Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{2n + 9}{n + 2}},\left( n \in
\mathbb{N}^{*} ight)

    Ta có: \lim\sqrt{\frac{2n + 9}{n + 2}} =\lim\sqrt{\dfrac{2 + \dfrac{9}{n}}{1 + \dfrac{2}{n}}} = \sqrt{\frac{2 +0}{1 + 0}} = \sqrt{2}

  • Câu 2: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản \frac{m}{n}. Tính tổng T = m + n.

    Ta có:

    0,5111... = 0,5 + 10^{- 2} + 10^{- 3} +
... + 10^{- n} + ...

    Dãy số 10^{- 2};10^{- 3};...;10^{-
n};,,, là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = 10^{- 2}, công sai là q = 10^{- 1}

    => S = \frac{u_{1}}{1 - q} =
\frac{10^{- 2}}{1 - 10^{- 1}} = \frac{1}{90}

    Vậy 0,5111... = 0,5 + S = \frac{46}{90} =
\frac{23}{45}

    \Rightarrow \left\{ \begin{matrix}
m = 23 \\
n = 45 \\
\end{matrix} ight.\  \Rightarrow T = 68

  • Câu 3: Nhận biết

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{1 - {x^3}}}{{1 - x}}{\text{        khi }}x < 1} \\ 
  {{\text{1            khi }}x \geqslant 1} 
\end{array}} ight. . Hãy chọn kết luận đúng.

    Ta có: f(x) = \left\{ \begin{matrix}
1 + x + x^{2}\ \ \ \ \ \ \ \ khi\ x < 1 \\
1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 1 \\
\end{matrix} ight.

    Lại có:

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( 1 + x + x^{2} ight) = 3

    \lim_{x ightarrow 1^{+}}f(x) = 1 eq
3

    => Hàm số liên tục phải tại x = 1

  • Câu 4: Vận dụng

    Có bao nhiêu số tự nhiên chẵn k để \lim \frac{{n - 2\sqrt {{n^k}} \cos \frac{1}{n}}}{{2n}} = \frac{1}{2}

    Ta có:

    \frac{{n - 2\sqrt {{n^k}} \cos \frac{1}{n}}}{{2n}} = \frac{1}{2} - \frac{{\sqrt n \sin 2n}}{{2n}}

    Bài toán trở thành \lim \frac{{\sqrt n \sin 2n}}{{2n}} = 0

    Ta có: \lim \cos \frac{1}{n} = \cos 0 = 1 nên bài toán trở thành tìm k sao cho

    \begin{matrix}  \lim \dfrac{{\sqrt {{n^k}} }}{n} = \lim \left( {{n^{\dfrac{k}{2} - 1}}} ight) = 0 \hfill \\   \Leftrightarrow \dfrac{k}{2} - 1 < 0 \Leftrightarrow k < 2 \hfill \\ \end{matrix}

    k \in {\mathbb{N}^*};k = 3l

    => Không tồn tại giá trị của k (do k nguyên dương và k chẵn).

  • Câu 5: Nhận biết

    Cho hàm số f(x)
= \frac{2x - 3}{x^{2} - 1}. Mệnh đề nào sau đây đúng?

    Điều kiện xác định của hàm số f(x) =
\frac{2x - 3}{x^{2} - 1} là:

    x^{2} - 1 eq 0 \Rightarrow x eq \pm
1

    Suy ra tập xác định của hàm số là: D\mathbb{= R}\backslash\left\{ \pm 1
ight\}

    Nên hàm số không liên tục tại các điểm x
eq \pm 1.

  • Câu 6: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    TXĐ: D\mathbb{= R}

    Ta có:

    f( - 1) = 2a + 4

    \lim_{x ightarrow - 1}f(x) = \lim_{x
ightarrow - 1}\frac{x^{2} - 2x - 3}{x + 1}

    = \lim_{x ightarrow - 1}\frac{(x +
1)(x - 3)}{x + 1} = \lim_{x ightarrow - 1}(x - 3) = - 4

    Để hàm số gián đoạn tại x = - 1 thì \lim_{x ightarrow - 1}f(x) eq
f(1)

    \Leftrightarrow 2a - 4 eq - 4
\Leftrightarrow a eq - 4

    Vậy có 2024 giá trị nguyên của a \in (0;2025) để hàm số gián đoạn tại x = 1

  • Câu 7: Nhận biết

    Chọn khẳng định đúng?

    \lim_{x ightarrow - \infty}x^{4} = +
\infty

    \lim_{x ightarrow - \infty}x^{3} = -
\infty

    \lim_{x ightarrow x_{0}}x =
x_{0}

    \lim_{x ightarrow + \infty}q^{x} =
0;\left( |q| < 1 ight)

  • Câu 8: Thông hiểu

    Tính \lim\frac{2n + 1}{1 + n} được kết quả là:

    Ta có

    \lim\frac{2n + 1}{1 + n} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( \frac{1}{n} + 1
ight)} = \lim\frac{2 + \frac{1}{n}}{\frac{1}{n} + 1} = \frac{2 + 0}{0
+ 1} = 2.

  • Câu 9: Thông hiểu

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}\frac{x}{x +1} = \frac{2}{2 + 1} = \frac{2}{3}.

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (2x - 1) \cdot
\frac{1}{x - 1} ightbrack = + \infty (do \lim_{x ightarrow 1^{+}}(2x - 1) = 1\lim_{x ightarrow 1^{+}}\frac{1}{x - 1} =
+ \infty).

    c) Ta có:

    \lim_{x ightarrow 3^{-}}\frac{x^{2}- 3x}{x^{2} - 6x + 9} = \lim_{x ightarrow 3^{-}}\frac{x(x - 3)}{(x -3)^{2}}

    = \lim_{x ightarrow 3^{-}}\frac{x}{x -
3} = \lim_{x ightarrow 3^{-}}\left( x\frac{1}{x - 3} ight) = -
\infty

    Do \lim_{x ightarrow 3^{-}}x =
3\lim_{x ightarrow
3^{-}}\frac{1}{x - 3} = - \infty.

    d) Ta có:

    \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(x - 1)\left( x^{2} + x + 1 ight)\sqrt{\frac{x}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)^{2}}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)}{x + 1}} ightbrack
= 3 \cdot \sqrt{\frac{0}{2}} = 0

  • Câu 10: Vận dụng

    Biết \lim_{x
ightarrow 1}\frac{f(x) - 10}{x - 1} = 5. Hỏi giá trị giới hạn \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack} bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5

    \Rightarrow f(1) = 10

    Khi đó: \lim_{x ightarrow 1}\frac{f(x)
- 10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{\left( \sqrt{x} - 1
ight)\left( \sqrt{x} + 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{(x - 1)\left\lbrack
\sqrt{4f(x) + 9} + 3 ightbrack}

    = \frac{5.\left( \sqrt{1} + 1
ight)}{\left\lbrack \sqrt{4f(1) + 9} + 3 ightbrack} =
1

  • Câu 11: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.

    Hàm số y = \sin xác định trên tập số thực suy ra hàm số liên tục trên \mathbb{R}

    Hàm số y = \cos\sqrt{x} xác định trên D = \lbrack 0; + \infty)

    Hàm sốy = \tan x xác định trên D\mathbb{= R}\backslash\left\{ \frac{\pi}{2}
+ k\pi|k\mathbb{\in Z} ight\}

    Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.

    b) Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x ight) - \lim_{x ightarrow -
\infty}1

    = \lim_{x ightarrow - \infty}\left(
\frac{1}{\sqrt{x^{2} + 1} - x} ight) - 1 = \lim_{x ightarrow -
\infty}\left( \frac{\frac{1}{x}}{- \sqrt{1 + \frac{1}{x}} - 1} ight) -
1 = - 1

    c) Xét hàm số 2x^{4} - 5x^{2} + x + 1 =
f(x) liên tục trên \mathbb{R}

    Ta có: \left\{ \begin{matrix}
f( - 2) = 11;f( - 1) = - 3 \\
f(0) = 1;f(1) = - 1;f(2) = 15 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0).f( - 1) < 0 \\
f(1).f(2) < 0 \\
\end{matrix} ight. nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng (0;2).

    d) Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{-}}\left( x^{2} + 1 ight) = 2 > 0 \\
\lim_{x ightarrow 1^{-}}(1 - x) = 0 \\
\end{matrix} ight.. Khi x
ightarrow 1^{-} \Leftrightarrow x < 1 \Leftrightarrow 1 - x >
0

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} + 1}{1 - x} = + \infty.

  • Câu 12: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{3 - x}{2x + 3}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{3 - x}{2x + 3} ight) = \lim_{x ightarrow +\infty}\dfrac{\dfrac{3}{x} - 1}{2 + \dfrac{3}{x}} = -\dfrac{1}{2}

  • Câu 13: Thông hiểu

    Tính giới hạn B =
\lim_{x ightarrow - \infty}\left( 2x^{2} - x^{2} + x - 3
ight).

    Ta có:

    B = \lim_{x ightarrow - \infty}\left(
2x^{2} - x^{2} + x - 3 ight)

    B = \lim_{x ightarrow -
\infty}\left\lbrack x^{3}\left( 2 - \frac{1}{x} + \frac{1}{x^{3}} -
\frac{3}{x^{3}} ight) ightbrack

    Ta lại có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {2 - \dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \dfrac{3}{{{x^3}}}} ight) = 2 > 0 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow B = \lim_{x ightarrow -
\infty}\left( 2x^{2} - x^{2} + x - 3 ight) = - \infty

  • Câu 14: Thông hiểu

    Tìm giá trị thực của tham số a để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 1}{x - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\a\ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight. liên tục tại x_{0} = 1.

    Ta có:

    f(1) = a

    \lim_{x ightarrow 1}f(x) = \lim_{xightarrow 1}\frac{x^{2} - 1}{x - 1}= \lim_{x ightarrow 1}\frac{(x -1)(x + 1)}{x - 1} = \lim_{x ightarrow 1}(x + 1) = 1

    Hàm số f(x) liên tục tại x = 1

    = > a = 2

  • Câu 15: Vận dụng

    Cho \lim_{x ightarrow 1}\frac{f(x) -
10}{x - 1} = 5. Giới hạn \lim_{x
ightarrow 1}\frac{f(x) - 10}{\left( \sqrt{x} - 1 ight)\left(
\sqrt{4f(x) + 9} + 3 ight)}bằng

    Đáp án: 1

    Đáp án là:

    Cho \lim_{x ightarrow 1}\frac{f(x) -
10}{x - 1} = 5. Giới hạn \lim_{x
ightarrow 1}\frac{f(x) - 10}{\left( \sqrt{x} - 1 ight)\left(
\sqrt{4f(x) + 9} + 3 ight)}bằng

    Đáp án: 1

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5nên f(x) - 10\overset{x
ightarrow 1}{ightarrow}5(x - 1)hay f(x)\overset{x ightarrow 1}{ightarrow}5x +
5

    Do đó

    \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left( \sqrt{4f(x) + 9} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5x + 5 -
10}{\left( \sqrt{x} - 1 ight)\left( \sqrt{4(5x + 5) + 9} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5(x -
1)\left( \sqrt{x} + 1 ight)}{(x - 1)\left( \sqrt{20x + 29} + 3
ight)}

    = \lim_{x ightarrow 1}\frac{5\left(
\sqrt{x} + 1 ight)}{\left( \sqrt{20x + 29} + 3 ight)} =
1.

  • Câu 16: Nhận biết

    Giá trị của \lim\sqrt[n]{a} với a> 0 bằng:

    Nếu a=1 thì ta có luôn giới hạn bằng 1.

    • Với  a > 1 thì khi đó: a = \left\lbrack 1 +\left( \sqrt[n]{a} - 1 ight) ightbrack^{n} > n(\sqrt[n]{a} -1)

    Suy ra: 0 < \sqrt[n]{a - 1} <\frac{a}{n} ightarrow 0 nên \lim\sqrt[n]{a} = 1

    • Với 0 < a < 1 thì khi đó:  \frac{1}{a} >1 .

    Suy ra: \lim \sqrt[n]{\frac{1}{a} }=1 \Rightarrow \lim \sqrt[n]{a}=1.\frac{1}{a}>1 \Rightarrow \lim \sqrt[n]{a}=1

    Tóm lại ta luôn có: \lim\sqrt[n]{a} =1 với a > 0 .

  • Câu 17: Thông hiểu

    Giới hạn cần tìm của E =
\lim\frac{\sqrt{n^{3} + 2n} + 1}{n + 2} bằng:

    E = \lim\frac{\sqrt{n^{3} + 2n} + 1}{n +
2} = + \infty

  • Câu 18: Thông hiểu

    Tìm m để hàm số y = f(x) = \left\{ \begin{matrix}\dfrac{2\sqrt[3]{x} - x - 1}{x - 1}\ \ khi\ x eq 1 \\mx + 1\ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight. liên tục trên \mathbb{R}.

    Ta có:

    \lim_{x ightarrow 1}\frac{2\sqrt[3]{x}
- x - 1}{x - 1}

    = \lim_{x ightarrow 1}\frac{2\left(
\sqrt[3]{x} - 1 ight) - (x - 1)}{x - 1}

    = \lim_{x ightarrow 1}\left(
\frac{2}{\sqrt[3]{x^{2}} + \sqrt[3]{x} + 1} - 1 ight) = -
\frac{1}{3}

    Dễ thấy hàm số liên tục khi x eq
1. Hàm số liên tục tại x =
1 khi và chỉ khi

    \lim_{x ightarrow 1}f(x) =
f(1)

    \Leftrightarrow - \frac{1}{3} = m +
1

    \Leftrightarrow m = -
\frac{4}{3}

  • Câu 19: Vận dụng cao

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Đáp án là:

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Ta có:

    \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}

    = \lim\left\lbrack \frac{2n^{2} - n^{3}
+ n^{3}}{n^{2} + n - n^{2}} \cdot \frac{\sqrt{n^{2} + n} +
n}{\sqrt[3]{\left( 2n^{2} - n^{3} ight)^{2}} + n^{2} -
n\sqrt[3]{2n^{2} - n^{3}}} ightbrack

    = \lim\dfrac{\sqrt{\left( n\sqrt{1 +\dfrac{1}{n}} + n ight)}}{\sqrt[3]{n^{6} \cdot \left( \dfrac{2}{n} - 1ight)^{2}} + n^{2} - n \cdot \sqrt[3]{n^{3}\left( \dfrac{2}{n} - 1ight)}}

    = \lim\dfrac{\sqrt{1 + \dfrac{1}{n}} +1}{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1}}

    Khi n ightarrow \infty thì \ lim\frac{1}{n} = 0.

    \Rightarrow \left\{ \begin{matrix}\lim\left( \left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1} ight) = - 1 + 1 + 1 = 1 \\\lim\left( \sqrt{1 + \dfrac{1}{n}} + 1 ight) = 1 \\\end{matrix} ight.

    \Rightarrow \lim\dfrac{\left( \sqrt{1 +\dfrac{1}{n}} + 1 ight.\ }{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}}+ 1 - \sqrt[3]{\dfrac{2}{n} - 1}} = 1

    \Rightarrow \lim\frac{\sqrt[3]{2n^{2} -
n^{3}} + n}{\sqrt{n^{2} + n} - n} = 1

  • Câu 20: Thông hiểu

    Giới hạn \lim_{}\left( n^{3} - 2023n +
2024 ight) bằng

    Ta có:

    \lim\left\lbrack n^{3} - 2023n + 2024
ightbrack

    = \lim\left\{ n^{3}\left( 1 -
\frac{2023}{n^{2}} + \frac{2024}{n^{3}} ight) ight\} = +
\infty.

    \left\{ \begin{matrix}
\underset{}{\lim\left( n^{3} ight) = + \infty} \\
\lim\left( 1 - \frac{2023}{n^{2}} + \frac{2024}{n^{3}} ight) = 1 >
0 \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo