Hàm số nào dưới đây không liên tục trên khoảng
?
Xét hàm số với
Ta có:
Suy ra không tồn tại nên hàm số không liên tục tại x = 0
Vậy hàm số không liên tục trên .
Hàm số nào dưới đây không liên tục trên khoảng
?
Xét hàm số với
Ta có:
Suy ra không tồn tại nên hàm số không liên tục tại x = 0
Vậy hàm số không liên tục trên .
Kết quả giới hạn
, với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Kết quả giới hạn , với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Ta có
.
Suy ra .
Trong giới hạn sau đây, giới hạn nào bằng -1?
Ta có:
bằng:
Ta có:
Cho
. Khi đó:
a) Khi
thì
. Đúng||Sai
b) Khi
thì
. Sai||Đúng
c) Khi
thì
. Sai||Đúng
d)
thì giá trị của
là một nghiệm của phương trình
. Đúng||Sai
Cho . Khi đó:
a) Khi thì
. Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Sai||Đúng
d) thì giá trị của
là một nghiệm của phương trình
. Đúng||Sai
Ta có:
.
Vì vậy giá trị của là một nghiệm của phương trình
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để
.
Ta có: nên
Theo đề bài ta có
Mặt khác
Vậy có tất cả 2012 giá trị nguyên thỏa mãn.
Cho hàm số
có đồ thị như hình dưới đây. Chọn khẳng định đúng.

Dựa vào đồ thị ta thấy hàm số liên tục trên
Hàm số nào trong các hàm số dưới đây không liên tục trên
?
Hàm số có tập xác định
nên hàm số không liên tục trên
.
Giá trị của
bằng:
Ta có:
Cho hàm số
. Khi đó:
a) Giới hạn
. Sai||Đúng
b) Giới hạn
. Đúng||Sai
c) Giới hạn
. Đúng||Sai
d) Hàm số tồn tại giới hạn khi
. Sai||Đúng
Cho hàm số . Khi đó:
a) Giới hạn. Sai||Đúng
b) Giới hạn. Đúng||Sai
c) Giới hạn. Đúng||Sai
d) Hàm số tồn tại giới hạn khi . Sai||Đúng
a) Ta có: Giới hạn
b) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
c) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
d) Vì (hay
) nên không tồn tại
.
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Cho hàm số
và
. Xét tính đúng sai của các khẳng định dưới đây?
a) Giới hạn
. Sai||Đúng
b) Giới hạn
. Đúng||Sai
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hàm số và
. Xét tính đúng sai của các khẳng định dưới đây?
a) Giới hạn . Sai||Đúng
b) Giới hạn . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
a) .
b) .
c) .
d) .
Tính giới hạn ![]()
Ta có:
Giá trị của
bằng:
Với mọi số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
với mọi
Suy ra
Cho hàm số
hàm số f(x) liên tục tại:
Tập xác định:
Vậy hàm số liên tục tại
Hàm số liên tục khi
hàm số liên tục khi
Tại x = 1 ta có:
Vậy hàm số liên tục tại
Hàm số liên tục trên
Cho hàm số
xác định và liên tục trên
với
với
. Tính giá trị ![]()
Ta có hàm số xác định và liên tục trên
nên suy ra
Chọn mệnh đề đúng trong các mệnh đề sau:
Theo nội dung định lý tìm giới hạn, ta có:
Nếu , thì
Có bao nhiêu giá trị nguyên của tham số a thuộc khoảng (-10; 10) để
.
Ta có:
Vì
Vậy có 3 giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.
Tính giới hạn
.
Ta có:
Tính
.
Ta có:
Tính ![]()
Ta có:
Vậy