Tìm m để hàm số
liên tục trên
.
Ta có:
Dễ thấy hàm số liên tục khi . Hàm số liên tục tại
khi và chỉ khi
Tìm m để hàm số
liên tục trên
.
Ta có:
Dễ thấy hàm số liên tục khi . Hàm số liên tục tại
khi và chỉ khi
Tính giá trị giới hạn ![]()
Ta có:
Tính giới hạn của hàm số
.
Ta có:
Tìm giá trị thực của tham số m để hàm số
liên tục tại
.
Tập xác định
Theo giả thiết ta có:
Giới hạn
bằng
Ta có:
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
bằng
Ta có:
Giá trị của
bằng:
Với mọi số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
với mọi
Suy ra
Biết giới hạn
,
là số thực,
là các số nguyên dương và
tối giản.
Tính tổng:
.
Đáp án: 0
Biết giới hạn ,
là số thực,
là các số nguyên dương và
tối giản.
Tính tổng: .
Đáp án: 0
Vì nên
.
Suy ra .
Với ta được
.
Vậy .
Suy ra .
Kiểm tra sự đúng sai của các kết luận sau?
a)
Sai||Đúng
b)
khi
Đúng||Sai
c) Hàm số
liên tục tại
Đúng||Sai
c)
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Sai||Đúng
b) khi
Đúng||Sai
c) Hàm số liên tục tại
Đúng||Sai
c) Sai||Đúng
Ta có:
Ta có: Khi thì
Ta có:
Vậy hàm số liên túc tại
Ta có:
Kết quả của giới hạn
là:
Ta có:
Khi đó:
Vì
Vậy
Tính giới hạn
.
Ta có:
Giá trị của
bằng:
Ta có:
Giá trị của giới hạn
là:
Ta có:
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Cho các số thực
thỏa mãn
và
. Tính giá trị biểu thức
.
Ta có:
Khi và chỉ khi: .
Kết hợp với
Khi đó và
(vì
Vậy nên
.
Biết rằng
với
là các tham số. Tính giá trị của biểu thức
.
Ta có:
Tính ![\mathop {\lim }\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Vậy
bằng
Ta có:
Cho hàm số
có đồ thị như hình dưới đây. Chọn khẳng định đúng.

Dựa vào đồ thị ta thấy hàm số liên tục trên