Giá trị của
bằng:
Giá trị của
bằng:
bằng
Ta có:
Tính được các giới hạn sau, khi đó:
a)
Sai||Đúng
b)
Sai||Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
a) (do
b) do
c) .
Vì
d) .
Vì
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Tính giới hạn ![]()
Ta có:
Do đó
Xác định
.
Ta có: .
Hàm số
liên tục trên:
Ta có:
=> Tập xác định
Vậy hàm số liên tục trên
Tính giới hạn sau:
.
Đáp án: 1
Tính giới hạn sau: .
Đáp án: 1
Ta có:
Khi thì
.
Cho hàm số
. Mệnh đề nào sau đây đúng?
Điều kiện xác định của hàm số là:
Suy ra tập xác định của hàm số là:
Nên hàm số không liên tục tại các điểm .
Tính giới hạn ![]()
Khi ta có:
Giới hạn
bằng
Ta có:
.
Giá trị của
với a> 0 bằng:
Nếu a=1 thì ta có luôn giới hạn bằng 1.
Suy ra: nên
Suy ra:
Tóm lại ta luôn có: với a > 0 .
Tìm giá trị của tham số
để hàm số
liên tục trên
.
Đáp án: 3
Tìm giá trị của tham số để hàm số
liên tục trên
.
Đáp án: 3
Phần giải chi tiết
Tập xác định .
Hàm số liên tục trên các khoảng
.
Ta có
Hàm số liên tục trên
khi và chỉ khi
.
Tính giới hạn ![]()
Ta có:
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
suy ra
.
Vậy .
Cho hàm số
. Với giá trị nào của m thì hàm số đã cho liên tục tại
?
Ta có:
Để hàm số liên tục tại thì
Tìm giá trị thực của tham số a để hàm số
liên tục tại
.
Ta có:
Hàm số liên tục tại
Với
là số nguyên dương,
là hằng số, giới hạn
bằng
Ta có và
nên
Tính giá trị của giới hạn
.
Đặt thì ta có:
Do đó:
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi
dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có
Hàm số 
Ta có: liên tục tại
Tại ta có:
Vậy hàm số liên tục tại
Tại ta có:
Vậy hàm số bị gián đoạn tại
Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.