Tính giá trị của giới hạn sau
là?
Ta có:
Nhưng và
Nên
Tính giá trị của giới hạn sau
là?
Ta có:
Nhưng và
Nên
Tính giới hạn ![]()
Ta có:
Biết rằng hàm số
liên tục trên đoạn
(với
là tham số). Giá trị của
bằng bao nhiêu ?
Đáp án: 4
Biết rằng hàm số liên tục trên đoạn
(với
là tham số). Giá trị của
bằng bao nhiêu ?
Đáp án: 4
Hàm số xác định trên và liên tục trên
và
.
Khi đó để liên tục trên đoạn
thì hàm số liên tục tại
.
Ta có: .
Để hàm số liên tục tại thì
.
Cho hàm số
. Tính
.
Ta có:
Khi đó:
Đồng thời
Vậy
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Tìm giới hạn ![]()
Ta có:
Kết quả của giới hạn
bằng:
Ta có:
Cho hàm số
xác định trên
thỏa mãn
. Tính giới hạn
?
Cho hàm số xác định trên
thỏa mãn
. Tính giới hạn
?
Tính ![]()
Ta có:
Tính
.
Ta có:
Do đó
Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để![\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Mà
Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.
Giá trị của
với a> 0 bằng:
Nếu a=1 thì ta có luôn giới hạn bằng 1.
Suy ra: nên
Suy ra:
Tóm lại ta luôn có: với a > 0 .
bằng:
Ta có:
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Kết quả của giới hạn
bằng:
Ta có
Khi đó ta có:
Vậy
Tính ![]()
Ta có:
Vậy
Giá trị của
bằng:
Cho hàm số
xác định và liên tục trên
với
với
. Tính ![]()
Ta có: Hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
=>
Hàm số nào không liên tục tại
?
Ta có hàm số không xác định tại
nên hàm số không liên tục tại
NB
Tìm giá trị thực của tham số a để hàm số
liên tục tại
.
Ta có:
Hàm số liên tục tại