Giá trị của
bằng:
Ta có:
Giá trị của
bằng:
Ta có:
Biết giới hạn
. Khi đó:
a) Giá trị
lớn hơn 0. Sai||Đúng
b) Ba số
tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng
phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân
với công bội
và
, thì
. Đúng||Sai
Biết giới hạn . Khi đó:
a) Giá trị lớn hơn 0. Sai||Đúng
b) Ba số tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân với công bội
và
, thì
. Đúng||Sai
a) Ta có:
b) Ba số tạo thành một cấp số cộng với công sai bằng 1
c) Trên khoảng phương trình lượng giác
có 2 nghiệm
d) Cho cấp số nhân với công bội
và
, thì
Kết luận:
|
a) Sai |
b) Sai |
c) Sai |
d) Đúng |
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Tính giới hạn của hàm số
khi
.
Ta có:
Phát biểu nào dưới đây sai?
Ta có phát biểu sai là:
Sửa lại là:
Biết giới hạn
và
. Khi đó:
a) Giá trị
nhỏ hơn 0. Sai||Đúng
b) Giá trị
lớn hơn 0. Đúng||Sai
c) Phương trình lượng giác
có một nghiệm là
. Đúng||Sai
d) Cho cấp số cộng
với công sai
và
, thì
. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Giá trị nhỏ hơn 0. Sai||Đúng
b) Giá trị lớn hơn 0. Đúng||Sai
c) Phương trình lượng giác có một nghiệm là
. Đúng||Sai
d) Cho cấp số cộng với công sai
và
, thì
. Sai||Đúng
a) Ta có:
b) Ta có:
.
c) Phương trình lượng giác có một nghiệm là
d) Cho cấp số cộng với công sai
và
, thì
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Tìm tất cả các giá trị của tham số a để ![]()
Ta có:
Giải bất phương trình ta được kết quả
Tính ![]()
Ta có:
Ta có:
Ta cũng có:
Vậy
Giá trị của
bằng:
Với mọi a>0 nhỏ tùy ý, ta chọn
Suy ra
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Kết quả của giới hạn
bằng
Có nếu
.
Vì nên
.
Số điểm gián đoạn của hàm số
là:
Đáp án: 1
Số điểm gián đoạn của hàm số là:
Đáp án: 1
Hàm số có TXĐ
.
Hàm số liên tục trên mỗi khoảng
,
và
.
(i) Xét tại , ta có
Hàm số liên tục tại
.
(ii) Xét tại , ta có
Hàm số
gián đoạn tại
.
Vậy số điểm gián đoạn cần tìm là 1.
Tìm giá trị thực của tham số a để hàm số
liên tục tại
.
Ta có:
Hàm số liên tục tại
Tính giới hạn ![]()
Ta có:
Rút gọn
với ![]()
Ta có:
là một dãy cấp số nhân với
nên
Cho
là một đa thức thỏa mãn
. Tính giá trị

Ta có:
Khi đó
Cho hàm số
liên tục tại
. Xác định giá trị thực của tham số k.
Tập xác định
Theo giả thiết ta có:
Tính ![]()
Ta có:
Tìm giá trị thực của tham số m để hàm số
liên tục tại
.
Tập xác định
Theo giả thiết ta có: