bằng:
Ta có:
bằng:
Ta có:
Tính giới hạn
Ta có:
Tính .
Ta chứng minh bằng phương pháp quy nạp, với thì
Với thì
nên (*) đúng với
Giả sử (*) đúng với nghĩa là:
Xét ta có:
Vậy (*) đúng với
Bây giờ ta áp dụng với thì
Tính tổng .
Ta có:
Cho . Giới hạn
bằng
Đáp án: 1
Cho . Giới hạn
bằng
Đáp án: 1
Ta có:
nên
hay
Do đó
.
Tính
Ta có:
Vậy
Xét tính liên tục của hàm số . Khẳng định nào sau đây đúng?
Hàm số xác định với mọi
Ta có: liên tục trên
và
Mặt khác
Vậy hàm số gián đoạn tại x = 1
Cho hai dãy số với
và
. Khi đó
bằng:
Ta có:
Cho hàm số liên tục trên đoạn
sao cho
. Có thể nói gì về số nghiệm của phương trình
trên đoạn
:
Ta có:
Đặt
Khi đó:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng
hay phương trình
có ít nhất một nghiệm thuộc khoảng
.
Biết rằng , với
là phân số tối giản và
. Tính
.
Ta có:
.
Vậy: .
Cho các số thực thỏa mãn
và
. Tính giá trị biểu thức
.
Ta có:
Khi và chỉ khi: .
Kết hợp với
Khi đó và
(vì
Vậy nên
.
Xét tính liên tục của hàm số . Khẳng định nào dưới đây đúng?
Hàm số liên tục trên các khoảng
Ta có:
=> Hàm số liên tục tại
Vậy hàm số liên tục trên tập số thực.
Tính được kết quả là:
Ta có
.
Tính .
Ta có :
.
Tính giá trị giới hạn
Ta có:
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
Sai||Đúng
b) Phương trình có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số khi
bằng -1. Sai||Đúng
d) Dãy số với
là dãy số không bị chặn. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
Sai||Đúng
b) Phương trình có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số khi
bằng -1. Sai||Đúng
d) Dãy số với
là dãy số không bị chặn. Đúng||Sai
a) Ta có:
có điều kiện xác định
Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.
b) Đặt
f(x) liên tục trên tập số thực nên f(x) liên tục trên
Ta có:
Từ (*) và (**) suy ra phương trình có nghiệm thuộc
.
c) Ta có:
Vậy không tồn tại giới hạn của hàm số khi
d) Ta có: với n chẵn
Với n lẻ
Suy ra dãy số không bị chặn.
bằng
Ta có:
Hàm số nào dưới đây gián đoạn tại ?
Ta có: nên hàm số
gián đoạn tại điểm
Cho hàm số xác định và liên tục tại
với
. Xác định giá trị tham số m thỏa mãn điều kiện đề bài.
Với mọi ta có:
Theo giả thiết ta phải có
Tính giới hạn ?
Ta có:
.