bằng
Ta có:
Do
bằng
Ta có:
Do
Xét tính đúng sai của các khẳng định sau:
a)
. Đúng||Sai
b) Biết rằng
,
. Khi đó
. Sai||Đúng
c)
. Sai||Đúng
d) Biết
(với
). Khi đó
. Đúng||Sai
Xét tính đúng sai của các khẳng định sau:
a) . Đúng||Sai
b) Biết rằng ,
. Khi đó
. Sai||Đúng
c) . Sai||Đúng
d) Biết (với
). Khi đó
. Đúng||Sai
a) Đúng.
Vì
b) Sai.
Vì
c) Sai.
Vì
d) Đúng.
Xét thấy là nghiệm của phương trình
(mẫu số) nên
cũng là một nghiệm của phương trình
(tử số)
.
Khi đó:
.
Vậy .
Cho hàm số
với
là tham số. Tính giá trị của tham số
để hàm số có giới hạn tại
.
Hàm số có giới hạn tại
Dãy số nào sau đây có giới hạn bằng 0?
Ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Biết
, trong đó
. Tính
.
Đáp án: -100||- 100
Biết , trong đó
. Tính
.
Đáp án: -100||- 100
Ta có:
.
Ta có:
.
.
Đồng thời:
.
Vậy .
Biết rằng hàm số
liên tục tại
(a là tham số. Khẳng định nào dưới đây đúng?
Tập xác định
Theo giả thiết ta có:
Hàm số
liên tục trên:
Ta có:
=> Tập xác định
Vậy hàm số liên tục trên
Kết quả của giới hạn
bằng bao nhiêu?
Ta có:
Ta lại có:
Tìm được các giới hạn một bên sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Sai||Đúng
d)
Sai||Đúng
Tìm được các giới hạn một bên sau:
a) Đúng||Sai
b) Sai||Đúng
c) Sai||Đúng
d) Sai||Đúng
a) Ta có:
.
b) (do
và
).
c) Ta có:
Do và
.
d) Ta có:
Giá trị của
với a> 0 bằng:
Nếu a=1 thì ta có luôn giới hạn bằng 1.
Suy ra: nên
Suy ra:
Tóm lại ta luôn có: với a > 0 .
Hàm số 
Ta có: liên tục tại
Tại ta có:
Vậy hàm số liên tục tại
Tại ta có:
Vậy hàm số bị gián đoạn tại
Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.
Cho các giới hạn
. Tính giá trị biểu thức ![]()
Ta có:
Biết giới hạn
và
. Khi đó:
a) Giá trị
nhỏ hơn 0. Sai||Đúng
b) Giá trị
lớn hơn 0. Đúng||Sai
c) Phương trình lượng giác
có một nghiệm là
. Đúng||Sai
d) Cho cấp số cộng
với công sai
và
, thì
. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Giá trị nhỏ hơn 0. Sai||Đúng
b) Giá trị lớn hơn 0. Đúng||Sai
c) Phương trình lượng giác có một nghiệm là
. Đúng||Sai
d) Cho cấp số cộng với công sai
và
, thì
. Sai||Đúng
a) Ta có:
b) Ta có:
.
c) Phương trình lượng giác có một nghiệm là
d) Cho cấp số cộng với công sai
và
, thì
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Xác định
.
Ta có: .
Hàm số nào không liên tục tại
?
Ta có hàm số không xác định tại
nên hàm số không liên tục tại
NB
Cho
. Biết
(với
tối giản). Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c) Bộ ba số
tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số
tạo thành một cấp số nhân có công bội
Đúng||Sai
Cho . Biết
(với
tối giản). Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Bộ ba số tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số tạo thành một cấp số nhân có công bội
Đúng||Sai
Ta có
.
Do đó suy ra .
Kết luận:
|
a) Đúng |
b) Sai |
c) Đ |
d) Đúng |
Kết quả của giới hạn
bằng
Có nếu
.
Vì nên
.
Tìm giá trị thực của tham số m để hàm số
liên tục tại
.
Tập xác định chứa
Theo giả thiết ta có:
Tính tổng
:
Ta có: