Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

Chọn khẳng định đúng.
Ta có: khi đó:
Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

Chọn khẳng định đúng.
Ta có: khi đó:
Cho hàm số
. Xác định
để hàm số liên tục trên
?
Ta có:
Hàm số liên tục trên khi và chỉ khi hàm số liên tục tại
Giá trị của
bằng:
Ta có mà
Suy ra
Cho hàm số
xác định trên tập số thực và có đồ thị như hình vẽ:

Hỏi hàm số
không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Tính tổng
.
Ta có:
Cho hàm số
xác định và liên tục tại
với
. Xác định giá trị tham số m thỏa mãn điều kiện đề bài.
Với mọi ta có:
Theo giả thiết ta phải có
Hàm số nào sau đây không liên tục tại
?
Hàm số có tập xác định
nên không liên tục tại
.
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Số điểm gián đoạn của hàm số
là:
Đáp án: 1
Số điểm gián đoạn của hàm số là:
Đáp án: 1
Hàm số có TXĐ
.
Hàm số liên tục trên mỗi khoảng
,
và
.
(i) Xét tại , ta có
Hàm số liên tục tại
.
(ii) Xét tại , ta có
Hàm số
gián đoạn tại
.
Vậy số điểm gián đoạn cần tìm là 1.
Chọn kết quả đúng của
:
Ta có :
Vì nên suy ra:
Tính giới hạn
.
Ta có:
Kết quả của giới hạn
bằng:
Ta có:
Nhận định sự đúng sai của các kết luận sau?
a)
. Đúng||Sai
b) Phương trình
có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu
thì
bằng
. Sai||Đúng
d) Hàm số
gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Cho các số thực
thỏa mãn
và
. Tính giá trị biểu thức
.
Ta có:
Khi và chỉ khi: .
Kết hợp với
Khi đó và
(vì
Vậy nên
.
Xét tính đúng sai của các khẳng định sau:
a)
. Đúng||Sai
b) Biết rằng
,
. Khi đó
. Sai||Đúng
c)
. Sai||Đúng
d) Biết
(với
). Khi đó
. Đúng||Sai
Xét tính đúng sai của các khẳng định sau:
a) . Đúng||Sai
b) Biết rằng ,
. Khi đó
. Sai||Đúng
c) . Sai||Đúng
d) Biết (với
). Khi đó
. Đúng||Sai
a) Đúng.
Vì
b) Sai.
Vì
c) Sai.
Vì
d) Đúng.
Xét thấy là nghiệm của phương trình
(mẫu số) nên
cũng là một nghiệm của phương trình
(tử số)
.
Khi đó:
.
Vậy .
Tính
.
Ta có:
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục tại
. Sai||Đúng
b) Cho hàm số liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết khi đó
Sai||Đúng
d) Trong các hàm số , có 3 hàm số liên tục trên tập số thực. Đúng||Sai
a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.
b) Xét phương trình
Đặt ta có:
Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng .
c) Ta có:
d) Các hàm số liên tục trên tập số thực là .
Cho hàm số
. Khi đó
bằng:
Ta có:
Giới hạn dãy số
với
là?
Ta có:
Vì nên suy ra:
Tính giá trị ![]()
Ta có: