bằng:
Ta có:
bằng:
Ta có:
Cho hàm số
. Xác định
để hàm số liên tục trên
?
Ta có:
Hàm số liên tục trên khi và chỉ khi hàm số liên tục tại
Biết giới hạn
. Khi đó:
a) Giá trị
lớn hơn 0. Sai||Đúng
b) Ba số
tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng
phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân
với công bội
và
, thì
. Đúng||Sai
Biết giới hạn . Khi đó:
a) Giá trị lớn hơn 0. Sai||Đúng
b) Ba số tạo thành một cấp số cộng với công sai bằng
. Sai||Đúng
c) Trên khoảng phương trình lượng giác
có 3 nghiệm. Sai||Đúng
d) Cho cấp số nhân với công bội
và
, thì
. Đúng||Sai
a) Ta có:
b) Ba số tạo thành một cấp số cộng với công sai bằng 1
c) Trên khoảng phương trình lượng giác
có 2 nghiệm
d) Cho cấp số nhân với công bội
và
, thì
Kết luận:
|
a) Sai |
b) Sai |
c) Sai |
d) Đúng |
Tìm giá trị thực của tham số m để hàm số
liên tục tại ![]()
Với mọi ta có:
khi
=>
Theo giả thiết ta phải có:
Tính tổng
.
Ta có:
Cho số thực m thỏa mãn
. Khi đó giá trị của m là bao nhiêu?
Ta có:
Tính giới hạn
.
Ta có:
Biết
, trong đó
. Tính
.
Đáp án: -100||- 100
Biết , trong đó
. Tính
.
Đáp án: -100||- 100
Ta có:
.
Ta có:
.
.
Đồng thời:
.
Vậy .
Tính
.
Ta có :
.
Tính tổng S gồm tất cả các giá trị của tham số m để hàm số
liên tục tại
.
Tập xác định
Điều kiện để bài toán trở thành
Ta có:
bằng:
Ta có:
Tính giới hạn
.
Ta có:
Hàm số nào sau đây gián đoạn tại
?
Xét hàm số hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Giá trị của
bằng:
Ta có:
Tìm giá trị thực của m để hàm số
liên tục tại
.
Tập xác định của hàm số: chứa
Theo giả thiết thì ta phải có:
Vậy
Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

Ta có:
Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m,
Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.
Từ đó tổng quãng đường mà quả bóng đã di chuyển là
Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng .
Tính giới hạn ![]()
Ta có:
Do đó
Giá trị của
bằng:
Ta có:
Tính giới hạn
.
Ta có:
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại