Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biết giới hạn \lim\frac{2n + 1}{- 3n + 2}
= a. Khi đó:

    a) Giá trị a lớn hơn 0. Sai||Đúng

    b) Ba số -
\frac{5}{3};a;\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 2. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 3 nghiệm. Sai||Đúng

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6. Đúng||Sai

    Đáp án là:

    Biết giới hạn \lim\frac{2n + 1}{- 3n + 2}
= a. Khi đó:

    a) Giá trị a lớn hơn 0. Sai||Đúng

    b) Ba số -
\frac{5}{3};a;\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 2. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 3 nghiệm. Sai||Đúng

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6. Đúng||Sai

    a) Ta có: \lim\frac{2n + 1}{- 3n + 2} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( - 3 + \frac{2}{n}
ight)} = \lim\frac{2 + \frac{1}{n}}{- 3 + \frac{2}{n}} = \frac{-
2}{3}

    b) Ba số - \frac{5}{3}; -
\frac{2}{3};\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 1

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 2 nghiệm

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6

    Kết luận:

    a) Sai

    b) Sai

    c) Sai

    d) Đúng

  • Câu 2: Vận dụng

    Tính giới hạn của hàm số \lim\left(
\frac{1}{n^{2}} + \frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}}
ight).

    Ta có:

    \frac{1}{n^{2}} + \frac{2}{n^{2}} + ...
+ \frac{n - 1}{n^{2}}

    = \frac{1}{n^{2}}(1 + 2 + .. + n -
1)

    = \frac{1}{n^{2}}.\frac{(n - 1)(1 + n -
1)}{2}

    = \frac{n^{2} - n}{2n^{2}}

    \Rightarrow \lim\left( \frac{1}{n^{2}} +
\frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}} ight) = \lim\frac{n^{2} -
n}{2n} = \frac{1}{2}

  • Câu 3: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{3{x^4} - 2{x^5}}}{{5{x^4} + 3{x^6} + 1}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{3{x^4} - 2{x^5}}}{{5{x^4} + 3{x^6} + 1}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{3}{{{x^2}}} - \dfrac{2}{x}}}{{\dfrac{5}{{{x^2}}} + 3 + \dfrac{1}{{{x^6}}}}} = 0 \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow 1}\frac{2x^{5} + x^{4} -
4x^{2} + 1}{x^{3} - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{5} +
x^{4} - 4x^{2} + 1}{x^{3} - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( 2x^{4} + 3x^{3} + 3x^{2} - x - 1 ight)}{(x - 1)\left( x^{2} +
x + 1 ight)}

    = \lim_{x ightarrow 1}\frac{2x^{4} +
3x^{3} + 3x^{2} - x - 1}{x^{2} + x + 1} = 2

  • Câu 5: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

  • Câu 6: Nhận biết

    Tính giới hạn M
= \lim_{x ightarrow 2}\frac{x^{2} - 4}{x - 2}.

    Ta có:

    M = \lim_{x ightarrow 2}\frac{x^{2} -
4}{x - 2} = \lim_{x ightarrow 2}\frac{(x - 2)(x + 2)}{x - 2} = \lim_{x
ightarrow 2}(x + 2) = 4

  • Câu 7: Vận dụng cao

    Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}

    Ta có:

    \lim\sqrt[4]{\dfrac{4^{n} + 2^{n +1}}{3^{n} + 4^{n + a}}} = \lim\sqrt[4]{\dfrac{1 + 2\left( \dfrac{1}{2}ight)^{n}}{\left( \dfrac{3}{4} ight)^{n} + 4^{n}}}

    \begin{matrix}
   = \sqrt {\dfrac{1}{{{4^a}}}}  = \sqrt {\dfrac{1}{{{{\left( {{2^a}} ight)}^2}}}}  = \dfrac{1}{{{2^a}}} \leqslant \dfrac{1}{{1024}} \hfill \\
   \Leftrightarrow {2^a} \geqslant 1024 = {2^{10}} \hfill \\
   \Leftrightarrow a \geqslant 10 \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}
a \in (0;2018) \\
a\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow a \in \left\{ 10;11;...;2017
ight\}

    Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.

  • Câu 8: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    \lim_{x ightarrow 1}\frac{ax^{2} +
bx - 2}{x - 1} = 3 là 1 số hữu hạn và \lim_{x ightarrow 1}(x - 1) = 0 nên \lim_{x ightarrow 1}\left( ax^{2} + bx - 2
ight) = 0 hay a + b - 2 = 0
\Leftrightarrow b = 2 - a.

    Khi đó:

    \lim_{x ightarrow 1}\frac{ax^{2} + bx
- 2}{x - 1} = \lim_{x ightarrow 1}\frac{ax^{2} + (2 - a)x - 2}{x -
1}

    = \lim_{x ightarrow 1}\frac{(x - 1)(ax
+ 2)}{x - 1} = \lim_{x ightarrow 1}(ax + 2)

    = a + 2 = 3

    \Rightarrow a = 1 suy ra b = 1.

    Vậy S = 1 + \frac{1}{4} =
1,25.

  • Câu 9: Thông hiểu

    Cho hàm số y =
f(x)y = g(x) là hai hàm số liên tục tại điểm x_{0}. Mệnh đề nào dưới đây sai?

    Xét trường hợp y = g(x) liên tục tại x_{0}g\left( x_{0} ight) = 0 thì hàm số y = \frac{f(x)}{g(x)} không xác định tại x_{0}.

  • Câu 10: Nhận biết

    \lim\left( - n^{4} - 50n + 11
ight) bằng

    Ta có:

    \lim\left( - n^{4} - 50n + 11
ight)

    = \lim\left\lbrack n^{4}\left( - 1 -
\frac{50}{n^{3}} + \frac{11}{n^{4}} ight) ightbrack = -
\infty

  • Câu 11: Thông hiểu

    Giá trị của giới hạn \lim(\sqrt{n^{2}-1}-\sqrt{3n^{2}+2}) là:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {{n^2} - 1}  - \sqrt {3{n^2} + 2} } ight) \hfill \\   = \lim \left[ {n\left( {\sqrt {1 - \dfrac{1}{{{n^2}}}}  - \sqrt {3 + \dfrac{2}{{{n^2}}}} } ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ \begin{gathered}  \lim n =  + \infty  \hfill \\  \lim \left( {\sqrt {1 - \frac{1}{{{n^2}}}}  - \sqrt {3 + \frac{2}{{{n^2}}}} } ight) = 1 - \sqrt 3  < 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim f\left( x ight) =  - \infty  \hfill \\ \end{matrix}

  • Câu 12: Vận dụng cao

    Cho giới hạn I = \lim_{x ightarrow
0}\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}}. Tính giá trị của 100I?

    Đáp án: -600||- 600

    Đáp án là:

    Cho giới hạn I = \lim_{x ightarrow
0}\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}}. Tính giá trị của 100I?

    Đáp án: -600||- 600

    Ta có:

    I = \lim_{x ightarrow 0}\frac{\sqrt{2x
+ 1} - \sqrt[3]{x^{2} + 1}}{\sqrt[3]{8 - x} - \sqrt[3]{8 +
x}}

    = \lim_{x ightarrow 0}\left(
\frac{\sqrt{2x + 1} - \sqrt[3]{x^{2} + 1}}{x}.\frac{x}{\sqrt[3]{8 - x} -
\sqrt[3]{8 + x}} ight)

    = \lim_{x ightarrow 0}\left\{ \left(
\frac{\sqrt{2x + 1} - 1}{x} + \frac{1 - \sqrt[3]{x^{2} + 1}}{x}
ight).\frac{x}{\sqrt[3]{8 - x} - \sqrt[3]{8 + x}}
ight\}

    Ta có:

    +) \lim_{x ightarrow 0}\frac{\sqrt{2x +
1} - 1}{x} = \lim_{x ightarrow 0}\frac{2x}{\left( \sqrt{2x + 1} + 1
ight).x} = \lim_{x ightarrow 0}\frac{2}{\left( \sqrt{2x + 1} + 1
ight)} = 1

    +) \lim_{x ightarrow 0}\frac{1 -
\sqrt[3]{x^{2} + 1}}{x} = \lim_{x ightarrow 0}\frac{-
x^{2}}{\left\lbrack 1 + \sqrt[3]{x^{2} + 1} + \sqrt[3]{\left( x^{2} + 1
ight)^{2}} ightbrack.x}

    = \lim_{x ightarrow 0}\frac{-
x}{\left\lbrack 1 + \sqrt[3]{x^{2} + 1} + \sqrt[3]{\left( x^{2} + 1
ight)^{2}} ightbrack} = 0.

    +) \lim_{x ightarrow
0}\frac{x}{\sqrt[3]{8 - x} - \sqrt[3]{8 + x}}

    = \lim_{x ightarrow
0}\frac{x\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2}
ightbrack}{\left( \sqrt[3]{8 - x} ight)^{3} - \left( \sqrt[3]{8 +
x} ight)^{3}}

    = \lim_{x ightarrow
0}\frac{x\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2} ightbrack}{-
2x}

    = \lim_{x ightarrow
0}\frac{\left\lbrack \left( \sqrt[3]{8 - x} ight)^{2} + \sqrt[3]{8 -
x}.\sqrt[3]{8 + x} + \left( \sqrt[3]{8 + x} ight)^{2} ightbrack}{-
2} = - 6.

    Vậy I = (1 + 0).( - 6) = - 6 \Rightarrow
100I = - 600.

  • Câu 13: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}
x - 2 & \ khi\ x < - 1 \\
\sqrt{x^{2} + 1} & \ khi\ x \geq - 1 \\
\end{matrix} ight.. Khi đó:

    a) Giới hạn\lim_{x ightarrow - 2}f(x) =
\sqrt{5}. Sai||Đúng

    b) Giới hạn\lim_{x ightarrow -
1^{-}}f(x) = - 3. Đúng||Sai

    c) Giới hạn\lim_{x ightarrow -
1^{+}}f(x) = \sqrt{2}. Đúng||Sai

    d) Hàm số tồn tại giới hạn khi x
ightarrow - 1 . Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
x - 2 & \ khi\ x < - 1 \\
\sqrt{x^{2} + 1} & \ khi\ x \geq - 1 \\
\end{matrix} ight.. Khi đó:

    a) Giới hạn\lim_{x ightarrow - 2}f(x) =
\sqrt{5}. Sai||Đúng

    b) Giới hạn\lim_{x ightarrow -
1^{-}}f(x) = - 3. Đúng||Sai

    c) Giới hạn\lim_{x ightarrow -
1^{+}}f(x) = \sqrt{2}. Đúng||Sai

    d) Hàm số tồn tại giới hạn khi x
ightarrow - 1 . Sai||Đúng

    a) Ta có: Giới hạn\lim_{x ightarrow -
2}f(x) = - 4

    b) Xét dãy số \left( x_{n}
ight) bất kì sao cho x_{n} < -
1x_{n} ightarrow -
1, ta có: f\left( x_{n} ight) =
x_{n} - 2.

    Khi đó: \lim_{x ightarrow - 1^{-}}f(x)
= \lim f\left( x_{n} ight) = - 1 - 2 = - 3.

    c) Xét dãy số \left( x_{n}
ight) bất kì sao cho x_{n} > -
1x_{n} ightarrow -
1, ta có: f\left( x_{n} ight) =
\sqrt{x_{n}^{2} + 1}.

    Khi đó: \lim_{x ightarrow - 1^{+}}f(x)
= \lim f\left( x_{n} ight) = \sqrt{( - 1)^{2} + 1} =
\sqrt{2}.

    d) Vì \lim_{x ightarrow - 1^{-}}f(x)
eq \lim_{x ightarrow - 1^{+}}f(x) (hay - 3 eq \sqrt{2} ) nên không tồn tại \lim_{x ightarrow - 1}f(x).

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 14: Vận dụng

    Kết quả giới hạn K = \lim_{x ightarrow
+ \infty}x\left( \sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight) =
\frac{a}{b}, với \frac{a}{b} là phân số tối giản (a;b > 0). Tổng a + b bằng bao nhiêu?

    Đáp án: 3

    Đáp án là:

    Kết quả giới hạn K = \lim_{x ightarrow
+ \infty}x\left( \sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight) =
\frac{a}{b}, với \frac{a}{b} là phân số tối giản (a;b > 0). Tổng a + b bằng bao nhiêu?

    Đáp án: 3

    Ta có

    K = \lim_{x ightarrow + \infty}x\left(
\sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight)

    = \lim_{x ightarrow +
\infty}x\left\lbrack \left( \sqrt{x^{2} + 2x} - x - 1 ight) + \left( x
+ 1 - \sqrt[3]{x^{3} + 3x^{2}} ight) ightbrack

    = \lim_{x ightarrow +
\infty}\lbrack\frac{- x}{\sqrt{x^{2} + 2x} + (x + 1)} + \frac{3x^{2} + x}{(x + 1)^{2} + (x +
1)\sqrt[3]{x^{3} + 3x} + \sqrt[3]{\left( x^{3} + 3x
ight)^{2}}}brack

    = \lim_{x ightarrow +
\infty}\lbrack\frac{- 1}{\sqrt{1 + \frac{2}{x}} + \left( 1 + \frac{1}{x}
ight)} + \frac{3 +
\frac{1}{x}}{\left( 1 + \frac{1}{x} ight)^{2} + \left( 1 + \frac{1}{x}
ight)\sqrt[3]{1 + \frac{3}{x^{2}}} + \sqrt[3]{\left( 1 +
\frac{3}{x^{2}} ight)^{2}}}brack

    = - \frac{1}{2} + 1 =
\frac{1}{2}.

    Suy ra a + b = 3.

  • Câu 15: Nhận biết

    Hàm số nào không liên tục tại x = 2?

    Ta có hàm số y = \frac{x^{2}}{x -
2} không xác định tại x =
2 nên hàm số không liên tục tại x =
2

    NB

  • Câu 16: Thông hiểu

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Đáp án là:

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Ta có

    \sqrt{n^{2} + an + 5} - \sqrt{n^{2} + 1}ightarrow 0\overset{ightarrow}{}Nhận lượng liên hợp :

    \lim u_{n} = \lim\left( \sqrt{n^{2} + an+ 5} - \sqrt{n^{2} + 1} ight)

    = \lim\frac{an + 4}{\sqrt{n^{2} + an +5} + \sqrt{n^{2} + 1}}

    = \lim\frac{a + \dfrac{4}{n}}{\sqrt{1 +\dfrac{a}{n} + \dfrac{5}{n^{2}}} + \sqrt{1 + \dfrac{1}{n^{2}}}} =\dfrac{a}{2}

  • Câu 17: Vận dụng

    Phương trình nào dưới đây có nghiệm trong khoảng (0;1)?

    Xét phương án 2x^{2} - 3x + 4 =
0: 2x^{2} - 3x + 4 = 0\Delta = 9 - 32 = - 23

    => Phương trình vô nghiệm.

    Xét phương án 3x^{4} - 4x^{2} + 5 =
0: 3x^{4} - 4x^{2} + 5 =
0

    Đặt t = x^{2}(t \geq 0), phương trình trở thành: 3t^{2} - 4t + 5 =
0.

    \Delta' = 4 - 15 = - 11

    => Phương trình vô nghiệm.

    Xét phương án (x - 1)^{5} - x^{7} - 2 =
0: (x - 1)^{5} - x^{7} - 2 = 0
\Leftrightarrow (x - 1)^{5} = x^{7} + 2

    \forall x \in (0;1) \Rightarrow \left\{
\begin{matrix}
x - 1 < 0 \Rightarrow (x - 1)^{5} < 0 \\
x^{7} + 2 > 2 \\
\end{matrix} ight.

    \Rightarrow Phương trình vô nghiệm.

    Xét phương án 3x^{2024} - 8x + 4 =
0: 3x^{2024} - 8x + 4 = 0, xét f(x) = 3x^{2024} - 8x + 4.

    \left\{ \begin{matrix}
f(0) = 3.0 - 8.0 + 4 = 4 \\
f(1) = 3.1 - 8.1 + 4 = - 1 \\
\end{matrix} ight.\  \Rightarrow f(0).f(1) < 0

    Mặc khác hàm số f(x) liên tục trên \mathbb{R} do đó liên tục trên \lbrack 0;1brack.

    Vậy phương trình 3x^{2024} - 8x + 4 =
0 có ít nhất một nghiệm trong khoảng (0;1).

  • Câu 18: Thông hiểu

    Biết rằng hàm số y = f(x) = \left\{ \begin{matrix}\dfrac{3 - x}{\sqrt{x + 1} - 2}\ khi\ x eq 3 \\a\ \ \ \ \ \ khi\ x = 3 \\\end{matrix} ight. liên tục tại x = 3 (a là tham số. Khẳng định nào dưới đây đúng?

    Tập xác định D = ( - 1; +
\infty)

    Theo giả thiết ta có:

    a = f(3) = \lim_{x ightarrow
3}f(x)

    \Rightarrow a = \lim_{x ightarrow
3}\left( \frac{3 - x}{\sqrt{x + 1} - 2} ight)

    \Leftrightarrow a = \lim_{x ightarrow
3}\frac{(3 - x)\left( \sqrt{x + 1} + 2 ight)}{x - 3}

    \Leftrightarrow a = \lim_{x ightarrow
3}\left( \sqrt{x + 1} + 2 ight)

    \Leftrightarrow a = - 4 \Rightarrow a
\leq - 3

  • Câu 19: Nhận biết

    Giá trị của \lim\frac{1}{n + 1} bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\frac{1}{a} - 1

    Suy ra:

    \frac{1}{n +
1} < \frac{1}{n_{a} + 1} < a\ \forall n > n_{0}

    Vậy \lim\frac{1}{n + 1} = 0.

  • Câu 20: Thông hiểu

    Tính K = \lim_{x
ightarrow + \infty}\left( \sqrt{4x^{2} + 3x + 1} - 2x
ight)

    Ta có:

    K = \lim_{x ightarrow + \infty}\left(
\sqrt{4x^{2} + 3x + 1} - 2x ight)

    K = \lim_{x ightarrow +\infty}\dfrac{4x^{2} + 3x + 1 - 4x^{2}}{\sqrt{4x^{2} + 3x + 1} +2x}

    K = \lim_{x ightarrow +\infty}\dfrac{3x + 1}{\sqrt{4x^{2} + 3x + 1} + 2x}

    K = \lim_{x ightarrow + \infty}\dfrac{3+ \dfrac{1}{x}}{\sqrt{4 + \dfrac{3}{x} + \dfrac{1}{x^{2}}} + 2} =\dfrac{3}{4}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo