Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Có bao nhiêu giá trị nguyên của m thuộc
sao cho
là:
Ta có:
Ta có:
Nhận định sự đúng sai của các kết luận sau?
a)
. Đúng||Sai
b) Phương trình
có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu
thì
bằng
. Sai||Đúng
d) Hàm số
gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục tại
. Sai||Đúng
b) Cho hàm số
liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết
khi đó
Sai||Đúng
d) Trong các hàm số
, có 3 hàm số liên tục trên tập số thực. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục tại
. Sai||Đúng
b) Cho hàm số liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết khi đó
Sai||Đúng
d) Trong các hàm số , có 3 hàm số liên tục trên tập số thực. Đúng||Sai
a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.
b) Xét phương trình
Đặt ta có:
Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng .
c) Ta có:
d) Các hàm số liên tục trên tập số thực là .
Tính giá trị giới hạn ![]()
Ta có:
bằng
Ta có:
Tính
.
Ta có:
Do đó
Xét tính liên tục của hàm số
. Khẳng định nào sau đây đúng?
Hàm số xác định với mọi
Ta có: liên tục trên
và
Mặt khác
Vậy hàm số gián đoạn tại x = 1
Cho hàm số
. Số nghiệm của phương trình
trên
là:
Hàm số là hàm đa thức có tập xác định là
nên liên tục trên
=> Hàm số liên tục trên mỗi khoảng
Ta có:
=> Hàm số có ít nhất một nghiệm thuộc khoảng
=> Hàm số có ít nhất một nghiệm thuộc khoảng
=> Hàm số có ít nhất một nghiệm thuộc khoảng
Vậy phương trình có ít nhất ba nghiệm thuộc khoảng
Mặt khác phương trình là phương trình bậc ba có nhiều nhất ba nghiệm
=> Phương trình có đúng ba nghiệm trên
Cho dãy số
thỏa mãn
. Biết dãy số
là dãy tăng và không bị chặn trên. Đặt
. Tính ![]()
Ta có:
Cho hàm số
liên tục trên
. Khi đó
a)
;
. Đúng||Sai
b)
. Sai||Đúng
c)
là số nguyên tố. Sai||Đúng
d) Giá trị lớn nhất của hàm số
là
. Sai||Đúng
Cho hàm số liên tục trên
. Khi đó
a) ;
. Đúng||Sai
b) . Sai||Đúng
c) là số nguyên tố. Sai||Đúng
d) Giá trị lớn nhất của hàm số là
. Sai||Đúng
a) Đúng.
Ta có : ,
(mệnh đề a) đúng)
b) Sai.
Với ta có
, là hàm đa thức nên liên tục trên
.
Với ta có
, là hàm đa thức nên liên tục trên
.
Với ta có
, là hàm đa thức nên liên tục trên
.
Để hàm số liên tục trên thì hàm số phải liên tục tại
và
.
Ta có:
;
.
.
.
.
.
Hàm số liên tục tại và
khi
(mệnh đề b) sai).
c) Sai.
Ta có không phải số nguyên tố (mệnh đề c) sai).
d) Sai.
Ta có:
Xét phương trình ẩn :
, với
.
Ta có
Suy ra GTLN của bằng
khi
hay
, với
Vậy khẳng định d) sai.
Cho hàm số
. Hàm số
liên tục tại:
Tập xác định
Dễ thấy hàm số liên tục trên mỗi khoảng
Ta có:
Vậy hàm số liên tục tại x = 0
Tương tự ta có:
Vậy hàm số liên tục tại x = 1
Vậy hàm số đã cho liên tục trên tập số thực.
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Hàm số
liên tục trên:
Điều kiện
Tập xác định
=> Hàm số liên tục trên
Một hãng taxi đưa ra giá cước
(đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Một hãng taxi đưa ra giá cước (đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Tại ta có:
.
.
Hàm số liên tục tại thì
.
Tìm giá trị thực của tham số m để hàm số
liên tục tại
.
Tập xác định chứa
Theo giả thiết ta có:
bằng:
Ta có:
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Tìm được các giới hạn một bên sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Sai||Đúng
d)
Sai||Đúng
Tìm được các giới hạn một bên sau:
a) Đúng||Sai
b) Sai||Đúng
c) Sai||Đúng
d) Sai||Đúng
a) Ta có:
.
b) (do
và
).
c) Ta có:
Do và
.
d) Ta có: