Hàm số 
Ta có: liên tục tại
Tại ta có:
Vậy hàm số liên tục tại
Tại ta có:
Vậy hàm số bị gián đoạn tại
Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.
Hàm số 
Ta có: liên tục tại
Tại ta có:
Vậy hàm số liên tục tại
Tại ta có:
Vậy hàm số bị gián đoạn tại
Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.
Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để![\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Mà
Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.
Trong các mệnh đề sau, mệnh đề nào sai?
Ta có:
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Tìm giá trị thực của tham số m để hàm số
liên tục tại
.
Ta có:
Hàm số liên tục tại
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Tính giới hạn của hàm số
.
Ta có:
Giá trị của
bằng:
Với mọi M >0 lớn tùy ý, ta chọn
Ta có:
với mọi
Vậy .
Kết quả đúng của
là:
Xét:
Ta có:
Suy ra
.
Cho phương trình
. Mệnh đề nào sau đây đúng?
Xét hàm số là đa thực có tập xác định
nên liên tục trên
.
Ta có:
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
=> Phương trình (*) có ít nhất một nghiệm thuộc
.
Vậy phương trình (*) đã cho có các nghiệm thỏa mãn
.
Cho hàm số
. Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng?
i) Hàm số
có tập xác định ![]()
ii) Hàm số
liên tục trên ![]()
iii) Hàm số
gián đoạn tại ![]()
iv) Hàm số
liên tục tại ![]()
Ta có:
i) Hàm số có tập xác định
đúng
ii) Hàm số liên tục trên
sai. Vì hàm số gián đoạn tại x = 1
iii) Hàm số gián đoạn tại
đúng. Vì hàm số không tồn tại giới hạn trái tại
iv) Hàm số liên tục tại
sai vì
Cho số thực m thỏa mãn
. Khi đó giá trị của m là bao nhiêu?
Ta có:
Kết quả của giới hạn
bằng:
Ta có:
Cho
với
. Phải bổ sung thêm giá trị
bằng bao nhiêu thì hàm số
liên tục trên
?
Ta có:
Với hàm số xác định => Hàm số liên tục khi x > 0 và x < 0
Với x = 0 ta có:
Để hàm số liên tục tại x = 0 thì
Tính
.
Ta có:
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là
(người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Ta có:
Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm (ngày) là 600 người/ngày.
Kết quả của giới hạn
bằng bao nhiêu?
Ta có:
Ta lại có:
Tính giới hạn
.
Ta có: .
Tính giới hạn của ![]()
Ta có:
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .