bằng:
Ta có:
bằng:
Ta có:
Giá trị của
bằng:
Ta có:
Giá trị của
bằng:
Ta có:
Cho hàm số
. Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng?
i) Hàm số
có tập xác định ![]()
ii) Hàm số
liên tục trên ![]()
iii) Hàm số
gián đoạn tại ![]()
iv) Hàm số
liên tục tại ![]()
Ta có:
i) Hàm số có tập xác định
đúng
ii) Hàm số liên tục trên
sai. Vì hàm số gián đoạn tại x = 1
iii) Hàm số gián đoạn tại
đúng. Vì hàm số không tồn tại giới hạn trái tại
iv) Hàm số liên tục tại
sai vì
Số thập phân vô hạn tuần hoàn
được biểu diễn bởi phân số tối giản
. Khẳng định nào dưới đây đúng?
Ta có:
Cho dãy số
với
. Chọn mệnh đề đúng trong các mệnh đề dưới đây?
Ta có:
lập thành một cấp số nhân có nên
vì
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Giả sử
là các giá trị để hàm số
có giới hạn hữu hạn khi
dần tới
. Tính giá trị biểu thức ![]()
Ta có:
Suy ra hữu hạn khi
dần tới
khi và chỉ khi
Do nên điều kiện cần để có (*) là
Ngược lại với ta có:
=> có giới hạn hữu hạn khi
dần tới
Biết
liên tục trên
. Khẳng định nào sau đây đúng?
Dễ thấy liên tục trên mỗi khoảng
và
. Khi đó hàm số liên tục trên đoạn
khi và chỉ khi hàm số liên tục tại
Tức là ta cần có:
Ta có:
Khi đó (*) trở thành
Tính giới hạn
ta được kết quả bằng
Ta có:
.
Giá trị của
bằng:
Biết rằng
liên tục trên
với a là tham số. Khẳng định nào sau đây về giá trị a là đúng?
Ta có:
Hàm số xác định và liên tục trên
Khi đó liên tục trên
khi và chỉ khi
Ta có:
Tính giới hạn của hàm số
khi
.
Ta có:
Phát biểu nào dưới đây sai?
Ta có phát biểu sai là:
Sửa lại là:
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
. Đúng||Sai
b) Biết rằng
khi đó
Đúng||Sai
c)
Sai||Đúng
d) Phương trình
có nghiệm thuộc khoảng
và
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
a) Hàm số có nghĩa khi
Vậy theo định lí ta có hàm số liên tục trên khoảng
.
b) Ta có:
Khi đó: .
Theo bài ra ta có:
c) Ta có:
s
d) Xét hàm số có tập xác định
Suy ra hàm số cũng liên tục trên các khoảng
và
.
Ta có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Lại có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Tính giới hạn của ![]()
Ta có:
Cho hàm số
có đồ thị như hình dưới đây. Chọn khẳng định đúng.

Dựa vào đồ thị ta thấy hàm số liên tục trên
Cho hàm số
. Mệnh đề nào sau đây đúng?
Điều kiện xác định của hàm số là:
Suy ra tập xác định của hàm số là:
Nên hàm số không liên tục tại các điểm .
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi
dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có