Cho dãy số với
. Tính
.
Ta có:
Cho dãy số với
. Tính
.
Ta có:
Tính giới hạn sau: .
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Tính giới hạn của hàm số
Ta có: vì
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có
Cho là hằng số,
là số nguyên dương khác không. Tìm khẳng định sai.
Mệnh đề sai khi
là số chẵn.
Cho hàm số . Số nghiệm của phương trình
trên
là:
Hàm số là hàm đa thức có tập xác định là
nên liên tục trên
=> Hàm số liên tục trên mỗi khoảng
Ta có:
=> Hàm số có ít nhất một nghiệm thuộc khoảng
=> Hàm số có ít nhất một nghiệm thuộc khoảng
=> Hàm số có ít nhất một nghiệm thuộc khoảng
Vậy phương trình có ít nhất ba nghiệm thuộc khoảng
Mặt khác phương trình là phương trình bậc ba có nhiều nhất ba nghiệm
=> Phương trình có đúng ba nghiệm trên
Giá trị của bằng:
Chia cả tử và mẫu cho ta có được.
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
a) (do
b) do
c) .
Vì
d) .
Vì
Kết luận:
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Cho dãy số với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây?
Ta có:
lập thành một cấp số nhân có nên
vì
Hàm số liên tục trên:
Ta có:
=> Tập xác định
Vậy hàm số liên tục trên
Cho hàm số xác định và liên tục trên
với
với mọi
. Tính
Ta có:
Do hàm số đã cho xác định và liên tục trên
=> Hàm số liên tục tại x = 1
=>
Số điểm gián đoạn của hàm số là:
Đáp án: 1
Số điểm gián đoạn của hàm số là:
Đáp án: 1
Hàm số có TXĐ
.
Hàm số liên tục trên mỗi khoảng
,
và
.
(i) Xét tại , ta có
Hàm số liên tục tại
.
(ii) Xét tại , ta có
Hàm số
gián đoạn tại
.
Vậy số điểm gián đoạn cần tìm là 1.
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Cho hàm số liên tục trên đoạn
và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Giá trị của M.n là:
Hàm số liên tục trên
.
Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1
Vậy M.n = -3
Số điểm gián đoạn của hàm số là:
Hàm số xác định trên
Dễ thấy hàm số liên tục trên mỗi khoảng
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Vậy có 1 điểm gián đoạn.
Giá trị của bằng:
Ta có:
bằng:
Ta có:
bằng:
Ta có:
Gọi là tập hợp tất cả các giá trị nguyên của tham số
để bất phương trình
Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử bằng:
Giả sử m là số thực thỏa mãn yêu cầu bài toán:
Với bất phương trình trở thành
, bất phương trình không đúng với
=> Không thỏa mãn yêu cầu bài toán.
Với bất phương trình trở thành
, tập nghiệm của bất phương trình là
=> Thỏa mãn yêu cầu bài toán.
Với bất phương trình trở thành
, bất phương trình không đúng với
=> Không thỏa mãn yêu cầu bài toán.
Với đặt
thì
Theo giả thiết ta có:
với mọi giá trị x thuộc tập xác định (*)
Nếu thì
mâu thuẫn với (*)
Nếu thì
mâu thuẫn với (*)
Vậy nên số phần tử của S là 1.
Cho dãy số với
. Chọn kết quả đúng của
là:
Ta có:
= 0