Tính
.
Ta có:
Tính
.
Ta có:
Giá trị của
bằng:
Ta có:
Cho
là các số thực khác
. Tìm điều kiện của
để giới hạn ![]()
Ta có:
Cho hàm số
xác định và liên tục trên
với
với
. Tính ![]()
Ta có: Hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
=>
Cho hàm số
. Hàm số
liên tục tại:
Tập xác định
Dễ thấy hàm số liên tục trên mỗi khoảng
Ta có:
Vậy hàm số liên tục tại x = 0
Tương tự ta có:
Vậy hàm số liên tục tại x = 1
Vậy hàm số đã cho liên tục trên tập số thực.
Hàm số nào không liên tục tại
?
Ta có hàm số không xác định tại
nên hàm số không liên tục tại
NB
Giá trị của
bằng:
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng
khi đó
Đúng||Sai
b) Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c)
Sai||Đúng
d) Cho hàm số
xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng khi đó
Đúng||Sai
b) Cho hàm số liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c) Sai||Đúng
d) Cho hàm số xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
a) Ta có:
b) Ta có:
Điều kiện cần và đủ để hàm số liên tục trên là
c)
d) Ta có:
Từ (*) và (**) ta có:
Do đó:
bằng:
Ta có:
bằng
Ta có:
Cho hàm số
. Hãy chọn kết luận đúng.
Ta có:
Lại có:
=> Hàm số liên tục phải tại x = 1
Giá trị của
bằng:
Ta có theo tính chất giới hạn, ta có:
Tính giá trị ![]()
Ta có:
Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Cho hàm số
với
là tham số. Tính giá trị của tham số
để hàm số có giới hạn tại
.
Hàm số có giới hạn tại
Cho hàm số
. Tìm
để hàm số liên tục tại ![]()
Đáp án: -3||- 3
Cho hàm số . Tìm
để hàm số liên tục tại
Đáp án: -3||- 3
Xét
Hàm số liên tục tại
.
bằng:
Ta có:
Do =>
Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

Ta có:
Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m,
Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.
Từ đó tổng quãng đường mà quả bóng đã di chuyển là
Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng .
bằng
Ta có:
Do
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.