Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Giới hạn. Hàm số liên tục gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{2n + 9}{n + 2}},\left( n \in
\mathbb{N}^{*} ight)

    Ta có: \lim\sqrt{\frac{2n + 9}{n + 2}} =\lim\sqrt{\dfrac{2 + \dfrac{9}{n}}{1 + \dfrac{2}{n}}} = \sqrt{\frac{2 +0}{1 + 0}} = \sqrt{2}

  • Câu 2: Nhận biết

    Cho hàm số y =
f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là:

    Ta có:

    Hàm số y = f(x) liên tục trên (a;b)

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {a^ + }} f\left( x ight) = f\left( a ight) \hfill \\
  \mathop {\lim }\limits_{x \to {b^ - }} f\left( x ight) = f\left( b ight) \hfill \\ 
\end{gathered}  ight.

  • Câu 3: Thông hiểu

    Chọn kết quả đúng của \lim\frac{\sqrt{n^{3} - 2n + 5}}{3 +
5n}:

    Ta có :

    \lim\frac{\sqrt{n^{3} - 2n + 5}}{3 + 5n}
= \lim\sqrt{n}.\frac{\sqrt{(1 - \frac{2}{n^{2}} +
\frac{5}{n^{3}})}}{\frac{3}{n} + 5} = + \infty

    \lim\sqrt{n} = + \infty nên suy ra:

    \lim\frac{\sqrt{\left( 1 - \frac{2}{n^{2}} +
\frac{5}{n^{3}} ight)}}{\frac{3}{n} + 5} = \frac{1}{5}

  • Câu 4: Vận dụng cao

    Kết quả của giới hạn\lim\frac{2^{n + 1} +
3n + 10}{3n^{2} - n + 2} là:

    Ta có:

    \begin{matrix}
  {2^n} = \sum\limits_{k = 0}^n {C_n^k}  \hfill \\
   \Rightarrow {2^n} \geqslant C_n^3 = \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)}}{6} \sim \dfrac{{{n^3}}}{6} \hfill \\ 
\end{matrix}

    \Rightarrow \left\{ \begin{matrix}\dfrac{n}{2^{n}} ightarrow 0 \\\dfrac{2^{n}}{n^{2}} ightarrow + \infty \\\end{matrix} ight.

    Khi đó:

    \begin{matrix}
  \lim \dfrac{{{2^{n + 1}} + 3n + 10}}{{3{n^2} - n + 2}} \hfill \\
   = \lim \dfrac{{{2^n}}}{{{n^2}}}.\dfrac{{2 + 3.\dfrac{n}{{{2^n}}} + 10.{{\left( {\dfrac{1}{2}} ight)}^n}}}{{3 - \dfrac{1}{n} + \dfrac{2}{{{n^2}}}}} \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}\lim\dfrac{2^{n}}{n^{2}} = + \infty \\\lim\dfrac{2 + 3.\dfrac{n}{2^{n}} + 10.\left( \dfrac{1}{2} ight)^{n}}{3 -\dfrac{1}{n} + \dfrac{2}{n^{2}}} = \dfrac{2}{3} > 0 \\\end{matrix} ight.

    Vậy \lim\dfrac{2^{n + 1} + 3n + 10}{3n^{2}- n + 2} = + \infty

  • Câu 5: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} - 2x + 1}
- \sqrt{1 - 2x}}{x}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{4x^{2}
- 2x + 1} - \sqrt{1 - 2x}}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x^{2} - 2x + 1} - \sqrt{1 - 2x} ight)\left( \sqrt{4x^{2} - 2x +
1} + \sqrt{1 - 2x} ight)}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 -
2x} ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x}{\sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}} = \frac{0}{1 + 1} =
0

  • Câu 6: Thông hiểu

    Cho  f(x)=\frac{x}{\sqrt{x+1}-1} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( 0 ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{\sqrt {x + 1}  - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 1}  + 1} ight)}}{{x + 1 - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {x + 1}  + 1} ight) = 2 \hfill \\ \end{matrix}

    Để hàm số liên tục trên \mathbb{R} thì 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( 0 ight) = f\left( 0 ight) \hfill \\   \Leftrightarrow 2 = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Tính giới hạn \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}}.

    Ta có:

    \lim\dfrac{4.3^{n} + 7^{n + 1}}{2.5^{n} +7^{n}} = \lim\dfrac{\dfrac{4.3^{n} + 7^{n + 1}}{7^{n}}}{\dfrac{2.5^{n} +7^{n}}{7^{n}}}

    = \lim\dfrac{4.\left( \dfrac{3}{7}ight)^{n} + 7}{2.\left( \dfrac{5}{7} ight)^{n} + 1} = 7

  • Câu 8: Nhận biết

    Tính giới hạn \lim_{x ightarrow
1}\frac{2x^{3} + 3x - 1}{x^{2} + 1}ta được kết quả bằng

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{3} + 3x
- 1}{x^{2} + 1}

    = \frac{2.1^{3} + 3.1 - 1}{1^{2} + 1} =
\frac{4}{2} = 2.

  • Câu 9: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    TXĐ: D\mathbb{= R}

    Ta có:

    f( - 1) = 2a + 4

    \lim_{x ightarrow - 1}f(x) = \lim_{x
ightarrow - 1}\frac{x^{2} - 2x - 3}{x + 1}

    = \lim_{x ightarrow - 1}\frac{(x +
1)(x - 3)}{x + 1} = \lim_{x ightarrow - 1}(x - 3) = - 4

    Để hàm số gián đoạn tại x = - 1 thì \lim_{x ightarrow - 1}f(x) eq
f(1)

    \Leftrightarrow 2a - 4 eq - 4
\Leftrightarrow a eq - 4

    Vậy có 2024 giá trị nguyên của a \in (0;2025) để hàm số gián đoạn tại x = 1

  • Câu 10: Nhận biết

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

  • Câu 11: Nhận biết

    Giá trị của  \lim\frac{1}{n^{k}} với k \in \mathbb{N^*}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\sqrt[k]{\frac{1}{a}}

    Suy ra:

    \frac{1}{n^{k}} < \frac{1}{n_{a}^{k}} < a\
\forall n > n_{a}

    Vậy \lim\frac{1}{n^{k}} = 0.

  • Câu 12: Thông hiểu

    Biết giới hạn \lim\frac{- 3n^{3} + 1}{2n
+ 5} = a\lim\frac{( - 1)^{n}
\cdot 5^{n}}{2^{n} + 5^{2n}} = b. Khi đó:

    a) \lim\left( - 3n^{2} + \frac{1}{n}
ight) = a Đúng||Sai

    b) x = b là hoành độ giao điểm của đường thẳng y = 2x với trục hoành Đúng||Sai

    c) \lim\left( \frac{1}{2024} ight)^{n}
= b Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = b, thì u_{3} = 2 Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\frac{- 3n^{3} + 1}{2n
+ 5} = a\lim\frac{( - 1)^{n}
\cdot 5^{n}}{2^{n} + 5^{2n}} = b. Khi đó:

    a) \lim\left( - 3n^{2} + \frac{1}{n}
ight) = a Đúng||Sai

    b) x = b là hoành độ giao điểm của đường thẳng y = 2x với trục hoành Đúng||Sai

    c) \lim\left( \frac{1}{2024} ight)^{n}
= b Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = b, thì u_{3} = 2 Sai||Đúng

    Ta có:

    \lim\dfrac{- 3n^{3} + 1}{2n + 5} =\lim\dfrac{n\left( - 3n^{2} + \dfrac{1}{n} ight)}{n\left( 2 +\dfrac{5}{n} ight)}

    = \lim\dfrac{- 3n^{2} + \dfrac{1}{n}}{2 +\dfrac{5}{n}} = - \infty

    Do \left\{ \begin{matrix}\lim\left( - 3n^{2} + \dfrac{1}{n} ight) = - \infty \\\lim\left( 2 + \dfrac{5}{n} ight) = 2 \\\end{matrix} ight.

    \lim\frac{( - 1)^{n} \cdot 5^{n}}{2^{n}
+ 5^{2n}} = \lim\frac{( - 1)^{n} \cdot 5^{n}}{2^{n} +
25^{n}}

    = \lim \dfrac{{{{25}^n} \cdot {{\left( {\dfrac{{ - 1}}{5}} ight)}^n}}}{{{{25}^n}\left[ {{{\left( {\dfrac{2}{{25}}} ight)}^n} + 1} ight]}}= \lim \dfrac{{{{\left( {\dfrac{{ - 1}}{5}} ight)}^n}}}{{{{\left( {\dfrac{2}{{25}}} ight)}^n} + 1}} = 0

    Kết luận:

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 13: Vận dụng

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    Đáp án là:

    Cho hai số thực a,b thỏa mãn \lim_{x ightarrow 1}\frac{ax^{2} + bx -
2}{x - 1} = 3. Tính giá trị biểu thức S = a + \frac{b}{4}. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 1,25

    \lim_{x ightarrow 1}\frac{ax^{2} +
bx - 2}{x - 1} = 3 là 1 số hữu hạn và \lim_{x ightarrow 1}(x - 1) = 0 nên \lim_{x ightarrow 1}\left( ax^{2} + bx - 2
ight) = 0 hay a + b - 2 = 0
\Leftrightarrow b = 2 - a.

    Khi đó:

    \lim_{x ightarrow 1}\frac{ax^{2} + bx
- 2}{x - 1} = \lim_{x ightarrow 1}\frac{ax^{2} + (2 - a)x - 2}{x -
1}

    = \lim_{x ightarrow 1}\frac{(x - 1)(ax
+ 2)}{x - 1} = \lim_{x ightarrow 1}(ax + 2)

    = a + 2 = 3

    \Rightarrow a = 1 suy ra b = 1.

    Vậy S = 1 + \frac{1}{4} =
1,25.

  • Câu 14: Thông hiểu

    Cho hàm số y =
f(x) = \sqrt{x - 1}. Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng?

    i) Hàm số f(x) có tập xác định D = \lbrack 1; + \infty)

    ii) Hàm số f(x) liên tục trên \lbrack 1; + \infty)

    iii) Hàm số f(x) gián đoạn tại x = 1

    iv) Hàm số f(x) liên tục tại x = 0

    Ta có:

    i) Hàm số f(x) có tập xác định D = \lbrack 1; + \infty) đúng

    ii) Hàm số f(x) liên tục trên \lbrack 1; + \infty) sai. Vì hàm số gián đoạn tại x = 1

    iii) Hàm số f(x) gián đoạn tại x = 1 đúng. Vì hàm số không tồn tại giới hạn trái tại x = 1

    iv) Hàm số f(x) liên tục tại x = 0 sai vì 0 otin \lbrack 1; + \infty)

  • Câu 15: Vận dụng

    Cho dãy số \left( u_{n}
ight)xác định bởi \left\{\begin{matrix}u_{n} = \dfrac{1}{2} \\u_{n + 1} = \dfrac{1}{2 - u_{n}},n \geq 1 \\\end{matrix} ight.. Tính \lim
u_{n}.

    Giả sử \lim u_{n} = a khi đó ta có:

    \begin{matrix}
  a = \lim {u_{n + 1}} = \lim \left( {\dfrac{1}{{2 - {u_n}}}} ight) = \dfrac{1}{{2 - a}} \hfill \\
   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a e 2} \\ 
  {a\left( {2 - a} ight) = 1} 
\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a e 2} \\ 
  {{a^2} - 2a + 1 = 0} 
\end{array}} ight. \hfill \\
   \Leftrightarrow a = 1 \hfill \\ 
\end{matrix}

  • Câu 16: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{3{x^4} - 2{x^5}}}{{5{x^4} + 3{x^6} + 1}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{3{x^4} - 2{x^5}}}{{5{x^4} + 3{x^6} + 1}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{3}{{{x^2}}} - \dfrac{2}{x}}}{{\dfrac{5}{{{x^2}}} + 3 + \dfrac{1}{{{x^6}}}}} = 0 \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Đáp án là:

    Tính giới hạn sau: \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}.

    Đáp án: 1

    Ta có:

    \lim\frac{\sqrt[3]{2n^{2} - n^{3}} +
n}{\sqrt{n^{2} + n} - n}

    = \lim\left\lbrack \frac{2n^{2} - n^{3}
+ n^{3}}{n^{2} + n - n^{2}} \cdot \frac{\sqrt{n^{2} + n} +
n}{\sqrt[3]{\left( 2n^{2} - n^{3} ight)^{2}} + n^{2} -
n\sqrt[3]{2n^{2} - n^{3}}} ightbrack

    = \lim\dfrac{\sqrt{\left( n\sqrt{1 +\dfrac{1}{n}} + n ight)}}{\sqrt[3]{n^{6} \cdot \left( \dfrac{2}{n} - 1ight)^{2}} + n^{2} - n \cdot \sqrt[3]{n^{3}\left( \dfrac{2}{n} - 1ight)}}

    = \lim\dfrac{\sqrt{1 + \dfrac{1}{n}} +1}{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1}}

    Khi n ightarrow \infty thì \ lim\frac{1}{n} = 0.

    \Rightarrow \left\{ \begin{matrix}\lim\left( \left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}} + 1 -\sqrt[3]{\dfrac{2}{n} - 1} ight) = - 1 + 1 + 1 = 1 \\\lim\left( \sqrt{1 + \dfrac{1}{n}} + 1 ight) = 1 \\\end{matrix} ight.

    \Rightarrow \lim\dfrac{\left( \sqrt{1 +\dfrac{1}{n}} + 1 ight.\ }{\left( \dfrac{2}{n} - 1 ight)^{\dfrac{2}{3}}+ 1 - \sqrt[3]{\dfrac{2}{n} - 1}} = 1

    \Rightarrow \lim\frac{\sqrt[3]{2n^{2} -
n^{3}} + n}{\sqrt{n^{2} + n} - n} = 1

  • Câu 18: Vận dụng

    Cho các số thực a,b,c thỏa mãn c^{2} + a = 18\lim_{x ightarrow + \infty}\left( \sqrt{ax^{2} +
bx} - cx ight) = - 2. Tính giá trị biểu thức P = a + b + 5c.

    Ta có:

    \lim_{x ightarrow + \infty}\left(\sqrt{ax^{2} + bx} - cx ight)= \lim_{x ightarrow +\infty}\frac{\left( a - c^{2} ight).x^{2} + bx}{\sqrt{ax^{2} + bx} +cx}= \lim_{x ightarrow + \infty}\frac{\left( a - c^{2} ight).x +b}{\sqrt{a + \frac{b}{x}} + c} = - 2

    Khi và chỉ khi: \left\{ \begin{matrix}a - c^{2} = 0 \\\dfrac{b}{\sqrt{a} + c} = - 2 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = c^{2} \\b = - 2\sqrt{a} - 2c \\\end{matrix} ight.\  ight..

    Kết hợp với c^{2} + a = 18

    Khi đó 2c^{2} = 18 \Leftrightarrow c^{2}
= 9 ightarrow a = 9c= 3 (vì c eq -
\sqrt{a})

    Vậy b = - 2\sqrt{a} - 2c = - 2\sqrt{9} -
2.3 = - 12 nên a + b + 5c = 9 - 12
+ 5.3 = 12.

  • Câu 19: Thông hiểu

    Cho hàm số f(x)
= - 4x^{3} + 4x - 1. Mệnh đề nào sai?

    Ta có:

    f(x) = - 4x^{3} + 4x - 1 là hàm đa thức nên liên tục trên \mathbb{R}.

    Ta có: \left\{ \begin{matrix}
f( - 1) = - 1 < 0 \\
f( - 2) = 23 > 0 \\
\end{matrix} ight.\  \Rightarrow f(x) = 0 có nghiệm trên ( - 2; - 1)

    ( - 2; - 1) \subset ( -
\infty;1)

    Vậy phương trình f(x) = 0 có nghiệm trên khoảng ( -
\infty;1)

    Ta có: \left\{ \begin{gathered}
  f\left( 0 ight) =  - 1 < 0 \hfill \\
  f\left( {\dfrac{1}{2}} ight) = \dfrac{1}{2} > 0 \hfill \\ 
\end{gathered}  ight. có nghiệm trên \left( 0;\frac{1}{2} ight) \subset \left(
- 3;\frac{1}{2} ight)

    Vậy mệnh đề sai là “Phương trình f(x) =
0 không có nghiệm trên khoảng ( -
\infty;1)

  • Câu 20: Thông hiểu

    Tính giới hạn B =
\lim_{x ightarrow - \infty}\left( 2x^{2} - x^{2} + x - 3
ight).

    Ta có:

    B = \lim_{x ightarrow - \infty}\left(
2x^{2} - x^{2} + x - 3 ight)

    B = \lim_{x ightarrow -
\infty}\left\lbrack x^{3}\left( 2 - \frac{1}{x} + \frac{1}{x^{3}} -
\frac{3}{x^{3}} ight) ightbrack

    Ta lại có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {2 - \dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \dfrac{3}{{{x^3}}}} ight) = 2 > 0 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow B = \lim_{x ightarrow -
\infty}\left( 2x^{2} - x^{2} + x - 3 ight) = - \infty

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 5 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 33 lượt xem
Sắp xếp theo