Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho c là hằng số, k là số nguyên dương khác không. Tìm khẳng định sai.

    Mệnh đề \lim_{x ightarrow -
\infty}x^{k} = - \infty sai khi k là số chẵn.

  • Câu 2: Vận dụng

    \lim_{x
ightarrow 1}\frac{x^{100} - 2x + 1}{x^{50} - 2x + 1} bằng:

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{100} - 2x
+ 1}{x^{50} - 2x + 1}

    = \lim_{x ightarrow 1}\frac{\left(
x^{100} - 1 ight) - 2(x - 1)}{\left( x^{50} - 1 ight) - 2(x -
1)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( x^{99} + x^{98} + .... + x + 1 - 2 ight)}{(x - 1)\left(
x^{49} + x^{48} + .... + x + 1 - 2 ight)}

    = \lim_{x ightarrow 1}\frac{x^{99} +
x^{98} + .... + x + 1 - 2}{x^{49} + x^{48} + .... + x + 1 - 2} =
\frac{98}{48} = \frac{49}{24}

  • Câu 3: Nhận biết

    Giá trị của {D =
\lim}\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}} bằng:

    Ta có:

    \lim\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}}= \lim \dfrac{4+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{n}+\dfrac{2}{n^2}}}=4

  • Câu 4: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 1}  - x) bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 1}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 1}  - x} ight)\left( {\sqrt {{x^2} + 1}  + x} ight)}}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{x}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{\sqrt {1 + \dfrac{1}{{{x^2}}}}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 5: Vận dụng cao

    Giá trị của giới hạn \lim\frac{1 + a +
a^{2} + ... + a^{n}}{1 + b + b^{2} + ... + b^{n}};\left( |a| < 1,|b|
< 1 ight) bằng:

    Ta có:

    1 + a + a^{2} + ... + a^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a

    => 1 + a + a^{2} + ... + a^{n} =
\frac{1.\left( 1 - a^{n + 1} ight)}{1 - a} = \frac{1 - a^{n + 1}}{1 -
a}

    Tương tự:

    1 + b + b^{2} + ... + b^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b

    => 1 + b + b^{2} + ... + b^{n} =
\frac{1.\left( 1 - b^{n + 1} ight)}{1 - b} = \frac{1 - b^{n + 1}}{1 -
b}

    \Rightarrow \lim\frac{1 + a + a^{2} +
... + a^{n}}{1 + b + b^{2} + ... + b^{n}}

    \begin{matrix}
   = \lim \dfrac{{\dfrac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\dfrac{{1 - {b^{n + 1}}}}{{1 - b}}}} \hfill \\
   = \lim \dfrac{{1 - b}}{{1 - a}}.\dfrac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}} = \dfrac{{1 - b}}{{1 - a}} \hfill \\ 
\end{matrix}

  • Câu 6: Thông hiểu

    Giá trị của A =
\lim\frac{2n + 1}{1 - 3n} bằng:

    A = \lim\frac{2n + 1}{1 - 3n} =
\lim\frac{2 + \frac{1}{n}}{\frac{1}{n} - 3} = - \frac{2}{3}

  • Câu 7: Thông hiểu

    Cho hàm số y =
f(x) = \sqrt{x - 1}. Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng?

    i) Hàm số f(x) có tập xác định D = \lbrack 1; + \infty)

    ii) Hàm số f(x) liên tục trên \lbrack 1; + \infty)

    iii) Hàm số f(x) gián đoạn tại x = 1

    iv) Hàm số f(x) liên tục tại x = 0

    Ta có:

    i) Hàm số f(x) có tập xác định D = \lbrack 1; + \infty) đúng

    ii) Hàm số f(x) liên tục trên \lbrack 1; + \infty) sai. Vì hàm số gián đoạn tại x = 1

    iii) Hàm số f(x) gián đoạn tại x = 1 đúng. Vì hàm số không tồn tại giới hạn trái tại x = 1

    iv) Hàm số f(x) liên tục tại x = 0 sai vì 0 otin \lbrack 1; + \infty)

  • Câu 8: Thông hiểu

    Tìm giá trị nhỏ nhất của a để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 5x + 6}{\sqrt{4x - 3} - x}\ \ \ khi\ x > 3 \\1 - a^{2}x\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x \leq 3 \\\end{matrix} ight. liên tục tại x = 3.

    Điều kiện bài toán trở thành \lim_{x
ightarrow 3^{+}}f(x) = \lim_{x ightarrow 3^{-}}f(x) = f(3)\ \
(*)

    Ta có:

    \lim_{x ightarrow 3^{+}}f(x) = \lim_{x
ightarrow 3^{+}}\frac{x^{2} - 5x + 6}{\sqrt{4x - 3} - x} = \lim_{x
ightarrow 3^{+}}\frac{(x - 2)\left( \sqrt{4x - 3} + x ight)}{1 - x}
= - 3

    \lim_{x ightarrow 3^{-}}f(x) = \lim_{x
ightarrow 3^{-}}\left( 1 - a^{2}x ight) = 1 - 3a^{3}

    f(3) = 1 - 3a^{2}

    Khi đó (*) \Leftrightarrow a = \pm
\frac{2}{\sqrt{3}} \Rightarrow a_{\min} = -
\frac{2}{\sqrt{3}}

  • Câu 9: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số a thuộc khoảng (-10; 10) để

    A = \lim\left\lbrack 5n - 3\left( a^{2} - 2
ight)n^{3} ightbrack = - \infty.

    Ta có:

    A = \lim\left\lbrack 5n - 3\left( a^{2} -
2 ight)n^{3} ightbrack

    = \lim\left\{ n^{3}\left\lbrack
\frac{5}{n^{2}} - 3\left( a^{2} - 2 ight) ightbrack ight\} = -
\infty

    \Rightarrow \lim\left\lbrack
\frac{5}{n^{2}} - 3\left( a^{2} - 2 ight) ightbrack = a^{2} - 2
< 0

    \Leftrightarrow - \sqrt{2} < a <
\sqrt{2}

    a\mathbb{\in Z},a \in ( - 10;10)
\Rightarrow a = \left\{ - 1;0;1 ight\}

    Vậy có 3 giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.

  • Câu 10: Thông hiểu

    Tính giới hạn E =
\lim_{x ightarrow 3^{+}}\frac{x - 3}{\sqrt{x^{2} - 9}}

    Ta có:

    E = \lim_{x ightarrow 3^{+}}\frac{x -
3}{\sqrt{x^{2} - 9}} = \lim_{x ightarrow 3^{+}}\frac{\sqrt{(x -
3)^{2}}}{\sqrt{(x - 3)(x + 3)}} = \lim_{x ightarrow
3^{+}}\frac{\sqrt{x - 3}}{\sqrt{x + 3}} = 0

  • Câu 11: Thông hiểu

    Biết giới hạn \lim\frac{- 3n^{3} + 1}{2n
+ 5} = a\lim\frac{( - 1)^{n}
\cdot 5^{n}}{2^{n} + 5^{2n}} = b. Khi đó:

    a) \lim\left( - 3n^{2} + \frac{1}{n}
ight) = a Đúng||Sai

    b) x = b là hoành độ giao điểm của đường thẳng y = 2x với trục hoành Đúng||Sai

    c) \lim\left( \frac{1}{2024} ight)^{n}
= b Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = b, thì u_{3} = 2 Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\frac{- 3n^{3} + 1}{2n
+ 5} = a\lim\frac{( - 1)^{n}
\cdot 5^{n}}{2^{n} + 5^{2n}} = b. Khi đó:

    a) \lim\left( - 3n^{2} + \frac{1}{n}
ight) = a Đúng||Sai

    b) x = b là hoành độ giao điểm của đường thẳng y = 2x với trục hoành Đúng||Sai

    c) \lim\left( \frac{1}{2024} ight)^{n}
= b Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = b, thì u_{3} = 2 Sai||Đúng

    Ta có:

    \lim\dfrac{- 3n^{3} + 1}{2n + 5} =\lim\dfrac{n\left( - 3n^{2} + \dfrac{1}{n} ight)}{n\left( 2 +\dfrac{5}{n} ight)}

    = \lim\dfrac{- 3n^{2} + \dfrac{1}{n}}{2 +\dfrac{5}{n}} = - \infty

    Do \left\{ \begin{matrix}\lim\left( - 3n^{2} + \dfrac{1}{n} ight) = - \infty \\\lim\left( 2 + \dfrac{5}{n} ight) = 2 \\\end{matrix} ight.

    \lim\frac{( - 1)^{n} \cdot 5^{n}}{2^{n}
+ 5^{2n}} = \lim\frac{( - 1)^{n} \cdot 5^{n}}{2^{n} +
25^{n}}

    = \lim \dfrac{{{{25}^n} \cdot {{\left( {\dfrac{{ - 1}}{5}} ight)}^n}}}{{{{25}^n}\left[ {{{\left( {\dfrac{2}{{25}}} ight)}^n} + 1} ight]}}= \lim \dfrac{{{{\left( {\dfrac{{ - 1}}{5}} ight)}^n}}}{{{{\left( {\dfrac{2}{{25}}} ight)}^n} + 1}} = 0

    Kết luận:

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 12: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}
x^{2} + mx + n\ \ \ khi\ \ \ \ x < - 5\ \  \\
x + 17\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ \  - 5 \leq x \leq 10 \\
mx + n + 10\ \ \ \ khi\ \ \ \ x > 10 \\
\end{matrix} ight. liên tục trên \mathbb{R}. Khi đó

    a) f( - 5) = 12;f(10) = 27. Đúng||Sai

    b) m > 0,\ \  n > 0. Sai||Đúng

    c) 2m + n là số nguyên tố. Sai||Đúng

    d) Giá trị lớn nhất của hàm số y = m.\sin x+ n.\cos x là \sqrt{12}. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
x^{2} + mx + n\ \ \ khi\ \ \ \ x < - 5\ \  \\
x + 17\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ \  - 5 \leq x \leq 10 \\
mx + n + 10\ \ \ \ khi\ \ \ \ x > 10 \\
\end{matrix} ight. liên tục trên \mathbb{R}. Khi đó

    a) f( - 5) = 12;f(10) = 27. Đúng||Sai

    b) m > 0,\ \  n > 0. Sai||Đúng

    c) 2m + n là số nguyên tố. Sai||Đúng

    d) Giá trị lớn nhất của hàm số y = m.\sin x+ n.\cos x là \sqrt{12}. Sai||Đúng

    a) Đúng.

    Ta có : f( - 5) = - 5 + 17 = 12, f(10) = 10 + 17 = 27 (mệnh đề a) đúng)

    b) Sai.

    Với x < - 5 ta có f(x) = x^{2} + mx + n, là hàm đa thức nên liên tục trên ( - \infty; - 5).

    Với - 5 < x < 10 ta có f(x) = x + 17, là hàm đa thức nên liên tục trên (-5; 10).

    Với x > 10 ta có f(x) = mx + n + 10, là hàm đa thức nên liên tục trên (10 ;+\infty).

    Để hàm số liên tục trên \mathbb{R} thì hàm số phải liên tục tại x = - 5x = 10.

    Ta có:

    f( - 5) = 12;f(10) = 27.

    \lim_{x ightarrow - 5^{-}}f(x) =\lim_{x ightarrow - 5^{-}}\left( x^{2} + mx + n ight) = - 5m + n + 25.

    \lim_{x ightarrow - 5^{+}}f(x) =
\lim_{x ightarrow - 5^{+}}(x + 17) = 12.

    \lim_{x ightarrow 10^{-}}f(x) = \lim_{x
ightarrow 10^{-}}(x + 17) = 27.

    \lim_{x ightarrow 10^{+}}f(x) = \lim_{x
ightarrow 10^{+}}(mx + n + 10) = 10m + n + 10.

    Hàm số liên tục tại x = - 5x = 10 khi

    \left\{ \begin{matrix}- 5m + n + 25 = 12 \\10m + n + 10 = 27 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}- 5m + n = - 13 \\10m + n = 17 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 2 \ = - 3 \\\end{matrix} ight. (mệnh đề b) sai).

    c) Sai.

    Ta có 2m + n = 1 không phải số nguyên tố (mệnh đề c) sai).

    d) Sai.

    Ta có: y = m.sinx + n.cosx\ \
\  \Rightarrow \ \ \ y = 2sinx - 3cosx

    Xét phương trình ẩn x:

    2\sin x - 3\cos x = y

    \Leftrightarrow \sin x.\frac{2}{\sqrt{13}} - \cos x.\frac{3}{\sqrt{13}} =\frac{y}{\sqrt{13}}

    \Leftrightarrow \sin x.\cos\alpha - \cos x.\sin\alpha = \frac{y}{\sqrt{13}}, với \cos\alpha = \frac{2}{\sqrt{13}},\ \sin\alpha =
\frac{3}{\sqrt{13}}.

    \Leftrightarrow \sin(x - \alpha) =
\frac{y}{\sqrt{13}}

    Ta có

    \left| \sin(x - \alpha) ight| \leq
1

    \begin{matrix}
\Rightarrow \left| \frac{y}{\sqrt{13}} ight| \leq 1 \\
\Leftrightarrow - \sqrt{13} \leq y \leq \sqrt{13} \\
\end{matrix}

    Suy ra GTLN của y bằng \sqrt{13} khi \sin(x - \alpha) = 1 hay x = \alpha + \frac{\pi}{2} + k2\pi, với \cos\alpha = \frac{2}{\sqrt{13}},\
\sin\alpha = \frac{3}{\sqrt{13}}

    Vậy khẳng định d) sai.

  • Câu 13: Nhận biết

    Giá trị của  \lim\frac{1}{n^{k}} với k \in \mathbb{N^*}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\sqrt[k]{\frac{1}{a}}

    Suy ra:

    \frac{1}{n^{k}} < \frac{1}{n_{a}^{k}} < a\
\forall n > n_{a}

    Vậy \lim\frac{1}{n^{k}} = 0.

  • Câu 14: Vận dụng

    Hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  { - x\cos x{\text{       }}khi{\text{ }}x < 0} \\   {\dfrac{{{x^2}}}{{1 + x}}{\text{        }}khi{\text{ }}0 \leqslant x < 1} \\   {{x^3}{\text{             }}khi{\text{ x}} \geqslant {\text{1}}} \end{array}} ight.

    Ta có: f(x) liên tục tại x e 0; x e 1

    Tại x=0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x\cos x} ight) = 0 \hfill \\  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {\dfrac{{{x^2}}}{{1 + x}}} ight) = 0 \hfill \\  f\left( 0 ight) = 0 \hfill \\ \end{matrix}

    \Rightarrow \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight)

    Vậy hàm số liên tục tại x=0

    Tại x=1 ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\dfrac{{{x^2}}}{{1 + x}}} ight) = \dfrac{1}{2} \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^3}} ight) = 1 \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) e \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) \hfill \\ \end{matrix}

    Vậy hàm số bị gián đoạn tại x=1

    Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.

  • Câu 15: Thông hiểu

    Tính tổng S gồm tất cả các giá trị của tham số m để hàm số f(x) = \left\{ \begin{matrix}
x^{2} + x\ \ \ \ \ khi\ x < 1 \\
2\ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\
m^{2}x + 1\ \ \ khi\ x > 1 \\
\end{matrix} ight. liên tục tại x = 1.

    Tập xác định D\mathbb{= R}

    Điều kiện để bài toán trở thành

    \lim_{x
ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)\
(*)

    Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{+}}\left( m^{2}x
+ 1 ight) = m^{2} + 1 \\
\lim_{x ightarrow 1^{-}}f(x) = \lim_{x ightarrow 1^{-}}\left( x^{2}
+ x ight) = 2 \\
f(1) = 2 \\
\end{matrix} ight.

    (*) \Leftrightarrow m^{2} + 1 = 2
\Leftrightarrow m = \pm 1

    S = - 1 + 1 = 0

  • Câu 16: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Ta có: \lim_{x ightarrow\infty}\dfrac{2n + 5}{3n + 7} = \lim_{x ightarrow\infty}\dfrac{\dfrac{2n}{n} + \dfrac{5}{n}}{\dfrac{3n}{n} + \dfrac{7}{n}} =\dfrac{2}{3}

    Ta có: Khi a = - 2 thì \lim_{x ightarrow - 2}\left( x^{2} + 4x + 3 + 4
ight) = \lim_{x ightarrow - 2}\left( x^{2} + 4x + 7 ight) =
3

    Ta có: \left\{ \begin{gathered}
  f\left( {\sqrt 3 } ight) = 2\sqrt 3  \hfill \\
  \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {\frac{{{x^2} - 3}}{{x - \sqrt 3 }}} ight) = \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {x + \sqrt 3 } ight) = 2\sqrt 3  \hfill \\ 
\end{gathered}  ight.

    Vậy hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{{{x^2} - 3}}{{x - \sqrt 3 }}{\text{   khi x }} e \sqrt 3  \hfill \\
  2\sqrt 3 {\text{   khi x  =  }}\sqrt 3  \hfill \\ 
\end{gathered}  ight. liên túc tại x = \sqrt{3}

    Ta có: \left\{ \begin{gathered}
  \left| {\frac{{\cos n}}{n}} ight| \leqslant \frac{1}{n} \hfill \\
  \lim \frac{1}{n} = 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \lim \frac{{\cos n}}{n} = 0

  • Câu 17: Nhận biết

    Cho hàm số f(x)
= \frac{2x - 3}{x^{2} - 1}. Mệnh đề nào sau đây đúng?

    Điều kiện xác định của hàm số f(x) =
\frac{2x - 3}{x^{2} - 1} là:

    x^{2} - 1 eq 0 \Rightarrow x eq \pm
1

    Suy ra tập xác định của hàm số là: D\mathbb{= R}\backslash\left\{ \pm 1
ight\}

    Nên hàm số không liên tục tại các điểm x
eq \pm 1.

  • Câu 18: Thông hiểu

    Giới hạn \lim_{}\frac{2^{n} -
3^{n}}{2^{n} + 1} bằng

    Ta có:

    \lim\dfrac{2^{n} - 3^{n}}{2^{n} + 1} =\lim\dfrac{1 - \left( \dfrac{3}{2} ight)^{n}}{1 + \left( \dfrac{1}{2}ight)^{n}}

    = \dfrac{\lim\left( 1 - \left(\dfrac{3}{2} ight)^{n} ight)}{\lim\left( 1 + \left( \dfrac{1}{2}ight)^{n} ight)} = \lim\left( 1 - \left( \dfrac{3}{2} ight)^{n}ight) = - \infty

  • Câu 19: Nhận biết

    Cho f(x)=\frac{x^{2}+5x}{7x} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

     Ta có: 

    Với xeq 0 hàm số xác định => Hàm số liên tục khi x > 0 và x < 0

    Với x = 0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + 5x}}{{7x}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x + 5}}{7} = \dfrac{5}{7} \hfill \\ \end{matrix}

    Để hàm số liên tục tại x = 0 thì

    \Leftrightarrow \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) \Rightarrow f\left( 0 ight) = \frac{5}{7}

  • Câu 20: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Ta có: \lim_{t ightarrow 10}\frac{g(t)
- g(10)}{t - 10} = \lim_{t ightarrow 10}\frac{45t^{2} - t^{3} - 45
\cdot 10^{2} + 10^{3}}{t - 10}

    \begin{matrix}= \lim_{t ightarrow 10}\dfrac{45(t - 10)(t + 10) - (t - 10)\left( t^{2}+ 10t + 100 ight)}{t - 10}  \\\end{matrix}

    = \lim_{t ightarrow 10}\left( - t^{2} + 35t + 350 ight) = 600

    Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm t = 10 (ngày) là 600 người/ngày.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo