Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Biết \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} =
\frac{a}{b}, trong đó a, b\in\mathbb{ Z}. Tính - 106a + b.

    Đáp án: -100||- 100

    Đáp án là:

    Biết \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} =
\frac{a}{b}, trong đó a, b\in\mathbb{ Z}. Tính - 106a + b.

    Đáp án: -100||- 100

    Ta có:

    \lim_{x ightarrow 1}\frac{\sqrt[3]{x +
7} - \sqrt{x + 3}}{x^{2} - 3x + 2} = \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - 2}{(x - 1)(x - 2)} + \lim_{x ightarrow
1}\frac{2 - \sqrt{x + 3}}{(x - 1)(x - 2)}.

    Ta có:

    \lim_{x ightarrow 1}\frac{\sqrt[3]{x +
7} - 2}{(x - 1)(x - 2)}

    = \lim_{x ightarrow 1}\frac{x + 7 -
2^{3}}{(x - 1)(x - 2)\left\lbrack \sqrt[3]{(x + 7)^{2}} + 2\sqrt[3]{x +
7} + 4 ightbrack}.

    = \lim_{x ightarrow 1}\frac{1}{(x -
2)\left( \sqrt[3]{(x + 7)^{2}} + 2\sqrt[3]{x + 7} + 4 ight)} = -
\frac{1}{12}.

    Đồng thời:

    \lim_{x ightarrow 1}\frac{2 - \sqrt{x
+ 3}}{(x - 1)(x - 2)} = \lim_{x ightarrow 1}\frac{2^{2} - (x + 3)}{(x
- 1)(x - 2)(2 + \sqrt{x + 3})}

    = \lim_{x ightarrow 1}\frac{- 1}{(x -
2)(2 + \sqrt{x + 3})} = \frac{1}{4}

    \Rightarrow \lim_{x ightarrow
1}\frac{\sqrt[3]{x + 7} - \sqrt{x + 3}}{x^{2} - 3x + 2} = - \frac{1}{12}
+ \frac{1}{4} = \frac{1}{6}

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 6 \\
\end{matrix} ight..

    Vậy - 106a + b = - 106 + 6 = -
100.

  • Câu 2: Thông hiểu

    Cho giới hạn L = \lim\sqrt{3 +\frac{an^{2} - 1}{3 + n^{2}} - \frac{1}{2^{n}}}. Khi đó :

    a) L = 2 khi a = 1 Đúng||Sai

    b) L = 3 khi a = 3 Sai||Đúng

    c) L > 3 khi a > 6 Đúng||Sai

    d) Có 3 giá trị nguyên của a thuộc (0;20) sao cho \lim\sqrt{3 + \frac{an^{2} - 1}{3 + n^{2}} -\frac{1}{2^{n}}} là một số nguyên. Đúng||Sai

    Đáp án là:

    Cho giới hạn L = \lim\sqrt{3 +\frac{an^{2} - 1}{3 + n^{2}} - \frac{1}{2^{n}}}. Khi đó :

    a) L = 2 khi a = 1 Đúng||Sai

    b) L = 3 khi a = 3 Sai||Đúng

    c) L > 3 khi a > 6 Đúng||Sai

    d) Có 3 giá trị nguyên của a thuộc (0;20) sao cho \lim\sqrt{3 + \frac{an^{2} - 1}{3 + n^{2}} -\frac{1}{2^{n}}} là một số nguyên. Đúng||Sai

    Ta có \left\{ \begin{matrix}\lim\dfrac{an^{2} - 1}{3 + n^{2}} = \lim\dfrac{a -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = a \\\lim\dfrac{1}{2^{n}} = \lim\left( \dfrac{1}{2} ight)^{n} = 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{an^{2} -1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + a}

    Ta có \left\{ \begin{matrix}a \in (0;20),\ \ a\mathbb{\in Z} \\\sqrt{a + 3}\mathbb{\in Z} \\\end{matrix} ight.\ \overset{ightarrow}{}a \in \left\{ 1;6;13ight\}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 3: Vận dụng

    Có bao nhiêu giá trị nguyên của m thuộc (0;20) sao cho \lim\sqrt{3 + \frac{mn^{2} - 1}{3 + n^{2}} -
\frac{1}{2^{n}}} là:

    Ta có:

    \left\{ \begin{matrix}\lim\dfrac{mn^{2} - 1}{3 + n^{2}} = \lim\dfrac{m -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = m \\\lim\dfrac{1}{2^{n}} = \lim\left( \dfrac{1}{2} ight)^{n} = 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{mn^{2} -
1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + m}

    Ta có: \left\{ \begin{matrix}
m \in (0;20);m\mathbb{\in Z} \\
\sqrt{m + 3}\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 1;6;13
ight\}

  • Câu 4: Vận dụng

    Biết \lim_{x
ightarrow 0}\frac{\sin x}{x} = 1. Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\tan x}{x}\ khi\ x eq 0 \\0\ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. liên tục trên khoảng nào sau đây?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}có nghĩa là

    D = \underset{k\mathbb{\in
Z}}{\cup}\left( \frac{\pi}{2} + k\pi;\frac{3\pi}{2} + k\pi ight) = ...
\cup \left( - \frac{\pi}{2};\frac{\pi}{2} ight) \cup \left(
\frac{\pi}{2};\frac{3\pi}{2} ight) \cup ...

    Khi đó

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\tan x}{x}

    = \lim_{x ightarrow 0}\frac{\sin
x}{x}.\frac{1}{\cos x} = 1.\frac{1}{cos0} = 1 eq 0 = f(0)

  • Câu 5: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow 1}\frac{2x^{5} + x^{4} -
4x^{2} + 1}{x^{3} - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{5} +
x^{4} - 4x^{2} + 1}{x^{3} - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( 2x^{4} + 3x^{3} + 3x^{2} - x - 1 ight)}{(x - 1)\left( x^{2} +
x + 1 ight)}

    = \lim_{x ightarrow 1}\frac{2x^{4} +
3x^{3} + 3x^{2} - x - 1}{x^{2} + x + 1} = 2

  • Câu 6: Vận dụng

    \lim_{x
ightarrow 1}\frac{x^{100} - 2x + 1}{x^{50} - 2x + 1} bằng:

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{100} - 2x
+ 1}{x^{50} - 2x + 1}

    = \lim_{x ightarrow 1}\frac{\left(
x^{100} - 1 ight) - 2(x - 1)}{\left( x^{50} - 1 ight) - 2(x -
1)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( x^{99} + x^{98} + .... + x + 1 - 2 ight)}{(x - 1)\left(
x^{49} + x^{48} + .... + x + 1 - 2 ight)}

    = \lim_{x ightarrow 1}\frac{x^{99} +
x^{98} + .... + x + 1 - 2}{x^{49} + x^{48} + .... + x + 1 - 2} =
\frac{98}{48} = \frac{49}{24}

  • Câu 7: Thông hiểu

    Tính giới hạn \lim_{x ightarrow -
2}\frac{2x^{2} + 3x - 2}{x^{2} - 4}?

    Ta có:

    \lim_{x ightarrow - 2}\frac{2x^{2} +
3x - 2}{x^{2} - 4}

    = \lim_{x ightarrow - 2}\frac{(2x -
1)(x + 2)}{(x - 2)(x + 2)}

    = \lim_{x ightarrow - 2}\frac{2x - 1}{x- 2} = \frac{5}{4}.

  • Câu 8: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.

    Hàm số y = \sin xác định trên tập số thực suy ra hàm số liên tục trên \mathbb{R}

    Hàm số y = \cos\sqrt{x} xác định trên D = \lbrack 0; + \infty)

    Hàm sốy = \tan x xác định trên D\mathbb{= R}\backslash\left\{ \frac{\pi}{2}
+ k\pi|k\mathbb{\in Z} ight\}

    Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.

    b) Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x ight) - \lim_{x ightarrow -
\infty}1

    = \lim_{x ightarrow - \infty}\left(
\frac{1}{\sqrt{x^{2} + 1} - x} ight) - 1 = \lim_{x ightarrow -
\infty}\left( \frac{\frac{1}{x}}{- \sqrt{1 + \frac{1}{x}} - 1} ight) -
1 = - 1

    c) Xét hàm số 2x^{4} - 5x^{2} + x + 1 =
f(x) liên tục trên \mathbb{R}

    Ta có: \left\{ \begin{matrix}
f( - 2) = 11;f( - 1) = - 3 \\
f(0) = 1;f(1) = - 1;f(2) = 15 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0).f( - 1) < 0 \\
f(1).f(2) < 0 \\
\end{matrix} ight. nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng (0;2).

    d) Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{-}}\left( x^{2} + 1 ight) = 2 > 0 \\
\lim_{x ightarrow 1^{-}}(1 - x) = 0 \\
\end{matrix} ight.. Khi x
ightarrow 1^{-} \Leftrightarrow x < 1 \Leftrightarrow 1 - x >
0

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} + 1}{1 - x} = + \infty.

  • Câu 9: Nhận biết

    Giá trị của \lim(2n + 1) bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} > \frac{M - 1}{2}

    Ta có:

    2n + 1 > 2n_{M} + 1 > M\ ,\
\ \ \forall n > n_{M}.

    = > \lim(2n + 1) = +
\infty

  • Câu 10: Thông hiểu

    Giới hạn cần tìm của E =
\lim\frac{\sqrt{n^{3} + 2n} + 1}{n + 2} bằng:

    E = \lim\frac{\sqrt{n^{3} + 2n} + 1}{n +
2} = + \infty

  • Câu 11: Nhận biết

    Cho hàm số f(x) = \left\{ {\begin{array}{*{20}{c}}  {2{x^3} - 2x{\text{  }}khi{\text{ }}x \geqslant 1} \\   {{x^3} - 2x{\text{   }}khi{\text{ }}x < 1} \end{array}} ight.. Khi đó \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) bằng:

    Ta có:

    \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^3} - 2x} ight) =  - 1

  • Câu 12: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{3{x^4} - 2{x^5}}}{{5{x^4} + 3{x^6} + 1}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{3{x^4} - 2{x^5}}}{{5{x^4} + 3{x^6} + 1}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{3}{{{x^2}}} - \dfrac{2}{x}}}{{\dfrac{5}{{{x^2}}} + 3 + \dfrac{1}{{{x^6}}}}} = 0 \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Giá trị của D =
\lim\frac{\sqrt{n^{2} + 1} - \sqrt[3]{3n^{3} + 2}}{\sqrt[4]{2n^{4} + n +
2} - n} bằng:

    Ta có:

    D =
\lim\frac{\sqrt{n^{2} + 1} - \sqrt[3]{3n^{3} + 2}}{\sqrt[4]{2n^{4} + n +
2} - n}  

    = \lim\dfrac{n\left( \sqrt{1 + \dfrac{1}{n^{2}}} - \sqrt[3]{3 +\dfrac{2}{n^{3}}} ight)}{n\left( \sqrt[4]{2 + \dfrac{1}{n^{3}} +\dfrac{2}{n^{4}}} - 1 ight)}

       =\frac{1 - \sqrt[3]{3}}{\sqrt[4]{2} -1}

  • Câu 14: Nhận biết

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

  • Câu 15: Nhận biết

    Giá trị của \lim\frac{\cos n + \sin n}{n^{2} + 1} bằng:

    Ta có \frac{|\cos n + \sin n|}{n^{2}}
< \frac{2}{n^{2}}\lim\frac{1}{n^{2}} = 0

    Suy ra \lim\frac{\cos n + \sin n}{n^{2} +
1} = 0.

  • Câu 16: Vận dụng

    Biết \lim_{x
ightarrow - \infty}\frac{\sqrt{4x^{2} + x + 1} + 4}{ax - 2} =
\frac{1}{2}. Hỏi giá trị a thuộc tập hợp nào dưới đây?

    Ta có:

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{4x^{2} + x + 1} + 4}{ax - 2} =\dfrac{1}{2}

    \Leftrightarrow \lim_{x ightarrow -\infty}\dfrac{- x\left( \sqrt{4 + \dfrac{1}{x} + \dfrac{1}{x^{2}}} +\dfrac{4}{x} ight)}{x\left( a - \dfrac{2}{x} ight)} =\dfrac{1}{2}

    \Leftrightarrow \frac{- 2}{a} =
\frac{1}{2}

    \Leftrightarrow a = - 4 \Rightarrow a
\in \lbrack - 6; - 3brack

  • Câu 17: Vận dụng cao

    Rút gọn biểu thức A = 1 + \cos^{2}x +\cos^{4}x + ... + \cos^{2n}x + ... với \cos x eq \pm 1

    Ta có:

    \begin{matrix}
  A = \underbrace {1 + {{\cos }^2}x + {{\cos }^4}x + ... + {{\cos }^{2n}}x + ...}_{CSN:{u_1} = 1;q = {{\cos }^2}x} \hfill \\
   = \dfrac{1}{{1 - {{\cos }^2}x}} = \dfrac{1}{{{{\sin }^2}x}} \hfill \\ 
\end{matrix}

  • Câu 18: Nhận biết

    Hàm số f(x) =
\frac{x + 1}{x^{2} - 5x + 4} liên tục trên khoảng nào sau đây?

    Ta có:

    Hàm số f(x) = \frac{x + 1}{x^{2} - 5x +
4} là hàm phân thứ hữu tỉ có tập xác định D\mathbb{= R}\backslash\left\{ 1;4
ight\} nên hàm số f(x) liên tục trên các khoảng ( -
\infty;1),(1;4),(4; + \infty).

    Do đó f(x) liên tục trên (2;3).

  • Câu 19: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{3} - x^{2} + 2x - 2}{x - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\3x + m\ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight. liên tục tại x = 1.

    Ta có:

    f(1) = m + 3

    \lim_{x ightarrow 1}f(x) = \lim_{xightarrow 1}\frac{x^{3} - x^{2} + 2x - 2}{x - 1}

    = \lim_{x ightarrow1}\frac{(x - 1)\left( x^{2} + 2 ight)}{x - 1} = \lim_{x ightarrow1}\left( x^{2} + 2 ight) = 3

    Hàm số f(x) liên tục tại x = 1

    = > m + 3 = 3 = > m =
0

  • Câu 20: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{\sqrt{2x + 1} - 1}{x}\ khi\ x eq 0 \\m^{2} - 2m + 2\ khi\ x eq 0 \\\end{matrix} ight.. Tìm tất cả các giá trị của tham số m để hàm số liên tục tại x = 0?

    Ta có: f(0) = m^{2} - 2m + 2

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\sqrt{2x + 1} - 1}{x}

    = \lim_{x ightarrow
0}\frac{2x}{x\left( \sqrt{2x + 1} + 1 ight)} = \lim_{x ightarrow
0}\frac{2}{\sqrt{2x + 1} + 1} = 1

    Hàm số liên tục tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0}f(x) = f(0)

    \Leftrightarrow m^{2} - 2m + 1 = 0
\Rightarrow m = 1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo