Biết rằng hàm số
liên tục tại
(a là tham số. Khẳng định nào dưới đây đúng?
Tập xác định
Theo giả thiết ta có:
Biết rằng hàm số
liên tục tại
(a là tham số. Khẳng định nào dưới đây đúng?
Tập xác định
Theo giả thiết ta có:
Tính giới hạn ![]()
Ta có:
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
Tính giới hạn ![]()
Ta có:
Nhận định sự đúng sai của các kết luận sau?
a)
. Đúng||Sai
b) Phương trình
có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu
thì
bằng
. Sai||Đúng
d) Hàm số
gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Giả sử
là các giá trị để hàm số
có giới hạn hữu hạn khi
dần tới
. Tính giá trị biểu thức ![]()
Ta có:
Suy ra hữu hạn khi
dần tới
khi và chỉ khi
Do nên điều kiện cần để có (*) là
Ngược lại với ta có:
=> có giới hạn hữu hạn khi
dần tới
Tính giá trị của giới hạn
.
Đặt thì ta có:
Do đó:
Tìm giá trị của tham số
để hàm số
liên tục trên
.
Đáp án: 3
Tìm giá trị của tham số để hàm số
liên tục trên
.
Đáp án: 3
Phần giải chi tiết
Tập xác định .
Hàm số liên tục trên các khoảng
.
Ta có
Hàm số liên tục trên
khi và chỉ khi
.
Tính giới hạn của hàm số ![]()
Ta có: vì
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để
.
Ta có: nên
Theo đề bài ta có
Mặt khác
Vậy có tất cả 2012 giá trị nguyên thỏa mãn.
Cho
. Giới hạn
bằng
Đáp án: 1
Cho . Giới hạn
bằng
Đáp án: 1
Ta có:
nên
hay
Do đó
.
Cho hàm số
xác định và liên tục trên
với
với
. Tính giá trị ![]()
Ta có hàm số xác định và liên tục trên
nên suy ra
Tìm giới hạn
.
Ta có ,
và
nên
.
Cho hàm số
. Hãy chọn kết luận đúng.
Ta có:
Lại có:
=> Hàm số liên tục phải tại x = 1
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
Tính giới hạn
.
Ta có:
Giá trị của
bằng:
Ta có:
Giá trị của
bằng:
Với mọi M > 0 lớn tùy ý, ta chọn
Ta có:
với mọi
Suy ra
Giới hạn
bằng
Ta có:
Cho hàm số
liên tục trên đoạn
sao cho
. Có thể nói gì về số nghiệm của phương trình
trên đoạn
:
Ta có:
Đặt
Khi đó:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng
hay phương trình
có ít nhất một nghiệm thuộc khoảng
.