Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính ![]()
Ta có:
Do hàm số đã cho xác định và liên tục trên
=> Hàm số liên tục tại x = 1
=>
Cho hàm số
xác định trên tập số thực và có đồ thị như hình vẽ:

Hỏi hàm số
không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Cho hàm số f(x) liên tục trên đoạn
sao cho
. Có thể nói gì về số nghiệm của phương trình
trên đoạn
:
Ta có:
Ta có f(x) = 5 ⇔ f(x) − 5 = 0. Đặt g(x) = f(x) − 5.
Khi đó
Vậy phương trình g(x) = 0 có ít nhất một nghiệm thuộc khoảng (1; 4) hay phương trình f(x) = 5 có ít nhất một nghiệm thuộc khoảng (1; 4)
Cho hàm số
liên tục tại
. Tính giá trị biểu thức
.
Ta có:
Từ điều kiện hàm số liên tục tại ta có hệ phương trình:
Cho dãy số
với
. Tính
.
Ta có:
Giới hạn
bằng
Ta có:
Tính
.
Ta có:
Giới hạn
bằng
Ta có:
.
Kết quả của giới hạn ![]()
Ta có:
. Khi đó:
(vì )
Hàm số
liên tục tại điểm nào dưới đây?
Hàm số có tập xác định
Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định .
Khi đó suy ra hàm số đã cho liên tục tại điểm
.
bằng:
Ta có:
Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
Cho hàm số
. Tính
.
Ta có:
Khi đó:
Đồng thời
Vậy
Xác định
.
Ta có: .
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Cho hàm số
. Với giá trị nào của m thì hàm số đã cho liên tục tại
?
Ta có:
Để hàm số liên tục tại thì
bằng số nào sau đây?
Ta có:
Tính giới hạn ![]()
Ta có: