Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) =
\frac{\sqrt{4x^{2} + x + 1} - \sqrt{x^{2} - x + 3}}{3x + 2}. Tính \lim_{x ightarrow -
\infty}f(x).

    Ta có:

    \lim_{x ightarrow -
\infty}f(x)

    = \lim_{x ightarrow -
\infty}\frac{\sqrt{4x^{2} + x + 1} - \sqrt{x^{2} - x + 3}}{3x +
2}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{4 + \dfrac{1}{x} + \dfrac{1}{x^{2}}} + \sqrt{1 - \dfrac{1}{x} +\dfrac{3}{x^{2}}}}{3 + \dfrac{2}{x}}

    = \frac{- 2 + 1}{3} = -
\frac{1}{3}

  • Câu 2: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x + 6}}{1 - x}\ ,x > 1 \\ax + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,x \leq 1 \\\end{matrix} ight.. Tìm a để hàm số liên tục tại x = 1

    Đáp án: -3||- 3

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x + 6}}{1 - x}\ ,x > 1 \\ax + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,x \leq 1 \\\end{matrix} ight.. Tìm a để hàm số liên tục tại x = 1

    Đáp án: -3||- 3

    Xét \lim_{x ightarrow 1^{+}}f(x) =
\lim_{x ightarrow 1^{+}}\frac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x +
6}}{1 - x}

    = \lim_{x ightarrow1^{+}}\frac{\sqrt{5x - 1} - 2 + 2 - \sqrt[3]{x^{2} + x + 6}}{1 -x}

    = \lim_{x ightarrow 1^{+}}\left(\frac{\sqrt{5x - 1} - 2}{1 - x} + \frac{2 - \sqrt[3]{x^{2} + x + 6}}{1 -x} ight)

    = \lim_{x ightarrow 1^{+}}\left( \frac{5x - 5}{(1 -x)\left( \sqrt{5x - 1} + 2 ight)} + \frac{8 - \left( x^{2} + x + 6ight)}{(1 - x)\left( 4 + 2\sqrt[3]{x^{2} + x + 6} + \left(\sqrt[3]{x^{2} + x + 6} ight)^{2} ight)} ight)

    = \lim_{xightarrow 1^{+}}\left( \frac{- 5}{\left( \sqrt{5x - 1} + 2 ight)} +\frac{x + 2}{4 + 2\sqrt[3]{x^{2} + x + 6} + \left( \sqrt[3]{x^{2} + x +6} ight)^{2}} ight)

    = - \frac{5}{4} + \frac{1}{4} = -
1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}(ax + 2) = a + 2

    f(1) = a + 2

    Hàm số liên tục tại x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow a + 2 = - 1
\Leftrightarrow a = - 3.

  • Câu 3: Nhận biết

    \lim\left( - n^{4} - 50n + 11
ight) bằng

    Ta có:

    \lim\left( - n^{4} - 50n + 11
ight)

    = \lim\left\lbrack n^{4}\left( - 1 -
\frac{50}{n^{3}} + \frac{11}{n^{4}} ight) ightbrack = -
\infty

  • Câu 4: Thông hiểu

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Đáp án là:

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Ta có

    \sqrt{n^{2} + an + 5} - \sqrt{n^{2} + 1}ightarrow 0\overset{ightarrow}{}Nhận lượng liên hợp :

    \lim u_{n} = \lim\left( \sqrt{n^{2} + an+ 5} - \sqrt{n^{2} + 1} ight)

    = \lim\frac{an + 4}{\sqrt{n^{2} + an +5} + \sqrt{n^{2} + 1}}

    = \lim\frac{a + \dfrac{4}{n}}{\sqrt{1 +\dfrac{a}{n} + \dfrac{5}{n^{2}}} + \sqrt{1 + \dfrac{1}{n^{2}}}} =\dfrac{a}{2}

  • Câu 5: Thông hiểu

    Kết quả của giới hạn \lim \frac{{3\sin n + 4\cos n}}{{n + 1}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}} \hfill \\   = \lim \left( {\dfrac{{3\sin n}}{{n + 1}} + \dfrac{{4\cos n}}{{n + 1}}} ight) \hfill \\   = \lim \left( {\dfrac{{3\sin n}}{{n + 1}}} ight) + \lim \left( {\dfrac{{4\cos n}}{{n + 1}}} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {0 \leqslant \left| {\dfrac{{3\sin n}}{{n + 1}}} ight| \leqslant \dfrac{3}{{n + 1}} \to 0} \\   {0 \leqslant \left| {\dfrac{{4\cos n}}{{n + 1}}} ight| \leqslant \dfrac{3}{{n + 1}} \to 0} \end{array}} ight. \hfill \\   \Rightarrow \lim f\left( x ight) = 0 \hfill \\ \end{matrix}

  • Câu 6: Vận dụng cao

    Rút gọn biểu thức B = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {\left( { - 1} ight)^n}.{\sin ^{2n}}x + ... với \sin x eq \pm 1?

    Ta có:

    \begin{matrix}
  B = \underbrace {1 - {{\sin }^2}x + {{\sin }^4}x - {{\sin }^6}x + ... + {{\left( { - 1} ight)}^n}.{{\sin }^{2n}}x + ...}_{CSN:{u_1};q =  - {{\sin }^2}x} \hfill \\
   = \dfrac{1}{{1 + {{\sin }^2}x}} \hfill \\ 
\end{matrix}

  • Câu 7: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Biết rằng hàm số f(x) = \left\{
\begin{matrix}
\frac{x^{2} - 1}{\sqrt{x} - 1}\ \ \ khi\ \ \ x eq 1 \\
\ \ \ \ \ \ \ m\ \ \ \ \ \ \ khi\ \ \ x = 1 \\
\end{matrix} ight. liên tục trên đoạn \lbrack 0;2brack (với m là tham số). Giá trị của m bằng bao nhiêu ?

    Đáp án: 4

    Đáp án là:

    Biết rằng hàm số f(x) = \left\{
\begin{matrix}
\frac{x^{2} - 1}{\sqrt{x} - 1}\ \ \ khi\ \ \ x eq 1 \\
\ \ \ \ \ \ \ m\ \ \ \ \ \ \ khi\ \ \ x = 1 \\
\end{matrix} ight. liên tục trên đoạn \lbrack 0;2brack (với m là tham số). Giá trị của m bằng bao nhiêu ?

    Đáp án: 4

    Hàm số xác định trên \lbrack
0;2brack và liên tục trên \lbrack0;1) và (1;2brack.

    Khi đó để f(x) liên tục trên đoạn \lbrack 0;2brack thì hàm số liên tục tại x = 1.

    Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1}f(x) = \lim_{x ightarrow 1}\frac{x^{2} -
1}{\sqrt{x} - 1} = \lim_{x ightarrow 1}\left\lbrack (x + 1)\left(
\sqrt{x} + 1 ight) ightbrack = 4 \\
f(1) = m \\
\end{matrix} ight. .

    Để hàm số liên tục tại x = 1 thì m = 4.

  • Câu 9: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

  • Câu 10: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{3 - x}{2x + 3}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{3 - x}{2x + 3} ight) = \lim_{x ightarrow +\infty}\dfrac{\dfrac{3}{x} - 1}{2 + \dfrac{3}{x}} = -\dfrac{1}{2}

  • Câu 11: Vận dụng

    Cho f(x) là một đa thức thỏa mãn \lim_{x ightarrow
1}\frac{f(x) - 16}{x - 1} = 24. Tính giá trị

    F = \lim_{x ightarrow 1}\frac{f(x) - 16}{(x -
1)\left( \sqrt{2f(x) + 4} + 6 ight)}

    Ta có: \lim_{x ightarrow 1}\frac{f(x) -
16}{x - 1} = 24 \Rightarrow \lim_{x ightarrow 1}\left\lbrack f(x) - 16
ightbrack = 0

    \Rightarrow \lim_{x ightarrow 1}f(x) =
16

    \Rightarrow \lim_{x ightarrow
1}\frac{1}{\sqrt{2f(x) + 4} + 6} = \frac{1}{12}

    Khi đó

    F = \lim_{x ightarrow 1}\frac{f(x) -
16}{(x - 1)\left\lbrack \sqrt{2f(x) + 4} + 6 ightbrack}

    F = \lim_{x ightarrow 1}\frac{f(x) -
16}{x - 1}.\lim_{x ightarrow 1}\frac{1}{\sqrt{2f(x) + 4} + 6} =
24.\frac{1}{12} = 2

  • Câu 12: Thông hiểu

    Tìm a để hàm số y = f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 4}{x - 2}\ \ khi\ x eq 2 \\m^{2} + 3m\ \ \ khi\ x = 2 \\\end{matrix} ight. liên tục tại x = 2. Tìm m để hàm số liên tục tại x = 2.

    Ta có:

    \lim_{x ightarrow 2}\frac{x^{2} - 4}{x
- 2} = \lim_{x ightarrow 2}(x + 2) = 4

    Để hàm số liên tục tại x = 1 thì m^{2} + 3m = 4 \Rightarrow \left\lbrack
\begin{matrix}
m = 1 \\
m = - 4 \\
\end{matrix} ight.

  • Câu 13: Nhận biết

    Giá trị của B =
\lim\frac{2n + 3}{n^{2} + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn \ \
n_{a} thỏa mãn:

    \frac{2n_{a} +
3}{n_{a}^{2} + 1} < a

    \Leftrightarrow n_{a} > \frac{1 +
\sqrt{a^{2} - 4a + 13}}{a}

    Ta có: \frac{2n + 3}{n^{2} + 1} < a\
với\ mọi\ n > n_{a}

    Suy ra  B =\lim\frac{2n + 3}{n^{2} + 1} =0 .

  • Câu 14: Thông hiểu

    Giá trị của giới hạn \lim(\sqrt{n^{2}-1}-\sqrt{3n^{2}+2}) là:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {{n^2} - 1}  - \sqrt {3{n^2} + 2} } ight) \hfill \\   = \lim \left[ {n\left( {\sqrt {1 - \dfrac{1}{{{n^2}}}}  - \sqrt {3 + \dfrac{2}{{{n^2}}}} } ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ \begin{gathered}  \lim n =  + \infty  \hfill \\  \lim \left( {\sqrt {1 - \frac{1}{{{n^2}}}}  - \sqrt {3 + \frac{2}{{{n^2}}}} } ight) = 1 - \sqrt 3  < 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim f\left( x ight) =  - \infty  \hfill \\ \end{matrix}

  • Câu 15: Vận dụng cao

    Tính \lim_{x
ightarrow 1}\frac{x^{2018} + x^{2017} + .... + x - 2018}{x^{2018} +
1}

    Ta có:

    \lim_{x ightarrow 1}\dfrac{x^{2018} +x^{2017} + .... + x - 2018}{x^{2018} + 1}

    = \lim_{x ightarrow 1}\dfrac{(x -1)\left( x^{2017} + 2x^{2016} + 3.x^{2015} + .... + 2017x + 2018ight)}{(x - 1)\left( x^{2017} + x^{2016} + x^{2015} + .... + x + 1ight)}

    = \dfrac{\dfrac{2018.2019}{2}}{2018} =\dfrac{2019}{2}

    Vậy \lim_{x ightarrow 1}\dfrac{x^{2018}+ x^{2017} + .... + x - 2018}{x^{2018} + 1} =\frac{2019}{2}

  • Câu 16: Thông hiểu

    Tìm khẳng định đúng trong các khẳng định sau

    (I) f(x) liên tục trên [a; b]f(a). f(b) > 0 thì tồn tại ít nhất một số c ∈ (a;b) sao cho f(c) = 0.

    (II) f(x) liên tục trên [a; b] và trên [b;c] nhưng không liên tục trên (a;c).

    Khẳng định (I) sai vì f(a).f(b) >0 vẫn có thể xảy ra trường hợp f(x) = 0 vô nghiệm trên khoảng (a; b).
    Khẳng định (II) sai vì nếu f(x) liên tục trên đoạn (a; b] và trên [b; c) thì liên tục (a; c).

    Vậy cả hai khẳng định đều sai.

  • Câu 17: Vận dụng

    Tính giới hạn của hàm số \lim\left(
\frac{1}{n^{2}} + \frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}}
ight).

    Ta có:

    \frac{1}{n^{2}} + \frac{2}{n^{2}} + ...
+ \frac{n - 1}{n^{2}}

    = \frac{1}{n^{2}}(1 + 2 + .. + n -
1)

    = \frac{1}{n^{2}}.\frac{(n - 1)(1 + n -
1)}{2}

    = \frac{n^{2} - n}{2n^{2}}

    \Rightarrow \lim\left( \frac{1}{n^{2}} +
\frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}} ight) = \lim\frac{n^{2} -
n}{2n} = \frac{1}{2}

  • Câu 18: Nhận biết

    Tính giới hạn \lim_{x ightarrow + \infty}\frac{3x^{2} -
2x}{x^{2} + 1}

    Ta có:

    \lim_{x ightarrow +\infty}\dfrac{3x^{2} - 2x}{x^{2} + 1} = \lim_{x ightarrow +\infty}\dfrac{3 - \dfrac{2}{x}}{1 + \dfrac{1}{x^{2}}} = \dfrac{3 - 0}{1 + 0}= 3

  • Câu 19: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 20: Nhận biết

    Hàm số f(x) =
\sqrt{3 - x} + \frac{1}{\sqrt{x + 4}} liên tục trên:

    Điều kiện \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq - 3 \\
x > - 4 \\
\end{matrix} ight.

    Tập xác định D = ( -
4;3brack

    => Hàm số liên tục trên ( -
4;3brack

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 36 lượt xem
Sắp xếp theo