Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên [-3;3] với f(x)=\frac{ \sqrt{x+3}-\sqrt{3-x}}{x} với xeq 0. Tính f(0)

    Ta có: Hàm số f(x) xác định và liên tục trên [-3;3]

    => Hàm số liên tục tại x=0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {x + 3}  - \sqrt {3 - x} }}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\sqrt {x + 3}  - \sqrt {3 - x} } ight)\left( {\sqrt {x + 3}  + \sqrt {3 - x} } ight)}}{{x\left( {\sqrt {x + 3}  + \sqrt {3 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{2x}}{{x\left( {\sqrt {x + 3}  + \sqrt {3 - x} } ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{2}{{\sqrt {x + 3}  + \sqrt {3 - x} }} = \dfrac{1}{{\sqrt 3 }} \hfill \\ \end{matrix}

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) = \frac{1}{{\sqrt 3 }}

  • Câu 2: Nhận biết

    Cho \lim_{x ightarrow x_{0}} =
L\lim_{x ightarrow x_{0}}g(x)
= M. Công thức nào sau đây sai?

    Ta có: \lim_{x ightarrow
x_{0}}\frac{f(x)}{g(x)} = \frac{L}{M} chỉ đúng nếu M eq 0.

  • Câu 3: Nhận biết

    Tính giới hạn \lim\frac{n^{2} - 4n^{3}}{2n^{3} + 5n -
2}

    Ta có:

    \lim\dfrac{n^{2} - 4n^{3}}{2n^{3} + 5n -2} = \lim\dfrac{\dfrac{1}{n} - 4}{2 + \dfrac{5}{n^{2}} - \dfrac{2}{n^{3}}} =\dfrac{0 - 4}{2 + 0 - 0} = - 2

  • Câu 4: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    TXĐ: D\mathbb{= R}

    Ta có:

    f( - 1) = 2a + 4

    \lim_{x ightarrow - 1}f(x) = \lim_{x
ightarrow - 1}\frac{x^{2} - 2x - 3}{x + 1}

    = \lim_{x ightarrow - 1}\frac{(x +
1)(x - 3)}{x + 1} = \lim_{x ightarrow - 1}(x - 3) = - 4

    Để hàm số gián đoạn tại x = - 1 thì \lim_{x ightarrow - 1}f(x) eq
f(1)

    \Leftrightarrow 2a - 4 eq - 4
\Leftrightarrow a eq - 4

    Vậy có 2024 giá trị nguyên của a \in (0;2025) để hàm số gián đoạn tại x = 1

  • Câu 5: Nhận biết

    Cho hàm số y =
f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là:

    Ta có:

    Hàm số y = f(x) liên tục trên (a;b)

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {a^ + }} f\left( x ight) = f\left( a ight) \hfill \\
  \mathop {\lim }\limits_{x \to {b^ - }} f\left( x ight) = f\left( b ight) \hfill \\ 
\end{gathered}  ight.

  • Câu 6: Thông hiểu

    Tìm giá trị thực của tham số a để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 1}{x - 1}\ \ \ \ \ \ \ \ khi\ x eq 1 \\a\ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight. liên tục tại x_{0} = 1.

    Ta có:

    f(1) = a

    \lim_{x ightarrow 1}f(x) = \lim_{xightarrow 1}\frac{x^{2} - 1}{x - 1}= \lim_{x ightarrow 1}\frac{(x -1)(x + 1)}{x - 1} = \lim_{x ightarrow 1}(x + 1) = 1

    Hàm số f(x) liên tục tại x = 1

    = > a = 2

  • Câu 7: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản \frac{a}{b}. Tính tổng Q = a - b.

    Ta có:

    \begin{matrix}
  5,231231... = 5 + 0,231 + 0,000231 + ... \hfill \\
   = 5 + \dfrac{{231}}{{{{10}^3}}} + \dfrac{{231}}{{{{10}^6}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{231}{10^{3}};\frac{231}{10^{6}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{231}{10^{3}}, công sai là q = 10^{- 3}

    \begin{matrix}
   \Rightarrow Q = 5 + \dfrac{{\dfrac{{231}}{{{{10}^3}}}}}{{1 - \dfrac{1}{{{{10}^{ - 3}}}}}} = 5 + \dfrac{{231}}{{999}} = \dfrac{{1742}}{{333}} \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {a = 1742} \\ 
  {b = 333} 
\end{array}} ight. \Rightarrow Q = 1409 \hfill \\ 
\end{matrix}

  • Câu 8: Thông hiểu

    Tính giá trị giới hạn \lim\left( \sqrt[3]{n^{3} - 2n^{2}} - night)

    Ta có:

    \lim\left( \sqrt[3]{n^{3} - 2n^{2}} - night)

    = \lim\frac{2n^{2}}{\left(\sqrt[3]{n^{3} - 2n^{2}} ight)^{2} + n.\sqrt[3]{n^{3} - 2n^{2}} +n^{2}}

    = \lim\dfrac{- 2}{\left( \sqrt[3]{\left(1 - \dfrac{2}{n} ight)} ight)^{2} + \sqrt[3]{1 - \dfrac{2}{n}} + 1} =- \dfrac{2}{3}

  • Câu 9: Vận dụng

    Tính  \lim_{x
ightarrow 0}\frac{\sqrt{1 + 2x} - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{\sqrt{1 + 2x} - (x + 1) + (x + 1) - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - (x + 1)}{x^{2}}

    = \lim_{x ightarrow 0}\frac{-
x^{2}}{x^{2}\left( \sqrt{1 + 2x} + x + 1 ight)} = -
\frac{1}{2}

    Ta cũng có:

    \lim_{x ightarrow 0}\frac{(x + 1) -
\sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{x^{3} + 3x^{2}}{x^{2}\left\lbrack (x + 1)^{2} + (x +
1)\sqrt[3]{1 + 3x} + \left( \sqrt[3]{1 + 3x} ight)^{2} ightbrack}
= 1

    Vậy  \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}} = \frac{1}{2}

  • Câu 10: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{\sqrt{2x + 1} - 1}{x}\ khi\ x eq 0 \\m^{2} - 2m + 2\ khi\ x eq 0 \\\end{matrix} ight.. Tìm tất cả các giá trị của tham số m để hàm số liên tục tại x = 0?

    Ta có: f(0) = m^{2} - 2m + 2

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\sqrt{2x + 1} - 1}{x}

    = \lim_{x ightarrow
0}\frac{2x}{x\left( \sqrt{2x + 1} + 1 ight)} = \lim_{x ightarrow
0}\frac{2}{\sqrt{2x + 1} + 1} = 1

    Hàm số liên tục tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0}f(x) = f(0)

    \Leftrightarrow m^{2} - 2m + 1 = 0
\Rightarrow m = 1

  • Câu 11: Nhận biết

    Xét tính liên tục của hàm số f(x) = \left\{ \begin{matrix}
1 - \cos x\ \ \ khi\ x \leq 0 \\
\sqrt{x + 1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x > 0 \\
\end{matrix} ight.. Khẳng định nào sau đây đúng?

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: f(x) liên tục trên ( - \infty;0)(0; + \infty)

    Mặt khác

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\sqrt{x + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( 1 - \cos x ight) = 0

    Vậy hàm số gián đoạn tại x = 1

  • Câu 12: Nhận biết

    Giá trị của C =
lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} bằng:

    Ta có theo tính chất giới hạn, ta có:

    lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} =
0

  • Câu 13: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}x^{2} - 2x + 3\ \ \ khi\ x > 3 \\1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 3 \\3 - 2x^{2}\ \ \ \ \ khi\ x < 3 \\\end{matrix} ight. . Khẳng định nào dưới đây sai?

    Ta có:

    \lim_{x ightarrow 3^{+}}f(x) = \lim_{xightarrow 3^{+}}\left( x^{2} - 2x + 3 ight) = 6

    \lim_{x ightarrow 3^{-}}f(x) = \lim_{xightarrow 3^{-}}\left( 3 - 2x^{2} ight) = - 15

    \Rightarrow \lim_{x ightarrow3^{+}}f(x) eq \lim_{x ightarrow 3^{-}}f(x)

    => Không tồn tại giới hạn khi x dần đến 3.

    Vậy chỉ có khẳng định \lim_{x ightarrow3^{-}}f(x) = 6 sai.

  • Câu 14: Vận dụng

    Biết rằng \lim\frac{\sqrt[3]{an^{3} +
5n^{2} - 7}}{\sqrt{3n^{2} - n + 2}} = b\sqrt{3} + c với a,b,c là các tham số. Tính giá trị của biểu thức P = \frac{a + c}{b^{3}} .

    Ta có:

    \lim\frac{\sqrt[3]{an^{3} + 5n^{2} -
7}}{\sqrt{3n^{2} - n + 2}}

    = \lim\dfrac{\sqrt[3]{a + \dfrac{5}{n} -\dfrac{7}{n^{3}}}}{\sqrt{3 - \dfrac{1}{n} + \dfrac{2}{n^{2}}}} =\dfrac{\sqrt[3]{a}}{\sqrt{3}} =\dfrac{\sqrt{3}.\sqrt[3]{a}}{3}

    \begin{matrix}
   \Rightarrow \dfrac{{\sqrt 3 .\sqrt[3]{a}}}{3} = b\sqrt 3  + c \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {\sqrt[3]{a} = \dfrac{b}{3}} \\ 
  {c = 0} 
\end{array}} ight. \Rightarrow P = \dfrac{1}{3} \hfill \\ 
\end{matrix}

  • Câu 15: Thông hiểu

    Trong các giới hạn dưới đây, giới hạn nào không tồn tại?

    Ta có:

    \lim_{x ightarrow - 1}\frac{x}{(x +
1)^{2}} = - \infty

    \lim_{x ightarrow - \infty}\dfrac{2x +1}{x^{2} + 1} = \lim_{x ightarrow - \infty}\dfrac{\dfrac{2}{x} +\dfrac{1}{x^{2}}}{1 + \dfrac{1}{x^{2}}} = 0

    \lim_{x ightarrow 0}\frac{x}{\sqrt{x +
1}} = 0

    \lim_{x ightarrow + \infty}\left( \cos
x ight) không xác định.

  • Câu 16: Thông hiểu

    Biết giới hạn \lim\frac{- 3n^{3} + 1}{2n
+ 5} = a\lim\frac{( - 1)^{n}
\cdot 5^{n}}{2^{n} + 5^{2n}} = b. Khi đó:

    a) \lim\left( - 3n^{2} + \frac{1}{n}
ight) = a Đúng||Sai

    b) x = b là hoành độ giao điểm của đường thẳng y = 2x với trục hoành Đúng||Sai

    c) \lim\left( \frac{1}{2024} ight)^{n}
= b Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = b, thì u_{3} = 2 Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\frac{- 3n^{3} + 1}{2n
+ 5} = a\lim\frac{( - 1)^{n}
\cdot 5^{n}}{2^{n} + 5^{2n}} = b. Khi đó:

    a) \lim\left( - 3n^{2} + \frac{1}{n}
ight) = a Đúng||Sai

    b) x = b là hoành độ giao điểm của đường thẳng y = 2x với trục hoành Đúng||Sai

    c) \lim\left( \frac{1}{2024} ight)^{n}
= b Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = b, thì u_{3} = 2 Sai||Đúng

    Ta có:

    \lim\dfrac{- 3n^{3} + 1}{2n + 5} =\lim\dfrac{n\left( - 3n^{2} + \dfrac{1}{n} ight)}{n\left( 2 +\dfrac{5}{n} ight)}

    = \lim\dfrac{- 3n^{2} + \dfrac{1}{n}}{2 +\dfrac{5}{n}} = - \infty

    Do \left\{ \begin{matrix}\lim\left( - 3n^{2} + \dfrac{1}{n} ight) = - \infty \\\lim\left( 2 + \dfrac{5}{n} ight) = 2 \\\end{matrix} ight.

    \lim\frac{( - 1)^{n} \cdot 5^{n}}{2^{n}
+ 5^{2n}} = \lim\frac{( - 1)^{n} \cdot 5^{n}}{2^{n} +
25^{n}}

    = \lim \dfrac{{{{25}^n} \cdot {{\left( {\dfrac{{ - 1}}{5}} ight)}^n}}}{{{{25}^n}\left[ {{{\left( {\dfrac{2}{{25}}} ight)}^n} + 1} ight]}}= \lim \dfrac{{{{\left( {\dfrac{{ - 1}}{5}} ight)}^n}}}{{{{\left( {\dfrac{2}{{25}}} ight)}^n} + 1}} = 0

    Kết luận:

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 17: Thông hiểu

    Dãy số nào dưới đây có giới hạn bằng 0?

    Ta có: \lim {(0,999)^n} = 0

    Do (0,999)^{n} là dãy cấp số nhân có \left| q ight| < 1

  • Câu 18: Vận dụng cao

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Đáp án là:

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Ta có:

    \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}

    = \lim\left\lbrack \frac{2n^{2} - n^{3}
+ n^{3}}{n^{2} + n - n^{2}} \cdot \frac{\sqrt{n^{2} + n} +
n}{\sqrt[3]{\left( 2n^{2} - n^{3} ight)^{2}} + n^{2} -
n\sqrt[3]{2n^{2} - n^{3}}} ightbrack

    = \lim\dfrac{\sqrt{\left( n\sqrt{1 +\dfrac{1}{n}} + n ight)}}{\sqrt[3]{n^{6} \cdot \left( \dfrac{2}{n} - 1ight)^{2}} + n^{2} - n \cdot \sqrt[3]{n^{3}\left( \dfrac{2}{n} - 1ight)}}

    = \lim\dfrac{\sqrt{1 + \dfrac{1}{n}} +1}{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1}}

    Khi n ightarrow \infty thì \ lim\frac{1}{n} = 0.

    \Rightarrow \left\{ \begin{matrix}\lim\left( \left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1} ight) = - 1 + 1 + 1 = 1 \\\lim\left( \sqrt{1 + \dfrac{1}{n}} + 1 ight) = 1 \\\end{matrix} ight.

    \Rightarrow \lim\dfrac{\left( \sqrt{1 +\dfrac{1}{n}} + 1 ight.\ }{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}}+ 1 - \sqrt[3]{\dfrac{2}{n} - 1}} = 1

    \Rightarrow \lim\frac{\sqrt[3]{2n^{2} -
n^{3}} + n}{\sqrt{n^{2} + n} - n} = 1

  • Câu 19: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 2}\frac{ax^{2} + bx -
2}{x - 2} = 5. Tính giá trị biểu thức S = a + 2b.

    Đáp án: -4||- 4

    \lim_{x ightarrow 2}\frac{ax^{2} +
bx - 2}{x - 2} = 5 là 1 số hữu hạn và \lim_{x ightarrow 2}(x - 2) = 0 nên \lim_{x ightarrow 2}\left( ax^{2} + bx - 2
ight) = 0 hay 4a + 2b - 2 = 0
\Leftrightarrow b = 1 - 2a.

    Khi đó:

    \lim_{x ightarrow 2}\frac{ax^{2} + bx
- 2}{x - 2} = \lim_{x ightarrow 2}\frac{ax^{2} + (1 - 2a)x - 2}{x -
2}

    = \lim_{x ightarrow 2}\frac{ax^{2} + x
- 2ax - 2}{x - 2} = \lim_{x ightarrow 2}\frac{(ax^{2} - 2ax) + (x -
2)}{x - 2}

    = \lim_{x ightarrow 2}\frac{(x - 2)(ax
+ 1)}{x - 2} = \lim_{x ightarrow 2}(ax + 1)

    = 2a + 1 = 5 \Rightarrow a =
2

    Suy ra b = - 3.

    Vậy S = - 4.

  • Câu 20: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 1}  - x) bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 1}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 1}  - x} ight)\left( {\sqrt {{x^2} + 1}  + x} ight)}}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{x}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{\sqrt {1 + \dfrac{1}{{{x^2}}}}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo