Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biết  \lim_{x
ightarrow 0}\frac{\sqrt{3x + 1} - 1}{x} = \frac{a}{b}, trong đó a,b là hai số nguyên dương và phân số \frac{a}{b} tối giản. Tính giá trị của biểu thức T = a^{2} +
b^{2}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{3x +
1} - 1}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{3x + 1} - 1 ight)\left( \sqrt{3x + 1} + 1 ight)}{x\left(
\sqrt{3x + 1} + 1 ight)}

    = \lim_{x ightarrow 0}\frac{3x + 1 -
1}{x\left( \sqrt{3x + 1} + 1 ight)} = \lim_{x ightarrow
0}\frac{3x}{x\left( \sqrt{3x + 1} + 1 ight)}

    = \lim_{x ightarrow
0}\frac{1}{\sqrt{3x + 1} + 1} = \frac{3}{2}

    \Rightarrow a = 3;b = 2

    \Rightarrow T = 3^{2} + 2^{2} =
13

  • Câu 2: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{8n + 2}{2n - 1}}

    Ta có: \lim\sqrt{\dfrac{8n + 2}{2n - 1}} =\lim\sqrt{\dfrac{8 + \dfrac{2}{n}}{2 - \dfrac{1}{n}}} = \sqrt{\dfrac{8 +0}{2 - 0}} = 2

  • Câu 3: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 0,17232323... được biểu diễn bởi phân số tối giản \frac{m}{n}. Khẳng định nào dưới đây đúng?

    Ta có:

    \begin{matrix}
  0,17232323.... \hfill \\
   = 0,17 + 23.\left( {\dfrac{1}{{{{10}^4}}} + \dfrac{1}{{{{10}^6}}} + \dfrac{1}{{{{10}^8}}} + ...} ight) \hfill \\ 
\end{matrix}

    \begin{matrix}
   = \dfrac{{17}}{{100}} + 23.\dfrac{{\dfrac{1}{{10000}}}}{{1 - \dfrac{1}{{100}}}} = \dfrac{{17}}{{100}} + \dfrac{{23}}{{100.99}} \hfill \\
   = \dfrac{{1706}}{{9900}} = \dfrac{{853}}{{4950}} \hfill \\ 
\end{matrix}

    \Rightarrow \left\{ \begin{matrix}
m = 853 \\
n = 4950 \\
\end{matrix} \Rightarrow 2^{12} < T = 4097 < 2^{13} ight.

  • Câu 4: Thông hiểu

    Tính \lim\frac{2n + 1}{1 + n} được kết quả là:

    Ta có

    \lim\frac{2n + 1}{1 + n} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( \frac{1}{n} + 1
ight)} = \lim\frac{2 + \frac{1}{n}}{\frac{1}{n} + 1} = \frac{2 + 0}{0
+ 1} = 2.

  • Câu 5: Nhận biết

    \lim \frac{{\sqrt[3]{{{n^3} + n}}}}{{6n + 2}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{\sqrt[3]{{{n^3} + n}}}}{{6n + 2}} = \lim \dfrac{{\sqrt[3]{{{n^3}\left( {1 + \dfrac{1}{{{n^3}}}} ight)}}}}{{n\left( {6 + \dfrac{2}{n}} ight)}} \hfill \\   = \lim \dfrac{{n\sqrt[3]{{1 + \dfrac{1}{{{n^3}}}}}}}{{n\left( {6 + \dfrac{2}{n}} ight)}} = \dfrac{1}{6} \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Hàm số nào trong các hàm số sau liên tục tại x = 1?

    Xét hàm số f(x) = \left\{ \begin{matrix}
x + 1\ khi\ x \geq 1 \\
3x - 1\ khi\ x < 1 \\
\end{matrix} ight. có:

    \left\{ \begin{matrix}
f(1) = 2 \\
\lim_{x ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{+}}(x + 1) = 2
\\
\lim_{x ightarrow 1^{-}}f(x) = \lim_{x ightarrow 1^{-}}(3x - 1) = 2
\\
\end{matrix} ight.

    Vậy hàm số liên tục tại x =
1.

  • Câu 7: Vận dụng

    Có bao nhiêu giá trị nguyên của m thuộc (0;20) sao cho \lim\sqrt{3 + \frac{mn^{2} - 1}{3 + n^{2}} -
\frac{1}{2^{n}}} là:

    Ta có:

    \left\{ \begin{matrix}\lim\dfrac{mn^{2} - 1}{3 + n^{2}} = \lim\dfrac{m -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = m \\\lim\dfrac{1}{2^{n}} = \lim\left( \dfrac{1}{2} ight)^{n} = 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{mn^{2} -
1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + m}

    Ta có: \left\{ \begin{matrix}
m \in (0;20);m\mathbb{\in Z} \\
\sqrt{m + 3}\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 1;6;13
ight\}

  • Câu 8: Nhận biết

    Cho hàm số f(x)
= \frac{2x - 3}{x^{2} - 1}. Mệnh đề nào sau đây đúng?

    Điều kiện xác định của hàm số f(x) =
\frac{2x - 3}{x^{2} - 1} là:

    x^{2} - 1 eq 0 \Rightarrow x eq \pm
1

    Suy ra tập xác định của hàm số là: D\mathbb{= R}\backslash\left\{ \pm 1
ight\}

    Nên hàm số không liên tục tại các điểm x
eq \pm 1.

  • Câu 9: Thông hiểu

    Kết quả đúng của \lim\left( 5 - \frac{n.\cos{2n}}{n^{2} + 1}
ight) là:

    Xét: \frac{n}{n^{2} + 1} \leq
\frac{n.\cos{2n}}{n^{2} + 1} \leq \frac{n}{n^{2} + 1}

    Ta có: \lim\left( - \frac{n}{n^{2} + 1}ight) = \lim( - \frac{1}{n}.\frac{1}{1 + 1:n^{2}}) = 0

    Suy ra \lim\left( - \frac{n}{n^{2} + 1}
ight) = 0

    \Rightarrow \lim\left(
\frac{n.\cos{2n}}{n^{2} + 1} ight) = 0\  \Rightarrow \lim\left( 5 -
\frac{n.\cos{2n}}{n^{2} + 1} ight) = 5.

  • Câu 10: Vận dụng cao

    Tính \lim_{x
ightarrow 1}\frac{x^{2018} + x^{2017} + .... + x - 2018}{x^{2018} +
1}

    Ta có:

    \lim_{x ightarrow 1}\dfrac{x^{2018} +x^{2017} + .... + x - 2018}{x^{2018} + 1}

    = \lim_{x ightarrow 1}\dfrac{(x -1)\left( x^{2017} + 2x^{2016} + 3.x^{2015} + .... + 2017x + 2018ight)}{(x - 1)\left( x^{2017} + x^{2016} + x^{2015} + .... + x + 1ight)}

    = \dfrac{\dfrac{2018.2019}{2}}{2018} =\dfrac{2019}{2}

    Vậy \lim_{x ightarrow 1}\dfrac{x^{2018}+ x^{2017} + .... + x - 2018}{x^{2018} + 1} =\frac{2019}{2}

  • Câu 11: Nhận biết

    Hàm số f(x) =
\sqrt{3 - x} + \frac{1}{\sqrt{x + 4}} liên tục trên:

    Điều kiện \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq - 3 \\
x > - 4 \\
\end{matrix} ight.

    Tập xác định D = ( -
4;3brack

    => Hàm số liên tục trên ( -
4;3brack

  • Câu 12: Thông hiểu

    Tính giới hạn \lim_{x ightarrow -
2}\frac{2x^{2} + 3x - 2}{x^{2} - 4}?

    Ta có:

    \lim_{x ightarrow - 2}\frac{2x^{2} +
3x - 2}{x^{2} - 4}

    = \lim_{x ightarrow - 2}\frac{(2x -
1)(x + 2)}{(x - 2)(x + 2)}

    = \lim_{x ightarrow - 2}\frac{2x - 1}{x- 2} = \frac{5}{4}.

  • Câu 13: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{3 - x}{2x + 3}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{3 - x}{2x + 3} ight) = \lim_{x ightarrow +\infty}\dfrac{\dfrac{3}{x} - 1}{2 + \dfrac{3}{x}} = -\dfrac{1}{2}

  • Câu 14: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    \lim_{x ightarrow 2}\frac{ax^{2} +
bx - 2}{x - 2} = 5 là 1 số hữu hạn và \lim_{x ightarrow 2}(x - 2) = 0 nên \lim_{x ightarrow 2}\left( ax^{2} + bx - 2
ight) = 0 hay 4a + 2b - 2 = 0
\Leftrightarrow b = 1 - 2a.

    Khi đó:

    \lim_{x ightarrow 2}\frac{ax^{2} + bx
- 2}{x - 2} = \lim_{x ightarrow 2}\frac{ax^{2} + (1 - 2a)x - 2}{x -
2}

    = \lim_{x ightarrow 2}\frac{ax^{2} + x
- 2ax - 2}{x - 2} = \lim_{x ightarrow 2}\frac{(ax^{2} - 2ax) + (x -
2)}{x - 2}

    = \lim_{x ightarrow 2}\frac{(x - 2)(ax
+ 1)}{x - 2} = \lim_{x ightarrow 2}(ax + 1)

    = 2a + 1 = 5 \Rightarrow a =
2

    Suy ra b = - 3.

    Vậy S = - 4.

  • Câu 15: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    a) Ta có:

    f(x) = \frac{x + 1}{x^{2} + 7x +
12} có điều kiện xác định

    ( - \infty; - 4) \cup ( - 4; - 3) \cup (
- 3; + \infty)

    Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.

    b) Đặt 3x^{4} + 5x^{3} + 10 =
f(x)

    f(x) liên tục trên tập số thực nên f(x) liên tục trên \lbrack - 2; - 1brack\ \ (*)

    Ta có: f( - 2) = - 126;f( - 1) =
2

    \Rightarrow f( - 2).f( - 1) <
0(**)

    Từ (*) và (**) suy ra phương trình f(x) =
0 có nghiệm thuộc ( - 2; -
1).

    c) Ta có:

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left( x^{2} - 3x ight) = - 2

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}(x - 1) = 1

    Vậy không tồn tại giới hạn của hàm số khi x ightarrow 2

    d) Ta có: với n chẵn

    \lim u_{n} = \lim\left\lbrack ( -
1)^{n}\sqrt{n} ightbrack = + \infty

    Với n lẻ \lim u_{n} = \lim\left\lbrack (
- 1)^{n}\sqrt{n} ightbrack = - \infty

    Suy ra dãy số không bị chặn.

  • Câu 16: Thông hiểu

    Cho hàm số f(x)=x^{3}-3x-1. Số nghiệm của phương trình f(x)  =0 trên \mathbb{R} là:

    Hàm số f(x)=x^{3}-3x-1 là hàm đa thức có tập xác định là \mathbb{R} nên liên tục trên \mathbb{R}

    => Hàm số liên tục trên mỗi khoảng \left( { - 2; - 1} ight),\left( { - 1;0} ight),\left( {0;2} ight)

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 2} ight) =  - 3} \\   {f\left( { - 1} ight) = 1} \end{array} \Rightarrow } ight.f\left( { - 2} ight).f\left( { - 1} ight) < 0 => Hàm số có ít nhất một nghiệm thuộc khoảng \left( { - 2; - 1} ight)

    \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = 1} \\   {f\left( 0 ight) =  - 1} \end{array} \Rightarrow } ight.f\left( { - 1} ight).f\left( 0 ight) < 0=> Hàm số có ít nhất một nghiệm thuộc khoảng \left( { - 1; 0} ight)

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 2 ight) = 1} \\   {f\left( 0 ight) =  - 1} \end{array} \Rightarrow } ight.f\left( 2 ight).f\left( 0 ight) < 0=> Hàm số có ít nhất một nghiệm thuộc khoảng \left( { 0; 2} ight)

    Vậy phương trình f(x)  =0 có ít nhất ba nghiệm thuộc khoảng \left( { -2; 2} ight)

    Mặt khác phương trình f(x)  =0 là phương trình bậc ba có nhiều nhất ba nghiệm

    => Phương trình f(x)  =0 có đúng ba nghiệm trên \mathbb{R}

  • Câu 17: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{2x + 1}{x - 1}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{2x + 1}{x - 1} ight) = \lim_{x ightarrow +\infty}\left( \dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{1}{x}} ight) =2

  • Câu 18: Vận dụng

    Tính giới hạn \lim_{x ightarrow 1^{+}}\frac{x^{2} - 3x +
2}{6\sqrt{x + 8} - x - 17}

    Ta có:

    \lim_{x ightarrow 1^{+}}\frac{x^{2} -
3x + 2}{6\sqrt{x + 8} - x - 17}

    = \lim_{x ightarrow 1^{+}}\frac{\left(
x^{2} - 3x + 2 ight)\left( 6\sqrt{x + 8} + x + 17 ight)}{\left(
6\sqrt{x + 8} - x - 17 ight)\left( 6\sqrt{x + 8} + x + 17
ight)}

    = \lim_{x ightarrow 1^{+}}\frac{\left(
x^{2} - 3x + 2 ight)\left( 6\sqrt{x + 8} + x + 17 ight)}{- x^{2} +
2x - 1}

    = \lim_{x ightarrow 1^{+}}\frac{(x -
2)(x - 1)\left( 6\sqrt{x + 8} + x + 17 ight)}{- (x -
1)^{2}}

    = \lim_{x ightarrow 1^{+}}\frac{(x -
2)\left( 6\sqrt{x + 8} + x + 17 ight)}{- x + 1}

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 2} ight)\left( {6\sqrt {x + 8}  + x + 17} ight) =  - 36 < 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ + }} \left( { - x + 1} ight) = 0 \hfill \\
   - x + 1 < 0,\forall x > 1 \hfill \\ 
\end{gathered}  ight.

    =>  \lim_{x
ightarrow 1^{+}}\frac{x^{2} - 3x + 2}{6\sqrt{x + 8} - x - 17} = +
\infty

  • Câu 19: Vận dụng

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Đáp án là:

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Hàm số y = f(x) có TXĐ D\mathbb{= R}.

    Hàm số f(x) = \frac{x(x + 1)}{x^{2} -
1} liên tục trên mỗi khoảng ( -
\infty; - 1), ( - 1;1)(1; + \infty).

    (i) Xét tại x = - 1, ta có \lim_{x ightarrow - 1}f(x) = \lim_{x ightarrow
- 1}\frac{x(x + 1)}{x^{2} - 1} = \lim_{x ightarrow - 1}\frac{x}{x - 1}
= \frac{1}{2} = f( - 1)\overset{}{ightarrow} Hàm số liên tục tại x = - 1.

    (ii) Xét tại x = 1, ta có 

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{x}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{x}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. \toHàm số y = f(x) gián đoạn tại x = 1.

    Vậy số điểm gián đoạn cần tìm là 1.

  • Câu 20: Thông hiểu

    Tính giới hạn \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}}.

    Ta có:

    \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}} = \lim\dfrac{\dfrac{4.3^{n} + 7^{n + 1}}{7^{n}}}{\dfrac{2.5^{n} +7^{n}}{7^{n}}}

    = \lim\dfrac{4.\left( \dfrac{3}{7}ight)^{n} + 7}{2.\left( \dfrac{5}{7} ight)^{n} + 1} = 7

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo