Tính giới hạn
.
Ta có:
Tính giới hạn
.
Ta có:
Nhận định sự đúng sai của các kết luận sau?
a)
. Đúng||Sai
b) Phương trình
có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu
thì
bằng
. Sai||Đúng
d) Hàm số
gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính ![]()
Ta có:
Do hàm số đã cho xác định và liên tục trên
=> Hàm số liên tục tại x = 1
=>
Giá trị của giới hạn
là:
Ta có:
Cho
với
. Phải bổ sung thêm giá trị
bằng bao nhiêu thì hàm số
liên tục trên
?
Ta có:
Với hàm số xác định => Hàm số liên tục khi x > 0 và x < 0
Với x = 0 ta có:
Để hàm số liên tục tại x = 0 thì
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Tính giới hạn ![]()
Ta có:
Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

Ta có:
Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m,
Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.
Từ đó tổng quãng đường mà quả bóng đã di chuyển là
Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng .
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là
(người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Ta có:
Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm (ngày) là 600 người/ngày.
Cho hàm số
liên tục trên
. Khi đó
a)
;
. Đúng||Sai
b)
. Sai||Đúng
c)
là số nguyên tố. Sai||Đúng
d) Giá trị lớn nhất của hàm số
là
. Sai||Đúng
Cho hàm số liên tục trên
. Khi đó
a) ;
. Đúng||Sai
b) . Sai||Đúng
c) là số nguyên tố. Sai||Đúng
d) Giá trị lớn nhất của hàm số là
. Sai||Đúng
a) Đúng.
Ta có : ,
(mệnh đề a) đúng)
b) Sai.
Với ta có
, là hàm đa thức nên liên tục trên
.
Với ta có
, là hàm đa thức nên liên tục trên
.
Với ta có
, là hàm đa thức nên liên tục trên
.
Để hàm số liên tục trên thì hàm số phải liên tục tại
và
.
Ta có:
;
.
.
.
.
.
Hàm số liên tục tại và
khi
(mệnh đề b) sai).
c) Sai.
Ta có không phải số nguyên tố (mệnh đề c) sai).
d) Sai.
Ta có:
Xét phương trình ẩn :
, với
.
Ta có
Suy ra GTLN của bằng
khi
hay
, với
Vậy khẳng định d) sai.
Biết giới hạn
. Khi đó:
a) Giá trị
lớn hơn 0. Sai||Đúng
b) Ba số
tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng
phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân
với công bội
và
, thì
. Đúng||Sai
Biết giới hạn . Khi đó:
a) Giá trị lớn hơn 0. Sai||Đúng
b) Ba số tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân với công bội
và
, thì
. Đúng||Sai
a) Ta có:
b) Ba số tạo thành một cấp số cộng với công sai bằng 1
c) Trên khoảng phương trình lượng giác
có 2 nghiệm
d) Cho cấp số nhân với công bội
và
, thì
Kết luận:
|
a) Sai |
b) Sai |
c) Sai |
d) Đúng |
Cho các mệnh đề:
1) Nếu hàm số
liên tục trên
và
thì tồn tại
sao cho
.
2) Nếu hàm số
liên tục trên
và
thì phương trình
có nghiệm.
3) Nếu hàm số
đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
.
Trong các mệnh đề trên:
Theo tính chất hàm số liên tục thì
1) Nếu hàm số liên tục trên
và
thì tồn tại
sao cho
. Mệnh đề sai.
2) Nếu hàm số liên tục trên
và
thì phương trình
có nghiệm. Mệnh đề đúng.
3) Nếu hàm số đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
. Mệnh đề đúng.
Tính giới hạn ![]()
Ta có:
Cho hàm số
. Với giá trị nào của a thì hàm số f(x) liên tục tại
?
Ta có:
Hàm số liên tục tại khi và chỉ khi
Xác định ![]()
Ta có:
Tính ![]()
Ta có:
Ta có:
Ta cũng có:
Vậy
Có bao nhiêu giá trị nguyên của tham số a thuộc khoảng (-10; 10) để
.
Ta có:
Vì
Vậy có 3 giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.
Tính giới hạn
.
Ta có:
Tính giới hạn của hàm số ![]()
Ta có: vì
Kết quả của giới hạn
bằng
Có nếu
.
Vì nên
.