Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Cho
là hằng số,
là số nguyên dương khác không. Tìm khẳng định sai.
Mệnh đề sai khi
là số chẵn.
Cho
với
. Phải bổ sung thêm giá trị
bằng bao nhiêu thì hàm số
liên tục trên
?
Ta có:
Để hàm số liên tục trên thì
Cho hàm số
. Với giá trị nào của a thì hàm số f(x) liên tục tại
?
Ta có:
Hàm số liên tục tại khi và chỉ khi
Xác định
.
Ta có:
Tính giới hạn
.
Ta có:
Chọn khẳng định đúng?
Cho số thực m thỏa mãn
. Khi đó giá trị của m là bao nhiêu?
Ta có:
Giá trị của
bằng:
Tính giới hạn ![]()
Ta có:
Do đó
Giá trị của
bằng:
Với mọi M > 0 lớn tùy ý, ta chọn
Ta có:
với mọi
Suy ra
Biết
(biết
là các số nguyên dương). Tính
?
Đáp án: 14
Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Ta có:
Do đó
Hàm số
liên tục trên:
Ta có:
=> Tập xác định
Vậy hàm số liên tục trên
Có bao nhiêu giá trị thực của tham số m để hàm số
liên tục trên
?
Tập xác định
Hàm số liên tục trên mỗi khoảng
Khi đó hàm số liên tục trên
khi và chỉ khi
liên tục tại
Hay
Ta lại có:
Khi đó
Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
Giá trị của
bằng:
Ta có:
Giới hạn
bằng
Ta có:
Hàm số nào sau đây gián đoạn tại
?
Xét hàm số hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Biết giới hạn
và
. Khi đó:
a) Tích
. Sai||Đúng
b) Hàm số
có tập xác định là
. Đúng||Sai
c) Giá trị
là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác
vô nghiệm. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Tích . Sai||Đúng
b) Hàm số có tập xác định là
. Đúng||Sai
c) Giá trị là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác vô nghiệm. Sai||Đúng
Ta có: ,
Do
a) Tích
b) Hàm số có tập xác định là
c) Giá trị là số lớn hơn
d) Phương trình lượng giác có nghiệm
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Kết quả của giới hạn
bằng:
Ta có
Khi đó ta có:
Vậy
Tìm giá trị thực của tham số a để hàm số
liên tục tại
.
Ta có:
Hàm số liên tục tại