Cho hàm số
. Tính
.
Ta có:
Cho hàm số
. Tính
.
Ta có:
Xác định
.
Ta có: .
Tính ![\mathop {\lim }\limits_{x \to 7} \dfrac{{\sqrt[3]{{4x - 1}} - \sqrt {x + 2} }}{{\sqrt[4]{{2x + 2}} - 2}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Vậy
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A=2.
Hàm số 
Ta có: liên tục tại
Tại ta có:
Vậy hàm số liên tục tại
Tại ta có:
Vậy hàm số bị gián đoạn tại
Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.
Rút gọn biểu thức
với
?
Ta có:
Giá trị của
bằng:
Chia cả tử và mẫu cho ta có được.
Tính
.
Ta có:
Cho hàm số
xác định và liên tục trên
với
với
. Tính giá trị ![]()
Ta có hàm số xác định và liên tục trên
nên suy ra
Cho hàm số
. Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng?
i) Hàm số
có tập xác định ![]()
ii) Hàm số
liên tục trên ![]()
iii) Hàm số
gián đoạn tại ![]()
iv) Hàm số
liên tục tại ![]()
Ta có:
i) Hàm số có tập xác định
đúng
ii) Hàm số liên tục trên
sai. Vì hàm số gián đoạn tại x = 1
iii) Hàm số gián đoạn tại
đúng. Vì hàm số không tồn tại giới hạn trái tại
iv) Hàm số liên tục tại
sai vì
Giá trị của
bằng:
Ta có mà
Suy ra
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là
(người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Ta có:
Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm (ngày) là 600 người/ngày.
Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là:
Ta có:
Hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục trên là:
Tìm tất cả các giá trị của tham số a để ![]()
Ta có:
Giải bất phương trình ta được kết quả
Giá trị của giới hạn
bằng:
Ta có:
Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Giới hạn dãy số
với
là?
Ta có:
Vì nên suy ra:
Tìm giá trị thực của tham số m để hàm số
liên tục tại ![]()
Với mọi ta có:
khi
=>
Theo giả thiết ta phải có:
Hàm số nào sau đây gián đoạn tại
?
Xét hàm số hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Cho
là hằng số,
là một số nguyên dương. Quy tắc nào sau đây sai?
Ta có với
là một số nguyên dương.