bằng:
Ta có:
bằng:
Ta có:
Biết rằng
. Tính
?
Ta có:
Khi đó
Cho hàm số
. Mệnh đề nào sai?
Ta có:
là hàm đa thức nên liên tục trên
.
Ta có: có nghiệm trên
Mà
Vậy phương trình có nghiệm trên khoảng
Ta có: có nghiệm trên
Vậy mệnh đề sai là “Phương trình không có nghiệm trên khoảng
”
Giá trị của
bằng:
Ta có theo tính chất giới hạn, ta có:
Hàm số nào sau đây không liên tục tại
?
Hàm số có tập xác định
nên không liên tục tại
.
Biết rằng hàm số
liên tục trên đoạn
(với
là tham số). Giá trị của
bằng bao nhiêu ?
Đáp án: 4
Biết rằng hàm số liên tục trên đoạn
(với
là tham số). Giá trị của
bằng bao nhiêu ?
Đáp án: 4
Hàm số xác định trên và liên tục trên
và
.
Khi đó để liên tục trên đoạn
thì hàm số liên tục tại
.
Ta có: .
Để hàm số liên tục tại thì
.
Cho hàm số
liên tục trên đoạn
sao cho
. Có thể nói gì về số nghiệm của phương trình
trên đoạn
:
Ta có:
Đặt
Khi đó:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng
hay phương trình
có ít nhất một nghiệm thuộc khoảng
.
Rút gọn biểu thức
với ![]()
Ta có:
Xét tính đúng sai của các khẳng định sau:
a)
. Đúng||Sai
b) Biết rằng
,
. Khi đó
. Sai||Đúng
c)
. Sai||Đúng
d) Biết
(với
). Khi đó
. Đúng||Sai
Xét tính đúng sai của các khẳng định sau:
a) . Đúng||Sai
b) Biết rằng ,
. Khi đó
. Sai||Đúng
c) . Sai||Đúng
d) Biết (với
). Khi đó
. Đúng||Sai
a) Đúng.
Vì
b) Sai.
Vì
c) Sai.
Vì
d) Đúng.
Xét thấy là nghiệm của phương trình
(mẫu số) nên
cũng là một nghiệm của phương trình
(tử số)
.
Khi đó:
.
Vậy .
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Với
là số nguyên dương,
là hằng số, giới hạn
bằng
Ta có và
nên
bằng
Tính ![]()
Ta có:
Vậy
Tính giới hạn ![]()
Ta có:
Ta có:
=>
Tìm giá trị thực của tham số m để hàm số
liên tục tại
.
Ta có:
Hàm số liên tục tại
Hàm số nào trong các hàm số dưới đây không liên tục trên
?
Hàm số có tập xác định
nên hàm số không liên tục trên
.
Giới hạn dãy số
với
là?
Ta có:
Vì nên suy ra:
Giới hạn cần tìm của
bằng:
Cho
. Biết
(với
tối giản). Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c) Bộ ba số
tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số
tạo thành một cấp số nhân có công bội
Đúng||Sai
Cho . Biết
(với
tối giản). Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Bộ ba số tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số tạo thành một cấp số nhân có công bội
Đúng||Sai
Ta có
.
Do đó suy ra .
Kết luận:
|
a) Đúng |
b) Sai |
c) Đ |
d) Đúng |
bằng
Ta có: