Biết
(biết
là các số nguyên dương). Tính
?
Đáp án: 14
Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Ta có:
Do đó
Biết
(biết
là các số nguyên dương). Tính
?
Đáp án: 14
Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Ta có:
Do đó
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Giá trị của
với
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy .
Trong giới hạn sau đây, giới hạn nào bằng -1?
Ta có:
Biết giới hạn
và
. Khi đó:
a)
Đúng||Sai
b)
là hoành độ giao điểm của đường thẳng
với trục hoành Đúng||Sai
c)
Đúng||Sai
d) Cho cấp số cộng
với công sai
và
, thì
Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Đúng||Sai
b) là hoành độ giao điểm của đường thẳng
với trục hoành Đúng||Sai
c) Đúng||Sai
d) Cho cấp số cộng với công sai
và
, thì
Sai||Đúng
Ta có:
Do
Kết luận:
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
Cho hàm số
. Khi hàm số liên tục trên
thì
( với
là hai số nguyên liên tiếp). Tính
.
Đáp án: 2500
Cho hàm số . Khi hàm số liên tục trên
thì
( với
là hai số nguyên liên tiếp). Tính
.
Đáp án: 2500
TXĐ:
Hàm số liên tục khi
Xét tại
Ta có: ;
;
Để hàm số liên tục trên thì
Đáp án: .
Hàm số nào không liên tục tại
?
Ta có hàm số không xác định tại
nên hàm số không liên tục tại
NB
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Cho dãy số
với
trong đó a là tham số thực. tìm a để ![]()
Ta có:
Ta có:
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Tính giới hạn
.
Ta có:
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Tính giới hạn
.
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Ta có:
Hàm số nào dưới đây không liên tục trên khoảng
?
Xét hàm số với
Ta có:
Suy ra không tồn tại nên hàm số không liên tục tại x = 0
Vậy hàm số không liên tục trên .
![]()
Ta có:
Tìm giới hạn ![]()
Ta có:
Cho hàm số
xác định và liên tục trên
với
với
. Tính ![]()
Ta có: Hàm số xác định và liên tục trên
=> Hàm số liên tục tại
=>
Ta có:
=>
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng
khi đó
Đúng||Sai
b) Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c)
Sai||Đúng
d) Cho hàm số
xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng khi đó
Đúng||Sai
b) Cho hàm số liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c) Sai||Đúng
d) Cho hàm số xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
a) Ta có:
b) Ta có:
Điều kiện cần và đủ để hàm số liên tục trên là
c)
d) Ta có:
Từ (*) và (**) ta có:
Do đó: