Tính giới hạn ![]()
Ta có:
Tính giới hạn ![]()
Ta có:
Tính giới hạn
?
Ta có:
.
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng
khi đó
Đúng||Sai
b) Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c)
Sai||Đúng
d) Cho hàm số
xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng khi đó
Đúng||Sai
b) Cho hàm số liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c) Sai||Đúng
d) Cho hàm số xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
a) Ta có:
b) Ta có:
Điều kiện cần và đủ để hàm số liên tục trên là
c)
d) Ta có:
Từ (*) và (**) ta có:
Do đó:
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Tìm giá trị thực của tham số m để hàm số
liên tục tại ![]()
Với mọi ta có:
khi
=>
Theo giả thiết ta phải có:
Tính giới hạn
ta được kết quả bằng
Ta có:
.
bằng
Ta có:
bằng:
Ta có:
Tính
.
Ta chứng minh bằng phương pháp quy nạp, với thì
Với thì
nên (*) đúng với
Giả sử (*) đúng với nghĩa là:
Xét ta có:
Vậy (*) đúng với
Bây giờ ta áp dụng với thì
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
Tính giới hạn
.
Ta có:
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn thỏa mãn:
Ta có:
Suy ra .
bằng:
Ta có:
Xét tính liên tục của hàm số
. Khẳng định nào sau đây đúng?
Hàm số xác định với mọi
Ta có: liên tục trên
và
Mặt khác
Vậy hàm số gián đoạn tại x = 1
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình
vô nghiệm. Sai||Đúng
b) Hàm số
có 4 điểm gián đoạn. Đúng||Sai
c)
Đúng||Sai
d) Để hàm số
liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình vô nghiệm. Sai||Đúng
b) Hàm số có 4 điểm gián đoạn. Đúng||Sai
c) Đúng||Sai
d) Để hàm số liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
a) Xét hàm số có tập xác định
Hàm số liên tục trên ta có:
Vì nên phương trình
có ít nhất một nghiệm trên
.
b) Ta có:
Vậy hàm số đã cho có 4 điểm gián đoạn.
c) Ta có:
d) Ta có:
với thì
là hàm phân thức hữu tỉ xác định với mọi
. Do đó hàm số liên tục trên các khoảng
Tại ta có:
Để hàm số liên tục trên khoảng thì hàm số phải liên tục tại x = 0 khi đó:
.
Vậy để hàm số liên tục trên khoảng
thì
nhận giá trị là
.
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Chọn kết quả đúng của
:
Ta có :
Vì nên suy ra:
Cho hai dãy số
với
và
. Khi đó
bằng:
Ta có:
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Tìm tất cả các giá trị của tham số a để ![]()
Ta có:
Giải bất phương trình ta được kết quả