Cho hàm số
. Tính
.
Hàm số đã cho xác định trên và
Giả sử là một dãy số bất kì, thỏa mãn
Ta có:
Vậy
Cho hàm số
. Tính
.
Hàm số đã cho xác định trên và
Giả sử là một dãy số bất kì, thỏa mãn
Ta có:
Vậy
Giới hạn
bằng:
Sử dụng máy tính cầm tay ta được:
Cho hàm số.![]()
a) Giới hạn:
Sai||Đúng
b) Giới hạn:
Đúng||Sai
c) Giới hạn:
Đúng||Sai
d) Giới hạn:
Sai||Đúng
Cho hàm số.
a) Giới hạn: Sai||Đúng
b) Giới hạn: Đúng||Sai
c) Giới hạn: Đúng||Sai
d) Giới hạn: Sai||Đúng
a) Ta có
b) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
c) Xét dãy số bất kì sao cho
và
, ta có
.
Khi đó: .
d) Vì (hay
) nên không tồn tại
.
Tìm giá trị thực của tham số m để hàm số
liên tục tại
.
Tập xác định chứa
Theo giả thiết ta có:
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Tính giới hạn
.
Ta có:
Kết quả đúng của
là:
Xét:
Ta có:
Suy ra
.
Tính giới hạn của hàm số
.
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Ta có:
Giới hạn
bằng
Ta có:
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Giá trị của
bằng:
Ta có:
Giá trị của giới hạn
bằng:
Ta có:
là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a
=>
Tương tự:
là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b
=>
Tính giới hạn ![]()
Ta có:
Tìm giá trị thực của tham số m để hàm số
liên tục tại ![]()
Với mọi ta có:
khi
=>
Theo giả thiết ta phải có:
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
. Đúng||Sai
b) Biết rằng
khi đó
Đúng||Sai
c)
Sai||Đúng
d) Phương trình
có nghiệm thuộc khoảng
và
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
a) Hàm số có nghĩa khi
Vậy theo định lí ta có hàm số liên tục trên khoảng
.
b) Ta có:
Khi đó: .
Theo bài ra ta có:
c) Ta có:
s
d) Xét hàm số có tập xác định
Suy ra hàm số cũng liên tục trên các khoảng
và
.
Ta có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Lại có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Cho hàm số
. Mệnh đề nào sau đây đúng?
Điều kiện xác định của hàm số là:
Suy ra tập xác định của hàm số là:
Nên hàm số không liên tục tại các điểm .
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Biết
. Hỏi giá trị a thuộc tập hợp nào dưới đây?
Ta có: