Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Tính ![]()
Ta có:
Vậy
Tìm khẳng định đúng trong các khẳng định sau
liên tục trên
và
thì tồn tại ít nhất một số
sao cho
.
liên tục trên
và trên
nhưng không liên tục trên
.
Khẳng định sai vì
vẫn có thể xảy ra trường hợp
vô nghiệm trên khoảng
.
Khẳng định sai vì nếu
liên tục trên đoạn
và trên
thì liên tục
.
Vậy cả hai khẳng định đều sai.
Tính tổng S gồm tất cả các giá trị của tham số m để hàm số
liên tục tại
.
Tập xác định
Điều kiện để bài toán trở thành
Ta có:
Cho hàm số
xác định và liên tục trên
với
với
. Tính
.
Ta có hàm số xác định và liên tục trên
nên suy ra
Cho
với
. Phải bổ sung thêm giá trị
bằng bao nhiêu thì hàm số
liên tục trên
?
Ta có:
Để hàm số liên tục trên thì
Cho các số thực
thỏa mãn
và
. Tính giá trị biểu thức
.
Ta có:
Khi và chỉ khi: .
Kết hợp với
Khi đó và
(vì
Vậy nên
.
bằng
Ta có:
Có bao nhiêu giá trị nguyên của tham số a thuộc khoảng (-10; 10) để
.
Ta có:
Vì
Vậy có 3 giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để
.
Ta có: nên
Theo đề bài ta có
Mặt khác
Vậy có tất cả 2012 giá trị nguyên thỏa mãn.
Tính giới hạn
ta được kết quả bằng
Ta có:
.
bằng:
Ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng
khi đó
Đúng||Sai
b) Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c)
Sai||Đúng
d) Cho hàm số
xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng khi đó
Đúng||Sai
b) Cho hàm số liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c) Sai||Đúng
d) Cho hàm số xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
a) Ta có:
b) Ta có:
Điều kiện cần và đủ để hàm số liên tục trên là
c)
d) Ta có:
Từ (*) và (**) ta có:
Do đó:
Giá trị của
bằng:
Ta có:
Cho hàm số 
Có bao nhiêu giá trị nguyên của
để hàm số gián đoạn tại ![]()
Đáp án: 2024
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại
Xét tính đúng sai của các khẳng định sau:
a)
. Đúng||Sai
b) Biết rằng
,
. Khi đó
. Sai||Đúng
c)
. Sai||Đúng
d) Biết
(với
). Khi đó
. Đúng||Sai
Xét tính đúng sai của các khẳng định sau:
a) . Đúng||Sai
b) Biết rằng ,
. Khi đó
. Sai||Đúng
c) . Sai||Đúng
d) Biết (với
). Khi đó
. Đúng||Sai
a) Đúng.
Vì
b) Sai.
Vì
c) Sai.
Vì
d) Đúng.
Xét thấy là nghiệm của phương trình
(mẫu số) nên
cũng là một nghiệm của phương trình
(tử số)
.
Khi đó:
.
Vậy .
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Tính giá trị biểu thức ![]()
Tính giới hạn
.
Ta có: