Xác định khoảng liên tục của hàm số
. Mệnh đề nào dưới đây sai?
Hàm số liên tục trên các khoảng
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Xác định khoảng liên tục của hàm số
. Mệnh đề nào dưới đây sai?
Hàm số liên tục trên các khoảng
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Kết quả giới hạn
, với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Kết quả giới hạn , với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Ta có
.
Suy ra .
Tìm a để hàm số
liên tục tại
. Tìm m để hàm số liên tục tại
.
Ta có:
Để hàm số liên tục tại thì
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Tính giới hạn ![]()
Ta có:
Cho dãy số
với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây?
Ta có:
lập thành một cấp số nhân có nên
vì
Biết giới hạn
và
. Khi đó:
a) Tích
. Sai||Đúng
b) Hàm số
có tập xác định là
. Đúng||Sai
c) Giá trị
là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác
vô nghiệm. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Tích . Sai||Đúng
b) Hàm số có tập xác định là
. Đúng||Sai
c) Giá trị là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác vô nghiệm. Sai||Đúng
Ta có: ,
Do
a) Tích
b) Hàm số có tập xác định là
c) Giá trị là số lớn hơn
d) Phương trình lượng giác có nghiệm
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Cho dãy số
với
. Chọn kết quả đúng của
là:
Ta có:
= 0
bằng
Ta có:
Cho hàm số
. Mệnh đề nào sau đây là đúng?
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Vậy hàm số liên tục trên các khoảng và
.
Giới hạn
bằng
Ta có:
Biết
. Hỏi giá trị a thuộc tập hợp nào dưới đây?
Ta có:
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn thỏa mãn
.
Ta có:
Vậy .
Xác định ![]()
Ta có:
Cho giới hạn
. Tính giá trị của 100I?
Đáp án: -600||- 600
Cho giới hạn . Tính giá trị của 100I?
Đáp án: -600||- 600
Ta có:
Ta có:
+)
+)
.
+)
.
Vậy .
bằng:
Ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
. Đúng||Sai
b) Biết rằng
khi đó
Đúng||Sai
c)
Sai||Đúng
d) Phương trình
có nghiệm thuộc khoảng
và
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
a) Hàm số có nghĩa khi
Vậy theo định lí ta có hàm số liên tục trên khoảng
.
b) Ta có:
Khi đó: .
Theo bài ra ta có:
c) Ta có:
s
d) Xét hàm số có tập xác định
Suy ra hàm số cũng liên tục trên các khoảng
và
.
Ta có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Lại có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
bằng
Đặt .
Ta có khi
Vậy .
Cho hàm số
. Hãy chọn kết luận đúng.
Ta có:
Lại có:
=> Hàm số liên tục phải tại x = 1
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy