hàm số y = f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 4}{x - 2}\ \ khi\ x eq 2 \\m^{2} + 3m\ \ \ khi\ x = 2 \\\end{matrix} ight. liên tục tại x = 2. Tìm m để hàm số liên tục tại x = 2.

    Ta có:

    \lim_{x ightarrow 2}\frac{x^{2} - 4}{x
- 2} = \lim_{x ightarrow 2}(x + 2) = 4

    Để hàm số liên tục tại x = 1 thì m^{2} + 3m = 4 \Rightarrow \left\lbrack
\begin{matrix}
m = 1 \\
m = - 4 \\
\end{matrix} ight.

  • Câu 15: Vận dụng

    Tìm giá trị thực của m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x^2} - x - 2}}{{x - 2}}{\text{ khi }}x e 2} \\   {{\text{m               khi }}x = 2} \end{array}} ight. liên tục tại x=2.

    Tập xác định của hàm số: D = \mathbb{R} chứa x=2

    Theo giả thiết thì ta phải có:

    \begin{matrix}  f\left( 2 ight) = \mathop {\lim }\limits_{x \to 2} f\left( x ight) \hfill \\   = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - x - 2}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} ight) = 3 \hfill \\ \end{matrix}

    Vậy m=3

  • Câu 16: Nhận biết

    Giá trị của \lim\frac{3n^{3} + n}{n^{2}} bằng:

    Với mọi M >0 lớn tùy ý, ta chọn n_{M}
= \left\lbrack \frac{M}{3} ightbrack + 1

    Ta có:

    \frac{3n^{3} + n}{n^{2}} = 3n +
\frac{1}{n} > M với mọi n >
n_{M}

    Vậy \lim\frac{3n^{3} + n}{n^{2}} = +
\infty.

  • Câu 17: Vận dụng

    Giá trị của \lim\frac{a^{n}}{n!} bằng:

    Gọi m là số tự nhiên thỏa: m+1>|a|.

    Khi đó với mọi n > m+1.

    Ta có: 0 < \left| \frac{a^{n}}{n!}ight| = \left| \frac{a}{1}.\frac{a}{2}\ldots\frac{a}{m} ight|.\left|\frac{a}{m + 1}\ldots\frac{a}{n} ight| < \frac{|a|^{m}}{m!}.\left(\frac{|a|}{m + 1} ight)^{n - m}

    \lim\left( \frac{|a|}{m + 1}ight)^{n - m} = 0 .

    Từ đó suy ra: \lim\frac{a^{n}}{n!} =0 .

  • Câu 18: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    \lim_{x ightarrow 1}\frac{ax^{2} +
bx - 2}{x - 1} = 3 là 1 số hữu hạn và \lim_{x ightarrow 1}(x - 1) = 0 nên \lim_{x ightarrow 1}\left( ax^{2} + bx - 2
ight) = 0 hay a + b - 2 = 0
\Leftrightarrow b = 2 - a.

    Khi đó:

    \lim_{x ightarrow 1}\frac{ax^{2} + bx
- 2}{x - 1} = \lim_{x ightarrow 1}\frac{ax^{2} + (2 - a)x - 2}{x -
1}

    = \lim_{x ightarrow 1}\frac{(x - 1)(ax
+ 2)}{x - 1} = \lim_{x ightarrow 1}(ax + 2)

    = a + 2 = 3

    \Rightarrow a = 1 suy ra b = 1.

    Vậy S = 1 + \frac{1}{4} =
1,25.

  • Câu 19: Vận dụng cao

    Tính giới hạn \lim\left\lbrack
\frac{1}{1.4} + \frac{1}{2.5} + ... + \frac{1}{n(n + 3)}
ightbrack

    Ta có:

    \begin{matrix}
  \dfrac{1}{{1.4}} + \dfrac{1}{{2.5}} + ... + \dfrac{1}{{n\left( {n + 3} ight)}} \hfill \\
   = \dfrac{1}{3}\left( {\dfrac{1}{1} - \dfrac{1}{4} + \dfrac{1}{2} - \dfrac{1}{5} + ... + \dfrac{1}{n} - \dfrac{1}{{n + 3}}} ight) \hfill \\ 
\end{matrix}

    = \frac{1}{3}\left\lbrack \left(
\frac{1}{1} + \frac{1}{2} + ... + \frac{1}{n} ight) - \left(
\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + ... + \frac{1}{n + 3} ight)
ightbrack

    = \frac{1}{3}\left( 1 + \frac{1}{2} +
\frac{1}{3} - \frac{1}{n + 1} - \frac{1}{n + 2} - \frac{1}{n + 3}
ight)

    = \frac{1}{3}\left( \frac{11}{6} -
\frac{1}{n + 1} - \frac{1}{n + 2} - \frac{1}{n + 3} ight)

    Do đó \lim\left\lbrack \frac{1}{1.4} +
\frac{1}{2.5} + ... + \frac{1}{n(n + 3)} ightbrack =
\frac{11}{8}

  • Câu 20: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 33 lượt xem
Sắp xếp theo