Giá trị của
bằng:
Ta có:
Giá trị của
bằng:
Ta có:
Cho hàm số
với
là tham số. Tính giá trị của tham số
để hàm số có giới hạn tại
.
Hàm số có giới hạn tại
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Tính giới hạn ![]()
Ta có:
Giá trị của
bằng:
Với mọi số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
với mọi
Suy ra
Giới hạn cần tìm của
bằng:
Rút gọn biểu thức
với ![]()
Ta có:
Cho hàm số
. Với giá trị nào của m thì hàm số đã cho liên tục tại
?
Ta có:
Để hàm số liên tục tại thì
Chọn khẳng định đúng?
Giá trị của giới hạn
là:
Ta có:
Cho
là hằng số,
là một số nguyên dương. Quy tắc nào sau đây sai?
Ta có với
là một số nguyên dương.
Số điểm gián đoạn của hàm số
là:
Hàm số xác định trên
Dễ thấy hàm số liên tục trên mỗi khoảng
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Vậy có 1 điểm gián đoạn.
Tính ![]()
Ta có:
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy = 0.
Cho
với
. Phải bổ sung thêm giá trị
bằng bao nhiêu thì hàm số
liên tục trên
?
Ta có:
Với hàm số xác định => Hàm số liên tục khi x > 0 và x < 0
Với x = 0 ta có:
Để hàm số liên tục tại x = 0 thì
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
. Đúng||Sai
b) Biết rằng
khi đó
Đúng||Sai
c)
Sai||Đúng
d) Phương trình
có nghiệm thuộc khoảng
và
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
a) Hàm số có nghĩa khi
Vậy theo định lí ta có hàm số liên tục trên khoảng
.
b) Ta có:
Khi đó: .
Theo bài ra ta có:
c) Ta có:
s
d) Xét hàm số có tập xác định
Suy ra hàm số cũng liên tục trên các khoảng
và
.
Ta có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Lại có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Giá trị của giới hạn
bằng:
Với mọi giá trị thì
Do đó:
Biết
, trong đó
. Tính
.
Đáp án: -100||- 100
Biết , trong đó
. Tính
.
Đáp án: -100||- 100
Ta có:
.
Ta có:
.
.
Đồng thời:
.
Vậy .
Hàm số
liên tục trên:
Điều kiện
Tập xác định
=> Hàm số liên tục trên